WO2014042383A1 - 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법 - Google Patents

절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법 Download PDF

Info

Publication number
WO2014042383A1
WO2014042383A1 PCT/KR2013/007963 KR2013007963W WO2014042383A1 WO 2014042383 A1 WO2014042383 A1 WO 2014042383A1 KR 2013007963 W KR2013007963 W KR 2013007963W WO 2014042383 A1 WO2014042383 A1 WO 2014042383A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
hot water
water pipe
heating wire
power
Prior art date
Application number
PCT/KR2013/007963
Other languages
English (en)
French (fr)
Inventor
김두년
Original Assignee
천열에너지주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120126030A external-priority patent/KR20140034663A/ko
Application filed by 천열에너지주식회사 filed Critical 천열에너지주식회사
Publication of WO2014042383A1 publication Critical patent/WO2014042383A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems
    • F22D1/38Constructional features of water and air preheating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/103Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance with bare resistances in direct contact with the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2028Continuous-flow heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0252Domestic applications
    • H05B1/0258For cooking
    • H05B1/0269For heating of fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0009Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters of the reduced pressure or vacuum steam type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/176Improving or maintaining comfort of users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/254Room temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H2250/00Electrical heat generating means
    • F24H2250/02Resistances

Definitions

  • the present invention relates to a hot water pipe structure and a hot water heating method using the same, and more particularly, a power-saving electrothermal hot water configured to simultaneously perform heating and heat dissipating functions without having a separate device for heating and circulating hot water. It relates to a tube structure and a hot water heating method using the same.
  • the hot water pipe having a heat dissipation function is arranged in a zigzag shape on the floor, and heat is supplied by releasing heat to the floor while circulating by supplying hot water from an external heating means to the hot water pipe.
  • An electric heater or various boilers are used as a heating means for heating water from the outside, and hot water supply means such as a circulation pump is required to supply water heated in the heating means to a hot water pipe.
  • hot water supply means such as a circulation pump is required to supply water heated in the heating means to a hot water pipe.
  • a water supply tank, an expansion tank, and a temperature control mechanism are additionally required.
  • a technology that enables heating of the hot water pipe itself to serve as a heating means and a heat dissipation means is simple and has a technology of heating without heat loss in Korean Patent Publication No. 10-0180211 (hereinafter referred to as “priority document”). Heating method of a hot water pipe and its apparatus.
  • the hot water is sealed in the hot water pipe.
  • the hot water is heated by the basic heating wire to be heated.
  • the preheating wire is used for heating the hot water when the basic heating wire is shorted and fails to function.
  • the construction cost because no heating means, such as a boiler for heating the heat medium, circulation means for circulating the heated heat medium, and other auxiliary devices are not required It can be reduced, and there is an advantage that can be easily heated.
  • the hot water filled in the hot water pipe is heated with a heating wire heated at least about 70 ⁇ 80 °C to maintain the temperature of the hot water at 50 °C to obtain a valid heating temperature
  • a relatively high amount of power was used, When the room becomes hot, the power supply of the heating wire is intermittently cut off according to the detection signal of the temperature sensor, and when the hot water of the hot water pipe falls, the power is supplied to the heating wire again.
  • the hot water pipe since the water filled in the hot water pipe has a large latent heat, the temperature change is sensitive, and it is difficult to maintain the heating accurately at a constant temperature by the heating method of the conventional hot water pipe, and the temperature sensor and the power supply control mechanism cause a failure. In this case, the hot water pipe may be overheated and the physical properties of the hot water pipe may be destroyed.
  • hot water pipes are made of hard heat-resistant synthetic resin, but the material properties of the hot water pipes start to be destroyed at temperatures above 90 °C, so it takes a lot of time and money to repair the heating facilities if the hot water pipes are damaged by overheating. There is a problem.
  • An object of the present invention has been devised to solve the conventional problems as described above, by securing the volume expansion space in the hot water pipe and maintaining a weak vacuum state to increase the heat transfer efficiency and heat dissipation, it is possible to maximize the energy saving effect To provide a power-saving electrothermal hot water pipe structure.
  • Another object of the present invention is to control the amount of power applied to the heating wire according to the heating temperature in the process of releasing the heat generated by heating the heating fluid through the heating wire, the power-saving heat transfer hot water pipe structure that can be economically inexpensive heating And it provides a hot water heating method using the same.
  • Another object of the present invention to provide a power-saving electrothermal hot water pipe structure that can ensure the material safety of the heating hot water pipes and a hot water heating method using the same.
  • the heat-saving heat transfer hot water pipe structure the heating fluid is filled in the hot water pipe, the heating wire for heating the heating fluid in the hot water pipe structure is built in the hot water pipe, the space in which the heating fluid is filled in the hot water pipe ( In addition to the w), it is maintained in a weak vacuum lower than the atmospheric pressure and the air is filled therein, and a thermal expansion space (a) is provided for the thermal fluid to thermally expand when the heating fluid is heated.
  • the heating wire includes: a reference heating wire inserted into the hot water pipe and generating heat when power is supplied from the outside to heat the heating fluid; And a power saving heating wire which is inserted into the hot water pipe and generates heat when the power is supplied from the outside, thereby heating the heating fluid together with the reference heating wire, so that both the reference heating wire and the power saving heating wire are supplied or only the reference heating wire is supplied with power. To control the amount of power supplied for heating of the heating fluid.
  • the present invention further includes a preliminary heating wire which is inserted into the hot water pipe and heats the heating fluid in place of the reference heating wire by supplying power from the outside when the reference heating wire is short-circuited.
  • the energy saving heating wire is connected in parallel to an external power line which is connected to the reference heating wire.
  • the watt density of the reference heating wire, the energy saving heating wire, and the preliminary heating wire is 15 W / m, and the resistance of each heating wire is also the same.
  • the hot water heating method using the energy-saving heat transfer hot water pipe when the heating fluid is heated by using a heating wire in the hot water pipe, the heating fluid is heated and thermally expanded, and is provided separately from the heating fluid space (w) in the hot water pipe. Due to the thermal expansion space (a), the heating fluid is thermally expanded, and since the pressure in the hot water pipe is in a weak vacuum state lower than atmospheric pressure, the heating fluid reaches the effective temperature at a faster time than the atmospheric pressure, and the heating fluid inside the hot water pipe. As the volume expands, the amount of heat generated increases.
  • the hot water heating method using the energy-saving heat transfer hot water pipe (a) supplying power to both the reference heating wire and the power-saving heating wire heating the heating fluid of the hot water pipe; And (b) the power supply to the power saving heating wire is cut off when the effective heating temperature is reached, and the heating fluid is heated only by the reference heating wire.
  • the hot water heating method using the energy-saving heat transfer hot water tube (c) heating the heating fluid by supplying power to the preliminary heating wire when the reference heating wire is short-circuited.
  • the watt density of each heating wire is equal to 15W / m, the resistance of each heating wire is also the same, and the temperature of hot water for the effective heating temperature is 50 °C.
  • the power-saving electrothermal hot water pipe structure and the hot water heating method using the same have the following effects.
  • heat transfer can be made faster by using a weak vacuum in the heat transfer hot water pipe, thermal efficiency is increased by thermal expansion, heat dissipation is increased by volume expansion of 20%, and there is no heat loss. have.
  • FIG. 1 is a view showing a part of the power-saving heat transfer hot water pipe according to the first embodiment of the present invention cut out.
  • FIG. 2 is a schematic diagram showing the configuration of the energy-saving heat transfer hot water pipe shown in FIG.
  • FIG. 3 is a cross-sectional view showing a state of cutting the heat transfer hot water pipe of FIG.
  • Figure 4 is a process chart showing a process of controlling the amount of power using the energy-saving electrothermal hot water pipe according to the first embodiment of the present invention.
  • Figure 5 is a schematic diagram showing the configuration of a power-saving heat transfer hot water pipe according to a second embodiment of the present invention.
  • FIG. 1 is a view showing a state in which a portion of the power saving type heat transfer hot water pipe according to the first embodiment of the present invention
  • Figure 2 is a schematic diagram showing the configuration of the power saving type heat transfer hot water tube shown in FIG.
  • Energy-saving heat transfer hot water pipe 100 is to discharge the heat generated by heating the heating fluid (water) filled therein to the outside for heating, the reference heating wire 110 and the power-saving heating wire ( 120) is inserted.
  • Both ends of the hot water pipe 100 is sealed inside by a sealing device (not shown).
  • the heating wires 110 and 120 are supplied with power from the outside through the sealing device.
  • the heating wires 110 and 120 have the same watt density of 15 W / m, and the resistance values are also the same. Therefore, the heating temperature of the hot water pipe filled in the heat transfer hot water pipe 100 can be precisely controlled.
  • the outside of the hot water pipe 100 is provided with an external power line 130 for supplying power to the heating wires 110, 120 from the outside, the external power line 130 is installed in the room to sense and detect the room temperature Indoor thermostat 140 is automatically connected to control the application of power in accordance with the received signal.
  • the room thermostat 140 controls the heating of the room as a whole.
  • Both ends of the reference heating wire 110 are connected to both terminals of the external power line 130 from the outside of the hot water pipe 100. Since power is continuously supplied to the reference heating wire 110 while the power is turned on through the indoor thermostat 140, the heating fluid is continuously heated.
  • Both ends of the power saving heating wire 120 is connected to both terminals of the external power line 130 from the outside of the hot water pipe 100, and is connected in parallel with the reference heating wire 110.
  • the bimetal 150 for controlling power supply to the power saving heating wire 120 from the outside of the hot water pipe 100 is connected to the power saving heating wire 120. Accordingly, in the case of the power saving heating wire 120, the power may be supplied or the power supply may be cut off under the control of the bimetal 150, unlike the reference heating wire 110.
  • Bimetal 150 is to control the operation of the power-saving heating wire 120, is connected to the indoor thermostat 140 installed in the room for power saving according to the heating temperature of the room sensed by the indoor thermostat 140 Control the operation of the heating wire (120).
  • heating wires 110 and 120 are shown in only one strand in the drawing, a plurality of strands may be provided.
  • FIG. 3 is a cross-sectional view showing a state in which the electrothermal hot water pipe of FIG.
  • the heating fluid w filled in the heat transfer hot water pipe 100 occupies 80% of the total internal volume of the heat transfer hot water pipe 100. And the internal pressure of the heat transfer hot water pipe 100 maintains a weak vacuum state lower than atmospheric pressure.
  • the boiling point of the heating fluid is lower than the boiling point at atmospheric pressure. Therefore, the rate at which the heating fluid is heated in the electrothermal hot water pipe 100 is faster than the outside.
  • the air filled in the empty space of the heat transfer hot water pipe 100 expands as the temperature increases. That is, the empty space in which the heating fluid is not filled becomes a thermal expansion space a in which the heating fluid can thermally expand. Therefore, the pressure in the heat transfer hot water pipe 100 is increased, and the air in the heat transfer hot water pipe 100 is discharged to the outside through both ends of the heat transfer hot water pipe 100 by the increasing pressure. This atmospheric pressure below atmospheric pressure raises the heat capacity and allows heating at low power.
  • the thermal expansion pressure is accommodated in the remaining 20% of the volume space excluding the heating fluid, and thus maintains a subatmospheric pressure lower than atmospheric pressure, and thus does not cause deformation of the heat transfer hot water pipe 100.
  • the heat transfer is quickly made by using the weak vacuum state in the electrothermal hot water pipe 100, the thermal efficiency is increased by thermal expansion, the amount of heat radiation by the volume expansion of 20%, heat There is no loss, and the saving of heating energy can be maximized.
  • FIG. 4 is a process chart showing a process of controlling the amount of power using the energy-saving electrothermal hot water pipe according to the first embodiment of the present invention.
  • the temperature of the hot water for the effective heating temperature in a short time of about 30 minutes (t ) Reaches 50 ° C. That is, since the heating temperature per 1m of each heating wire 110, 120 is 67 °C, the hot water filled in the hot water pipe 100 by the two heating wires 110, 120 is 67 °C ⁇ 1m per heating wire 110, 120 ⁇ Heated at a rate of two. Therefore, the effective heating temperature can be reached in a short time as described above.
  • the heating fluid When the heating fluid is heated using the reference heating wire 110 and the power saving heating wire 120, the heating fluid is heated and thermally expanded, and the thermal expansion space (a) is provided separately from the heating fluid volume in the hot water pipe 100.
  • the heating fluid is thermally expanded.
  • the pressure in the hot water pipe 100 is a weak vacuum state lower than the atmospheric pressure, the heating fluid reaches the effective temperature at a faster time than the atmospheric pressure.
  • the heating fluid expands in the hot water pipe 100
  • the air pressure in the hot water pipe 100 increases due to the thermal expansion pressure
  • the air in the hot water pipe 100 causes the end of the hot water pipe 100 to rise due to the increased pressure.
  • the expanded heating fluid is filled in the thermal expansion space a inside the hot water pipe 100, the amount of heat generated by the volume expansion of the heating fluid is increased. Therefore, the energy required for heating by heating the heating fluid can be minimized.
  • the heating temperature exceeds the effective heating temperature and wastes energy. In other words, the heating temperature should be properly maintained to maintain a comfortable life, but if the temperature exceeds the appropriate temperature, you will feel uncomfortable. Therefore, it is important to maintain an appropriate effective heating temperature.
  • the indoor thermostat 140 senses that the heating temperature of the room reaches the effective heating temperature and transmits the signal to the bimetal 150, the power to the power saving heating wire 120 under the control of the bimetal 150. Supply is cut off automatically. Since the power is supplied to the reference heating wire 110 continuously, the hot water of the hot water pipe 100 is heated only by the reference heating wire 110.
  • the effective heating temperature is maintained only by the reference heating wire 110 after the effective heating temperature is reached. Can be.
  • the reference heating wire 110 may be used alone.
  • the temperature of the heated hot water can be kept constant.
  • the amount of heat (W) generated by the resistance of the heating wire is proportional to the product of the square of the current (T) and the resistance ( ⁇ ) value. This Joule formula is shown in Equation 1 below.
  • the heat efficiency of the heating wire is 80%.
  • the heating wire installed in the hot water pipe has a watt density of 15 W / m
  • the heating wire surface temperature is 67 ° C.
  • the hot water filled in the hot water pipe is 50 ° C. when the thermal efficiency is 80%. Heating is maintained to obtain an effective heating temperature.
  • the heating wire surface temperature exceeds 67 °C can be controlled not to exceed 67 °C in the room thermostat 140.
  • FIG. 5 is a schematic view showing the configuration of a power-saving heat transfer hot water pipe according to a second embodiment of the present invention.
  • Energy-saving heat transfer hot water pipe 100 is a reference heating wire 110, power saving heating wire 120, external power line 130, the room thermostat 140, bimetals 150 and pre-heating wire 160 ).
  • the configuration of the reference heating wire 110, the power saving heating wire 120, the external power supply line 130, the room thermostat 140 and the bimetal 150 is the same as the first embodiment, so the description thereof will be omitted. do.
  • the preliminary heating wire 160 is exposed at both ends to the outside of the hot water pipe 100, but is not normally connected to the external power supply line 130, the external power supply line only when the reference heating line 110 is short-circuited and does not function properly.
  • the heating fluid is connected to 130 to heat the heating fluid instead of the reference heating wire 110.
  • the operation of the preliminary heating wire 160 is automatically controlled by the bimetals 150, and continuously heats the power of the preliminary heating wire 160 of 50% without interruption until the defect repair of the reference heating wire 110 is completed.
  • the pre-heating wire 160 is used instead of the reference heating wire 110, but both have the same watt density and resistance, and also the power control process same. Therefore, description thereof will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

본 발명은 온수관 구조 및 이를 이용한 온수 가열방법에 관한 것으로, 더욱 상세하게는 온수의 가열 및 순환을 위한 별도의 장치를 구비하지 않고도 온수관 자체가 가열과 방열 기능을 동시에 수행하도록 이루어진 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법에 관한 것이다. 본 발명 절전형 전열 온수관 구조는, 온수관 내부에 가열유체가 채워지며, 가열유체를 가열하기 위한 전열선이 온수관에 내장되는 온수관 구조에 있어서, 온수관 내에는 가열유체가 채워지는 공간(w) 외에 대기압보다 낮은 약진공 상태로 유지되며 내부에 공기가 충진되고, 가열유체 가열시 가열유체가 열팽창할 수 있는 팽창공간(a)이 마련된다.

Description

절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법
본 발명은 온수관 구조 및 이를 이용한 온수 가열방법에 관한 것으로, 더욱 상세하게는 온수의 가열 및 순환을 위한 별도의 장치를 구비하지 않고도 온수관 자체가 가열과 방열 기능을 동시에 수행하도록 이루어진 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법에 관한 것이다.
종래의 온수관을 이용한 난방 시스템에 의하면 바닥에 방열기능을 갖는 온수관을 지그재그 형태로 배열하고, 외부의 가열수단으로부터 온수관으로 온수를 공급하여 순환시키면서 바닥으로 열을 방출하여 난방을 하게 된다.
외부에서 물을 가열하기 위한 가열 수단으로는 전기히터나 각종 보일러가 사용되고, 가열수단에서 가열된 물을 온수관으로 공급하기 위해서는 순환펌프 등의 온수공급수단이 필요하다. 이외에도 부가적으로 급수탱크, 팽창탱크 및 온도 조절기구 등이 필요하다.
이와 같은 구성을 갖는 종래의 난방 시스템에 따르면 상기와 같은 장치들을 구비하고 설치하는데 많은 비용이 소모될 뿐만 아니라, 많은 설치공간을 필요로 하는 문제점이 있다. 또한, 온수의 순환과정에서 열손실이 많아 난방효율이 떨어지는 문제점도 있다.
이에 온수관 자체가 가열수단과 방열수단을 겸할 수 있도록 하여 간단한 구조로 열손실 없이 난방을 할 수 있는 기술이 대한민국 등록특허공보(제10-0180211호, 이하 '선행문헌'이라 한다)에 '전열 온수관의 난방방법 및 그 장치'라는 명칭으로 개시되어 있다.
선행문헌에 따른 전열 온수관의 난방방법 및 그 장치에 따르면, 실내 바닥에 지그재그로 배치된 온수관의 일단부에서 타단부로 기본 가열선 및 예비가열선을 관통시킨 후 온수관에 온수를 밀봉한 다음, 기본 가열선에 의해 온수를 가열하여 난방하도록 이루어진다. 이 때, 예비가열선은 기본 가열선이 단락되어 제 기능을 수행하지 못할 때 온수의 가열을 위해 사용된다.
이러한 구성을 갖는 선행문헌에 따른 전열 온수관의 난방방법 및 그 장치에 따르면, 열매체를 가열하는 보일러 등의 가열수단, 가열된 열매체를 순환시키는 순환수단, 및 기타 부대장치들이 필요하지 않기 때문에 시공비용을 절감할 수 있고, 간편하게 난방할 수 있는 장점이 있다.
그러나, 선행문헌에 따른 전열 온수관의 난방방법 및 그 장치에 의하면, 기본 가열선에 전원을 인가하거나 차단하는 기능만 수행하도록 이루어짐으로써, 단순히 온수를 가열하여 난방하는데만 주안점을 두고 있으며, 절전에 대한 문제는 전혀 고려되고 있지 않다.
또한, 선행문헌에 따르면 온수관에 충전된 온수를 적어도 70~80℃ 정도로 가열되는 가열선으로 가열해야만 온수의 온도를 50℃로 유지하여 유효한 난방온도를 얻을 수 있기 때문에 비교적 높은 전력량을 사용하였고, 실내가 더워지면 온도감지기의 감지신호에 따라 간헐적으로 전열선의 전원공급을 차단하고 온수관의 온수가 하강되면 다시 전열선에 전원을 공급하도록 되어 있다.
그러나 온수관에 충전된 물은 잠열이 크기 때문에 온도변화가 민감하여 종래의 온수관의 가열방식으로는 일정한 온도로 정확하게 난방을 유지하기가 어려울 뿐만 아니라, 온도감지기 및 전원공급제어기구가 고장을 일으키는 경우에 온수관이 과열되어 온수관의 재질적 물성이 파괴될 우려가 있다.
온수관은 대부분 경질의 내열성 합성수지재질로 구성되어 있으나, 90℃ 이상의 온도에서는 온수관의 재질적 물성이 파괴되기 시작하기 때문에 과열에 의해 온수관이 파손되면 난방시설을 보수하는데 많은 시간과 비용이 소요되는 문제점이 있다.
본 발명의 목적은 전술한 바와 같은 종래의 문제점을 해소하기 위하여 안출된 것으로, 온수관 내의 체적팽창공간을 확보하고 약진공상태를 유지하여 열전달효율과 방열량을 증대시킴으로써, 에너지절감효과를 극대화할 수 있는 절전형 전열 온수관 구조를 제공하는데 있다.
본 발명의 다른 목적은 전열선을 통해 가열유체를 가열하여 발생되는 열을 외부로 방출하는 과정에서 난방온도에 따라 전열선에 인가되는 전력량을 제어하여, 경제적으로 저렴하게 난방할 수 있는 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법을 제공하는데 있다.
본 발명의 또 다른 목적은 난방용 온수관의 재질적 안전성을 보장할 수 있는 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법을 제공하는데 있다.
본 발명 절전형 전열 온수관 구조는, 온수관 내부에 가열유체가 채워지며, 가열유체를 가열하기 위한 전열선이 상기 온수관에 내장되는 온수관 구조에 있어서, 온수관 내에는 가열유체가 채워지는 공간(w) 외에 대기압보다 낮은 약진공 상태로 유지되며 내부에 공기가 충진되고, 가열유체 가열시 가열유체가 열팽창할 수 있는 열팽창공간(a)이 마련된다.
전열선은, 온수관에 삽입되고 외부로부터 전원공급시 발열하여 가열유체를 가열하는 기준 전열선; 및 온수관에 삽입되고 외부로부터 전원공급시 발열하여 기준 전열선과 함께 가열유체를 가열하는 절전용 전열선;을 포함하여, 기준 전열선 및 절전용 전열선 모두에 전원이 공급되도록 하거나 기준 전열선에만 전원이 공급되도록 하여 가열유체의 가열을 위해 공급되는 전력량을 제어하도록 이루어진다.
본 발명은 온수관에 삽입되고 기준 전열선 단락시 외부로부터 전원이 공급되어 발열함에 의해 기준 전열선을 대신하여 가열유체를 가열하는 예비 전열선;을 더 포함한다.
절전용 전열선은 기준 전열선과 연결되는 외부 전원선에 병렬 연결된다.
기준 전열선, 절전용 전열선 및 예비 전열선의 와트밀도는 15W/m로 동일하고, 각 전열선의 저항도 동일하다.
본 발명 절전형 전열 온수관을 이용한 온수 가열방법은, 온수관 내에서 전열선을 이용하여 가열유체를 가열하게 되면 가열유체가 가열되면서 열팽창을 하게 되고, 온수관 내에서 가열유체 공간(w)과 별도로 마련되는 열팽창공간(a)으로 인해 가열유체가 열팽창하게 되며, 온수관 내의 압력은 대기압보다 낮은 약진공 상태이므로 가열유체는 대기압하에서보다 빠른 시간에 유효온도까지 도달하게 되고, 온수관의 내부에서 가열유체가 체적팽창하면서 발열량이 증대된다.
본 발명 절전형 전열 온수관을 이용한 온수 가열방법은, (a) 기준 전열선과 절전용 전열선 모두에 전원을 공급하여 온수관의 가열유체를 가열하는 단계; 및 (b) 유효 난방온도 도달시 절전용 전열선으로의 전원공급이 차단되고 기준 전열선만으로 가열유체의 가열이 이루어지는 단계;를 포함한다.
본 발명 절전형 전열 온수관을 이용한 온수 가열방법은, (c) 기준 전열선 단락시 예비 전열선에 전원을 공급하여 가열유체를 가열하는 단계;를 더 포함한다.
각 전열선의 와트밀도는 15W/m로 동일하고 각 전열선의 저항도 동일하며, 유효 난방온도를 위한 온수의 온도는 50℃이다.
본 발명 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법에 의하면 다음과 같은 효과들을 갖는다.
첫째, 전열 온수관 내의 약진공 상태를 이용하여 열전달이 빠르게 이루어지며, 열팽창에 의한 열효율이 상승하고, 20%의 체적팽창으로 방열량이 증가하며, 열손실이 없는 등 난방에너지의 절감을 극대화할 수 있다.
둘째, 기준 전열선과 절전용 전열선 모두에 전원을 공급하여 단시간에 유효 난방온도에 도달할 수 있고, 유효 난방온도 도달 후에는 절전용 전열선에 공급되는 전원을 차단하고 기준 전열선만으로 가열유체를 가열하도록 이루어짐으로써, 절전난방에 의해 불필요한 전력소모를 방지할 수 있다.
특히, 최근에 전기 에너지 비용이 점차 상승되어 경제적 부담이 증가하는 현실을 감안해볼 때 난방에 필요한 전력소모를 줄일 수 있다는 것은 경제적으로 큰 효과를 얻을 수 있다.
셋째, 온수관 내의 온수를 가열하는데 필요한 온도를 종래에 비해 낮게 유지하더라도 충분히 유효 난방온도를 얻을 수 있기 때문에 높은 온도로 인한 온수관의 열화나 물성의 변화를 방지할 수 있으며, 온수관의 안전성이 보장된 상태에서 난방할 수 있다.
도 1은 본 발명의 제1실시예에 따른 절전형 전열 온수관의 일부를 절개한 모습을 나타낸 도면.
도 2는 도 1에 도시된 절전형 전열 온수관의 구성을 나타낸 개략도.
도 3은 도 1의 전열 온수관을 종으로 절단한 모습을 나타낸 단면도.
도 4는 본 발명의 제1실시예에 따른 절전형 전열 온수관을 이용해 전력량을 제어하는 과정을 나타낸 공정도.
도 5는 본 발명의 제2실시예에 따른 절전형 전열 온수관의 구성을 나타낸 개략도.
이하에서는 본 발명 절전형 전열 온수관 구조와 이를 이용한 온수 가열방법을 첨부된 도면을 참조로 상세히 설명하기로 한다.
도 1은 본 발명의 제1실시예에 따른 절전형 전열 온수관의 일부를 절개한 모습을 나타낸 도면이고, 도 2는 도 1에 도시된 절전형 전열 온수관의 구성을 나타낸 개략도이다.
본 실시예에 따른 절전형 전열 온수관(100)은 내부에 채워진 가열유체(물)를 가열하여 발생되는 열을 난방을 위해 외부로 방출하는 것으로, 그 내부에 기준 전열선(110) 및 절전용 전열선(120)이 삽입된다.
온수관(100)의 양단은 밀폐장치(미도시)에 의해 내부가 밀폐된다. 전열선(110)(120)들은 밀폐장치를 관통하여 외부로부터 전원을 공급받는다. 전열선(110)(120)은 와트밀도가 15W/m로 동일하며, 저항값 또한 모두 동일하다. 따라서, 전열 온수관(100)에 채워진 온수관의 가열온도를 정밀하게 제어할 수 있다.
온수관(100)의 외부에는 외부로부터 전열선(110)(120)에 전원을 공급하기 위한 외부 전원선(130)이 구비되며, 외부 전원선(130)에는 실내에 설치되어 실내온도를 감지하고 감지된 신호에 따라 전원의 인가를 자동으로 제어하는 실내자동온도조절기(140)가 연결된다. 실내자동온도조절기(140)는 실내의 난방을 전체적으로 제어한다.
기준 전열선(110)은 양단이 온수관(100)의 외부에서 외부 전원선(130)의 양단자에 접속된다. 실내자동온도조절기(140)를 통해 전원을 온(ON)시킨 상태에서 기준 전열선(110)에는 계속해서 전원이 공급되기 때문에 가열유체를 계속해서 가열하게 된다.
절전용 전열선(120)은 양단이 온수관(100)의 외부에서 외부 전원선(130)의 양단자에 접속되되, 기준 전열선(110)과 병렬로 연결된다. 절전용 전열선(120)에는 온수관(100)의 외부에서 절전용 전열선(120)으로의 전원공급을 제어하는 바이메탈(150)이 연결된다. 따라서, 절전용 전열선(120)의 경우에는 기준 전열선(110)과 달리 바이메탈(150)의 제어에 따라 전원이 공급될 수도 있고 전원공급이 차단될 수도 있다.
바이메탈(150)은 절전용 전열선(120)의 작동을 제어하는 것으로, 실내에 설치되는 실내자동온도조절기(140)와 연결되어 실내자동온도조절기(140)에서 감지되는 실내의 난방온도에 따라 절전용 전열선(120)의 작동을 제어한다.
한편, 도면에는 각 전열선(110)(120)이 한 가닥씩만 도시되었으나, 이에 한정되지 않고 복수 가닥씩 구비될 수도 있다.
도 3은 도 1의 전열 온수관을 종으로 절단한 모습을 나타낸 단면도이다.
전열 온수관(100)의 내부에 채워지는 가열유체(w)는 전열 온수관(100)의 내부 전체 체적 대비 80%를 차지한다. 그리고 전열 온수관(100)의 내부압력은 대기압보다 낮은 약진공상태를 유지한다.
전열 온수관(100)의 내부가 대기압보다 낮은 약진공상태를 유지하므로 가열유체의 비등점은 대기압에서의 비등점보다 낮다. 따라서, 전열 온수관(100) 내에서 가열유체가 가열되는 속도가 외부보다 빠르다.
전열 온수관(100) 내에서 가열유체가 가열되면서 전열 온수관(100)의 빈공간에 채워져 있는 공기는 온도가 상승하면서 체적이 팽창하게 된다. 즉, 가열유체가 채워지지 않는 빈 공간은 가열유체가 열팽창할 수 있는 열팽창공간(a)이 된다. 따라서, 전열 온수관(100) 내의 압력은 증가하게 되고, 증가하는 압력에 의해 전열 온수관(100) 내의 공기가 전열 온수관(100)의 양단을 통해 외부로 배출된다. 이러한 대기압보다 낮은 부기압 상태는 열용량을 상승시키게 되며 저전력으로 난방할 수 있도록 해준다.
전열 온수관(100) 내의 가열유체 가열시 열팽창 압력은 가열유체를 제외한 나머지 20%의 체적공간에서 수용하여 대기압보다 낮은 부기압상태를 유지하기 때문에 전열 온수관(100)의 변형을 초래하지 않는다.
이와 같은 구성을 갖는 전열 온수관에 따르면, 전열 온수관(100) 내의 약진공 상태를 이용하여 열전달이 빠르게 이루어지며, 열팽창에 의한 열효율이 상승하고, 20%의 체적팽창으로 방열량이 증가하며, 열손실이 없는 등 난방에너지의 절감을 극대화할 수 있다.
도 4는 본 발명의 제1실시예에 따른 절전형 전열 온수관을 이용해 전력량을 제어하는 과정을 나타낸 공정도이다.
난방초기에는 실내온도가 기준온도에 미치지 못하기 때문에 실내자동온도조절기(140) 및 바이메탈(150)을 통해 전원을 온시키면, 기준 전열선(110)과 절전용 전열선(120) 모두에 전원이 공급된다. 이 때, 기준 전열선(110)과 절전용 전열선(120)은 병렬로 연결되고 각 전열선(110)(120)의 용량이 같기 때문에 가열유체를 가열하는데 소요되는 전력량은 기준 전열선(110)에 공급되는 전력량의 두 배가 된다.
예컨대, 와트밀도가 15W/m인 기준 전열선(110)과 절전용 전열선(120) 모두에 전원을 공급하여 가열유체를 가열하게 되면 약 30분 정도의 단시간에 유효 난방온도를 위한 온수의 온도(t)가 50℃에 도달하게 된다. 즉, 각 전열선(110)(120) 1m당 발열온도는 67℃이므로, 두 전열선(110)(120)에 의해 온수관(100)에 채워진 온수는 전열선(110)(120) 1m당 67℃×2의 비율로 가열된다. 따라서, 상기와 같이 단시간에 유효 난방온도에 도달할 수 있다.
기준 전열선(110)과 절전용 전열선(120)을 이용해 가열유체를 가열하게 되면 가열유체가 가열되면서 열팽창을 하게 되고, 온수관(100) 내에서 가열유체 체적과 별도로 마련되는 열팽창공간(a)으로 가열유체가 열팽창하게 된다. 이 때, 온수관(100) 내의 압력은 대기압보다 낮은 약진공상태이므로 가열유체는 대기압하에서보다 빠른 시간에 유효온도까지 도달하게 된다.
온수관(100) 내에서 가열유체가 팽창하게 되면 열팽창압력에 의해 온수관(100) 내의 공기압이 상승하게 되고, 상승된 압력에 의해 온수관(100) 내의 공기가 온수관(100)의 단부를 통해 외부로 새어나가게 된다. 따라서, 온수관(100)의 내부에서 열팽창공간(a)에 팽창된 가열유체가 채워지므로 가열유체의 체적팽창으로 발열량은 증가하게 된다. 따라서, 가열유체를 가열하여 난방을 하는데 소요되는 에너지를 최소화할 수 있다.
유효 난방온도에 도달한 상태에서도 두 전열선(110)(120)에 계속해서 전원을 인가하게 되면 난방온도가 유효 난방온도를 초과하여 에너지를 낭비하게 된다. 즉, 난방온도는 적정하게 유지되어야만 사람이 생활하는데 쾌적함을 유지할 수 있으나, 적정 온도를 넘어서게 되면 불쾌감을 느끼게 된다. 따라서, 적정 유효 난방온도를 유지하는 것이 중요하다.
실내의 난방온도가 유효 난방온도에 도달하였음을 실내자동온도조절기(140)가 감지하여 그 신호를 바이메탈(150)로 전송하게 되면 바이메탈(150)의 제어에 의해 절전용 전열선(120)으로의 전원공급이 자동으로 차단된다. 기준 전열선(110)으로의 전원공급은 계속해서 이루어지기 때문에 온수관(100)의 온수는 기준 전열선(110)만으로 가열이 계속된다.
일단 온수가 유효 난방온도에 도달한 후에는 물의 잠열에 의해 약간의 열을 보충하는 것만으로도 유효 난방온도의 유지가 가능하기 때문에, 유효 난방온도 도달 후 기준 전열선(110)만으로도 유효 난방온도를 유지할 수 있다.
즉, 상기와 같이 적정 발열량을 가지는 기준 전열선(110)과 절전용 전열선(120) 모두에 전원을 동시 공급하여 단시간에 유효 난방온도에 도달할 수 있도록 온수를 가열한 후에는 기준 전열선(110)만으로도 가열된 온수의 온도를 일정하게 보존할 수 있다.
한편, 전열선에 전원이 공급될 때 발생되는 열량, 그리고 전열선의 와트밀도를 계산하는 과정을 살펴보기로 한다.
전열선에 전원을 공급하게 되면 열이 발생된다. 이 때 발생되는 열량은 쥴 공식에 의해 사용되는 전력과 전열선의 저항값을 통해 구할 수 있다.
전열선의 저항에 의해 발생되는 열량(W)은 전류(T)의 제곱과 저항(Ω) 값의 곱에 비례한다. 이러한 쥴 공식은 아래의 식 1과 같다.
W = I2 R t [J] -------------- 식 1
단, W = 열량[J], I = 전류[A], R = 도체의 저항[Ω], t = 시간[초]이다.
열량을 측정하는데는 쥴(J) 단위보다는 칼로리(cal) 단위가 편리한다. 1[J]은 약 0.24[cal]이므로 발생되는 열량을 H로 표시한다면 아래의 식 2와 같다.
H = 0.24 I2 R t [cal] -------------- 식 2
본 발명에서는 전열선의 길이에 따라 사용 전력량이 정해지기 때문에 편의상 와트밀도의 계산법이 적용된다. 이 때 적용되는 식은 아래의 식 3과 같다.
W / ㎠ = W / φ * π * ℓ ------------- 식 3
단, W = 소비전력, φ = 전열선의 직경(㎝), π = 3.14, ℓ = 전열선의 길이(㎝)이다.
물론, 상기와 같은 식 1 내지 3 외에도 난방배관의 시공 현장에서는 부가적인 여러 사항에 대하여 여러가지 공식이 적용되고 있다.
[시험예]
1㎡의 난방면적에 시공된 지름 20mm × 3.6m 길이의 온수관에서 가장 적합한 와트밀도를 갖는 전열선을 선정하기 위하여 시험한 결과는 다음의 표-1과 같다. 참고로 전열선에 공급되는 전원은 220V이다.
표 1
와트밀도(W/m) 전열선 표면온도(℃)
14 64
15 67
16 70
17 73
18 76
19 79
참고로, 온수관에 채워진 온수의 온도가 50℃일 때, 유효 난방온도를 얻을 수 있으며, 전열선의 열효율은 80%라고 가정한다.
상기 실험결과에서 알 수 있는 바와 같이, 온수관에 설치되는 전열선을 와트밀도가 15W/m인 것으로 하면 전열선 표면온도가 67℃가 되고, 열효율이 80%일 때 온수관에 채워진 온수는 50℃로 가열유지되어 유효 난방온도를 얻을 수 있다. 전열선 표면온도가 67℃를 넘게 되면 실내자동온도조절기(140)에서 67℃를 넘지 않게 제어할 수 있다.
한편, 와트밀도가 15W/m인 전열선 1가닥으로 0℃의 온수를 50℃로 가열할 경우 약 120분이 소요되었다. 그러나, 전열선 2가닥에 전원을 동시에 공급하여 온수를 가열할 경우 0℃에서 50℃로 가열되는데 약 30분이 소요되었다. 전열선 1가닥으로 가열할 때보다 2가닥으로 가열할 때 유효 난방온도에 도달하는데 걸리는 시간이 약 75%가량 줄어듦을 알 수 있었다. 가열시간의 단축은 난방효율에 있어서도 큰 영향을 미친다.
도 5는 본 발명의 제2실시예에 따른 절전형 전열 온수관의 구성을 나타낸 개략도이다.
본 실시예에 따른 절전형 전열 온수관(100)은 기준 전열선(110), 절전용 전열선(120), 외부 전원선(130), 실내자동온도조절기(140), 바이메탈(150) 및 예비 전열선(160)을 포함한다. 여기서, 기준 전열선(110), 절전용 전열선(120), 외부 전원선(130), 실내자동온도조절기(140) 및 바이메탈(150)의 구성은 제1실시예와 동일하므로 그 설명을 생략하기로 한다.
예비 전열선(160)은 양단이 온수관(100)의 외부로 노출되되 평상시에는 외부 전원선(130)과 접속되지 않고, 기준 전열선(110)이 단락되어 제기능을 하지 못할 때에만 외부 전원선(130)과 접속되어 발열함으로써 기준 전열선(110) 대신 가열유체를 가열하게 된다. 이러한 예비 전열선(160)의 작동은 바이메탈(150)에 의해 자동으로 제어되며, 기준 전열선(110)의 하자 보수 완료까지 중단없이 50%의 예비 전열선(160)의 전력량으로 연속 난방하게 된다.
본 실시예에 따른 절전형 전열 온수관을 이용해 전력량을 제어하는 과정을 보면 기준 전열선(110) 대신 예비 전열선(160)을 사용한 것으로 차이가 있으나, 양자는 와트밀도 및 저항이 동일하며 전력량의 제어과정 또한 동일하다. 따라서 이에 대한 설명은 생략하기로 한다.
이상에서 설명한 바와 같이 본 발명에 따른 바람직한 실시예들을 기초로 설명하였으나, 본 발명은 특정 실시예에 한정되는 것은 아니며, 해당분야 통상의 지식을 가진 자가 특허청구범위 내에 기재된 범주 내에서 변경할 수 있다.
<부호의 설명>
100 : 온수관 110 : 기준 전열선
120 : 절전용 전열선 130 : 외부 전원선
140 : 실내자동온도조절기 150 : 바이메탈
160 : 예비 전열선

Claims (9)

  1. 온수관 내부에 가열유체가 채워지며, 상기 가열유체를 가열하기 위한 전열선이 상기 온수관에 내장되는 온수관 구조에 있어서,
    상기 온수관 내에는 상기 가열유체가 채워지는 공간(w) 외에 대기압보다 낮은 약진공 상태로 유지되며 내부에 공기가 충진되고, 상기 가열유체 가열시 가열유체가 열팽창할 수 있는 열팽창공간(a)이 마련되는 것을 특징으로 하는 절전형 전열 온수관 구조.
  2. 제1항에 있어서,상기 전열선은,
    상기 온수관에 삽입되고 외부로부터 전원공급시 발열하여 상기 가열유체를 가열하는 기준 전열선; 및
    상기 온수관에 삽입되고 외부로부터 전원공급시 발열하여 상기 기준 전열선과 함께 상기 가열유체를 가열하는 절전용 전열선;을 포함하여,
    상기 기준 전열선 및 절전용 전열선 모두에 전원이 공급되도록 하거나 상기 기준 전열선에만 전원이 공급되도록 하여 상기 가열유체의 가열을 위해 공급되는 전력량을 제어하도록 이루어진 절전형 전열 온수관 구조.
  3. 제2항에 있어서,
    상기 전열선은,
    상기 온수관에 삽입되고 상기 기준 전열선 단락시 외부로부터 전원이 공급되어 발열함에 의해 상기 기준 전열선을 대신하여 상기 가열유체를 가열하는 예비 전열선;을 더 포함하는 것을 특징으로 하는 절전형 전열 온수관 구조.
  4. 제2항 또는 제3항에 있어서,
    상기 절전용 전열선은 상기 기준 전열선과 연결되는 외부 전원선에 병렬 연결되는 것을 특징으로 하는 절전형 전열 온수관 구조.
  5. 제3항에 있어서,
    상기 기준 전열선, 절전용 전열선 및 예비 전열선의 와트밀도는 15W/m로 동일하고, 저항도 동일한 것을 특징으로 하는 절전형 전열 온수관 구조.
  6. 온수관 내에서 전열선을 이용하여 가열유체를 가열하게 되면 가열유체가 가열되면서 열팽창을 하게 되고, 상기 온수관 내에서 가열유체 공간(w)과 별도로 마련되는 열팽창공간(a)으로 인해 가열유체가 열팽창하게 되며, 상기 온수관 내의 압력은 대기압보다 낮은 약진공 상태이므로 가열유체는 대기압하에서보다 빠른 시간에 유효온도까지 도달하게 되고, 상기 온수관의 내부에서 가열유체가 체적팽창하면서 발열량이 증대되는 것을 특징으로 하는 절전형 전열 온수관을 이용한 온수 가열방법.
  7. 제6항에 있어서,
    (a) 기준 전열선과 절전용 전열선 모두에 전원을 공급하여 온수관의 가열유체를 가열하는 단계; 및
    (b) 유효 난방온도 도달시 상기 절전용 전열선으로의 전원공급이 차단되고 상기 기준 전열선만으로 상기 가열유체의 가열이 이루어지는 단계;를 포함하는 것을 특징으로 하는 절전형 전열 온수관을 이용한 온수 가열방법.
  8. 제7항에 있어서,
    (c) 상기 기준 전열선 단락시 예비 전열선에 전원을 공급하여 상기 가열유체를 가열하는 단계;를 더 포함하는 것을 특징으로 하는 절전형 전열 온수관을 이용한 온수 가열방법.
  9. 제7항 또는 제8항에 있어서,
    상기 각 전열선의 와트밀도는 15W/m로 동일하고 각 전열선의 저항도 동일하며, 유효 난방온도를 위한 온수의 온도는 50℃인 것을 특징으로 하는 절전형 전열 온수관을 이용한 온수 가열방법.
PCT/KR2013/007963 2012-09-12 2013-09-04 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법 WO2014042383A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120101242 2012-09-12
KR10-2012-0101242 2012-09-12
KR10-2012-0126030 2012-11-08
KR1020120126030A KR20140034663A (ko) 2012-09-12 2012-11-08 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법

Publications (1)

Publication Number Publication Date
WO2014042383A1 true WO2014042383A1 (ko) 2014-03-20

Family

ID=50278438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007963 WO2014042383A1 (ko) 2012-09-12 2013-09-04 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법

Country Status (1)

Country Link
WO (1) WO2014042383A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU182950U1 (ru) * 2017-12-25 2018-09-06 Алексей Игоревич Зуев Устройство для отопления помещений

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200326909Y1 (ko) * 2003-06-11 2003-09-19 두 년 김 전열선이 삽입된 온수관 단부의 밀폐장치
KR200352828Y1 (ko) * 2004-03-29 2004-06-07 허행조 전기 난방기
KR100866995B1 (ko) * 2008-06-20 2008-11-05 태양그린에너지(주) 전열선 삽입 온수관 난방장치
KR100961388B1 (ko) * 2009-12-11 2010-06-07 김상호 바닥 난방장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200326909Y1 (ko) * 2003-06-11 2003-09-19 두 년 김 전열선이 삽입된 온수관 단부의 밀폐장치
KR200352828Y1 (ko) * 2004-03-29 2004-06-07 허행조 전기 난방기
KR100866995B1 (ko) * 2008-06-20 2008-11-05 태양그린에너지(주) 전열선 삽입 온수관 난방장치
KR100961388B1 (ko) * 2009-12-11 2010-06-07 김상호 바닥 난방장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU182950U1 (ru) * 2017-12-25 2018-09-06 Алексей Игоревич Зуев Устройство для отопления помещений

Similar Documents

Publication Publication Date Title
WO2012134189A2 (en) Warm water supply device and warm water supply method
WO2013162158A1 (ko) 서버용 유냉식 냉각장치 및 그 구동 방법
WO2017111364A1 (ko) 난방 온수 겸용 보일러 및 그 제어방법
EP1178369B1 (en) Heater control apparatus and image forming apparatus
KR101303109B1 (ko) 드럼 히터 시스템들 및 방법들
WO2011149191A2 (ko) 소형 열병합 발전 시스템 및 그 제어방법
WO2014042383A1 (ko) 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법
JP2007003058A (ja) 温水供給装置
WO2010027144A2 (ko) 무자계 발열선의 전자파 차단 온도조절기
WO2012070813A2 (ko) 보일러의 난방 제어 방법 및 그 장치
CN108167659A (zh) 一种地暖管道液体泄漏检测装置及其检测方法
WO2012044092A2 (en) Hot water tank having overheating prevention function
CN105902079B (zh) 一种智能电热毯
WO2021194002A1 (ko) 난방용 히팅케이블 및 이를 이용한 난방용 전열관
JP2007003641A (ja) 定着装置及び定着ローラ加熱方法
CN107818866A (zh) 互感器二次接线面板除潮装置
KR20140034663A (ko) 절전형 전열 온수관 구조 및 이를 이용한 온수 가열방법
WO2016143924A1 (ko) 태양열 온수시스템
WO2015183020A1 (ko) 열전 소자를 이용한 온도 제어 장치 및 온도 제어 방법
WO2010024518A2 (ko) 온열기의 제어정류소자 고장시 전원퓨즈 단선장치
CN205641117U (zh) 电热辐射取暖装置
WO2019245156A1 (ko) 다기능 축열 열전하이브리드 발전장치
WO2019172644A1 (ko) 유로 가이드 탱크를 포함하는 비데용 온수 시스템 및 이를 이용한 온수 모드 방법
CN208046947U (zh) 一种温控发热装置和空气加湿器
CN206593316U (zh) 一种储水式电热水器加热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836746

Country of ref document: EP

Kind code of ref document: A1