WO2014041908A1 - Electrophoresis test tool and method for producing same - Google Patents

Electrophoresis test tool and method for producing same Download PDF

Info

Publication number
WO2014041908A1
WO2014041908A1 PCT/JP2013/070460 JP2013070460W WO2014041908A1 WO 2014041908 A1 WO2014041908 A1 WO 2014041908A1 JP 2013070460 W JP2013070460 W JP 2013070460W WO 2014041908 A1 WO2014041908 A1 WO 2014041908A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
buffer
buffer solution
gel
main region
Prior art date
Application number
PCT/JP2013/070460
Other languages
French (fr)
Japanese (ja)
Inventor
政俊 中川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014041908A1 publication Critical patent/WO2014041908A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44795Isoelectric focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to an electrophoresis test device and a method for manufacturing the same.
  • Electrophoresis is a separation analysis method that utilizes a phenomenon in which a charged substance in a medium moves in an electric field according to the electric charge when a voltage is applied to the medium such as a solution or a hydrophilic support immersed in the medium. It is.
  • electrophoresis using gel as a medium is a technique for separating biopolymers such as proteins and nucleic acids, in the fields of life science such as biochemistry and molecular biology, and in the field of clinical testing. Widely used.
  • electrophoresis isoelectric focusing method
  • proteins are separated by gathering at a pH position equal to their isoelectric point in a pH gradient.
  • an amphoteric carrier has been used in the past, but in recent years, an immobilized pH gradient (Immobilized pH Gradient: IPG) gel that does not collapse during energization is often used. ing.
  • IPG immobilized pH Gradient
  • gel electrophoresis is an indispensable technique for separating and analyzing biopolymers such as proteins.
  • the accuracy and reproducibility of analysis largely depend on the quality of the gel used. Therefore, in this field, it is desired to develop a technique capable of stably producing an electrophoretic test device equipped with a high-resolution gel.
  • Patent Document 1 discloses a gel sheet having a concentration gradient by mixing two types of gel stock solutions having different concentrations in a stirring tank, and introducing the mixed solution into a gel container from the bottom to cause gelation (polymerization).
  • a method of making is disclosed.
  • an SDS-PAGE gel sheet having a predetermined concentration gradient can be obtained by changing the ratio of each gel stock solution in the mixed solution to be introduced into the gel container.
  • two types of gel stock solutions having different pHs are mixed in a stirring tank, and the mixture is introduced into the gel container from the bottom to cause gelation, thereby adjusting the pH gradient.
  • the gel sheet which has can be produced.
  • a gel sheet having a predetermined pH gradient is obtained by changing the ratio of each gel stock solution in the mixed solution to be introduced into the gel container, and the gel sheet is elongated by cutting the gel sheet with a predetermined width in the pH gradient direction. By pasting on the plate, a gel plate for isoelectric focusing is obtained.
  • Patent Document 2 discloses a gel plate manufacturing method (inkjet method) in which a monomer solution is applied onto a plate as a technique capable of accurately managing a pH gradient. That is, after forming a liquid pool on the substrate and discharging the monomer solution into the liquid pool, a gel layer is formed on the substrate by applying a polymerization initiator to gel the coating film. In this case, a gel plate for isoelectric focusing having a predetermined pH gradient can be obtained by applying two types of monomer solutions having different pHs to the pool while changing the coating amount.
  • FIG. 9 (A) is a conceptual diagram illustrating the electrophoresis test device and the manufacturing method of Patent Document 2
  • FIG. 9 (B) is a state immediately after applying the pH buffer solution by the method shown in FIG. 9 (A). It is a conceptual diagram explaining a state.
  • FIGS. 9A and 9B are composed of an upper stage, a middle stage, and a lower stage, respectively.
  • the upper part of FIGS. 9A and 9B shows the change in application amount of the acidic monomer solution and the basic monomer solution, which are two types of pH buffer solutions used at the time of gel production described later, in terms of area.
  • FIGS. 9A and 9B is a line graph showing the change in the coating amount of the acidic monomer solution (thin line) and the basic monomer solution (thick line).
  • the pH at the position of the gel layer in the electrophoresis direction is shown by a line graph.
  • the pH value increases linearly from one end S 1 to the other end S 2 of the substrate S so as to have a pH gradient as shown in the lower line graph of FIG. 9A.
  • the acidic monomer solution and the basic monomer solution are applied to the liquid pool while changing the coating amount with the inkjet head (see the upper and middle stages of FIG. 9A).
  • the coating start end region I on the one end S 1 side and the coating end region on the other end S 2 side of the base material S that particularly increases the amount of solution.
  • the liquid film shape cannot be maintained at a right angle, and the amount of the solution decreases. Therefore, as shown in the middle part of FIG.
  • impurities in the gel are attracted to one electrode side (positive electrode side or negative electrode side) and collected.
  • the gel end where the impurities accumulate is a portion that is inherently unsuitable for protein separation.
  • the “impurities” include residual compounds at the time of gel chip production (unreacted monomer compounds, polymerization agents, etc.), impurities contained in the evaluation protein sample, impurities in electrophoresis reagents (electrophoresis buffer), and the like.
  • the present invention has been made in view of such problems, and provides an electrophoresis test device capable of performing electrophoresis with high accuracy and high reliability, and a manufacturing method capable of easily manufacturing the test device.
  • the purpose is to do.
  • the present invention comprising a gel having a pH gradient from the acidic side to the basic side,
  • the gel includes a main region and a buffer region adjacent to the main region;
  • an electrophoretic test device in which the pH value of the buffer region is substantially constant (the pH gradient of the buffer region is gentler than the pH gradient of the main region).
  • a gel material application step for applying a gel material on a base material to form a liquid pool, and a pH buffer solution is applied to the liquid pool after the gel material application step.
  • a pH buffer solution coating step and a gelation step of gelling the coating film after the pH buffer solution coating step
  • the application region on the substrate is divided into a main region and a region where a buffer region adjacent to the main region is to be formed, In the region where the main region is to be formed, the pH buffer solution is applied while continuously and gently changing the coating amount per unit area of the pH buffer solution, In the region where the buffer region is to be formed, manufacture of a test device for electrophoresis in which the pH buffer solution is applied so that the rate of change of the coating amount per unit area of the pH buffer solution is lower than the rate of change in the main region A method is provided.
  • the gel in the electrophoretic test device of the present invention includes a main region having a linear pH gradient, and a buffer region adjacent to (preferably both) at least one of the acidic side and basic side ends of the main region.
  • the pH gradient of the buffer region is gentler than the pH gradient of the main region, and the pH value of the buffer region is substantially constant.
  • the main region has a linear pH gradient of pH 3 to 10
  • a buffer region constant at pH 3 is provided on the acidic side of the main region
  • a buffer region constant at pH 10 is provided on the basic side of the main region. be able to.
  • the pH gradient in the coating start region I and the coating end region II (that is, the pH gradient in the main region) is reversed.
  • at least one (preferably both) of the application start region I and the application end region II is intentionally used as a buffer region, so that the pH gradient is reversed at the end of the main region in the electrophoresis direction.
  • a linear pH gradient can be formed without forming a gradient.
  • the electrophoresis test device of the present invention is advantageous in that the gel end is unsuitable for protein separation because impurities in the gel accumulate during electrophoresis, and the length of the main region in the electrophoresis direction is convenient. Is not substantially shortened. Therefore, the electrophoresis test device of the present invention can perform highly accurate separation and measurement of proteins in the main region of the gel during electrophoresis, and can obtain highly reliable analysis results.
  • the pH gradient in the main region is not affected even if the solution application amount changes in the application start region I and the application end region II.
  • an electrophoretic test device including a gel capable of performing highly accurate protein separation measurement.
  • FIG. 2 is a conceptual diagram illustrating an electrophoresis test device and a manufacturing method thereof according to Embodiment 1. It is a conceptual diagram explaining the state immediately after apply
  • FIG. It is the schematic bottom view which looked at the inkjet head in the manufacturing apparatus of FIG. 3 from the downward direction.
  • FIG. 6 is a conceptual diagram illustrating an electrophoresis test device and a manufacturing method thereof according to Embodiment 2.
  • the electrophoresis test device of the present invention comprises a gel having a pH gradient from the acidic side to the basic side,
  • the gel includes a main region and a buffer region adjacent to the main region.
  • the pH gradient of the buffer region is gentler than the pH gradient of the main region.
  • the test device for electrophoresis of the present invention may be configured as follows. (1) The number of the main regions is not particularly limited, and may be one or plural.
  • the buffer region may be disposed adjacent to the acidic side end and the basic side end in the main region.
  • buffer regions are disposed at both ends in the electrophoresis direction of the gel, and a main region having a single continuous pH gradient is disposed between the buffer regions at both ends.
  • main regions buffer regions are arranged at both ends in the electrophoresis direction of the gel, a plurality of main regions having a pH gradient are arranged between the buffer regions at both ends, and also between two adjacent main regions.
  • a buffer area is arranged.
  • the pH gradient in the buffer region may be a half or less of the pH gradient in the main region.
  • the pH gradient of the main region may be a linear gradient.
  • the form of the base material of the electrophoresis test device is not particularly limited, and examples thereof include an elongated plate and a chip molded into a predetermined shape.
  • the material of the base material is not particularly limited as long as it can function as a base material for a test device for electrophoresis.
  • glass such as quartz glass and non-alkali glass, polyethylene terephthalate (PET), polymethacryl
  • resins such as acid methyl resin (PMMA), ceramics such as alumina, and low-temperature co-fired ceramic.
  • the surface of the substrate on which the gel layer is formed may be subjected to a hydrophilic treatment, thereby improving the wettability of the monomer solution described below with respect to the substrate, and the monomer solution Adhesion between the gelled gel layer and the substrate is improved.
  • a hydrophilic treatment include nitration using sulfuric acid, sulfonation using nitric acid, oxygen plasma treatment and the like.
  • the material of the gel layer of the electrophoresis test device is not particularly limited as long as it can function as the gel layer of the electrophoresis test device.
  • acrylamide Monomer
  • bisacrylamide crosslinking agent
  • pH adjusting material pH buffer
  • TEMED polymerization accelerator
  • ammonium persulfate APS
  • the gel layer is formed by forming a puddle of a gel material solution on a base material, and applying a pH buffer solution on the puddle to cause gelation.
  • a monomer solution a gel material solution containing a polymerization initiator
  • a monomer solution polymerization in which a crosslinking agent other than the polymerization initiator, a polymerization accelerator, and the like are mixed are used.
  • gel material liquid means all of a gel material liquid to which a polymerization initiator has been added in advance, a gel material liquid not containing a polymerization initiator, and a polymerization initiator, unless otherwise specified.
  • a gel material solution to which a polymerization initiator has been added in advance may be referred to as “a gel material solution containing a polymerization initiator”
  • a gel material solution that does not include a polymerization initiator may be referred to as a “monomer solution”.
  • the electrophoretic test device of the present invention comprises a gel material application step for applying a gel material on a substrate to form a liquid pool, and a pH buffer for applying a pH buffer solution onto the liquid pool after the gel material application step.
  • the pH buffer solution application step the application region on the substrate is divided into a main region and a region where a buffer region adjacent to the main region is to be formed.
  • the pH buffer solution is applied while continuously and gently changing the coating amount per unit area of the pH buffer solution.
  • the pH buffer solution is applied so that the change rate of the coating amount per unit area of the pH buffer solution is lower than the change rate in the main region.
  • the method for applying the gel material liquid onto the substrate is not particularly limited, and any method can be used as long as the gel material liquid can be applied to a predetermined region on the upper surface of the substrate.
  • a pipetter, a dispenser, an inkjet device, etc. can be mentioned.
  • an ink jet apparatus provided with an ink jet head that discharges fine droplets with high accuracy and adheres them to a substrate.
  • minute droplets can be applied to a predetermined area of an elongated base material with high accuracy and quantitatively. Therefore, the formation area of the gel layer to be obtained, the film thickness, the pH gradient, the concentration gradient, etc. Can be controlled easily and with high accuracy.
  • FIG. 1 (A) is a perspective view showing a usable state of the isoelectric focusing test device of Embodiment 1 of the present invention
  • FIG. 1 (B) is the isoelectric focusing of FIG. 1 (A). It is a perspective view which shows the state which can be preserve
  • FIG. 2A is a conceptual diagram illustrating the electrophoresis test device and the manufacturing method thereof according to Embodiment 1
  • FIG. 2B is a pH buffer solution applied by the method shown in FIG. It is a conceptual diagram explaining the state immediately after.
  • An electrophoretic test device GP 1 shown in FIG. 1A is obtained by forming a bowl-shaped gel layer G 1 on a substrate S.
  • the gel layer G 1 has a gently convex curved upper surface (surface opposite to the substrate) and a pH gradient in the longitudinal direction (hereinafter referred to as “X direction”) that is the electrophoresis direction. ing.
  • the direction orthogonal to the X direction is the width direction of the substrate S (hereinafter referred to as “Y direction”).
  • the gel layer G 1 is dried to a moisture content of 5% or less, the gel layer G 1 is dried to form a dry film D 1.
  • the isoelectric focusing test device GPD 1 shown in FIG. can get.
  • the length and width of the gel layer G 1 are the same as the length and width of the substrate S.
  • the length and width of the substrate S are not particularly limited, but as an example, the length is about 50 to 250 mm and the width is about 0.5 to 5 mm.
  • the thickness of the gel layer G 1 is not particularly limited, but is, for example, about 195 to 1010 ⁇ m.
  • the thickness of the dry film D 1 obtained by drying the gel layer G 1 shrinks to 100 ⁇ m or less, but the length and width hardly change.
  • FIGS. 2 (A) and 2 (B) are composed of an upper stage, a middle stage and a lower stage, respectively.
  • the upper part of FIGS. 2 (A) and 2 (B) shows the change in application amount of the acidic monomer solution and the basic monomer solution, which are two types of pH buffer solutions used at the time of gel production described later, in terms of area.
  • the middle part of FIGS. 2 (A) and 2 (B) shows a change in the coating amount of the acidic monomer solution (thin line) and the basic monomer solution (thick line) in a line graph.
  • the pH at the position of the gel layer in the electrophoresis direction is shown by a line graph.
  • the application region is divided into regions A to C from one end S 1 to the other end S 2 of the substrate S, and the application amount of the acidic monomer solution and the basic monomer solution is controlled according to each region.
  • the region B corresponds to a region where a main region described later is to be formed
  • the regions A and C correspond to regions where a buffer region described later is to be formed.
  • the acidic side and the basic side of the region B where the main region is to be formed are the regions A and C where the buffer region is to be formed.
  • the gel layer G 1 has a pH gradient in a predetermined pH range in the X direction (electrophoresis direction).
  • the gel layer G 1 has a main region having a pH gradient of pH 3 to 10, a pH 3 buffer region adjacent to the acidic side end of the main region, and a pH 10 adjacent to the basic side end of the main region. The case of having a buffer region is illustrated.
  • the characteristic structure of the gel layer G 1 of Embodiment 1 is that buffer regions are arranged on the acidic side and basic side of the pH region (main region) to be analyzed in detail as described above.
  • the pH of the buffer region is set to be equal to the pH at the end of the adjacent main region.
  • FIG. 3 is a configuration diagram showing an apparatus capable of manufacturing the electrophoresis test device of the first embodiment.
  • This test device manufacturing apparatus includes a stage 10 on which a base material S is set, an ink jet apparatus 30 as an application unit, a moving mechanism 40 that moves the stage 10 in a linear direction, and a sealable case 50 that houses these. And a control unit (not shown).
  • the case 50 is provided with an opening / closing door (not shown).
  • the moving mechanism 40 includes a support base 40a that supports the stage 10, and the support base 40a can be reciprocated in a linear direction by a linear guide mechanism (not shown).
  • a linear guide mechanism not shown.
  • the support base 40a indicated by the solid line is in the standby position, and the support base 40a, the stage 10 and the substrate S travel straight to the position indicated by the two-dot chain line in the coating process.
  • the substrate S set on the stage 10 passes directly below first to third inkjet heads 31b, 32b, and 33b, which will be described later.
  • the ink jet device 30 includes an acidic solution discharge unit 31, a basic solution discharge unit 32, a polymerization initiator discharge unit 33, and a negative pressure adjustment unit 34.
  • the acidic solution discharge unit 31 includes a first tank 31a that stores the acidic monomer solution A, a first inkjet head 31b, and a first pipe 31c that sends the acidic monomer solution A from the first tank 31a to the first inkjet head 31b. And the acidic monomer solution A is supplied from the first tank 31a to the first inkjet head 31b using the water head difference.
  • the acidic monomer solution A is set to a predetermined pH (for example, pH 2 to 7) by one or more pH buffers.
  • the basic solution discharge unit 32 includes a second tank 32a that stores the basic solution B, a second inkjet head 32b, and a second pipe 32c that sends the basic solution B from the second tank 32a to the second inkjet head 32b. And the basic monomer solution B is supplied from the second tank 32a to the second inkjet head 32b using the water head difference.
  • the basic monomer solution B is set to a predetermined pH (for example, pH 7 to 12) by one or more kinds of pH buffers.
  • the polymerization initiator discharge unit 33 includes a third tank 33a that stores the polymerization initiator C, a third inkjet head 33b, and a third pipe 33c that sends the polymerization initiator C from the third tank 33a to the third inkjet head 33b. And the polymerization initiator C is supplied from the third tank 33a to the third inkjet head 33b using the water head difference.
  • Examples of the first to third ink jet heads 31b to 33b include a thermal jet method, a piezo jet method, an electrostatic drive method, and the like, but each liquid (acidic monomer solution A, basic monomer solution B, polymerization in the ink jet device 30).
  • a thermal jet method a piezo jet method, an electrostatic drive method, and the like
  • each liquid acidic monomer solution A, basic monomer solution B, polymerization in the ink jet device 30.
  • the initiator C is cooled, it is desirable to use a piezo jet method or an electrostatic drive method without using a thermal jet method for applying heat to each liquid.
  • the negative pressure adjusting unit 34 is connected to the first to third tanks 31a to 33a by pipes 35 to 37, manages the atmospheric pressure in the first to third tanks, and controls the first to third inkjet heads 31b.
  • the insides of the first to third tanks 31a to 33a are adjusted to be constant at a predetermined pressure lower than the atmospheric pressure so that the liquid does not drip from the nozzle holes H (see FIG. 5).
  • the first to third ink jet heads 31b to 33b are integrated to form a set of discharge head units U, which are fixed by a fixing member (not shown). As shown in FIG. 4, the first to third ink jet heads 31b to 33b are arranged in a line on the movement locus E of the base material S, but the head arrangement order is not limited to this order. In the first embodiment, the first to third inkjet heads 31b to 33b are arranged in this order from the upstream side in the moving direction of the substrate S.
  • a plurality of nozzles are formed on the lower surfaces of the first to third inkjet heads 31b to 33b facing the movement locus E of the substrate S in a direction orthogonal to the direction of the movement locus E.
  • the holes H are provided in one row. That is, the nozzle hole group HG in one row extends in a direction orthogonal to the direction of the movement locus E and with a length exceeding the width of the movement locus E.
  • the nozzle hole diameter D and the nozzle hole interval P are not particularly limited, but the diameter of the nozzle hole H is suitably about 10 to 100 ⁇ m, and the nozzle hole interval P is suitably about 100 to 200 ⁇ m.
  • the nozzle hole group HG may be provided in a plurality of rows of two or more.
  • an elongated rectangular base material S is set on the stage 10 in the standby position.
  • a liquid pool L0 is formed in advance.
  • a monomer solution obtained by diluting a monomer with pure water is used, and a crosslinking agent and a polymerization accelerator may be added to the monomer solution.
  • a coating process under normal temperature and atmospheric pressure based on a predetermined program is performed. That is, as shown in FIGS. 6A and 6B and FIGS. 7A and 7B, the support 40a is intermittently moved in the direction of the arrow M by the moving mechanism 40, and the first to third Minute droplets La, Lb, and Lc are intermittently ejected from the inkjet heads 31b to 33b, and a coating film L3 is formed on the liquid pool L0.
  • the nozzle hole H that discharges the micro droplet La is selected from the nozzle hole group HG in the first inkjet head 31b so that the micro droplet La is not discharged onto the stage 10.
  • the coating amount per unit area of the fine droplets La discharged from the first inkjet head 31b onto the substrate S is changed every time the substrate S moves intermittently by a predetermined distance (at predetermined discharge intervals). The amount is controlled to a predetermined amount, which will be described in detail later.
  • the coating amount per unit area of the micro droplets Lb ejected from the second inkjet head 32b is a predetermined amount every time the substrate S is intermittently moved by a predetermined distance (at a predetermined ejection interval). This will be described in detail later.
  • the coating film L2 and the polymerization initiator mixture coating film with L3 (FIG. 7 (B) refer) is formed at one end S 1 side of the substrate S, one end S 1 of the thus substrate S continuously coated film L3 toward the other end S 2 side is gradually formed from the side.
  • the other end S 2 of the substrate S sequentially passes through the first to third inkjet heads 31b to 33b, as shown in FIG. 7B, the first to third inkjet heads 31b to 33b Droplet discharge stops sequentially.
  • the application amount control of the acidic monomer solution and the basic monomer solution will be described with reference to FIGS. 2 (A) and 2 (B).
  • the acidic monomer solution is controlled so that the coating amount decreases as it goes from one end S 1 of the substrate S to the other end S 2
  • the basic monomer solution is one end S 1 of the substrate S.
  • the coating amount is controlled to increase from the other end S 2 toward the other end S 2 . More specifically, in the region A on the substrate S, the application amount of the acidic monomer solution is constant at 100%, and the application amount of the basic monomer solution is constant at 0%.
  • the application amount of the acidic monomer solution continuously decreases in the range of 100 to 0%, and the application amount of the basic monomer solution continuously increases in the range of 0 to 100%.
  • the application amount of the acidic monomer solution is constant at 0%, and the application amount of the basic monomer solution is constant at 100%.
  • the pH buffer solution is applied while continuously and gently changing the coating amount per unit area of the pH buffer solution. Further, in the regions A and C where the buffer region is to be formed, the pH buffer solution is applied so that the change rate of the coating amount per unit area of the pH buffer solution is lower than the change rate in the main region.
  • the rate of change of the coating amount per unit area of the pH buffer solution means the degree of pH gradient.
  • the coating film immediately after the acidic and basic monomer solution is applied by such coating amount control is applied to the regions A and C in which the buffer regions are to be formed, as shown in the upper and middle parts of FIG. Although the shape collapses from the right-angle shape, the pH values of A and C in these regions are not changed.
  • coating process is performed when a control part controls each drive part based on a predetermined program. Thereafter, the support base 40a returns to the standby position, and the coating process is completed.
  • the door of the case 50 is opened, the base material S is taken out and stored in the case for the gelation process, and the gelation process of the coating film L3 is performed at room temperature in the case. Note that it takes about 3 to 5 hours to complete the gelation at room temperature.
  • the isoelectric focusing test device GP 1 in which a bowl-shaped gel layer G 1 having rounded corners on the four ends is formed on the substrate S as shown in FIG. 1 (A). Is obtained.
  • the isoelectric focusing test device GP 1 is an incomplete product.
  • the electrophoretic test device GPD 1 of the present invention as a finished product shown in FIG. 1B is obtained.
  • the method of drying the gel layer G 1 is not particularly limited, and examples thereof include a method of heating the gel layer G 1 with a heater or blowing hot air to the gel layer G 1 for drying.
  • a cooling step for cooling the dry film D 1 to ⁇ 20 ° C. or less may be performed. Or you may perform a freeze-dry process instead of a drying process and a cooling process.
  • FIG. 8A is a conceptual diagram illustrating the electrophoresis test device and the manufacturing method thereof according to Embodiment 2
  • FIG. 8B is a diagram immediately after applying a pH buffer solution by the method shown in FIG. It is a conceptual diagram explaining a state.
  • FIGS. 8A and 8B are composed of an upper stage, a middle stage, and a lower stage, respectively.
  • the upper part of FIGS. 8A and 8B shows, in terms of area, changes in the coating amounts of an acidic monomer solution and a basic monomer solution, which are two types of pH buffer solutions used during gel production described later.
  • FIGS. 8A and 8B shows a change in the coating amount of the acidic monomer solution (thin line) and the basic monomer solution (thick line) in a line graph.
  • the lower part of FIGS. 8A and 8B shows the pH at the position of the gel layer in the electrophoresis direction as a line graph.
  • the gel in the electrophoresis test device of the second embodiment is the same as that of the first embodiment except that the gel has a plurality of main regions and a buffer region disposed between two adjacent main regions.
  • the gel has an acidic buffer region (pH 3), a basic buffer region (pH 10), and a first main region (pH 3 to 5.5) disposed between the buffer regions on both ends. ), The second main region (pH 5.5 to 8.5) and the third main region (pH 8.5 to 10), and the buffer region (pH 5.5) disposed between the first main region and the second main region. ) And a buffer region (pH 8.5) disposed between the second main region and the third main region.
  • Embodiment 3 In Embodiments 1 and 2, the case where a monomer is thermally polymerized and gelled by using a thermal polymerization initiator such as ammonium persulfate (APS) or benzoyl peroxide as a polymerization initiator is exemplified.
  • APS ammonium persulfate
  • benzoyl peroxide As a polymerization initiator is exemplified.
  • photopolymerization initiators such as riboflavins, acetophenones such as 2,2-dimethoxy-2-phenylacetophenone, benzophenones, and azoisobutyronitrile are used as polymerization initiators. Polymerize to gel.
  • a light irradiator (not shown) is provided on the downstream side in the substrate transport direction (arrow M1 direction) of the ejection head unit U.
  • the coating film on the material S is gelled by irradiating light.
  • This light irradiator can irradiate light having a predetermined wavelength (for example, about 200 to 600 nm) with a predetermined light amount, and the irradiation light wavelength is appropriately set according to the type of the photopolymerization initiator to be used. Further, the light irradiator only needs to irradiate a part or the whole of the coating film on the substrate.
  • a coating film is formed on a substrate in the same manner as in the first embodiment (description in FIGS. 6A to 7B), and then the substrate is optically irradiated. Move to the irradiator side and irradiate the coating film with light to gel. At this time, when the light irradiator is of a type that irradiates a part of the coating film, the coating film is irradiated with light while moving the substrate from one end side to the other end side. When the light irradiator is of a type that irradiates light to the entire coating film, the substrate is moved directly below the light irradiator, and then the light is irradiated onto the coating film while the substrate is stationary.
  • (Other embodiments) 1 the case where a coating film in a room temperature state is formed on the base material in the coating step is exemplified. However, the coating film is formed on the base material under cooling using an apparatus including a Peltier element and a tank cooling unit. It may be formed. In the first embodiment, the case where the coating film is formed in the air in the coating process is illustrated, but the coating film may be formed in a nitrogen atmosphere.
  • the case where the monomer solution and the polymerization initiator are individually applied onto the substrate is exemplified, but the gel material solution containing the polymerization initiator may be applied onto the substrate to form the liquid pool L0. .
  • a gel material solution containing a polymerization initiator in a cooled state is used so that gelation of the gel material solution containing a polymerization initiator does not proceed during the coating process.
  • the substrate may be cooled.
  • the coating film L3 is formed by passing the substrate S once under the discharge head unit U is illustrated.
  • the coating film L3 is formed by moving the substrate S one or more times. May be.
  • the application timing of the polymerization initiator can be set, for example, at every movement, at a predetermined movement, or at the last movement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Provided is an electrophoresis test tool which enables high-precision and high-reliability electrophoresis. The electrophoresis test tool is characterized in comprising a gel having a pH gradient from the acidic side to the basic side, and in that the gel comprises a main region and buffer regions adjacent to the main region, and the pH values of the buffer regions are substantially constant.

Description

電気泳動用試験具およびその製造方法Electrophoresis test device and method for manufacturing the same
 本発明は、電気泳動用試験具およびその製造方法に関する。 The present invention relates to an electrophoresis test device and a method for manufacturing the same.
 電気泳動法は、溶液またはこれに浸漬した親水性の支持体などの媒体に電圧をかけることによって、該媒体中の荷電物質がその電荷に応じて電界中を移動する現象を利用した分離分析法である。特に、媒体としてゲルを用いる電気泳動(ゲル電気泳動法)は、タンパク質および核酸のような生体高分子を分離する手法として、生化学、分子生物学などの生命科学分野や臨床検査の分野などにおいて広く利用されている。 Electrophoresis is a separation analysis method that utilizes a phenomenon in which a charged substance in a medium moves in an electric field according to the electric charge when a voltage is applied to the medium such as a solution or a hydrophilic support immersed in the medium. It is. In particular, electrophoresis using gel as a medium (gel electrophoresis) is a technique for separating biopolymers such as proteins and nucleic acids, in the fields of life science such as biochemistry and molecular biology, and in the field of clinical testing. Widely used.
 タンパク質の電気泳動法には、主として、タンパク質の大きさ(分子量)により分離する方法と、電荷(等電点)により分離する方法とがある。分子量による分離には、ポリアクリルアミドゲルを用いて、ドデシル硫酸ナトリウム(SDS)の存在下で行う電気泳動(SDS-PAGE法)が広く利用されている。SDS-PAGE法では、タンパク質は一定の割合でSDSと結合してその電荷密度が一定となり、この状態でタンパク質が網目状構造を有するポリアクリルアミド中を移動することで、タンパク質は分子ふるい効果により、その分子量に応じて分離される。 There are mainly two methods for protein electrophoresis: separation based on protein size (molecular weight) and separation based on charge (isoelectric point). For separation by molecular weight, electrophoresis (SDS-PAGE method) using polyacrylamide gel in the presence of sodium dodecyl sulfate (SDS) is widely used. In the SDS-PAGE method, protein binds to SDS at a certain rate and its charge density becomes constant.In this state, the protein moves through the polyacrylamide having a network structure. It is separated according to its molecular weight.
 等電点による分離には、pH勾配の存在下で行う電気泳動(等電点電気泳動法)が利用されている。等電点電気泳動法では、pH勾配中で、タンパク質が自身の等電点と等しいpHの位置に集まることによって、タンパク質が分離される。等電点電気泳動法の媒体として、従来は両性担体が用いられていたが、近年では、通電中にpH勾配が崩れることのない固定化pH勾配(Immobilized pH Gradient:IPG)ゲルがよく用いられている。 For separation by isoelectric point, electrophoresis (isoelectric focusing method) performed in the presence of a pH gradient is used. In isoelectric focusing, proteins are separated by gathering at a pH position equal to their isoelectric point in a pH gradient. As an isoelectric focusing medium, an amphoteric carrier has been used in the past, but in recent years, an immobilized pH gradient (Immobilized pH Gradient: IPG) gel that does not collapse during energization is often used. ing.
 近年では、生物が有する全タンパク質の構造および機能を網羅的に解析することを目的とするプロテオーム解析の一環として、前記の2つの電気泳動法を組み合わせた二次元電気泳動法が利用されている。二次元電気泳動法では、一次元目に等電点電気泳動が行われ、続く二次元目にSDS-PAGEが行われる。これにより、数千種類ものタンパク質を高い分解能で一挙に分離することが可能となった。 In recent years, as a part of proteome analysis aiming at comprehensive analysis of the structure and function of all proteins of living organisms, a two-dimensional electrophoresis method combining the two electrophoresis methods has been used. In the two-dimensional electrophoresis method, isoelectric focusing is performed in the first dimension, and SDS-PAGE is performed in the subsequent second dimension. This has enabled thousands of proteins to be separated at once with high resolution.
 このように、ゲル電気泳動法はタンパク質などの生体高分子の分離分析に不可欠な手法であるが、いずれの電気泳動法においても分析の精度および再現性は、用いるゲルの品質によるところが大きい。したがって、当該分野においては、分解能の高いゲルを搭載した電気泳動用試験具を安定して製造可能な技術の開発が望まれている。 As described above, gel electrophoresis is an indispensable technique for separating and analyzing biopolymers such as proteins. However, in any electrophoresis method, the accuracy and reproducibility of analysis largely depend on the quality of the gel used. Therefore, in this field, it is desired to develop a technique capable of stably producing an electrophoretic test device equipped with a high-resolution gel.
 例えば、特許文献1には、濃度が異なる2種類のゲル原液を撹拌槽で混合し、その混合液をゲル容器内へ底部から導入してゲル化(重合)させることにより濃度勾配を有するゲルシートを作製する方法が開示されている。この場合、ゲル容器内へ導入する混合液中の各ゲル原液の割合を変化させることによって、所定の濃度勾配を有するSDS-PAGE用ゲルシートが得られる。また、特許文献1に記載のグラジェントメイカーを用い、pHが異なる2種類のゲル原液を撹拌槽で混合し、その混合液をゲル容器内へ底部から導入してゲル化させることによりpH勾配を有するゲルシートを作製することができる。この場合、ゲル容器内へ導入する混合液中の各ゲル原液の割合を変化させることによって、所定のpH勾配を有するゲルシートが得られ、このゲルシートをpH勾配方向に所定の幅で切断して細長いプレート上に貼り付けることにより、等電点電気泳動用のゲルプレートが得られる。 For example, Patent Document 1 discloses a gel sheet having a concentration gradient by mixing two types of gel stock solutions having different concentrations in a stirring tank, and introducing the mixed solution into a gel container from the bottom to cause gelation (polymerization). A method of making is disclosed. In this case, an SDS-PAGE gel sheet having a predetermined concentration gradient can be obtained by changing the ratio of each gel stock solution in the mixed solution to be introduced into the gel container. Moreover, using the gradient maker described in Patent Document 1, two types of gel stock solutions having different pHs are mixed in a stirring tank, and the mixture is introduced into the gel container from the bottom to cause gelation, thereby adjusting the pH gradient. The gel sheet which has can be produced. In this case, a gel sheet having a predetermined pH gradient is obtained by changing the ratio of each gel stock solution in the mixed solution to be introduced into the gel container, and the gel sheet is elongated by cutting the gel sheet with a predetermined width in the pH gradient direction. By pasting on the plate, a gel plate for isoelectric focusing is obtained.
 特許文献1に記載のゲルプレート製造方法では、ゲル容器内でのpH勾配の管理が難しく、安定した品質のゲルプレートが得られ難いという面があった。そこで、pH勾配を精度よく管理できる技術として、プレート上にモノマー溶液を塗布するゲルプレート製造方法(インクジェット法)が特許文献2に開示されている。すなわち、基材上に液たまりを形成し、液たまりにモノマー溶液を吐出した後、重合開始剤を塗布して塗布膜をゲル化させることにより、基材上にゲル層を形成する。この場合、pHが異なる2種類のモノマー溶液を塗布量を変化させながら液たまりに塗布することにより、所定のpH勾配を有する等電点電気泳動用のゲルプレートが得られる。 In the gel plate manufacturing method described in Patent Document 1, it was difficult to control the pH gradient in the gel container, and it was difficult to obtain a stable quality gel plate. Therefore, Patent Document 2 discloses a gel plate manufacturing method (inkjet method) in which a monomer solution is applied onto a plate as a technique capable of accurately managing a pH gradient. That is, after forming a liquid pool on the substrate and discharging the monomer solution into the liquid pool, a gel layer is formed on the substrate by applying a polymerization initiator to gel the coating film. In this case, a gel plate for isoelectric focusing having a predetermined pH gradient can be obtained by applying two types of monomer solutions having different pHs to the pool while changing the coating amount.
特開昭62-167459号公報Japanese Patent Laid-Open No. 62-167659 特開2012-2739号公報JP 2012-2739 A
 図9(A)は特許文献2の電気泳動用試験具およびその製造方法を説明する概念図であり、図9(B)は図9(A)に示す方法でpH緩衝溶液を塗布した直後の状態を説明する概念図である。なお、図9(A)および(B)はそれぞれ上段、中段および下段から構成されている。図9(A)および(B)の上段は、後述するゲル製造時に用いる2種類のpH緩衝溶液である酸性モノマー溶液と塩基性モノマー溶液の塗布量の変化を面積で示している。図9(A)および(B)の中段は、酸性モノマー溶液(細線)と塩基性モノマー溶液(太線)の塗布量の変化を線グラフで示している。図9(A)および(B)の下段は、ゲル層の電気泳動方向位置におけるpHを線グラフで示している。 FIG. 9 (A) is a conceptual diagram illustrating the electrophoresis test device and the manufacturing method of Patent Document 2, and FIG. 9 (B) is a state immediately after applying the pH buffer solution by the method shown in FIG. 9 (A). It is a conceptual diagram explaining a state. FIGS. 9A and 9B are composed of an upper stage, a middle stage, and a lower stage, respectively. The upper part of FIGS. 9A and 9B shows the change in application amount of the acidic monomer solution and the basic monomer solution, which are two types of pH buffer solutions used at the time of gel production described later, in terms of area. The middle part of FIGS. 9A and 9B is a line graph showing the change in the coating amount of the acidic monomer solution (thin line) and the basic monomer solution (thick line). In the lower part of FIGS. 9A and 9B, the pH at the position of the gel layer in the electrophoresis direction is shown by a line graph.
 特許文献2の場合、図9(A)の下段の線グラフのようなpH勾配となるよう、すなわち、基材Sの一端S1から他端S2に向かってpH値が直線的に増加するように、インクジェットヘッドにて塗布量を変化させながら酸性モノマー溶液と塩基性モノマー溶液を液たまりに塗布する(図9(A)の上段および中段参照)。しかしながら、図9(B)の上段に示すように、このようなインクジェット塗布において、特に溶液量が多くなる基材Sの一端S1側の塗布始端領域Iおよび他端S2側の塗布終端領域IIでは液膜形状を直角に維持することができず、溶液量が減少してしまう。そのため、図9(B)の中段に示すように、溶液量のバランスが当初から崩れてしまい、図9(B)の下段に示すように、塗布始端領域Iおよび塗布終端領域IIでのpH位置ずれ(pH値ずれ)が生じ、pH勾配が逆勾配になる場合がある。このように、ゲルの電気泳動方向の両端でpH勾配の逆勾配が形成されると、このゲルを用いた電気泳動によるタンパク質の分離精度が低下する。なお、このようなpH勾配の逆勾配はインクジェット塗布のみで生じる訳ではなく、ピペッター、ディスペンサー等を用いた塗布によっても生じるおそれがある。 In the case of Patent Document 2, the pH value increases linearly from one end S 1 to the other end S 2 of the substrate S so as to have a pH gradient as shown in the lower line graph of FIG. 9A. As described above, the acidic monomer solution and the basic monomer solution are applied to the liquid pool while changing the coating amount with the inkjet head (see the upper and middle stages of FIG. 9A). However, as shown in the upper part of FIG. 9B, in such ink-jet coating, the coating start end region I on the one end S 1 side and the coating end region on the other end S 2 side of the base material S that particularly increases the amount of solution. In II, the liquid film shape cannot be maintained at a right angle, and the amount of the solution decreases. Therefore, as shown in the middle part of FIG. 9B, the balance of the solution amount is lost from the beginning, and as shown in the lower part of FIG. 9B, the pH positions in the application start region I and the application end region II. Deviation (pH value deviation) may occur, and the pH gradient may be reversed. Thus, when the reverse gradient of the pH gradient is formed at both ends in the electrophoresis direction of the gel, the protein separation accuracy by electrophoresis using this gel is lowered. Such a reverse gradient of the pH gradient does not occur only by ink jet coating, but may also occur by coating using a pipetter, a dispenser, or the like.
 また、一般的にゲルの電気泳動方向の両端に電極を接触して所定電圧を印加する電気泳動時において、ゲル中の不純物が一方の電極側(正極側または負極側)に引き寄せられて溜まるため、不純物が溜まるゲル端部は本来タンパク質の分離に不向きな部分である。ここで、「不純物」とは、ゲルチップ製造時の残存化合物(未反応モノマー化合物、重合剤など)、評価タンパク質試料に含まれる不純物、電気泳動試薬(泳動バッファ)の不純物などが挙げられる。 In general, during electrophoresis in which a predetermined voltage is applied by contacting electrodes at both ends of the gel in the electrophoresis direction, impurities in the gel are attracted to one electrode side (positive electrode side or negative electrode side) and collected. The gel end where the impurities accumulate is a portion that is inherently unsuitable for protein separation. Here, the “impurities” include residual compounds at the time of gel chip production (unreacted monomer compounds, polymerization agents, etc.), impurities contained in the evaluation protein sample, impurities in electrophoresis reagents (electrophoresis buffer), and the like.
 本発明は、このような課題を鑑みてなされたものであり、高精度かつ信頼性の高い電気泳動を行うことができる電気泳動用試験具、およびこの試験具を容易に製造できる製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and provides an electrophoresis test device capable of performing electrophoresis with high accuracy and high reliability, and a manufacturing method capable of easily manufacturing the test device. The purpose is to do.
 かくして、本発明によれば、酸性側から塩基性側に向かうpH勾配を有するゲルを備え、
 前記ゲルは、主要領域と、該主要領域と隣接する緩衝領域とを備え、
 前記緩衝領域のpH値が略一定(緩衝領域のpH勾配は主要領域のpH勾配よりも緩やか)である電気泳動用試験具が提供される。
Thus, according to the present invention, comprising a gel having a pH gradient from the acidic side to the basic side,
The gel includes a main region and a buffer region adjacent to the main region;
There is provided an electrophoretic test device in which the pH value of the buffer region is substantially constant (the pH gradient of the buffer region is gentler than the pH gradient of the main region).
 また、本発明の別の観点によれば、基材上にゲル材料を塗布し液たまりを形成するゲル材料塗布工程と、該ゲル材料塗布工程後の前記液たまり上にpH緩衝溶液を塗布するpH緩衝溶液塗布工程と、該pH緩衝溶液塗布工程後の塗布膜をゲル化するゲル化工程とを含み、
 前記pH緩衝溶液塗布工程において、基材上の塗布領域は、主要領域と、該主要領域と隣接する緩衝領域とを形成すべき領域に区分されており、
 前記主要領域を形成すべき領域においては、pH緩衝溶液の単位面積あたりの塗布量を連続的に緩やかに変化させながらpH緩衝溶液を塗布し、
 前記緩衝領域を形成すべき領域においては、pH緩衝溶液の単位面積あたりの塗布量の変化率が前記主要領域における変化率よりも低くなるようにpH緩衝溶液を塗布する電気泳動用試験具の製造方法が提供される。
According to another aspect of the present invention, a gel material application step for applying a gel material on a base material to form a liquid pool, and a pH buffer solution is applied to the liquid pool after the gel material application step. a pH buffer solution coating step, and a gelation step of gelling the coating film after the pH buffer solution coating step,
In the pH buffer solution application step, the application region on the substrate is divided into a main region and a region where a buffer region adjacent to the main region is to be formed,
In the region where the main region is to be formed, the pH buffer solution is applied while continuously and gently changing the coating amount per unit area of the pH buffer solution,
In the region where the buffer region is to be formed, manufacture of a test device for electrophoresis in which the pH buffer solution is applied so that the rate of change of the coating amount per unit area of the pH buffer solution is lower than the rate of change in the main region A method is provided.
 本発明の電気泳動用試験具におけるゲルは、線形のpH勾配を有する主要領域と、主要領域の酸性側端部と塩基性側端部のうち少なくとも一方に(好ましくは両方に)隣接する緩衝領域とを有し、この緩衝領域のpH勾配は前記主要領域のpH勾配よりも緩やかであり、かつ緩衝領域のpH値が略一定である。例えば、主要領域がpH3~10の線形なpH勾配を有していれば、主要領域の酸性側にpH3で一定な緩衝領域を設け、主要領域の塩基性側にpH10で一定な緩衝領域を設けることができる。 The gel in the electrophoretic test device of the present invention includes a main region having a linear pH gradient, and a buffer region adjacent to (preferably both) at least one of the acidic side and basic side ends of the main region. The pH gradient of the buffer region is gentler than the pH gradient of the main region, and the pH value of the buffer region is substantially constant. For example, if the main region has a linear pH gradient of pH 3 to 10, a buffer region constant at pH 3 is provided on the acidic side of the main region, and a buffer region constant at pH 10 is provided on the basic side of the main region. be able to.
 図9(B)で説明したように、従来の塗布法で形成したゲルでは、塗布始端領域Iおよび塗布終端領域IIのpH勾配(すなわち、主要領域のpH勾配)が逆勾配となってしまう場合があるが、本発明では塗布始端領域Iと塗布終端領域IIのうち少なくとも一方(好ましくは両方)を意図的に緩衝領域とすることによって、主要領域の電気泳動方向の端部にpH勾配の逆勾配が形成されずに線形なpH勾配が形成されるようにすることができる。
 また、本発明の電気泳動用試験具は、電気泳動時にゲル中の不純物が溜まるためタンパク質の分離に不向きなゲル端部を緩衝領域として用いるため好都合であり、主要領域の電気泳動方向の長さが実質的に短くなることはない。
 よって、本発明の電気泳動用試験具は、電気泳動時において、ゲルの主要領域にてタンパク質の高精度な分離測定を行うことができ、信頼性の高い分析結果を得ることができる。
As described with reference to FIG. 9B, in the gel formed by the conventional coating method, the pH gradient in the coating start region I and the coating end region II (that is, the pH gradient in the main region) is reversed. However, in the present invention, at least one (preferably both) of the application start region I and the application end region II is intentionally used as a buffer region, so that the pH gradient is reversed at the end of the main region in the electrophoresis direction. A linear pH gradient can be formed without forming a gradient.
In addition, the electrophoresis test device of the present invention is advantageous in that the gel end is unsuitable for protein separation because impurities in the gel accumulate during electrophoresis, and the length of the main region in the electrophoresis direction is convenient. Is not substantially shortened.
Therefore, the electrophoresis test device of the present invention can perform highly accurate separation and measurement of proteins in the main region of the gel during electrophoresis, and can obtain highly reliable analysis results.
 また、本発明の電気泳動用試験具の製造方法によれば、塗布始端領域Iと塗布終端領域IIで溶液塗布量が変化しても主要領域のpH勾配には影響がないようにしている。この結果、高精度なタンパク質の分離測定を行うことができるゲルを備えた電気泳動用試験具を製造することができる。 Further, according to the method for manufacturing an electrophoretic test device of the present invention, the pH gradient in the main region is not affected even if the solution application amount changes in the application start region I and the application end region II. As a result, it is possible to manufacture an electrophoretic test device including a gel capable of performing highly accurate protein separation measurement.
本発明の実施形態1の等電点電気泳動用試験具の使用可能な状態を示す斜視図である。It is a perspective view which shows the state which can use the test device for isoelectric focusing of Embodiment 1 of this invention. 図1(A)の等電点電気泳動用試験具におけるゲル層を乾燥した後の保存可能な状態を示す斜視図である。It is a perspective view which shows the state which can be preserve | saved after drying the gel layer in the test device for isoelectric focusings of FIG. 1 (A). 実施形態1の電気泳動用試験具およびその製造方法を説明する概念図である。FIG. 2 is a conceptual diagram illustrating an electrophoresis test device and a manufacturing method thereof according to Embodiment 1. 図2(A)に示す方法でpH緩衝溶液を塗布した直後の状態を説明する概念図である。It is a conceptual diagram explaining the state immediately after apply | coating pH buffer solution by the method shown to FIG. 2 (A). 実施形態1の電気泳動用試験具を製造することができる装置を示す構成図である。It is a block diagram which shows the apparatus which can manufacture the test device for electrophoresis of Embodiment 1. FIG. 図3の製造装置におけるインクジェットヘッドを下方から見た概略底面図である。It is the schematic bottom view which looked at the inkjet head in the manufacturing apparatus of FIG. 3 from the downward direction. 図3の製造装置におけるインクジェットヘッドのノズル孔群を示す拡大図である。It is an enlarged view which shows the nozzle hole group of the inkjet head in the manufacturing apparatus of FIG. 図3の製造装置を用いて基材へ酸性モノマー溶液を塗布する状態を示す説明図である。It is explanatory drawing which shows the state which apply | coats an acidic monomer solution to a base material using the manufacturing apparatus of FIG. 図6(A)から引き続いて基材へ塩基性モノマー溶液を塗布する状態を示す説明図である。It is explanatory drawing which shows the state which apply | coats a basic monomer solution to a base material continuously from FIG. 6 (A). 図6(B)から引き続いて基材へ重合開始剤を塗布する状態を示す説明図である。It is explanatory drawing which shows the state which apply | coats a polymerization initiator to a base material continuously from FIG. 6 (B). 図3の製造装置によるゲル材料液の塗布が終了した状態を示す説明図である。It is explanatory drawing which shows the state which the application | coating of the gel material liquid by the manufacturing apparatus of FIG. 3 was complete | finished. 実施形態2の電気泳動用試験具およびその製造方法を説明する概念図である。6 is a conceptual diagram illustrating an electrophoresis test device and a manufacturing method thereof according to Embodiment 2. FIG. 図8(A)に示す方法でpH緩衝溶液を塗布した直後の状態を説明する概念図である。It is a conceptual diagram explaining the state immediately after apply | coating pH buffer solution by the method shown to FIG. 8 (A). 従来(特許文献2)の電気泳動用試験具およびその製造方法を説明する概念図である。It is a conceptual diagram explaining the test device for electrophoresis of the past (patent document 2), and its manufacturing method. 図9(A)に示す方法でpH緩衝溶液を塗布した直後の状態を説明する概念図である。It is a conceptual diagram explaining the state immediately after apply | coating pH buffer solution by the method shown to FIG. 9 (A).
<電気泳動用試験具について>
 本発明の電気泳動用試験具は、酸性側から塩基性側に向かうpH勾配を有するゲルを備え、
 前記ゲルは、主要領域と、該主要領域と隣接する緩衝領域とを備える。
 前記緩衝領域のpH勾配は前記主要領域のpH勾配よりも緩やかである。
<About electrophoresis test equipment>
The electrophoresis test device of the present invention comprises a gel having a pH gradient from the acidic side to the basic side,
The gel includes a main region and a buffer region adjacent to the main region.
The pH gradient of the buffer region is gentler than the pH gradient of the main region.
 本発明の電気泳動用試験具は、次のように構成されてもよい。
(1)前記主要領域の数は特に限定されず、一つであってもよく、複数であってもよい。
The test device for electrophoresis of the present invention may be configured as follows.
(1) The number of the main regions is not particularly limited, and may be one or plural.
(2)前記緩衝領域は、前記主要領域における酸性側端部と塩基性側端部に隣接して配置されていてもよい。主要領域が一つである場合、ゲルの電気泳動方向の両端に緩衝領域が配置され、両端の緩衝領域の間に連続した単一のpH勾配を有する主要領域が配置される。主要領域が複数の場合、ゲルの電気泳動方向の両端に緩衝領域が配置され、両端の緩衝領域の間にpH勾配を有する複数の主要領域が配置され、隣接する2つの主要領域の間にも緩衝領域が配置される。 (2) The buffer region may be disposed adjacent to the acidic side end and the basic side end in the main region. When there is one main region, buffer regions are disposed at both ends in the electrophoresis direction of the gel, and a main region having a single continuous pH gradient is disposed between the buffer regions at both ends. When there are a plurality of main regions, buffer regions are arranged at both ends in the electrophoresis direction of the gel, a plurality of main regions having a pH gradient are arranged between the buffer regions at both ends, and also between two adjacent main regions. A buffer area is arranged.
(3)前記緩衝領域におけるpH勾配は、前記主要領域のpH勾配の2分の1以下の勾配であってもよい。 (3) The pH gradient in the buffer region may be a half or less of the pH gradient in the main region.
(4)前記主要領域のpH勾配が線形な勾配であってもよい。 (4) The pH gradient of the main region may be a linear gradient.
 電気泳動用試験具の基材の形態は、特に限定されるものではなく、例えば、細長プレート、所定形状に成型したチップ等が挙げられる。基材の材料としては、電気泳動用試験具の基材としての機能が発揮できるものであれば特に限定されず、例えば、石英ガラス、無アルカリガラス等のガラス、ポリエチレンテレフタレート(PET)、ポリメタクリル酸メチル樹脂(PMMA)等の樹脂、アルミナ、低温同時焼成セラミック等のセラミックスなどが挙げられる。また、基材が疎水性材料からなる場合、基材におけるゲル層が形成される面を親水性処理してもよく、これにより基材に対する後述のモノマー溶液の濡れ性が向上し、モノマー溶液がゲル化したゲル層と基材との密着性が向上する。親水性処理としては、硫酸を用いたニトロ化、硝酸を用いたスルホン化、酸素プラズマ処理等が挙げられる。 The form of the base material of the electrophoresis test device is not particularly limited, and examples thereof include an elongated plate and a chip molded into a predetermined shape. The material of the base material is not particularly limited as long as it can function as a base material for a test device for electrophoresis. For example, glass such as quartz glass and non-alkali glass, polyethylene terephthalate (PET), polymethacryl Examples thereof include resins such as acid methyl resin (PMMA), ceramics such as alumina, and low-temperature co-fired ceramic. Further, when the substrate is made of a hydrophobic material, the surface of the substrate on which the gel layer is formed may be subjected to a hydrophilic treatment, thereby improving the wettability of the monomer solution described below with respect to the substrate, and the monomer solution Adhesion between the gelled gel layer and the substrate is improved. Examples of the hydrophilic treatment include nitration using sulfuric acid, sulfonation using nitric acid, oxygen plasma treatment and the like.
 電気泳動用試験具のゲル層の材料は、電気泳動用試験具のゲル層としての機能が発揮できるものであれば特に限定されず、例えば、一般的なポリアクリルアミドゲルの材料としては、アクリルアミド(モノマー)、ビスアクリルアミド(架橋剤)、pH調整材料(pHバッファ)、テトラメチルエチレンジアミン(TEMED:重合促進剤)、過硫酸アンモニウム(APS:重合開始剤)および純水が挙げられる。 The material of the gel layer of the electrophoresis test device is not particularly limited as long as it can function as the gel layer of the electrophoresis test device. For example, as a general polyacrylamide gel material, acrylamide ( Monomer), bisacrylamide (crosslinking agent), pH adjusting material (pH buffer), tetramethylethylenediamine (TEMED: polymerization accelerator), ammonium persulfate (APS: polymerization initiator) and pure water.
 本発明において、ゲル層は、基材上にゲル材料液の液たまりを形成し、その液たまり上にpH緩衝溶液を塗布しゲル化させることにより形成される。この際、液たまりとしては、予め重合開始剤を添加したモノマー溶液(重合開始剤入りゲル材料液)を用いる場合と、重合開始剤以外の架橋剤、重合促進剤等を混合したモノマー溶液(重合開始剤を含まないゲル材料液)を用いる場合と、重合開始剤を用いる場合とを包含する。 In the present invention, the gel layer is formed by forming a puddle of a gel material solution on a base material, and applying a pH buffer solution on the puddle to cause gelation. At this time, as a liquid pool, a monomer solution (a gel material solution containing a polymerization initiator) to which a polymerization initiator is added in advance and a monomer solution (polymerization) in which a crosslinking agent other than the polymerization initiator, a polymerization accelerator, and the like are mixed are used. A case where a gel material liquid not containing an initiator) is used, and a case where a polymerization initiator is used.
 よって、本発明において、「ゲル材料液」とは、特に言及がない限り、予め重合開始剤を添加したゲル材料液、重合開始剤を含まないゲル材料液、および重合開始剤の全てを意味する。以下、「予め重合開始剤を添加したゲル材料液」を「重合開始剤入りゲル材料液」という場合があり、「重合開始剤を含まないゲル材料液」を「モノマー溶液」という場合がある。 Therefore, in the present invention, “gel material liquid” means all of a gel material liquid to which a polymerization initiator has been added in advance, a gel material liquid not containing a polymerization initiator, and a polymerization initiator, unless otherwise specified. . Hereinafter, “a gel material solution to which a polymerization initiator has been added in advance” may be referred to as “a gel material solution containing a polymerization initiator”, and “a gel material solution that does not include a polymerization initiator” may be referred to as a “monomer solution”.
<電気泳動用試験具の製造方法について>
 本発明の電気泳動用試験具は、基材上にゲル材料を塗布し液たまりを形成するゲル材料塗布工程と、該ゲル材料塗布工程後の前記液たまり上にpH緩衝溶液を塗布するpH緩衝溶液塗布工程と、該pH緩衝溶液塗布工程後の塗布膜をゲル化するゲル化工程とを含む。
 前記pH緩衝溶液塗布工程において、基材上の塗布領域は、主要領域と、該主要領域と隣接する緩衝領域とを形成すべき領域に区分されている。
 前記主要領域を形成すべき領域においては、pH緩衝溶液の単位面積あたりの塗布量を連続的に緩やかに変化させながらpH緩衝溶液を塗布する。
 前記緩衝領域を形成すべき領域においては、pH緩衝溶液の単位面積あたりの塗布量の変化率が前記主要領域における変化率よりも低くなるようにpH緩衝溶液を塗布する。
<About the manufacturing method of the electrophoresis test device>
The electrophoretic test device of the present invention comprises a gel material application step for applying a gel material on a substrate to form a liquid pool, and a pH buffer for applying a pH buffer solution onto the liquid pool after the gel material application step. A solution coating step and a gelation step of gelling the coating film after the pH buffer solution coating step.
In the pH buffer solution application step, the application region on the substrate is divided into a main region and a region where a buffer region adjacent to the main region is to be formed.
In the region where the main region is to be formed, the pH buffer solution is applied while continuously and gently changing the coating amount per unit area of the pH buffer solution.
In the region where the buffer region is to be formed, the pH buffer solution is applied so that the change rate of the coating amount per unit area of the pH buffer solution is lower than the change rate in the main region.
 本発明において、基材上にゲル材料液を塗布する方法は特に限定されず、基材上面の所定領域にゲル材料液を塗布できるものであればよく、例えば、ピペッター、ディスペンサー、インクジェット装置等が挙げられる。これらの中でも、高精度に微小液滴を吐出して基材に付着させるインクジェットヘッドを備えたインクジェット装置を用いることが好ましい。インクジェットヘッドを用いれば、細長い基材の所定領域にも高精度かつ定量的に微小液滴を塗布することができるため、得ようとするゲル層の形成領域、膜厚、pH勾配および濃度勾配等を容易かつ高精度に制御することができる。 In the present invention, the method for applying the gel material liquid onto the substrate is not particularly limited, and any method can be used as long as the gel material liquid can be applied to a predetermined region on the upper surface of the substrate. For example, a pipetter, a dispenser, an inkjet device, etc. Can be mentioned. Among these, it is preferable to use an ink jet apparatus provided with an ink jet head that discharges fine droplets with high accuracy and adheres them to a substrate. If an inkjet head is used, minute droplets can be applied to a predetermined area of an elongated base material with high accuracy and quantitatively. Therefore, the formation area of the gel layer to be obtained, the film thickness, the pH gradient, the concentration gradient, etc. Can be controlled easily and with high accuracy.
 以下、図面を参照しながら本発明の電気泳動用試験具およびその製造方法の実施形態を詳説する。なお、本発明は実施形態に限定されるものではない。 Hereinafter, embodiments of an electrophoretic test device and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiment.
(実施形態1)
 図1(A)は本発明の実施形態1の等電点電気泳動用試験具の使用可能な状態を示す斜視図であり、図1(B)は図1(A)の等電点電気泳動用試験具におけるゲル層を乾燥した後の保存可能な状態を示す斜視図である。また、図2(A)は実施形態1の電気泳動用試験具およびその製造方法を説明する概念図であり、図2(B)は図2(A)に示す方法でpH緩衝溶液を塗布した直後の状態を説明する概念図である。
(Embodiment 1)
FIG. 1 (A) is a perspective view showing a usable state of the isoelectric focusing test device of Embodiment 1 of the present invention, and FIG. 1 (B) is the isoelectric focusing of FIG. 1 (A). It is a perspective view which shows the state which can be preserve | saved after drying the gel layer in a test tool. FIG. 2A is a conceptual diagram illustrating the electrophoresis test device and the manufacturing method thereof according to Embodiment 1, and FIG. 2B is a pH buffer solution applied by the method shown in FIG. It is a conceptual diagram explaining the state immediately after.
 図1(A)に示す電気泳動用試験具GP1は、基材S上に蒲鉾状のゲル層G1が形成されたものである。このゲル層G1は、緩やかな凸曲面となった上面(基材と反対側の面)を有すると共に、電気泳動方向である長手方向(以下、「X方向」という)にpH勾配を有している。X方向と直交する方向が基材Sの幅方向(以下、「Y方向」という)である。このゲル層G1を含水率5%以下に乾燥させることにより、ゲル層G1が乾燥して乾燥膜D1となった図1(B)に示す等電点電気泳動用試験具GPD1が得られる。 An electrophoretic test device GP 1 shown in FIG. 1A is obtained by forming a bowl-shaped gel layer G 1 on a substrate S. The gel layer G 1 has a gently convex curved upper surface (surface opposite to the substrate) and a pH gradient in the longitudinal direction (hereinafter referred to as “X direction”) that is the electrophoresis direction. ing. The direction orthogonal to the X direction is the width direction of the substrate S (hereinafter referred to as “Y direction”). When the gel layer G 1 is dried to a moisture content of 5% or less, the gel layer G 1 is dried to form a dry film D 1. The isoelectric focusing test device GPD 1 shown in FIG. can get.
 本発明において、ゲル層G1の長さおよび幅は、基材Sの長さおよび幅と同じである。
 基材Sの長さおよび幅は特に限定されないが、一例としては、長さは50~250mm程度であり、幅は0.5~5mm程度である。ゲル層G1の厚さは特に限定されないが、例えば、195~1010μm程度である。
 このゲル層G1を乾燥した乾燥膜D1の厚さは100μm以下に収縮するが、長さおよび幅はほとんど変化しない。
In the present invention, the length and width of the gel layer G 1 are the same as the length and width of the substrate S.
The length and width of the substrate S are not particularly limited, but as an example, the length is about 50 to 250 mm and the width is about 0.5 to 5 mm. The thickness of the gel layer G 1 is not particularly limited, but is, for example, about 195 to 1010 μm.
The thickness of the dry film D 1 obtained by drying the gel layer G 1 shrinks to 100 μm or less, but the length and width hardly change.
  図2(A)および(B)はそれぞれ上段、中段および下段から構成されている。図2(A)および(B)の上段は、後述するゲル製造時に用いる2種類のpH緩衝溶液である酸性モノマー溶液と塩基性モノマー溶液の塗布量の変化を面積で示している。図2(A)および(B)の中段は、酸性モノマー溶液(細線)と塩基性モノマー溶液(太線)の塗布量の変化を線グラフで示している。図2(A)および(B)の下段は、ゲル層の電気泳動方向位置におけるpHを線グラフで示している。 図 Figures 2 (A) and 2 (B) are composed of an upper stage, a middle stage and a lower stage, respectively. The upper part of FIGS. 2 (A) and 2 (B) shows the change in application amount of the acidic monomer solution and the basic monomer solution, which are two types of pH buffer solutions used at the time of gel production described later, in terms of area. The middle part of FIGS. 2 (A) and 2 (B) shows a change in the coating amount of the acidic monomer solution (thin line) and the basic monomer solution (thick line) in a line graph. In the lower part of FIGS. 2A and 2B, the pH at the position of the gel layer in the electrophoresis direction is shown by a line graph.
 また、図2では、基材Sの一端S1から他端S2に向かって塗布領域が領域A~Cに区分され、各領域に応じて酸性モノマー溶液と塩基性モノマー溶液の塗布量が制御されることを示している。ここで、領域Bは後述する主要領域を形成すべき領域に相当し、領域AおよびCは後述する緩衝領域を形成すべき領域に相当する。換言すると、主要領域を形成すべき領域Bの酸性側と塩基性側が緩衝領域を形成すべき領域AおよびCである。 Further, in FIG. 2, the application region is divided into regions A to C from one end S 1 to the other end S 2 of the substrate S, and the application amount of the acidic monomer solution and the basic monomer solution is controlled according to each region. It is shown that. Here, the region B corresponds to a region where a main region described later is to be formed, and the regions A and C correspond to regions where a buffer region described later is to be formed. In other words, the acidic side and the basic side of the region B where the main region is to be formed are the regions A and C where the buffer region is to be formed.
 図1(A)、図2(A)および(B)に示すように、このゲル層G1は、X方向(電気泳動方向)に所定pH範囲のpH勾配を有している。実施形態1では、ゲル層G1がpH3~10のpH勾配を有する主要領域と、主要領域の酸性側端部に隣接するpH3の緩衝領域と、主要領域の塩基性側端部に隣接するpH10の緩衝領域とを有する場合を例示している。 As shown in FIGS. 1A, 2A and 2B, the gel layer G 1 has a pH gradient in a predetermined pH range in the X direction (electrophoresis direction). In Embodiment 1, the gel layer G 1 has a main region having a pH gradient of pH 3 to 10, a pH 3 buffer region adjacent to the acidic side end of the main region, and a pH 10 adjacent to the basic side end of the main region. The case of having a buffer region is illustrated.
 実施形態1のゲル層G1の特徴的な構造は、前記のように詳細に分析したいpH領域(主要領域)の酸性側と塩基性側に緩衝領域を配置した点である。この緩衝領域のpHは、隣接する主要領域の端部のpHと同等に設定されている。主要領域の酸性側と塩基性側に、この主要領域の酸性側端部および塩基性側端部のpHと同等のpHを有する緩衝領域を設けることにより、図9(A)と(B)で説明した主要領域両端で生じるpH勾配の逆勾配を防止することができる。この結果、主要領域の酸性側端部および塩基性側端部でのタンパク質の分離精度が低下しないゲルとなる。 The characteristic structure of the gel layer G 1 of Embodiment 1 is that buffer regions are arranged on the acidic side and basic side of the pH region (main region) to be analyzed in detail as described above. The pH of the buffer region is set to be equal to the pH at the end of the adjacent main region. By providing a buffer region having a pH equivalent to the pH of the acidic side and basic side end of the main region on the acidic side and basic side of the main region, in FIGS. 9 (A) and (B) The reverse gradient of the pH gradient that occurs at both ends of the described main region can be prevented. As a result, a gel in which the separation accuracy of the protein at the acidic side end and the basic side end of the main region does not deteriorate is obtained.
 次に、図1(A)に示す試験具GP1を製造することができる装置について説明し、その後でこの装置を用いて試験具GP1を製造する方法について説明する。 Next, an apparatus capable of manufacturing the test tool GP 1 shown in FIG. 1A will be described, and then a method of manufacturing the test tool GP 1 using this apparatus will be described.
 図3は実施形態1の電気泳動用試験具を製造することができる装置を示す構成図である。この試験具製造装置は、基材Sがセットされるステージ10と、塗布部としてのインクジェット装置30と、ステージ10を直線方向に移動させる移動機構40と、これらを収納する密閉可能なケース50と、図示しない制御部とを備える。なお、ケース50には図示しない開閉扉が設けられている。 FIG. 3 is a configuration diagram showing an apparatus capable of manufacturing the electrophoresis test device of the first embodiment. This test device manufacturing apparatus includes a stage 10 on which a base material S is set, an ink jet apparatus 30 as an application unit, a moving mechanism 40 that moves the stage 10 in a linear direction, and a sealable case 50 that houses these. And a control unit (not shown). The case 50 is provided with an opening / closing door (not shown).
 移動機構40は、ステージ10を支持する支持台40aを有し、この支持台40aが図示しないリニアガイド機構によって直線方向に往復移動可能とされている。
 図3において、実線で示された支持台40aは待機位置にあり、塗布工程において2点鎖線で示された位置まで支持台40a、ステージ10および基材Sは直進する。これにより、ステージ10上にセットされた基材Sは、後述する第1~第3インクジェットヘッド31b、32b、33bの真下を通過する。
The moving mechanism 40 includes a support base 40a that supports the stage 10, and the support base 40a can be reciprocated in a linear direction by a linear guide mechanism (not shown).
In FIG. 3, the support base 40a indicated by the solid line is in the standby position, and the support base 40a, the stage 10 and the substrate S travel straight to the position indicated by the two-dot chain line in the coating process. As a result, the substrate S set on the stage 10 passes directly below first to third inkjet heads 31b, 32b, and 33b, which will be described later.
 インクジェット装置30は、酸性溶液吐出部31と、塩基性溶液吐出部32と、重合開始剤吐出部33と、負圧調整部34とを備える。
 酸性溶液吐出部31は、酸性モノマー溶液Aを貯蔵する第1タンク31aと、第1インクジェットヘッド31bと、第1タンク31aから第1インクジェットヘッド31bへ酸性モノマー溶液Aを送る第1パイプ31cとを有し、水頭差を利用して第1タンク31aから第1インクジェットヘッド31bへ酸性モノマー溶液Aが供給されるように構成されている。なお、酸性モノマー溶液Aは、1種以上のpHバッファによって所定pH(例えば、pH2~7)に設定されている。
The ink jet device 30 includes an acidic solution discharge unit 31, a basic solution discharge unit 32, a polymerization initiator discharge unit 33, and a negative pressure adjustment unit 34.
The acidic solution discharge unit 31 includes a first tank 31a that stores the acidic monomer solution A, a first inkjet head 31b, and a first pipe 31c that sends the acidic monomer solution A from the first tank 31a to the first inkjet head 31b. And the acidic monomer solution A is supplied from the first tank 31a to the first inkjet head 31b using the water head difference. The acidic monomer solution A is set to a predetermined pH (for example, pH 2 to 7) by one or more pH buffers.
 塩基性溶液吐出部32は、塩基性溶液Bを貯蔵する第2タンク32aと、第2インクジェットヘッド32bと、第2タンク32aから第2インクジェットヘッド32bへ塩基性溶液Bを送る第2パイプ32cとを有し、水頭差を利用して第2タンク32aから第2インクジェットヘッド32bへ塩基性モノマー溶液Bが供給されるように構成されている。なお、塩基性モノマー溶液Bは、1種以上のpHバッファによって所定pH(例えば、pH7~12)に設定されている。 The basic solution discharge unit 32 includes a second tank 32a that stores the basic solution B, a second inkjet head 32b, and a second pipe 32c that sends the basic solution B from the second tank 32a to the second inkjet head 32b. And the basic monomer solution B is supplied from the second tank 32a to the second inkjet head 32b using the water head difference. The basic monomer solution B is set to a predetermined pH (for example, pH 7 to 12) by one or more kinds of pH buffers.
 重合開始剤吐出部33は、重合開始剤Cを貯蔵する第3タンク33aと、第3インクジェットヘッド33bと、第3タンク33aから第3インクジェットヘッド33bへ重合開始剤Cを送る第3パイプ33cとを有し、水頭差を利用して第3タンク33aから第3インクジェットヘッド33bへ重合開始剤Cが供給されるように構成されている。 The polymerization initiator discharge unit 33 includes a third tank 33a that stores the polymerization initiator C, a third inkjet head 33b, and a third pipe 33c that sends the polymerization initiator C from the third tank 33a to the third inkjet head 33b. And the polymerization initiator C is supplied from the third tank 33a to the third inkjet head 33b using the water head difference.
 第1~第3インクジェットヘッド31b~33bとしては、サーマルジェット方式、ピエゾジェット方式、静電駆動方式等が挙げられるが、インクジェット装置30における各液(酸性モノマー溶液A、塩基性モノマー溶液B、重合開始剤C)を冷却する場合は、各液に熱を加えるサーマルジェット方式を用いず、ピエゾジェット方式または静電駆動方式を用いることが望ましい。 Examples of the first to third ink jet heads 31b to 33b include a thermal jet method, a piezo jet method, an electrostatic drive method, and the like, but each liquid (acidic monomer solution A, basic monomer solution B, polymerization in the ink jet device 30). When the initiator C) is cooled, it is desirable to use a piezo jet method or an electrostatic drive method without using a thermal jet method for applying heat to each liquid.
 負圧調整部34は、第1~第3タンク31a~33aとパイプ35~37にて接続されており、第1から第3のタンク内の気圧を管理し、第1~第3インクジェットヘッド31b~33bのノズル孔H(図5参照)から液が垂れ落ちない所定の圧力となるよう、第1~第3タンク31a~33a内を大気圧より低い所定圧で一定になるように調整する。 The negative pressure adjusting unit 34 is connected to the first to third tanks 31a to 33a by pipes 35 to 37, manages the atmospheric pressure in the first to third tanks, and controls the first to third inkjet heads 31b. The insides of the first to third tanks 31a to 33a are adjusted to be constant at a predetermined pressure lower than the atmospheric pressure so that the liquid does not drip from the nozzle holes H (see FIG. 5).
 第1~第3インクジェットヘッド31b~33bは一体化されて1組の吐出ヘッドユニットUが構成されており、この吐出ヘッドユニットUは図示しない固定部材にて固定されている。そして、図4に示すように、この基材Sの移動軌跡E上に、第1~第3インクジェットヘッド31b~33bは一列で配置されているが、ヘッド配置順はこの順番に限定されない。なお、実施形態1の場合、基材Sの移動方向の上流側から第1~第3インクジェットヘッド31b~33bの順で配置されている。 The first to third ink jet heads 31b to 33b are integrated to form a set of discharge head units U, which are fixed by a fixing member (not shown). As shown in FIG. 4, the first to third ink jet heads 31b to 33b are arranged in a line on the movement locus E of the base material S, but the head arrangement order is not limited to this order. In the first embodiment, the first to third inkjet heads 31b to 33b are arranged in this order from the upstream side in the moving direction of the substrate S.
 また、図4と図5に示すように、基材Sの移動軌跡Eと対向する第1~第3インクジェットヘッド31b~33bの下面には、移動軌跡Eの方向と直交する方向に複数のノズル孔Hが1列で設けられている。すなわち、1列のノズル孔群HGが、移動軌跡Eの方向と直交する方向に、かつ移動軌跡Eの幅を超える長さで延びている。ノズル孔径Dおよびノズル孔間隔Pは特に限定されないが、ノズル孔Hの径は10~100μm程度が適当であり、ノズル孔間隔Pは100~200μm程度が適当である。なお、ノズル列が直線状に配置されている場合、ヘッド向きを傾けることで見掛け上、ノズル孔間隔を狭くする方法も使用できる。また、第1~第3インクジェットヘッド31b~33bにおいて、ノズル孔群HGは2列以上の複数列で設けられていてもよい。 Further, as shown in FIGS. 4 and 5, a plurality of nozzles are formed on the lower surfaces of the first to third inkjet heads 31b to 33b facing the movement locus E of the substrate S in a direction orthogonal to the direction of the movement locus E. The holes H are provided in one row. That is, the nozzle hole group HG in one row extends in a direction orthogonal to the direction of the movement locus E and with a length exceeding the width of the movement locus E. The nozzle hole diameter D and the nozzle hole interval P are not particularly limited, but the diameter of the nozzle hole H is suitably about 10 to 100 μm, and the nozzle hole interval P is suitably about 100 to 200 μm. When the nozzle rows are arranged in a straight line, it is possible to use a method of apparently narrowing the nozzle hole interval by tilting the head direction. In the first to third inkjet heads 31b to 33b, the nozzle hole group HG may be provided in a plurality of rows of two or more.
 次に、前記構成を有する試験具製造装置を用いて試験具GP1を製造する方法の一例について説明する。
 先ず、図3に示すように、待機位置にあるステージ10上に細長い矩形の基材Sをセットする。この基材S上には予め液たまりL0が形成されている。なお、液たまりL0としては、モノマーを純水で希釈したモノマー溶液が用いられ、このモノマー溶液中に架橋剤および重合促進剤が添加されていてもよい。
Next, an example of a method for manufacturing the test tool GP 1 using the test tool manufacturing apparatus having the above-described configuration will be described.
First, as shown in FIG. 3, an elongated rectangular base material S is set on the stage 10 in the standby position. On the base material S, a liquid pool L0 is formed in advance. As the liquid pool L0, a monomer solution obtained by diluting a monomer with pure water is used, and a crosslinking agent and a polymerization accelerator may be added to the monomer solution.
 次に、所定のプログラムに基づく常温大気圧下での塗布工程が行われる。すなわち、図6(A)、(B)および図7(A)、(B)に示すように、移動機構40により支持台40aが矢印M方向に断続的に移動すると共に、第1~第3インクジェットヘッド31b~33bから微小液滴La、Lb、Lcが断続的に吐出して、液たまりL0上に塗布膜L3が形成される。 Next, a coating process under normal temperature and atmospheric pressure based on a predetermined program is performed. That is, as shown in FIGS. 6A and 6B and FIGS. 7A and 7B, the support 40a is intermittently moved in the direction of the arrow M by the moving mechanism 40, and the first to third Minute droplets La, Lb, and Lc are intermittently ejected from the inkjet heads 31b to 33b, and a coating film L3 is formed on the liquid pool L0.
 詳しく説明すると、図6(A)に示すように、基材Sの一端S1がインクジェット装置30の第1インクジェットヘッド31bのノズル孔群HGの真下位置まで移動したところで、第1インクジェットヘッド31bから酸性モノマー溶液の微小液滴Laが吐出されて液たまりL0上に塗布される。これにより、図6(B)に示すように、液たまりL0と酸性モノマー溶液との混合液の塗布膜L1が基材Sの一端S1側に形成される。 More specifically, as shown in FIG. 6 (A), when one end S 1 of the substrate S moves to a position directly below the nozzle hole group HG of the first inkjet head 31b of the inkjet apparatus 30, the first inkjet head 31b A small droplet La of the acidic monomer solution is discharged and applied onto the liquid pool L0. Thus, as shown in FIG. 6 (B), the coating film L1 of the mixed liquid of liquid pool L0 and an acidic monomer solution is formed at one end S 1 side of the substrate S.
 この場合、ステージ10上に微小液滴Laが吐出されないように、第1インクジェットヘッド31bにおけるノズル孔群HGのうちから微小液滴Laを吐出するノズル孔Hが選択されており、これについては第2および第3インクジェットヘッド32b、33bでも同様である。また、第1インクジェットヘッド31bから基材S上に吐出される微小液滴Laの単位面積当たりの塗布量は、基材Sが所定距離ずつ断続的に移動する毎に(所定の吐出間隔毎に)所定量に制御されるが、これについて詳しくは後述する。 In this case, the nozzle hole H that discharges the micro droplet La is selected from the nozzle hole group HG in the first inkjet head 31b so that the micro droplet La is not discharged onto the stage 10. The same applies to the second and third inkjet heads 32b and 33b. Further, the coating amount per unit area of the fine droplets La discharged from the first inkjet head 31b onto the substrate S is changed every time the substrate S moves intermittently by a predetermined distance (at predetermined discharge intervals). The amount is controlled to a predetermined amount, which will be described in detail later.
 そして、基材Sの一端S1が第2インクジェットヘッド32bのノズル孔群HGの真下位置まで移動したところで、第2インクジェットヘッド32bから塩基性モノマー溶液の微小液滴Lbが吐出されて塗布膜L1上に塗布される。これにより、図7(A)に示すように、塗布膜L1と塩基性モノマー溶液との混合液の塗布膜L2が基材Sの一端S1側に形成される。この場合も、第2インクジェットヘッド32bから吐出される微小液滴Lbの単位面積当たりの塗布量は、基材Sが所定距離ずつ断続的に移動する毎に(所定の吐出間隔毎に)所定量に制御されるが、これについて詳しくは後述する。 When one end S 1 of the substrate S moves to a position just below the nozzle hole group HG of the second inkjet head 32b, a micro droplet Lb of the basic monomer solution is discharged from the second inkjet head 32b, and the coating film L1. It is applied on top. Thus, as shown in FIG. 7 (A), the coating film L2 of the liquid mixture of coating film L1 and the basic monomer solution is formed at one end S 1 side of the substrate S. Also in this case, the coating amount per unit area of the micro droplets Lb ejected from the second inkjet head 32b is a predetermined amount every time the substrate S is intermittently moved by a predetermined distance (at a predetermined ejection interval). This will be described in detail later.
 そして、基材Sの一端S1が第3インクジェットヘッド33bのノズル孔群HGの真下位置まで移動したところで、第3インクジェットヘッド33bから重合開始剤の微小液滴Lcが吐出されて塗布膜L2上に塗布される。これにより、塗布膜L2と重合開始剤との混合液の塗布膜L3(図7(B)参照)が基材Sの一端S1側に形成され、このようにして基材Sの一端S1側から他端S2側に向かって連続的に塗布膜L3が形成されていく。そして、基材Sの他端S2が第1~第3インクジェットヘッド31b~33bを順次通過した時点で、図7(B)に示すように、第1~第3インクジェットヘッド31b~33bからの液滴吐出が順次停止する。 Then, when one end S 1 of the substrate S moves to a position just below the nozzle hole group HG of the third inkjet head 33b, a minute droplet Lc of the polymerization initiator is discharged from the third inkjet head 33b, and on the coating film L2. To be applied. Thus, the coating film L2 and the polymerization initiator mixture coating film with L3 (FIG. 7 (B) refer) is formed at one end S 1 side of the substrate S, one end S 1 of the thus substrate S continuously coated film L3 toward the other end S 2 side is gradually formed from the side. Then, when the other end S 2 of the substrate S sequentially passes through the first to third inkjet heads 31b to 33b, as shown in FIG. 7B, the first to third inkjet heads 31b to 33b Droplet discharge stops sequentially.
 次に、図2(A)および(B)を参照しながら酸性モノマー溶液と塩基性モノマー溶液の塗布量制御について説明する。
 図2(A)に示すように、酸性モノマー溶液は基材Sの一端S1から他端S2に向かうにつれて塗布量が減少するよう制御され、塩基性モノマー溶液は基材Sの一端S1から他端S2に向かうにつれて塗布量が増加するよう制御される。
 詳しく説明すると、基材S上の領域Aにおいて、酸性モノマー溶液の塗布量は100%で一定であり、塩基性モノマー溶液の塗布量は0%で一定である。
 領域Bにおいて、酸性モノマー溶液の塗布量は100~0%の範囲で連続的に減少し、塩基性モノマー溶液の塗布量は0~100%の範囲で連続的に増加する。
 領域Cにおいて、酸性モノマー溶液の塗布量は0%で一定であり、塩基性モノマー溶液の塗布量は100%で一定である。
Next, the application amount control of the acidic monomer solution and the basic monomer solution will be described with reference to FIGS. 2 (A) and 2 (B).
As shown in FIG. 2A, the acidic monomer solution is controlled so that the coating amount decreases as it goes from one end S 1 of the substrate S to the other end S 2 , and the basic monomer solution is one end S 1 of the substrate S. The coating amount is controlled to increase from the other end S 2 toward the other end S 2 .
More specifically, in the region A on the substrate S, the application amount of the acidic monomer solution is constant at 100%, and the application amount of the basic monomer solution is constant at 0%.
In the region B, the application amount of the acidic monomer solution continuously decreases in the range of 100 to 0%, and the application amount of the basic monomer solution continuously increases in the range of 0 to 100%.
In region C, the application amount of the acidic monomer solution is constant at 0%, and the application amount of the basic monomer solution is constant at 100%.
 つまり、主要領域を形成すべき領域Bにおいては、pH緩衝溶液の単位面積あたりの塗布量を連続的に緩やかに変化させながらpH緩衝溶液を塗布する。
 また、緩衝領域を形成すべき領域AおよびCにおいては、pH緩衝溶液の単位面積あたりの塗布量の変化率が前記主要領域における変化率よりも低くなるようにpH緩衝溶液を塗布する。
 ここで、「pH緩衝溶液の単位面積あたりの塗布量の変化率」とは、pH勾配の度合いを意味する。
That is, in the region B where the main region is to be formed, the pH buffer solution is applied while continuously and gently changing the coating amount per unit area of the pH buffer solution.
Further, in the regions A and C where the buffer region is to be formed, the pH buffer solution is applied so that the change rate of the coating amount per unit area of the pH buffer solution is lower than the change rate in the main region.
Here, “the rate of change of the coating amount per unit area of the pH buffer solution” means the degree of pH gradient.
 このような塗布量制御により酸性および塩基性モノマー溶液が塗布された直後の塗布膜は、図2(B)の上段および中段に示すように、緩衝領域を形成すべき領域A、Cの塗布膜形状が直角形状から崩れてしまうが、これらの領域のA、CのpH値に変化はない。なお、このような塗布工程における試験具製造装置の一連の動作は、所定のプログラムに基づいて制御部が各駆動部を制御することにより行われる。
 その後、支持台40aが待機位置まで戻り、塗布工程が終了する。
The coating film immediately after the acidic and basic monomer solution is applied by such coating amount control is applied to the regions A and C in which the buffer regions are to be formed, as shown in the upper and middle parts of FIG. Although the shape collapses from the right-angle shape, the pH values of A and C in these regions are not changed. In addition, a series of operation | movement of the test device manufacturing apparatus in such an application | coating process is performed when a control part controls each drive part based on a predetermined program.
Thereafter, the support base 40a returns to the standby position, and the coating process is completed.
 塗布工程後、ケース50の扉を開けて基材Sを取り出し、ゲル化工程用のケース内に収納し、そのケース内で塗布膜L3のゲル化工程を常温下で行う。なお、常温下でのゲル化完了までには3~5時間程度の時間を要する。ゲル化完了後は、図1(A)に示すように、四方の端部に丸みを有する蒲鉾形のゲル層G1が基材S上に形成された等電点電気泳動用試験具GP1が得られる。なお、本発明において、この等電点電気泳動用試験具GP1は未完成品である。 After the coating process, the door of the case 50 is opened, the base material S is taken out and stored in the case for the gelation process, and the gelation process of the coating film L3 is performed at room temperature in the case. Note that it takes about 3 to 5 hours to complete the gelation at room temperature. After completion of the gelation, the isoelectric focusing test device GP 1 in which a bowl-shaped gel layer G 1 having rounded corners on the four ends is formed on the substrate S as shown in FIG. 1 (A). Is obtained. In the present invention, the isoelectric focusing test device GP 1 is an incomplete product.
 次に、得られた電気泳動用試験具GP1のゲル層G1を乾燥することにより、図1(B)に示す完成品としての本発明の電気泳動用試験具GPD1が得られる。この乾燥工程において、ゲル層G1を乾燥する方法は特に限定されず、例えば、ゲル層G1をヒータにて加熱する、あるいはゲル層G1に熱風を吹き付けて乾燥する方法が挙げられる。さらに、乾燥工程後に、乾燥膜D1を-20℃以下に冷却する冷却工程を行ってもよい。あるいは、乾燥工程および冷却工程の代わりに、フリーズドライ工程を行ってもよい。 Next, by drying the gel layer G 1 of the obtained electrophoretic test device GP 1 , the electrophoretic test device GPD 1 of the present invention as a finished product shown in FIG. 1B is obtained. In this drying step, the method of drying the gel layer G 1 is not particularly limited, and examples thereof include a method of heating the gel layer G 1 with a heater or blowing hot air to the gel layer G 1 for drying. Further, after the drying step, a cooling step for cooling the dry film D 1 to −20 ° C. or less may be performed. Or you may perform a freeze-dry process instead of a drying process and a cooling process.
(実施形態2)
 図8(A)は実施形態2の電気泳動用試験具およびその製造方法を説明する概念図であり、図8(B)は図8(A)に示す方法でpH緩衝溶液を塗布した直後の状態を説明する概念図である。
 図8(A)および(B)はそれぞれ上段、中段および下段から構成されている。図8(A)および(B)の上段は、後述するゲル製造時に用いる2種類のpH緩衝溶液である酸性モノマー溶液と塩基性モノマー溶液の塗布量の変化を面積で示している。図8(A)および(B)の中段は、酸性モノマー溶液(細線)と塩基性モノマー溶液(太線)の塗布量の変化を線グラフで示している。図8(A)および(B)の下段は、ゲル層の電気泳動方向位置におけるpHを線グラフで示している。
(Embodiment 2)
FIG. 8A is a conceptual diagram illustrating the electrophoresis test device and the manufacturing method thereof according to Embodiment 2, and FIG. 8B is a diagram immediately after applying a pH buffer solution by the method shown in FIG. It is a conceptual diagram explaining a state.
FIGS. 8A and 8B are composed of an upper stage, a middle stage, and a lower stage, respectively. The upper part of FIGS. 8A and 8B shows, in terms of area, changes in the coating amounts of an acidic monomer solution and a basic monomer solution, which are two types of pH buffer solutions used during gel production described later. The middle part of FIGS. 8A and 8B shows a change in the coating amount of the acidic monomer solution (thin line) and the basic monomer solution (thick line) in a line graph. The lower part of FIGS. 8A and 8B shows the pH at the position of the gel layer in the electrophoresis direction as a line graph.
 実施形態2の電気泳動用試験具におけるゲルは、複数の主要領域と、隣接する2つの主要領域の間に配置された緩衝領域とを有すること以外は、実施形態1と同様である。具体的には、このゲルは、酸性側の緩衝領域(pH3)と、塩基性側の緩衝領域(pH10)と、両端の緩衝領域の間に配置された第1主要領域(pH3~5.5)、第2主要領域(pH5.5~8.5)および第3主要領域(pH8.5~10)と、第1主要領域と第2主要領域の間に配置された緩衝領域(pH5.5)と、第2主要領域と第3主要領域の間に配置された緩衝領域(pH8.5)とを有している。 The gel in the electrophoresis test device of the second embodiment is the same as that of the first embodiment except that the gel has a plurality of main regions and a buffer region disposed between two adjacent main regions. Specifically, the gel has an acidic buffer region (pH 3), a basic buffer region (pH 10), and a first main region (pH 3 to 5.5) disposed between the buffer regions on both ends. ), The second main region (pH 5.5 to 8.5) and the third main region (pH 8.5 to 10), and the buffer region (pH 5.5) disposed between the first main region and the second main region. ) And a buffer region (pH 8.5) disposed between the second main region and the third main region.
 pH3~10のようなpHレンジの長いゲルの場合、始点(pH3)および終点(pH10)のpH値ずれがない状態でも中間のpH値がずれてしまう可能性がある。これに対し、実施形態2のようなゲル構造とすればpH3~10の間に2点(pH5.5、pH8.5)のpH値が確定した位置が含まることができるため、前記のような中間pH値ずれを抑制することができる。 In the case of a gel having a long pH range such as pH 3 to 10, there is a possibility that the intermediate pH value may be shifted even if there is no pH value shift at the start point (pH 3) and the end point (pH 10). On the other hand, if the gel structure as in Embodiment 2 is used, positions where pH values at two points (pH 5.5, pH 8.5) are determined can be included between pH 3 and 10, as described above. It is possible to suppress an intermediate pH value shift.
(実施形態3)
 実施形態1および2では、重合開始剤として過硫酸アンモニウム(APS)、過酸化ベンゾイル等の熱重合開始剤を用いて、モノマーを熱重合させてゲル化する場合を例示した。一方、実施形態3では重合開始剤としてリボフラビン類、2,2-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン類、ベンゾフェノン類、アゾイソブチロニトリル類等の光重合開始剤を用いて、モノマーを光重合させてゲル化する。
(Embodiment 3)
In Embodiments 1 and 2, the case where a monomer is thermally polymerized and gelled by using a thermal polymerization initiator such as ammonium persulfate (APS) or benzoyl peroxide as a polymerization initiator is exemplified. On the other hand, in Embodiment 3, photopolymerization initiators such as riboflavins, acetophenones such as 2,2-dimethoxy-2-phenylacetophenone, benzophenones, and azoisobutyronitrile are used as polymerization initiators. Polymerize to gel.
 実施形態3の場合、例えば、図3で説明した電気泳動用試験具の製造装置において、吐出ヘッドユニットUの基材搬送方向(矢印M1方向)の下流側に図示しない光照射器を設け、基材S上の塗布膜に光を照射することによりゲル化させる。この光照射器は、所定波長の光(例えば、200~600nm程度)を所定光量で照射することができ、その照射光波長は使用する光重合開始剤の種類に応じて適切に設定される。また、光照射器は、基板上の塗布膜の一部または全体を照射できるものであればよい。 In the case of Embodiment 3, for example, in the apparatus for manufacturing an electrophoretic test device described with reference to FIG. 3, a light irradiator (not shown) is provided on the downstream side in the substrate transport direction (arrow M1 direction) of the ejection head unit U. The coating film on the material S is gelled by irradiating light. This light irradiator can irradiate light having a predetermined wavelength (for example, about 200 to 600 nm) with a predetermined light amount, and the irradiation light wavelength is appropriately set according to the type of the photopolymerization initiator to be used. Further, the light irradiator only needs to irradiate a part or the whole of the coating film on the substrate.
 実施形態3の電気泳動用試験具の製造方法は、実施形態1(図6(A)~図7(B)での説明)と同様にして基板上に塗布膜を形成した後、基板を光照射器側へ移動させて塗布膜上に光を照射してゲル化させる。このとき、光照射器が塗布膜の一部に光を照射するタイプのものである場合は、基板を一端側から他端側へ移動させながら塗布膜上に光を照射する。光照射器が塗布膜全体に光を照射するタイプのものである場合は、基板を光照射器の真下に移動させた後、基板を静止させた状態で塗布膜上に光を照射する。 In the method for manufacturing the electrophoresis test device of the third embodiment, a coating film is formed on a substrate in the same manner as in the first embodiment (description in FIGS. 6A to 7B), and then the substrate is optically irradiated. Move to the irradiator side and irradiate the coating film with light to gel. At this time, when the light irradiator is of a type that irradiates a part of the coating film, the coating film is irradiated with light while moving the substrate from one end side to the other end side. When the light irradiator is of a type that irradiates light to the entire coating film, the substrate is moved directly below the light irradiator, and then the light is irradiated onto the coating film while the substrate is stationary.
(他の実施形態)
1.実施形態1では、塗布工程において、基材上に常温状態の塗布膜を形成する場合を例示したが、ペルチェ素子やタンク冷却部を備えた装置を用い、基材上に冷却下で塗布膜を形成してもよい。また、実施形態1では、塗布工程において大気下で塗布膜を形成する場合を例示したが、窒素雰囲気下で塗布膜を形成してもよい。
(Other embodiments)
1. In the first embodiment, the case where a coating film in a room temperature state is formed on the base material in the coating step is exemplified. However, the coating film is formed on the base material under cooling using an apparatus including a Peltier element and a tank cooling unit. It may be formed. In the first embodiment, the case where the coating film is formed in the air in the coating process is illustrated, but the coating film may be formed in a nitrogen atmosphere.
2.実施形態1では、モノマー溶液と重合開始剤を個別に基材上へ塗布する場合を例示したが、重合開始剤入りゲル材料液を基材上へ塗布して液たまりL0を形成してもよい。この場合、塗布工程中に重合開始剤入りゲル材料液のゲル化が進行しないよう、冷却状態の重合開始剤入りゲル材料液が用いられる。それに加え、基材を冷却してもよい。 2. In the first embodiment, the case where the monomer solution and the polymerization initiator are individually applied onto the substrate is exemplified, but the gel material solution containing the polymerization initiator may be applied onto the substrate to form the liquid pool L0. . In this case, a gel material solution containing a polymerization initiator in a cooled state is used so that gelation of the gel material solution containing a polymerization initiator does not proceed during the coating process. In addition, the substrate may be cooled.
3.実施形態1では、吐出ヘッドユニットUの下を基材Sが1度通過することにより塗布膜L3が形成される場合を例示したが、基材Sを1往復以上移動させて塗布膜L3を形成してもよい。この場合、重合開始剤の塗布時期を、例えば、毎回の移動時、所定回の移動時、あるいは最後の移動時に設定することができる。 3. In the first embodiment, the case where the coating film L3 is formed by passing the substrate S once under the discharge head unit U is illustrated. However, the coating film L3 is formed by moving the substrate S one or more times. May be. In this case, the application timing of the polymerization initiator can be set, for example, at every movement, at a predetermined movement, or at the last movement.
 D1 乾燥膜
 GP1 使用可能な状態となった等電点電気泳動用試験具(ゲルプレート)
 GPD1 保存可能な状態となった等電点電気泳動用試験具
 G1 ゲル層
 S 基材
 A~C 領域
D 1 dry film GP 1 isoelectric focusing test device (gel plate) ready for use
GPD 1 storage device for isoelectric focusing that can be stored G 1 gel layer S base material AC region

Claims (7)

  1.  酸性側から塩基性側に向かうpH勾配を有するゲルを備え、
     前記ゲルは、主要領域と、該主要領域と隣接する緩衝領域とを備え、
     前記緩衝領域のpH値が略一定であることを特徴とする電気泳動用試験具。
    Comprising a gel with a pH gradient from the acidic side to the basic side,
    The gel includes a main region and a buffer region adjacent to the main region;
    A test device for electrophoresis, wherein the pH value of the buffer region is substantially constant.
  2.  前記主要領域の数が一つである請求項1記載の電気泳動用試験具。 The electrophoretic test device according to claim 1, wherein the number of the main regions is one.
  3.  前記緩衝領域は、前記主要領域における酸性側端部と塩基性側端部に隣接して配置されている請求項1または2に記載の電気泳動用試験具。 3. The electrophoresis test device according to claim 1, wherein the buffer region is disposed adjacent to an acidic side end and a basic side end in the main region.
  4.  前記緩衝領域におけるpH勾配は、前記主要領域のpH勾配の2分の1以下の勾配である請求項1~3のいずれか1つに記載の電気泳動用試験具。 The electrophoresis test device according to any one of claims 1 to 3, wherein the pH gradient in the buffer region is a gradient equal to or less than half of the pH gradient in the main region.
  5.  前記主要領域のpH勾配が線形な勾配である請求項1~4のいずれか1つに記載の電気泳動用試験具。 The electrophoresis test device according to any one of claims 1 to 4, wherein the pH gradient of the main region is a linear gradient.
  6.  基材上にゲル材料を塗布し液たまりを形成するゲル材料塗布工程と、該ゲル材料塗布工程後の前記液たまり上にpH緩衝溶液を塗布するpH緩衝溶液塗布工程と、該pH緩衝溶液塗布工程後の塗布膜をゲル化するゲル化工程とを含み、
     前記pH緩衝溶液塗布工程において、基材上の塗布領域は、主要領域と、該主要領域と隣接する緩衝領域とを形成すべき領域に区分されており、
     前記主要領域を形成すべき領域においては、pH緩衝溶液の単位面積あたりの塗布量を連続的に緩やかに変化させながらpH緩衝溶液を塗布し、
     前記緩衝領域を形成すべき領域においては、pH緩衝溶液の単位面積あたりの塗布量の変化率が前記主要領域における変化率よりも低くなるようにpH緩衝溶液を塗布することを特徴とする電気泳動用試験具の製造方法。
    A gel material application step of applying a gel material on a substrate to form a liquid pool, a pH buffer solution application step of applying a pH buffer solution onto the liquid pool after the gel material application step, and the pH buffer solution application Including a gelling step of gelling the coating film after the step,
    In the pH buffer solution application step, the application region on the substrate is divided into a main region and a region where a buffer region adjacent to the main region is to be formed,
    In the region where the main region is to be formed, the pH buffer solution is applied while continuously and gently changing the coating amount per unit area of the pH buffer solution,
    In the region where the buffer region is to be formed, electrophoresis is characterized in that the pH buffer solution is applied so that the rate of change of the coating amount per unit area of the pH buffer solution is lower than the rate of change in the main region. Of manufacturing test equipment.
  7.  前記pH緩衝溶液塗布工程は、前記pH緩衝溶液として第1のpHを有する第1pH緩衝溶液を前記液たまり上に塗布する第1工程と、前記pH緩衝溶液として前記第1のpHとは異なる第2のpHを有する第2pH緩衝溶液を前記液たまり上に塗布する第2工程とを含み、
     前記第1工程において、前記主要領域の酸性側端部と隣接する前記緩衝領域を形成すべき領域には前記第1pH緩衝溶液の単位面積あたりの塗布量を変化させずに一方向に塗布し、前記主要領域には前記第1pH緩衝溶液を単位面積あたりの塗布量を変化させながら一方向に塗布し、
     前記第2工程において、前記主要領域の塩基性側端部と隣接する前記緩衝領域を形成すべき領域には前記第2pH緩衝溶液の単位面積あたりの塗布量を変化させずに一方向に塗布し、前記主要領域には前記第2pH緩衝溶液を単位面積あたりの塗布量を変化させながら一方向に塗布する請求項6に記載の電気泳動試験具の製造方法。
    The pH buffer solution application step includes a first step of applying a first pH buffer solution having a first pH as the pH buffer solution on the liquid pool, and a first pH buffer solution different from the first pH as the pH buffer solution. Applying a second pH buffer solution having a pH of 2 onto the pool,
    In the first step, the buffer region adjacent to the acidic side end of the main region should be formed in one direction without changing the coating amount per unit area of the first pH buffer solution, Applying the first pH buffer solution to the main region in one direction while changing the coating amount per unit area,
    In the second step, the buffer region that is to be formed adjacent to the basic side end of the main region is applied in one direction without changing the coating amount per unit area of the second pH buffer solution. The method for producing an electrophoretic test device according to claim 6, wherein the second pH buffer solution is applied to the main region in one direction while changing an application amount per unit area.
PCT/JP2013/070460 2012-09-14 2013-07-29 Electrophoresis test tool and method for producing same WO2014041908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-202816 2012-09-14
JP2012202816A JP2014059160A (en) 2012-09-14 2012-09-14 Electrophoretic test tool and manufacturing method for the same

Publications (1)

Publication Number Publication Date
WO2014041908A1 true WO2014041908A1 (en) 2014-03-20

Family

ID=50278037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070460 WO2014041908A1 (en) 2012-09-14 2013-07-29 Electrophoresis test tool and method for producing same

Country Status (2)

Country Link
JP (1) JP2014059160A (en)
WO (1) WO2014041908A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100448A (en) * 1987-10-13 1989-04-18 Shimadzu Corp Gel medium for isoelectric point electrophoresis
JP2003514829A (en) * 1999-11-15 2003-04-22 プロテオム システムズ リミテッド Multi-chamber electrophoresis
JP2003529762A (en) * 2000-04-03 2003-10-07 ザ ウィスター インスティテュート Method and apparatus for charged molecule analysis by solution isoelectric focusing
JP2009539101A (en) * 2006-06-02 2009-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Separator by isoelectric focusing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100448A (en) * 1987-10-13 1989-04-18 Shimadzu Corp Gel medium for isoelectric point electrophoresis
JP2003514829A (en) * 1999-11-15 2003-04-22 プロテオム システムズ リミテッド Multi-chamber electrophoresis
JP2003529762A (en) * 2000-04-03 2003-10-07 ザ ウィスター インスティテュート Method and apparatus for charged molecule analysis by solution isoelectric focusing
JP2009539101A (en) * 2006-06-02 2009-11-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Separator by isoelectric focusing

Also Published As

Publication number Publication date
JP2014059160A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
KR100649342B1 (en) Method and apparatus for delivery of submicroliter volumes onto a substrate
CN100400183C (en) Preparation of coatings through plasma polymerization
US7160512B2 (en) Method for manufacturing biochips
WO2011158520A1 (en) Method for producing reaction instrument for electrophoresis, apparatus for producing reaction instrument for electrophoresis, base for gel immobilization, reaction instrument for electrophoresis and kit for electrophoresis
JP3701594B2 (en) Droplet ejection method
JP2001337088A (en) Biochip making method and biochip making apparatus using the same
WO2014041908A1 (en) Electrophoresis test tool and method for producing same
Chang et al. Nanoliter deposition on star-shaped hydrophilic–superhydrophobic patterned surfaces
JP2008256376A (en) Specimen detection method and biochip
US20140374260A1 (en) Two-dimensional electrophoresis kit, method for manufacturing two-dimensional electrophoresis kit, two-dimensional electrophoresis method, and two-dimensional electrophoresis chip
CN108212226A (en) Prepare the method and its application of microarray chip prefabricated board
US20040251171A1 (en) Separation apparatus, method of separation, and process for producing separation apparatus
WO2013161368A1 (en) Testing tool for isoelectric focusing and process for producing same
WO2013146008A1 (en) Isoelectric focusing test device and method for manufacturing same
JP2014059161A (en) Electrophoretic test tool and manufacturing method for the same
JP2004077393A (en) Gel plate for electrophoresis, and its preparing method
WO2013128777A1 (en) Isoelectric focusing electrophoresis test device and method for producing same
JP2012002801A (en) Substrate for fixing gel, reaction instrument for electrophoresis, method for manufacturing reaction instrument for electrophoresis, and kit for electrophoresis
JP4851612B2 (en) Electrophoretic reaction instrument manufacturing method and electrophoresis reaction instrument manufacturing apparatus
WO2013128774A1 (en) Isoelectric focusing electrophoresis test device and method for producing
WO2013128772A1 (en) Isoelectric focusing electrophoresis test device and method for producing same
JP2013205088A (en) Solution application method and method of manufacturing test tool for isoelectric focusing
JP2014006192A (en) Solution application method, and method and device for manufacturing test tool for isoelectric electrophoresis using the same method
JP2014089066A (en) Test tool for electrophoresis and method for producing the same
JP2013257291A (en) Solution coating method and manufacturing method of electrophoretic test tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836630

Country of ref document: EP

Kind code of ref document: A1