WO2014042179A1 - Optical molded article and method for measuring same - Google Patents

Optical molded article and method for measuring same Download PDF

Info

Publication number
WO2014042179A1
WO2014042179A1 PCT/JP2013/074504 JP2013074504W WO2014042179A1 WO 2014042179 A1 WO2014042179 A1 WO 2014042179A1 JP 2013074504 W JP2013074504 W JP 2013074504W WO 2014042179 A1 WO2014042179 A1 WO 2014042179A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
axis
optical axis
parallel
molded product
Prior art date
Application number
PCT/JP2013/074504
Other languages
French (fr)
Japanese (ja)
Inventor
阿久津大
森基
原新一朗
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014535568A priority Critical patent/JPWO2014042179A1/en
Publication of WO2014042179A1 publication Critical patent/WO2014042179A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • G01M11/0214Details of devices holding the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to an optical molded article including a minute optical element portion to be measured and a measuring method thereof.
  • an optical molded product including an optical element there is one in which a pair of contact portions are provided at both ends of a main body portion having a measurement target surface, and the optical molded product is used as a measurement jig by using the pair of contact portions. It is aligned and fixed (see Patent Document 1).
  • the relatively large support shaft portion is for indirectly holding and transporting the optical function portion, and is cut after being combined with the storage cartridge.
  • the present invention has been made in view of the above-described background, and even if the optical element is downsized, the removal of the positioning member and the moldability can be ensured, and the optical function unit is appropriately disposed with respect to the measuring apparatus. It is an object of the present invention to provide an optical molded product and a measuring method thereof.
  • an optical molded product includes an optical element portion having an optical function, a support shaft portion, and a tip side gate portion disposed between the optical element portion and the support shaft portion.
  • the supporting shaft portion has a positioning portion for restricting the three-dimensional arrangement and rotation posture of the optical element portion, and the positioning portion is a surface perpendicular to the optical axis of the optical element portion. It is possible to regulate the arrangement in the direction parallel to the optical axis and to regulate the rotation around the axis parallel to the optical axis and the inclination to the axis that should be parallel to the optical axis. enable.
  • the positioning portion provided on the support shaft portion enables the restriction of the position in the plane perpendicular to the optical axis and the restriction of the position in the direction parallel to the optical axis. Since it is possible to restrict the rotation around the parallel axis and to restrict the inclination with respect to the axis that should be parallel to the optical axis, the optical element portion can be arranged with high accuracy with respect to three-dimensional shift and three-axis tilt. Become. As a result, even if the optical element portion is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion can be precisely measured. it can.
  • the positioning portion includes a convex or concave portion protruding around the support shaft portion.
  • the shape of the convex or concave part it becomes easier to match the support shaft to the shape of the measurement jig when attaching an optical molded product to the measurement device, thereby improving the workability of fixing and positioning. Can do.
  • the positioning unit includes a first reference boss that enables the arrangement of the optical element portion in a plane perpendicular to the optical axis and a rotation around an axis parallel to the optical axis.
  • a second reference boss that enables restriction; and a reference surface that enables restriction of arrangement in a direction parallel to the optical axis and restriction of inclination with respect to an axis that should be parallel to the optical axis.
  • the first reference boss, the second reference boss, and the reference surface which are convex or concave portions, can be arranged with high precision with respect to shift and tilt.
  • the reference surface is formed between the first reference boss and the second reference boss and around the main body of the support shaft portion. In this case, since the distance between the first reference boss and the second reference boss is increased, the positioning accuracy is improved.
  • the positioning portion extends in a first direction perpendicular to the longitudinal direction of the main body of the support shaft portion and the optical axis of the optical element portion, and extends in a first direction in a plane perpendicular to the optical axis.
  • a pair of reference bosses that enable restriction of arrangement in the second direction perpendicular to the optical axis and restriction of rotation around an axis parallel to the optical axis, and restriction of arrangement in the first direction in a plane perpendicular to the optical axis A first reference surface that enables the second reference surface; and a second reference surface that enables the restriction of the arrangement in a direction parallel to the optical axis and the restriction of the inclination with respect to the axis to be parallel to the optical axis.
  • the pair of reference bosses that are convex or concave portions, the first reference surface, and the second reference surface enable highly accurate arrangement with respect to shift and tilt.
  • the first and second reference surfaces are formed between the pair of reference bosses and around the main body of the support shaft portion.
  • the reference boss has a circular or square cross section with respect to the protruding direction.
  • the reference boss has a cross section larger than the outer diameter of the optical element portion in the protruding direction.
  • the reference boss is used for projecting the support shaft portion.
  • the product is more reliably projected by using the reference boss.
  • the positioning portion extends in a second direction parallel to the longitudinal direction of the main body of the support shaft portion, and is disposed in the first direction perpendicular to the second direction in a plane perpendicular to the optical axis.
  • a first reference that enables regulation of rotation, regulation of rotation around an axis parallel to the optical axis, regulation of arrangement in a direction parallel to the optical axis, and regulation of inclination with respect to an axis that should be parallel to the optical axis
  • a portion extending in a first direction that is perpendicular to the optical axis of the optical element portion and perpendicular to the second direction, and is arranged in a second direction in a plane perpendicular to the optical axis, and an axis parallel to the optical axis
  • a second reference portion that enables regulation of arrangement in a direction parallel to the optical axis and regulation of inclination with respect to an axis that should be parallel to the optical axis.
  • the first reference portion and the second reference portion which are convex or concave portions, can be arranged with high accuracy with respect to shift and tilt.
  • the outer diameter of the optical element portion is 2 mm or less.
  • the optical element portion becomes relatively small, and positioning using the support shaft portion is effective for optical surface measurement and the like.
  • the distal end side gate portion is smoothly connected by an R shape at the boundary between the optical element portion and the support shaft portion. In this case, bending at the distal end side gate portion can be prevented, and release of the optical element portion after molding can be improved.
  • the distance between the first reference boss and the optical element portion in the direction perpendicular to the optical axis of the optical element portion is L1, and the optical element portion is closer than the first reference boss and the first reference boss.
  • the thickness of the optical element portion of the first and second reference bosses in the direction parallel to the optical axis is t1
  • the thickness of the support shaft portion in the direction parallel to the optical axis is t2.
  • t1 / t2 ⁇ 1.
  • the protrusions of the first and second reference bosses are relatively small, and the fluidity of the resin can be improved.
  • the root side gate portion is connected to the opposite side of the tip side gate portion of the support shaft portion.
  • the positioning part including the reference boss and the like can be transferred with high accuracy.
  • the distal end side gate portion extends in a branched manner and has a plurality of optical element portions on the distal end side.
  • a plurality of optical element portions can be collectively measured.
  • the requirements regarding positioning accuracy become more severe, and therefore, measurement using a positioning portion provided on the support shaft portion becomes more effective.
  • the method for measuring an optical molded product includes a support shaft portion that supports an optical element portion having an optical function via a tip-side gate portion, and a three-dimensional view of the optical element portion on the support shaft portion.
  • a step of preparing an optical molded product provided with a positioning portion for restricting the proper arrangement and rotation posture in advance, and fixing the positioning portion on a support jig, in a plane perpendicular to the optical axis of the optical element portion A process of regulating the arrangement and regulating the arrangement in a direction parallel to the optical axis, and regulating the rotation around an axis parallel to the optical axis and regulating the inclination with respect to the axis to be parallel to the optical axis; And a step of measuring the characteristics of the optical molded product by setting the support jig on the stage.
  • the optical element portion is fixed by fixing the positioning portion on the support jig.
  • restricting the position in the plane perpendicular to the optical axis and restricting the position in the direction parallel to the optical axis restricting the rotation around the axis parallel to the optical axis and the axis to be parallel to the optical axis Tilt regulation can be performed.
  • the optical element portion is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion can be precisely measured. it can.
  • the first reference boss is brought into contact with the support jig, thereby being perpendicular to the optical axis of the optical element portion.
  • a pair of reference bosses extending in the first direction perpendicular to the longitudinal direction of the main body of the support shaft portion and the optical axis of the optical element portion are supported.
  • the arrangement in the second direction perpendicular to the first direction in the plane perpendicular to the optical axis and the rotation around the axis parallel to the optical axis are restricted, and the first reference plane is Arrangement in a direction parallel to the optical axis by restricting the arrangement in the first direction in the plane perpendicular to the optical axis by abutting on the support jig and bringing the second reference plane in contact with the support jig And inclination with respect to an axis that should be parallel to the optical axis.
  • the positioning portion when the positioning portion is fixed on the support jig, the first reference portion extending in the second direction parallel to the longitudinal direction of the main body of the support shaft portion is brought into contact with the support jig. Accordingly, the arrangement in the first direction perpendicular to the second direction in the plane perpendicular to the optical axis, the rotation around the axis parallel to the optical axis, the arrangement in the direction parallel to the optical axis, and the parallel to the optical axis.
  • the optical axis is controlled by restricting the inclination with respect to the axis to be, and bringing the second reference portion perpendicular to the optical axis of the optical element portion and extending in the first direction perpendicular to the second direction into contact with the support jig.
  • the arrangement in the second direction in the plane perpendicular to the optical axis, the rotation around the axis parallel to the optical axis, the arrangement in the direction parallel to the optical axis, and the inclination with respect to the axis to be parallel to the optical axis are restricted.
  • FIG. 1A is a plan view of the optical molded product of the first embodiment
  • FIG. 1B is a side view of the optical molded product of FIG. 1A
  • 1C is a plan view illustrating a state where the optical molded product according to the first embodiment is set on a support jig
  • FIG. 1D is a side cross-sectional view illustrating a state where the optical molded product is set on a support jig. It is. It is a figure explaining the state which fixed the support jig
  • 4A and 4B are cross-sectional views illustrating injection molding of an optical molded product.
  • FIG. 1B is a side view of the optical molded product of FIG. 1A.
  • FIG. 1C is a plan view illustrating a state where the optical molded product according to the first embodiment is set on a support jig
  • FIG. 1D is a
  • FIG. 5A is a plan view of the optical molded product of the second embodiment
  • FIG. 5B is a side view of the optical molded product of FIG. 5A
  • FIG. 5C is a plan view illustrating a state where the optical molded product according to the second embodiment is set on a support jig
  • FIG. 5D is a side cross-sectional view illustrating a state where the optical molded product is set on a support jig.
  • FIG. 6A is a plan view of the optical molded product of the third embodiment
  • FIG. 6B is a side view of the optical molded product of FIG. 6A.
  • FIG. 6C is a plan view illustrating a state where the optical molded product of the third embodiment is set on a support jig
  • FIG. 6D is a side cross-sectional view illustrating a state where the optical molded product is set on a support jig. It is. It is a top view explaining the optical molded product of 4th Embodiment.
  • the illustrated optical molded product 100 is an integrally molded product made of resin, and includes an optical element portion 10, a support shaft portion 20, a distal end side gate portion 30, and a root side gate portion 40.
  • the optical element portion 10 is a resin-made small lens, and is used as, for example, an objective lens (specifically, a BD (Blu-ray Disc TM)) lens or an endoscope lens of an optical pickup device. .
  • the optical element portion 10 is finally separated from the support shaft portion 20 by removing the distal end side gate portion 30 by cutting or the like, and becomes an independent product.
  • the optical element part 10 has an optical part OL having an optical function and an annular outer peripheral part FL extending from the optical part OL in the outer diameter direction.
  • the optical part OL has a convex first optical surface OL1 and a convex second optical surface OL2. That is, the optical part OL is thick on the center side.
  • the outer diameter of the optical element portion 10 is, for example, 2 mm or less and is extremely small.
  • the support shaft portion 20 is a block-shaped portion, and has a larger volume than the optical element portion 10 (specifically, for example, a volume of about 10 to 100 times or more).
  • the support shaft portion 20 includes a main body portion 21, a tapered portion 22, a first reference boss 23, and a second reference boss 24.
  • the main body portion 21 has a quadrangular prism shape, and includes first to fourth side surfaces 21a to 21d and an end surface 21g.
  • the first side surface 21 a is disposed on the second optical surface OL2 side of the optical element portion 10 and extends perpendicular to the optical axis OA of the optical element portion 10.
  • the second side surface 21b is disposed on the first optical surface OL1 side of the optical element portion 10, and extends perpendicular to the optical axis OA.
  • the third and fourth side surfaces 21c and 21d extend in parallel to the optical axis OA.
  • the tapered portion 22 is a truncated cone-shaped portion in which the cross section perpendicular to the axis AX gradually decreases, and is connected to the distal end side gate portion 30 at the distal end.
  • the first reference boss 23 is a column standing on the tip side on the first side surface 21a and has a cylindrical side surface 23a and a top surface 23b.
  • the second reference boss 24 is a column that is erected on the first side surface 21a and on the base side away from the optical element portion 10, and has a cylindrical side surface 24a and a top surface 24b.
  • the first reference boss 23 and the second reference boss 24 are used for alignment when the optical molded product 100 is fixed to a support jig (see FIG. 2) described later.
  • the surface region sandwiched between the first reference boss 23 and the second reference boss 24 is a reference surface R1 for alignment when the optical molded product 100 is fixed to the support jig. It has become.
  • the reference surface R1 is formed on the surface layer portion 21s of the support shaft portion 20 on the first side surface 21a side.
  • the cylindrical side surface 23a of the first reference boss 23 makes it possible to restrict the arrangement of the optical element portion 10 in the XY plane perpendicular to the optical axis OA of the optical element portion 10.
  • the cylindrical side surface 24a of the second reference boss 24 allows the rotation of the optical element portion 10 to be restricted around the optical axis OA.
  • the reference surface R1 of the surface layer portion 21s enables restriction of the arrangement of the optical element portion 10 in the Z direction parallel to the optical axis OA and restriction of the inclination of the optical element portion 10 with respect to the Z axis parallel to the optical axis OA. .
  • the distance between the first reference boss 23 and the optical element portion 10 in the Y direction perpendicular to the optical axis OA is L1
  • the first reference boss 23 and the first reference boss 23 are further away from the optical element portion 10.
  • the thickness of the first and second reference bosses 23, 24 in the Z direction parallel to the optical axis OA of the optical element portion 10 is t1
  • the thickness of the support shaft portion 20 in the Z direction parallel to the optical axis OA is t2.
  • t1 / t2 ⁇ 1.
  • the diameter of the cross section perpendicular to the optical axis OA of the first reference boss 23 and the second reference boss 24 is sufficiently larger than the diameter of the optical element portion 10.
  • the front end side gate portion 30 is a neck-shaped portion that connects the optical element portion 10 and the support shaft portion 20, and is a rectangular parallelepiped having four side surfaces.
  • the distal end side gate portion 30 serves as an inlet for guiding the resin to a molding space corresponding to the optical element portion 10 during injection molding.
  • the distal end side gate portion 30 is smoothly connected by the R shape in the boundary region A1 with the optical element portion 10, and the R shape in the boundary region A2 with the support shaft portion 20. Is connected smoothly.
  • the root side gate portion 40 is formed on the root side of the support shaft portion 20, that is, on the opposite side of the tip side gate portion 30.
  • the root side gate part 40 is a rectangular parallelepiped or a cylinder.
  • the distal end side gate portion 30 serves as an inlet for guiding the resin to a molding space such as a resin reservoir corresponding to the support shaft portion 20 or the like during injection molding.
  • the root side gate portion 40 is initially connected to a runner portion RP formed as a portion corresponding to the flow path of the molten resin on the opposite side of the support shaft portion 20, but the runner portion RP is obtained by subsequent cutting or the like. From the base side gate part 40 to the optical element part 10 on the front end side, an integrated optical molded product 100 is obtained.
  • the optical molded product 100 is supported in an aligned state on the support jig 200.
  • the support jig 200 is a flat member and includes a through hole 31, a first positioning hole 32, and a second positioning hole 33.
  • the through hole 31 is a cylindrical hole extending in the z direction.
  • the through-hole 31 has the optical element portion 10 disposed above the center thereof, thereby enabling measurement of the second optical surface OL2 on the back side as well as the measurement of the first optical surface OL1 on the front side of the optical element portion 10. ing.
  • the first positioning hole 32 has a shape in which a part of the cylindrical hole is cut out by the through hole 31.
  • the first positioning hole 32 restricts the arrangement of the optical molded product 100 in the xy plane perpendicular to the optical axis OA by fitting the first reference boss 23 of the optical molded product 100 into the first positioning hole 32.
  • the second positioning hole 33 is a long hole having an oval cross section that is long in the y direction.
  • the cylindrical side surface 24 a of the second reference boss 24 is sandwiched between the pair of flat surfaces 33 a of the positioning hole 33.
  • the upper surface 35 of the support jig 200 is a flat surface parallel to the xy plane.
  • the upper surface 35 of the support jig 200 is brought into contact with the reference surface R1 of the optical molded product 100 to thereby arrange the z-direction parallel to the optical axis OA of the optical molded product 100 and the optical axis of the optical molded product 100.
  • the inclination with respect to the z axis parallel to OA is regulated. That is, by setting the optical molded product 100 on the support jig 200, the optical molded product 100 can be shifted in three directions, x, y, and z, and the x, y, and z axes.
  • the posture is adjusted with respect to the three-dimensional tilt around the three axes, and alignment on the support jig 200 of the optical molded product 100 is achieved.
  • the shape of the optical surfaces OL1 and OL2 provided in the optical part OL is measured by the measuring device 300.
  • the measuring apparatus 300 includes a stage 59 and a main body measuring unit 50, and sets a support jig 200 with the optical molded product 100 attached on the stage 59 during measurement.
  • the stage 59 includes a flat base 41, a block-shaped first locking member 42, a block-shaped second locking member 43, a first pressing member 44 for fixing with an elastic force, and an elastic force. And a second pressing member 46 for fixing.
  • On the support jig 200 three reference spheres 41a are fixed in order to grasp the parallel of the xy plane and the z-direction position.
  • the posture and position of the optical molded product 100 as the measurement object can be accurately grasped even if the position and inclination of the support jig 200 are changed. be able to.
  • the support jig 200 is pressed against the first and second locking members 42 and 43 by the biasing member 44a provided on the first pressing member 44, and by the biasing member 46a provided on the second pressing member 46, It is pressed onto the base 41 via an urging position U ⁇ b> 1 provided on the support shaft 20 of the optical molded product 100. Thereby, the optical molded product 100 is stably fixed on the stage 59 via the support jig 200. In this state, the main body measurement unit 50 can measure the shape of the optical molded product 100 relating to the first optical surface OL1 and the like.
  • the initial position of the probe 51 is set to a region near the center within ⁇ D / 4 of all the regions on the first optical surface OL1, where D is the diameter of the first optical surface OL1 of the optical molded product 100.
  • D is the diameter of the first optical surface OL1 of the optical molded product 100.
  • the shape measurement of the first optical surface OL1 can be ensured. If the initial position of the probe 51 is in the peripheral region of the first optical surface OL1, especially in the case of stylus type measurement, it is difficult to center the probe 51, making it difficult to set the measurement range appropriately. Tend to occur.
  • the measurement is performed on the first optical surface OL1, but if the optical molded product 100 is turned upside down together with the stage 59 or the support jig 200, the second optical surface OL2 is the same as the first optical surface OL1. It becomes possible to measure.
  • a molding die 60 shown in FIG. 4A includes a movable die 61 and a fixed die 62.
  • the movable mold 61 is driven by a mold driving unit (not shown) and can move forward and backward in the AB direction, and can be opened and closed with the fixed mold 62.
  • a mold space CV and a flow path space FC are formed between both the molds 61 and 62.
  • the mold space CV is for forming the optical element portion 10, the support shaft portion 20, and the distal end side gate portion 30 shown in FIG. 1A.
  • the mold space CV includes a space portion CV1 corresponding to the shape of the optical element portion 10, a space portion CV2 corresponding to the shape of the support shaft portion 20, and the like.
  • the flow path space FC is for supplying resin to the mold space CV, and includes a runner and the like.
  • the optical molded product 100 can be released in a balanced manner, and distortion and deformation of the first side surface 21a, the cylindrical side surfaces 23a and 24a, etc. can be suppressed, and optical molding is performed.
  • the product 100 can be manufactured with high shape accuracy.
  • the movable mold 61 and the fixed mold 62 that form the optical molded product 100 are formed by an integral mold portion of the molded product MP.
  • the optical element part 10 and the spindle part 20 which comprise the optical molded article 100 can be shape
  • the first and second reference bosses 23 and 24 and the reference surface R1 are provided on the support shaft portion 20 as positioning portions.
  • the first and second reference bosses 23 and 24 and the reference plane R1 which are positioning parts, regulate the position in the XY plane perpendicular to the optical axis OA and the regulation of the position in the Z direction parallel to the optical axis OA.
  • the three-axis tilt can be arranged with high accuracy. Thereby, even if the optical element portion 10 is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion 10 can be precisely measured. be able to.
  • the optical molded product of the second embodiment will be described with reference to FIGS. 5A and 5B.
  • the optical molded product or the like of the second embodiment is a modification of the optical molded product or the like of the first embodiment, and matters not specifically described are the same as those of the first embodiment.
  • the optical molded product 100 includes an optical element portion 10, a support shaft portion 20, a distal end side gate portion 30, and a root side gate portion 40.
  • the support shaft portion 20 includes a main body portion 21, a tapered portion 22, and a pair of reference bosses 523 and 524.
  • the main body portion 21 has a quadrangular prism shape, and includes first to fourth side surfaces 21a to 21d and an end surface 21g.
  • One reference boss 523 of the pair of reference bosses 523 and 524 is a quadrangular columnar member provided so as to extend in the ⁇ X direction from the third side surface 21c, and has a side surface 523a.
  • the other reference boss 524 is a quadrangular prism-shaped member provided so as to extend in the + X direction from the fourth side surface 21d, and has a side surface 524a.
  • the pair of reference bosses 523 and 524 are used for alignment when the optical molded product 100 is fixed to a support jig described later.
  • the surface region on the center side in the Y direction serves as a reference surface R1 for alignment when the optical molded product 100 is fixed to a support jig described later.
  • the reference surface R1 is formed on the surface layer portion 21s of the support shaft portion 20 on the first side surface 21a side.
  • a part of the surface region adjacent to the ⁇ Y direction of one reference boss 524 in the fourth side surface 21d is a reference surface R2 for alignment when the optical molded product 100 is fixed to a support jig described later. It has become.
  • the reference surface R2 is formed on the surface layer portion 21t on the fourth side surface 21d side of the support shaft portion 20.
  • the surface region on the ⁇ Y side is a reference surface R3 for alignment when the optical molded product 100 is fixed to a support jig described later.
  • the reference surface R3 is formed on the surface portion 21u on the ⁇ Y side of the pair of reference bosses 523 and 524.
  • the ⁇ Y side side surfaces 523a and 524a of the pair of reference bosses 523 and 524 are restricted in rotation around the Z axis parallel to the optical axis OA and the optical axis OA. It is possible to restrict the arrangement in the Y direction (second direction) perpendicular to the X direction (first direction) in the XY plane perpendicular to.
  • the reference surface (second reference surface) R1 of the surface layer portion 21s is a restriction of the arrangement of the optical element portion 10 in the Z direction parallel to the optical axis OA and the inclination of the optical element portion 10 with respect to the Z axis parallel to the optical axis OA. Enable regulation.
  • the reference surface (first reference surface) R2 of the surface layer portion 21t enables restriction of arrangement in the X direction (first direction) in the XY plane perpendicular to the optical axis OA.
  • the support method of the optical molded product 100 shown to FIG. 5A etc. is demonstrated.
  • the optical molded product 100 is supported in an aligned state on the support jig 200.
  • the support jig 200 includes a main body portion 39 that is a flat member, a first positioning protrusion 37, and a second positioning protrusion 38.
  • a through hole 31 is formed in the main body portion 39 to enable measurement of both optical surfaces OL1 and OL2 of the optical element portion 10.
  • the first and second positioning protrusions 37 and 38 are cylindrical members that protrude in the z direction above the upper surface 35 of the main body portion 39.
  • the first and second positioning projections 37 and 38 are brought into contact with the reference surface R3 of the pair of reference bosses 523 and 524 of the optical molded product 100, whereby the z-axis is parallel to the optical axis OA of the optical molded product 100. And the arrangement of the optical molded product 100 with respect to the y direction (second direction) in the xy plane perpendicular to the optical axis OA. The arrangement of the second positioning protrusion 38 is restricted with respect to the x direction (first direction) in the xy plane perpendicular to the optical axis OA of the optical molded product 100 by bringing the reference positioning surface R2 of the optical molded product 100 into contact therewith. To do.
  • the upper surface 35 of the main body portion 39 is brought into contact with the reference surface R1 of the optical molded product 100 to thereby arrange the z-direction parallel to the optical axis OA of the optical molded product 100 and the optical axis OA of the optical molded product 100.
  • the inclination with respect to the z-axis parallel to is regulated. That is, by setting the optical molded product 100 on the support jig 200, the optical molded product 100 can be shifted in three directions of x, y, and z, and the x, y, and z axes. The posture is adjusted with respect to the three-dimensional tilt around the three axes, and alignment on the support jig 200 of the optical molded product 100 is achieved.
  • the support shaft portion 20 is urged in the + z direction using the urging position U ⁇ b> 1 provided on the support shaft portion 20. Further, the biasing position U21 of the pair of reference bosses 523 and 524 extending from the support shaft portion 20 is biased in the ⁇ y direction, and the biasing position U23 of the reference boss 523 is biased in the + x direction.
  • the pair of reference bosses 523 and 524 provided in the optical molded product 100 can be projected when the optical molded product 100 which is a molded product is released.
  • the pair of reference bosses 523 and 524 (reference surface R3) and the reference surfaces R1 and R2 are provided on the support shaft portion 20 as positioning portions.
  • the reference bosses 523 and 524 and the reference planes R1 and R2 which are positioning portions enable restriction of the position in the XY plane perpendicular to the optical axis OA and restriction of the position in the Z direction parallel to the optical axis OA.
  • the rotation around the axis parallel to the optical axis OA and the inclination with respect to the axis that should be parallel to the optical axis OA can be restricted. It becomes possible to arrange with high accuracy with respect to tilt. Thereby, even if the optical element portion 10 is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion 10 can be precisely measured. be able to.
  • optical molded product or the like of the third embodiment is a modification of the optical molded product or the like of the first embodiment, and matters not specifically described are the same as those of the first embodiment.
  • the optical molded product 100 includes an optical element portion 10, a support shaft portion 20, a distal end side gate portion 30, and a root side gate portion 40.
  • the support shaft portion 20 is a columnar first reference portion 27 extending in the Y direction (second direction) parallel to the longitudinal direction of the support shaft portion 20, and is perpendicular to the optical axis OA of the optical element portion 10 and is second. And a cylindrical second reference portion 28 extending in the X direction (first direction) perpendicular to the direction.
  • the first reference portion 27 has a side surface 27a.
  • the second reference portion 28 has a side surface 28a.
  • the surface portions 27v and 28v are portions that come into contact with first and second positioning grooves 72 and 73 described later, and are semi-cylindrical surfaces.
  • the first and second reference portions 27 and 28 are used for alignment when the optical molded product 100 is fixed to a support jig described later.
  • the side surface portion of the surface portion 27v on the + Z side is parallel to the optical axis OA and the arrangement restriction in the X direction (first direction) in the XY plane perpendicular to the optical axis OA. It is possible to restrict the rotation around the Z axis, restrict the arrangement in the Z direction parallel to the optical axis OA, and restrict the inclination with respect to the Z axis parallel to the optical axis OA.
  • the side surface portion of the surface portion 28v on the + Z side is parallel to the optical axis OA and the arrangement restriction in the Y direction (second direction) in the XY plane perpendicular to the optical axis OA. It is possible to restrict the rotation around the Z axis, restrict the arrangement in the Z direction parallel to the optical axis OA, and restrict the inclination with respect to the Z axis parallel to the optical axis OA.
  • the support method of the optical molded product 100 shown to FIG. 6A etc. is demonstrated.
  • the optical molded product 100 is supported in an aligned state on the support jig 200.
  • the support jig 200 is a flat plate-like member, and includes a through hole 31, a first positioning groove 72, and a second positioning groove 73.
  • the first positioning groove 72 is a groove having a V-shaped cross section that linearly extends in the y direction along the upper surface 35 of the support jig 200.
  • the first positioning groove 72 is arranged in the x direction (first direction) in the xy plane perpendicular to the optical axis OA of the optical molded product 100 by guiding the first reference portion 27 of the optical molded product 100 to the first positioning groove 72.
  • the rotation about the z axis parallel to the optical axis OA, the arrangement in the z direction parallel to the optical axis OA, and the inclination with respect to the z axis parallel to the optical axis OA are restricted.
  • the second positioning groove 73 is a groove having a V-shaped cross section that linearly extends in the x direction along the upper surface 35 of the support jig 200.
  • the second positioning groove 73 guides the second reference portion 28 of the optical molded product 100 to the second positioning groove 73, thereby disposing the second positioning groove 73 in the y direction (second direction) in the xy plane perpendicular to the optical axis OA of the optical molded product 100.
  • the rotation about the z axis parallel to the optical axis OA, the arrangement in the z direction parallel to the optical axis OA, and the inclination with respect to the z axis parallel to the optical axis OA are restricted. That is, the first and second positioning grooves 72 and 73 cooperate in restricting the rotation around the z axis parallel to the optical axis OA and restricting the arrangement in the z direction parallel to the optical axis OA.
  • the first and second positioning grooves 72 and 73 also cooperate in restricting the inclination of the optical molded product 100 with respect to the z axis parallel to the optical axis OA.
  • the optical molded product 100 can have a three-dimensional shift in three directions of x, y, and z, and the x-axis, y-axis, and The posture is adjusted with respect to the three-dimensional tilt around the three axes of the z axis, and the alignment of the optical molded product 100 on the support jig 200 is achieved.
  • the support shaft portion 20 is urged in the + z direction using the urging positions U1 and U3 provided on the support shaft portion 20. .
  • the first reference portion 27 and the second reference portion 28 are provided on the support shaft portion 20 as positioning portions.
  • the first and second reference portions 27 and 28 which are positioning portions enable restriction of the position in the XY plane perpendicular to the optical axis OA and restriction of the position in the Z direction parallel to the optical axis OA. Since it is possible to restrict the rotation around an axis parallel to the optical axis OA and to restrict the inclination with respect to the axis that should be parallel to the optical axis OA, the optical element portion 10 is related to a three-dimensional shift and a three-axis tilt. It becomes possible to arrange with high accuracy. Thereby, even if the optical element portion 10 is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion 10 can be precisely measured. be able to.
  • optical molded product of the fourth embodiment With reference to FIG. 7, the optical molded product of the fourth embodiment will be described.
  • the optical molded product or the like of the fourth embodiment is a modification of the optical molded product or the like of the first embodiment, and matters not specifically described are the same as those of the first embodiment.
  • the optical molded product 100 includes four optical element portions 10, a support shaft portion 20, a tip side gate portion 30, and a root side gate portion 40.
  • the four optical element portions 10 have the same shape and are supported by a branch portion 80 extending from the distal end side gate portion 30. That is, the branch part 80 has a shape that branches into four on the tip side.
  • a branch portion 80 that branches off from the distal end side gate portion 30 is provided, and the optical element portion 10 is formed at each distal end of the branch portion 80, whereby a plurality of optical element portions 10 are collectively collected. Can be formed and measured.
  • the measurement using the positioning portions (the first and second reference bosses 23 and 24 and the reference surface R ⁇ b> 1) provided on the support shaft portion 20. Becomes more effective.
  • the present invention has been described according to the embodiment.
  • the present invention is not limited to the above embodiment, and for example, the following modifications are possible. That is, the reference bosses 23 and 24 that are positioning portions provided on the support shaft portion 20 are convex portions, but the positioning portion is a concave portion and a convex portion is provided on the support jig 200 for alignment. You can also
  • the second reference boss 24 among the reference bosses 23 and 24 which are positioning portions is not limited to a circular cross-section cylinder, but may be a quadrangular prism having a quadrangular cross section.
  • the reference bosses 523 and 524 serving as positioning portions are not limited to quadrangular columns with a quadrangular cross section but may be circular cylinders with a circular cross section.
  • the first and second reference portions 27 and 28 that are positioning portions are not limited to a columnar shape, and are appropriately changed such that the surfaces other than the semi-cylindrical side surfaces 27a and 28a are made flat. You can also.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

Provided are: an optical molded article which makes it possible to appropriately position an optical function unit in relation to a measurement device, and is capable of ensuring moldability and removal of a position-determining member, even when an optical element is compact; and a method for measuring the same. First and second references bosses (23, 24) and a reference surface (R1) are provided as position-determining parts on a support-shaft part (20). The first and second references bosses (23, 24) and the reference surface (R1), which are the position-determining parts, make it possible to control a position within an xy-plane perpendicular to an optical axis (OA), and control a position in the z-direction parallel to the optical axis (OA), and make it possible to restrict the rotation around an axis parallel to the optical axis (OA), and restrict a slope in relation to an axis which should be parallel to the optical axis (OA); hence, it is possible to position an optical-element component (10), in terms of three-dimensional shift and triaxial tilt, with a high degree of accuracy. As a result, even if the optical-element component (10) is compact, it is possible to position the optical-element component (10) in the correct position inside a measurement device by accurately determining the position therefor, and it is possible to accurately measure the optical surface, etc., of the optical-element component (10).

Description

光学成形品及びその測定方法Optical molded product and measuring method thereof
 本発明は、測定対象とされる微小な光学素子部分を含む光学成形品及びその測定方法に関する。 The present invention relates to an optical molded article including a minute optical element portion to be measured and a measuring method thereof.
 光学素子を含む光学成形品として、測定対象面を有する本体部分の両端に一対のつきあて部分を設けたものがあり、これら一対のつきあて部分を利用することによって光学成形品を測定治具にアライメントして固定している(特許文献1参照)。 As an optical molded product including an optical element, there is one in which a pair of contact portions are provided at both ends of a main body portion having a measurement target surface, and the optical molded product is used as a measurement jig by using the pair of contact portions. It is aligned and fixed (see Patent Document 1).
 別の光学成形品として、光学機能部と、横断面の大きな支軸部と、これらの間に設けられる横断面の小さな架橋部とを備えるものが存在する(特許文献2参照)。この光学成形品において、比較的大きな支軸部は、光学機能部を間接的に保持して搬送等するためのものであり、収納カートリッジと組み合わせた後に切断される。 As another optical molded product, there is one having an optical function part, a support shaft part having a large cross section, and a bridging part having a small cross section provided therebetween (see Patent Document 2). In this optical molded product, the relatively large support shaft portion is for indirectly holding and transporting the optical function portion, and is cut after being combined with the storage cartridge.
 しかしながら、前者の特許文献1の光学成形品では、光学素子から直接延びるようにつきあて部分を設けているので、特に光学素子が小型化すると、測定後につきあて部分を除去することが容易でなくなり、光学素子に近く小さいことから、つきあて部分の成形性を確保することも容易でなくなる。 However, in the former optical molded article of Patent Document 1, since a contact portion is provided so as to extend directly from the optical element, it is not easy to remove the contact portion after measurement, especially when the optical element is downsized. Since it is close to the optical element, it is not easy to ensure the moldability of the contact portion.
 後者の特許文献2の光学成形品のように、光学機能部から離れた支軸部に位置決め機能を持たせることは、小型化の光学素子の取り扱いを容易にする観点で有効である。ここで、上記の支軸部は、位置決めを可能にするが、光学機能部と支軸部との配置関係が高精度となるように作り込まれていない。そのため、光学機能部が小さくなると、光学機能部の測定に際して例えば探針型の測定子を光学面の有効部分に適切に配置することが容易でなくなり、光学面の測定が不可能になる場合も生じる。 As in the optical molded product of the latter patent document 2, it is effective in terms of facilitating the handling of a miniaturized optical element to provide a positioning function to the support shaft part away from the optical function part. Here, although the above-mentioned support shaft portion enables positioning, it is not built in such a manner that the positional relationship between the optical function portion and the support shaft portion is highly accurate. For this reason, when the optical function unit becomes small, it is not easy to appropriately arrange, for example, a probe-type probe on the effective portion of the optical surface when measuring the optical function unit, and it may be impossible to measure the optical surface. Arise.
特開2003-194535号公報JP 2003-194535 A 特開2003-161880号公報JP 2003-161880 A
 本発明は、上記背景に鑑みてなされたものであり、光学素子が小型化しても、位置決め用の部材の除去や成形性を確保でき、測定装置に対して光学機能部を適切に配置することを可能にする光学成形品及びその測定方法を提供することを目的とする。 The present invention has been made in view of the above-described background, and even if the optical element is downsized, the removal of the positioning member and the moldability can be ensured, and the optical function unit is appropriately disposed with respect to the measuring apparatus. It is an object of the present invention to provide an optical molded product and a measuring method thereof.
 上記目的を達成するため、本発明に係る光学成形品は、光学的な機能を有する光学素子部分と、支軸部と、光学素子部分及び支軸部間に配置される先端側ゲート部とを備える光学成形品であって、支軸部は、光学素子部分の3次元的な配置及び回転姿勢を規制するための位置決め部を有し、位置決め部は、光学素子部分の光軸に垂直な面内の配置の規制と光軸に平行な方向の配置の規制とを可能にするとともに、光軸に平行な軸の周りの回転の規制と光軸に平行となるべき軸に対する傾斜の規制とを可能にする。 In order to achieve the above object, an optical molded product according to the present invention includes an optical element portion having an optical function, a support shaft portion, and a tip side gate portion disposed between the optical element portion and the support shaft portion. The supporting shaft portion has a positioning portion for restricting the three-dimensional arrangement and rotation posture of the optical element portion, and the positioning portion is a surface perpendicular to the optical axis of the optical element portion. It is possible to regulate the arrangement in the direction parallel to the optical axis and to regulate the rotation around the axis parallel to the optical axis and the inclination to the axis that should be parallel to the optical axis. enable.
 上記光学成形品によれば、支軸部に設けた位置決め部が、光軸に垂直な面内の位置の規制と光軸に平行な方向の位置の規制とを可能にするとともに、光軸に平行な軸の周りの回転の規制と光軸に平行となるべき軸に対する傾斜の規制とを可能にするので、光学素子部分を3次元のシフトや3軸のチルトに関して高精度に配置できるようになる。これにより、光学素子部分が小型であってもこれを計測装置内の適正な位置に精密に位置決めして配置することができ、光学素子部分の光学面等の計測を精密なものとすることができる。 According to the above optical molded product, the positioning portion provided on the support shaft portion enables the restriction of the position in the plane perpendicular to the optical axis and the restriction of the position in the direction parallel to the optical axis. Since it is possible to restrict the rotation around the parallel axis and to restrict the inclination with respect to the axis that should be parallel to the optical axis, the optical element portion can be arranged with high accuracy with respect to three-dimensional shift and three-axis tilt. Become. As a result, even if the optical element portion is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion can be precisely measured. it can.
 本発明の具体的な側面では、上記光学成形品において、位置決め部が、支軸部の周囲に突起する凸状又は凹状の部分を含む。この場合、3次元のシフト状態や3軸のチルト状態を調整しやすくなる。また、凸状又は凹状の部分の形状を適宜調整することで、光学成形品を計測装置に取り付ける際に支軸部を測定治具の形状に合わせやすくなり、固定や位置決めの作業性を高めることができる。 In a specific aspect of the present invention, in the optical molded product, the positioning portion includes a convex or concave portion protruding around the support shaft portion. In this case, it becomes easy to adjust the three-dimensional shift state and the three-axis tilt state. In addition, by adjusting the shape of the convex or concave part as appropriate, it becomes easier to match the support shaft to the shape of the measurement jig when attaching an optical molded product to the measurement device, thereby improving the workability of fixing and positioning. Can do.
 また、本発明の別の側面では、位置決め部は、光学素子部分の光軸に垂直な面内における配置の規制を可能にする第1基準ボスと、光軸に平行な軸の周りの回転の規制を可能にする第2基準ボスと、光軸に平行な方向の配置の規制と光軸に平行となるべき軸に対する傾斜の規制とを可能にする基準面とを備える。この場合、凸状又は凹状の部分である第1基準ボスと第2基準ボスと基準面とによって、シフト及びチルトに関して高精度の配置が可能になる。 In another aspect of the present invention, the positioning unit includes a first reference boss that enables the arrangement of the optical element portion in a plane perpendicular to the optical axis and a rotation around an axis parallel to the optical axis. A second reference boss that enables restriction; and a reference surface that enables restriction of arrangement in a direction parallel to the optical axis and restriction of inclination with respect to an axis that should be parallel to the optical axis. In this case, the first reference boss, the second reference boss, and the reference surface, which are convex or concave portions, can be arranged with high precision with respect to shift and tilt.
 本発明のさらに別の側面では、基準面は、第1基準ボスと第2基準ボスとの間であって支軸部の本体の周囲に形成されている。この場合、第1基準ボスと第2基準ボスとの距離が離れるので、位置決めの精度が向上する。 In yet another aspect of the present invention, the reference surface is formed between the first reference boss and the second reference boss and around the main body of the support shaft portion. In this case, since the distance between the first reference boss and the second reference boss is increased, the positioning accuracy is improved.
 本発明のさらに別の側面では、位置決め部は、支軸部の本体の長手方向及び光学素子部分の光軸に垂直な第1方向に延びて、光軸に垂直な面内の第1方向に垂直な第2方向における配置の規制と、光軸に平行な軸の周りの回転の規制とを可能にする一対の基準ボスと、光軸に垂直な面内の第1方向における配置の規制を可能にする第1基準面と、光軸に平行な方向の配置の規制と光軸に平行となるべき軸に対する傾斜の規制とを可能にする第2基準面とを備える。この場合、凸状又は凹状の部分である一対の基準ボスと第1基準面と第2基準面とによって、シフト及びチルトに関して高精度の配置が可能になる。 In yet another aspect of the present invention, the positioning portion extends in a first direction perpendicular to the longitudinal direction of the main body of the support shaft portion and the optical axis of the optical element portion, and extends in a first direction in a plane perpendicular to the optical axis. A pair of reference bosses that enable restriction of arrangement in the second direction perpendicular to the optical axis and restriction of rotation around an axis parallel to the optical axis, and restriction of arrangement in the first direction in a plane perpendicular to the optical axis A first reference surface that enables the second reference surface; and a second reference surface that enables the restriction of the arrangement in a direction parallel to the optical axis and the restriction of the inclination with respect to the axis to be parallel to the optical axis. In this case, the pair of reference bosses that are convex or concave portions, the first reference surface, and the second reference surface enable highly accurate arrangement with respect to shift and tilt.
 本発明のさらに別の側面では、第1及び第2基準面は、一対の基準ボスの間であって支軸部の本体の周囲に形成されている。 In still another aspect of the present invention, the first and second reference surfaces are formed between the pair of reference bosses and around the main body of the support shaft portion.
 本発明のさらに別の側面では、基準ボスは、突起する方向に関して円形又は四角形の断面を有する。 In yet another aspect of the present invention, the reference boss has a circular or square cross section with respect to the protruding direction.
 本発明のさらに別の側面では、基準ボスは、突起する方向に関して光学素子部分の外径よりも断面が大きなものである。 In yet another aspect of the present invention, the reference boss has a cross section larger than the outer diameter of the optical element portion in the protruding direction.
 本発明のさらに別の側面では、基準ボスは、支軸部の突き出しに用いられる。この場合、基準ボスを利用して突き出しを行うことで、製品の突き出しがより確実になる。 In yet another aspect of the present invention, the reference boss is used for projecting the support shaft portion. In this case, the product is more reliably projected by using the reference boss.
 本発明のさらに別の側面では、位置決め部は、支軸部の本体の長手方向に平行な第2方向に延びて、光軸に垂直な面内の第2方向に垂直な第1方向における配置の規制と、光軸に平行な軸の周りの回転の規制と、光軸に平行な方向の配置の規制と、光軸に平行となるべき軸に対する傾斜の規制とを可能にする第1基準部と、光学素子部分の光軸に垂直であって第2方向に垂直な第1方向に延びて、光軸に垂直な面内の第2方向における配置の規制と、光軸に平行な軸の周りの回転の規制と、光軸に平行な方向の配置の規制と、光軸に平行となるべき軸に対する傾斜の規制とを可能にする第2基準部とを備える。この場合、凸状又は凹状の部分である第1基準部と第2基準部とによって、シフト及びチルトに関して高精度の配置が可能になる。 In still another aspect of the invention, the positioning portion extends in a second direction parallel to the longitudinal direction of the main body of the support shaft portion, and is disposed in the first direction perpendicular to the second direction in a plane perpendicular to the optical axis. A first reference that enables regulation of rotation, regulation of rotation around an axis parallel to the optical axis, regulation of arrangement in a direction parallel to the optical axis, and regulation of inclination with respect to an axis that should be parallel to the optical axis A portion extending in a first direction that is perpendicular to the optical axis of the optical element portion and perpendicular to the second direction, and is arranged in a second direction in a plane perpendicular to the optical axis, and an axis parallel to the optical axis And a second reference portion that enables regulation of arrangement in a direction parallel to the optical axis and regulation of inclination with respect to an axis that should be parallel to the optical axis. In this case, the first reference portion and the second reference portion, which are convex or concave portions, can be arranged with high accuracy with respect to shift and tilt.
 本発明のさらに別の側面では、光学素子部分の外径は、2mm以下である。この場合、光学素子部分が比較的小型になり、光学面測定等に際して、支軸部を利用した位置決めが有効になる。 In still another aspect of the present invention, the outer diameter of the optical element portion is 2 mm or less. In this case, the optical element portion becomes relatively small, and positioning using the support shaft portion is effective for optical surface measurement and the like.
 本発明のさらに別の側面では、先端側ゲート部は、光学素子部分と支軸部との境界部において、R形状によって滑らかに接続されている。この場合、先端側ゲート部での折れ曲がりを防止でき、成形後における光学素子部分の離型を良好なものとできる。 In yet another aspect of the present invention, the distal end side gate portion is smoothly connected by an R shape at the boundary between the optical element portion and the support shaft portion. In this case, bending at the distal end side gate portion can be prevented, and release of the optical element portion after molding can be improved.
 本発明のさらに別の側面では、第1基準ボスと光学素子部分との光学素子部分の光軸に垂直な方向に関する距離をL1とし、第1基準ボスと当該第1基準ボスよりも光学素子部分から離れた第2基準ボスとの光軸に垂直な方向に関する距離をL2としたときに、L1/L2<1である。この場合、光学素子部分の設置精度の確保が容易になる。 In still another aspect of the present invention, the distance between the first reference boss and the optical element portion in the direction perpendicular to the optical axis of the optical element portion is L1, and the optical element portion is closer than the first reference boss and the first reference boss. L1 / L2 <1 where L2 is a distance in a direction perpendicular to the optical axis with the second reference boss away from the first reference boss. In this case, it becomes easy to ensure the installation accuracy of the optical element portion.
 本発明のさらに別の側面では、第1及び第2基準ボスの光学素子部分の光軸に平行な方向に関する厚みをt1とし、支軸部の光軸に平行な方向に関する厚みをt2としたときに、t1/t2<1である。この場合、第1及び第2基準ボスの突起が比較的少なくなり、樹脂の流動性を高めることができる。 In still another aspect of the present invention, when the thickness of the optical element portion of the first and second reference bosses in the direction parallel to the optical axis is t1, and the thickness of the support shaft portion in the direction parallel to the optical axis is t2. In addition, t1 / t2 <1. In this case, the protrusions of the first and second reference bosses are relatively small, and the fluidity of the resin can be improved.
 本発明のさらに別の側面では、支軸部のうち先端側ゲート部の反対側に根元側ゲート部が連結されている。この場合、基準ボス等を含む位置決め部を高精度で転写することができる。 In yet another aspect of the present invention, the root side gate portion is connected to the opposite side of the tip side gate portion of the support shaft portion. In this case, the positioning part including the reference boss and the like can be transferred with high accuracy.
 本発明のさらに別の側面では、先端側ゲート部は、分岐して延び、先端側に複数の光学素子部分を有する。この場合、複数の光学素子部分を一括測定することができる。複数の光学素子部分の一括測定では、位置決め精度に関する要求がより厳しくなるため、支軸部に設けた位置決め部を利用する測定がより有効になる。 In still another aspect of the present invention, the distal end side gate portion extends in a branched manner and has a plurality of optical element portions on the distal end side. In this case, a plurality of optical element portions can be collectively measured. In collective measurement of a plurality of optical element portions, the requirements regarding positioning accuracy become more severe, and therefore, measurement using a positioning portion provided on the support shaft portion becomes more effective.
 本発明に係る光学成形品の測定方法は、光学的な機能を有する光学素子部分を先端側ゲート部を介して支持する支軸部を有するとともに、当該支軸部に光学素子部分の3次元的な配置及び回転姿勢を規制するための位置決め部を予め設けた光学成形品を準備する工程と、支持治具上に位置決め部を固定することによって、光学素子部分の光軸に垂直な面内の配置の規制と光軸に平行な方向の配置の規制とを行うとともに、光軸に平行な軸の周りの回転の規制と光軸に平行となるべき軸に対する傾斜の規制とを行う工程と、支持治具をステージにセットすることによって光学成形品の特性に関する測定を行う工程とを備える。 The method for measuring an optical molded product according to the present invention includes a support shaft portion that supports an optical element portion having an optical function via a tip-side gate portion, and a three-dimensional view of the optical element portion on the support shaft portion. A step of preparing an optical molded product provided with a positioning portion for restricting the proper arrangement and rotation posture in advance, and fixing the positioning portion on a support jig, in a plane perpendicular to the optical axis of the optical element portion A process of regulating the arrangement and regulating the arrangement in a direction parallel to the optical axis, and regulating the rotation around an axis parallel to the optical axis and regulating the inclination with respect to the axis to be parallel to the optical axis; And a step of measuring the characteristics of the optical molded product by setting the support jig on the stage.
 上記測定方法によれば、光学素子部分を間接的に支持する支軸部に位置決め部を予め設けた光学成形品を準備するので、支持治具上に位置決め部を固定することによって、光学素子部分の光軸に垂直な面内の位置の規制と光軸に平行な方向の位置の規制とを行うとともに、光軸に平行な軸の周りの回転の規制と光軸に平行となるべき軸に対する傾斜の規制とを行うことができる。これにより、光学素子部分が小型であってもこれを計測装置内の適正な位置に精密に位置決めして配置することができ、光学素子部分の光学面等の計測を精密なものとすることができる。 According to the above measuring method, since an optical molded product in which a positioning portion is provided in advance on the support shaft portion that indirectly supports the optical element portion is prepared, the optical element portion is fixed by fixing the positioning portion on the support jig. In addition to restricting the position in the plane perpendicular to the optical axis and restricting the position in the direction parallel to the optical axis, restricting the rotation around the axis parallel to the optical axis and the axis to be parallel to the optical axis Tilt regulation can be performed. As a result, even if the optical element portion is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion can be precisely measured. it can.
 本発明の具体的な側面では、上記測定方法において、支持治具上に位置決め部を固定する際に、第1基準ボスを支持治具に当接させることによって、光学素子部分の光軸に垂直な面内における配置を規制し、第2基準ボスを支持治具に当接させることによって、光軸に平行な軸の周りの回転を規制し、基準面を支持治具に当接させることによって、光軸に平行な方向の配置と光軸に平行となるべき軸に対する傾斜とを規制する。 In a specific aspect of the present invention, in the above measurement method, when the positioning portion is fixed on the support jig, the first reference boss is brought into contact with the support jig, thereby being perpendicular to the optical axis of the optical element portion. By restricting the arrangement in a plane and bringing the second reference boss into contact with the support jig, by restricting rotation around an axis parallel to the optical axis and bringing the reference plane into contact with the support jig The arrangement in the direction parallel to the optical axis and the inclination with respect to the axis to be parallel to the optical axis are restricted.
 本発明の別の側面では、支持治具上に位置決め部を固定する際に、支軸部の本体の長手方向及び光学素子部分の光軸に垂直な第1方向に延びる一対の基準ボスを支持治具に当接させることによって、光軸に垂直な面内の第1方向に垂直な第2方向における配置と、光軸に平行な軸の周りの回転とを規制し、第1基準面を支持治具に当接させることによって、光軸に垂直な面内の第1方向における配置を規制し、第2基準面を支持治具に当接させることによって、光軸に平行な方向の配置と光軸に平行となるべき軸に対する傾斜とを規制する。 In another aspect of the present invention, when fixing the positioning portion on the support jig, a pair of reference bosses extending in the first direction perpendicular to the longitudinal direction of the main body of the support shaft portion and the optical axis of the optical element portion are supported. By making contact with the jig, the arrangement in the second direction perpendicular to the first direction in the plane perpendicular to the optical axis and the rotation around the axis parallel to the optical axis are restricted, and the first reference plane is Arrangement in a direction parallel to the optical axis by restricting the arrangement in the first direction in the plane perpendicular to the optical axis by abutting on the support jig and bringing the second reference plane in contact with the support jig And inclination with respect to an axis that should be parallel to the optical axis.
 本発明のさらに別の側面では、支持治具上に位置決め部を固定する際に、支軸部の本体の長手方向に平行な第2方向に延びる第1基準部を支持治具に当接させることによって、光軸に垂直な面内の第2方向に垂直な第1方向における配置と、光軸に平行な軸の周りの回転と、光軸に平行な方向の配置と、光軸に平行となるべき軸に対する傾斜とを規制し、光学素子部分の光軸に垂直であって第2方向に垂直な第1方向に延びる第2基準部を支持治具に当接させることによって、光軸に垂直な面内の第2方向における配置と、光軸に平行な軸の周りの回転と、光軸に平行な方向の配置と、光軸に平行となるべき軸に対する傾斜とを規制する。 In yet another aspect of the present invention, when the positioning portion is fixed on the support jig, the first reference portion extending in the second direction parallel to the longitudinal direction of the main body of the support shaft portion is brought into contact with the support jig. Accordingly, the arrangement in the first direction perpendicular to the second direction in the plane perpendicular to the optical axis, the rotation around the axis parallel to the optical axis, the arrangement in the direction parallel to the optical axis, and the parallel to the optical axis. The optical axis is controlled by restricting the inclination with respect to the axis to be, and bringing the second reference portion perpendicular to the optical axis of the optical element portion and extending in the first direction perpendicular to the second direction into contact with the support jig. The arrangement in the second direction in the plane perpendicular to the optical axis, the rotation around the axis parallel to the optical axis, the arrangement in the direction parallel to the optical axis, and the inclination with respect to the axis to be parallel to the optical axis are restricted.
図1Aは、第1実施形態の光学成形品の平面図であり、図1Bは、図1Aの光学成形品の側面図である。図1Cは、第1実施形態の光学成形品を支持治具にセットした状態を説明する平面図であり、図1Dは、光学成形品を支持治具にセットした状態を説明する側方断面図である。FIG. 1A is a plan view of the optical molded product of the first embodiment, and FIG. 1B is a side view of the optical molded product of FIG. 1A. 1C is a plan view illustrating a state where the optical molded product according to the first embodiment is set on a support jig, and FIG. 1D is a side cross-sectional view illustrating a state where the optical molded product is set on a support jig. It is. 光学成形品をセットした支持治具を測定用のステージ上に固定した状態を説明する図である。It is a figure explaining the state which fixed the support jig | tool which set the optical molded article on the stage for a measurement. 測定段階を説明する概念図である。It is a conceptual diagram explaining a measurement step. 図4A及び4Bは、光学成形品の射出成形を説明する断面図である。4A and 4B are cross-sectional views illustrating injection molding of an optical molded product. 図5Aは、第2実施形態の光学成形品の平面図であり、図5Bは、図5Aの光学成形品の側面図である。図5Cは、第2実施形態の光学成形品を支持治具にセットした状態を説明する平面図であり、図5Dは、光学成形品を支持治具にセットした状態を説明する側方断面図である。FIG. 5A is a plan view of the optical molded product of the second embodiment, and FIG. 5B is a side view of the optical molded product of FIG. 5A. FIG. 5C is a plan view illustrating a state where the optical molded product according to the second embodiment is set on a support jig, and FIG. 5D is a side cross-sectional view illustrating a state where the optical molded product is set on a support jig. It is. 図6Aは、第3実施形態の光学成形品の平面図であり、図6Bは、図6Aの光学成形品の側面図である。図6Cは、第3実施形態の光学成形品を支持治具にセットした状態を説明する平面図であり、図6Dは、光学成形品を支持治具にセットした状態を説明する側方断面図である。FIG. 6A is a plan view of the optical molded product of the third embodiment, and FIG. 6B is a side view of the optical molded product of FIG. 6A. FIG. 6C is a plan view illustrating a state where the optical molded product of the third embodiment is set on a support jig, and FIG. 6D is a side cross-sectional view illustrating a state where the optical molded product is set on a support jig. It is. 第4実施形態の光学成形品を説明する平面図である。It is a top view explaining the optical molded product of 4th Embodiment.
〔第1実施形態〕
 図1A及び1Bを参照しつつ、本発明に係る第1実施形態の光学成形品について説明する。
[First Embodiment]
The optical molded product according to the first embodiment of the present invention will be described with reference to FIGS. 1A and 1B.
 図示の光学成形品100は、樹脂製の一体成形品であり、光学素子部分10と、支軸部20と、先端側ゲート部30と、根元側ゲート部40とを備える。 The illustrated optical molded product 100 is an integrally molded product made of resin, and includes an optical element portion 10, a support shaft portion 20, a distal end side gate portion 30, and a root side gate portion 40.
 光学素子部分10は、樹脂製の小型レンズであり、例えば光ピックアップ装置の対物レンズ(具体的には、BD(Blu-ray Disc(商標))専用レンズ)や内視鏡用のレンズとして用いられる。光学素子部分10は、最終的に先端側ゲート部30を切断等によって除去することにより、支軸部20から分離されて独立した製品となる。 The optical element portion 10 is a resin-made small lens, and is used as, for example, an objective lens (specifically, a BD (Blu-ray Disc ™)) lens or an endoscope lens of an optical pickup device. . The optical element portion 10 is finally separated from the support shaft portion 20 by removing the distal end side gate portion 30 by cutting or the like, and becomes an independent product.
 光学素子部分10は、光学的機能を有する光学部OLと、光学部OLから外径方向に延在する環状の外周部FLとを有する。光学素子部分10のうち、光学部OLは、凸の第1光学面OL1と、凸の第2光学面OL2とを有する。すなわち、光学部OLは、中心側で肉厚となっている。光学素子部分10の外径は、例えば2mm以下であり、極めて小さくなっている。 The optical element part 10 has an optical part OL having an optical function and an annular outer peripheral part FL extending from the optical part OL in the outer diameter direction. Of the optical element portion 10, the optical part OL has a convex first optical surface OL1 and a convex second optical surface OL2. That is, the optical part OL is thick on the center side. The outer diameter of the optical element portion 10 is, for example, 2 mm or less and is extremely small.
 支軸部20は、ブロック状の部分であり、光学素子部分10に比較して大きな体積(具体的には例えば10倍~100倍程度以上の体積)を有するものとなっている。支軸部20は、本体部分21と、テーパー部22と、第1基準ボス23と、第2基準ボス24とを備える。これらのうち本体部分21は、四角柱状であり、第1~第4側面21a~21dと、端面21gとを有する。第1側面21aは、光学素子部分10の第2光学面OL2側に配置され、光学素子部分10の光軸OAに垂直に延びている。第2側面21bは、光学素子部分10の第1光学面OL1側に配置され、光軸OAに垂直に延びている。第3及び第4側面21c,21dは、光軸OAに平行に延びている。テーパー部22は、軸AXに垂直な断面が徐々に減少する截頭錐体状の部分であり、先端において先端側ゲート部30に連結されている。第1基準ボス23は、第1側面21a上であって先端側に立設された円柱であり、円筒側面23aと頂面23bとを有する。第2基準ボス24は、第1側面21a上であって光学素子部分10から離れた根元側に立設された円柱であり、円筒側面24aと頂面24bとを有する。第1基準ボス23と第2基準ボス24とは、光学成形品100を後述する支持治具(図2参照)に固定する際にアライメントのために用いられる。なお、第1側面21aのうち、第1基準ボス23と第2基準ボス24とに挟まれた表面領域は、光学成形品100を上記支持治具に固定する際のアライメントのための基準面R1となっている。この基準面R1は、支軸部20の第1側面21a側の表層部分21sに形成されている。 The support shaft portion 20 is a block-shaped portion, and has a larger volume than the optical element portion 10 (specifically, for example, a volume of about 10 to 100 times or more). The support shaft portion 20 includes a main body portion 21, a tapered portion 22, a first reference boss 23, and a second reference boss 24. Of these, the main body portion 21 has a quadrangular prism shape, and includes first to fourth side surfaces 21a to 21d and an end surface 21g. The first side surface 21 a is disposed on the second optical surface OL2 side of the optical element portion 10 and extends perpendicular to the optical axis OA of the optical element portion 10. The second side surface 21b is disposed on the first optical surface OL1 side of the optical element portion 10, and extends perpendicular to the optical axis OA. The third and fourth side surfaces 21c and 21d extend in parallel to the optical axis OA. The tapered portion 22 is a truncated cone-shaped portion in which the cross section perpendicular to the axis AX gradually decreases, and is connected to the distal end side gate portion 30 at the distal end. The first reference boss 23 is a column standing on the tip side on the first side surface 21a and has a cylindrical side surface 23a and a top surface 23b. The second reference boss 24 is a column that is erected on the first side surface 21a and on the base side away from the optical element portion 10, and has a cylindrical side surface 24a and a top surface 24b. The first reference boss 23 and the second reference boss 24 are used for alignment when the optical molded product 100 is fixed to a support jig (see FIG. 2) described later. Of the first side surface 21a, the surface region sandwiched between the first reference boss 23 and the second reference boss 24 is a reference surface R1 for alignment when the optical molded product 100 is fixed to the support jig. It has become. The reference surface R1 is formed on the surface layer portion 21s of the support shaft portion 20 on the first side surface 21a side.
 第1基準ボス23の円筒側面23aは、光学素子部分10の光軸OAに垂直なXY面内において光学素子部分10の配置の規制を可能にする。第2基準ボス24の円筒側面24aは、光軸OAの周りにおいて光学素子部分10の回転の規制を可能にする。表層部分21sの基準面R1は、光軸OAに平行なZ方向における光学素子部分10の配置の規制と、光軸OAに平行なZ軸に対する光学素子部分10の傾斜の規制とを可能にする。 The cylindrical side surface 23a of the first reference boss 23 makes it possible to restrict the arrangement of the optical element portion 10 in the XY plane perpendicular to the optical axis OA of the optical element portion 10. The cylindrical side surface 24a of the second reference boss 24 allows the rotation of the optical element portion 10 to be restricted around the optical axis OA. The reference surface R1 of the surface layer portion 21s enables restriction of the arrangement of the optical element portion 10 in the Z direction parallel to the optical axis OA and restriction of the inclination of the optical element portion 10 with respect to the Z axis parallel to the optical axis OA. .
 以上において、第1基準ボス23と光学素子部分10との光軸OAに垂直なY方向に関する距離をL1とし、第1基準ボス23と当該第1基準ボス23よりも光学素子部分10から離れた第2基準ボス24との光軸OAに垂直なY方向に関する距離をL2としたときに、L1/L2<1となっている。つまり、第1基準ボス23と第2基準ボス24との間隔は比較的広くなっている。これにより、光学素子部分10の設置精度の確保が容易になる。また、第1及び第2基準ボス23,24の光学素子部分10の光軸OAに平行なZ方向に関する厚みをt1とし、支軸部20の光軸OAに平行なZ方向に関する厚みをt2としたときに、t1/t2<1となっている。これにより、第1及び第2基準ボス23,24の突起が比較的少なくなり、樹脂の流動性を高めることができ、第1及び第2基準ボス23,24の突き出しも容易になる。 In the above, the distance between the first reference boss 23 and the optical element portion 10 in the Y direction perpendicular to the optical axis OA is L1, and the first reference boss 23 and the first reference boss 23 are further away from the optical element portion 10. When the distance in the Y direction perpendicular to the optical axis OA with the second reference boss 24 is L2, L1 / L2 <1. That is, the distance between the first reference boss 23 and the second reference boss 24 is relatively wide. Thereby, it becomes easy to ensure the installation accuracy of the optical element portion 10. Further, the thickness of the first and second reference bosses 23, 24 in the Z direction parallel to the optical axis OA of the optical element portion 10 is t1, and the thickness of the support shaft portion 20 in the Z direction parallel to the optical axis OA is t2. In this case, t1 / t2 <1. Thereby, the protrusions of the first and second reference bosses 23 and 24 are relatively small, the resin fluidity can be improved, and the first and second reference bosses 23 and 24 can be easily protruded.
 その他、第1基準ボス23や第2基準ボス24の光軸OAに垂直な断面の直径は、光学素子部分10の直径よりも十分に大きくなっている。これにより、基準ボス23,24になるべきキャビティへの樹脂の流入を滑らかで確実なものとできる。 In addition, the diameter of the cross section perpendicular to the optical axis OA of the first reference boss 23 and the second reference boss 24 is sufficiently larger than the diameter of the optical element portion 10. Thereby, the inflow of the resin to the cavity to be the reference bosses 23 and 24 can be made smooth and reliable.
 先端側ゲート部30は、光学素子部分10と支軸部20とを連結するネック状の部分であり、4側面を有する直方体となっている。先端側ゲート部30は、射出成形に際して光学素子部分10に対応する成形空間に樹脂を導くための入口となっている。なお、拡大図に示すように、先端側ゲート部30は、光学素子部分10との境界領域A1において、R形状によって滑らかに接続されており、支軸部20との境界領域A2において、R形状によって滑らかに接続されている。 The front end side gate portion 30 is a neck-shaped portion that connects the optical element portion 10 and the support shaft portion 20, and is a rectangular parallelepiped having four side surfaces. The distal end side gate portion 30 serves as an inlet for guiding the resin to a molding space corresponding to the optical element portion 10 during injection molding. As shown in the enlarged view, the distal end side gate portion 30 is smoothly connected by the R shape in the boundary region A1 with the optical element portion 10, and the R shape in the boundary region A2 with the support shaft portion 20. Is connected smoothly.
 根元側ゲート部40は、支軸部20の根元側、すなわち先端側ゲート部30の反対側に形成されている。根元側ゲート部40は、直方体又は円柱となっている。先端側ゲート部30は、射出成形に際して支軸部20等に対応する樹脂溜まりのような成形空間に樹脂を導くための入口となっている。なお、根元側ゲート部40は、当初、支軸部20の反対側において溶融樹脂の流路に相当する部分として形成されたランナー部RPに接続されているが、その後の切削等によってランナー部RPから分離されており、根元側ゲート部40から先端側の光学素子部分10にかけてが一体的な光学成形品100となる。 The root side gate portion 40 is formed on the root side of the support shaft portion 20, that is, on the opposite side of the tip side gate portion 30. The root side gate part 40 is a rectangular parallelepiped or a cylinder. The distal end side gate portion 30 serves as an inlet for guiding the resin to a molding space such as a resin reservoir corresponding to the support shaft portion 20 or the like during injection molding. The root side gate portion 40 is initially connected to a runner portion RP formed as a portion corresponding to the flow path of the molten resin on the opposite side of the support shaft portion 20, but the runner portion RP is obtained by subsequent cutting or the like. From the base side gate part 40 to the optical element part 10 on the front end side, an integrated optical molded product 100 is obtained.
図1C及び1Dを参照して、図1A等に示す光学成形品100の支持方法について説明する。 With reference to FIG. 1C and 1D, the support method of the optical molded product 100 shown to FIG. 1A etc. is demonstrated.
 光学成形品100は、支持治具200上にアライメントされた状態で支持されている。支持治具200は、平板状の部材であり、貫通孔31と、第1位置決め穴32と、第2位置決め穴33とを備える。貫通孔31は、z方向に延びる円筒状の孔である。貫通孔31は、その中央付近の上方に光学素子部分10を配置することで、光学素子部分10の表側の第1光学面OL1の計測だけでなく裏側の第2光学面OL2の計測を可能にしている。第1位置決め穴32の形状は、円筒状の穴の一部を貫通孔31によって切り欠いたものとなっている。第1位置決め穴32は、これに光学成形品100の第1基準ボス23を嵌合させることによって、光学成形品100の光軸OAに垂直なxy面内における配置を規制する。第2位置決め穴33は、y方向に長い長円の断面を有する長穴となっている。第2位置決め穴33は、これに光学成形品100の第2基準ボス24を嵌合させることによって、位置決め穴33の一対の平坦面33a間に第2基準ボス24の円筒側面24aを挟むことになり、光学成形品100の光軸OAに平行なz軸の周りの回転を規制する。支持治具200の上面35は、xy面に平行な平坦面となっている。支持治具200の上面35は、これに光学成形品100の基準面R1を当接させることによって、光学成形品100の光軸OAに平行なz方向の配置と、光学成形品100の光軸OAに平行なz軸に対する傾斜とを規制する。つまり、光学成形品100を支持治具200上にセットすることで、光学成形品100は、x、y、及びzの3方向への3次元的シフトと、x軸、y軸、及びz軸の3軸の周りの3次元的チルトとに関して姿勢が調整され、光学成形品100の支持治具200上でのアライメントが達成される。 The optical molded product 100 is supported in an aligned state on the support jig 200. The support jig 200 is a flat member and includes a through hole 31, a first positioning hole 32, and a second positioning hole 33. The through hole 31 is a cylindrical hole extending in the z direction. The through-hole 31 has the optical element portion 10 disposed above the center thereof, thereby enabling measurement of the second optical surface OL2 on the back side as well as the measurement of the first optical surface OL1 on the front side of the optical element portion 10. ing. The first positioning hole 32 has a shape in which a part of the cylindrical hole is cut out by the through hole 31. The first positioning hole 32 restricts the arrangement of the optical molded product 100 in the xy plane perpendicular to the optical axis OA by fitting the first reference boss 23 of the optical molded product 100 into the first positioning hole 32. The second positioning hole 33 is a long hole having an oval cross section that is long in the y direction. By fitting the second reference boss 24 of the optical molded product 100 into the second positioning hole 33, the cylindrical side surface 24 a of the second reference boss 24 is sandwiched between the pair of flat surfaces 33 a of the positioning hole 33. Thus, the rotation about the z-axis parallel to the optical axis OA of the optical molded product 100 is restricted. The upper surface 35 of the support jig 200 is a flat surface parallel to the xy plane. The upper surface 35 of the support jig 200 is brought into contact with the reference surface R1 of the optical molded product 100 to thereby arrange the z-direction parallel to the optical axis OA of the optical molded product 100 and the optical axis of the optical molded product 100. The inclination with respect to the z axis parallel to OA is regulated. That is, by setting the optical molded product 100 on the support jig 200, the optical molded product 100 can be shifted in three directions, x, y, and z, and the x, y, and z axes. The posture is adjusted with respect to the three-dimensional tilt around the three axes, and alignment on the support jig 200 of the optical molded product 100 is achieved.
 図2等を参照して、光学成形品100の測定方法について説明する。光学成形品100については、測定装置300によって光学部OLに設けた光学面OL1,OL2の形状が計測される。 Referring to FIG. 2 and the like, a method for measuring the optical molded product 100 will be described. For the optical molded product 100, the shape of the optical surfaces OL1 and OL2 provided in the optical part OL is measured by the measuring device 300.
 測定装置300は、ステージ59と本体計測部50とを備え、計測時にステージ59上に光学成形品100を取り付けた支持治具200をセットする。ステージ59は、平板状の基部41と、ブロック状の第1係止部材42と、ブロック状の第2係止部材43と、弾性力で固定するための第1押圧部材44と、弾性力で固定するための第2押圧部材46とを備える。支持治具200上には、xy面の平行とz方向位置を把握するために3個の基準球41aが固定されている。光学面測定前に3個の基準球41aの位置を測定することによって、支持治具200の位置と傾きが変化していても測定物である光学成形品100の姿勢・位置を正確に把握することができる。支持治具200は、第1押圧部材44に設けた付勢部材44aによって第1及び第2係止部材42,43側に押し付けられるとともに、第2押圧部材46に設けた付勢部材46aによって、光学成形品100の支軸部20に設けた付勢位置U1を介して基部41上に押し付けられる。これにより、光学成形品100は、支持治具200を介してステージ59上に安定して固定される。この状態で、本体計測部50によって光学成形品100の第1光学面OL1等に関する形状の測定が可能になる。 The measuring apparatus 300 includes a stage 59 and a main body measuring unit 50, and sets a support jig 200 with the optical molded product 100 attached on the stage 59 during measurement. The stage 59 includes a flat base 41, a block-shaped first locking member 42, a block-shaped second locking member 43, a first pressing member 44 for fixing with an elastic force, and an elastic force. And a second pressing member 46 for fixing. On the support jig 200, three reference spheres 41a are fixed in order to grasp the parallel of the xy plane and the z-direction position. By measuring the positions of the three reference spheres 41a before the optical surface measurement, the posture and position of the optical molded product 100 as the measurement object can be accurately grasped even if the position and inclination of the support jig 200 are changed. be able to. The support jig 200 is pressed against the first and second locking members 42 and 43 by the biasing member 44a provided on the first pressing member 44, and by the biasing member 46a provided on the second pressing member 46, It is pressed onto the base 41 via an urging position U <b> 1 provided on the support shaft 20 of the optical molded product 100. Thereby, the optical molded product 100 is stably fixed on the stage 59 via the support jig 200. In this state, the main body measurement unit 50 can measure the shape of the optical molded product 100 relating to the first optical surface OL1 and the like.
 図3に示すように、図2に示すステージ59上に支持治具200を介して支持された光学成形品100に設けた第1光学面OL1上には、本体計測部50に設けたプローブ51の先端が接触する。ここで、プローブ51の初期位置は、光学成形品100の第1光学面OL1の直径をDとして、第1光学面OL1上の全領域のうち±D/4内の中心寄り領域に設定することができ、第1光学面OL1の形状測定を確実なものとすることができる。なお、プローブ51の初期位置が第1光学面OL1の周辺領域になってしまうと、特に触針型の計測の場合、プローブ51の芯出しが困難になりやすく測定範囲の適切な設定が困難になる傾向が生じる。以上では、第1光学面OL1に対して測定が行われるが、光学成形品100をステージ59又は支持治具200とともに上下反転させれば、第2光学面OL2についても第1光学面OL1と同様に測定可能となる。 As shown in FIG. 3, on the first optical surface OL1 provided in the optical molded product 100 supported on the stage 59 shown in FIG. The tip of touches. Here, the initial position of the probe 51 is set to a region near the center within ± D / 4 of all the regions on the first optical surface OL1, where D is the diameter of the first optical surface OL1 of the optical molded product 100. Thus, the shape measurement of the first optical surface OL1 can be ensured. If the initial position of the probe 51 is in the peripheral region of the first optical surface OL1, especially in the case of stylus type measurement, it is difficult to center the probe 51, making it difficult to set the measurement range appropriately. Tend to occur. In the above, the measurement is performed on the first optical surface OL1, but if the optical molded product 100 is turned upside down together with the stage 59 or the support jig 200, the second optical surface OL2 is the same as the first optical surface OL1. It becomes possible to measure.
 以下、図4A等を参照しつつ、実施形態の光学成形品100を成形するための成形金型について説明する。
 図4Aに示す成形金型60は、可動金型61と固定金型62とを備える。可動金型61は、不図示の金型駆動部に駆動されてAB方向に進退移動可能になっており、固定金型62との間で開閉動作が可能になっている。固定金型62に対して可動金型61を突き合わせることにより、両金型61,62間に型空間CV及び流路空間FCが形成される。型空間CVは、図1Aに示す光学素子部分10と支軸部20と先端側ゲート部30とを形成するためのものである。型空間CVは、光学素子部分10の形状に対応する空間部分CV1、支軸部20の形状に対応する空間部分CV2等を有している。流路空間FCは、型空間CVに樹脂を供給するためのものであり、ランナー等からなる。
Hereinafter, the molding die for molding the optical molded product 100 of the embodiment will be described with reference to FIG. 4A and the like.
A molding die 60 shown in FIG. 4A includes a movable die 61 and a fixed die 62. The movable mold 61 is driven by a mold driving unit (not shown) and can move forward and backward in the AB direction, and can be opened and closed with the fixed mold 62. By abutting the movable mold 61 against the fixed mold 62, a mold space CV and a flow path space FC are formed between both the molds 61 and 62. The mold space CV is for forming the optical element portion 10, the support shaft portion 20, and the distal end side gate portion 30 shown in FIG. 1A. The mold space CV includes a space portion CV1 corresponding to the shape of the optical element portion 10, a space portion CV2 corresponding to the shape of the support shaft portion 20, and the like. The flow path space FC is for supplying resin to the mold space CV, and includes a runner and the like.
 図4Bに示す成形金型60において、型空間CVに樹脂を充填する射出工程後に、可動金型61を後退させて両金型61,62を離間させると、可動金型61側に光学成形品100を含む成形品MPが残る。その後、可動金型61側に設けたエジェクター(不図示)を動作させることにより、複数のエジェクターピン65の突き出しが行われ、光学成形品100のうち支軸部20に設けた第1基準ボス23と第2基準ボス24との押し出しが行われる。このように基準ボス23,24を突き出すことで、光学成形品100をバランス良く離型することができ、第1側面21a、円筒側面23a,24a等の歪みや変形を抑えることができ、光学成形品100を高い形状精度で製造することができる。しかも、光学成形品100を形成する可動金型61や固定金型62は、成形品MPのうち光学成形品100を一体の金型部分によって形成するものとなっている。これにより、光学成形品100を構成する光学素子部分10や支軸部20をそれらの配置関係を保って高精度に成形することができる。つまり、支軸部20を精密に位置決めすることで、光学素子部分10も同様に精密に位置決めすることができる。 In the molding die 60 shown in FIG. 4B, after the injection process of filling the mold space CV with the resin, when the movable die 61 is retracted and the two dies 61 and 62 are separated from each other, an optical molded product is formed on the movable die 61 side. The molded product MP containing 100 remains. Thereafter, by operating an ejector (not shown) provided on the movable mold 61 side, a plurality of ejector pins 65 are ejected, and the first reference boss 23 provided on the support shaft portion 20 in the optical molded product 100. And the second reference boss 24 are pushed out. By projecting the reference bosses 23 and 24 in this way, the optical molded product 100 can be released in a balanced manner, and distortion and deformation of the first side surface 21a, the cylindrical side surfaces 23a and 24a, etc. can be suppressed, and optical molding is performed. The product 100 can be manufactured with high shape accuracy. In addition, the movable mold 61 and the fixed mold 62 that form the optical molded product 100 are formed by an integral mold portion of the molded product MP. Thereby, the optical element part 10 and the spindle part 20 which comprise the optical molded article 100 can be shape | molded with high precision, maintaining those arrangement | positioning relationships. That is, the optical element portion 10 can be precisely positioned in the same manner by precisely positioning the support shaft portion 20.
 以上のように、第1実施形態の光学成形品100によれば、支軸部20に位置決め部として、第1及び第2基準ボス23,24と基準面R1とが設けられている。位置決め部である第1及び第2基準ボス23,24と基準面R1とは、光軸OAに垂直なXY面内の位置の規制と、光軸OAに平行なZ方向の位置の規制とを可能にするとともに、光軸OAに平行な軸の周りの回転の規制と、光軸OAに平行となるべき軸に対する傾斜の規制とを可能にするので、光学素子部分10を3次元のシフトや3軸のチルトに関して高精度に配置できるようになる。これにより、光学素子部分10が小型であってもこれを計測装置内の適正な位置に精密に位置決めして配置することができ、光学素子部分10の光学面等の計測を精密なものとすることができる。 As described above, according to the optical molded product 100 of the first embodiment, the first and second reference bosses 23 and 24 and the reference surface R1 are provided on the support shaft portion 20 as positioning portions. The first and second reference bosses 23 and 24 and the reference plane R1, which are positioning parts, regulate the position in the XY plane perpendicular to the optical axis OA and the regulation of the position in the Z direction parallel to the optical axis OA. As well as restricting rotation about an axis parallel to the optical axis OA and restricting inclination with respect to the axis that should be parallel to the optical axis OA. The three-axis tilt can be arranged with high accuracy. Thereby, even if the optical element portion 10 is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion 10 can be precisely measured. be able to.
〔第2実施形態〕
 図5A及び5Bを参照しつつ、第2実施形態の光学成形品等について説明する。第2実施形態の光学成形品等は、第1実施形態の光学成形品等を変形したものであり、特に説明しない事項は、第1実施形態と同様である。
[Second Embodiment]
The optical molded product of the second embodiment will be described with reference to FIGS. 5A and 5B. The optical molded product or the like of the second embodiment is a modification of the optical molded product or the like of the first embodiment, and matters not specifically described are the same as those of the first embodiment.
 図5A等に示すように、光学成形品100は、光学素子部分10と、支軸部20と、先端側ゲート部30と、根元側ゲート部40とを備える。 As shown in FIG. 5A and the like, the optical molded product 100 includes an optical element portion 10, a support shaft portion 20, a distal end side gate portion 30, and a root side gate portion 40.
 支軸部20は、本体部分21と、テーパー部22と、一対の基準ボス523,524とを備える。これらのうち本体部分21は、四角柱状であり、第1~第4側面21a~21dと、端面21gとを有する。一対の基準ボス523,524のうち一方の基準ボス523は、第3側面21cから-X方向に延びるように設けられた四角柱状の部材であり、側面523aを有する。他方の基準ボス524は、第4側面21dから+X方向に延びるように設けられた四角柱状の部材であり、側面524aを有する。これら一対の基準ボス523,524は、光学成形品100を後述する支持治具に固定する際にアライメントのために用いられる。 The support shaft portion 20 includes a main body portion 21, a tapered portion 22, and a pair of reference bosses 523 and 524. Of these, the main body portion 21 has a quadrangular prism shape, and includes first to fourth side surfaces 21a to 21d and an end surface 21g. One reference boss 523 of the pair of reference bosses 523 and 524 is a quadrangular columnar member provided so as to extend in the −X direction from the third side surface 21c, and has a side surface 523a. The other reference boss 524 is a quadrangular prism-shaped member provided so as to extend in the + X direction from the fourth side surface 21d, and has a side surface 524a. The pair of reference bosses 523 and 524 are used for alignment when the optical molded product 100 is fixed to a support jig described later.
 なお、支軸部20の第1側面21aのうち、Y方向の中央側の表面領域は、光学成形品100を後述する支持治具に固定する際のアライメントのための基準面R1となっている。この基準面R1は、支軸部20の第1側面21a側の表層部分21sに形成されている。また、第4側面21dのうち、一方の基準ボス524の-Y方向に隣接する一部の表面領域は、光学成形品100を後述する支持治具に固定する際のアライメントのための基準面R2となっている。この基準面R2は、支軸部20の第4側面21d側の表層部分21tに形成されている。一対の基準ボス523,524の側面523a,524aのうち-Y側の表面領域は、光学成形品100を後述する支持治具に固定する際のアライメントのための基準面R3となっている。この基準面R3は、一対の基準ボス523,524の-Y側の表面部分21uに形成されている。 Of the first side surface 21a of the support shaft portion 20, the surface region on the center side in the Y direction serves as a reference surface R1 for alignment when the optical molded product 100 is fixed to a support jig described later. . The reference surface R1 is formed on the surface layer portion 21s of the support shaft portion 20 on the first side surface 21a side. In addition, a part of the surface region adjacent to the −Y direction of one reference boss 524 in the fourth side surface 21d is a reference surface R2 for alignment when the optical molded product 100 is fixed to a support jig described later. It has become. The reference surface R2 is formed on the surface layer portion 21t on the fourth side surface 21d side of the support shaft portion 20. Of the side surfaces 523a and 524a of the pair of reference bosses 523 and 524, the surface region on the −Y side is a reference surface R3 for alignment when the optical molded product 100 is fixed to a support jig described later. The reference surface R3 is formed on the surface portion 21u on the −Y side of the pair of reference bosses 523 and 524.
 以上の支軸部20において、一対の基準ボス523,524の-Y側の側面523a,524a、すなわち基準面R3は、光軸OAに平行なZ軸の周りの回転の規制と、光軸OAに垂直なXY面内のX方向(第1方向)に垂直なY方向(第2方向)における配置の規制とを可能にする。表層部分21sの基準面(第2基準面)R1は、光軸OAに平行なZ方向における光学素子部分10の配置の規制と、光軸OAに平行なZ軸に対する光学素子部分10の傾斜の規制とを可能にする。表層部分21tの基準面(第1基準面)R2は、光軸OAに垂直なXY面内のX方向(第1方向)における配置の規制を可能にする。 In the above-described support shaft portion 20, the −Y side side surfaces 523a and 524a of the pair of reference bosses 523 and 524, that is, the reference surface R3, are restricted in rotation around the Z axis parallel to the optical axis OA and the optical axis OA. It is possible to restrict the arrangement in the Y direction (second direction) perpendicular to the X direction (first direction) in the XY plane perpendicular to. The reference surface (second reference surface) R1 of the surface layer portion 21s is a restriction of the arrangement of the optical element portion 10 in the Z direction parallel to the optical axis OA and the inclination of the optical element portion 10 with respect to the Z axis parallel to the optical axis OA. Enable regulation. The reference surface (first reference surface) R2 of the surface layer portion 21t enables restriction of arrangement in the X direction (first direction) in the XY plane perpendicular to the optical axis OA.
 図5C及び5Dを参照して、図5A等に示す光学成形品100の支持方法について説明する。
 光学成形品100は、支持治具200上にアライメントされた状態で支持されている。支持治具200は、平板状の部材である本体部分39と、第1位置決め突起37と、第2位置決め突起38とを備える。本体部分39には、光学素子部分10の両光学面OL1,OL2の計測を可能にするため、貫通孔31が形成されている。第1及び第2位置決め突起37,38は、本体部分39の上面35から上方であるz方向に突起する円筒状の部材である。第1及び第2位置決め突起37,38は、これに光学成形品100の一対の基準ボス523,524の基準面R3を当接させることによって、光学成形品100の光軸OAに平行なz軸の周りの回転を規制するとともに、光学成形品100の光軸OAに垂直なxy面内のy方向(第2方向)に関して配置を規制する。第2位置決め突起38は、これに光学成形品100の基準面R2を当接させることによって、光学成形品100の光軸OAに垂直なxy面内のx方向(第1方向)に関して配置を規制する。本体部分39の上面35は、これに光学成形品100の基準面R1を当接させることによって、光学成形品100の光軸OAに平行なz方向の配置と、光学成形品100の光軸OAに平行なz軸に対する傾斜とを規制する。つまり、光学成形品100を支持治具200上にセットすることで、光学成形品100は、x、y、及びzの3方向への3次元的シフトと、x軸、y軸、及びz軸の3軸の周りの3次元的チルトとに関して姿勢が調整され、光学成形品100の支持治具200上でのアライメントが達成される。
With reference to FIG. 5C and 5D, the support method of the optical molded product 100 shown to FIG. 5A etc. is demonstrated.
The optical molded product 100 is supported in an aligned state on the support jig 200. The support jig 200 includes a main body portion 39 that is a flat member, a first positioning protrusion 37, and a second positioning protrusion 38. A through hole 31 is formed in the main body portion 39 to enable measurement of both optical surfaces OL1 and OL2 of the optical element portion 10. The first and second positioning protrusions 37 and 38 are cylindrical members that protrude in the z direction above the upper surface 35 of the main body portion 39. The first and second positioning projections 37 and 38 are brought into contact with the reference surface R3 of the pair of reference bosses 523 and 524 of the optical molded product 100, whereby the z-axis is parallel to the optical axis OA of the optical molded product 100. And the arrangement of the optical molded product 100 with respect to the y direction (second direction) in the xy plane perpendicular to the optical axis OA. The arrangement of the second positioning protrusion 38 is restricted with respect to the x direction (first direction) in the xy plane perpendicular to the optical axis OA of the optical molded product 100 by bringing the reference positioning surface R2 of the optical molded product 100 into contact therewith. To do. The upper surface 35 of the main body portion 39 is brought into contact with the reference surface R1 of the optical molded product 100 to thereby arrange the z-direction parallel to the optical axis OA of the optical molded product 100 and the optical axis OA of the optical molded product 100. The inclination with respect to the z-axis parallel to is regulated. That is, by setting the optical molded product 100 on the support jig 200, the optical molded product 100 can be shifted in three directions of x, y, and z, and the x, y, and z axes. The posture is adjusted with respect to the three-dimensional tilt around the three axes, and alignment on the support jig 200 of the optical molded product 100 is achieved.
 支持治具200を図2に示すステージ59と同様のステージに固定する際には、支軸部20に設けた付勢位置U1を利用して支軸部20を+z方向に付勢する。また、支軸部20から延びる一対の基準ボス523,524の付勢位置U21を-y方向に付勢するとともに、基準ボス523の付勢位置U23を+x方向に付勢する。
 なお、光学成形品100に設けた一対の基準ボス523,524は、成形品である光学成形品100の離型に際して、突き出しの対象とすることができる。
When the support jig 200 is fixed to a stage similar to the stage 59 shown in FIG. 2, the support shaft portion 20 is urged in the + z direction using the urging position U <b> 1 provided on the support shaft portion 20. Further, the biasing position U21 of the pair of reference bosses 523 and 524 extending from the support shaft portion 20 is biased in the −y direction, and the biasing position U23 of the reference boss 523 is biased in the + x direction.
The pair of reference bosses 523 and 524 provided in the optical molded product 100 can be projected when the optical molded product 100 which is a molded product is released.
 第2実施形態の光学成形品100によれば、支軸部20に位置決め部として、一対の基準ボス523,524(基準面R3)と基準面R1,R2とが設けられている。位置決め部である基準ボス523,524と基準面R1,R2とは、光軸OAに垂直なXY面内の位置の規制と、光軸OAに平行なZ方向の位置の規制とを可能にするとともに、光軸OAに平行な軸の周りの回転の規制と、光軸OAに平行となるべき軸に対する傾斜の規制とを可能にするので、光学素子部分10を3次元のシフトや3軸のチルトに関して高精度に配置できるようになる。これにより、光学素子部分10が小型であってもこれを計測装置内の適正な位置に精密に位置決めして配置することができ、光学素子部分10の光学面等の計測を精密なものとすることができる。 According to the optical molded product 100 of the second embodiment, the pair of reference bosses 523 and 524 (reference surface R3) and the reference surfaces R1 and R2 are provided on the support shaft portion 20 as positioning portions. The reference bosses 523 and 524 and the reference planes R1 and R2 which are positioning portions enable restriction of the position in the XY plane perpendicular to the optical axis OA and restriction of the position in the Z direction parallel to the optical axis OA. At the same time, the rotation around the axis parallel to the optical axis OA and the inclination with respect to the axis that should be parallel to the optical axis OA can be restricted. It becomes possible to arrange with high accuracy with respect to tilt. Thereby, even if the optical element portion 10 is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion 10 can be precisely measured. be able to.
〔第3実施形態〕
 図6A及び6Bを参照しつつ、第3実施形態の光学成形品等について説明する。第3実施形態の光学成形品等は、第1実施形態の光学成形品等を変形したものであり、特に説明しない事項は、第1実施形態と同様である。
[Third Embodiment]
With reference to FIGS. 6A and 6B, an optically molded product of the third embodiment will be described. The optical molded product or the like of the third embodiment is a modification of the optical molded product or the like of the first embodiment, and matters not specifically described are the same as those of the first embodiment.
 図6A等に示すように、光学成形品100は、光学素子部分10と、支軸部20と、先端側ゲート部30と、根元側ゲート部40とを備える。 As shown in FIG. 6A and the like, the optical molded product 100 includes an optical element portion 10, a support shaft portion 20, a distal end side gate portion 30, and a root side gate portion 40.
 支軸部20は、支軸部20の長手方向に平行なY方向(第2方向)に延びる円柱状の第1基準部27と、光学素子部分10の光軸OAに垂直であって第2方向に垂直なX方向(第1方向)に延びる円柱状の第2基準部28とを備える。第1基準部27は、側面27aを有する。第2基準部28は、側面28aを有する。側面27a,28aのうち表面部分27v,28vは、後述する第1及び第2位置決め溝72,73と当接する部分であり、半円筒状の面となっている。第1及び第2基準部27,28は、光学成形品100を後述する支持治具に固定する際にアライメントのために用いられる。 The support shaft portion 20 is a columnar first reference portion 27 extending in the Y direction (second direction) parallel to the longitudinal direction of the support shaft portion 20, and is perpendicular to the optical axis OA of the optical element portion 10 and is second. And a cylindrical second reference portion 28 extending in the X direction (first direction) perpendicular to the direction. The first reference portion 27 has a side surface 27a. The second reference portion 28 has a side surface 28a. Of the side surfaces 27a and 28a, the surface portions 27v and 28v are portions that come into contact with first and second positioning grooves 72 and 73 described later, and are semi-cylindrical surfaces. The first and second reference portions 27 and 28 are used for alignment when the optical molded product 100 is fixed to a support jig described later.
 第1基準部27の側面27aのうち、+Z側の表面部分27vにおける側面部分は、光軸OAに垂直なXY面内のX方向(第1方向)における配置の規制と、光軸OAに平行なZ軸の周りの回転の規制と、光軸OAに平行なZ方向の配置の規制と、光軸OAに平行なZ軸に対する傾斜の規制とを可能にする。第2基準部28の側面28aのうち、+Z側の表面部分28vにおける側面部分は、光軸OAに垂直なXY面内のY方向(第2方向)における配置の規制と、光軸OAに平行なZ軸の周りの回転の規制と、光軸OAに平行なZ方向の配置の規制と、光軸OAに平行なZ軸に対する傾斜の規制とを可能にする。 Of the side surface 27a of the first reference portion 27, the side surface portion of the surface portion 27v on the + Z side is parallel to the optical axis OA and the arrangement restriction in the X direction (first direction) in the XY plane perpendicular to the optical axis OA. It is possible to restrict the rotation around the Z axis, restrict the arrangement in the Z direction parallel to the optical axis OA, and restrict the inclination with respect to the Z axis parallel to the optical axis OA. Of the side surface 28a of the second reference portion 28, the side surface portion of the surface portion 28v on the + Z side is parallel to the optical axis OA and the arrangement restriction in the Y direction (second direction) in the XY plane perpendicular to the optical axis OA. It is possible to restrict the rotation around the Z axis, restrict the arrangement in the Z direction parallel to the optical axis OA, and restrict the inclination with respect to the Z axis parallel to the optical axis OA.
 図6C及び6Dを参照して、図6A等に示す光学成形品100の支持方法について説明する。
 光学成形品100は、支持治具200上にアライメントされた状態で支持されている。支持治具200は、平板状の部材であり、貫通孔31と、第1位置決め溝72と、第2位置決め溝73とを備える。第1位置決め溝72は、支持治具200の上面35に沿ってy方向に直線的に延びる断面V字の溝である。第1位置決め溝72は、これに光学成形品100の第1基準部27を案内することで、光学成形品100の光軸OAに垂直なxy面内においてx方向(第1方向)に関する配置と、光軸OAに平行なz軸の周りの回転と、光軸OAに平行なz方向に関する配置と、光軸OAに平行なz軸に対する傾斜とを規制する。第2位置決め溝73は、支持治具200の上面35に沿ってx方向に直線的に延びる断面V字の溝である。第2位置決め溝73は、これに光学成形品100の第2基準部28を案内することで、光学成形品100の光軸OAに垂直なxy面内においてy方向(第2方向)に関する配置と、光軸OAに平行なz軸の周りの回転と、光軸OAに平行なz方向に関する配置と、光軸OAに平行なz軸に対する傾斜とを規制する。つまり、光軸OAに平行なz軸の周りの回転の規制と、光軸OAに平行なz方向に関する配置の規制とについては、第1及び第2位置決め溝72,73が協働する。また、光学成形品100の光軸OAに平行なz軸に対する傾斜の規制についても、第1及び第2位置決め溝72,73が協働する。このように、光学成形品100を支持治具200上にセットすることで、光学成形品100は、x、y、及びzの3方向への3次元的シフトと、x軸、y軸、及びz軸の3軸の周りの3次元的チルトとに関して姿勢が調整され、光学成形品100の支持治具200上でのアライメントが達成される。
With reference to FIG. 6C and 6D, the support method of the optical molded product 100 shown to FIG. 6A etc. is demonstrated.
The optical molded product 100 is supported in an aligned state on the support jig 200. The support jig 200 is a flat plate-like member, and includes a through hole 31, a first positioning groove 72, and a second positioning groove 73. The first positioning groove 72 is a groove having a V-shaped cross section that linearly extends in the y direction along the upper surface 35 of the support jig 200. The first positioning groove 72 is arranged in the x direction (first direction) in the xy plane perpendicular to the optical axis OA of the optical molded product 100 by guiding the first reference portion 27 of the optical molded product 100 to the first positioning groove 72. The rotation about the z axis parallel to the optical axis OA, the arrangement in the z direction parallel to the optical axis OA, and the inclination with respect to the z axis parallel to the optical axis OA are restricted. The second positioning groove 73 is a groove having a V-shaped cross section that linearly extends in the x direction along the upper surface 35 of the support jig 200. The second positioning groove 73 guides the second reference portion 28 of the optical molded product 100 to the second positioning groove 73, thereby disposing the second positioning groove 73 in the y direction (second direction) in the xy plane perpendicular to the optical axis OA of the optical molded product 100. The rotation about the z axis parallel to the optical axis OA, the arrangement in the z direction parallel to the optical axis OA, and the inclination with respect to the z axis parallel to the optical axis OA are restricted. That is, the first and second positioning grooves 72 and 73 cooperate in restricting the rotation around the z axis parallel to the optical axis OA and restricting the arrangement in the z direction parallel to the optical axis OA. In addition, the first and second positioning grooves 72 and 73 also cooperate in restricting the inclination of the optical molded product 100 with respect to the z axis parallel to the optical axis OA. In this way, by setting the optical molded product 100 on the support jig 200, the optical molded product 100 can have a three-dimensional shift in three directions of x, y, and z, and the x-axis, y-axis, and The posture is adjusted with respect to the three-dimensional tilt around the three axes of the z axis, and the alignment of the optical molded product 100 on the support jig 200 is achieved.
 支持治具200を図2に示すステージ59と同様のステージに固定する際には、支軸部20に設けた付勢位置U1,U3を利用して支軸部20を+z方向に付勢する。 When the support jig 200 is fixed to a stage similar to the stage 59 shown in FIG. 2, the support shaft portion 20 is urged in the + z direction using the urging positions U1 and U3 provided on the support shaft portion 20. .
 第3実施形態の光学成形品100によれば、支軸部20に位置決め部として、第1基準部27と第2基準部28とが設けられている。位置決め部である第1及び第2基準部27,28は、光軸OAに垂直なXY面内の位置の規制と、光軸OAに平行なZ方向の位置の規制とを可能にするとともに、光軸OAに平行な軸の周りの回転の規制と、光軸OAに平行となるべき軸に対する傾斜の規制とを可能にするので、光学素子部分10を3次元のシフトや3軸のチルトに関して高精度に配置できるようになる。これにより、光学素子部分10が小型であってもこれを計測装置内の適正な位置に精密に位置決めして配置することができ、光学素子部分10の光学面等の計測を精密なものとすることができる。 According to the optical molded product 100 of the third embodiment, the first reference portion 27 and the second reference portion 28 are provided on the support shaft portion 20 as positioning portions. The first and second reference portions 27 and 28 which are positioning portions enable restriction of the position in the XY plane perpendicular to the optical axis OA and restriction of the position in the Z direction parallel to the optical axis OA. Since it is possible to restrict the rotation around an axis parallel to the optical axis OA and to restrict the inclination with respect to the axis that should be parallel to the optical axis OA, the optical element portion 10 is related to a three-dimensional shift and a three-axis tilt. It becomes possible to arrange with high accuracy. Thereby, even if the optical element portion 10 is small, it can be precisely positioned and arranged at an appropriate position in the measuring device, and the optical surface of the optical element portion 10 can be precisely measured. be able to.
〔第4実施形態〕
 図7を参照しつつ、第4実施形態の光学成形品等について説明する。第4実施形態の光学成形品等は、第1実施形態の光学成形品等を変形したものであり、特に説明しない事項は、第1実施形態と同様である。
[Fourth Embodiment]
With reference to FIG. 7, the optical molded product of the fourth embodiment will be described. The optical molded product or the like of the fourth embodiment is a modification of the optical molded product or the like of the first embodiment, and matters not specifically described are the same as those of the first embodiment.
 図示のように、光学成形品100は、4つの光学素子部分10と、支軸部20と、先端側ゲート部30と、根元側ゲート部40とを備える。ここで、4つの光学素子部分10は、同一の形状を有しており、先端側ゲート部30から延びる分岐部80によって支持されている。つまり、分岐部80は、先端側で4つに分岐する形状となっている。 As shown in the figure, the optical molded product 100 includes four optical element portions 10, a support shaft portion 20, a tip side gate portion 30, and a root side gate portion 40. Here, the four optical element portions 10 have the same shape and are supported by a branch portion 80 extending from the distal end side gate portion 30. That is, the branch part 80 has a shape that branches into four on the tip side.
 本実施形態のように、先端側ゲート部30から分岐して延びる分岐部80を設け、分岐部80の各先端に光学素子部分10を形成することにより、複数の光学素子部分10を一括して形成し測定することができる。複数の光学素子部分10の一括測定では、位置決め精度に関する要求がより厳しくなるため、支軸部20に設けた位置決め部(第1及び第2基準ボス23,24及び基準面R1)を利用する測定がより有効になる。 As in the present embodiment, a branch portion 80 that branches off from the distal end side gate portion 30 is provided, and the optical element portion 10 is formed at each distal end of the branch portion 80, whereby a plurality of optical element portions 10 are collectively collected. Can be formed and measured. In the collective measurement of the plurality of optical element portions 10, since the requirements regarding the positioning accuracy become more severe, the measurement using the positioning portions (the first and second reference bosses 23 and 24 and the reference surface R <b> 1) provided on the support shaft portion 20. Becomes more effective.
 以上、実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、例えば以下のような変形も可能である。すなわち、支軸部20に設ける位置決め部である基準ボス23,24等を凸状の部分としたが、位置決め部を凹状の部分とし、支持治具200上にアライメントのため凸状の部分を設けることもできる。 As described above, the present invention has been described according to the embodiment. However, the present invention is not limited to the above embodiment, and for example, the following modifications are possible. That is, the reference bosses 23 and 24 that are positioning portions provided on the support shaft portion 20 are convex portions, but the positioning portion is a concave portion and a convex portion is provided on the support jig 200 for alignment. You can also
 また、第1実施形態において、位置決め部である基準ボス23,24のうち例えば第2基準ボス24については、円形断面の円柱に限らず四角形断面の四角柱とすることもできる。また、第2実施形態において、位置決め部である基準ボス523,524については、四角形断面の四角柱に限らず円形断面の円柱とすることもできる。また、第3実施形態において、位置決め部である第1及び第2基準部27,28については、円柱状に限らず、半円筒状の側面27a,28aを除く面を平面にする等適宜変更することもできる。 Further, in the first embodiment, for example, the second reference boss 24 among the reference bosses 23 and 24 which are positioning portions is not limited to a circular cross-section cylinder, but may be a quadrangular prism having a quadrangular cross section. In the second embodiment, the reference bosses 523 and 524 serving as positioning portions are not limited to quadrangular columns with a quadrangular cross section but may be circular cylinders with a circular cross section. Further, in the third embodiment, the first and second reference portions 27 and 28 that are positioning portions are not limited to a columnar shape, and are appropriately changed such that the surfaces other than the semi-cylindrical side surfaces 27a and 28a are made flat. You can also.

Claims (20)

  1.  光学的な機能を有する光学素子部分と、
     支軸部と、
     前記光学素子部分及び前記支軸部間に配置される先端側ゲート部とを備える光学成形品であって、
     前記支軸部は、前記光学素子部分の3次元的な配置及び回転姿勢を規制するための位置決め部を有し、
     前記位置決め部は、前記光学素子部分の光軸に垂直な面内の配置の規制と前記光軸に平行な方向の配置の規制とを可能にするとともに、前記光軸に平行な軸の周りの回転の規制と前記光軸に平行となるべき軸に対する傾斜の規制とを可能にする光学成形品。
    An optical element portion having an optical function;
    A spindle,
    An optical molded article comprising a tip side gate portion disposed between the optical element portion and the support shaft portion,
    The support shaft portion has a positioning portion for regulating the three-dimensional arrangement and rotation posture of the optical element portion,
    The positioning portion enables restriction of arrangement in a plane perpendicular to the optical axis of the optical element portion and restriction of arrangement in a direction parallel to the optical axis, and around the axis parallel to the optical axis. An optical molded product that enables regulation of rotation and regulation of inclination with respect to an axis that should be parallel to the optical axis.
  2.  前記位置決め部は、前記支軸部の周囲に突起する凸状又は凹状の部分を含む、請求項1に記載の光学成形品。 2. The optical molded product according to claim 1, wherein the positioning portion includes a convex or concave portion protruding around the support shaft portion.
  3.  前記位置決め部は、前記光学素子部分の光軸に垂直な面内における配置の規制を可能にする第1基準ボスと、前記光軸に平行な軸の周りの回転の規制を可能にする第2基準ボスと、前記光軸に平行な方向の配置の規制と前記光軸に平行となるべき軸に対する傾斜の規制とを可能にする基準面とを備える、請求項2に記載の光学成形品。 The positioning portion includes a first reference boss that allows the arrangement of the optical element portion in a plane perpendicular to the optical axis to be restricted, and a second that enables the rotation to be restricted about an axis parallel to the optical axis. The optical molded product according to claim 2, comprising a reference boss and a reference surface that enables restriction of arrangement in a direction parallel to the optical axis and restriction of inclination with respect to an axis that should be parallel to the optical axis.
  4.  前記基準面は、前記第1基準ボスと前記第2基準ボスとの間であって前記支軸部の本体の周囲に形成されている、請求項3に記載の光学成形品。 4. The optical molded product according to claim 3, wherein the reference surface is formed between the first reference boss and the second reference boss and around the main body of the support shaft portion.
  5.  前記位置決め部は、前記支軸部の本体の長手方向及び前記光学素子部分の光軸に垂直な第1方向に延びて、前記光軸に垂直な面内の前記第1方向に垂直な第2方向における配置の規制と、前記光軸に平行な軸の周りの回転の規制とを可能にする一対の基準ボスと、前記光軸に垂直な面内の前記第1方向における配置の規制を可能にする第1基準面と、前記光軸に平行な方向の配置の規制と前記光軸に平行となるべき軸に対する傾斜の規制とを可能にする第2基準面とを備える、請求項2に記載の光学成形品。 The positioning portion extends in a first direction perpendicular to the longitudinal direction of the main body of the support shaft portion and the optical axis of the optical element portion, and a second perpendicular to the first direction in a plane perpendicular to the optical axis. A pair of reference bosses that enable restriction of arrangement in the direction and restriction of rotation around an axis parallel to the optical axis, and restriction of arrangement in the first direction in a plane perpendicular to the optical axis And a second reference surface that enables restriction of arrangement in a direction parallel to the optical axis and restriction of inclination with respect to an axis that should be parallel to the optical axis. The optical molded product described.
  6.  前記第1及び第2基準面は、前記一対の基準ボスの間であって前記支軸部の本体の周囲に形成されている、請求項5に記載の光学成形品。 The optical molded product according to claim 5, wherein the first and second reference surfaces are formed between the pair of reference bosses and around the main body of the support shaft portion.
  7.  前記基準ボスは、突起する方向に関して円形又は四角形の断面を有する、請求項2に記載の光学成形品。 3. The optical molded product according to claim 2, wherein the reference boss has a circular or square cross section with respect to a protruding direction.
  8.  前記基準ボスは、突起する方向に関して前記光学素子部分の外径よりも断面が大きなものである、請求項2に記載の光学成形品。 3. The optical molded product according to claim 2, wherein the reference boss has a cross section larger than an outer diameter of the optical element portion in a protruding direction.
  9.  前記基準ボスは、前記支軸部の突き出しに用いられる、請求項2に記載の光学成形品。 3. The optical molded product according to claim 2, wherein the reference boss is used for protruding the support shaft portion.
  10.  前記位置決め部は、前記支軸部の本体の長手方向に平行な第2方向に延びて、前記光軸に垂直な面内の前記第2方向に垂直な第1方向における配置の規制と、前記光軸に平行な軸の周りの回転の規制と、前記光軸に平行な方向の配置の規制と、前記光軸に平行となるべき軸に対する傾斜の規制とを可能にする第1基準部と、前記光学素子部分の光軸に垂直であって前記第2方向に垂直な第1方向に延びて、前記光軸に垂直な面内の前記第2方向における配置の規制と、前記光軸に平行な軸の周りの回転の規制と、前記光軸に平行な方向の配置の規制と、前記光軸に平行となるべき軸に対する傾斜の規制とを可能にする第2基準部とを備える、請求項2に記載の光学成形品。 The positioning portion extends in a second direction parallel to the longitudinal direction of the main body of the support shaft portion, and restricts the arrangement in the first direction perpendicular to the second direction in a plane perpendicular to the optical axis; A first reference part that enables regulation of rotation around an axis parallel to the optical axis, regulation of arrangement in a direction parallel to the optical axis, and regulation of inclination with respect to an axis that should be parallel to the optical axis; , Extending in a first direction perpendicular to the optical axis of the optical element portion and perpendicular to the second direction, and restricting the arrangement in the second direction in a plane perpendicular to the optical axis; A second reference part that enables regulation of rotation around a parallel axis, regulation of arrangement in a direction parallel to the optical axis, and regulation of inclination with respect to an axis that should be parallel to the optical axis, The optical molded product according to claim 2.
  11.  前記光学素子部分の外径は、2mm以下である、請求項1に記載の光学成形品。 The optical molded product according to claim 1, wherein an outer diameter of the optical element portion is 2 mm or less.
  12.  前記先端側ゲート部は、前記光学素子部分と前記支軸部との境界部において、R形状によって滑らかに接続されている、請求項1に記載の光学成形品。 2. The optical molded product according to claim 1, wherein the tip side gate portion is smoothly connected by an R shape at a boundary portion between the optical element portion and the support shaft portion.
  13.  前記第1基準ボスと前記光学素子部分との前記光学素子部分の光軸に垂直な方向に関する距離をL1とし、前記第1基準ボスと当該第1基準ボスよりも前記光学素子部分から離れた前記第2基準ボスとの前記光軸に垂直な方向に関する距離をL2としたときに、L1/L2<1である、請求項3及び4のいずれか一項に記載の光学成形品。 The distance between the first reference boss and the optical element portion in the direction perpendicular to the optical axis of the optical element portion is L1, and the distance between the first reference boss and the first reference boss is more distant from the optical element portion. 5. The optically molded product according to claim 3, wherein L1 / L2 <1 when L2 is a distance in a direction perpendicular to the optical axis with respect to the second reference boss.
  14.  前記第1及び第2基準ボスの前記光学素子部分の光軸に平行な方向に関する厚みをt1とし、前記支軸部の光軸に平行な方向に関する厚みをt2としたときに、t1/t2<1である、請求項3及び4のいずれか一項に記載の光学成形品。 When the thickness of the first and second reference bosses in the direction parallel to the optical axis of the optical element portion is t1, and the thickness of the support shaft portion in the direction parallel to the optical axis is t2, t1 / t2 < The optical molded product according to claim 3, which is 1.
  15.  前記支軸部のうち前記先端側ゲート部の反対側に根元側ゲート部が連結されている、請求項1に記載の光学成形品。 The optical molded product according to claim 1, wherein a root-side gate portion is connected to the opposite side of the tip-side gate portion of the support shaft portion.
  16.  前記先端側ゲート部は、分岐して延び、先端側に複数の光学素子部分を有する、請求項1に記載の光学成形品。 2. The optical molded product according to claim 1, wherein the tip side gate portion extends in a branched manner and has a plurality of optical element portions on the tip side.
  17.  光学的な機能を有する光学素子部分を先端側ゲート部を介して支持する支軸部を有するとともに、当該支軸部に前記光学素子部分の3次元的な配置及び回転姿勢を規制するための位置決め部を予め設けた光学成形品を準備する工程と、
     支持治具上に前記位置決め部を固定することによって、前記光学素子部分の光軸に垂直な面内の配置の規制と前記光軸に平行な方向の配置の規制とを行うとともに、前記光軸に平行な軸の周りの回転の規制と前記光軸に平行となるべき軸に対する傾斜の規制とを行う工程と、
     前記支持治具をステージにセットすることによって光学成形品の特性に関する測定を行う工程と
    を備える光学成形品の測定方法。
    Positioning for restricting the three-dimensional arrangement and rotation posture of the optical element portion on the support shaft portion having a support shaft portion for supporting the optical element portion having an optical function via the tip side gate portion A step of preparing an optical molded product provided with a part in advance;
    By fixing the positioning portion on a support jig, the arrangement of the optical element portion in a plane perpendicular to the optical axis and the arrangement in a direction parallel to the optical axis are regulated, and the optical axis Restricting rotation about an axis parallel to the optical axis and restricting inclination with respect to an axis to be parallel to the optical axis;
    A method of measuring an optical molded product comprising: measuring the characteristics of the optical molded product by setting the support jig on a stage.
  18.  前記支持治具上に前記位置決め部を固定する際に、第1基準ボスを前記支持治具に当接させることによって、前記光学素子部分の光軸に垂直な面内における配置を規制し、第2基準ボスを前記支持治具に当接させることによって、前記光軸に平行な軸の周りの回転を規制し、基準面を前記支持治具に当接させることによって、前記光軸に平行な方向の配置と前記光軸に平行となるべき軸に対する傾斜とを規制する、請求項17に記載の光学成形品の測定方法。 When fixing the positioning portion on the support jig, the first reference boss is brought into contact with the support jig, thereby restricting the arrangement of the optical element portion in a plane perpendicular to the optical axis. 2 The reference boss is brought into contact with the support jig to restrict rotation around an axis parallel to the optical axis, and the reference plane is brought into contact with the support jig to make it parallel to the optical axis. The method for measuring an optical molded article according to claim 17, wherein the arrangement of directions and the inclination with respect to an axis to be parallel to the optical axis are restricted.
  19.  前記支持治具上に前記位置決め部を固定する際に、前記支軸部の本体の長手方向及び前記光学素子部分の光軸に垂直な第1方向に延びる一対の基準ボスを前記支持治具に当接させることによって、前記光軸に垂直な面内の前記第1方向に垂直な第2方向における配置と、前記光軸に平行な軸の周りの回転とを規制し、第1基準面を前記支持治具に当接させることによって、前記光軸に垂直な面内の前記第1方向における配置を規制し、第2基準面を前記支持治具に当接させることによって、前記光軸に平行な方向の配置と前記光軸に平行となるべき軸に対する傾斜とを規制する、請求項17に記載の光学成形品の測定方法。 When fixing the positioning portion on the support jig, a pair of reference bosses extending in the first direction perpendicular to the longitudinal direction of the main body of the support shaft portion and the optical axis of the optical element portion are used as the support jig. By abutting, the arrangement in the second direction perpendicular to the first direction in the plane perpendicular to the optical axis and the rotation around the axis parallel to the optical axis are restricted, and the first reference plane is The arrangement in the first direction in the plane perpendicular to the optical axis is regulated by contacting the support jig, and the optical axis is brought into contact with the second reference plane by contacting the support jig. The method for measuring an optical molded product according to claim 17, wherein arrangement in a parallel direction and inclination with respect to an axis to be parallel to the optical axis are restricted.
  20.  前記支持治具上に前記位置決め部を固定する際に、前記支軸部の本体の長手方向に平行な第2方向に延びる第1基準部を前記支持治具に当接させることによって、前記光軸に垂直な面内の前記第2方向に垂直な第1方向における配置と、前記光軸に平行な軸の周りの回転と、前記光軸に平行な方向の配置と、前記光軸に平行となるべき軸に対する傾斜とを規制し、前記光学素子部分の光軸に垂直であって前記第2方向に垂直な第1方向に延びる第2基準部を前記支持治具に当接させることによって、前記光軸に垂直な面内の前記第2方向における配置と、前記光軸に平行な軸の周りの回転と、前記光軸に平行な方向の配置と、前記光軸に平行となるべき軸に対する傾斜とを規制する、請求項17に記載の光学成形品の測定方法。 When the positioning part is fixed on the support jig, the first reference part extending in a second direction parallel to the longitudinal direction of the main body of the support shaft part is brought into contact with the support jig, whereby the light An arrangement in a first direction perpendicular to the second direction in a plane perpendicular to the axis, a rotation around an axis parallel to the optical axis, an arrangement in a direction parallel to the optical axis, and a parallel to the optical axis By restricting the inclination with respect to the axis to be, and bringing a second reference portion extending in a first direction perpendicular to the optical axis of the optical element portion and perpendicular to the second direction into contact with the support jig , Arrangement in the second direction in a plane perpendicular to the optical axis, rotation around an axis parallel to the optical axis, arrangement in a direction parallel to the optical axis, and parallel to the optical axis The method for measuring an optical molded product according to claim 17, wherein the inclination with respect to the axis is regulated.
PCT/JP2013/074504 2012-09-14 2013-09-11 Optical molded article and method for measuring same WO2014042179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014535568A JPWO2014042179A1 (en) 2012-09-14 2013-09-11 Optical molded product and measuring method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-203713 2012-09-14
JP2012203713 2012-09-14

Publications (1)

Publication Number Publication Date
WO2014042179A1 true WO2014042179A1 (en) 2014-03-20

Family

ID=50278289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074504 WO2014042179A1 (en) 2012-09-14 2013-09-11 Optical molded article and method for measuring same

Country Status (2)

Country Link
JP (1) JPWO2014042179A1 (en)
WO (1) WO2014042179A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292306A (en) * 1996-04-25 1997-11-11 Asahi Optical Co Ltd Optical-member inspecting apparatus
JP2003161880A (en) * 2001-09-14 2003-06-06 Konica Corp Molded optical component, handling method of molded optical component, mold for optical component, molding method for molded optical component, optical pickup unit, and assembling method of optical pickup unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292306A (en) * 1996-04-25 1997-11-11 Asahi Optical Co Ltd Optical-member inspecting apparatus
JP2003161880A (en) * 2001-09-14 2003-06-06 Konica Corp Molded optical component, handling method of molded optical component, mold for optical component, molding method for molded optical component, optical pickup unit, and assembling method of optical pickup unit

Also Published As

Publication number Publication date
JPWO2014042179A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5903892B2 (en) Manufacturing method of imaging lens unit
JP5725042B2 (en) Mold, wafer lens and optical lens manufacturing method
JP2014202906A (en) Lens unit structure of mold lens and molding die of mold lens
JP6485449B2 (en) Mold for optical element and method for manufacturing optical element
WO2014042179A1 (en) Optical molded article and method for measuring same
JP2016021005A (en) Lens retaining device, adjustment method of lens retaining device and lens retaining method
JP2007301744A (en) Mold for molding resin lens and resin lens molding method
US20070166426A1 (en) Mold
JPH08201672A (en) Fixing structure of optical member
US7499220B2 (en) Optical lens and method of manufacturing the same
JP2003021771A (en) Optical lens device and its manufacturing method
JP2006289692A (en) Manufacturing method of mirror surface component, manufacturing method of optical element and optical element
JP5125913B2 (en) Optical fiber connecting element manufacturing method, molding apparatus, and optical fiber connecting element
JP2011025430A (en) Mold and method for positionally adjusting the same
JP6277682B2 (en) Mold for optical element and molding method
US7327522B2 (en) Optical lens and method of manufacturing the same
JP2012206338A (en) Method for manufacturing of optical element
JP2007001282A (en) Molding die and its manufacturing method
WO2009096219A1 (en) Method for machining die, die for injection molding, and optical element
JP2004219478A (en) Optical fiber collimating unit
JP2007111917A (en) Mold and mold assembling method
US9914252B2 (en) Molding die, optical element manufacturing method, and optical element
TWI332900B (en) Mold
JPH11207788A (en) Mold for molding and composite lens
Pun et al. Unique cost-effective approach for multisurfaced micro-aspheric lens prototyping and fabrication by single-point diamond turning and micro-injection molding technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836719

Country of ref document: EP

Kind code of ref document: A1