WO2014044024A1 - 一种800kV智能断路器 - Google Patents

一种800kV智能断路器 Download PDF

Info

Publication number
WO2014044024A1
WO2014044024A1 PCT/CN2013/001105 CN2013001105W WO2014044024A1 WO 2014044024 A1 WO2014044024 A1 WO 2014044024A1 CN 2013001105 W CN2013001105 W CN 2013001105W WO 2014044024 A1 WO2014044024 A1 WO 2014044024A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
state monitoring
ied
sensor
phase
Prior art date
Application number
PCT/CN2013/001105
Other languages
English (en)
French (fr)
Inventor
钟建英
尹军华
彭在兴
寇新民
张军民
张一茗
张在平
陈志勇
刘俊杰
李健
李环
卫慧娟
谢晓燕
魏明
晁永杰
宋敬国
Original Assignee
国家电网公司
河南平高电气股份有限公司
平高集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 河南平高电气股份有限公司, 平高集团有限公司 filed Critical 国家电网公司
Publication of WO2014044024A1 publication Critical patent/WO2014044024A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/027Integrated apparatus for measuring current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/065Means for detecting or reacting to mechanical or electrical defects

Definitions

  • the present invention relates to a smart circuit breaker, particularly an 800 kV smart circuit breaker.
  • FIG. 1 A conventional circuit breaker system is shown in Fig. 1, which is composed of a conventional high voltage switchgear, a protection room, and a main control room.
  • the secondary signal and other signals in the traditional high-voltage switchgear (such as the switch-off information of the isolating blade auxiliary contact) are connected to the protection cabinet and the control cabinet of the protection room through cables.
  • the protective cabinet is equipped with relevant protection equipment, which is responsible for protecting the circuit breaker and uploading information to the back-end system in the main control room through the optical fiber.
  • the measurement and control cabinet is mainly used to collect secondary signals, upload to the back-end system, and accept commands from the back-end system to control the circuit breaker to open and close.
  • the future high-voltage intelligent switch system is shown in Figure 2.
  • the main trend is to localize the protection and measurement and control equipment through various new technologies.
  • the back-end system communicates and controls the connection with the high-voltage intelligent switch through the IEC61850 protocol.
  • Chinese Patent Application No. 201110004758.9 discloses a HGIS intelligent switch, which is mainly for replacing traditional transformers with electronic current-voltage transformers and traditional HGIS switchgear.
  • the intelligent component cabinet is installed, and the intelligent component cabinet includes: an intelligent controller, a switch online monitoring device and a digital electric energy meter.
  • the intelligent controller includes a protection function module, a measurement and control function module, a merging unit module, and an operation box module, wherein the merging unit module is connected and receives the current and voltage signals of the primary side of the phase-separated combined electronic current-voltage transformer, and The data of each phase current and voltage value is the same; the protection function module acquires the current and voltage signals of the primary side by the joint unit function module to perform the protection algorithm processing; the measurement and control function module acquires the current and voltage signals of the primary side by combining the unit function modules. Perform numerical calculation; the operation box module obtains commands from the protection and measurement and control module through the internal bus and then controls the relevant circuit breakers and knife gates, and obtains the state information of the circuit breakers and the knife gates by opening the plug-in;
  • the switch online monitoring device is a physically independent switch online monitoring device, including the installed displacement sensor, SF6 micro water pressure temperature sensor and current sensor are the switch stroke curve, trip speed, closing speed, trip time, closing time, SF6 micro Water index, SF6 pressure index, SF6 density index, SF6 temperature index, switch jumper current, switch closing current, switching energy storage motor current, switching knife motor current, switch ground motor current monitoring indicators, and
  • the self-diagnosis is performed together with the intelligent controller; the physically independent digital energy meter is connected by the multi-mode optical fiber and the merging unit module of the intelligent controller, and the voltage-current signal is obtained from the merging unit module for the correlation operation of the metering.
  • the HGIS of the above scheme is a three-phase integrated device, and since the voltage level is low and the device is small, the intelligent component cabinet can be integrated and installed in place.
  • the intelligent component cabinet can be integrated and installed in place.
  • the intelligent components can not adopt the above installation method, and there is no installation method suitable for the 800kV intelligent circuit breaker.
  • the online monitoring device in the above solution involves a variety of sensors, but in the 800kV intelligent circuit breaker, it is still not perfect.
  • An 800 kV intelligent circuit breaker comprising a circuit breaker body, a protection measurement and control system, and a condition monitoring system, wherein the state monitoring system includes a sensor disposed in each phase mechanism box, and the sensor includes an operation.
  • the condition monitoring system further comprises: a control cabinet that is separated from the circuit breaker body and is set locally, and is installed in the control cabinet
  • the state-monitoring main IED is equipped with a state monitoring sub-IED of the corresponding phase in each phase box, and the state monitoring sub-IED is connected to the sensor set in the mechanism box; the state monitoring sub-IED of each phase communicates with the main IED of the state monitoring Connection; Condition Monitoring The main IED is connected to the status monitoring backend system in the main control room via fiber optics.
  • the condition monitoring system further includes an infrared detecting imaging device for monitoring the state of the isolated knife gate of each phase, the infrared detecting imaging device is installed at the tank observation window of the circuit breaker body, and the infrared detecting imaging device of each phase corresponds to The phase of the phase monitors the sub-IED connection.
  • the condition monitoring system further includes: in each of the mechanism boxes, a hydraulic sensor for monitoring the oil pressure of the hydraulic system of the operating mechanism is installed on the operating mechanism accumulator, and the hydraulic sensors of each phase correspond to The phase of the phase monitors the sub-IED connection.
  • the condition monitoring system further includes: a partial discharge sensor for detecting high frequency electromagnetic waves to determine leakage current, and the partial discharge sensor is installed at an outer edge of the arc chamber or the outer edge of the insulating basin, The partial discharge sensor of the phase is connected to the state monitoring sub-IED of the corresponding phase.
  • a temperature sensor inside the control cabinet is disposed in the control cabinet, and an ambient temperature sensor is disposed outside the mechanism box.
  • the status monitoring main IED and the status monitoring sub-ED are connected via an RS485 bus.
  • Each of the mutual inductors includes an electronic transformer and an optical transformer, which are respectively installed on the line side and the outlet side; the electronic transformer is connected to the merging unit in the main control room through an optical fiber, and the optical transformer is used for signal conversion.
  • the electrical box connects the merging unit. Because it is different from HGIS, the distance between the phases is very long. In terms of safety and reliability, and in order not to waste the space of each phase mechanism box, the sub-IED is installed in each phase mechanism box, and the control cabinet is separated from the circuit breaker body. Installed in On the ground outside the safety distance, the main IED is set in the control cabinet, and the sub-IED is connected to the main IED.
  • This installation method can ensure the information acquisition of each phase in the three phases, and ensure that the main IED is not too far away from each phase.
  • the significance is: If the main IED is not separated from the sub-IED, the acquisition amount is too Large, requires a large number of leads to be taken out, and wastes space for each phase; if the main IED is also installed in a phase box, the circuit breaker must be closed when the main IED needs to be serviced.
  • the main IED is installed in the control cabinet outside the safety distance to facilitate the inspection and inspection of the main IED.
  • the closing and snoring of the monitoring isolating switch is mainly provided by the auxiliary switch contact to provide a shut-off state quantity. Since the isolation knife gate and its auxiliary switch contacts are only mechanically connected, the state of the isolation knife gate is often not truly reflected.
  • the infrared detection imaging truly reflects the action of the isolating knife gate, thereby enabling "sequential control" - that is, after the background system issues a command, the real state feedback is obtained, and then the next command is issued. If the obtained status feedback meets the command requirements, continue, if not, an alarm is issued.
  • the present invention employs an oil pressure sensor that measures the oil pressure of the drive mechanism to monitor the oil pressure of the hydraulic system in real time.
  • the present invention employs a partial discharge sensor for detecting high frequency electromagnetic waves to determine leakage, and the partial discharge sensor is usually installed at the outlet of the arc chamber chamber (the position at which the molecular sieve is installed is referred to as a port) or the outer edge of the insulating basin.
  • the monitoring system of the present invention is independent of the protection, measurement and control system, and is not directly involved in the control and protection of the circuit breaker.
  • the reason for the design is: In the power grid, especially in the high voltage field, for the sake of safety, various new technologies are To develop into a real application, it often takes a long time to verify. Even the well-known relay protection technology has been tempered for more than ten years to more than 20 years. Intelligent circuit breakers are still immature and must be tested and commissioned for a long time before they can be used without any worries.
  • the important tasks of the current intelligent circuit breaker include collecting a large amount of data collected, sending it to the back-end system for analysis and equipment status evaluation, and comparing the evaluation results with the actual operation to check the reliability of the monitoring system. Sex and stability, in order to further develop smart circuit breakers, participate in control and protection.
  • the intelligent circuit breaker of the invention can comprehensively monitor the state of the device, and does not need to be regularly repaired regardless of whether the device is faulty like the conventional device, and the maintenance plan can be arranged reasonably according to the evaluation result obtained by the system collecting information, and the state maintenance is realized.
  • the communication part of the system uses the international common communication protocol, which reduces the workload of installation and debugging.
  • the adopted system scheme has a simple structure and is universal, and can be widely applied to other voltage level intelligent switch devices.
  • FIG. 1 is a schematic structural view of a conventional circuit breaker
  • Figure 2 is the structural requirements of the intelligent circuit breaker
  • Figure 3 is a system diagram of the 800kV intelligent circuit breaker of the present invention.
  • FIG. 4 is a structural diagram of a sensor arrangement of an 800 kV intelligent circuit breaker of the present invention
  • Figure 5 is an external view of the present invention
  • Figure 6 is a schematic diagram of a partial discharge sensor
  • Figure 3 Figure 4, IC-operating coil current sensor; IM-storage motor current sensor; 0P-oil pressure sensor; DPE-displacement sensor; PTM-gas micro-water density sensor; - partial discharge sensor; TO - ambient temperature sensor; 0LM2 or S-IED - status monitoring sub-IED; M-IED - status monitoring main IED; M - operating mechanism; ISC - switching device controller.
  • an 800 kV intelligent circuit breaker includes a circuit breaker body and a protection measurement and control system.
  • the 800 kV intelligent circuit breaker further includes a state monitoring system, and the state monitoring system includes various sensors in each phase mechanism box, such as: Coil current sensor; energy storage motor current sensor; displacement sensor; gas micro water density sensor; temperature sensor inside the mechanism;
  • the condition monitoring system further comprises: separating from the circuit breaker body, and providing a control cabinet on the spot
  • the state monitoring main IED is installed in the control cabinet, and the state monitoring sub-IED of the corresponding phase is installed in each phase box, and each state monitoring sub-IED is connected with the state monitoring main IED; the above various sensors and corresponding phases Status monitoring sub-IED connection; condition monitoring The main IED is connected to the status monitoring back-end system in the main control room via fiber optics.
  • the control cabinet 40 is installed in the middle of the phase, ensuring the shortest distance from the middle one and the same distance from the other two phases.
  • the middle phase is the B phase circuit breaker 20
  • the other is the A phase circuit breaker 10 and the C phase circuit breaker 30
  • 11 is the A phase mechanism box
  • 12 is the A phase state monitoring sub-IED.
  • the control cabinet 40 The corresponding equipment of the respective circuit breaker and the main control room are connected by cables and optical cables.
  • the condition monitoring system further includes an infrared detecting imaging device for monitoring the state of each phase of the isolated knife gate, and the infrared detecting imaging device of each phase is connected to the state monitoring sub-ID of the corresponding phase.
  • a hydraulic sensor for monitoring the oil pressure of the hydraulic system of the operating mechanism is mounted on the operating mechanism accumulator group connecting block, and the hydraulic sensors of the respective phases are connected to the state monitoring sub- IED of the corresponding phase.
  • Each phase is provided with a partial discharge sensor for detecting high frequency electromagnetic waves to determine leakage current, and the partial discharge sensor is installed at the mouth of the arc chamber or the outer edge of the insulation basin, and the partial discharge sensor of each phase and the corresponding phase Status monitoring sub-IED connection.
  • the principle of the partial discharge sensor is shown in Fig. 6.
  • the probe is deep into the arc extinguishing chamber and is a UHF built-in sensor 61.
  • the probe is mounted on the port 60 as a UHF external sensor 62.
  • the partial discharge sensor can be monitored by the discharge caused by the projection 66 on the conductor 69, the projection 65 on the casing, the suspended particles 67, the particles 64 on the insulator, the bubble 68 in the insulator, the floating electrode 63, and the like. There is also a terminal on the PD sensor for connection to the portable PD monitor, which makes it easy to collect data at any time.
  • a temperature sensor in the control cabinet is installed in the control cabinet, and an ambient temperature sensor is installed outside the mechanism box.
  • the transformer of each phase comprises an electronic transformer and an optical transformer, which are respectively installed on the line side and the outlet side, and the electronic transformer is connected to the merging unit in the main control room through an optical fiber, and the optical transformer is used for the signal.
  • a converted electrical box connects the merging unit. Installation of electrical and optical sensors improves acquisition accuracy.
  • the state monitoring main IED and the state monitoring sub- IED are connected through the RS485 bus, and the protocol between the main IED and the background monitoring adopts the IEC61850 protocol.
  • Electronic transformers electrical and optical
  • the optical cable optical or cable (electrical) is used for communication between the collector and the merging unit.
  • the merging unit adopts the IEC61850 protocol.
  • the switchgear controller controls the operating mechanism through the common cable, and communicates with the background and the test equipment using the IEC61850 protocol.
  • the monitoring center ie monitoring background system monitoring status monitoring and evaluation software.
  • FIG. 4 the mounting position and system structure of the sensor and each device are clarified.
  • ICs operating coil current sensors
  • IM energy storage motor current sensors
  • OP oil pressure sensors
  • DPE displacement sensors
  • PTM gas micro water density sensors
  • the temperature sensor ( ⁇ ) and the partial discharge sensor (PD) are integrated into the circuit breaker mechanism box.
  • the sub IED (S-EDD) is installed in the circuit breaker mechanism box.
  • the condition monitoring main IED (M_IED) and switchgear controller (ISC, dual) are installed in the circuit breaker control cabinet.
  • the merging unit is installed in the relay room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

本发明涉及一种800kV智能断路器,包括断路器本体、保护测控系统,800kV智能断路器还包括状态监测系统,状态监测系统包括:与断路器本体分离、就地设置有汇控柜,汇控柜内安装有状态监测主IED,在每一相机构箱内安装有对应相的状态监测子IED,各状态监测子IED与状态监测主IED通讯连接;状态监测主IED通过光纤连接主控室中的状态监测后台系统。本发明的智能断路器能够全面监控设备状态,不用像传统设备那样不管设备是否故障都必须定时检修,可以根据系统采集信息获得的评估结果,合理安排检修方案,实现状态检修。所采用的系统方案结构简单,具有普遍性,可以广泛应用于其他电压等级的智能开关设备。

Description

一种 800kV智能断路器 技术领域
[0001] 本发明涉及一种智能断路器, 特别是 800kV智能断路器。
背景技术
[0002] 传统的断路器系统如图 1 所示, 由现场的传统高压开关设备、 保护室和主控室构 成。 传统高压开关设备中的二次信号和其他信号 (如隔离刀闸辅助触头的开关量信息) 通过 电缆连接到保护室的保护柜和测控柜。 保护柜安装相关保护设备, 负责对断路器进行保护, 同时将信息通过光纤上传到主控室中的后台系统。 测控柜主要用于采集二次信号, 上传给后 台系统, 并且接受后台系统的命令, 控制断路器分合闸。
[0003】 未来的高压智能开关系统如图 2 所示, 主要趋势是通过各种新技术将保护与测控设 备就地化, 后台系统通过 IEC61850规约与高压智能开关通讯、 控制连接。 釆用电子式电压 电流互感器替代电磁式电压电流互感器测量一次电压电流, 用 IEC61850 规约替代各个装置 厂家采用私有通信协议。 逐歩满足坚强智能电网的要求。
[0004] 申请号为 201110004758.9 的中国专利申请, 披露了一种 HGIS 智能化开关, 其对于 传统 HGIS 的改进主要在于, 将传统互感器替换为电子式电流电压互感器, 并在传统 HGIS 开关设备上安装智能组件柜, 智能组件柜中包括: 智能控制器、 开关在线监测装置和数字化 电能表三部分。
[0005] 所述智能控制器包括保护功能模块、 测控功能模块、 合并单元模块和操作箱模块, 其中合并单元模块连接并接收分相组合式电子电流电压互感器一次侧的电流和电压信号, 并 进行各相电流和电压值的数据同歩; 保护功能模块通过接合并单元功能模块获取一次侧的电 流和电压信号进行保护算法处理; 测控功能模块通过合并单元功能模块获取一次侧的电流和 电压信号进行数值运算; 操作箱模块通过内部总线从保护和测控模块获取命令然后进行相关 断路器和刀闸的控制, 并通过开入插件获取断路器和刀闸的状态信息;
开关在线监测装置是物理独立的开关在线监测装置, 包括安装的位移传感器、 SF6微水压力 温度传感器和电流传感器是对开关行程曲线、 跳闸速度、 合闸速度、 跳闸时间、 合闸时间、 SF6微水指标、 SF6压力指标、 SF6密度指标、 SF6温度指标、 开关跳圈电流、 开关合圈电 流、 开关储能电机电流、 开关隔刀电机电流、 开关地刀电机电流多项指标监视的传感器, 并 同智能控制器一起进行丌关自我诊断; 物理独立的数字化电能表通过多模光纤和所述智能控 制器的合并单元模块连接, 从合并单元模块获取电压电流信号进行计量方面的相关运算。 [0006] 上述方案的 HGIS是三相一体设备, 而且由于电压等级低, 设备较小, 可以将智能化 组件柜集成并就地安装。 但是, 在于 800kV 智能断路器中, 由于电压等级太高, 每相之间 距离很大, 智能组件不能采用上述安装方式, 现在也没有适合 800kV 智能断路器的安装方 式。 而且, 上述方案中的在线监测装置涉及多种传感器, 但在 800kV 智能断路器中, 仍然 不够完善。
发明内容
[0007] 本发明的目的是提供一种 800kV 智能断路器, 用以解决现在尚没有超高压等级的智 能断路器, 也没有成熟的智能组件安装方式的问题。
[0008] 为实现上述目的, 本发明的方案是: 一种 800kV 智能断路器, 包括断路器本体、 保 护测控系统和状态监测系统, 状态监测系统包括各相机构箱内设置的传感器, 传感器包括操 作线圈电流传感器、 储能电机电流传感器、 位移传感器、 气体微水密度传感器和机构箱内温 度传感器; 状态监测系统还包括: 与断路器本体分离、 就地设置的汇控柜, 汇控柜内安装有 状态监测主 IED, 在每一相机构箱内安装有对应相的状态监测子 IED, 状态监测子 IED连接 所述机构箱内设置的传感器; 各相的状态监测子 IED与状态监测主 IED通讯连接; 状态监 测主 IED通过光纤连接主控室中的状态监测后台系统。
[0009] 所述状态监测系统还包括用于监测每相隔离刀闸状态的红外探测成像装置, 红外探 测成像装置安装在断路器本体的罐体观察窗处, 各相的红外探测成像装置与对应相的状态监 测子 IED连接。
[0010] 所述状态监测系统还包括, 每一相的机构箱中, 在操动机构储压器上安装有用于监 测操动机构液压系统的油压的液压传感器, 各相的液压传感器与对应相的状态监测子 IED 连接。
[0011] 所述状态监测系统还包括, 各相的、 用于检测高频电磁波以判断漏电的局放传感器, 局放传感器安装在灭弧室罐体把口处或者绝缘盆子的外缘, 各相的局放传感器与对应相的状 态监测子 IED连接。
[0012] 汇控柜内设置有汇控柜内温度传感器, 机构箱外设置有环境温度传感器。
[0013] 所述状态监测主 IED和状态监测子 IED通过 RS485总线连接。
[0014] 各相互感器包括电子式互感器与光学互感器, 分别安装在进线侧与出线侧; 电子式 互感器通过光纤连接主控室中的合并单元, 光学互感器通过用于信号转换的电气箱连接所述 合并单元。 由于与 HGIS不同, 相间距离很远, 从安全性、 可靠性方面考虑, 同时为了不浪 费每相机构箱的空间, 在每相机构箱中安装子 IED, 汇控柜与断路器本体分离, 就地安装在 安全距离以外的地面上, 汇控柜内设置主 IED, 子 IED与主 IED通讯连接。 这种安装方式 既能够保证三相中, 每相就地信息采集, 并且保证主 IED 与每相距离不会过远, 其意义在 于: 如果不将主 IED 与子 IED分离设置, 则采集量太大, 需要大量的引线引出, 同时浪费 了每相的空间; 如果主 IED 也安装在某相机构箱内, 当需要检修主 IED 时必须关闭断路 器。 将主 IED安装在安全距离以外的汇控柜内, 便于对主 IED的检修测试。
[0015] 传统的断路器中, 监测隔离刀闸的闭合、 打丌主要是通过辅助开关触头提供丌关状 态量。 由于隔离刀闸与其辅助开关触头之间仅仅是机械连接关系, 往往并不能真实反映隔离 刀闸的状态。 本发明中釆用红外探测成像真实地反映隔离刀闸的动作情况, 进而能够实现 "顺序控制"——即在后台系统发出命令之后, 获得真实的状态反馈, 再发出下一步命令。 如果获得的状态反馈符合命令要求, 则继续, 如果不符合, 则进行报警。
[0016] 本发明采用了测量驱动机构油压的油压传感器, 实时监测液压系统的油压。
[0017] 本发明采用了检测高频电磁波以判断漏电的局放传感器, 局放传感器通常安装在灭 弧室罐体把口 (安装分子筛的位置称为把口) 处或者绝缘盆子的外缘。
[0018] 本发明的监测系统相对于保护、 测控系统独立, 并不直接参与断路器的控制与保 护, 这样设计的原因是: 在电网、 特别是高压领域, 为了安全考虑, 各种新技术从开发到真 正应用, 往往需要很长时间的验证, 即使是我们熟知的继电保护技术, 也是经历了十几年到 二十多年的磨练, 才逐歩成熟应用的电网中。 智能断路器仍不成熟, 必须经过长时间的试验 和试运行, 才能够最终毫无顾虑地使用。 所以, 现阶段的智能断路器的重要任务还包括, 将 采集的大量数据采集起来, 送入后台系统进行分析和设备状态评估, 并将评估结果与实际运 行情况相比较, 以考察监测系统的可靠性与稳定性, 为了智能断路器进一步的发展, 参与控 制和保护做准备。
[0019] 本发明的智能断路器能够全面监控设备状态, 不用像传统设备那样不管设备是否故 障都必须定时检修, 可以根据系统采集信息获得的评估结果, 合理安排检修方案, 实现状态 检修。 系统中的通讯部分使用了国际通用的通信协议, 减轻了安装调试的工作量。 所采用的 系统方案结构简单, 具有普遍性, 可以广泛应用于其他电压等级的智能开关设备。
附图说明
[0020] 图 1是传统断路器结构示意图;
图 2是智能断路器结构要求;
图 3是本发明的 800kV智能断路器系统图;
图 4是本发明的 800kV智能断路器传感器布置结构图; 图 5是本发明的外观图;
图 6是局放传感器原理图;
图 3、 图 4 中, IC一操作线圈电流传感器; IM—储能电机电流传感器; 0P—油压传感器; DPE—位移传感器; PTM—气体微水密度传感器; Ή一机构箱内温度传感器; PD—局放 传感器; TO—环境温度传感器; 0LM2 或者 S—IED—状态监测子 IED; M—IED—状态监测 主 IED; M—操动机构; ISC—开关设备控制器。
具体实施方式
[0021] 下面结合附图对本发明做进一步详细的说明。
[0022] 如图 3, 一种 800kV智能断路器, 包括断路器本体、 保护测控系统, 800kV智能断 路器还包括状态监测系统, 状态监测系统包括各相机构箱内的各种传感器, 如: 操作线圈电 流传感器; 储能电机电流传感器; 位移传感器; 气体微水密度传感器; 机构箱内温度传感 器; 本发明的特点在于, 状态监测系统还包括: 与断路器本体分离、 就地设置有汇控柜, 汇 控柜内安装有状态监测主 IED, 在每一相机构箱内安装有对应相的状态监测子 IED, 各状态 监测子 IED 与状态监测主 IED 通讯连接; 上述各种传感器与对应相的状态监测子 IED 连 接; 状态监测主 IED通过光纤连接主控室中的状态监测后台系统。 如图 5所示, 汇控柜 40 安装在正对中间一相处, 保证与中间一相距离最短, 与其他两相距离相同。 中间一相为 B 相断路器 20, 其它为 A相断路器 10与 C相断路器 30, 11为 A相机构箱, 12为 A相状态 监测子 IED, 如图 3所示, 汇控柜 40通过电缆与光缆连接各自断路器的相应设备以及主控 室。
[0023] 状态监测系统还包括用于监测每相隔离刀闸状态的红外探测成像装置, 各相的红外 探测成像装置与对应相的状态监测子 IED 连接。 每一相的机构箱中, 在操动机构储压器组 连接块上安装有用于监测操动机构液压系统的油压的液压传感器, 各相的液压传感器与对应 相的状态监测子 IED连接。
[0024] 各相设有用于检测高频电磁波以判断漏电的局放传感器, 局放传感器安装在灭弧室 罐体把口处或者绝缘盆子的外缘, 各相的局放传感器与对应相的状态监测子 IED 连接。 局 放传感器原理如图 6所示, 探头深入灭弧室内的为 UHF内置传感器 61 , 探头安装在把口 60 上的为 UHF外置传感器 62。 因导体 69上的突出物 66、 壳体上的突出物 65、 悬浮微粒 67、 绝缘子上的微粒 64、 绝缘子中的气泡 68、 悬浮电极 63等造成的放电, 局放传感器都能够监 测到。 局放传感器上还留有接线端, 用于与便携式局放监测仪连接, 便于人工随时采集数 据。 [0025] 汇控柜内安装有汇控柜内温度传感器, 机构箱外安装有环境温度传感器。
[0026] 各相的互感器包括电子式互感器与光学互感器, 分别安装在进线侧与出线侧, 电子 式互感器通过光纤连接主控室中的合并单元, 光学互感器通过用于信号转换的电气箱连接所 述合并单元。 安装电学与光学传感器, 提高了采集准确性。
[0027] 状态监测主 IED和状态监测子 IED通过 RS485总线连接, 主 IED与后台监控之间的 协议采用 IEC61850 规约。 电子式互感器 (电学和光学) 采集器与合并单元之间采用光缆 (光学) 或电缆 (电学) 实现通信, 合并单元对外采用 IEC61850 规约。 开关设备控制器通 过普通电缆控制操动机构, 对后台及测保装置采用 IEC61850 规约进行通信。 如图, 监测中 心主机 (即监测后台系统) 运行状态监测和评估软件。
[0028] 图 4 中, 明确了传感器及各个装置的安装位置及系统结构。 电子式互感器及采集 器、 操作线圈电流传感器 (IC )、 储能电机电流传感器 (IM)、 油压传感器 (OP)、 位移传感 器 (DPE)、 气体微水密度传感器 (PTM)、 机构箱内温度传感器 (Ή)、 局放传感器 (PD ) 集成到断路器机构箱中。 子 IED ( S— IED ) 安装在断路器机构箱内。 状态监测主 IED (M_IED)、 开关设备控制器 (ISC, 双配) 安装在断路器汇控柜内。 合并单元安装在继电器 室内。

Claims

权 利 要 末 书
1. 一种 800kV 智能断路器, 包括断路器本体、 保护测控系统和状态监测系统, 状态监测系 统包括各相机构箱内设置的传感器, 传感器包括操作线圈电流传感器、 储能电机电流传感 器、 位移传感器、 气体微水密度传感器和机构箱内温度传感器; 其特征在于, 状态监测系统 还包括: 与断路器本体分离、 就地设置的汇控柜, 汇控柜内安装有状态监测主 IED, 在每一 相机构箱内安装有对应相的状态监测子 IED, 状态监测子 IED连接所述机构箱内设置的传感 器; 各相的状态监测子 IED与状态监测主 IED通讯连接; 状态监测主 IED通过光纤连接主 控室中的状态监测后台系统。
2. 根据权利要求 1 所述的一种 800kV智能断路器, 其特征在于, 所述状态监测系统还包括 用于监测每相隔离刀闸状态的红外探测成像装置, 红外探测成像装置安装在断路器本体的罐 体观察窗处, 各相的红外探测成像装置与对应相的状态监测子 IED连接。
3. 根据权利要求 2 所述的一种 800kV 智能断路器, 其特征在于, 所述状态监测系统还包 括, 每一相的机构箱中, 在操动机构储压器上安装有用于监测操动机构液压系统的油压的液 压传感器, 各相的液压传感器与对应相的状态监测子 IED连接。
4. 根据权利要求 3 所述的一种 800kV 智能断路器, 其特征在于, 所述状态监测系统还包 括, 各相的、 用于检测高频电磁波以判断漏电的局放传感器, 局放传感器安装在灭弧室罐体 把口处或者绝缘盆子的外缘, 各相的局放传感器与对应相的状态监测子 IED连接。
5. 根据权利要求 4所述的一种 800kV智能断路器, 其特征在于, 汇控柜内设置有汇控柜内 温度传感器, 机构箱外设置有环境温度传感器。
6. 根据权利要求 5所述的一种 800kV智能断路器, 其特征在于, 所述状态监测主 IED和状 态监测子 IED通过 RS485总线连接。
7. 根据权利要求 1-6 中任一项所述的一种 800kV智能断路器, 其特征在于, 各相互感器包 括电子式互感器与光学互感器, 分别安装在进线侧与出线侧; 电子式互感器通过光纤连接主 控室中的合并单元, 光学互感器通过用于信号转换的电气箱连接所述合并单元。
PCT/CN2013/001105 2012-09-19 2013-09-18 一种800kV智能断路器 WO2014044024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210348765.5 2012-09-19
CN201210348765.5A CN102891533B (zh) 2012-09-19 2012-09-19 一种800kV智能断路器

Publications (1)

Publication Number Publication Date
WO2014044024A1 true WO2014044024A1 (zh) 2014-03-27

Family

ID=47534950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001105 WO2014044024A1 (zh) 2012-09-19 2013-09-18 一种800kV智能断路器

Country Status (2)

Country Link
CN (1) CN102891533B (zh)
WO (1) WO2014044024A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891533B (zh) * 2012-09-19 2015-09-16 河南平高电气股份有限公司 一种800kV智能断路器
CN103197180A (zh) * 2013-03-26 2013-07-10 国家电网公司 一种用于gis/断路器的智能组件
CN104112585B (zh) * 2014-01-04 2017-03-01 山东泰开高压开关有限公司 一种800kV断路器用并联电容器
CN105572581A (zh) * 2016-02-26 2016-05-11 北京永安美电气科技有限公司 一种隔离开关在线检测的系统和方法
CN106707151A (zh) * 2016-12-15 2017-05-24 中国南方电网有限责任公司超高压输电公司贵阳局 一种高压断路器在线监测系统
CN107037753B (zh) * 2017-03-23 2019-04-05 国家电网公司 一种高压开关设备用储能监测控制方法及装置
CN108963956A (zh) * 2018-06-28 2018-12-07 南京南瑞继保电气有限公司 一种高压开关的智能开关设备
CN114001295A (zh) * 2021-07-22 2022-02-01 北京波瑞芯工程技术研究院 一种gis隔离开关触头分合状态监测用补光装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201887554U (zh) * 2010-12-01 2011-06-29 南京因泰莱电器股份有限公司 智能变压器测控系统
CN202121209U (zh) * 2011-05-27 2012-01-18 平高集团有限公司 一种智能高压开关设备
CN202206427U (zh) * 2011-08-10 2012-04-25 华北电网有限公司唐山供电公司 一种基于arm+dsp 的新型智能变电站断路器ied
CN102891533A (zh) * 2012-09-19 2013-01-23 河南平高电气股份有限公司 一种800kV智能断路器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136689B (zh) * 2011-01-11 2013-07-03 浙江省电力公司 Hgis智能化开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201887554U (zh) * 2010-12-01 2011-06-29 南京因泰莱电器股份有限公司 智能变压器测控系统
CN202121209U (zh) * 2011-05-27 2012-01-18 平高集团有限公司 一种智能高压开关设备
CN202206427U (zh) * 2011-08-10 2012-04-25 华北电网有限公司唐山供电公司 一种基于arm+dsp 的新型智能变电站断路器ied
CN102891533A (zh) * 2012-09-19 2013-01-23 河南平高电气股份有限公司 一种800kV智能断路器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANTON POLTL ET AL., FIELD EXPERIENCES WITH HV CIRCUIT BREAKER CONDITION MONITORING, 17 April 2012 (2012-04-17), Retrieved from the Internet <URL:http://www05.abb.com/global/scot/sco:245asf/veritydisplay/bbb1a075810990dec12578ae005de202/sfile/field%20experiences%20with%20hy%20breaker%20condition%20monitoring.pdf> [retrieved on 20131202] *

Also Published As

Publication number Publication date
CN102891533A (zh) 2013-01-23
CN102891533B (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2014044024A1 (zh) 一种800kV智能断路器
CN102790429B (zh) 一种智能变电站gis在线监测智能组件
CN103412217A (zh) 箱式变电站智能在线故障诊断系统
CN201803857U (zh) 一种gis操动机构机械特性在线监测诊断系统
CN101478154A (zh) 解决串交流、直流接地和短路的措施及直流系统新型设计
CN204243896U (zh) 用于配电网的开关状态监测装置
CN106199341A (zh) 一种单相故障接地工况下的故障线路识别方法和装置
CN103367059B (zh) 一种高压智能断路器
CN103457192A (zh) 智能中压开关柜
CN203732254U (zh) 断路器机械特性在线监测装置
CN103325627A (zh) 一种10kv快速智能柱上断路器
CN203691057U (zh) 电弧在线监测保护系统
CN110165778A (zh) 一种油浸式电力变压器非电量保护故障录波装置及方法
CN204012685U (zh) 一种10kV电网接地故障处理设备
CN102928186A (zh) 电子式互感器振动性能的测试方法
CN104078872A (zh) 铠装移开式金属封闭开关柜
CN205808469U (zh) 一种gis在线监测系统
CN103579948B (zh) 整合型电力变压器智能组件
CN205537749U (zh) 一种开关柜弧光温度检测系统
CN2867561Y (zh) 矿用隔爆真空馈电开关
CN204154872U (zh) 一种检测火电机组辅机系统低电压穿越能力的装置
CN201569508U (zh) 高压设备温升监测分析装置
CN207074818U (zh) 一种智能gis和智能组件柜
CN212008850U (zh) 智能化一二次融合柱上断路器
CN203519062U (zh) 开关柜局部放电智能在线监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838150

Country of ref document: EP

Kind code of ref document: A1