WO2014042092A1 - Liquid crystal panel and display device - Google Patents

Liquid crystal panel and display device Download PDF

Info

Publication number
WO2014042092A1
WO2014042092A1 PCT/JP2013/074084 JP2013074084W WO2014042092A1 WO 2014042092 A1 WO2014042092 A1 WO 2014042092A1 JP 2013074084 W JP2013074084 W JP 2013074084W WO 2014042092 A1 WO2014042092 A1 WO 2014042092A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
sealing material
color filter
substrates
Prior art date
Application number
PCT/JP2013/074084
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤昌稔
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014042092A1 publication Critical patent/WO2014042092A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a liquid crystal panel and a display device using the same.
  • liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes.
  • a liquid crystal display device includes an illumination device (backlight device) that emits light, and a liquid crystal panel that displays a desired image by serving as a shutter for light from a light source provided in the illumination device. It is included.
  • the liquid crystal panel as described above includes a liquid crystal layer containing liquid crystal molecules and a pair of substrates sandwiching the liquid crystal layer.
  • a plurality of pixels are provided in the effective display area.
  • a color filter layer of one of red (R), green (G), and blue (B) formed on one side of a pair of substrates has a corresponding color. It is designed to display.
  • a black matrix light-shielding film
  • the display contrast is improved.
  • a black matrix is formed in a frame shape so as to be along the outer peripheral portion of one substrate outside the effective display area, and light is transmitted from the outside of the effective display area to the outside by this frame-shaped black matrix. It is designed to prevent leakage.
  • a sealing material is provided on the outer peripheral portion of these substrates (that is, the outer peripheral portion of the liquid crystal panel) in order to seal the liquid crystal layer between the pair of substrates.
  • a conventional liquid crystal panel uses a black seal material, and is provided with a cutting portion spacer at a portion of a scribe line that separates each liquid crystal panel from a mother substrate.
  • the thickness of the black seal material in the scribe line that is, the thickness of the outer peripheral portion of the black seal member is made smaller than the thickness of the inner peripheral portion.
  • this conventional liquid crystal panel it is possible to stably separate individual liquid crystal panels from the mother substrate by the cutting portion spacer while preventing light leakage from the outer peripheral portion of the liquid crystal panel by the black seal material. It was supposed to be.
  • the black sealing material is constituted by adding carbon, Ti black, etc. to the epoxy resin, but the black sealing material has insufficient light shielding properties.
  • the width dimension of the black sealing material is also reduced, the light shielding property of the black sealing material is greatly reduced, and light leaks to the outside.
  • the thickness of the black seal material is small on the side where the cut spacers are provided, and thus light leakage is likely to occur. As a result, this conventional liquid crystal panel has a problem that display quality is deteriorated.
  • the present invention provides a liquid crystal panel excellent in display quality capable of reliably preventing the occurrence of light leakage even when a narrow frame is achieved, and a display device using the same. Objective.
  • a liquid crystal panel according to the present invention is a liquid crystal panel having a pair of substrates and a liquid crystal layer provided between the pair of substrates,
  • the outer peripheral portion of the pair of substrates is provided in a frame shape, and includes a sealing material for sealing the liquid crystal layer,
  • the sealing material is colored so that the optical density value is 3 or more.
  • a frame-shaped sealing material is provided on the outer periphery of the pair of substrates.
  • this sealing material is colored so that the optical density value is 3 or more.
  • the sealing material is configured such that the outer peripheral portion has a greater thickness than the inner peripheral portion.
  • the liquid crystal panel may further include first and second insulating films provided on the surfaces of the pair of substrates, It is preferable that an outer peripheral portion of the sealing material is provided on the first and second insulating films.
  • the adhesive strength of the sealing material can be improved with respect to each pair of substrates.
  • an outer peripheral portion of the sealing material is provided on the surface of each of the pair of substrates.
  • the adhesive strength of the sealing material can be further improved with respect to the pair of substrates.
  • a black matrix film is provided on the surface of one of the pair of substrates, It is preferable that an overlap dimension in which the inner peripheral portion of the sealing material and the black matrix film overlap each other is set to be less than 0.1 mm.
  • the boundary accuracy between the effective display area and the frame area of the liquid crystal panel can be improved, and a sealing material can be firmly provided for the pair of substrates.
  • the sealing material is provided so that an outer peripheral portion thereof coincides with each end portion of the pair of substrates.
  • a sealing material having a thermal radical polymerization initiator and a radical polymerizable resin is used as the sealing material.
  • a sealing material can be easily and firmly provided for each pair of substrates.
  • the display device of the present invention is characterized by using any of the above liquid crystal panels.
  • a liquid crystal panel with excellent display quality that can reliably prevent the occurrence of light leakage even when narrowing the frame is used. It is possible to easily configure a high-performance display device having the same.
  • the present invention it is possible to provide a liquid crystal panel excellent in display quality that can reliably prevent the occurrence of light leakage even when narrowing the frame, and a display device using the same.
  • FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG.
  • FIG. 3 is a plan view for explaining a sealing material provided in the liquid crystal panel.
  • FIG. 4 is a cross-sectional view for explaining the main configuration of the liquid crystal panel.
  • FIG. 5 is a cross-sectional view for explaining a main configuration of a liquid crystal panel according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view for explaining the main configuration of a liquid crystal panel according to the third embodiment of the present invention.
  • FIG. 7 is a plan view for explaining a sealing material provided in a liquid crystal panel according to the fourth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view for explaining a main configuration of the liquid crystal panel shown in FIG.
  • FIG. 9 is a cross-sectional view for explaining the main configuration of a liquid crystal panel according to the fifth embodiment
  • FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention.
  • the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 in which the upper side of FIG. 1 is installed as a viewing side (display surface side), and a non-display surface side of the liquid crystal panel 2 (lower side of FIG. 1). And a backlight device 3 that generates illumination light for illuminating the liquid crystal panel 2.
  • the liquid crystal panel 2 includes a color filter substrate 4 and an active matrix substrate 5 that constitute a pair of one and other substrates, respectively, and polarizing plates 6 and 7 provided on the outer surfaces of the color filter substrate 4 and the active matrix substrate 5, respectively. And. A liquid crystal layer LC is sandwiched between the color filter substrate 4 and the active matrix substrate 5. In the liquid crystal panel 2, as will be described in detail later, the liquid crystal layer LC is sealed with a sealing material.
  • the color filter substrate 4 and the active matrix substrate 5 are made of a flat transparent glass material or a transparent synthetic resin such as an acrylic resin.
  • Resin films such as TAC (triacetyl cellulose) or PVA (polyvinyl alcohol) are used for the polarizing plates 6 and 7 and correspond to cover at least the effective display area of the display surface provided in the liquid crystal panel 2. It is bonded to the color filter substrate 4 or the active matrix substrate 5.
  • pixel electrodes, thin film transistors (TFTs), and the like are formed between the liquid crystal layer LC in accordance with a plurality of pixels included in the display surface of the liquid crystal panel 2 ( Details will be described later.)
  • TFTs thin film transistors
  • a color filter layer (not shown), an overcoat film described later, a common electrode, and the like are formed between the liquid crystal layer LC.
  • the liquid crystal panel 2 is provided with an FPC (Flexible Printed Circuit) 8 connected to a control device (not shown) for controlling the drive of the liquid crystal panel 2, and operates the liquid crystal layer LC in units of pixels.
  • FPC Flexible Printed Circuit
  • the display surface is driven in units of pixels, and a desired image is displayed on the display surface.
  • the liquid crystal mode and pixel structure of the liquid crystal panel 2 are arbitrary. Moreover, the drive mode of the liquid crystal panel 2 is also arbitrary. That is, as the liquid crystal panel 2, any liquid crystal panel that can display information can be used. Therefore, the detailed structure of the liquid crystal panel 2 is not shown in FIG.
  • the backlight device 3 includes a light emitting diode 9 as a light source, and a light guide plate 10 disposed to face the light emitting diode 9. Further, in the backlight device 3, the light emitting diode 9 and the light guide plate 10 are sandwiched by the bezel 14 having an L-shaped cross section in a state where the liquid crystal panel 2 is installed above the light guide plate 10. A case 11 is placed on the color filter substrate 4. Thus, the backlight device 3 is assembled to the liquid crystal panel 2 and is integrated as a transmissive liquid crystal display device 1 in which illumination light from the backlight device 3 is incident on the liquid crystal panel 2.
  • the light guide plate 10 for example, a synthetic resin such as a transparent acrylic resin is used, and light from the light emitting diode 9 enters.
  • a reflection sheet 12 is installed on the opposite side (opposite surface side) of the light guide plate 10 to the liquid crystal panel 2.
  • an optical sheet 13 such as a lens sheet or a diffusion sheet is provided on the liquid crystal panel 2 side (light emitting surface side) of the light guide plate 10, and the inside of the light guide plate 10 has a predetermined light guide direction (left side in FIG. 1). The light from the light emitting diode 9 guided in the direction from the right side to the right side is changed to the planar illumination light having uniform luminance and applied to the liquid crystal panel 2.
  • the present embodiment is not limited to this, and a direct type backlight device is used. May be.
  • a backlight device having other light sources such as a cold cathode fluorescent tube and a hot cathode fluorescent tube other than the light emitting diode can also be used.
  • liquid crystal panel 2 of the present embodiment will be specifically described with reference to FIG.
  • FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG.
  • the liquid crystal display device 1 includes a panel control unit 15 that controls driving of the liquid crystal panel 2 (FIG. 1) as the display unit that displays information such as characters and images, and the panel control.
  • a source driver 16 and a gate driver 17 that operate based on an instruction signal from the unit 15 are provided.
  • the panel control unit 15 is provided in the control device, and receives a video signal from the outside of the liquid crystal display device 1. Further, the panel control unit 15 performs predetermined image processing on the input video signal to generate each instruction signal to the source driver 16 and the gate driver 17, and the input video signal. A frame buffer 15b capable of storing display data for one frame included. Then, the panel control unit 15 performs drive control of the source driver 16 and the gate driver 17 according to the input video signal, so that information according to the video signal is displayed on the liquid crystal panel 2.
  • the source driver 16 and the gate driver 17 are installed on the active matrix substrate 5. Specifically, the source driver 16 is installed on the surface of the active matrix substrate 5 along the lateral direction of the liquid crystal panel 2 in the outer region of the effective display area A of the liquid crystal panel 2 as a display panel. . Further, the gate driver 17 is installed on the surface of the active matrix substrate 5 so as to be along the vertical direction of the liquid crystal panel 2 in the outer region of the effective display region A.
  • the source driver 16 and the gate driver 17 are drive circuits that drive a plurality of pixels P provided on the liquid crystal panel 2 side by pixel.
  • the source driver 16 and the gate driver 17 include a plurality of source lines S1 to S1.
  • SM is an integer of 2 or more, hereinafter collectively referred to as “S”
  • G gate wirings G1 to GN
  • S source lines
  • G1 to GN gate wirings G1 to GN
  • G is an integer of 2 or more and is hereinafter collectively referred to as “G”.
  • These source wiring S and gate wiring G constitute a data wiring and a scanning wiring, respectively, on a transparent glass material or a transparent synthetic resin substrate (not shown) included in the active matrix substrate 5.
  • the source wiring S is provided on the substrate so as to be parallel to the matrix-like column direction (vertical direction of the liquid crystal panel 2), and the gate wiring G is arranged in the matrix-like row direction (horizontal of the liquid crystal panel 2). Is provided on the substrate so as to be parallel to (direction).
  • the thin film transistor 18 as a switching element and the pixel P having the pixel electrode 19 connected to the thin film transistor 18 are provided.
  • the common electrode 20 is configured to face the pixel electrode 19 with the liquid crystal layer LC provided on the liquid crystal panel 2 interposed therebetween. That is, in the active matrix substrate 5, the thin film transistor 18, the pixel electrode 19, and the common electrode 20 are provided for each pixel.
  • regions of a plurality of pixels P are formed in each region partitioned in a matrix by the source wiring S and the gate wiring G.
  • the plurality of pixels P include red (R), green (G), and blue (B) pixels. These RGB pixels are sequentially arranged in this order, for example, in parallel with the gate wirings G1 to GN. Further, these RGB pixels can display corresponding colors by a color filter layer (not shown) provided on the color filter substrate 4 side.
  • the gate driver 17 scans the gate wirings G1 to GN with respect to the gate wirings G1 to GN based on the instruction signal from the image processing unit 15a (gate signal). Signal) in sequence. Further, the source driver 16 supplies a data signal (voltage signal (gradation voltage)) corresponding to the luminance (gradation) of the display image to the corresponding source wirings S1 to SM based on the instruction signal from the image processing unit 15a. Output.
  • FIG. 3 is a plan view for explaining the sealing material provided on the liquid crystal panel.
  • FIG. 4 is a cross-sectional view for explaining the main configuration of the liquid crystal panel.
  • a frame-like sealing material F (shown by hatching) is provided on the outer periphery of the liquid crystal panel 2, and is surrounded by the sealing material F.
  • the liquid crystal layer LC is sealed in the region.
  • the liquid crystal molecules do not need an injection port, and are filled in a region surrounded by the sealing material F by, for example, an ODF (dropping) method.
  • An effective display area A of the liquid crystal panel 2 is set on the inner side of the area surrounded by the sealing material F.
  • an overlayer as a first insulating film is formed on the inner surface of the color filter substrate 4 (that is, the surface facing the active matrix substrate 5).
  • a coat film 21a is formed.
  • a common electrode 20 and a first alignment film 22a are formed on the overcoat film 21a so as to cover the common electrode 20.
  • an interlayer insulating film 21b as a second insulating film is formed on the inner surface of the active matrix substrate 5 (that is, the surface facing the color filter substrate 4).
  • an interlayer insulating film 21b is formed on the inner surface of the active matrix substrate 5 (that is, the surface facing the color filter substrate 4).
  • a pixel electrode 19 and a second alignment film 22b are formed so as to cover the pixel electrode 19.
  • a sealing material F is provided on the outer peripheral portions of the color filter substrate 4 and the active matrix substrate 5 to seal the liquid crystal layer LC.
  • the outer peripheral portion F1 is provided on the overcoat film 21a and the interlayer insulating film 21b
  • the inner peripheral portion F2 is provided on the first and second alignment films 22a and 22b.
  • the thickness of the outer peripheral portion F1 is the thickness of the inner peripheral portion F2. It is larger than that.
  • an organic planarizing film made of a transparent synthetic resin is used as the overcoat film 21a and the interlayer insulating film 21b.
  • transparent polyimide films are used as the first and second alignment films 22a and 22b.
  • the sealing material F for example, a sealing material having a thermal radical polymerization initiator colored in black and a radical polymerizable resin is used.
  • This sealing material adds a thermal radical polymerization initiator to the conventional radical photopolymerization initiator in addition to the radical polymerization resin, thereby reducing the amount of UV irradiation required for photocuring and reducing the amount of heat curing. It is configured so that heat seal curing is possible while suppressing elution of the uncured resin at the time into the liquid crystal layer. As a result, in the liquid crystal panel 2 of the present embodiment, even when the frame is narrowed, the sealing material F is easily cured to form the color filter substrate 4 and the active matrix substrate 5 (a pair of substrates).
  • thermal radical polymerization initiator examples include organic peroxide compounds and azo compounds.
  • the radical polymerizable resin is not particularly limited as long as it is a resin having a thermal radical reactive functional group in the molecule.
  • the sealing material F has an optical density (OpticalOptDensity) value of 3 or more per 1 ⁇ m by adding a black pigment or dye to the thermal radical polymerization initiator and the radical polymerizable resin. It is colored. In other words, the sealing material F is colored, for example, black so that the value per 1 ⁇ m of the optical density, which is also called the optical density or the absorbance defined by the Lambert-Beer law, is 3 or more.
  • a ⁇ ⁇ log 10 (I / I0) ⁇ (1)
  • the sealing material F is colored black so that the value of the optical density A ⁇ obtained in step 1 is 3 or more per 1 ⁇ m.
  • the width of the sealing material F that is, the horizontal dimension in FIG. 4
  • the sealing material F is reduced. It is possible to reliably prevent light from leaking to the outside.
  • a frame-shaped sealing material F is provided on the outer periphery of the color filter substrate 4 and the active matrix substrate 5 as a pair of substrates. Further, the sealing material F is colored so that the optical density value is 3 or more. As a result, in the present embodiment, unlike the conventional example, even when the frame is narrowed, the occurrence of light leakage can be reliably prevented, and the liquid crystal panel 2 excellent in display quality can be configured.
  • the sealing material F is configured such that the thickness of the outer peripheral portion F1 is larger than the thickness of the inner peripheral portion F2.
  • an overcoat film 21a and an interlayer insulating film 21b (first and second insulating films) provided on the surfaces of the color filter substrate 4 and the active matrix substrate 5 are provided.
  • An outer peripheral portion F1 is provided on the overcoat film 21a and the interlayer insulating film 21b.
  • the liquid crystal panel 2 having excellent display quality that can reliably prevent the occurrence of light leakage even when narrowing the frame is used.
  • a simple liquid crystal display device (display device) 1 can be easily configured.
  • FIG. 5 is a cross-sectional view for explaining a main configuration of a liquid crystal panel according to the second embodiment of the present invention.
  • the black matrix film is provided on the surface of the color filter substrate, and the inner peripheral portion of the sealing material and the black matrix film overlap each other.
  • the dimension of is set to less than 0.1 mm.
  • symbol is attached
  • a black matrix film 23 is provided on the inner surface of the color filter substrate 4, and an overcoat is formed so as to cover the black matrix film 23.
  • a film 21a is formed.
  • the overlap dimension (indicated by “H1” in FIG. 5) where the inner peripheral portion F2 of the sealing material F and the black matrix film 23 overlap each other is set to be less than 0.1 mm. Has been.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the black matrix film 23 is provided on the inner surface of the color filter substrate 4, the boundary accuracy between the effective display area A and the frame area of the liquid crystal panel 2 can be improved.
  • the overlap dimension H1 is set to be less than 0.1 mm, even when the sealing material F is cured by irradiating the sealing material F with ultraviolet rays from the color filter substrate 4 side.
  • the black matrix film 23 can be prevented from interfering with ultraviolet irradiation.
  • the sealing material F can be firmly provided on each of the color filter substrate 4 and the active matrix substrate 5 (a pair of substrates).
  • the overlap dimension H1 is set to 0.1 mm or more, it becomes difficult to obtain ultraviolet radiation shortage (that is, insufficient amount of irradiated ultraviolet light) and thermal radical reaction, and the sealing material F is provided firmly. May be difficult.
  • FIG. 6 is a cross-sectional view for explaining the main configuration of a liquid crystal panel according to the third embodiment of the present invention.
  • the main difference between this embodiment and the first embodiment is that an outer peripheral portion of a sealing material is provided on each surface of the color filter substrate and the active matrix substrate.
  • an outer peripheral portion of a sealing material is provided on each surface of the color filter substrate and the active matrix substrate.
  • the outer peripheral portion F1 of the sealing material F is provided on each inner surface of the color filter substrate 4 and the active matrix substrate 5.
  • the overcoat film 21a and the interlayer insulating film 21b are not provided, and the outer peripheral portion F1 of the sealing material F is the color filter substrate. 4 and each inner surface of the active matrix substrate 5 are provided directly.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the outer peripheral portion F1 of the sealing material F is directly provided on the inner surfaces of the color filter substrate 4 and the active matrix substrate 5, each of the color filter substrate 4 and the active matrix substrate 5 is provided.
  • the adhesive strength of the sealing material F can be further improved with respect to the substrates (a pair of substrates).
  • FIG. 7 is a plan view for explaining a sealing material provided in a liquid crystal panel according to the fourth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view for explaining a main configuration of the liquid crystal panel shown in FIG.
  • the outer peripheral portion of the sealing material is made to coincide with each end of the color filter substrate and the active matrix substrate.
  • symbol is attached
  • the outer peripheral portion F1 of the sealing material F is an end portion of the liquid crystal panel 2, that is, each end portion of the color filter substrate 4 and the active matrix substrate 5. It is provided to match.
  • the overcoat film 21a ′ and the interlayer insulating film 21b ′ are formed so as to coincide with the end portions of the corresponding color filter substrate 4 and active matrix substrate 5.
  • a transparent thermosetting resin is used for the overcoat film 21a 'and the interlayer insulating film 21b'.
  • the outer peripheral portion F1 is provided on the overcoat film 21a 'and the interlayer insulating film 21b'.
  • the present embodiment can achieve the same operations and effects as the first embodiment.
  • the sealing material F is provided so that the outer peripheral portion F1 thereof coincides with each end of the color filter substrate 4 and the active matrix substrate 5.
  • the narrow frame of the liquid crystal panel 2 can be achieved easily.
  • FIG. 9 is a cross-sectional view for explaining the main configuration of a liquid crystal panel according to the fifth embodiment of the present invention.
  • the main difference between the present embodiment and the fourth embodiment is that an ultraviolet curable resin is used for the overcoat film and the interlayer insulating film.
  • an ultraviolet curable resin is used for the overcoat film and the interlayer insulating film.
  • symbol is attached
  • the overcoat film 21a "and the interlayer insulating film 21b" are provided on the inner surfaces of the corresponding color filter substrate 4 and active matrix substrate 5. .
  • a transparent ultraviolet curable resin is used for example.
  • the first and second overcoat films 21a "and the interlayer insulating film 21b" are formed so as to coincide with the end portions of the corresponding color filter substrate 4 and active matrix substrate 5. May be.
  • the outer peripheral portion F ⁇ b> 1 is provided on the inner surfaces of the color filter substrate 4 and the active matrix substrate 5.
  • the first inner peripheral portion F2 is provided on the overcoat film 21a "and the interlayer insulating film 21b", and the second inner peripheral portion F3 is provided on the first and second alignment films 22a and 22b. Yes.
  • the present embodiment can achieve the same operations and effects as the fourth embodiment.
  • the liquid crystal panel of the present invention is not limited to this, for example, a transflective liquid crystal display device, or The liquid crystal panel of the present invention can be suitably used for a projection display device using the liquid crystal panel as a light valve.
  • the sealing material of the present invention is not limited to this, for example, An ultraviolet curable resin type, a thermosetting resin type, and a combined resin type can also be used.
  • a sealing material having a thermal radical polymerization initiator and a radical polymerizable resin as in each of the above-described embodiments because the sealing material can be easily and firmly provided. That is, even when it becomes difficult to irradiate the sealing material with ultraviolet rays by narrowing the frame, the case of using the sealing material having the thermal radical polymerization initiator and the radical polymerizable resin is more suitable for the pair of substrates. This is because the sealing material can be easily hardened and firmly provided, and the components of the sealing material can be easily prevented from eluting into the liquid crystal layer.
  • the present invention is useful for a liquid crystal panel excellent in display quality capable of reliably preventing the occurrence of light leakage even when narrowing the frame and a display device using the same.

Abstract

A liquid crystal panel (2) having as a pair of substrates a color filter substrate (4) and an active matrix substrate (5), and a liquid crystal layer (LC) provided between the color filter substrate (4) and the active matrix substrate (5), wherein a seal material (F) is provided for sealing the liquid crystal layer (LC), the seal material (F) being provided in a frame shape on the external periphery of the color filter substrate (4) and the active matrix substrate (5), and the seal material (F) is colored so that the optical density thereof has a value of at least 3.

Description

液晶パネル、及び表示装置Liquid crystal panel and display device
 本発明は、液晶パネル、及びこれを用いた表示装置に関する。 The present invention relates to a liquid crystal panel and a display device using the same.
 近年、例えば液晶表示装置は、在来のブラウン管に比べて薄型、軽量などの特長を有するフラットパネルディスプレイとして、液晶テレビ、モニター、携帯電話などに幅広く利用されている。このような液晶表示装置には、光を発光する照明装置(バックライト装置)と、照明装置に設けられた光源からの光に対してシャッターの役割を果たすことで所望画像を表示する液晶パネルとが含まれている。 In recent years, for example, liquid crystal display devices have been widely used in liquid crystal televisions, monitors, mobile phones and the like as flat panel displays having features such as thinness and light weight compared to conventional cathode ray tubes. Such a liquid crystal display device includes an illumination device (backlight device) that emits light, and a liquid crystal panel that displays a desired image by serving as a shutter for light from a light source provided in the illumination device. It is included.
 また、上記のような液晶パネルは、液晶分子を含んだ液晶層と、この液晶層を狭持する一対の基板とを備えている。また、液晶パネルでは、その有効表示領域内に複数の画素が設けられている。これら複数の画素では、一般的に、一対の基板の一方側に形成された赤色(R)、緑色(G)、及び青色(B)のいずれかの色のカラーフィルター層により、対応する色の表示を行うようになっている。また、液晶パネルでは、隣接する2つのカラーフィルター層の間に配置されるように、ブラックマトリクス(遮光膜)が一対の基板の一方側に形成されており、RGBの各画素を区切って液晶パネルでの表示コントラストの向上が図られている。さらに、液晶パネルでは、ブラックマトリクスが有効表示領域の外側で一方の基板の外周部に沿うように額縁状に形成されており、この額縁状のブラックマトリクスにより有効表示領域の外側から光が外部に漏れるのを防ぐようになっている。 The liquid crystal panel as described above includes a liquid crystal layer containing liquid crystal molecules and a pair of substrates sandwiching the liquid crystal layer. In the liquid crystal panel, a plurality of pixels are provided in the effective display area. In the plurality of pixels, generally, a color filter layer of one of red (R), green (G), and blue (B) formed on one side of a pair of substrates has a corresponding color. It is designed to display. In the liquid crystal panel, a black matrix (light-shielding film) is formed on one side of a pair of substrates so as to be disposed between two adjacent color filter layers. The display contrast is improved. Further, in the liquid crystal panel, a black matrix is formed in a frame shape so as to be along the outer peripheral portion of one substrate outside the effective display area, and light is transmitted from the outside of the effective display area to the outside by this frame-shaped black matrix. It is designed to prevent leakage.
 また、液晶パネルでは、一対の基板の間に液晶層を封止するために、これらの基板の外周部(つまり、当該液晶パネルの外周部)にシール材が設けられている。 Further, in the liquid crystal panel, a sealing material is provided on the outer peripheral portion of these substrates (that is, the outer peripheral portion of the liquid crystal panel) in order to seal the liquid crystal layer between the pair of substrates.
 また、従来の液晶パネルには、例えば下記特許文献1に記載されているように、黒色シール材を用いるとともに、マザー基板から個々の液晶パネルを分離するスクライブ線の部分に切断部スペーサを設けて、当該スクライブ線における黒色シール材の厚さ、つまり当該黒色シール部材の外周部分の厚さを内周部分の厚さよりも小さくしていた。そして、この従来の液晶パネルでは、黒色シール材によって当該液晶パネルの外周部から光漏れが発生するのを防ぎつつ、切断部スペーサによってマザー基板から個々の液晶パネルを安定に分離することが可能であるとされていた。 In addition, as described in Patent Document 1 below, for example, a conventional liquid crystal panel uses a black seal material, and is provided with a cutting portion spacer at a portion of a scribe line that separates each liquid crystal panel from a mother substrate. The thickness of the black seal material in the scribe line, that is, the thickness of the outer peripheral portion of the black seal member is made smaller than the thickness of the inner peripheral portion. In this conventional liquid crystal panel, it is possible to stably separate individual liquid crystal panels from the mother substrate by the cutting portion spacer while preventing light leakage from the outer peripheral portion of the liquid crystal panel by the black seal material. It was supposed to be.
特開2012-32506号公報JP 2012-32506 A
 しかしながら、上記のような従来の液晶パネルでは、黒色シール材によって光漏れが生じるのを確実に防げないことがあった。特に、液晶パネルの狭額縁化を図ったときに、黒色シール材から外部に光が漏れ出るおそれがあった。 However, in the conventional liquid crystal panel as described above, it may not be possible to reliably prevent light leakage due to the black sealing material. In particular, when narrowing the frame of the liquid crystal panel, light may leak out from the black seal material.
 具体的にいえば、上記従来の液晶パネルでは、黒色シール材はエポキシ系樹脂に対して、カーボン、Tiブラック等を添加することによって構成されていたが、その黒色シール材の遮光性が不十分な場合があった。特に、狭額縁化を図ったときに、この従来の液晶パネルでは、黒色シール材の幅寸法も小さくなって、当該黒色シール材による遮光性が大幅に低下して、光が外部に漏れ出るのを防ぐことができなかった。とりわけ、この従来の液晶パネルでは、切断部スペーサを設けた側では、黒色シール材の厚さが小さいので、光漏れを発生し易いものであった。この結果、この従来の液晶パネルでは、表示品位が低下するという問題点を生じた。 Specifically, in the above-mentioned conventional liquid crystal panel, the black sealing material is constituted by adding carbon, Ti black, etc. to the epoxy resin, but the black sealing material has insufficient light shielding properties. There was a case. In particular, when narrowing the frame, in this conventional liquid crystal panel, the width dimension of the black sealing material is also reduced, the light shielding property of the black sealing material is greatly reduced, and light leaks to the outside. Could not prevent. In particular, in this conventional liquid crystal panel, the thickness of the black seal material is small on the side where the cut spacers are provided, and thus light leakage is likely to occur. As a result, this conventional liquid crystal panel has a problem that display quality is deteriorated.
 上記の課題を鑑み、本発明は、狭額縁化を図ったときでも、光漏れの発生を確実に防ぐことができる表示品位に優れた液晶パネル、及びこれを用いた表示装置を提供することを目的とする。 In view of the above-described problems, the present invention provides a liquid crystal panel excellent in display quality capable of reliably preventing the occurrence of light leakage even when a narrow frame is achieved, and a display device using the same. Objective.
 上記の目的を達成するために、本発明にかかる液晶パネルは、一対の基板と、前記一対の基板の間に設けられた液晶層とを有する液晶パネルであって、
 前記一対の基板の外周部に枠状に設けられるとともに、前記液晶層を封止するシール材を備え、
 前記シール材では、光学濃度の値が3以上となるように着色されていることを特徴とするものである。
In order to achieve the above object, a liquid crystal panel according to the present invention is a liquid crystal panel having a pair of substrates and a liquid crystal layer provided between the pair of substrates,
The outer peripheral portion of the pair of substrates is provided in a frame shape, and includes a sealing material for sealing the liquid crystal layer,
The sealing material is colored so that the optical density value is 3 or more.
 上記のように構成された液晶パネルでは、枠状のシール材が一対の基板の外周部に設けられている。また、このシール材では、光学濃度の値が3以上となるように着色されている。これにより、上記従来例と異なり、狭額縁化を図ったときでも、光漏れの発生を確実に防ぐことができ、表示品位に優れた液晶パネルを構成することができる。 In the liquid crystal panel configured as described above, a frame-shaped sealing material is provided on the outer periphery of the pair of substrates. In addition, this sealing material is colored so that the optical density value is 3 or more. Thus, unlike the conventional example, even when the frame is narrowed, the occurrence of light leakage can be surely prevented, and a liquid crystal panel excellent in display quality can be configured.
 また、上記液晶パネルにおいて、前記シール材では、その外周部分の厚さが内周部分の厚さよりも大きく構成されていることが好ましい。 Further, in the liquid crystal panel, it is preferable that the sealing material is configured such that the outer peripheral portion has a greater thickness than the inner peripheral portion.
 この場合、狭額縁化を図ったときでも、光漏れの発生をより確実に防ぐことができる。 In this case, the occurrence of light leakage can be more reliably prevented even when the frame is narrowed.
 また、上記液晶パネルにおいて、前記一対の基板の表面上にそれぞれ設けられた第1及び第2の絶縁膜を備え、
 前記シール材の外周部分が、前記第1及び第2の絶縁膜上に設けられていることが好ましい。
The liquid crystal panel may further include first and second insulating films provided on the surfaces of the pair of substrates,
It is preferable that an outer peripheral portion of the sealing material is provided on the first and second insulating films.
 この場合、一対の各基板に対して、シール材の接着強度を向上させることができる。 In this case, the adhesive strength of the sealing material can be improved with respect to each pair of substrates.
 また、上記液晶パネルにおいて、前記シール材では、その外周部分が前記一対の各基板の表面上に設けられていることが好ましい。 In the liquid crystal panel, it is preferable that an outer peripheral portion of the sealing material is provided on the surface of each of the pair of substrates.
 この場合、一対の各基板に対して、シール材の接着強度をさらに向上させることができる。 In this case, the adhesive strength of the sealing material can be further improved with respect to the pair of substrates.
 また、上記液晶パネルにおいて、前記一対の基板の一方の基板の表面には、ブラックマトリクス膜が設けられるとともに、
 前記シール材の内周部分と前記ブラックマトリクス膜とが互いに重なり合うオーバーラップの寸法が、0.1mm未満に設定されていることが好ましい。
In the liquid crystal panel, a black matrix film is provided on the surface of one of the pair of substrates,
It is preferable that an overlap dimension in which the inner peripheral portion of the sealing material and the black matrix film overlap each other is set to be less than 0.1 mm.
 この場合、液晶パネルの有効表示領域と額縁領域との境界精度を向上させることができるとともに、一対の各基板に対して、シール材を強固に設けることができる。 In this case, the boundary accuracy between the effective display area and the frame area of the liquid crystal panel can be improved, and a sealing material can be firmly provided for the pair of substrates.
 また、上記液晶パネルにおいて、前記シール材では、その外周部分が前記一対の基板の各端部に一致するように設けられていることが好ましい。 Further, in the liquid crystal panel, it is preferable that the sealing material is provided so that an outer peripheral portion thereof coincides with each end portion of the pair of substrates.
 この場合、液晶パネルの狭額縁化を容易に図ることができる。 In this case, it is possible to easily narrow the frame of the liquid crystal panel.
 また、上記液晶パネルにおいて、前記シール材には、熱ラジカル重合開始剤とラジカル重合性樹脂を有するシール材が用いられていることが好ましい。 In the liquid crystal panel, it is preferable that a sealing material having a thermal radical polymerization initiator and a radical polymerizable resin is used as the sealing material.
 この場合、一対の各基板に対して、シール材を容易に強固に設けることができる。 In this case, a sealing material can be easily and firmly provided for each pair of substrates.
 また、本発明の表示装置は、上記いずれかの液晶パネルを用いたことを特徴とするものである。 Further, the display device of the present invention is characterized by using any of the above liquid crystal panels.
 上記のように構成された表示装置では、狭額縁化を図ったときでも、光漏れの発生を確実に防ぐことができる表示品位に優れた液晶パネルが用いられているので、優れた表示品位を有する高性能な表示装置を容易に構成することができる。 In the display device configured as described above, a liquid crystal panel with excellent display quality that can reliably prevent the occurrence of light leakage even when narrowing the frame is used. It is possible to easily configure a high-performance display device having the same.
 本発明によれば、狭額縁化を図ったときでも、光漏れの発生を確実に防ぐことができる表示品位に優れた液晶パネル、及びこれを用いた表示装置を提供することが可能となる。 According to the present invention, it is possible to provide a liquid crystal panel excellent in display quality that can reliably prevent the occurrence of light leakage even when narrowing the frame, and a display device using the same.
図1は、本発明の第1の実施形態にかかる液晶表示装置を説明する図である。FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention. 図2は、図1に示した液晶パネルの構成を説明する図である。FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG. 図3は、上記液晶パネルに設けられたシール材を説明する平面図である。FIG. 3 is a plan view for explaining a sealing material provided in the liquid crystal panel. 図4は、上記液晶パネルの要部構成を説明する断面図である。FIG. 4 is a cross-sectional view for explaining the main configuration of the liquid crystal panel. 図5は、本発明の第2の実施形態にかかる液晶パネルの要部構成を説明する断面図である。FIG. 5 is a cross-sectional view for explaining a main configuration of a liquid crystal panel according to the second embodiment of the present invention. 図6は、本発明の第3の実施形態にかかる液晶パネルの要部構成を説明する断面図である。FIG. 6 is a cross-sectional view for explaining the main configuration of a liquid crystal panel according to the third embodiment of the present invention. 図7は、本発明の第4の実施形態にかかる液晶パネルに設けられたシール材を説明する平面図である。FIG. 7 is a plan view for explaining a sealing material provided in a liquid crystal panel according to the fourth embodiment of the present invention. 図8は、図7に示した液晶パネルの要部構成を説明する断面図である。FIG. 8 is a cross-sectional view for explaining a main configuration of the liquid crystal panel shown in FIG. 図9は、本発明の第5の実施形態にかかる液晶パネルの要部構成を説明する断面図である。FIG. 9 is a cross-sectional view for explaining the main configuration of a liquid crystal panel according to the fifth embodiment of the present invention.
 以下、本発明の液晶パネル、及び表示装置を示す好ましい実施形態について、図面を参照しながら説明する。なお、以下の説明では、本発明を透過型の液晶表示装置に適用した場合を例示して説明する。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Hereinafter, preferred embodiments showing a liquid crystal panel and a display device of the present invention will be described with reference to the drawings. In the following description, the case where the present invention is applied to a transmissive liquid crystal display device will be described as an example. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like.
 [第1の実施形態]
 図1は、本発明の第1の実施形態にかかる液晶表示装置を説明する図である。図1において、本実施形態の液晶表示装置1は、図1の上側が視認側(表示面側)として設置される液晶パネル2と、液晶パネル2の非表示面側(図1の下側)に配置されて、当該液晶パネル2を照明する照明光を発生するバックライト装置3とが設けられている。
[First Embodiment]
FIG. 1 is a diagram for explaining a liquid crystal display device according to a first embodiment of the present invention. 1, the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2 in which the upper side of FIG. 1 is installed as a viewing side (display surface side), and a non-display surface side of the liquid crystal panel 2 (lower side of FIG. 1). And a backlight device 3 that generates illumination light for illuminating the liquid crystal panel 2.
 液晶パネル2は、一対の一方及び他方の基板をそれぞれ構成するカラーフィルター基板4及びアクティブマトリクス基板5と、カラーフィルター基板4及びアクティブマトリクス基板5の各外側表面にそれぞれ設けられた偏光板6、7とを備えている。カラーフィルター基板4とアクティブマトリクス基板5との間には、液晶層LCが狭持されている。また、液晶パネル2では、後に詳述するように、シール材によって液晶層LCが封止されている。 The liquid crystal panel 2 includes a color filter substrate 4 and an active matrix substrate 5 that constitute a pair of one and other substrates, respectively, and polarizing plates 6 and 7 provided on the outer surfaces of the color filter substrate 4 and the active matrix substrate 5, respectively. And. A liquid crystal layer LC is sandwiched between the color filter substrate 4 and the active matrix substrate 5. In the liquid crystal panel 2, as will be described in detail later, the liquid crystal layer LC is sealed with a sealing material.
 また、カラーフィルター基板4及びアクティブマトリクス基板5には、平板状の透明なガラス材またはアクリル樹脂などの透明な合成樹脂が使用されている。偏光板6、7には、TAC(トリアセチルセルロース)またはPVA(ポリビニルアルコール)などの樹脂フィルムが使用されており、液晶パネル2に設けられた表示面の有効表示領域を少なくとも覆うように対応するカラーフィルター基板4またはアクティブマトリクス基板5に貼り合わせられている。 Further, the color filter substrate 4 and the active matrix substrate 5 are made of a flat transparent glass material or a transparent synthetic resin such as an acrylic resin. Resin films such as TAC (triacetyl cellulose) or PVA (polyvinyl alcohol) are used for the polarizing plates 6 and 7 and correspond to cover at least the effective display area of the display surface provided in the liquid crystal panel 2. It is bonded to the color filter substrate 4 or the active matrix substrate 5.
 また、アクティブマトリクス基板5では、液晶パネル2の表示面に含まれる複数の画素に応じて、画素電極や薄膜トランジスタ(TFT:Thin Film Transistor)などが上記液晶層LCとの間に形成されている(詳細は後述。)。一方、カラーフィルター基板4には、カラーフィルター層(図示せず)、後述のオーバーコート膜、や共通電極などが上記液晶層LCとの間に形成されている。 In the active matrix substrate 5, pixel electrodes, thin film transistors (TFTs), and the like are formed between the liquid crystal layer LC in accordance with a plurality of pixels included in the display surface of the liquid crystal panel 2 ( Details will be described later.) On the other hand, on the color filter substrate 4, a color filter layer (not shown), an overcoat film described later, a common electrode, and the like are formed between the liquid crystal layer LC.
 また、液晶パネル2では、当該液晶パネル2の駆動制御を行う制御装置(図示せず)に接続されたFPC(Flexible Printed Circuit)8が設けられており、上記液晶層LCを画素単位に動作することで表示面を画素単位に駆動して、当該表示面上に所望画像を表示するようになっている。 Further, the liquid crystal panel 2 is provided with an FPC (Flexible Printed Circuit) 8 connected to a control device (not shown) for controlling the drive of the liquid crystal panel 2, and operates the liquid crystal layer LC in units of pixels. Thus, the display surface is driven in units of pixels, and a desired image is displayed on the display surface.
 尚、液晶パネル2の液晶モードや画素構造は任意である。また、液晶パネル2の駆動モードも任意である。すなわち、液晶パネル2としては、情報を表示できる任意の液晶パネルを用いることができる。それ故、図1においては液晶パネル2の詳細な構造を図示せず、その説明も省略する。 The liquid crystal mode and pixel structure of the liquid crystal panel 2 are arbitrary. Moreover, the drive mode of the liquid crystal panel 2 is also arbitrary. That is, as the liquid crystal panel 2, any liquid crystal panel that can display information can be used. Therefore, the detailed structure of the liquid crystal panel 2 is not shown in FIG.
 バックライト装置3は、光源としての発光ダイオード9と、発光ダイオード9に対向して配置された導光板10とを備えている。また、バックライト装置3では、断面L字状のベゼル14により、導光板10の上方に液晶パネル2が設置された状態で、発光ダイオード9及び導光板10が狭持されている。また、カラーフィルター基板4には、ケース11が載置されている。これにより、バックライト装置3は、液晶パネル2に組み付けられて、当該バックライト装置3からの照明光が液晶パネル2に入射される透過型の液晶表示装置1として一体化されている。 The backlight device 3 includes a light emitting diode 9 as a light source, and a light guide plate 10 disposed to face the light emitting diode 9. Further, in the backlight device 3, the light emitting diode 9 and the light guide plate 10 are sandwiched by the bezel 14 having an L-shaped cross section in a state where the liquid crystal panel 2 is installed above the light guide plate 10. A case 11 is placed on the color filter substrate 4. Thus, the backlight device 3 is assembled to the liquid crystal panel 2 and is integrated as a transmissive liquid crystal display device 1 in which illumination light from the backlight device 3 is incident on the liquid crystal panel 2.
 導光板10には、例えば透明なアクリル樹脂などの合成樹脂が用いられており、発光ダイオード9からの光が入光される。導光板10の液晶パネル2と反対側(対向面側)には、反射シート12が設置されている。また、導光板10の液晶パネル2側(発光面側)には、レンズシートや拡散シートなどの光学シート13が設けられており、導光板10の内部を所定の導光方向(図1の左側から右側への方向)に導かれた発光ダイオード9からの光が均一な輝度をもつ平面状の上記照明光に変えられて液晶パネル2に与えられる。 For the light guide plate 10, for example, a synthetic resin such as a transparent acrylic resin is used, and light from the light emitting diode 9 enters. On the opposite side (opposite surface side) of the light guide plate 10 to the liquid crystal panel 2, a reflection sheet 12 is installed. Further, an optical sheet 13 such as a lens sheet or a diffusion sheet is provided on the liquid crystal panel 2 side (light emitting surface side) of the light guide plate 10, and the inside of the light guide plate 10 has a predetermined light guide direction (left side in FIG. 1). The light from the light emitting diode 9 guided in the direction from the right side to the right side is changed to the planar illumination light having uniform luminance and applied to the liquid crystal panel 2.
 尚、上記の説明では、導光板10を有するエッジライト型のバックライト装置3を用いた構成について説明したが、本実施形態はこれに限定されるものではなく、直下型のバックライト装置を用いてもよい。また、発光ダイオード以外の冷陰極蛍光管や熱陰極蛍光管などの他の光源を有するバックライト装置も用いることができる。 In the above description, the configuration using the edge light type backlight device 3 having the light guide plate 10 has been described. However, the present embodiment is not limited to this, and a direct type backlight device is used. May be. A backlight device having other light sources such as a cold cathode fluorescent tube and a hot cathode fluorescent tube other than the light emitting diode can also be used.
 次に、図2も参照して、本実施形態の液晶パネル2について具体的に説明する。 Next, the liquid crystal panel 2 of the present embodiment will be specifically described with reference to FIG.
 図2は、図1に示した液晶パネルの構成を説明する図である。 FIG. 2 is a diagram for explaining the configuration of the liquid crystal panel shown in FIG.
 図2において、液晶表示装置1(図1)には、文字や画像等の情報を表示する上記表示部としての液晶パネル2(図1)の駆動制御を行うパネル制御部15と、このパネル制御部15からの指示信号を基に動作するソースドライバ16及びゲートドライバ17が設けられている。 2, the liquid crystal display device 1 (FIG. 1) includes a panel control unit 15 that controls driving of the liquid crystal panel 2 (FIG. 1) as the display unit that displays information such as characters and images, and the panel control. A source driver 16 and a gate driver 17 that operate based on an instruction signal from the unit 15 are provided.
 パネル制御部15は、上記制御装置内に設けられたものであり、液晶表示装置1の外部からの映像信号が入力されるようになっている。また、パネル制御部15は、入力された映像信号に対して所定の画像処理を行ってソースドライバ16及びゲートドライバ17への各指示信号を生成する画像処理部15aと、入力された映像信号に含まれた1フレーム分の表示データを記憶可能なフレームバッファ15bとを備えている。そして、パネル制御部15が、入力された映像信号に応じて、ソースドライバ16及びゲートドライバ17の駆動制御を行うことにより、その映像信号に応じた情報が液晶パネル2に表示される。 The panel control unit 15 is provided in the control device, and receives a video signal from the outside of the liquid crystal display device 1. Further, the panel control unit 15 performs predetermined image processing on the input video signal to generate each instruction signal to the source driver 16 and the gate driver 17, and the input video signal. A frame buffer 15b capable of storing display data for one frame included. Then, the panel control unit 15 performs drive control of the source driver 16 and the gate driver 17 according to the input video signal, so that information according to the video signal is displayed on the liquid crystal panel 2.
 ソースドライバ16及びゲートドライバ17は、アクティブマトリクス基板5上に設置されている。具体的には、ソースドライバ16は、アクティブマトリクス基板5の表面上において、表示パネルとしての液晶パネル2の有効表示領域Aの外側領域で当該液晶パネル2の横方向に沿うように設置されている。また、ゲートドライバ17は、アクティブマトリクス基板5の表面上において、上記有効表示領域Aの外側領域で当該液晶パネル2の縦方向に沿うように設置されている。 The source driver 16 and the gate driver 17 are installed on the active matrix substrate 5. Specifically, the source driver 16 is installed on the surface of the active matrix substrate 5 along the lateral direction of the liquid crystal panel 2 in the outer region of the effective display area A of the liquid crystal panel 2 as a display panel. . Further, the gate driver 17 is installed on the surface of the active matrix substrate 5 so as to be along the vertical direction of the liquid crystal panel 2 in the outer region of the effective display region A.
 また、ソースドライバ16及びゲートドライバ17は、液晶パネル2側に設けられた複数の画素Pを画素単位に駆動する駆動回路であり、ソースドライバ16及びゲートドライバ17には、複数のソース配線S1~SM(Mは、2以上の整数、以下、"S"にて総称する。)及び複数のゲート配線G1~GN(Nは、2以上の整数、以下、"G"にて総称する。)がそれぞれ接続されている。これらのソース配線S及びゲート配線Gは、それぞれデータ配線及び走査配線を構成しており、アクティブマトリクス基板5に含まれた透明なガラス材または透明な合成樹脂製の基材(図示せず)上で互いに交差するように、マトリクス状に配列されている。すなわち、ソース配線Sは、マトリクス状の列方向(液晶パネル2の縦方向)に平行となるように上記基材上に設けられ、ゲート配線Gは、マトリクス状の行方向(液晶パネル2の横方向)に平行となるように上記基材上に設けられている。 The source driver 16 and the gate driver 17 are drive circuits that drive a plurality of pixels P provided on the liquid crystal panel 2 side by pixel. The source driver 16 and the gate driver 17 include a plurality of source lines S1 to S1. SM (M is an integer of 2 or more, hereinafter collectively referred to as “S”) and a plurality of gate wirings G1 to GN (N is an integer of 2 or more and is hereinafter collectively referred to as “G”). Each is connected. These source wiring S and gate wiring G constitute a data wiring and a scanning wiring, respectively, on a transparent glass material or a transparent synthetic resin substrate (not shown) included in the active matrix substrate 5. Are arranged in a matrix so as to cross each other. That is, the source wiring S is provided on the substrate so as to be parallel to the matrix-like column direction (vertical direction of the liquid crystal panel 2), and the gate wiring G is arranged in the matrix-like row direction (horizontal of the liquid crystal panel 2). Is provided on the substrate so as to be parallel to (direction).
 また、これらのソース配線Sと、ゲート配線Gとの交差部の近傍には、スイッチング素子としての薄膜トランジスタ18と、薄膜トランジスタ18に接続された画素電極19を有する上記画素Pが設けられている。また、各画素Pでは、共通電極20が液晶パネル2に設けられた上記液晶層LCを間に挟んだ状態で画素電極19に対向するよう構成されている。すなわち、アクティブマトリクス基板5では、薄膜トランジスタ18、画素電極19、及び共通電極20が画素単位に設けられている。 Further, in the vicinity of the intersection between the source line S and the gate line G, the thin film transistor 18 as a switching element and the pixel P having the pixel electrode 19 connected to the thin film transistor 18 are provided. In each pixel P, the common electrode 20 is configured to face the pixel electrode 19 with the liquid crystal layer LC provided on the liquid crystal panel 2 interposed therebetween. That is, in the active matrix substrate 5, the thin film transistor 18, the pixel electrode 19, and the common electrode 20 are provided for each pixel.
 また、アクティブマトリクス基板5では、ソース配線Sと、ゲート配線Gとによってマトリクス状に区画された各領域に、複数の各画素Pの領域が形成されている。これら複数の画素Pには、レッド(R)、グリーン(G)、及びブルー(B)の画素が含まれている。また、これらのRGBの画素は、例えばこの順番で、各ゲート配線G1~GNに平行に順次配設されている。さらに、これらのRGBの画素は、カラーフィルター基板4側に設けられたカラーフィルター層(図示せず)により、対応する色の表示を行えるようになっている。 In the active matrix substrate 5, regions of a plurality of pixels P are formed in each region partitioned in a matrix by the source wiring S and the gate wiring G. The plurality of pixels P include red (R), green (G), and blue (B) pixels. These RGB pixels are sequentially arranged in this order, for example, in parallel with the gate wirings G1 to GN. Further, these RGB pixels can display corresponding colors by a color filter layer (not shown) provided on the color filter substrate 4 side.
 また、アクティブマトリクス基板5では、ゲートドライバ17は、画像処理部15aからの指示信号に基づいて、ゲート配線G1~GNに対して、対応する薄膜トランジスタ18のゲート電極をオン状態にする走査信号(ゲート信号)を順次出力する。また、ソースドライバ16は、画像処理部15aからの指示信号に基づいて、表示画像の輝度(階調)に応じたデータ信号(電圧信号(階調電圧))を対応するソース配線S1~SMに出力する。 In the active matrix substrate 5, the gate driver 17 scans the gate wirings G1 to GN with respect to the gate wirings G1 to GN based on the instruction signal from the image processing unit 15a (gate signal). Signal) in sequence. Further, the source driver 16 supplies a data signal (voltage signal (gradation voltage)) corresponding to the luminance (gradation) of the display image to the corresponding source wirings S1 to SM based on the instruction signal from the image processing unit 15a. Output.
 以下、図3及び図4も参照して、本実施形態の液晶パネル2の要部構成について具体的に説明する。 Hereinafter, the configuration of the main part of the liquid crystal panel 2 of the present embodiment will be specifically described with reference to FIGS.
 図3は、上記液晶パネルに設けられたシール材を説明する平面図である。図4は、上記液晶パネルの要部構成を説明する断面図である。 FIG. 3 is a plan view for explaining the sealing material provided on the liquid crystal panel. FIG. 4 is a cross-sectional view for explaining the main configuration of the liquid crystal panel.
 図3に示すように、本実施形態の液晶パネル2では、その外周部において、継ぎ目のない、枠状のシール材F(ハッチングにて図示)が設けられており、このシール材Fによって囲まれた領域に上記液晶層LCが封止されている。この液晶層LCでは、その液晶分子は注入口を必要としない、例えばODF(滴下)方式によってシール材Fによって囲まれた領域内に充填されるようになっている。また、シール材Fによって囲まれた領域の内部側には、液晶パネル2の有効表示領域Aが設定されている。 As shown in FIG. 3, in the liquid crystal panel 2 of the present embodiment, a frame-like sealing material F (shown by hatching) is provided on the outer periphery of the liquid crystal panel 2, and is surrounded by the sealing material F. The liquid crystal layer LC is sealed in the region. In the liquid crystal layer LC, the liquid crystal molecules do not need an injection port, and are filled in a region surrounded by the sealing material F by, for example, an ODF (dropping) method. An effective display area A of the liquid crystal panel 2 is set on the inner side of the area surrounded by the sealing material F.
 また、図4に示すように、本実施形態の液晶パネル2では、カラーフィルター基板4の内側表面(つまり、アクティブマトリクス基板5に対向する側の表面)上に、第1の絶縁膜としてのオーバーコート膜21aが形成されている。また、オーバーコート膜21a上には、共通電極20と、この共通電極20を覆うように第1の配向膜22aが形成されている。 Further, as shown in FIG. 4, in the liquid crystal panel 2 of the present embodiment, an overlayer as a first insulating film is formed on the inner surface of the color filter substrate 4 (that is, the surface facing the active matrix substrate 5). A coat film 21a is formed. A common electrode 20 and a first alignment film 22a are formed on the overcoat film 21a so as to cover the common electrode 20.
 一方、アクティブマトリクス基板5の内側表面(つまり、カラーフィルター基板4に対向する側の表面)上には、第2の絶縁膜としての層間絶縁膜21bが形成されている。また、層間絶縁膜21b上には、画素電極19と、この画素電極19を覆うように第2の配向膜22bが形成されている。 On the other hand, on the inner surface of the active matrix substrate 5 (that is, the surface facing the color filter substrate 4), an interlayer insulating film 21b as a second insulating film is formed. On the interlayer insulating film 21b, a pixel electrode 19 and a second alignment film 22b are formed so as to cover the pixel electrode 19.
 また、カラーフィルター基板4及びアクティブマトリクス基板5の外周部には、シール材Fが設けられており、液晶層LCを封止している。具体的には、シール材Fでは、その外周部分F1がオーバーコート膜21a及び層間絶縁膜21b上に設けられ、内周部分F2が第1及び第2の配向膜22a及び22b上に設けられている。また、シール材Fでは、図4に示すように、その外周部分F1の厚さ(図4の上下方向の寸法(上記一対の各基板に垂直な方向の寸法))が内周部分F2の厚さよりも大きく構成されている。 Further, a sealing material F is provided on the outer peripheral portions of the color filter substrate 4 and the active matrix substrate 5 to seal the liquid crystal layer LC. Specifically, in the sealing material F, the outer peripheral portion F1 is provided on the overcoat film 21a and the interlayer insulating film 21b, and the inner peripheral portion F2 is provided on the first and second alignment films 22a and 22b. Yes. Further, in the sealing material F, as shown in FIG. 4, the thickness of the outer peripheral portion F1 (the vertical dimension in FIG. 4 (the dimension in the direction perpendicular to the pair of substrates)) is the thickness of the inner peripheral portion F2. It is larger than that.
 オーバーコート膜21a及び層間絶縁膜21bとして、例えば透明な合成樹脂からなる有機平坦化膜が使用されている。また、第1及び第2の配向膜22a及び22bとして、例えば透明なポリイミド膜が使用されている。 As the overcoat film 21a and the interlayer insulating film 21b, for example, an organic planarizing film made of a transparent synthetic resin is used. For example, transparent polyimide films are used as the first and second alignment films 22a and 22b.
 また、シール材Fとして、例えば黒色に着色された熱ラジカル重合開始剤とラジカル重合性樹脂を有するシール材が使用されている。このシール材は、ラジカル重合樹脂に対して、従来の光ラジカル重合開始剤に、熱ラジカル重合開始剤を新たに添加することで、光硬化に必要な紫外線の照射量を減らしつつ、熱硬化の際の未硬化樹脂の上記液晶層への溶出を抑えて熱シール硬化を可能なように構成されたものである。これにより、本実施形態の液晶パネル2では、狭額縁化を図ったときでも、シール材Fを容易に硬化して、カラーフィルター基板4及びアクティブマトリクス基板5の各基板(一対の各基板)に対して、強固に設けることができる。すなわち、狭額縁化を図った場合、上記ソース配線Sやゲート配線G等が多数設けられたアクティブマトリクス基板5側からのシール材Fへの紫外線照射は困難となる。このため、カラーフィルター基板4側から紫外線を照射しつつ、在来の紫外線硬化及び熱硬化樹脂を用いたシール材よりも、短時間の紫外線照射でシール材Fを硬化させることができ、上記一対の各基板(カラーフィルター基板4及びアクティブマトリクス基板5)に対して、強固に設けることができる。 Also, as the sealing material F, for example, a sealing material having a thermal radical polymerization initiator colored in black and a radical polymerizable resin is used. This sealing material adds a thermal radical polymerization initiator to the conventional radical photopolymerization initiator in addition to the radical polymerization resin, thereby reducing the amount of UV irradiation required for photocuring and reducing the amount of heat curing. It is configured so that heat seal curing is possible while suppressing elution of the uncured resin at the time into the liquid crystal layer. As a result, in the liquid crystal panel 2 of the present embodiment, even when the frame is narrowed, the sealing material F is easily cured to form the color filter substrate 4 and the active matrix substrate 5 (a pair of substrates). On the other hand, it can provide firmly. That is, when narrowing the frame, it is difficult to irradiate the sealing material F from the active matrix substrate 5 side provided with a large number of the source wirings S, gate wirings G, and the like with ultraviolet rays. For this reason, it is possible to cure the sealing material F by irradiating ultraviolet rays from the color filter substrate 4 side and irradiating ultraviolet rays in a shorter time than the sealing materials using conventional ultraviolet curing and thermosetting resins. Each of the substrates (color filter substrate 4 and active matrix substrate 5) can be provided firmly.
 また、上記熱ラジカル重合開始剤の具体例には、例えば有機過酸化物系化合物やアゾ化合物等がある。また、ラジカル重合性樹脂は、分子中に熱ラジカル反応性官能基を有する樹脂であれば特に限定されない。 Specific examples of the thermal radical polymerization initiator include organic peroxide compounds and azo compounds. The radical polymerizable resin is not particularly limited as long as it is a resin having a thermal radical reactive functional group in the molecule.
 また、シール材Fは、上記熱ラジカル重合開始剤とラジカル重合性樹脂に対して、黒色の顔料や染料を添加することにより、1μm当たりの光学濃度(Optical Density)の値が3以上となるように、着色されている。つまり、シール材Fでは、光学密度またはランベルト・ベールの法則で規定される吸光度とも呼ばれる、上記光学濃度の1μm当たりの値が、3以上となるように、例えば黒色に着色されている。 The sealing material F has an optical density (OpticalOptDensity) value of 3 or more per 1 μm by adding a black pigment or dye to the thermal radical polymerization initiator and the radical polymerizable resin. It is colored. In other words, the sealing material F is colored, for example, black so that the value per 1 μm of the optical density, which is also called the optical density or the absorbance defined by the Lambert-Beer law, is 3 or more.
 具体的にいえば、光の波長をλとし、シール材Fへの入射光の強度をI0とし、シール材Fからの透過光の強度をIとしたときに、ランベルト・ベールの法則では、波長λの吸光度(光学濃度)Aλは、下記等式(1)で求められる。 Specifically, when the wavelength of light is λ, the intensity of incident light to the sealing material F is I0, and the intensity of transmitted light from the sealing material F is I, the Lambert-Beer law Absorbance (optical density) Aλ of λ is obtained by the following equation (1).
   Aλ =-log10(I/I0)         ―――(1)
 そして、本実施形態では、バックライト装置3の発光ダイオード9からシール材Fに入射される光のうち、少なくとも可視光の波長域(例えば、360nm~830nm)の光について、上記等式(1)で求められる光学濃度Aλの値が、1μm当たり3以上となるように、当該シール材Fを黒色に着色している。これにより、本実施形態では、狭額縁化を図ってシール材Fの幅寸法(つまり、図4の左右方向の寸法)を小さくした場合(例えば、1.5mmとした場合)でも、シール材Fから外部への光が漏れ出るのを確実に防げるようになっている。
Aλ = −log 10 (I / I0) ――― (1)
In the present embodiment, among the light incident on the sealing material F from the light emitting diode 9 of the backlight device 3, at least the light in the visible wavelength range (for example, 360 nm to 830 nm), the above equation (1) The sealing material F is colored black so that the value of the optical density Aλ obtained in step 1 is 3 or more per 1 μm. Thus, in the present embodiment, even when the width of the sealing material F (that is, the horizontal dimension in FIG. 4) is reduced (for example, 1.5 mm), the sealing material F is reduced. It is possible to reliably prevent light from leaking to the outside.
 以上のように構成された本実施形態の液晶パネル2では、枠状のシール材Fが一対の基板としてのカラーフィルター基板4及びアクティブマトリクス基板5の外周部に設けられている。また、このシール材Fでは、光学濃度の値が3以上となるように着色されている。これにより、本実施形態では、上記従来例と異なり、狭額縁化を図ったときでも、光漏れの発生を確実に防ぐことができ、表示品位に優れた液晶パネル2を構成することができる。 In the liquid crystal panel 2 of the present embodiment configured as described above, a frame-shaped sealing material F is provided on the outer periphery of the color filter substrate 4 and the active matrix substrate 5 as a pair of substrates. Further, the sealing material F is colored so that the optical density value is 3 or more. As a result, in the present embodiment, unlike the conventional example, even when the frame is narrowed, the occurrence of light leakage can be reliably prevented, and the liquid crystal panel 2 excellent in display quality can be configured.
 ここで、本願発明者が実施した検証試験について、具体的に説明する。 Here, the verification test conducted by the present inventor will be specifically described.
 この検証試験では、シール材の光学濃度及び着色する色を変更して、当該シール材から光が外部に漏れ出るか否かについて調べた。その検証試験の結果の具体例を表1に示す。 In this verification test, the optical density of the sealing material and the color to be colored were changed, and whether or not light leaked to the outside from the sealing material was examined. Specific examples of the results of the verification test are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に“〇”にて示すように、着色した色に関わらず、光学濃度の値が3以上であれば、シール材から外部に光が漏れ出るのを防げることが確認された。一方、表1に“×”にて示すように、単に黒色に着色しただけでは、外部への光漏れを確実に防ぐことができないことが確かめられた。 As shown by “◯” in Table 1, it was confirmed that light could be prevented from leaking outside from the sealing material if the value of the optical density was 3 or more regardless of the colored color. On the other hand, as shown by “x” in Table 1, it was confirmed that light leakage to the outside could not be reliably prevented by simply coloring in black.
 また、本実施形態では、シール材Fにおいて、その外周部分F1の厚さが内周部分F2の厚さよりも大きく構成されている。これにより、本実施形態では、狭額縁化を図ったときでも、光漏れの発生をより確実に防ぐことができる。 Further, in the present embodiment, the sealing material F is configured such that the thickness of the outer peripheral portion F1 is larger than the thickness of the inner peripheral portion F2. Thereby, in the present embodiment, even when the frame is narrowed, the occurrence of light leakage can be prevented more reliably.
 また、本実施形態では、カラーフィルター基板4及びアクティブマトリクス基板5の表面上にそれぞれ設けられたオーバーコート膜21a及び層間絶縁膜21b(第1及び第2の絶縁膜)を備え、シール材Fの外周部分F1が、オーバーコート膜21a及び層間絶縁膜21b上に設けられている。これにより、本実施形態では、カラーフィルター基板4及びアクティブマトリクス基板5の各基板(一対の各基板)に対して、シール材Fの接着強度を向上させることができる。 In the present embodiment, an overcoat film 21a and an interlayer insulating film 21b (first and second insulating films) provided on the surfaces of the color filter substrate 4 and the active matrix substrate 5 are provided. An outer peripheral portion F1 is provided on the overcoat film 21a and the interlayer insulating film 21b. Thereby, in this embodiment, the adhesive strength of the sealing material F can be improved with respect to each substrate (a pair of each substrate) of the color filter substrate 4 and the active matrix substrate 5.
 また、本実施形態では、狭額縁化を図ったときでも、光漏れの発生を確実に防ぐことができる表示品位に優れた液晶パネル2が用いられているので、優れた表示品位を有する高性能な液晶表示装置(表示装置)1を容易に構成することができる。 Further, in the present embodiment, the liquid crystal panel 2 having excellent display quality that can reliably prevent the occurrence of light leakage even when narrowing the frame is used. A simple liquid crystal display device (display device) 1 can be easily configured.
 [第2の実施形態]
 図5は、本発明の第2の実施形態にかかる液晶パネルの要部構成を説明する断面図である。
[Second Embodiment]
FIG. 5 is a cross-sectional view for explaining a main configuration of a liquid crystal panel according to the second embodiment of the present invention.
 図において、本実施形態と上記第1の実施形態との主な相違点は、ブラックマトリクス膜をカラーフィルター基板の表面に設けるとともに、シール材の内周部分とブラックマトリクス膜とが互いに重なり合うオーバーラップの寸法を、0.1mm未満に設定した点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。 In the figure, the main difference between this embodiment and the first embodiment is that the black matrix film is provided on the surface of the color filter substrate, and the inner peripheral portion of the sealing material and the black matrix film overlap each other. The dimension of is set to less than 0.1 mm. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図5に示すように、本実施形態の液晶パネル2では、カラーフィルター基板4の内側表面上に、ブラックマトリクス膜23が設けられており、このブラックマトリクス膜23を覆うように、オーバーコート膜21aが形成されている。 That is, as shown in FIG. 5, in the liquid crystal panel 2 of the present embodiment, a black matrix film 23 is provided on the inner surface of the color filter substrate 4, and an overcoat is formed so as to cover the black matrix film 23. A film 21a is formed.
 また、本実施形態の液晶パネル2では、シール材Fの内周部分F2とブラックマトリクス膜23とが互いに重なり合うオーバーラップの寸法(図5に"H1"にて図示)が0.1mm未満に設定されている。 Further, in the liquid crystal panel 2 of the present embodiment, the overlap dimension (indicated by “H1” in FIG. 5) where the inner peripheral portion F2 of the sealing material F and the black matrix film 23 overlap each other is set to be less than 0.1 mm. Has been.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、カラーフィルター基板4の内側表面上に、ブラックマトリクス膜23が設けられているので、液晶パネル2の有効表示領域Aと額縁領域との境界精度を向上させることができる。また、本実施形態では、上記オーバーラップの寸法H1が0.1mm未満に設定されているので、カラーフィルター基板4側から紫外線をシール材Fに照射して、当該シール材Fを硬化するときでも、ブラックマトリクス膜23が紫外線照射を妨げるのを防ぐことができる。この結果、本実施形態では、カラーフィルター基板4及びアクティブマトリクス基板5の各基板(一対の各基板)に対して、シール材Fを強固に設けることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. In the present embodiment, since the black matrix film 23 is provided on the inner surface of the color filter substrate 4, the boundary accuracy between the effective display area A and the frame area of the liquid crystal panel 2 can be improved. In this embodiment, since the overlap dimension H1 is set to be less than 0.1 mm, even when the sealing material F is cured by irradiating the sealing material F with ultraviolet rays from the color filter substrate 4 side. The black matrix film 23 can be prevented from interfering with ultraviolet irradiation. As a result, in the present embodiment, the sealing material F can be firmly provided on each of the color filter substrate 4 and the active matrix substrate 5 (a pair of substrates).
 尚、上記オーバーラップの寸法H1を0.1mm以上とした場合、紫外線の回り込み不足(すなわち、照射される紫外線量の不足)や熱ラジカル反応の硬化を得難くなり、シール材Fを強固に設け難くなり易いおそれがある。 When the overlap dimension H1 is set to 0.1 mm or more, it becomes difficult to obtain ultraviolet radiation shortage (that is, insufficient amount of irradiated ultraviolet light) and thermal radical reaction, and the sealing material F is provided firmly. May be difficult.
 [第3の実施形態]
 図6は、本発明の第3の実施形態にかかる液晶パネルの要部構成を説明する断面図である。
[Third Embodiment]
FIG. 6 is a cross-sectional view for explaining the main configuration of a liquid crystal panel according to the third embodiment of the present invention.
 図において、本実施形態と上記第1の実施形態との主な相違点は、カラーフィルター基板及びアクティブマトリクス基板の各表面上にシール材の外周部分を設けた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。 In the figure, the main difference between this embodiment and the first embodiment is that an outer peripheral portion of a sealing material is provided on each surface of the color filter substrate and the active matrix substrate. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図6に示すように、本実施形態の液晶パネル2では、シール材Fの外周部分F1がカラーフィルター基板4及びアクティブマトリクス基板5の各内側表面上に設けられている。言い換えれば、本実施形態の液晶パネル2では、上記第1の実施形態のものと異なり、オーバーコート膜21a及び層間絶縁膜21bが設けられておらず、シール材Fの外周部分F1がカラーフィルター基板4及びアクティブマトリクス基板5の各内側表面上に直接的に設けられている。 That is, as shown in FIG. 6, in the liquid crystal panel 2 of the present embodiment, the outer peripheral portion F1 of the sealing material F is provided on each inner surface of the color filter substrate 4 and the active matrix substrate 5. In other words, unlike the liquid crystal panel 2 of the first embodiment, the overcoat film 21a and the interlayer insulating film 21b are not provided, and the outer peripheral portion F1 of the sealing material F is the color filter substrate. 4 and each inner surface of the active matrix substrate 5 are provided directly.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、シール材Fの外周部分F1がカラーフィルター基板4及びアクティブマトリクス基板5の各内側表面上に直接的に設けられているので、カラーフィルター基板4及びアクティブマトリクス基板5の各基板(一対の各基板)に対して、当該シール材Fの接着強度をさらに向上させることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. In the present embodiment, since the outer peripheral portion F1 of the sealing material F is directly provided on the inner surfaces of the color filter substrate 4 and the active matrix substrate 5, each of the color filter substrate 4 and the active matrix substrate 5 is provided. The adhesive strength of the sealing material F can be further improved with respect to the substrates (a pair of substrates).
 [第4の実施形態]
 図7は、本発明の第4の実施形態にかかる液晶パネルに設けられたシール材を説明する平面図である。図8は、図7に示した液晶パネルの要部構成を説明する断面図である。
[Fourth Embodiment]
FIG. 7 is a plan view for explaining a sealing material provided in a liquid crystal panel according to the fourth embodiment of the present invention. FIG. 8 is a cross-sectional view for explaining a main configuration of the liquid crystal panel shown in FIG.
 図において、本実施形態と上記第1の実施形態との主な相違点は、カラーフィルター基板及びアクティブマトリクス基板の各端部にシール材の外周部分を一致させた点である。なお、上記第1の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。 In the figure, the main difference between this embodiment and the first embodiment is that the outer peripheral portion of the sealing material is made to coincide with each end of the color filter substrate and the active matrix substrate. In addition, about the element which is common in the said 1st Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図7及び図8に示すように、本実施形態の液晶パネル2では、シール材Fの外周部分F1が液晶パネル2の端部、つまりカラーフィルター基板4及びアクティブマトリクス基板5の各端部に一致するように設けられている。 That is, as shown in FIGS. 7 and 8, in the liquid crystal panel 2 of the present embodiment, the outer peripheral portion F1 of the sealing material F is an end portion of the liquid crystal panel 2, that is, each end portion of the color filter substrate 4 and the active matrix substrate 5. It is provided to match.
 具体的にいえば、本実施形態の液晶パネル2では、オーバーコート膜21a’及び層間絶縁膜21b’が対応するカラーフィルター基板4及びアクティブマトリクス基板5の端部に一致するように形成されている。これらのオーバーコート膜21a’及び層間絶縁膜21b’には、例えば透明な熱硬化樹脂が用いられている。そして、シール材Fでは、外周部分F1がオーバーコート膜21a’及び層間絶縁膜21b’上に設けられている。 Specifically, in the liquid crystal panel 2 of the present embodiment, the overcoat film 21a ′ and the interlayer insulating film 21b ′ are formed so as to coincide with the end portions of the corresponding color filter substrate 4 and active matrix substrate 5. . For example, a transparent thermosetting resin is used for the overcoat film 21a 'and the interlayer insulating film 21b'. In the sealing material F, the outer peripheral portion F1 is provided on the overcoat film 21a 'and the interlayer insulating film 21b'.
 以上の構成により、本実施形態では、上記第1の実施形態と同様な作用・効果を奏することができる。また、本実施形態では、シール材Fでは、その外周部分F1がカラーフィルター基板4及びアクティブマトリクス基板5の各端部に一致するように設けられている。これにより、本実施形態では、液晶パネル2の狭額縁化を容易に図ることができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the first embodiment. In this embodiment, the sealing material F is provided so that the outer peripheral portion F1 thereof coincides with each end of the color filter substrate 4 and the active matrix substrate 5. Thereby, in this embodiment, the narrow frame of the liquid crystal panel 2 can be achieved easily.
 [第5の実施形態]
 図9は、本発明の第5の実施形態にかかる液晶パネルの要部構成を説明する断面図である。
[Fifth Embodiment]
FIG. 9 is a cross-sectional view for explaining the main configuration of a liquid crystal panel according to the fifth embodiment of the present invention.
 図において、本実施形態と上記第4の実施形態との主な相違点は、オーバーコート膜及び層間絶縁膜に、紫外線硬化樹脂を用いた点である。なお、上記第4の実施形態と共通する要素については、同じ符号を付して、その重複した説明を省略する。 In the figure, the main difference between the present embodiment and the fourth embodiment is that an ultraviolet curable resin is used for the overcoat film and the interlayer insulating film. In addition, about the element which is common in the said 4th Embodiment, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 すなわち、図9に示すように、本実施形態の液晶パネル2では、オーバーコート膜21a"及び層間絶縁膜21b"が対応するカラーフィルター基板4及びアクティブマトリクス基板5の内側表面上に設けられている。これらのオーバーコート膜21a"及び層間絶縁膜21b"には、例えば透明な紫外線硬化樹脂が用いられている。なお、図8に示したように、第1及び第2のオーバーコート膜21a"及び層間絶縁膜21b"が、対応するカラーフィルター基板4及びアクティブマトリクス基板5の端部に一致するように形成してもよい。 That is, as shown in FIG. 9, in the liquid crystal panel 2 of this embodiment, the overcoat film 21a "and the interlayer insulating film 21b" are provided on the inner surfaces of the corresponding color filter substrate 4 and active matrix substrate 5. . For these overcoat film 21a "and interlayer insulating film 21b", for example, a transparent ultraviolet curable resin is used. As shown in FIG. 8, the first and second overcoat films 21a "and the interlayer insulating film 21b" are formed so as to coincide with the end portions of the corresponding color filter substrate 4 and active matrix substrate 5. May be.
 また、図9に示すように、シール材Fでは、その外周部分F1がカラーフィルター基板4及びアクティブマトリクス基板5の内側表面上に設けられている。また、第1の内周部分F2がオーバーコート膜21a"及び層間絶縁膜21b"上に設けられ、第2の内周部分F3が第1及び第2の配向膜22a及び22b上に設けられている。 Further, as shown in FIG. 9, in the sealing material F, the outer peripheral portion F <b> 1 is provided on the inner surfaces of the color filter substrate 4 and the active matrix substrate 5. The first inner peripheral portion F2 is provided on the overcoat film 21a "and the interlayer insulating film 21b", and the second inner peripheral portion F3 is provided on the first and second alignment films 22a and 22b. Yes.
 以上の構成により、本実施形態では、上記第4の実施形態と同様な作用・効果を奏することができる。 With the above configuration, the present embodiment can achieve the same operations and effects as the fourth embodiment.
 尚、上記の実施形態はすべて例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明の技術的範囲に含まれる。 It should be noted that all of the above embodiments are illustrative and not restrictive. The technical scope of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are also included in the technical scope of the present invention.
 例えば、上記の説明では、本発明を透過型の液晶表示装置に適用した場合について説明したが、本発明の液晶パネルはこれに限定されるものではなく、例えば半透過型の液晶表示装置、あるいは液晶パネルをライトバルブに用いた投写型表示装置に本発明の液晶パネルを好適に用いることができる。 For example, in the above description, the case where the present invention is applied to a transmissive liquid crystal display device has been described. However, the liquid crystal panel of the present invention is not limited to this, for example, a transflective liquid crystal display device, or The liquid crystal panel of the present invention can be suitably used for a projection display device using the liquid crystal panel as a light valve.
 また、上記の説明では、シール材として、熱ラジカル重合開始剤とラジカル重合性樹脂を有するシール材を用いた場合について説明したが、本発明のシール材はこれに限定されるものではなく、例えば紫外線硬化樹脂タイプや熱硬化樹脂タイプ、及び併用樹脂タイプを用いることもできる。 In the above description, the case where a sealing material having a thermal radical polymerization initiator and a radical polymerizable resin is used as the sealing material has been described. However, the sealing material of the present invention is not limited to this, for example, An ultraviolet curable resin type, a thermosetting resin type, and a combined resin type can also be used.
 但し、上記の各実施形態のように、熱ラジカル重合開始剤とラジカル重合性樹脂を有するシール材を用いる場合の方がシール材を容易に強固に設けることができる点で好ましい。すなわち、狭額縁化を図ることにより、シール材に紫外線を照射し難くなった場合でも、熱ラジカル重合開始剤とラジカル重合性樹脂を有するシール材を用いる場合の方が上記一対の各基板に対して当該シール材を容易に固めて強固に設けることができるとともに、シール材の成分が液晶層内に溶出するのも容易に防ぐことができるからである。 However, it is preferable to use a sealing material having a thermal radical polymerization initiator and a radical polymerizable resin as in each of the above-described embodiments because the sealing material can be easily and firmly provided. That is, even when it becomes difficult to irradiate the sealing material with ultraviolet rays by narrowing the frame, the case of using the sealing material having the thermal radical polymerization initiator and the radical polymerizable resin is more suitable for the pair of substrates. This is because the sealing material can be easily hardened and firmly provided, and the components of the sealing material can be easily prevented from eluting into the liquid crystal layer.
 また、上記の説明以外に、上記第1~第5の各実施形態を適宜組み合わせたものでもよい。 In addition to the above description, the first to fifth embodiments may be appropriately combined.
 本発明は、狭額縁化を図ったときでも、光漏れの発生を確実に防ぐことができる表示品位に優れた液晶パネル、及びこれを用いた表示装置に対して有用である。 The present invention is useful for a liquid crystal panel excellent in display quality capable of reliably preventing the occurrence of light leakage even when narrowing the frame and a display device using the same.
 2 液晶パネル
 4 カラーフィルター基板(一対の基板)
 5 アクティブマトリクス基板(一対の基板)
 21a、21a’、21a” オーバーコート膜(第1の絶縁膜)
 21b、21b’、21b” 層間絶縁膜(第2の絶縁膜)
 LC 液晶層
 F シール材
 F1 外周部分
 F2、F3 内周部分
2 LCD panel 4 Color filter substrate (a pair of substrates)
5 Active matrix substrates (a pair of substrates)
21a, 21a ′, 21a ″ overcoat film (first insulating film)
21b, 21b ′, 21b ″ interlayer insulating film (second insulating film)
LC Liquid crystal layer F Seal material F1 Outer peripheral part F2, F3 Inner peripheral part

Claims (5)

  1.  一対の基板と、前記一対の基板の間に設けられた液晶層とを有する液晶パネルであって、
     前記一対の基板の外周部に枠状に設けられるとともに、前記液晶層を封止するシール材を備え、
     前記シール材では、光学濃度の値が3以上となるように着色されている、
     ことを特徴とする液晶パネル。
    A liquid crystal panel having a pair of substrates and a liquid crystal layer provided between the pair of substrates,
    The outer peripheral portion of the pair of substrates is provided in a frame shape, and includes a sealing material for sealing the liquid crystal layer,
    The sealing material is colored so that the optical density value is 3 or more.
    A liquid crystal panel characterized by that.
  2.  前記シール材では、その外周部分の厚さが内周部分の厚さよりも大きく構成されている請求項1に記載の液晶パネル。 The liquid crystal panel according to claim 1, wherein the sealing material is configured such that the outer peripheral portion has a greater thickness than the inner peripheral portion.
  3.  前記一対の基板の表面上にそれぞれ設けられた第1及び第2の絶縁膜を備え、
     前記シール材の外周部分が、前記第1及び第2の絶縁膜上に設けられている請求項1または2に記載の液晶パネル。
    Comprising first and second insulating films respectively provided on the surfaces of the pair of substrates;
    The liquid crystal panel according to claim 1, wherein an outer peripheral portion of the sealing material is provided on the first and second insulating films.
  4.  前記シール材では、その外周部分が前記一対の各基板の表面上に設けられている請求項1または2に記載の液晶パネル。 The liquid crystal panel according to claim 1 or 2, wherein an outer peripheral portion of the sealing material is provided on a surface of each of the pair of substrates.
  5.  請求項1~4のいずれか1項に記載の液晶パネルを用いたことを特徴とする表示装置。 A display device using the liquid crystal panel according to any one of claims 1 to 4.
PCT/JP2013/074084 2012-09-13 2013-09-06 Liquid crystal panel and display device WO2014042092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012201313 2012-09-13
JP2012-201313 2012-09-13

Publications (1)

Publication Number Publication Date
WO2014042092A1 true WO2014042092A1 (en) 2014-03-20

Family

ID=50278205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074084 WO2014042092A1 (en) 2012-09-13 2013-09-06 Liquid crystal panel and display device

Country Status (1)

Country Link
WO (1) WO2014042092A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545648U (en) * 1991-11-12 1993-06-18 スタンレー電気株式会社 Structure of liquid crystal display device
JPH11109383A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Liquid crystal display element and its production
JP2006171680A (en) * 2004-12-17 2006-06-29 Au Optronics Corp Liquid crystal display
JP2012073342A (en) * 2010-09-28 2012-04-12 Hitachi Displays Ltd Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545648U (en) * 1991-11-12 1993-06-18 スタンレー電気株式会社 Structure of liquid crystal display device
JPH11109383A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Liquid crystal display element and its production
JP2006171680A (en) * 2004-12-17 2006-06-29 Au Optronics Corp Liquid crystal display
JP2012073342A (en) * 2010-09-28 2012-04-12 Hitachi Displays Ltd Liquid crystal display device

Similar Documents

Publication Publication Date Title
US8379173B2 (en) Liquid crystal display having particular front face plate
US20190310510A1 (en) Liquid crystal panel and liquid crystal display device
US20120229736A1 (en) Liquid crystal panel and liquid crystal display device
US20100277684A1 (en) Display device and method for production thereof
US20130242399A1 (en) Display device and method for manufacturing same
US9874784B2 (en) Liquid crystal panel, liquid crystal display apparatus, and method of manufacturing the liquid crystal panel
JP7026186B2 (en) Display device, display unit, and transparent plate unit
US9720287B2 (en) Liquid crystal display device
JP2014235185A (en) Display device
WO2016084750A1 (en) Display device
TWI635335B (en) Display device
CN109976024B (en) Color filter substrate, manufacturing method thereof and display panel
US20160238751A1 (en) Light-diffusing member, method for manufacturing the same, and display device
US20190049778A1 (en) Liquid crystal display device
US20120285608A1 (en) Method for producing liquid crystal panel
TWI548915B (en) Display panel
WO2014042092A1 (en) Liquid crystal panel and display device
JP2007264102A (en) Liquid crystal display panel and method of manufacturing same
TWI530731B (en) Display panel and manufacturing method thereof
KR102068958B1 (en) Liquid Display Apparatus
US20210302782A1 (en) Display panel and display apparatus including same
JP2005284139A (en) Display device and its manufacturing method
TWI387808B (en) Liquid crystal display device
WO2020110397A1 (en) Display device
KR20210119857A (en) Display panel and display apparatus including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP