WO2014041720A1 - モータ制御装置及びモータ制御方法 - Google Patents

モータ制御装置及びモータ制御方法 Download PDF

Info

Publication number
WO2014041720A1
WO2014041720A1 PCT/JP2013/002856 JP2013002856W WO2014041720A1 WO 2014041720 A1 WO2014041720 A1 WO 2014041720A1 JP 2013002856 W JP2013002856 W JP 2013002856W WO 2014041720 A1 WO2014041720 A1 WO 2014041720A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
air volume
torque command
speed
Prior art date
Application number
PCT/JP2013/002856
Other languages
English (en)
French (fr)
Inventor
隆太 佐々木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014535349A priority Critical patent/JP5988224B2/ja
Priority to CN201380041250.3A priority patent/CN104521135B/zh
Priority to US14/423,937 priority patent/US9625172B2/en
Publication of WO2014041720A1 publication Critical patent/WO2014041720A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a motor control device and a motor control method, and more particularly, to an air volume control method for a blower in an air conditioning system that performs ventilation and air conditioning.
  • pressure loss conditions conditions for determining the pressure loss of the air conditioning system
  • the pressure loss condition varies depending on the shape and length of the duct connected to the air conditioner.
  • the pressure loss condition changes with time due to clogging of the filter attached to the discharge port or suction port of the air conditioner.
  • the static pressure required to obtain a predetermined air volume also changes depending on the difference in pressure loss condition and the change with time. For this reason, even if a plurality of air conditioners of the same specification are driven at the same torque or rotational speed, the obtained air volume may vary.
  • constant air volume control it has been required to perform control (hereinafter referred to as “constant air volume control”) so that the air volume is maintained at the target air volume even when the pressure loss condition or the static pressure changes.
  • Patent Document 1 is known as such a technique for constant air volume control.
  • the instruction speed of the motor that drives the blower is calculated from the following equation (1).
  • S * is an instruction speed of the motor
  • S is a motor speed
  • Sa is a target motor speed
  • K is a gain.
  • the target motor speed Sa is calculated from the following equation (2).
  • T is the motor torque
  • Q * is the target air volume
  • i And j are finite values.
  • Expression (2) is an expression of the relationship that when the motor torque is T, the motor speed necessary for the air volume to reach the target air volume Q * is Sa.
  • FIG. 6 is a diagram for explaining constant air volume control by the motor control device according to the prior art.
  • a curve 601 indicates a torque-speed characteristic where the air volume becomes the target air volume Q * (hereinafter referred to as “constant air volume curve”).
  • a curve 602 indicates a torque-speed characteristic of the motor that is specific to the pressure loss condition to which the motor is attached (hereinafter referred to as a “pressure loss curve”).
  • the target motor speed Sa calculated by the equation (2) is the motor speed Sa1 at the point B1 on the constant air volume curve 601 that obtains the same motor torque T1 as the current operating point A1.
  • a new command speed S * is calculated by the equations (2) and (1) also at the operating point of the movement destination.
  • the operating point moves to A2 and A3 in FIG. 6, and finally the operating point at which the difference between the motor speed S and the target motor speed Sa becomes zero, that is, the pressure loss curve 602 and the constant air volume curve 601. It will settle down at the intersection E.
  • the motor control device described in Patent Document 1 calculates a necessary correction value for the motor speed by using the motor torque and the target air volume as described above, and outputs an instruction speed based on the correction value. This makes constant air flow control independent of changes in static pressure.
  • the change process through which the motor speed converges depends on the value of the gain K in Expression (1).
  • the value of the gain K is small, since the change in the instruction speed S * is small with respect to the calculation cycle, it takes time to reach convergence.
  • the value of the gain K is large, the calculated change in the indicated speed S * becomes large, and the convergence point E in FIG. 6 is performed or returned, so that the speed does not converge stably.
  • an experiment is performed while changing the value of the gain K to obtain an optimum value.
  • the optimum value of gain K varies depending on the pressure loss condition of the air conditioning system. Even if the gain K that allows stable control is used under certain pressure loss conditions, the operating point may not converge stably due to excessive gain under pressure loss conditions that have changed due to clogging of the filter or opening / closing of the vent cap. . For this reason, it is desired that the gain K be set to a sufficiently small value so that the blower can operate stably even in an operation region where the pressure loss condition to be used is likely to become unstable.
  • This invention solves the said conventional subject, and it aims at providing the motor control apparatus which makes the air volume of an air blower follow a target air volume at high speed, and converges it stably.
  • a motor control device for achieving the above object is a motor control device that controls a motor that drives a blower, obtains a motor speed and a motor torque of the motor, and An air volume calculation unit that calculates the air volume of the blower based on the motor speed and motor torque of the motor, and the result of multiplying the motor torque by the square of the ratio of the target air volume to the air volume, or the square of the ratio of the target air volume to the air volume And a torque command generation unit that generates a result of multiplying the previously output torque command as a torque command.
  • another aspect of the motor control method of the present invention is a motor control method for controlling a motor that drives a blower, wherein the motor speed and motor torque of the motor are acquired, and the acquired motor Calculating the air volume of the blower based on the speed and the motor torque, and multiplying the motor torque by the square of the ratio of the target air volume to the air volume, or the square of the ratio of the target air volume to the air volume. Generating a torque command using a result obtained by multiplying the previously output torque command.
  • the motor control device and the motor control method of the present invention by controlling the motor in accordance with a torque command equal to the motor torque that achieves the target air volume, the air volume is made to follow the target air volume at high speed and converges stably. be able to.
  • FIG. 1 is a block diagram showing a configuration example of a motor control system including a motor control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing a processing example of the torque command generation unit 115 according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing a processing example of the correction steps in FIG.
  • FIG. 4 is a diagram for explaining torque-air volume characteristics in the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the torque-air volume characteristics when the pressure loss condition changes in Embodiment 1 of the present invention.
  • FIG. 6 is a diagram for explaining constant air volume control by a conventional motor control device.
  • the inventors of the present application generally use a fan as a law derived from the similarity of flows in fluid mechanics in order to cause the air volume to follow the target air volume at high speed and to converge stably.
  • a blower such as a blower or the like
  • these laws hold also in general fluid machines other than an air blower.
  • the two laws derived from the above flow similarity can be regarded as a law in which the air volume is proportional to the motor speed and a law in which the motor torque is proportional to the square of the motor speed. Then, according to these non-existence laws, the relationship that the square of the ratio of the target air volume to the air volume is equal to the ratio of the motor torque that realizes the air volume value of the target air volume to the motor torque is established.
  • the torque command and the motor torque are substantially equal except in a steep transient state. Therefore, the result of multiplying the torque command output last time by the square of the ratio of the target air volume to the air volume (air volume) The product of the square of the ratio of the target air volume to the torque command output last time) may be used as the torque command.
  • a motor control device that controls a motor that drives a blower, obtains a motor speed and a motor torque of the motor, and obtains a motor speed and a motor.
  • An air volume calculation unit that calculates the air volume of the blower based on the torque, and a torque command obtained by multiplying the motor torque by the square of the ratio of the target air volume to the air volume or the square of the ratio of the target air volume to the air volume last time
  • a torque command generation unit that generates a result of multiplication as a torque command.
  • the torque command generator can generate a torque command equal to the motor torque that achieves the target air volume.
  • a second invention further includes a torque control unit that generates a signal for controlling a drive voltage to the motor so as to make the motor torque coincide with the torque command in the first invention. It is a motor control device.
  • the first aspect includes storage means for storing the minimum torque and the maximum torque, and the torque command generator generates the torque command using the minimum torque and the maximum torque. It is a motor control device that limits the range.
  • the torque command generation unit is configured such that the difference between the torque command and the motor torque is outside the first predetermined range.
  • the motor control device corrects the torque command so that a difference between the torque command and the motor torque falls within the first predetermined range.
  • the torque command generation unit obtains a difference between the case where the difference between the torque command and the motor torque is within a second predetermined range.
  • the torque command having the same value as the previously outputted torque command is output.
  • the motor control device obtains a difference between the case where the difference between the torque command and the motor torque is within a second predetermined range.
  • the motor speed is a first detection signal indicating the motor speed from a first detection unit that detects the motor speed. It is a motor control apparatus acquired by.
  • the motor torque is the motor torque or the current flowing through the motor from the second detection unit that detects the motor torque or the current flowing through the motor. It is a motor control apparatus acquired by inputting.
  • the motor speed and motor torque of the motor are acquired, and the acquired motor speed and motor torque are obtained.
  • FIG. 1 is a block diagram showing a configuration example of a motor control system including a motor control device according to Embodiment 1 of the present invention.
  • the motor control system in FIG. 1 includes an air conditioner 101, an air supply path 102 through which air supplied by the air conditioner 101 passes, an AC power supply 103, a blower 104, a motor 105 that drives the blower 104, and an AC power supply 103.
  • a converter 106 that converts the AC power into DC power
  • an inverter 107 that converts the DC power into AC power and supplies it to the motor 105
  • a position detector 108 that detects the position of the rotor (not shown) of the motor 105.
  • a current detector 109 for detecting the current of the motor 105
  • a motor control device 110 for controlling the air volume of the air conditioner 101 to the target air volume Q * .
  • the air conditioner 101 supplies the speed detector 111 that detects the motor speed ⁇ from the output signal of the position detector 108, the torque detector 112 that detects the motor torque T from the output signal of the current detector 109, and the blower 104.
  • the air volume calculation unit 113 for calculating the flow rate Q, based on the memory 114 for storing the external input target airflow Q *, the target airflow Q * and air quantity calculator 113 is read from the air volume Q and the memory 114 calculated torque
  • a torque command generation unit 115 generates a command T *
  • a torque control unit 116 for outputting a driving control signal to the inverter for follow the motor torque T to the torque command T *, and a switch 117.
  • the speed detection unit 111 may detect the motor speed ⁇ using other known means (for example, a tachometer, a speed sensor, etc.).
  • the torque detector 112 may detect the motor torque T using other known means (for example, a torque meter).
  • the blower 104 supplies air to a desired place through the blower path 102.
  • the blower 104 is a multiblade fan in the present embodiment.
  • the structure and format of the blower 104 are not particularly limited, and may not be a multi-blade fan.
  • the motor 105 rotates in a state of being coupled with the blower 104 to drive the blower 104.
  • the motor 105 is a permanent magnet synchronous motor in the present embodiment.
  • the structure and type of the motor 105 are not particularly limited, and other motors such as an induction motor or an electromagnetic synchronous motor may be used.
  • Converter 106 rectifies and smoothes the AC voltage of AC power supply 103 and converts it to a predetermined DC voltage.
  • Inverter 107 performs semiconductor switching in accordance with a drive control signal input from motor control device 110, converts the DC voltage from converter 106 into AC, and supplies the motor 105 as a drive voltage.
  • the switch configuration and switching method inside the inverter 107 are not particularly limited as long as they are suitable for the purpose of driving the motor 105.
  • the position detector 108 is attached to the motor 105 and outputs a signal corresponding to the position of a rotor (not shown) of the motor 105. Note that the position detector 108 is not necessary when the position and speed of the rotor can be detected by estimation.
  • the current detector 109 directly detects the phase current of the motor and outputs a signal corresponding to the phase current value.
  • the current may be detected at any portion as long as the motor torque can be estimated from the detected current.
  • the current may be detected by being inserted into a DC line from the converter 106 to the inverter 107.
  • the speed detector 111 calculates the motor speed ⁇ based on the output signal from the position detector 108. However, when the motor 105 is driven by sensorless control in which the position and speed of the rotor are detected by estimation, the motor speed ⁇ is set using the motor current and the motor driving voltage instead of using the output signal of the position detector 108. It is good also as a structure to calculate.
  • Torque detector 112 calculates motor torque T based on the output signal of current detector 109.
  • the motor torque T may be a physical quantity including torque information of the motor 105, for example, a vector component that contributes to a motor current or a torque in the motor current.
  • the vector component contributing to the torque may be, for example, a q-axis current when the motor current is dq converted.
  • the speed detection unit 111 and the torque detection unit 112 do not need to be inside the motor control device 110 as shown in FIG. 1 and may be arranged outside. However, when arranged outside, the calculated motor speed ⁇ or motor torque T is input to the motor control device 110.
  • the air volume calculation unit 113 calculates the air volume Q supplied from the blower 104 based on the motor speed ⁇ input from the speed detection unit 111 and the motor torque T input from the torque detection unit 112.
  • the calculation means is not particularly limited, but in the present embodiment, the air volume Q is calculated by the following equation (3).
  • is a motor speed
  • T is a motor torque
  • i is an integer of 0 or more and a finite value
  • the above expression (3) represents the relationship that the air volume becomes Q with respect to an arbitrary motor speed ⁇ and an arbitrary motor torque T.
  • the coefficients ⁇ n and ⁇ that characterize this relationship have specific values for the shape and dimensions of the blower.
  • the coefficients ⁇ n and ⁇ are referred to as blower coefficients.
  • the values of the blower coefficients ⁇ n and ⁇ are obtained by carrying out a measurement experiment in advance prior to the operation with the constant air volume control.
  • i is a finite value representing the degree of the regression formula by an integer of 0 or more
  • blowers such as fans and blowers
  • a law in which the air volume is proportional to the rotational speed and a law in which the shaft torque is proportional to the square of the rotational speed are derived.
  • This law is also valid in general fluid machines other than the blower.
  • the rotational speed of the blower and the motor are coupled without being shaken or displaced, the rotational speed of the blower is equal to the motor speed, and the shaft torque of the blower can be regarded as equal to the motor torque.
  • Q is the air flow
  • omega is the motor speed
  • T is the motor torque
  • i is the same finite value as the degree of the equation (4) in zero or more integer
  • ⁇ S are specific motor speeds for obtaining the equation (4).
  • equation (3) is derived.
  • the blower coefficient ⁇ n is immediately calculated from K n and ⁇ S. , ⁇ can be determined.
  • the memory 114 is a storage unit including a RAM, a ROM, and the like.
  • the ROM stores a target air volume Q * in advance, and the torque command generator 115 reads the target air volume Q * from the ROM and uses it for the calculation when performing the calculation described later.
  • the target air volume Q * is not necessarily stored in the ROM in advance.
  • the target air volume Q * may be appropriately transmitted to the motor control device 110 by communication input from the outside of the motor control device 110.
  • the received target air volume Q * is stored in a RAM or the like in the memory 114, and is updated whenever a new target air volume Q * is sent.
  • the value of the target air volume Q * input by communication from the outside is determined based on the air conditioning environment to which the motor 105 is attached.
  • the target air volume Q * is determined by how much air volume needs to be sent to the standard room among indoor air-conditioned rooms, and how much air volume is efficient for the air conditioning equipment. Is done.
  • the target air volume Q * may be corrected depending on the climate of the area where the air conditioning equipment is installed. For example, in a warm and humid area, the target air volume Q * may be set higher.
  • the target air volume Q * can be set before installing the motor when the air conditioning environment is known in advance. Of course, it is also possible to set by looking at the air-conditioning environment at the time of installation.
  • the torque command generator 115 generates a torque command T * for instructing the torque of the motor 105 based on the air volume Q calculated by the air volume calculator 113 and the target air volume Q * read from the memory 114.
  • FIG. 2 is a flowchart illustrating a processing example of the torque command generation unit 115.
  • the generation of the torque command T * is performed in two stages, that is, the first calculation step S201 and the subsequent correction steps (steps S301 to S303).
  • the torque command T * is calculated using the following equation (8).
  • Q * is the target air volume
  • Q is the air volume
  • T is the motor torque
  • Equation (8) is derived as follows based on flow similarity.
  • Equation (9) is derived by eliminating ( ⁇ / ⁇ S ) from the above equations (5) and (6) derived from the flow similarity.
  • This equation (9) represents the relationship that when the airflow of the blower changes from Q S to Q, the motor torque changes from T S to T at a ratio of the square of the air flow change rate (Q / Q S ). .
  • the deformation is performed by replacing T S with the torque command T * and Q S with the target air flow rate Q * , the above equation (8) is obtained.
  • action and effect by using Formula (8) are described.
  • the value of the torque command T * calculated by the equation (8) is a motor torque that achieves the target air volume Q * . That is, by controlling the torque of the motor with the torque command T * calculated by Expression (8), the air volume Q becomes equal to the target air volume Q * . For this reason, the target air volume Q * can be quickly obtained by controlling the torque using the equation (8).
  • FIG. 3 is a flowchart showing a processing example of the correction steps in FIG. 2 of the present embodiment.
  • step S301 it is determined whether or not the torque command T * calculated in step S201 is within a range between a predetermined minimum torque and a predetermined maximum torque. If the torque command T * is within the range, the torque command T * is not corrected. If less than the predetermined minimum torque modifies the torque command T * to a predetermined minimum torque, if it exceeds the predetermined maximum torque correcting the torque command T * to a predetermined maximum torque.
  • the torque command T * may be a high value in order to obtain the air volume value of the target air volume Q * .
  • the operation may become unstable and the motor current may become excessive in an attempt to realize an operation exceeding the capability of the motor 105. If the motor current becomes excessive and exceeds the rated current value, the motor 105 may break down due to heat generation of the motor winding, or the efficiency may be significantly reduced.
  • the air conditioner 101 including the blower 104 and the motor 105 can be configured so that the motor 105 tries to generate further torque even if a foreign matter is caught in the blower 104 and the motor 105 is overloaded. There is a risk of failure. Therefore, by providing a predetermined maximum torque that is the upper limit in the torque command T * , it is possible to prevent control instability and failure of the air conditioner.
  • a torque deviation ⁇ T which is a difference between the torque command T * and the motor torque T detected by the torque detector 112, is calculated by the following equation (10).
  • the torque command T * is not corrected and the torque command T * is transferred to step S303.
  • the torque command T * is corrected so that the torque deviation ⁇ T falls within the second predetermined range.
  • a predetermined absolute value L is provided, the motor torque T added with L (T + L) is the upper limit value, and the motor torque T is subtracted L (TL) is the lower limit value.
  • the torque command T * when the command T * exceeds the upper limit value (T + L) is corrected to the upper limit value (T + L), if the torque command T * is the lower limit value (T-L) is smaller than the torque command T * Correct to the lower limit (TL).
  • step S302 The effect of step S302 will be described. If the motor torque T is abruptly changed, the actual air volume and the air volume Q calculated by the air volume calculator 113 are greatly deviated due to a transient change in the motor torque T and the pressure in the air flow path 2. May not be stably controlled. Therefore, by providing the first predetermined range as described above to prevent a sudden change in the motor torque T, it is possible to prevent instability of the control due to the deviation of the air volume Q.
  • the torque command T * is output as it is, and if it is within the second predetermined range, the change in the motor torque T is slight.
  • the torque command T * is corrected to the same value as the torque command T * prev output last time by the torque command generator 115. Then, the corrected torque command T prev * is output to the torque control unit 115.
  • step S303 If step S303 is not performed and the torque command T * is changed even by a slight change in the motor torque T, the torque command T * vibrates in an attempt to follow the change in the motor torque T and is supplied by the air conditioner 101.
  • the air volume does not converge stably as the air volume value of the target air volume Q * is changed or returned forever. Therefore, by providing a torque detection dead band in the second predetermined range, it is possible to prevent the torque command T * from vibrating near the convergence point, and to stably converge the air volume to the target air volume Q * .
  • the difference between the motor torque T obtained this time and the motor torque T obtained last time may be used.
  • the torque control unit 116 Based on the motor torque T input from the torque detection unit 112 and the torque command T * input from the torque command generation unit 115, the torque control unit 116 causes the motor 107 to follow the torque command T *.
  • a drive control signal is output to torque control of the motor 105.
  • FIG. 4 is a diagram for explaining the torque-air volume characteristics in the first embodiment.
  • a curve 501 is a torque-air volume characteristic peculiar to the pressure loss condition in the air conditioning system including the air blowing path 102 (hereinafter referred to as “pressure loss curve”).
  • the motor 105 can operate on this pressure loss curve.
  • the operating point of the motor 105 is at a point D0 on the pressure loss curve 501 in an air conditioning system.
  • the target air volume Q * is given by 800 CFM
  • the predetermined minimum torque is 0.5 Nm
  • the predetermined maximum torque is 5 Nm
  • the first predetermined range is an absolute error 1 Nm
  • the second predetermined range is an absolute error 0. It is assumed that each is set to 1 Nm.
  • the supply air volume of the blower 104 is 400 CFM
  • the motor torque T is 1 Nm.
  • the motor control device 110 performs constant air volume control as follows.
  • the air volume calculation unit 113 calculates the air volume 400 CFM at the current operating point D0.
  • the torque command generator 114 generates a torque command T * in the following process.
  • the torque command T * fluctuates by the correction step S303 of the torque command generator 115. It is avoided and the operating point is stabilized.
  • FIG. 5 is a diagram for explaining the torque-air volume characteristic when the pressure loss condition is changed in the present embodiment.
  • the supply air volume of the blower 104 at the point D4 is 900 CFM, which has an error of 100 CFM with respect to the target air volume 800 CFM.
  • the calculation step S201 of the torque command generation unit 114 calculates torque command T * by substituting 4Nm for T, 800CFM for Q *, and 900CFM for Q.
  • Calculated by the torque command T * is approximately 3.16Nm. Since the torque deviation ⁇ T at this time is about ⁇ 0.84 Nm, the torque deviation ⁇ T is within the first predetermined range (absolute error 1 Nm or less) and out of the second predetermined range (absolute error 0.1 Nm or more). Therefore, the torque command T * is output to the torque control unit 116 as it is without being corrected.
  • the torque control the operating point quickly moves to the point D5 where the target air volume 800 CFM is achieved, and the constant air volume control is achieved.
  • the motor control device 110 includes the air volume calculation unit 113 that calculates the air volume Q of the blower 104 based on the motor speed ⁇ and the motor torque T, and the ratio of the target air volume Q * to the air volume Q.
  • the torque command generation unit 114 generates a torque command T * as a result of multiplying the square of the motor torque T by a square.
  • the air volume Q of the blower can follow the target air volume Q * at high speed and can be converged stably.
  • the air volume Q is calculated by the equation (3), but other calculation equations may be used.
  • the following formula (11) obtained by measuring the air volume Q, the motor speed ⁇ , and the motor torque T while changing the pressure loss condition of the air conditioning system and regressing the measurement data may be used.
  • Q is the air volume
  • is the motor speed
  • T is the motor torque
  • i and j are integers of 0 or more and finite values
  • the blower coefficients ⁇ n and ⁇ can be calculated by performing a measurement experiment in which the motor is driven at one motor speed prior to the operation by the constant air volume control.
  • the constant K nm cannot be determined unless the air volume Q, the motor speed ⁇ , and the motor torque T are measured while changing the motor speed. For this reason, more experiment man-hours are needed than the case where Formula (3) is used.
  • the air volume Q can also be calculated by this equation (11).
  • the torque command T * and the motor torque T are substantially equal except in a steep transient state.
  • the following formula (12) may be used instead of the formula (8) in the first embodiment as a calculation formula for the torque command T * .
  • T * is a torque command
  • T prev * is a torque command previously output by the torque command generator 115
  • Q * is a target air volume
  • Q is an air volume
  • the motor control device of the present invention is most suitable for a system that controls the air volume to a predetermined air volume value, and is useful as an air-conditioning equipment for general households, commercial buildings, commercial buildings, vehicles, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 本発明のモータ制御装置(110)は、送風機(104)を駆動するモータ(105)を制御する装置であって、送風機(104)が供給する風量(Q)を計算する風量計算部(113)と、風量(Q)に対する目標風量(Q)の比率の2乗をモータトルク(T)に乗算した結果、又は前記風量に対する前記目標風量の比率の2乗を前回出力したトルク指令に乗算した結果をトルク指令(T)として生成するトルク指令生成部(114)と、を備える。

Description

モータ制御装置及びモータ制御方法
 本発明は、モータ制御装置及びモータ制御方法に関し、特に、換気や冷暖房を行う空調システムにおける送風機の風量制御方法に関する。
 換気や冷暖房を行う空調システムにおいて、送風機を有する空調装置の設置状態や使用状態によって、空調システムの圧力損失を決める条件(以下、「圧損条件」と呼ぶ)が異なる。例えば、空調装置に接続されたダクトの形状や長さの違いにより圧損条件が異なる。また、空調装置の吐出口や吸込口に取り付けられたフィルタの目詰まりにより圧損条件の経時変化が生じる。この圧損条件の差異や経時変化によって、所定の風量を得るために必要な静圧も変わってくる。このため、同一仕様の複数台の空調装置を、同一のトルクないしは回転速度で駆動しても、得られる風量がばらつく場合がある。あるいは、ある空調装置を一定のトルクないしは回転速度で駆動しても、風量を一定に維持できない場合がある。そこで、近年、圧損条件や静圧が変化しても、風量を目標風量に維持するように制御(以下、「風量一定制御」と呼ぶ)することが求められている。
 風量一定制御を実現する技術として、例えば圧力センサを用いる方式がある。しかし、設置容易性や長期使用時の信頼性に問題がある。そこで、圧力センサを用いることなく、風量一定制御に必要な送風機固有の特性(以下、「ブロワ特性」と呼ぶ)を利用する種々の方式が検討されている。このような方式では、風量一定制御による運転に先立って、事前に送風機のモータの物理量(モータ速度、モータトルク等)と風量との関係を計測する計測実験を行う。そして、この計測実験で得られたブロワ特性を利用して風量一定制御を行っている。
 このような風量一定制御の技術として、例えば特許文献1が知られている。特許文献1に示される従来の技術によれば、送風機を駆動するモータの指示速度を下記の式(1)から算出している。
Figure JPOXMLDOC01-appb-M000001
 ここで、Sはモータの指示速度、Sはモータ速度、Saは目標モータ速度、Kはゲインである。目標モータ速度Saは下記の式(2)から算出している。
Figure JPOXMLDOC01-appb-M000002
 ここで、Tはモータトルク、Qは目標風量、knm(n=0,1,2,・・・,j、 m=0,1,2,・・・,i)は定数、そしてiとjは有限値である。式(2)はモータトルクがTの場合に風量が目標風量Qになるために必要なモータ速度がSaであるという関係の式である。
 特許文献1記載のモータ制御装置による風量一定制御について、以下、図6を用いて説明する。図6は、従来技術によるモータ制御装置による風量一定制御を説明する図である。
 図6において、曲線601は風量が目標風量Qになるトルク-速度特性を示している(以下、「風量一定曲線」と呼ぶ)。曲線602は、モータが取り付けられる圧損条件に特有のモータのトルク-速度特性を示す(以下、「圧損曲線」と呼ぶ)。いま、モータの動作点が圧損曲線602上の点A1にあると想定する。このとき、式(2)によって計算される目標モータ速度Saは、現在の動作点A1と同じモータトルクT1を得る風量一定曲線601上の点B1におけるモータ速度Sa1である。そして、式(1)によって現在の動作点A1のモータ速度S1から上記Sa1を引いた差分(図6中ΔSで示す)のゲインK倍をモータ速度S1に加えた結果が、モータの指示速度S(図示せず)として出力される。そして、この指示速度Sに従ってモータ速度が制御されることにより、動作点が移動する。
 移動先の動作点でも同様に式(2)と式(1)とによって新たな指示速度Sが計算される。これを繰り返すことにより、動作点は図6のA2、A3と移動していき、最終的にモータ速度Sと目標モータ速度Saの差分がゼロになる動作点、つまり圧損曲線602と風量一定曲線601の交点Eに落ち着くことになる。
 特許文献1記載のモータ制御装置は、以上のようにモータトルクおよび目標風量を用いて、モータ速度に対する必要な修正値を計算し、この修正値に基づいて指示速度を出力することにより、圧損条件や静圧の変化によらない風量一定制御を可能にしている。
国際公開第2008/117515号
 特許文献1に示されている従来の技術では、モータ速度がどのような変化過程を経て収束するかは、式(1)のゲインKの値によって変わってくる。例えば、ゲインKの値が小さい場合、計算周期に対して指示速度Sの変化が小さいため、収束に至るまでに時間がかかる。一方、ゲインKの値が大きい場合、計算される指示速度Sの変化が大きくなり、図6における収束点Eを行ったり戻ったりして、速度が安定に収束しない。このようなことがないように、ゲインKの値を変えながら実験を行い、最適値を求める。
 しかしながら、ゲインKの最適値は空調システムの圧損条件によって変化する。ある圧損条件においては安定制御を行えるゲインKを用いても、フィルタの目詰まりやベントキャップの開閉によって変化した圧損条件のもとでは、ゲイン過剰となって動作点が安定に収束しない場合がある。このため、使用する圧損条件の変化を想定して、不安定になりやすい動作領域でも安定に送風機が動作できるように、ゲインKを十分小さい値にすることが望まれる。
 しかし、ゲインKの値が小さいと収束に至るまでに時間がかかるため、目標風量を変化させたり、圧損条件が変わったりした場合、再び目標風量に収束するまでに長い時間がかかる課題があった。
 本発明は上記従来の課題を解決するものであり、送風機の風量を目標風量に向けて高速に追従させ、且つ安定に収束させるモータ制御装置を提供することを目的とする。
 上記目的を達成するための本発明のある態様(aspect)に係るモータ制御装置は、送風機を駆動するモータを制御するモータ制御装置であって、前記モータのモータ速度およびモータトルクを取得し、前記モータのモータ速度およびモータトルクに基づいて送風機の風量を計算する風量計算部と、風量に対する目標風量の比率の2乗をモータトルクに乗算した結果、又は前記風量に対する前記目標風量の比率の2乗を前回出力したトルク指令に乗算した結果をトルク指令として生成するトルク指令生成部とを備えている。
 また、本発明の他の形態(aspect)のモータ制御方法は、送風機を駆動するモータを制御するモータ制御方法であって、前記モータのモータ速度およびモータトルクを取得することと、取得した前記モータ速度および前記モータトルクに基づいて前記送風機の風量を計算することと、前記風量に対する目標風量の比率の2乗を前記モータトルクに乗算した結果、又は前記風量に対する前記目標風量の比率の2乗を前回出力したトルク指令に乗算した結果を利用してトルク指令を生成することと、を含んでいる。
 本発明のモータ制御装置及びモータ制御方法によれば、目標風量を達成するモータトルクに等しいトルク指令に従ってモータを制御することによって、風量を目標風量に向けて高速に追従させ、且つ安定に収束させることができる。
図1は本発明の実施の形態1に係るモータ制御装置を具備したモータ制御システムの構成例を示すブロック図である。 図2は本発明の実施の形態1におけるトルク指令生成部115の処理例を示すフローチャートである。 図3は図2における修正ステップスの処理例を示すフローチャートである。 図4は本発明の実施の形態1におけるトルク-風量特性を説明する図である。 図5は本発明の実施の形態1における圧損条件変化時のトルク-風量特性を説明する図である。 図6は従来技術によるモータ制御装置による風量一定制御を説明する図である。
 (本発明の着眼点)
 本件出願に係る発明者等は、風量を目標風量に向けて高速に追従させ、且つ安定に収束させるために、流体力学における流れの相似性(Similarity of flows)から導出される法則として、一般にファンやブロア等の送風機において一定の圧損条件のもとでは風量は回転速度に比例する法則と、軸トルクが回転速度の2乗に比例する法則とに着眼した。なお、これらの法則は、送風機以外の一般の流体機械においても成立する。ここで、送風機とモータとの軸が振れたり又は該軸がずれたりせずに結合されているならば、送風機の回転速度はモータ速度に等しく、送風機の軸トルクはモータトルクに等しいとみなせる。したがって、以上の流れの相似性から導出される2つの法則は、風量はモータ速度に比例する法則と、モータトルクはモータ速度の2乗に比例する法則とみなすことができる。そして、これらのみなし法則によって、風量に対する目標風量の比率の2乗はモータトルクに対する目標風量の風量値を実現するモータトルクの比率に等しいという関係が成り立つので、風量に対する目標風量の比率の2乗をモータトルクに乗算した結果(風量に対する目標風量の比率の2乗とモータトルクとの積)をトルク指令とすることした。これにより、圧損条件の変化により目標風量が大きく変化しても、トルク指令が速やかに新たな目標風量を実現するモータトルクの値に変化するので、風量を目標風量に向けて高速に追従させることが可能となる。
 また、モータはトルク制御されるため、急峻な過渡状態時を除けばトルク指令とモータトルクは略等しくなるので、風量に対する目標風量の比率の2乗を前回出力したトルク指令に乗算した結果(風量に対する目標風量の比率の2乗と前回出力したトルク指令との積)をトルク指令としてもよい。
 具体的には、本件出願に係る第1の発明のモータ制御装置は、送風機を駆動するモータを制御するモータ制御装置であって、前記モータのモータ速度およびモータトルクを取得し、モータ速度およびモータトルクに基づいて送風機の風量を計算する風量計算部と、風量に対する目標風量の比率の2乗をモータトルクに乗算した結果、又は前記風量に対する前記目標風量の比率の2乗を前回出力したトルク指令に乗算した結果をトルク指令として生成するトルク指令生成部とを備えている。
 この構成によって、上記トルク指令生成部は目標風量を達成するモータトルクに等しいトルク指令を生成することができる。
 また、本件出願に係る第2の発明は、第1の発明において、前記トルク指令に前記モータトルクを一致させるように前記モータへの駆動電圧を制御する信号を生成するトルク制御部を更に有する、モータ制御装置である。
 また、本件出願に係る第3の発明は、第1の発明において、最小トルクおよび最大トルクを記憶する記憶手段を備え、前記トルク指令生成部は、前記トルク指令を前記最小トルクと前記最大トルクの範囲内に制限する、モータ制御装置である。
 また、本件出願に係る第4の発明は、第1の発明において、前記トルク指令生成部は、前記トルク指令と前記モータトルクとの差が第1の所定の範囲外である場合には、前記トルク指令と前記モータトルクとの差が前記第1の所定の範囲内に収まるように前記トルク指令を修正する、モータ制御装置である。
 また、本件出願に係る第5の発明は、第1の発明において、前記トルク指令生成部は、前記トルク指令と前記モータトルクとの差が第2の所定の範囲内である場合と、今回得られたモータトルクと前回得られたモータトルクとの差が前記第2の所定の範囲内である場合との少なくともいずれかの場合に、前回出力したトルク指令と同じ値の前記トルク指令を出力する、モータ制御装置である。
 また、本件出願に係る第6の発明は、第1の発明において、前記モータ速度は、前記モータ速度を検出する第1の検出部から当該モータ速度を示す第1の検出信号が入力されることにより取得される、モータ制御装置である。
 また、本件出願に係る第7の発明は、第1の発明において、前記モータトルクは、前記モータトルクまたは前記モータに流れる電流を検出する第2の検出部から当該モータトルクまたは当該モータに流れる電流が入力されることにより取得される、モータ制御装置である。
 また、本件出願に係る第8の発明は、送風機を駆動するモータを制御するモータ制御方法において、前記モータのモータ速度およびモータトルクを取得することと、取得した前記モータ速度および前記モータトルクに基づいて前記送風機の風量を計算することと、前記風量に対する目標風量の比率の2乗を前記モータトルクに乗算した結果、又は前記風量に対する前記目標風量の比率の2乗を前回出力したトルク指令に乗算した結果を利用してトルク指令を生成することと、を含むモータ制御方法である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1に係るモータ制御装置を具備したモータ制御システムの構成例を示すブロック図である。図1のモータ制御システムは、空調装置101と、空調装置101により供給される空気が通る送風経路102と、交流電源103と、送風機104と、送風機104を駆動するモータ105と、交流電源103からの交流電力を直流電力に変換するコンバータ106と、直流電力を交流電力に変換してモータ105に供給するインバータ107と、モータ105の回転子(図示せず)の位置を検出する位置検出器108と、モータ105の電流を検出する電流検出器109と、および空調装置101の風量を目標風量Qに制御するモータ制御装置110とを含む。
 空調装置101は、位置検出器108の出力信号からモータ速度ωを検出する速度検出部111と、電流検出器109の出力信号からモータトルクTを検出するトルク検出部112と、送風機104の供給する風量Qを計算する風量計算部113と、外部入力された目標風量Qを記憶するメモリ114と、風量計算部113が計算した風量Qとメモリ114から読み出した目標風量Qとに基づいてトルク指令Tを生成するトルク指令生成部115と、モータトルクTをトルク指令Tに追従させるためのインバータへの駆動制御信号を出力するトルク制御部116と、スイッチ117とを含む。ここで、速度検出部111は、公知の他の手段(例えば、回転計、速度センサ等)を用いてモータ速度ωを検出してもよい。また、トルク検出部112は、公知の他の手段(例えば、トルクメータ等)を用いてモータトルクTを検出してもよい。
 次に、図1の動作と構成要素の詳細を説明する。送風機104は送風経路102を通じて所望の場所へ空気を供給する。送風機104は、本実施の形態において多翼ファンである。ただし、送風機104の構造や形式は特に限定されるものではなく、多翼ファンでなくても良い。モータ105は送風機104と結合された状態で回転して、送風機104を駆動する。モータ105は、本実施の形態において永久磁石同期モータである。ただし、モータ105の構造や形式は特に限定されるものではなく、他のモータ、例えば誘導モータや電磁石同期モータでも良い。コンバータ106は、交流電源103の交流電圧を整流・平滑して、所定の直流電圧に変換する。インバータ107は、モータ制御装置110から入力される駆動制御信号に従って半導体スイッチングを行い、コンバータ106からの直流電圧を交流に変換して、モータ105に駆動電圧として供給する。ここで、インバータ107内部におけるスイッチ構成やスイッチング方式は、モータ105を駆動する目的に適合していれば、特に限定されるものではない。位置検出器108はモータ105に取り付けられており、モータ105の回転子(図示せず)の位置に応じた信号を出力する。なお、回転子の位置や速度を推定によって検出できる場合には、位置検出器108は不要である。電流検出器109は、モータの相電流を直接検出し、相電流値に応じた信号を出力する。しかし、検出した電流からモータトルクを推定できればいかなる部分にて電流を検出してもよく、例えばコンバータ106からインバータ107への直流ラインに挿入して電流を検出しても良い。
 モータ制御装置110の動作および構成要素を説明する。
 速度検出部111は、位置検出器108の出力信号に基づいてモータ速度ωを計算する。ただし、回転子の位置や速度を推定によって検出するセンサレス制御でモータ105を駆動する場合には、位置検出器108の出力信号を用いる代わりに、モータ電流やモータ駆動電圧を用いてモータ速度ωを計算する構成としても良い。トルク検出部112は、電流検出器109の出力信号に基づいてモータトルクTを計算する。ここで、モータトルクTは、モータ105のトルク情報を含む物理量、例えばモータ電流やモータ電流におけるトルクに寄与するベクトル成分であっても良い。トルクに寄与するベクトル成分は、例えば、モータ電流をd-q変換した際のq軸電流でも良い。また、速度検出部111とトルク検出部112は図1に示されるようにモータ制御装置110の内部にある必要はなく、外部に配しても良い。ただし、外部に配する場合は、計算されたモータ速度ωないしモータトルクTをモータ制御装置110へと入力する構成とする。
 風量計算部113は、速度検出部111から入力したモータ速度ωと、トルク検出部112から入力したモータトルクTとに基づいて、送風機104の供給する風量Qを計算する。計算手段は特に限定されるものではないが、本実施の形態では、下記の式(3)によって風量Qを計算する。
Figure JPOXMLDOC01-appb-M000003
 ここで、ωはモータ速度、Tはモータトルク、iは0以上の整数で有限値、α(n=0,1,2,・・・,i)とβは定数である。
 上記の式(3)は、任意のモータ速度ωと任意のモータトルクTに対して、風量がQになるという関係を表す。この関係を特徴づける係数α、βは、送風機の形状や寸法に対し固有の値を持つ。以下、この係数α、βをブロワ係数と呼ぶ。ブロワ係数α、βの値は、風量一定制御での運転に先立って、予め計測実験を実施することにより求められる。
 以下、この計測実験および式(3)の導出について説明する。
 まず、送風機を一定モータ速度ωで駆動させながら、送風機が設置されている環境の静圧を変化させる。そして、このときの風量QとモータトルクTの関係を下記の多項式(4)に回帰する。
Figure JPOXMLDOC01-appb-M000004
 ここで、iは0以上の整数で回帰式の次数を表す有限値、Kは回帰式の係数を表す定数(n=0,1,2,・・・,i)である。
 一般にファンやブロアなどの送風機において、流れの相似性により、一定の圧損条件のもとでは風量は回転速度に比例する法則と、軸トルクは回転速度の2乗に比例する法則とが導出される。この法則は送風機以外の一般の流体機械においても成り立つ。ここで、送風機とモータとの軸がぶれたり又は当該軸がずれたりせずに結合されているならば、送風機の回転速度はモータ速度に等しく、送風機の軸トルクはモータトルクに等しいとみなせる。よって、以上の流れの相似性により導出された2つの法則は、風量はモータ速度に比例する法則と、モータトルクはモータ速度の2乗に比例する法則とみなすことができる。以上により、下記の式(5)および式(6)が成り立つ。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記2式は、送風機を駆動するモータのモータ速度がωからωに変化したとき、風量がモータ速度の変化率(ω/ω)と同じ比率でQからQに変化し、同時にモータトルクがモータ速度の変化率(ω/ω)の2乗の比率でTからTに変化するという関係を表す。ここで、式(5)および式(6)を式(4)に適用すると、下記の式(7)が導出される。
Figure JPOXMLDOC01-appb-M000007
 ここで、Qは風量、ωはモータ速度、Tはモータトルク、iは0以上の整数で式(4)の次数と同じ有限値、Kは式(4)の係数と同じ定数(n=0,1,2,・・・,i)、ωは式(4)を得る際の特定のモータ速度である。
 上記の式(7)において、定数K、ωをそれぞれα、βで置き換えると、式(3)が導出される。以上により、1つのモータ速度ωで送風機を駆動させながらモータトルクと風量とを計測して、その計測結果を式(4)に回帰すれば、Kとωとからただちにブロワ係数α、βの値を決定できる。
 以上、風量計算部113における風量計算式(3)の根拠およびブロワ係数α、βを求める計測実験について説明した。
 メモリ114は、RAMやROM等からなる記憶部である。このROMには目標風量Qが予め記憶されており、トルク指令生成部115は後述の演算を行う際に、ROMから目標風量Qを読み出して演算に利用する。記憶される目標風量Qは複数あっても良い。この場合、モータ制御装置110の外部からの通信入力によって複数の目標風量Qから1つを選択する。あるいは、モータ制御装置110に設けられたスイッチ117を手動で操作することにより、複数の目標風量Qから1つを選択するようにしても良い。
 また、必ずしも目標風量Qは予めROMに記憶されている必要はない。モータ制御装置110の外部からの通信入力により、目標風量Qを適宜モータ制御装置110に送信するようにしても良い。この場合、受信された目標風量Qはメモリ114内のRAM等に記憶され、新たな目標風量Qが送られてくる都度更新されるようになっている。
 外部から通信入力される目標風量Qの値は、モータ105が取り付けられる空調環境に基づいて決定される。即ち目標風量Qは、屋内の空調対象となる部屋の中で基準となる部屋にどれだけの風量を送り込む必要があるか、空調設備にとってどれだけの風量であれば効率が良いか等によって決定される。また目標風量Qは、空調設備が設置される地域の気候等によって補正されることもある。例えば温暖で湿度の高い地域では、目標風量Qは高めに設定されることがある。目標風量Qは、事前に空調環境が分かっている場合には、モータの設置前に設定することができる。勿論、設置時に空調環境を見て設定することも可能である。
 トルク指令生成部115は、風量計算部113が計算した風量Qとメモリ114から読み出した目標風量Qとに基づいて、モータ105のトルクを指示するトルク指令Tを生成する。
 図2は、トルク指令生成部115の処理例を示すフローチャートである。トルク指令Tの生成は、最初の計算ステップS201とその次の修正ステップス(ステップS301からS303)の2段階で行われる。
 最初の計算ステップS201は、下記の式(8)を用いてトルク指令Tを計算する。
Figure JPOXMLDOC01-appb-M000008
 ここで、Qは目標風量、Qは風量、Tはモータトルクである。
 上記の式(8)の導出および根拠について述べる。式(8)は流れの相似性に基づいて下記のように導出される。
 まず、流れの相似性より導かれる上記の式(5)および式(6)とから(ω/ω)を消去して下記の式(9)を導く。
Figure JPOXMLDOC01-appb-M000009
 この式(9)は、送風機の風量がQからQに変化したとき、モータトルクが風量の変化率(Q/Q)の2乗の比率でTからTに変化するという関係を表す。ここで、Tをトルク指令Tに、Qを目標風量Qにそれぞれ置き換えて変形すれば、上記の式(8)が得られる。
 式(8)を用いることによる作用および効果を述べる。式(8)によって計算されるトルク指令Tの値は、目標風量Qを達成するモータトルクである。つまり、式(8)で計算されるトルク指令Tでモータをトルク制御することにより、風量Qが目標風量Qに等しくなる。このため、式(8)を用いてトルク制御することにより、迅速に目標風量Qを得ることができる。
 次に、図2の修正ステップス(ステップS301からS303)について説明する。図3は、本実施の形態の図2における修正ステップスの処理例を示すフローチャートである。
 ステップS301は、ステップS201で計算されたトルク指令Tが所定の最小トルクと所定の最大トルクの範囲内であるか否かを判断し、範囲内であればトルク指令Tを修正せず、所定の最小トルクより小さい場合はトルク指令Tを所定の最小トルクに修正し、所定の最大トルクを超えている場合はトルク指令Tを所定の最大トルクに修正する。
 このステップS301の効果を説明する。
 送風経路102内の圧力損失が小さい場合など、目標風量Qの風量値を得るためにモータ速度ωをそれほど必要としない空調環境がある。このような空調環境においては、モータ速度ωが極低速となる場合がある。この場合に、風量計算部113が風量Qを計算する際、式(7)のωに小さい値が代入されるために、モータ制御装置110の演算分解能の限界により風量Qが実際よりも大きく計算される場合がある。この結果、送風機104の供給風量に誤差が生じたり、モータ105が減速していき最終的に停止したりする。そこで、トルク指令Tに下限値である所定の最小トルクを設けることにより、風量誤差やモータの停止を防止できる。
 逆に送風経路102内の圧力損失が大きい場合では、目標風量Qの風量値を得るためにトルク指令Tが高い値になる場合がある。この場合、モータ105の能力を超える動作を実現しようとして動作が不安定になったり、モータ電流が過大になったりする場合がある。モータ電流が過大になって定格電流値を超えると、モータ巻線の発熱によりモータ105が故障したり、効率が著しく低下したりする。また、モータトルクTの上限を設けないと、送風機104に異物が巻き込まれるなどして過負荷状態になっても、モータ105がさらにトルクを出そうとして送風機104やモータ105を含む空調装置101を故障させるおそれがある。そのためトルク指令Tに上限である所定の最大トルクを設けることにより、制御の不安定化や空調装置の故障を防止できる。
 次のステップS302は、まず、下記の式(10)によって、トルク指令Tとトルク検出部112で検出されたモータトルクTとの差であるトルク偏差ΔTを計算する。
Figure JPOXMLDOC01-appb-M000010
 そして、このトルク偏差ΔTが第1の所定の範囲内である場合にはトルク指令Tを修正せず、トルク指令TをステップS303に受け渡す。一方、トルク偏差ΔTが所定の範囲外である場合にはトルク偏差ΔTが第2の所定の範囲内に収まるようにトルク指令Tを修正する。
 修正方法の例としては、所定の絶対値Lを設けて、モータトルクTにLを加えた(T+L)を上限値、モータトルクTからLを減じた(T-L)を下限値とし、トルク指令Tが上限値(T+L)を超える場合にはトルク指令Tを上限値(T+L)に修正し、トルク指令Tが下限値(T-L)より小さい場合にはトルク指令Tを下限値(T-L)に修正する。
 このステップS302の効果を説明する。仮にモータトルクTを急激に変化させたとすると、モータトルクTや送風経路2内の圧力の過渡的な変化により、実際の風量と風量計算部113によって計算される風量Qとが大きく乖離し、風量を安定に制御できなくなるおそれがある。そこで上記のように第1の所定の範囲を設けてモータトルクTの急激な変化を防止することにより、風量Qの乖離による制御の不安定化を防止できる。
 次のステップS303は、トルク偏差ΔTが第2の所定の範囲外であればトルク指令Tをそのまま出力し、第2の所定の範囲内である場合は、モータトルクTの変化が僅かであると判断して、トルク指令Tをトルク指令生成部115が前回出力したトルク指令T prevと同じ値に修正する。そして、この修正されたトルク指令Tprev をトルク制御部115に出力する。
 このステップS303の効果を説明する。仮にステップS303を行わず、僅かなモータトルクTの変化によってもトルク指令Tを変化させるようにすると、モータトルクTの変化にトルク指令Tが追従しようとして振動し、空調装置101の供給する風量がいつまでも目標風量Qの風量値を行ったり戻ったりして安定に収束しない。そのため上記第2の所定の範囲によってトルク検出の不感帯を設けることにより、収束点付近でトルク指令Tが振動するのを防止し、風量を安定に目標風量Qに収束させることができる。なお、トルク指令TとモータトルクTとの差の代わりに、今回得られたモータトルクTと前回得られたモータトルクTとの差を利用しても良い。
 以上、トルク指令生成部115の動作について説明した。
 トルク制御部116は、トルク検出部112から入力したモータトルクTと、トルク指令生成部115から入力したトルク指令Tとに基づいて、モータトルクTをトルク指令Tに追従させるためのインバータ107への駆動制御信号を出力し、モータ105をトルク制御する。
 以上のように構成されたモータ制御装置110について、以下にその動作を、図4、図5を用いて説明する。
 図4は、本実施の形態1におけるトルク-風量特性を説明する図である。図4において、曲線501は、送風経路102を含む空調システム内の圧損条件に特有のトルク-風量特性である(以下「圧損曲線」と呼ぶ)。モータ105は、この圧損曲線上で動作できる。
 いま、ある空調システムにおいてモータ105の動作点が圧損曲線501上の点D0にあると想定する。そして、目標風量Q*が800CFMで与えられ、所定の最小トルクが0.5Nm、所定の最大トルクが5Nm、第1の所定の範囲が絶対誤差1Nm、第2の所定の範囲が絶対誤差0.1Nmにそれぞれ設定されているとする。点D0において、送風機104の供給風量は400CFMであり、モータトルクTは1Nmである。このとき、モータ制御装置110は下記のようにして風量一定制御を行う。
 まず、風量計算部113が現在の動作点D0における風量400CFMを計算する。次に、トルク指令生成部114が下記の工程でトルク指令Tを生成する。
 最初の計算ステップS201は、式(8)においてTに1Nm、Qに800CFM、Qに400CFMを代入してトルク指令T=4[Nm]を計算する。よって、図4における点D3が目標の動作点となる。
 次いで修正ステップス(ステップS301からS303)がトルク指令Tを修正する。ステップS301は、トルク指令T=4[Nm]が所定の最小トルク0.5Nmと所定の最大トルク5Nmの範囲内か否かを判断する。この場合、範囲内であるため、ステップS302にトルク指令Tをそのまま受け渡す。
 次のステップS302は、まず式(10)によってトルク偏差ΔTを計算する。計算されるトルク偏差ΔT=|4-1|=3[Nm]は、第1の所定の範囲である絶対誤差1Nmを超えているため、トルク指令Tは現在のモータトルクT=1[Nm]に所定の絶対誤差1Nmを加えた上限値2Nmに修正される。よって、目標動作点は図4において当初の点D3から点D1へと修正される。
 次いでトルク制御部116が、ステップS302で修正されたトルク指令T=2[Nm]を受け取り、モータ105をトルク制御する。
 トルク制御によって動作点が目標の点D1に移動した後も、上述と同様に新たなトルク指令Tが生成され、トルク制御が行われる。この繰り返しにより、動作点は最終的に目標風量800[CFM]を達成する点D3に収束し、風量一定制御が達成される。このときのモータトルクTは4Nmである。
 ここで、仮に圧力変動などによってモータトルクTが4Nmから僅かに変動したとしても、その変化幅が0.1Nm以内であれば、トルク指令生成部115の修正ステップS303によってトルク指令Tの変動が回避され、動作点の安定化が図られる。
 なお、空調システムの圧損条件が変化した場合には、動作点が修正される。図5は、本実施の形態における圧損条件変化時のトルク-風量特性を説明する図である。
 図5に示すように、圧損曲線が501から502に変化したとする。この場合、モータ105はトルク制御されているため、動作点はモータトルクT=4[Nm]を維持しながら、D3からD4に移動する。点D4における送風機104の供給風量は900CFMであり、目標風量800CFMに対して100CFMの誤差を持つ。
 次いでトルク指令生成部114の計算ステップS201が、式(8)のTに4Nm、Qに800CFM、Qに900CFMを代入して、トルク指令Tを計算する。計算されるトルク指令Tは約3.16Nmである。このときのトルク偏差ΔTは約-0.84Nmであるため、第1の所定の範囲内(絶対誤差1Nm以下)かつ第2の所定の範囲外(絶対誤差0.1Nm以上)となる。よって、トルク指令Tは修正されずにそのままトルク制御部116に出力される。そして、トルク制御によって、動作点は目標風量800CFMを達成する点D5に迅速に移動し、風量一定制御が達成される。
 以上のように、本実施の形態のモータ制御装置110は、モータ速度ωおよびモータトルクTに基づいて送風機104の風量Qを計算する風量計算部113と、風量Qに対する目標風量Qの比率の2乗をモータトルクTに乗算した結果をトルク指令Tとして生成するトルク指令生成部114とを備えた構成である。
 このように構成することにより、送風機の風量Qを目標風量Qに向けて高速に追従させ、且つ安定に収束させることができる。
 (他の実施の形態)
 次に、本発明の実施の形態1の代替構成について説明する。
 実施の形態1では、式(3)によって風量Qを計算したが、その他の計算式を利用しても良い。例えば、空調システムの圧損条件を変化させながら風量Q、モータ速度ω、モータトルクTを計測し、その計測データを回帰した下記の式(11)を用いても良い。
Figure JPOXMLDOC01-appb-M000011
 ここで、Qは風量、ωはモータ速度、Tはモータトルク、iとjは0以上の整数で有限値、Knm(n=0,1,2,・・・,j、 m=0,1,2,・・・,i)は定数である。
 実施の形態1の式(3)では、風量一定制御による運転に先立って、1つのモータ速度でモータを駆動させる計測実験を行えば、ブロワ係数α、βを算出できたが、上記の式(11)では、モータ速度を変化させながら風量Q、モータ速度ω、モータトルクTを計測しないと定数Knmを決定できない。このため、式(3)を用いる場合よりも多くの実験工数を必要とする。しかし、この式(11)によっても風量Qを計算することができる。
 また、モータ105はトルク制御されるため、急峻な過渡状態時を除けばトルク指令TとモータトルクTはほぼ等しくなる。このため、トルク指令Tの計算式として、実施の形態1の式(8)の代わりに下記の式(12)を用いても良い。
Figure JPOXMLDOC01-appb-M000012
 ここで、Tはトルク指令、Tprev はトルク指令生成部115が前回出力したトルク指令、Qは目標風量、Qは風量である。
 本発明のモータ制御装置では、風量を所定の風量値に制御するようなシステムに最適であり、一般家庭の家屋、業務用建築物、商業用建築物、車両等の空調設備として有用である。
 101 空調装置
 102 送風経路
 103 交流電源
 104 送風機
 105 モータ
 106 コンバータ
 107 インバータ
 108 位置検出器
 109 電流検出器
 110 モータ制御装置
 111 速度検出器
 112 トルク検出器
 113 風量計算部
 114 メモリ
 115 トルク指令生成部
 116 トルク制御部
 117 スイッチ
 501、502、602 圧損曲線
 601 風量一定曲線

Claims (8)

  1. 送風機を駆動するモータを制御するモータ制御装置であって、
    前記モータのモータ速度およびモータトルクを取得し、
    前記モータ速度および前記モータトルクに基づいて前記送風機の風量を計算する風量計算部と、
    前記風量に対する目標風量の比率の2乗を前記モータトルクに乗算した結果、又は前記風量に対する前記目標風量の比率の2乗を前回出力したトルク指令に乗算した結果を利用してトルク指令を生成するトルク指令生成部と、
    を備えたモータ制御装置。
  2. 前記トルク指令に前記モータトルクを一致させるように前記モータへの駆動電圧を制御する信号を生成するトルク制御部を更に有する、請求項1記載のモータ制御装置。
  3. 最小トルクおよび最大トルクを記憶する記憶手段を備え、前記トルク指令生成部は、前記トルク指令を前記最小トルクと前記最大トルクの範囲内に制限する、請求項1記載のモータ制御装置。
  4. 前記トルク指令生成部は、前記トルク指令と前記モータトルクとの差が第1の所定の範囲外である場合には、前記トルク指令と前記モータトルクとの差が前記第1の所定の範囲内に収まるように前記トルク指令を修正する、請求項1記載のモータ制御装置。
  5. 前記トルク指令生成部は、前記トルク指令と前記モータトルクとの差が第2の所定の範囲内である場合と、今回得られたモータトルクと前回得られたモータトルクとの差が前記第2の所定の範囲内である場合との少なくともいずれかの場合に、前回出力したトルク指令と同じ値の前記トルク指令を出力する、請求項1記載のモータ制御装置。
  6. 前記モータ速度は、前記モータ速度を検出する第1の検出部から当該モータ速度を示す第1の検出信号が入力されることにより取得される、請求項1記載のモータ制御装置。
  7. 前記モータトルクは、前記モータトルクまたは前記モータに流れる電流を検出する第2の検出部から当該モータトルクまたは当該モータに流れる電流が入力されることにより取得される、請求項1記載のモータ制御装置。
  8. 送風機を駆動するモータを制御するモータ制御方法であって、
    前記モータのモータ速度およびモータトルクを取得することと、
    取得した前記モータ速度および前記モータトルクに基づいて前記送風機の風量を計算することと、
    前記風量に対する目標風量の比率の2乗を前記モータトルクに乗算した結果、又は前記風量に対する前記目標風量の比率の2乗を前回出力したトルク指令に乗算した結果を利用してトルク指令を生成することと、
    を含むモータ制御方法。
PCT/JP2013/002856 2012-09-13 2013-04-26 モータ制御装置及びモータ制御方法 WO2014041720A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014535349A JP5988224B2 (ja) 2012-09-13 2013-04-26 モータ制御装置及びモータ制御方法
CN201380041250.3A CN104521135B (zh) 2012-09-13 2013-04-26 电动机控制装置和电动机控制方法
US14/423,937 US9625172B2 (en) 2012-09-13 2013-04-26 Motor control device and motor control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-201397 2012-09-13
JP2012201397 2012-09-13

Publications (1)

Publication Number Publication Date
WO2014041720A1 true WO2014041720A1 (ja) 2014-03-20

Family

ID=50277867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002856 WO2014041720A1 (ja) 2012-09-13 2013-04-26 モータ制御装置及びモータ制御方法

Country Status (4)

Country Link
US (1) US9625172B2 (ja)
JP (1) JP5988224B2 (ja)
CN (1) CN104521135B (ja)
WO (1) WO2014041720A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201703621A (zh) * 2015-07-06 2017-01-16 Bigbest Solutions Inc 通風系統及其控制單元
EP3241476A1 (en) * 2016-05-03 2017-11-08 Koninklijke Philips N.V. Vacuum cleaner
US10218296B1 (en) 2017-08-29 2019-02-26 Semiconductor Components Industries, Llc Rotor position sensing system for three phase motors and related methods
US10425029B1 (en) * 2018-06-01 2019-09-24 Regal Beloit America, Inc. Motor controller for electric blower motors
US11168916B2 (en) 2018-06-11 2021-11-09 Broan-Nutone Llc Ventilation system with automatic flow balancing derived from a neural network and methods of use
US11466889B2 (en) 2020-03-09 2022-10-11 Regal Beloit America, Inc. Motor controller for electric blowers
US11879472B2 (en) 2020-03-09 2024-01-23 Regal Beloit America, Inc. Control system for electric fluid moving systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235514A (ja) * 1993-02-09 1994-08-23 Toto Ltd ファンモータ制御装置
JP3738685B2 (ja) * 2000-11-21 2006-01-25 三菱電機株式会社 インバータ装置および送風装置
WO2008117515A1 (ja) * 2007-03-27 2008-10-02 Panasonic Corporation モータ制御装置とその制御方法、及びモータ装置
JP2009261080A (ja) * 2008-04-15 2009-11-05 Panasonic Corp インバータ装置およびそれを搭載した風量一定換気送風装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353781B2 (ja) * 2000-09-28 2002-12-03 松下電器産業株式会社 モータ制御装置
JP3569702B2 (ja) 2002-10-22 2004-09-29 松下エコシステムズ株式会社 風量一定制御dcファンモータ
JP4259173B2 (ja) * 2003-04-28 2009-04-30 パナソニック株式会社 電動圧縮機の駆動装置
MY151881A (en) 2007-05-07 2014-07-14 Oyl Res And Dev Ct Sdn Bhd Airflow control for variable speed blowers
CN102230658B (zh) * 2010-02-01 2013-09-11 中山大洋电机制造有限公司 一种空调风机电机控制器及其控制方法
JP5627328B2 (ja) 2010-07-28 2014-11-19 キヤノン株式会社 光音響診断装置
JP5595835B2 (ja) * 2010-08-30 2014-09-24 株式会社荏原製作所 電動機の駆動装置
CN102381295A (zh) * 2011-08-18 2012-03-21 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 一种矿用卡车紧急制动系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235514A (ja) * 1993-02-09 1994-08-23 Toto Ltd ファンモータ制御装置
JP3738685B2 (ja) * 2000-11-21 2006-01-25 三菱電機株式会社 インバータ装置および送風装置
WO2008117515A1 (ja) * 2007-03-27 2008-10-02 Panasonic Corporation モータ制御装置とその制御方法、及びモータ装置
JP2009261080A (ja) * 2008-04-15 2009-11-05 Panasonic Corp インバータ装置およびそれを搭載した風量一定換気送風装置

Also Published As

Publication number Publication date
CN104521135B (zh) 2017-06-23
US9625172B2 (en) 2017-04-18
JPWO2014041720A1 (ja) 2016-08-12
US20150211759A1 (en) 2015-07-30
CN104521135A (zh) 2015-04-15
JP5988224B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5988224B2 (ja) モータ制御装置及びモータ制御方法
JP6037316B2 (ja) モータ制御装置、モータ制御方法および送風装置
JP6037317B2 (ja) モータ制御装置、モータ制御方法および送風装置
JP5866509B2 (ja) モータ制御装置及びモータ制御方法
US10066631B2 (en) Direct power control for constant airflow control
JP5327045B2 (ja) モータ制御装置とその制御方法、及びモータ装置
US8251671B2 (en) Apparatus for controlling an air distribution system
US20150211760A1 (en) Direct power control for constant airflow control with advanced motor system modeling
KR101395891B1 (ko) 공기조화기의 전동기 제어장치
JP6229167B2 (ja) ブラシレスdcモータを搭載した送風装置
CN113544440A (zh) 用于电动流体移动设备的控制系统
WO2013159461A1 (zh) 一种电机及空调风机系统的恒风量控制方法
JP2008082643A (ja) 換気装置
JP6040066B2 (ja) ファンモータの駆動制御装置
JP2010242767A (ja) 送風機の風量制御方法
JP7345688B2 (ja) 換気送風機
JP2015028301A (ja) 換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014535349

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423937

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836307

Country of ref document: EP

Kind code of ref document: A1