WO2014044474A1 - Messsonde und verfahren zur quantitativen erfassung von eigenschaften und/oder inhaltsstoffen einer suspension - Google Patents

Messsonde und verfahren zur quantitativen erfassung von eigenschaften und/oder inhaltsstoffen einer suspension Download PDF

Info

Publication number
WO2014044474A1
WO2014044474A1 PCT/EP2013/066986 EP2013066986W WO2014044474A1 WO 2014044474 A1 WO2014044474 A1 WO 2014044474A1 EP 2013066986 W EP2013066986 W EP 2013066986W WO 2014044474 A1 WO2014044474 A1 WO 2014044474A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
suspension
measuring
measuring probe
reflected
Prior art date
Application number
PCT/EP2013/066986
Other languages
English (en)
French (fr)
Inventor
Thomas Klenk
Matthias Eberhardt
Original Assignee
Voith Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent Gmbh filed Critical Voith Patent Gmbh
Publication of WO2014044474A1 publication Critical patent/WO2014044474A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/34Paper
    • G01N33/343Paper paper pulp
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble

Definitions

  • the present invention relates to a measuring probe for the quantitative detection of properties and / or ingredients of a suspension (7), in particular a pulp suspension for paper, tissue or board production and a corresponding method.
  • Such measuring probes are held, for example, in a suspension or suspension current, whereby light from a light source is introduced into the suspension through a measuring window and light reflected by the suspension is taken up again.
  • a light measuring device By means of a light measuring device, the recorded amount of light can be determined quantitatively and / or qualitatively.
  • a fiber suspension is prepared in a pulp preparation, then applied to a sieve belt by means of a headbox and then dewatered or dried to form a fibrous web.
  • a headbox For optimum production control and quality assurance, the most accurate knowledge possible of the contents of the pulp suspension is essential.
  • Pulp suspensions also contain various fillers, such as clay, calcium carbonate, etc., and various chemicals, e.g. for bleaching the fibers or flocculating between the various suspended substances.
  • various fillers such as clay, calcium carbonate, etc.
  • various chemicals e.g. for bleaching the fibers or flocculating between the various suspended substances.
  • An inline measurement can be done in different ways.
  • various measuring methods for measuring concentrations in a pulp suspension are known from the prior art.
  • optical measuring methods are used for the determination of the ingredients.
  • two optical methods for measuring consistency and ash content of a suspension in a machine for producing and / or refining a fibrous web are known
  • properties of the suspension are measured with transmitted light, in the other method with scattered light.
  • the transmitted light measurement is usually measured monochromatically.
  • the transmitter and the receiver are placed opposite each other at a distance of about 1.5 to 3 mm, so that the suspension in between can be measured.
  • "shadows" of particles in the suspension are measured.
  • the transmitted light measurement is independent of the particle type. Due to a small measuring window, the light beam has a diameter between 0.2mm and 0.5mm, the transmitted light measurement method is strongly dependent on the flocculation and the flow of the suspension, which can lead to measurement errors.
  • the scattered light measurement measures the light scattered back from particles in the suspension of a large but undefined volume range.
  • the scattered light measurement is highly dependent on the particle type and its scattering intensity.
  • sensors or measuring probes based on the scattered light measurement are known, with which the total material density can be measured up to a substance density of about 4.5%. Separate determination of individual components in the suspension, however, is limited. Depending on the concentration of the ingredients, the measurement must be done in a bypass. In addition, the aging of the light sources affects the measurement.
  • DE 10 2004 051 960 A1 discloses a method and a device which combines these two measuring methods with one another and thus leads to a better measurement result. However, it has been shown that the measurement still does not meet the requirements.
  • a number of hitherto customary methods and measuring devices of the aforementioned type is described in "Wochenblatt fur Textilfabrikation", No. 7, 1996, pages 272 to 279. Thereafter, mass density measurements in a consistency range of 1.5% and higher have heretofore been carried out in particular on the basis of shear force measurements and the measurement of the dielectric constant over the propagation velocity of microwaves. This
  • the device is able to recognize several different ingredients of the mixture. However, it is relatively expensive and therefore expensive.
  • transmitted light is a prerequisite, which entails a larger space requirement.
  • the measuring channel must be small in diameter, which is especially true when the substance density increases. At higher substance densities, the medium must be diluted.
  • a device For measurements in the low-consistency range, a device has already become known which operates on the basis of the peak-value measuring method with transmitted light, wherein by means of a focused light beam fibers are counted and the ash content is measured by absorption. Although this known device can generally differentiate between ash and fibers, further differentiation possibilities do not exist. Again, transmitted light is assumed, which again adversely affects the space required. The measuring channel also has to be relatively small in diameter again, which is especially true when the substance density increases. At higher
  • the medium must be diluted again.
  • One of the objects of the invention is to propose a measuring probe which is suitable for in-line measurement of pulp density and ash content of a pulp suspension. Another object is to propose a simplified measuring device which also simplifies the measuring process.
  • the present invention proposes a measuring probe for the quantitative determination of properties and / or ingredients of a suspension having the features of the preamble of claims 1, in which the light-guiding device has at least one means for fanning the reflected light into its spectrum and a spectral sensor for measuring light. summarizes.
  • a method for the quantitative detection of properties and / or ingredients of a suspension is proposed, which is characterized in that the reflected light is fanned out by means of the light guide device in its spectrum and measured by means of a spectral sensor.
  • the spectral analysis of the light reflected from the suspension allows an improved inline analysis or detection of properties and / or ingredients of a suspension, in particular a pulp suspension for paper, tissue or board production.
  • the integration of the light-guiding device and the spectral sensor ie the integration of a spectrometer system into the measuring probe, simplifies the use of the measuring probe.
  • the probe can be immersed very easily in a suspension or in the suspension stream, there is no measuring channel required and there are no restrictions on the consistency of the suspension.
  • a complex light control z. B. to an external spectrometer system.
  • the proposed measuring probe comprises at least one measuring window, through which light from a light source can be introduced into the suspension and absorbed by the light reflected by the suspension, a spectral sensor and a means for fanning the reflected light into its spectrum.
  • the light-conducting device further comprises a lens system and / or a prism, by means of which the fanned-out light can be directed onto the spectral sensor, then the standard deviation of the fanned-out light can be compensated and the spectral sensor can be made very small.
  • the spectral sensor can be embodied as a two-dimensional CCD array sensor. Such a sensor is very sensitive to light and it is comparatively easy to detect with this light.
  • CCD image sensors consist of an array of photosensitive photodiodes. These may be rectangular, square or polygonal, with edge lengths of 1, 4 ⁇ to over 20 ⁇ . The larger the area of the pixels, the higher the photosensitivity and the dynamic range of the CCD sensor, the smaller, however, with the same sensor size, the image resolution. The sensor can thus be adapted to the lighting conditions of the reflected light beam.
  • the means for fanning the reflected light into its spectrum may be an optical grating or alternatively a prism.
  • Optical gratings also called diffraction gratings or multiple gaps, are periodic structures for diffracting light.
  • the lattice constant is the period of the lattice, typical values are 0.5 ⁇ to 10 ⁇ . All types of gratings consist of parallel, line-like structures, such as gaps in opaque material or opaque webs on a transparent plate (wire, slit or grating).
  • Gratings act by diffraction.
  • the light of each column interferes and forms an interference pattern.
  • Monochromatic light is deflected in a few different directions. The deflection angles depend on the lattice constant g and the wavelength ⁇ .
  • the measuring window is covered by means of a diaphragm which has a first channel, through which the light can be introduced selectively into the suspension, and at least two detection channels, by means of which the reflected light can be detected, then the light reflections can take place at different points and / or different distance to the first channel specifically selected and measured or analyzed.
  • a light radiation introduced punctually into a suspension spreads in this and forms a halo or halo and the amount of light reflected decreases with increasing distance to the coupling-in point. This effect can be exploited to increase the measuring accuracy by calculating the measured values.
  • the measuring sensor is furthermore designed in such a way that the light measuring device and / or the light guiding device comprises a device by means of which the light detected by the individual detection channels can be guided alternately to the same spectral sensor, one measuring sensor is sufficient to sequentially detect the detected light of the individual channels to measure.
  • the device By means of the device, once the sensor can be moved from a spectrally fanned out light beam to the other.
  • a spectral sensor can also be assigned to each detection channel so that all measured values can be determined at the same time, which eliminates the error occurring due to the time offset of the individual measurements.
  • At least one lens can be arranged in the light-guiding device, between one or more detection channels in common and the grating, by means of which the light detected by the detection channels can be bundled.
  • a light guide which directs the light entering through the detection channels in a targeted manner onto the lattice or prism.
  • the measured values of the spectral sensor are forwarded to an evaluation electronics or to a corresponding computer for the evaluation of the measurement results.
  • the calculated values can be approximated by algorithms to the measurement results so that absolute values for the reduced scattering coefficient and / or the spectral absorption coefficient can be determined.
  • the measured distribution curve is thus calculated using one simulated history compared.
  • the calculated course is approximated to the measured course. If the gradients are approximately congruent, it is assumed that the value pair for the reduced scattering coefficient and the spectral absorption coefficient is found.
  • the pulp density and / or the ash content can be determined. Furthermore, a machine for producing a fibrous web with a corresponding measuring probe is claimed.
  • the measuring probe is preferably inserted into a pipeline through which a suspension stream flows, and / or into a fabric chest.
  • the effect of spatially spectrally resolved light scattering is advantageously used to determine pulp density and ash content in stock suspensions inline.
  • FIG. 4 shows an alternative construction of the light-conducting device 10
  • FIG. 1 shows a schematic diagram of the measuring system.
  • the aim is the ingredients of the suspension 12, in particular the fiber density 13 and the ash content 14 to determine.
  • 12 light for example, the light of a halogen lamp 19 is introduced into the suspension.
  • the light of the light source is preferably conducted via an optical waveguide 18 and an optical system 23 into the suspension. Through the optics 23 there is a strong focus, so that the suspension 12 is spot-illuminated at the coupling point or the light is selectively coupled into the suspension.
  • an atrium or a halo 17 is formed in the suspension 12. That is, the light propagates hemispherically around the light exit point or the light entry point in the suspension 12. In the suspension 12, the light is scattered as well as absorbed and reflected by the ash particles 14 and fiber particles 13 present.
  • the reflected light is resumed and directed by means of a light guide to a sensor 16 for measuring the spectrum.
  • a computer-aided evaluation is carried out, by means of which the quantitative and / or qualitative determination of properties and / or ingredients of the suspension 12 is made possible.
  • FIG. 2 shows the construction of a measuring probe 1, which is connected on the one hand to a light source 19 and on the other hand to an evaluation unit 22.
  • the measuring probe 1 consists of a hermetically sealed housing 2 with a measuring window 3 arranged on the front side.
  • the measuring window preferably consists of a sapphire glass pane with a thickness of at least 0.1 mm, since a low backscatter with sufficient stability is thus achieved.
  • the inner side of the sapphire glass pane 3 is coated black to reduce reverse reflections or covered with a mask 4 made of black material, which is applied as a metallic mask directly onto the sapphire glass pane 22.
  • This mask can be made very thin via a galvano impression.
  • this method allows to define through a photo-exposure very precisely the structures for the channels 20, 21 through which the light enters and exits.
  • the mask works well coat with so-called camera paint, so that the surfaces have a very low reflection.
  • the channels, the first channel 20 and the detection channels 21, are formed by openings in the cover mask.
  • the light of the light source 19 is directed via an optical waveguide 18 to an optical system 15 and focused by the latter, so that the light is irradiated through the first channel 19, or the coupling-in point 4, at points into the suspension 7.
  • the light spot may have a diameter of 0.1 mm to 2 mm at the coupling-in point.
  • the light entry points or the detection channels 20 are arranged such that the reflected light is received at different distances to the coupling point 4.
  • the arrangement and the distance of the detection channels 20 to one another as well as to the first channel 21 can be adapted to the requirements of the suspension to be measured.
  • the size or the light passage cross section of the individual channels can be adapted to the lighting conditions prevailing at the detection point.
  • the passage openings can be selected to be larger and larger as the distance to the first channel 21 increases.
  • the light From the detection channels, the light enters the light guide device 10, in which or by means of which the light is fanned into its spectrum and directed to the spectral sensors (16).
  • the light beam entering through the detection channels is focused by a lens and projected onto the grating through which the light is spectrally fanned out.
  • the prism arranged behind the grating deflects the beam path in such a way that the spectrally resolved light beams fall precisely onto the CCD sensor 16.
  • the size of the surface of the pixels can be adapted to the lighting conditions, so that sensors are used with increasing distance of the detection channel to the first channel whose photosensitivity and / or dynamic range is greater in order to measure even with weakening light beam. NEN.
  • the sensor can thus be adapted to the lighting conditions of the reflected light beam.
  • FIG. 3 shows the sensor carrier with the sensors.
  • a sensor is arranged for each detection channel to which the light beam is spectrally fanned out by means of the light-guiding device 10.
  • the sensors may be called the 's, which may have different light sensitivities according to the position or an associated detection channel.
  • a sensor may also be provided for all or for a group of detection channels.
  • the light rays would then have to be alternately directed to the sensor. This can be done once by moving the sensor (s) or alternatively by alternately deflecting the light rays.
  • FIG. 4 shows an alternative construction of the light-conducting device 10.
  • only one lens 5 is provided for focusing the light beams 1 1 of three detection channels 20.
  • a larger lens can be used, which is easier to manufacture than a lot of small ones.
  • FIGS. 5 a, b show various light beam profiles.
  • the light of three adjacent detection channels is focused by means of a lens 5 on the grating 6 and fanned by this spectral.
  • the underlying prism then directs the beams 9 onto the individual sensors.
  • FIG. 5b shows a further variant of a possible light line or beam line.
  • the spectrally fanned out light beams are deflected by means of a lens system so that the fanned rays are focused again, so that the sensor can be made much smaller.
  • the measuring probe 1 is immersed in the suspension at least to the extent that at least the sapphire glass pane 3 is immersed in the suspension.
  • the measuring probe 1 for example, in a pipe or a chest, for the treatment or storage of a suspension, be installed.
  • the measuring probe 1 is thus installed directly at the desired measuring point in the process, so that an inline measurement is made possible.
  • the measured data can be forwarded to the machine control so that the process control or regulation of the pulp web production is improved.

Abstract

Die Erfindung betrifft eine Messsonde (1) zur quantitativen Erfassung von Eigenschaften und/oder Inhaltsstoffen einer Suspension (12), insbesondere einer Faserstoffsuspension für die Papier-, Tissue- oder Kartonherstellung. Die Messsonde (1) umfasst ein Messfenster (3), durch das Licht einer Lichtquelle in die Suspension (12) einleitbar und durch das das von der Suspension (12) reflektierte Licht aufgenommen werden kann, eine Lichtmessvorrichtung, mittels der die aufgenommene Lichtmenge quantitativ und/oder qualitativ bestimmbar ist, und eine Lichtleitvorrichtung (10). Die Messsonde (1) zeichnet sich dadurch aus, dass die Lichtleitvorrichtung (10) zumindest ein Mittel (6) zum Auffächern des reflektierten Lichtes (9) in sein Spektrum und die Lichtmessvorrichtung mindestens einen Spektralsensor (16) umfasst.

Description

Messsonde und Verfahren zur quantitativen Erfassungn Eigenschaften und/oder Inhaltsstoffen einer Suspension
Die vorliegende Erfindung betrifft eine Messsonde zur quantitativen Erfas- sung von Eigenschaften und/oder Inhaltsstoffen einer Suspension (7), insbesondere einer Faserstoffsuspension für die Papier-, Tissue- oder Kartonherstellung sowie ein entsprechendes Verfahren.
Derartige Messsonden werden zum Beispiel in eine Suspension oder Sus- pensionsstrom gehalten, wobei durch ein Messfenster, Licht einer Lichtquelle in die Suspension eingeleitet und von der Suspension reflektiertes Licht wieder aufgenommen wird. Mittels einer Lichtmessvorrichtung kann die aufgenommene Lichtmenge quantitativ und/oder qualitativ bestimmt werden.
Für die Papier-, Tissue- oder auch Kartonbahnproduktion wird eine Fasersuspension in einer Faserstoffaufbereitung aufbereitet, anschließend mit- tels eines Stoffauflaufs auf ein Siebband aufgetragen und so weit entwässert bzw. getrocknet, dass daraus eine Faserstoffbahn entsteht. Zur optimalen Produktionssteuerung und zur Qualitätssicherung ist eine möglichst genaue Kenntnis der Inhaltsstoffe der Faserstoffsuspension unerlässlich.
Faserstoffsuspensionen enthalten neben den Fasern auch verschiedene Füllstoffe wie Ton, Kalziumkarbonat etc. und verschiedene Chemikalien z.B. zum Bleichen der Fasern oder zur Flockenbildung zwischen den verschiedenen in Suspension befindlichen Substanzen.
In der Zellstoff- und Papierindustrie ist insbesondere die Konzentrationsmessung von Faserstoffdichte und Aschegehalt der Faserstoffsuspensionen von zentraler Bedeutung.
Eine Inline-Messung kann auf verschiedene Weise durchgeführt werden. So sind aus dem Stand der Technik verschiedene Messverfahren zur Messung von Konzentrationen in einer Faserstoffsuspension bekannt. Für die Bestimmung der Inhaltsstoffe werden, unter anderem, optische Messmethoden verwendet. Im Wesentlichen sind zwei optische Verfahren zur Messung von Stoffdichte und Aschegehalt einer Suspension in einer Maschine zur Herstellung und/oder Veredelung einer Faserstoffbahn bekannt
Bei dem einen Verfahren werden Eigenschaften der Suspension mit Durchlicht, beim anderen Verfahren mit Streulicht, gemessen.
Bei der Durchlichtmessung wird in der Regel monochromatisch gemessen. Der Sender und der Empfänger sind gegenüberliegend mit einem Abstand von ca. 1 ,5 bis 3mm angeordnet, sodass die sich dazwischen befindliche Suspension gemessen werden kann. Beim Durchlichtverfahren werden salopp gesagt "Schatten" von Partikeln in der Suspension gemessen. Die Durchlichtmessung ist unabhängig von der Partikelart. Aufgrund eines kleinen Messfensters, der Lichtstrahl hat einen Durchmesser zwischen 0,2mm und 0,5mm, ist das Durchlichtmessverfahren stark abhängig vom Flockungs- grad und von der Strömung der Suspension, wodurch Messfehler entstehen können.
Bei der Streulichtmessung wird das von Partikeln in der Suspension zurückgestreute Licht eines großen, aber Undefinierten Volumenbereichs gemessen. Die Streulichtmessung ist stark abhängig von der Partikelart und deren Streuintensität.
So sind beispielsweise Sensoren oder Messsonden, basierend auf der Streulichtmessung, bekannt, mit denen die Gesamtstoffdichte bis zu einer Stoff- dichte von ca. 4,5% gemessen werden kann. Eine getrennte Bestimmung einzelner Bestandteile in der Suspension ist dagegen nur begrenzt möglich. Je nach Konzentration der Inhaltsstoffe muss die Messung in einem Bypass erfolgen. Zudem beeinflusst die Alterung der Lichtquellen die Messung.
Sensoren, die auf der Durchlichtmessung und/oder der Streulichtmessung basieren, wie beispielsweise in der DE 10 2004 051 960 A1 offenbart, reagieren allerdings auch empfindlich auf in der Suspension enthaltene Luftblasen und Faserflocken (Ansammlung aus vielen kleinen Teilchen/Fasern). In der DE 10 2004 051 960 Al wird ein Verfahren und eine Vorrichtung offenbart, das/die diese beiden Messverfahren miteinander kombiniert und so zu einem besseren Messergebnis kommt. Es hat sich aber gezeigt, dass die Messung immer noch nicht den Anforderungen genügt. Eine Reihe der bisher üblichen Verfahren und Messgeräte der eingangs genannten Art ist in "Wochenblatt für Papierfabrikation", Heft 7, 1996, Seiten 272 bis 279, beschrieben. Danach wurden Stoffdichtemessungen in einem Konsistenzbereich von 1 ,5 % und höher bisher insbesondere auf der Basis von Scherkraft-Messungen und der Messung der Dielektrizitätskonstante über die Ausbreitungsgeschwindigkeit von Mikrowellen durchgeführt. Dieses
Gerät ist zwar in der Lage, mehrere unterschiedliche Inhaltsstoffe des Gemisches zu erkennen. Es ist jedoch relativ aufwendig und damit entsprechend teuer. Zudem ist Durchlicht Voraussetzung, was einen größeren Platzbedarf mit sich bringt. Der Messkanal muss im Durchmesser klein sein, was insbe- sondere dann gilt, wenn die Stoffdichte ansteigt. Bei höheren Stoffdichten muss das Medium verdünnt werden.
Für Messungen im Niedrigkonsistenzbereich ist auch bereits ein Gerät bekannt geworden, das auf der Basis der Spitzenwert-Messmethode mit Durchlicht arbeitet, wobei mittels eines fokussierten Lichtstrahls Fasern gezählt werden und der Aschegehalt durch Absorption gemessen wird. Dieses bekannte Gerät kann zwar pauschal Asche und Fasern unterscheiden, weitere Unterscheidungsmöglichkeiten bestehen jedoch nicht. Auch hier wird wieder Durchlicht vorausgesetzt, was sich wieder nachteilig auf den Platzbedarf auswirkt. Auch der Messkanal muss im Durchmesser wieder relativ klein sein, was insbesondere dann gilt, wenn die Stoffdichte ansteigt. Bei höheren
Stoffdichten muss das Medium wieder verdünnt werden.
Eine der Aufgaben der Erfindung ist es, eine Messsonde vorzuschlagen, die zur In-Linemessung von Faserstoffdichte und Aschegehalt einer Faser- stoffsuspension geeignet ist. Eine weitere Aufgabe besteht darin, eine vereinfachte Messvorrichtung vorzuschlagen, durch die auch das Messverfahren vereinfacht wird. Mit der vorliegenden Erfindung wird eine Messsonde zur quantitativen Erfassung von Eigenschaften und/oder Inhaltsstoffen einer Suspension mit den Merkmalen des Oberbegriffs von Ansprüche 1 vorgeschlagen, bei der die Lichtleitvorrichtung zumindest ein Mittel zum Auffächern des reflektierten Lichtes in sein Spektrum und einen Spektralsensor zur Lichtvermessung um- fasst.
Außerdem wird ein Verfahren zur quantitativen Erfassung von Eigenschaften und/oder Inhaltsstoffen einer Suspension vorgeschlagen, das sich dadurch auszeichnet, dass das reflektierte Licht mittels der Lichtleitvorrichtung in sein Spektrum aufgefächert und mittels eines Spektralsensors gemessen wird.
Die Spektralanalyse, des von der Suspension reflektierten Lichtes, erlaubt eine verbesserte inline Analyse bzw. Erfassung von Eigenschaften und/oder Inhaltsstoffen einer Suspension, insbesondere einer Faserstoffsuspension für die Papier-, Tissue- oder Kartonherstellung. Durch die Integration der Lichtleitvorrichtung und des Spektralsensors, also die Integration eines Spektro- meter Systems in die Messsonde, wird der Einsatz der Messsonde vereinfacht. Die Messsonde kann sehr einfach in eine Suspension bzw. in den Suspensionsstrom eingetaucht werden, es ist kein Messkanal erforderlich und es bestehen keine Beschränkungen bezüglich der Stoffdichte der Suspension. Zudem entfällt ein aufwendiges Lichtleitsystem z. B. zu einem externen Spektrometer System.
Die vorgeschlagene Messsonde umfasst zumindest ein Messfenster, durch das Licht einer Lichtquelle in die Suspension eingeleitet und durch das, von der Suspension reflektiertes Licht aufgenommen werden kann, einen Spektralsensor und ein Mittel zum Auffächern des reflektierten Lichtes in sein Spektrum.
Umfasst die Lichtleitvorrichtung des weiteren ein Linsensystem und/oder ein Prisma, mittels dem das aufgefächerte Licht auf den Spektralsensor geleitet werden kann, so kann die Standardabweichung des aufgefächerten Lichts kompensiert und der Spektralsensor sehr klein ausgeführt werden. Des Weiteren kann der Spektralsensor als zweidimensionaler CCD-Array- Sensor ausgeführt sein. Ein derartiger Sensor ist sehr lichtempfindlich und es ist vergleichsweise einfach, mit diesem Licht zu erfassen. CCD-Bildsensoren bestehen aus einem Array lichtempfindlicher Fotodioden. Diese können rechteckig, quadratisch oder polygonal sein, mit Kantenlängen von 1 ,4 μιτι bis über 20 μιτι. Je größer die Fläche der Pixel, desto höher ist die Lichtempfindlichkeit und der Dynamikumfang des CCD-Sensors, desto kleiner ist aber, bei gleicher Sensorgröße, die Bildauflösung. Der Sensor kann somit an die Lichtverhältnisse des reflektierten Lichtstrahls angepasst sein.
Weiterhin kann das Mittel zum Auffächern des reflektierten Lichtes in sein Spektrum ein optisches Gitter oder alternativ ein Prisma sein. Optische Gitter, auch Beugungsgitter oder Mehrfachspalt genannt, sind periodische Strukturen zur Beugung von Licht. Die Gitterkonstante ist die Periode des Gitters, typische Werte sind 0,5 μιτι bis 10 μιτι. Alle Typen von Gittern bestehen aus parallelen, linienartigen Strukturen, wie Spalte in undurchsichtigem Material oder undurchsichtige Stege auf einer transparenten Platte (Draht-, Spalt- o- der Strichgitter).
Gitter wirken durch Beugung. Das Licht der einzelnen Spalte interferiert und bildet ein Interferenzmuster. Monochromatisches Licht wird in wenige verschiedene Richtungen abgelenkt. Die Ablenkungswinkel hängen von der Gitterkonstante g und der Wellenlänge λ ab.
Ist des Weiteren das Messfenster mittels einer Blende abgedeckt, die einen ersten Kanal, durch den das Licht punktuell in die Suspension einleitbar ist, und zumindest zwei Detektionskanäle, durch die das reflektierte Licht detek- tierbar ist, aufweißt, können die Lichtreflektionen an unterschiedlichen Stellen und/oder unterschiedlichem Abstand zum ersten Kanal gezielt gewählt und gemessen bzw. analysiert werden. So wird ausgenutzt, dass ein punktuell in eine Suspension eingeleitete Lichtstrahlung sich in dieser ausbreitet und ein Halo oder auch Lichthof bildet und die reflektierte Lichtmenge mit größer werdendem Abstand zur Einkoppelstelle abnimmt. Dieser Effekt kann ausgenutzt werden, um mittels Verrechnung der Messwerte die Messgenauigkeit zu erhöhen. Ist der Messsensor weiterhin derart ausgebildet, dass die Lichtmessvorrich- tung und/oder die Lichtleitvorrichtung eine Vorrichtung umfasst, mittels der das von den einzelnen Detektionskanalen detektierte Licht abwechselt auf denselben Spektralsensor leitbar ist, reicht ein Messsensor aus, um das detektierte Licht der einzelnen Kanäle nacheinander zu vermessen.
Mittels der Vorrichtung kann einmal der Sensor von einem spektral aufgefächerten Lichtstrahl zum anderen verschoben werden. Alternativ besteht die Möglichkeit das Licht von den Detektionskanälen abwechselnd auf den einen Sensor zu leiten, z. B. mittels eines Lichtleiters, einer Linsenanordnung oder eines Spiegels.
Alternativ kann aber auch jedem Detektionskanal ein Spektralsensor zugeordnet sein, sodass alle Messwerte zeitgleich ermittelt werden können, was den durch den Zeitversatz der einzelnen Messungen auftretenden Fehler eliminiert.
Des Weiteren kann in der Lichtleitvorrichtung, zwischen einem oder für mehrere Detektionskanäle gemeinsam und dem Gitter, mindestens eine Linse angeordnet sein, mittels der das durch die Detektionskanäle detektierte Licht gebündelt werden kann. So kann auf einen Lichtleiter verzichtet werden, der das durch die Detektionskanäle eintretende Licht gezielt auf das Gitter oder Prisma leitet.
Die Messwerte des Spektralsensors werden an eine Auswertelektronik bzw. an einen entsprechenden Computer zur Auswertung der Messergebnisse weitergeleitet.
Aus den Messergebnissen kann der reduzierte Streu koeffizient und/oder der spektrale Absorptionskoeffizient bestimmt bzw. berechnet werden.
Die berechneten Werte können durch Algorithmen an die Messergebnisse angenähert werden, sodass absolute Werte für den reduzierten Streukoeffizienten und/oder den spektralen Absorptionskoeffizienten bestimmbar sind.
Der gemessene Verteilungsverlauf wird also mit einem aus Berechnungen simulierten Verlauf verglichen. Durch numerisches Verändern des reduzierten Streu Koeffizienten und des spektralen Absorptionskoeffizienten wird der berechnete Verlauf dem gemessenen Verlauf angenähert. Sind die Verläufe annähernd deckungsgleich, wird davon ausgegangen, dass das Wertepaar für den reduzierten Streu koeffizienten und den spektralen Absorptionskoeffizienten gefunden ist.
Aus den Werten dieser Koeffizienten, bzw. aus deren Veränderung über das gemessene Spektrum hinweg, lassen sich die Faserstoffdichte und/oder der Aschegehalt ermitteln. Weiterhin wird eine Maschine zur Herstellung einer Faserstoffbahn mit einer entsprechenden Messsonde beansprucht.
Bevorzugt ist die Messsonde in eine Rohrleitung, durch die ein Suspensionsstrom fliest, und/oder in eine Stoffbütte eingesetzt.
Mit der Erfindung wird der Effekt der räumlich spektral aufgelösten Licht- Streuung in vorteilhafter Weise genutzt, um Faserstoffdichte und Aschegehalt in Stoffsuspensionen inline zu ermitteln.
Weitere Merkmale und weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispieles unter Bezugnahme auf die Zeichnung. In diesen zeigen:
Figur 1 Prinzipskizze des Messsystems
Figur 2 Aufbau der Messsonde Figur 3 Sensorträger mit Sensoren
Figur 4 alternativer Aufbau der Lichtleitvorrichtung 10
Figur 5a/b Varianten zur Lichtleitung
Figur 1 zeigt eine Prinzipskizze des Messsystems. Ziel ist es die Inhaltstoffe der Suspension 12, insbesondere die Faserstoffdichte 13 und den Asche- gehalt 14 zu ermitteln. Dazu wird in die Suspension 12 Licht, z.B. das Licht einer Halogenlampe 19, eingeleitet. Das Licht der Lichtquelle wird vorzugsweise über einen Lichtleiter 18 und eine Optik 23 in die Suspension geleitet. Durch die Optik 23 erfolgt eine starke Fokussierung, sodass die Suspension 12 an der Einkoppelstelle punktförmig beleuchtet bzw. das Licht in die Suspension punktuell eingekoppelt wird.
Durch die punktuelle Beleuchtung bildet sich in der Suspension 12 ein Lichthof bzw. ein Halo 17. Das heißt, das Licht breitet sich halbkugelförmig um den Lichtaustrittspunkt bzw. den Lichteintrittspunkt in der Suspension 12 aus. In der Suspension 12 wird das Licht durch die vorhandenen Ascheteilchen 14 und Faserteilchen 13 sowohl gestreut als auch absorbiert und reflektiert.
Das reflektierte Licht wird wieder aufgenommen und mittels einer Lichtleitvorrichtung auf einen Sensor 16 zur Messung des Spektrums geleitet. Mithilfe der gemessenen Daten erfolgt eine rechnergestützte Auswertung, mittels der die quantitative und/oder qualitative Bestimmung von Eigenschaften und/oder Inhaltsstoffen der Suspension 12 ermöglicht wird.
In Figur 2 ist der Aufbau einer Messsonde 1 gezeigt, die zum einen mit einer Lichtquelle 19 und zum anderen mit einer Auswerteinheit 22 verbunden ist.
Die Messsonde 1 besteht aus einem hermetisch verschlossenen Gehäuse 2 mit einem stirnseitig angeordneten Messfenster 3. Das Messfenster besteht vorzugsweise aus einer Saphirglasscheibe mit einer Dicke von mindestens 0,1 mm, da so eine geringe Rückstreuung bei ausreichender Stabilität erreicht wird.
Die Innenseite der Saphirglasscheibe 3 ist zur Verminderung von Rückrefle- xen schwarz beschichtet bzw. mit einer Abdeckmaske 4 abgedeckt die aus schwarzem Material besteht, das als metallische Maske direkt auf die Saphirglasscheibe 22 aufgebracht ist. Diese Maske kann über eine Galvano- Abformung sehr dünn hergestellt werden. Außerdem lässt dieses Verfahren zu, über eine Fotobelichtung sehr genau die Strukturen für die Kanäle 20, 21 , durch die das Licht ein- und austritt, zu definieren. Die Maske lässt sich gut mit sogenanntem Kameralack beschichten, sodass die Oberflächen eine sehr geringe Reflexion aufweisen.
Die Kanäle, der erste Kanal 20 und die Detektionskanäle 21 , werden durch Öffnungen in der Abdeckmaske gebildet.
Das Licht der Lichtquelle 19 wird über einen Lichtleiter 18 auf eine Optik 15 geleitet und von dieser fokussiert, sodass das Licht durch den ersten Kanal 19, bzw. der Einkoppelstelle 4, punktuell in die Suspension 7 eingestrahlt wird. Der Lichtpunkt kann an der Einkoppelstelle einen Durchmesser von 0,1 mm bis 2mm aufweisen.
Die Lichteintrittstellen bzw. die Detektionskanäle 20 sind derart angeordnet, dass das reflektierte Licht in unterschiedlichen Abständen zur Einkoppelstelle 4 aufgenommen wird. Die Anordnung und der Abstand der Detektionskanäle 20 zueinander wie auch zum ersten Kanal 21 können an die Erfordernisse der zu messenden Suspension angepasst werden. Weiterhin kann die Größe bzw. der Lichtdurchlassquerschnitt der einzelnen Kanäle an die Lichtverhältnisse angepasst werden die an der Detektionsstelle herrschen.
Da die reflektierte Lichtmenge mit größer werdendem Abstand stark abnimmt, können die Durchlassöffnungen mit größer werdendem Abstand zum ersten Kanal 21 immer größer gewählt werden.
Von den Detektionskanälen gelangt das Licht in die Lichtleitvorrichtung 10, in der bzw. mittels der das Licht in sein Spektrum aufgefächert wird und auf die Spektralsensoren (16) gelenkt wird. Der durch die Detektionskanäle eintretende Lichtstrahl wird von einer Linse gebündelt und auf das Gitter projiziert, durch das das Licht spektral aufgefächert wird. Das hinter dem Gitter angeordnete Prisma lenkt den Strahlengang derart ab, dass die spektral aufgelösten Lichtstrahlen genau auf den CCD-Sensor 16 fallen. Die Größe der Fläche der Pixel kann dabei an die Lichtverhältnisse angepasst werden, sodass mit größer werdendem Abstand des Detektionskanals zum ersten Kanal Sensoren eingesetzt werden, deren Lichtempfindlichkeit und/oder Dynamikumfang größer ist, um auch bei schwächer werdendem Lichtstrahl messen zu kön- nen. Der Sensor kann somit an die Lichtverhältnisse des reflektierten Lichtstrahls angepasst sein.
In Figur 3 ist der Sensorträger mit den Sensoren dargestellt. Auf dem Sensorträger ist für jeden Detektionskanal ein Sensor angeordnet, auf den mittels der Lichtleitvorrichtung 10 der Lichtstrahl spektral aufgefächert geleitet wird. Die Sensoren können sogenannte Die's sein, die je nach Position bzw. zugeordnetem Detektionskanal unterschiedliche Lichtempfindlichkeiten aufweisen können.
Um die Anzahl der Sensoren zu reduzieren, kann aber auch ein Sensor für alle oder für eine Gruppe von Detektionskanälen vorgesehen sein. Die Lichtstrahlen müssten dann abwechselnd auf den Sensor geleitet werden. Dies kann einmal durch Verschieben des Sensors/der Sensoren oder alternativ durch die abwechselnde Ablenkung der Lichtstrahlen erfolgen.
In Figur 4 ist ein alternativer Aufbau der Lichtleitvorrichtung 10 dargestellt. In dieser Variante ist zur Fokussierung der Lichtstrahlen 1 1 von drei Detektionskanälen 20 jeweils nur eine Linse 5 vorgesehen. So kann eine größere Linse verwendet werden, die einfacher herzustellen ist als viel kleine.
In den Figuren 5 a, b sind verschiedene Lichtstrahlenverläufe dargestellt. So ist in 5a eine bereits beschriebene Variante dargestellt. Das Licht von drei nebeneinander angeordneten Detektionskanälen wird mittels einer Linse 5 auf das Gitter 6 fokussiert und durch dieses spektral aufgefächert. Das dahin- terliegende Prisma leitet die Strahlen 9 anschließend auf die einzelnen Sensoren.
In Fig 5b ist eine weitere Variante einer möglichen Lichtleitung bzw. Strahlenleitung dargestellt. Hier werden die spektral aufgefächerten Lichtstrahlen mittels eines Linsensystems derart abgelenkt, dass die aufgefächerten Strahlen wieder fokussiert werden, sodass der Sensor wesentlich kleiner ausgeführt werden kann.
Zur quantitativen Erfassung von Eigenschaften und/oder Inhaltsstoffen wird die Messsonde 1 zumindest soweit in die Suspension eingetaucht, dass zu- mindest die Saphirglasscheibe 3 in die Suspension eingetaucht ist. So kann die Messsonde 1 beispielsweise in eine Rohrleitung oder eine Bütte, zur Aufbereitung oder Lagerung einer Suspension, eingebaut werden. Die Messsonde 1 wird also direkt an der gewünschten Messstelle im Prozess eingebaut, sodass eine Inlinemessung ermöglicht wird.
Die gemessenen Daten können an die Maschinensteuerung weitergeleitet werden, sodass die Prozesssteuerung oder -regelung der Faserstoffbahnherstellung verbessert wird.
Bezugszeichenliste
1 Messsonde
2 Gehäuse
3 Messfenster
4 Blende
5 Linse
6 Gitter
7 Prisma
8 eingekoppeltes Licht
9 ausgekoppeltes Licht
10 Lichtleitvorrichtung
1 1 Lichtstrahl
1 1 a spektral aufgefächerter Lichtstrahl
12 Suspension
13 Fasern
14 Ascheteilchen
15 Sensorträger
16 Sensor
17 Lichthof/Halo
18 Lichtleiter
19 Lichtquelle
20 Detektionskanal
21 erster Kanal
22 Auswerteinheit
23 Optik
24 Linsensystem

Claims

Patentansprüche
1 . Messsonde (1 ) zur quantitativen Erfassung von Eigenschaften und/oder Inhaltsstoffen einer Suspension (12), insbesondere einer Faserstoffsuspensi- on für die Papier-, Tissue- oder Kartonherstellung, umfassend ein Messfenster (3), durch das Licht einer Lichtquelle (19) in die Suspension (12) einleitbar und durch das das von der Suspension (12) reflektierte Licht (9) aufgenommen werden kann, eine Lichtmessvorrichtung (15, 16), mittels der die aufgenommene Lichtmenge quantitativ und/oder qualitativ bestimmbar ist, und eine Lichtleitvorrichtung (10),
dadurch gekennzeichnet,
dass die Lichtleitvorrichtung (10) zumindest ein Mittel (6) zum Auffächern des reflektierten Lichtes in sein Spektrum und die Lichtmessvorrichtung mindestens einen Spektralsensor (16) umfasst.
2. Messsonde nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Lichtleitvorrichtung (10) ein Linsensystem und/oder ein Prisma (7) umfasst mittels dem das aufgefächerte Licht auf den Spektralsensor (16) geleitet werden kann.
3. Messsonde nach Anspruch 1 ,
dadurch gekennzeichnet,
dass der Spektralsensor (16) ein zweidimensionaler CCD-Array Sensor ist.
4. Messsonde nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das Mittel zum Auffächern des reflektierten Lichtes in sein Spektrum ein optisches Gitter (6) oder ein Prisma ist.
5. Messsonde nach Anspruch 1 dadurch gekennzeichnet,
dass das Messfenster mittels einer Blende (4) abgedeckt ist, die einen ersten Kanal (21 ), durch den das Licht punktuell in die Suspension (12) einleitbar ist, und zumindest zwei Detektionskanale (20), durch die das reflektierte Licht detektierbar ist, aufweißt.
6. Messsonde nach Anspruch 5,
dadurch gekennzeichnet,
dass die Lichtmessvorrichtung und/oder die Lichtleitvorrichtung (10) eine Vorrichtung umfasst, mittels der das von den einzelnen Detektionskanälen (20) detektierte Licht abwechselt auf denselben Spektralsensor (16) leitbar ist.
7. Messsonde nach Anspruch 5,
dadurch gekennzeichnet,
dass jedem Detektionskanal (20) ein Spektralsensor (16) zugeordnet ist.
8. Messsonde nach Anspruch 5,
dadurch gekennzeichnet,
dass in der Lichtleitvorrichtung (10) zwischen einem Detektionskanal (20) und dem Gitter (6) zumindest eine Linse (5) angeordnet ist, mittels der das durch den Detektionskanal (20) detektierte Licht bündelbar ist.
9. Verfahren zur quantitativen Erfassung von Eigenschaften und/oder Inhaltsstoffen einer Suspension (12), insbesondere einer Faserstoffsuspension für die Papier-, Tissue- oder Kartonherstellung, umfassend eine Messsonde mit einem Messfenster, durch das Licht einer Lichtquelle in die Suspension (12) eingeleitet wird und durch das das von der Suspension (7) reflektierte Licht aufgenommen wird, eine Lichtmessvorrichtung, mittels der die aufgenommene Lichtmenge quantitativ und/oder qualitativ bestimmt wird, und eine Lichtleitvorrichtung, zur gezielten Lenkung des reflektierten Lichtes auf die Lichtmessvorrichtung,
dadurch gekennzeichnet, dass das reflektierte Licht mittels der Lichtleitvorrichtung in sein Spektrum aufgefächert und mittels eines Spektralsensors gemessen wird.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass das reflektierte Licht mittels eines optischen Gitters oder eines Prismas in sein Spektrum aufgefächert wird.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass das aufgefächerte Licht mittels eines Linsensystems und/oder einem Prisma das Licht auf den mindestens einen Lichtsensor geleitet wird.
Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass das Messfenster mittels einer Blende abgedeckt ist, die einen ersten Kanal, durch den das Licht punktuell in die Suspension eingeleitet wird, und zumindest zwei Detektionskanälen, durch die das reflektierte Licht aufgenommen wird, aufweißt.
13. Verfahren nach Anspruch 12,
dadurch gekennzeichnet,
dass das reflektierte Licht durch einzelne Detektionskanäle detektiert wird und jedem Detektionskanal ein Spektralsensor oder das detektierte Licht der einzelnen Detektionskanäle abwechselnd auf denselben Spektralsensor geleitet wird.
14. Maschine zur Herstellung einer Faserstoffbahn umfassend eine Messsonde nach einem der Ansprüche 1 bis 10. 15. Maschine nach Anspruch 14,
dadurch gekennzeichnet, dass die Messsonde (1 ) in eine Rohrleitung (18), durch die ein Suspensions- strom (7) fliest, und/oder in eine Stoffbütte eingesetzt ist.
PCT/EP2013/066986 2012-09-20 2013-08-14 Messsonde und verfahren zur quantitativen erfassung von eigenschaften und/oder inhaltsstoffen einer suspension WO2014044474A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012216879 2012-09-20
DE102012216879.6 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014044474A1 true WO2014044474A1 (de) 2014-03-27

Family

ID=49035543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/066986 WO2014044474A1 (de) 2012-09-20 2013-08-14 Messsonde und verfahren zur quantitativen erfassung von eigenschaften und/oder inhaltsstoffen einer suspension

Country Status (1)

Country Link
WO (1) WO2014044474A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702619A (zh) * 2015-08-05 2020-01-17 唯亚威通讯技术有限公司 现场光谱过程监控

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0548027A2 (de) * 1991-12-17 1993-06-23 AVL Medical Instruments AG Einrichtung zur spektralphotometrischen Analyse
US6052177A (en) * 1997-12-11 2000-04-18 Honeywell Inc. Apparatus used in determining the degree of completion of a processed medium
US6128079A (en) * 1999-03-25 2000-10-03 Electric Power Research Institute, Inc. Fiber optic probe and system for measurement of moisture in steam turbines
US6753966B2 (en) * 2000-03-10 2004-06-22 Textron Systems Corporation Optical probes and methods for spectral analysis
DE102004051960A1 (de) 2004-10-26 2006-04-27 Voith Paper Patent Gmbh Verfahren zur Bestimmung von Eigenschaften einer Fasersuspension
WO2012007542A1 (en) * 2010-07-16 2012-01-19 Matthew Rice Optical measurement method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0548027A2 (de) * 1991-12-17 1993-06-23 AVL Medical Instruments AG Einrichtung zur spektralphotometrischen Analyse
US6052177A (en) * 1997-12-11 2000-04-18 Honeywell Inc. Apparatus used in determining the degree of completion of a processed medium
US6128079A (en) * 1999-03-25 2000-10-03 Electric Power Research Institute, Inc. Fiber optic probe and system for measurement of moisture in steam turbines
US6753966B2 (en) * 2000-03-10 2004-06-22 Textron Systems Corporation Optical probes and methods for spectral analysis
DE102004051960A1 (de) 2004-10-26 2006-04-27 Voith Paper Patent Gmbh Verfahren zur Bestimmung von Eigenschaften einer Fasersuspension
WO2012007542A1 (en) * 2010-07-16 2012-01-19 Matthew Rice Optical measurement method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WOCHENBLATT FÜR PAPIERFABRIKATION, 1996, pages 272 - 279

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110702619A (zh) * 2015-08-05 2020-01-17 唯亚威通讯技术有限公司 现场光谱过程监控
CN110702619B (zh) * 2015-08-05 2023-04-21 唯亚威通讯技术有限公司 现场光谱过程监控

Similar Documents

Publication Publication Date Title
DE60108982T2 (de) Verfahren und vorrichtung zur messung von fasereigenschaften
EP3428622A1 (de) Diffraktiver biosensor
DE19912500A1 (de) Verfahren und Vorrichtung zum Bestimmen von Eigenschaften einer laufenden Materialbahn
DE2740724A1 (de) Spektrophotometer mit gleichzeitiger bestimmung der lichtintensitaet
DE3713149A1 (de) Fernmess-spektrophotometer
DE3339435A1 (de) Farbueberwachungsgeraet fuer eine laufende materialbahn
DE2621217C2 (de)
WO2006122921A1 (de) VERFAHREN ZUR BESTIMMUNG DER LEIMUNGSMITTELKONZENTRATION, DER TEILCHENGRÖßE UND DER TEILCHENGRÖßENVERTEILUNG VON LEIMUNGSMITTELN IN EINEM PAPIERSTOFF
WO2010127872A1 (de) Vorrichtung und verfahren zur winkelaufgelösten streulichtmessung
DE3938142C2 (de)
DE102017127122B4 (de) Spektrometrisches Messgerät
WO2014044474A1 (de) Messsonde und verfahren zur quantitativen erfassung von eigenschaften und/oder inhaltsstoffen einer suspension
EP2981809B1 (de) Vorrichtung zur messung der streuung einer probe
EP3390713B1 (de) Verfahren und vorrichtung zur bestimmung des flächengewichts einer faserstoffbahn
DE102019001498A1 (de) Vorrichtung zur optischen Vermessung und Abbildung eines Messobjekts sowie Verfahren
DE102021100321B4 (de) SPR-Sensoreinheit und Verfahren zur Bestimmung des Brechungsindex eines Proben-mediums sowie Messeinrichtung zur Erfassung der Dichte eines Messmediums
DE102004005019A1 (de) Verfahren zur Bestimmung der Tiefe eines Fehlers in einem Glasband
DE3413558A1 (de) Verfahren, einrichtung und schaltungsanordnung zum beruehrungslosen ermitteln der richtung und/oder zum ermitteln des relativen unterschiedes in der staerke des auftretens zweier extremer faserorientierungen in papier, insbesondere an laufenden bahnen aus papier
EP2221607A1 (de) Verfahren und Messvorrichtung zur optischen Erfassung und Auswertung einer Fasern beinhaltenden Bahn
DE102013107220A1 (de) Vorrichtung und ein Verfahren zum Untersuchen einer Probe mittels mehrerer Untersuchungsmethoden
EP2581726A2 (de) Verfahren und Vorrichtung zur Bestimmung von Partikeln im Siebgut
DE102006018287B4 (de) Vorrichtung und Verfahren zur spektralanalytischen Bewertung von Materialien oder Objekten in einem Material- oder Objektstrom
EP2107362B1 (de) Vorrichtung zur Messung der Streuung und/oder Absorption und/oder Refraktion einer Probe
EP2253949A1 (de) Vorrichtung und Verfahren zum Detektieren eines optisch ablenkenden und/oder polarisationsdrehenden Fehlers
WO2014044473A1 (de) Verfahren und vorrichtung zum bestimmen von eigenschaften und/oder inhaltsstoffen einer suspension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753126

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13753126

Country of ref document: EP

Kind code of ref document: A1