WO2014041656A1 - Vacuum processing device - Google Patents

Vacuum processing device Download PDF

Info

Publication number
WO2014041656A1
WO2014041656A1 PCT/JP2012/073450 JP2012073450W WO2014041656A1 WO 2014041656 A1 WO2014041656 A1 WO 2014041656A1 JP 2012073450 W JP2012073450 W JP 2012073450W WO 2014041656 A1 WO2014041656 A1 WO 2014041656A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
pressure
chamber
lock chamber
atmospheric
Prior art date
Application number
PCT/JP2012/073450
Other languages
French (fr)
Japanese (ja)
Inventor
満知明 小林
近藤 英明
僚一 磯村
田内 勤
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2012/073450 priority Critical patent/WO2014041656A1/en
Publication of WO2014041656A1 publication Critical patent/WO2014041656A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber

Definitions

  • the present invention relates to a vacuum processing apparatus for processing a substrate to be processed, such as a semiconductor wafer, in a processing chamber disposed inside a vacuum vessel, and includes a transfer container connected to the vacuum vessel and to which the substrate to be processed is transferred.
  • a vacuum processing apparatus for processing a substrate to be processed, such as a semiconductor wafer, in a processing chamber disposed inside a vacuum vessel, and includes a transfer container connected to the vacuum vessel and to which the substrate to be processed is transferred.
  • a vacuum processing apparatus for processing a substrate such as a semiconductor wafer (hereinafter referred to as “wafer”) which is a sample to be processed in a processing chamber disposed in a vacuum vessel and decompressed
  • wafer a substrate
  • a multi-chamber apparatus has been developed in which a plurality of vacuum vessels are connected to one apparatus and wafers can be processed in parallel in a plurality of processing chambers. Increasing efficiency has been done.
  • each processing chamber or chamber has an exhaust means such as a means for supplying an electric field or a magnetic field thereto, an exhaust pump for exhausting the inside, or a processing chamber.
  • Each processing unit is configured together with means for adjusting the supply of processing gas supplied to the inside, and this processing unit has a robot arm etc. for transporting the substrate by adjusting the internal gas and its pressure so that the pressure can be reduced.
  • a transfer unit including a transfer chamber (transfer chamber) provided is detachably connected to a transfer unit in which a wafer is transferred and temporarily held.
  • the side wall of the vacuum chamber in which the processing chamber or chamber in which each processing unit is depressurized is arranged has a transport unit in which a wafer before or after processing is transported in the interior in which the pressure is reduced to the same extent.
  • the inside of the vacuum transfer container is detachably connected so that the inside can be connected and closed.
  • the lock chamber which is a part of such a device configuration, is a vacuum vessel that switches between atmospheric pressure and vacuum pressure, and the switching time between atmospheric pressure and vacuum pressure has a great influence on the productivity of the device.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-063604
  • Patent Document 2 arranges a belt-shaped airflow forming device between a gate valve and a loader module at a loading / unloading port communicating the load lock module and the loader module.
  • An object of the present invention is to provide a vacuum processing apparatus in which the generation of foreign matters in the lock chamber is suppressed and the processing efficiency is improved.
  • the present invention forms a gas flow from the lock chamber side to the atmospheric transfer unit side when the lock chamber is opened, and the atmospheric gas in the atmospheric transfer unit containing moisture is locked. Reduces entry into the room.
  • the gas containing moisture such as the atmosphere inside the atmospheric transfer unit it is possible to prevent the gas containing moisture such as the atmosphere inside the atmospheric transfer unit from flowing into the lock chamber and exhaust the lock chamber to change from atmospheric pressure to vacuum pressure. It is possible to reduce the occurrence of foreign matter inside when the pressure is reduced. For this reason, the inside of the lock chamber can be exhausted at high speed, and the productivity and processing efficiency of the vacuum processing apparatus can be improved.
  • FIG. 1 is a top view for explaining an outline of the entire configuration of a vacuum processing apparatus according to an embodiment of the present invention.
  • a vacuum processing apparatus 100 including a vacuum processing chamber according to an embodiment of the present invention shown in FIG. 1 is roughly composed of an atmosphere side block 101 and a vacuum side block 102.
  • the atmosphere-side block 101 is a part for carrying, storing and positioning a substrate-like sample such as a semiconductor wafer as a processing object under atmospheric pressure, and the vacuum-side block 102 is under a pressure reduced from the atmospheric pressure.
  • the vacuum side block 102 is connected to the atmosphere side block 101 between the location of the vacuum side block 102 that performs the above-described transport and processing, and the pressure is set to atmospheric pressure with the sample inside. And a portion to be moved up and down between the vacuum pressure.
  • the atmosphere-side block 101 has a substantially rectangular parallelepiped housing 106 (hereinafter referred to as “atmosphere transfer unit”) having an atmosphere-side transfer robot 109 inside, and the atmosphere transfer unit 106 for preventing foreign matter from entering from the outside. Inside, the pressure is adjusted to the positive pressure side from the atmospheric pressure by the fan 301.
  • a plurality of cassettes mounted on the front side of the atmospheric transfer unit 106 and on which a substrate-like sample (hereinafter referred to as a wafer) such as a semiconductor wafer to be processed for processing or cleaning is stored are placed thereon.
  • the cassette stand 107 is provided.
  • the vacuum side block 102 is disposed between the first vacuum transfer chamber 104 and the back surface of the atmospheric transfer unit 106 of the atmospheric side block 101, and has a wafer exchanged between the atmospheric side and the vacuum side inside.
  • One or more lock chambers 105 for exchanging pressure between atmospheric pressure and vacuum pressure are provided.
  • the lock chamber 105 is a vacuum container whose internal space can be adjusted to the above pressure, and includes a first vacuum transfer chamber 104 on the rear side (upper side in FIG. 1) and an atmospheric transfer unit on the front side (lower side in FIG. 1).
  • a gate valve 120 including a passage through which the wafer passes through the inside and a valve body that can be hermetically sealed by opening and closing the wafer is disposed at a position connected to each of 106. There is an airtight division between the atmosphere side and the vacuum side.
  • the space inside the lock chamber 105 is provided with a storage unit capable of storing and holding a plurality of wafers with a gap in the vertical direction, and the gate valve 120 is closed while the wafers are stored, so that the first It is hermetically sealed with respect to the transfer space inside the vacuum transfer chamber 104 or the atmospheric transfer unit 106.
  • the lock chamber 105 is connected to an exhaust line including a dry pump 121, a valve 122, and an exhaust pipe 123 so that the inside can be exhausted.
  • a pressure gauge 124 capable of monitoring the pressure in the room and a purge line 125 capable of introducing a purge gas such as an inert gas into the transfer chamber while controlling the flow rate are provided.
  • the exhaust line and the purge line 125 are controlled in response to a command from a control device (not shown), and the pressure in the lock chamber 105 is adjusted to the first vacuum by the balance between the amount rate of the introduced gas and the amount rate of the exhaust gas.
  • the pressure is adjusted to a predetermined pressure including a value equivalent to or slightly higher than the inside of the transfer chamber 104 and a value equivalent to or slightly higher than the atmospheric pressure inside the atmospheric transfer unit 106.
  • the first vacuum transfer chamber 104 and the second vacuum transfer chamber 110 are units each including a vacuum vessel having a substantially rectangular shape in plan view, and these are structural differences that can be regarded as substantially the same. Are three units.
  • Each of these vacuum transfer chambers is provided with an exhaust line constituted by a dry pump 121, a valve 122, and an exhaust pipe 123.
  • a pressure gauge 124 capable of monitoring the pressure in the vacuum transfer chamber
  • a purge line 125 capable of introducing a purge gas such as an inert gas into the transfer chamber while controlling the flow rate are provided.
  • Each vacuum transfer chamber receives a command from a control device (not shown), and the exhaust line and the purge line 125 are controlled to adjust the pressure in each vacuum transfer chamber to a predetermined pressure.
  • the vacuum transfer intermediate chamber 111 is a vacuum container that can be depressurized to the same degree of vacuum as other vacuum transfer chambers or vacuum processing chambers.
  • the vacuum transfer chambers are connected to each other and the internal chambers are communicated with each other. .
  • gate valves 120 that communicate with the internal chambers and open and shut off the passage through which the wafers are transferred inside, and the gate valves 120 are closed.
  • the space between the vacuum transfer intermediate chamber 111 and the vacuum transfer chamber is hermetically sealed.
  • the chamber inside the vacuum transfer intermediate chamber 111 is provided with a storage unit that holds a plurality of wafers with a gap between these surfaces and holds them horizontally.
  • a wafer When a wafer is transferred between the transfer chambers 104 and 110, it has a function of a relay chamber that is accommodated at one end. That is, the wafers loaded by the vacuum transfer robot 108 in one vacuum transfer chamber and placed on the storage unit are unloaded by the vacuum transfer robot 108 in the other vacuum transfer chamber and connected to the vacuum transfer chamber 103. Alternatively, it is transferred to the lock chamber 105.
  • a vacuum transfer intermediate chamber 111 is arranged between the side walls corresponding to one surface facing the first vacuum transfer chamber 104 and the second vacuum transfer chamber 110 to connect the two. Further, the vacuum processing chamber 103 for processing the wafer is connected to the other surface by reducing the pressure inside and transferring the wafer to the inside.
  • the vacuum processing chamber 103 is an entire unit including an electric field and magnetic field generating unit configured to include a vacuum vessel, and an exhaust unit including a vacuum pump for exhausting a space to be decompressed inside the vessel. In the internal processing chamber, an etching process, an ashing process, or a process applied to another semiconductor wafer is performed.
  • each vacuum processing chamber 103 is connected to a pipeline through which a processing gas supplied in accordance with the processing to be performed flows.
  • the first vacuum transfer chamber 104 is configured so that two vacuum processing chambers 103 can be connected. In this embodiment, two vacuum processing chambers are also connected, but one vacuum processing chamber 103 is connected. It may be connected.
  • the second vacuum transfer chamber 111 is configured so that three vacuum processing chambers 103 can be connected, but in this embodiment, up to two vacuum processing chambers 103 are connected.
  • the inside of the first vacuum transfer chamber 104 and the second vacuum transfer chamber 110 is a transfer chamber, and the first vacuum transfer chamber 104 includes a lock chamber 105 and a vacuum processing chamber 103 or a vacuum under vacuum.
  • a vacuum transfer robot 108 for transferring a wafer to / from any one of the transfer intermediate chambers 111 is disposed in the central portion of the internal space.
  • the vacuum transfer robot 108 is arranged at the center of the inside, and the wafer is transferred between the vacuum processing chamber 103 and the vacuum transfer intermediate chamber 111.
  • each of these vacuum transfer robots 108 has a wafer placed on its arm, and in the first vacuum transfer chamber 104, the wafer is placed on the wafer stage disposed in the vacuum processing chamber 103 and either the lock chamber 105 or the vacuum transfer intermediate chamber 111. Wafer loading and unloading. Between these vacuum processing chambers 103, lock chambers 105, vacuum transfer intermediate chambers 111, first vacuum transfer chambers 104 and second vacuum transfer chambers 110, gate valves that can be closed and opened in an airtight manner, respectively. A passage communicating with 120 is provided, and this passage is opened and closed by the gate valve 120.
  • the vacuum processing apparatus of the present embodiment includes a plurality of gate valves 120, all of which have a structure and a configuration that are similar to each other so that they can be regarded as the same or the same. Is a unit.
  • the gate valve 120 includes a passage having an opening that forms part of a gate through which a wafer passes and a wall surface surrounding the passage, a valve body that moves upward or downward with respect to the opening, And a drive unit such as an actuator for driving the valve body. Further, the valve body moves upward or downward to contact a wall surface of the passage around the opening and seal the seal member arranged in a ring shape so that the inside and outside of the passage are hermetically sealed. It is provided on a sheet surface having a curved surface.
  • the wafer placed on the wafer support portion at the tip of the arm of the atmosphere-side transfer robot 109 is sucked and held on the wafer support portion by the suction device disposed on the wafer contact surface of the wafer support portion.
  • the movement of the arm prevents the wafer from being displaced on the support portion.
  • a configuration is provided in which the wafer is adsorbed on the contact surface by reducing the pressure by sucking ambient gas from openings arranged on the contact surface of the wafer support portion.
  • the wafer support part at the tip of the arm on which the vacuum transfer robot 108 places the wafer is not provided with suction by suction, but is provided with convex parts, protrusions, and pins on the support part that contact the wafer and suppress positional deviation.
  • the movement of the arm prevents the wafer from shifting.
  • the speed of the arm operation or the rate of change (acceleration) of the speed is suppressed.
  • the vacuum transfer robot 108 requires more time, and the transfer efficiency of the vacuum block 102 is lower.
  • a plurality of wafers housed in a cassette placed on any of the cassette tables 107 are connected to the vacuum processing apparatus 100 by some communication means for adjusting the operation of the vacuum processing apparatus 100, and a control device (not shown).
  • the processing is started in response to a command from the control unit or a command from a control device or the like of the production line where the vacuum processing apparatus 100 is installed.
  • the atmosphere-side transfer robot 109 Upon receiving the command from the control device, the atmosphere-side transfer robot 109 takes out a specific wafer in the cassette from the cassette and transfers the taken-out wafer to the lock chamber 105.
  • the pressure in the lock chamber 105 is increased by introducing N2.
  • the gate valve 120 is opened, if the pressure in the lock chamber is lower than the pressure in the atmospheric transfer unit 106, the atmosphere flows into the lock chamber, so the pressure in the lock chamber 105 is increased to a pressure higher than that in the atmospheric transfer unit 106. Then, the gate valve 120 is opened.
  • the wafer is loaded into the lock chamber 105 from the atmosphere-side transfer robot 109, but there is a possibility that the atmosphere flows into the lock chamber while the atmosphere is involved by the wafer loading operation.
  • the N2 is purged from an opening disposed near the opening on the first vacuum transfer chamber 104 side of the lock chamber 105, so that the inside of the lock chamber 105 is directed downward and toward the atmospheric transfer unit 106.
  • the atmosphere containing the gas inside the atmospheric transfer unit 106 for example, the atmosphere containing water vapor, is prevented from flowing into the lock chamber 105.
  • the N2 purge from the lock chamber 105 to the atmospheric transfer unit 106 is performed from an opening disposed on the side wall surface of the lock chamber in order to prevent turbulent flow from being formed in the vicinity of the wafer accommodated therein. It is desirable.
  • the lock chamber 105 of this embodiment is provided with an air inflow line 302 for supplying a relatively small flow rate of N 2 gas separately from the purge line 125.
  • the opening for introducing the gas may be common, but the gas source or the flow rate controller and the pipe connected to these are arranged separately.
  • N 2 gas from the purge line 125 is introduced from the upper opening in the lock chamber 105.
  • the valve on the purge line 125 is closed and the introduction of N 2 gas from the purge line 125 is stopped.
  • the gate valve 120 on the atmosphere transfer unit 106 side of the lock chamber 105 is opened, and immediately after that, the valve on the air inflow line 302 is opened, and a relatively small flow rate of N 2 gas from the line is opened.
  • the time lag between the gate valve 120 and the N2 supply stoppage is very small, but there is a concern of air contamination at that time.
  • the problem is that the gate valve 120 on the atmospheric transfer unit 106 side is closed in the valve body, and the wall of the upper side wall above the wafer 150 or the ceiling of the passage on the atmospheric transfer unit 106 side.
  • the N2 gas inlet is disposed in the air unit, and N2 gas is supplied along the N2 purge direction 402 inside the atmospheric unit.
  • the N2 purge can be continuously performed regardless of the timing of shielding the gate valve 120, and the above-described purge is performed at least until the gate valve 120 is closed from the open state. The problem can be avoided.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

In order to provide a vacuum processing device in which generation of foreign matter in the lock chamber is minimized and processing efficiency is improved, this vacuum processing device is provided with the functions of: opening a gate valve (120) that airtightly seals the interior of the lock chamber (105) linked to an atmospheric transportation unit (106) and provided so that the interior pressure can be adjusted, the sealing being conducted in a state in which the pressure in the lock chamber (105) is higher than the pressure in the atmospheric transportation unit (106) when a wafer (150) is transported to the lock chamber (105); and then introducing an inert gas from the rear part of the interior of the lock chamber (105) to the interior of the atmospheric transportation unit (106) in the direction of arrows (401).

Description

真空処理装置Vacuum processing equipment
 本発明は、半導体ウエハ等の被処理基板を真空容器内部に配置された処理室内で処理する真空処理装置に係り、真空容器と連結されその内部を被処理基板が搬送される搬送容器を備えたものに関する。 The present invention relates to a vacuum processing apparatus for processing a substrate to be processed, such as a semiconductor wafer, in a processing chamber disposed inside a vacuum vessel, and includes a transfer container connected to the vacuum vessel and to which the substrate to be processed is transferred. About things.
 上記のような装置、特に、真空容器の内部に配置され減圧された処理室内において処理対象の試料である半導体ウエハ等の基板(以下、「ウエハ」という)を処理する真空処理装置においては、処理の微細化、精密化とともに、処理対象であるウエハの処理の効率の向上が求められてきた。このために、近年では、一つの装置に複数の真空容器が連結され複数の処理室で並行してウエハの処理を行うことができるマルチチャンバ装置が開発され、クリーンルームの設置面積あたりの生産性の効率を向上させることが行われてきた。 In the above-described apparatus, particularly a vacuum processing apparatus for processing a substrate such as a semiconductor wafer (hereinafter referred to as “wafer”) which is a sample to be processed in a processing chamber disposed in a vacuum vessel and decompressed, In addition to the miniaturization and refinement of wafers, it has been demanded to improve the processing efficiency of wafers to be processed. For this reason, in recent years, a multi-chamber apparatus has been developed in which a plurality of vacuum vessels are connected to one apparatus and wafers can be processed in parallel in a plurality of processing chambers. Increasing efficiency has been done.
 また、このような複数の処理室あるいはチャンバを備えて処理を行う装置では、それぞれの処理室あるいはチャンバはこれに電界や磁界を供給する手段や内部を排気する排気ポンプ等の排気手段や処理室内部に供給される処理用ガスの供給を調節する手段等と共に各々の処理ユニットを構成し、この処理ユニットが内部のガスやその圧力が減圧可能に調節され基板を搬送するためのロボットアーム等が備えられた搬送室(搬送チャンバ)を含みウエハが内部で搬送され一時的に保持される搬送ユニットとに着脱可能に連結されている。より具体的には、各処理ユニットの減圧される処理室或いはチャンバが内部に配置された真空容器の側壁が、同程度に減圧された内部を処理前あるいは処理後のウエハが搬送される搬送ユニットの真空搬送容器の側壁に着脱可能に連結され内部が連通、閉塞可能に構成されている。 Further, in such an apparatus that includes a plurality of processing chambers or chambers for processing, each processing chamber or chamber has an exhaust means such as a means for supplying an electric field or a magnetic field thereto, an exhaust pump for exhausting the inside, or a processing chamber. Each processing unit is configured together with means for adjusting the supply of processing gas supplied to the inside, and this processing unit has a robot arm etc. for transporting the substrate by adjusting the internal gas and its pressure so that the pressure can be reduced. A transfer unit including a transfer chamber (transfer chamber) provided is detachably connected to a transfer unit in which a wafer is transferred and temporarily held. More specifically, the side wall of the vacuum chamber in which the processing chamber or chamber in which each processing unit is depressurized is arranged has a transport unit in which a wafer before or after processing is transported in the interior in which the pressure is reduced to the same extent. The inside of the vacuum transfer container is detachably connected so that the inside can be connected and closed.
 このような装置構成の一部であるロック室は大気圧と真空圧の切り替えを実施する真空容器であり、大気圧/真空圧の切り替え時間が装置の生産性に大きな影響を与える。 The lock chamber, which is a part of such a device configuration, is a vacuum vessel that switches between atmospheric pressure and vacuum pressure, and the switching time between atmospheric pressure and vacuum pressure has a great influence on the productivity of the device.
 従来、ロック室を真空圧から大気圧へ切り替える場合において、急速な排気を実施すると内部のガス中の水分が急激に凝縮され氷を生成し、氷が異物としてウエハに付着することにより付着異物がマスクとなって正確な電気回路が形成できないパターン欠陥を引き起こす可能性があった。このような異物の形成を抑止するため、ロック室内に水分を十分に低減させた窒素(N2)等の不活性ガスを内部に供給して、内部に水分や水分を含む大気等ガスが進入することを防止することが考えられてきた。 Conventionally, when switching the lock chamber from vacuum pressure to atmospheric pressure, if rapid exhaust is performed, moisture in the internal gas is rapidly condensed to generate ice, and the adhered foreign matter is caused by the ice adhering to the wafer as a foreign matter. This may cause a pattern defect that cannot form an accurate electric circuit as a mask. In order to suppress the formation of such foreign matter, an inert gas such as nitrogen (N2) with sufficiently reduced moisture is supplied to the inside of the lock chamber, and gas such as air containing moisture and moisture enters inside. It has been considered to prevent this.
 例えば、特開平11-063604号公報(特許文献1)に開示されるように、ロードロック室が連結された清浄室の上部に配置された送風ファンの回転により室内に上方から下方に向かう空気流れを形成し、この空気流れによりパーティクル等の室内の異物の原因物質がウエハに付着する或いはロードロック室内に流入することを抑制するものが知られていた。また、特開2007-165644号公報(特許文献2)には、ロードロックモジュールとローダモジュールとを連通する搬入出口において、ゲートバルブとローダモジュールとの間に帯状の気流形成装置を配置して、搬入出口の上から下方に向けて形成した帯状の気流に曝しつつウエハを搬入出口内部を搬送することで、ウエハに付着している異物を取り除くものが開示されている。 For example, as disclosed in Japanese Patent Application Laid-Open No. 11-063604 (Patent Document 1), the air flow from the upper side to the lower side in the room is caused by the rotation of the blower fan arranged at the upper part of the clean room to which the load lock chamber is connected. It is known that the air flow suppresses the causative substances of foreign matters such as particles from adhering to the wafer or flowing into the load lock chamber due to this air flow. Japanese Patent Application Laid-Open No. 2007-165644 (Patent Document 2) arranges a belt-shaped airflow forming device between a gate valve and a loader module at a loading / unloading port communicating the load lock module and the loader module. There has been disclosed a technique for removing foreign substances adhering to a wafer by carrying the wafer through the inside of the carry-in / out port while being exposed to a belt-like airflow formed from the top to the bottom of the carry-in / out port.
 一方で、ロック室内部を排気する場合には、従来は上記水分に起因して異物が形成されないように排気することが必要となり、大気中の水分が急激に凝縮されることによる氷の発生を防止できる範囲での流量速度で排気が実施されていた。 On the other hand, when exhausting the inside of the lock chamber, conventionally, it has been necessary to exhaust so that no foreign matter is formed due to the moisture, and the generation of ice due to rapid condensation of moisture in the atmosphere. Exhaust was performed at a flow rate within a range that could be prevented.
特開平11-063604号公報Japanese Patent Application Laid-Open No. 11-063604 特開2007-165644号公報JP 2007-165644 A
 上記の従来技術においては、前述したようにロック室内部を減圧するために排気する場合には、水分の氷結、凝縮による異物発生を抑制するために、排気の流量速度を十分に高くして行うことが出来ず、排気をスローに排気せざるを得ないため、半導体ウエハ等の基板状の試料がカセット等から取り出されて処理を施された後、元の位置に戻されるまでの時間が長くかかっていた。このため、試料の処理の生産性、効率が損なわれていたという問題については、上記従来技術では十分に考慮されていなかった。 In the above prior art, when exhausting to depressurize the inside of the lock chamber as described above, the exhaust gas flow rate is set sufficiently high in order to suppress generation of foreign matter due to moisture icing and condensation. It takes a long time for a substrate-like sample such as a semiconductor wafer to be returned to its original position after being taken out of a cassette or the like and processed. It was hanging. For this reason, the problem that the productivity and efficiency of sample processing have been impaired has not been sufficiently considered in the above-described conventional technology.
 本発明は、上記課題を解決するためになされたものであり。その目的は、ロック室内の異物の発生を抑制して処理の効率を向上させた真空処理装置を提供することにある。 The present invention has been made to solve the above problems. An object of the present invention is to provide a vacuum processing apparatus in which the generation of foreign matters in the lock chamber is suppressed and the processing efficiency is improved.
 ロック室における、真空圧から大気圧への切り替え時の急激な排気により異物となるのは大気中の水分であり、真空圧から大気圧への切り替え時に大気成分がロック室に存在しなければ水分凝縮による異物は発生しない。 Moisture in the atmosphere becomes a foreign substance due to sudden exhaust when switching from vacuum pressure to atmospheric pressure in the lock chamber, and if atmospheric components are not present in the lock chamber when switching from vacuum pressure to atmospheric pressure Foreign matter due to condensation does not occur.
 そこで、本発明は、上記目的を達成するために、ロック室の開放時にロック室側から大気搬送ユニット側へのガスの流れを形成し、水分を含んだ大気搬送ユニット内の大気等ガスがロック室内へ流入することを低減する。 Therefore, in order to achieve the above object, the present invention forms a gas flow from the lock chamber side to the atmospheric transfer unit side when the lock chamber is opened, and the atmospheric gas in the atmospheric transfer unit containing moisture is locked. Reduces entry into the room.
 本願発明の上記の構成によれば、ロック室内部に大気搬送ユニット内部の大気等の水分を含んだガスが流入してしまうことが抑制され、ロック室内部を排気して大気圧から真空圧へ減圧する際に内部に異物が発生することが低減される。このため、ロック室内部を高速で排気することが可能となり、真空処理装置の生産性、処理の効率を向上できる。 According to the above configuration of the present invention, it is possible to prevent the gas containing moisture such as the atmosphere inside the atmospheric transfer unit from flowing into the lock chamber and exhaust the lock chamber to change from atmospheric pressure to vacuum pressure. It is possible to reduce the occurrence of foreign matter inside when the pressure is reduced. For this reason, the inside of the lock chamber can be exhausted at high speed, and the productivity and processing efficiency of the vacuum processing apparatus can be improved.
本発明の実施例に係る真空処理装置の全体の構成の概略を説明する上面図である。It is a top view explaining the outline of the whole structure of the vacuum processing apparatus which concerns on the Example of this invention. 図1に示した実施例の真空搬送室を拡大して示す横断面図である。It is a cross-sectional view which expands and shows the vacuum conveyance chamber of the Example shown in FIG. 図1に示した実施例の真空搬送室大気搬送ユニット及びロック室を拡大して示す上面図である。It is a top view which expands and shows the vacuum conveyance chamber air | atmosphere conveyance unit and lock chamber of the Example shown in FIG.
 以下、本発明による真空処理装置の実施例を図面により詳細に説明する。 Hereinafter, embodiments of the vacuum processing apparatus according to the present invention will be described in detail with reference to the drawings.
 図1は本発明の実施例に係る真空処理装置の全体の構成の概略を説明する上面図である。 FIG. 1 is a top view for explaining an outline of the entire configuration of a vacuum processing apparatus according to an embodiment of the present invention.
 図1に示す、本発明の実施形態による真空処理室を含む真空処理装置100は大きく分けて、大気側ブロック101と真空側ブロック102とにより構成される。大気側ブロック101は、大気圧下で被処理物である半導体ウエハ等の基板状の試料を搬送、収納位置決め等を行う部分であり、真空側ブロック102は、大気圧から減圧された圧力下でウエハ等の基板状の試料を搬送し、予め定められた真空処理室内において処理を行うブロックである。そして、真空側ブロック102の前述した搬送や処理を行う真空側ブロック102の箇所と大気側ブロック101との間には、これらを連結して配置され試料を内部に有した状態で圧力を大気圧と真空圧との間で上下させる部分が配置されている。 A vacuum processing apparatus 100 including a vacuum processing chamber according to an embodiment of the present invention shown in FIG. 1 is roughly composed of an atmosphere side block 101 and a vacuum side block 102. The atmosphere-side block 101 is a part for carrying, storing and positioning a substrate-like sample such as a semiconductor wafer as a processing object under atmospheric pressure, and the vacuum-side block 102 is under a pressure reduced from the atmospheric pressure. A block that transports a substrate-like sample such as a wafer and performs processing in a predetermined vacuum processing chamber. The vacuum side block 102 is connected to the atmosphere side block 101 between the location of the vacuum side block 102 that performs the above-described transport and processing, and the pressure is set to atmospheric pressure with the sample inside. And a portion to be moved up and down between the vacuum pressure.
 大気側ブロック101は、内部に大気側搬送ロボット109を備えた略直方体形状の筐体106(以下、「大気搬送ユニット」という)を有し、外部からの異物混入防止のため、大気搬送ユニット106内はファン301により大気圧よりも正圧側に圧力調整されている。この大気搬送ユニット106の前面側に取付けられていて、処理用またはクリーニング用の被処理対象の半導体ウエハ等の基板状の試料(以下、ウエハ)が収納されているカセットがその上に載せられる複数のカセット台107が備えられている。 The atmosphere-side block 101 has a substantially rectangular parallelepiped housing 106 (hereinafter referred to as “atmosphere transfer unit”) having an atmosphere-side transfer robot 109 inside, and the atmosphere transfer unit 106 for preventing foreign matter from entering from the outside. Inside, the pressure is adjusted to the positive pressure side from the atmospheric pressure by the fan 301. A plurality of cassettes mounted on the front side of the atmospheric transfer unit 106 and on which a substrate-like sample (hereinafter referred to as a wafer) such as a semiconductor wafer to be processed for processing or cleaning is stored are placed thereon. The cassette stand 107 is provided.
 真空側ブロック102は、第一の真空搬送室104と大気側ブロック101の大気搬送ユニット106の背面との間に配置され、大気側と真空側との間でやりとりされるウエハを内部に有した状態で圧力を大気圧と真空圧との間でやりとりをするロック室105を一つまたは複数備えている。このロック室105は、内部の空間を上記の圧力に調節可能な真空容器であって、後方(図1上方)側の第一の真空搬送室104及び前方(図1下方)側の大気搬送ユニット106の各々と連結される箇所に、ウエハが内部を通過して搬送される通路とこれを開放、閉塞して気密に封止可能な弁体とを備えたゲートバルブ120が配置されており、大気側と真空側との間を気密に分割している。 The vacuum side block 102 is disposed between the first vacuum transfer chamber 104 and the back surface of the atmospheric transfer unit 106 of the atmospheric side block 101, and has a wafer exchanged between the atmospheric side and the vacuum side inside. One or more lock chambers 105 for exchanging pressure between atmospheric pressure and vacuum pressure are provided. The lock chamber 105 is a vacuum container whose internal space can be adjusted to the above pressure, and includes a first vacuum transfer chamber 104 on the rear side (upper side in FIG. 1) and an atmospheric transfer unit on the front side (lower side in FIG. 1). A gate valve 120 including a passage through which the wafer passes through the inside and a valve body that can be hermetically sealed by opening and closing the wafer is disposed at a position connected to each of 106. There is an airtight division between the atmosphere side and the vacuum side.
 ロック室105内部の空間には、複数のウエハを上下にすき間を開けて収納し保持可能な収納部を備えており、これらウエハを収納した状態でゲートバルブ120が閉塞することで、第一の真空搬送室104または大気搬送ユニット106の内部の搬送空間に対して気密に封止される。また、ロック室105には、ドライポンプ121、バルブ122、排気配管123により構成される排気ラインが連結されて、内部を排気可能に構成されている。 The space inside the lock chamber 105 is provided with a storage unit capable of storing and holding a plurality of wafers with a gap in the vertical direction, and the gate valve 120 is closed while the wafers are stored, so that the first It is hermetically sealed with respect to the transfer space inside the vacuum transfer chamber 104 or the atmospheric transfer unit 106. The lock chamber 105 is connected to an exhaust line including a dry pump 121, a valve 122, and an exhaust pipe 123 so that the inside can be exhausted.
 さらに、室内の圧力を監視することが可能な圧力計124、及び不活性ガス等のパージガスを流量制御しながら搬送室内に導入することが可能なパージライン125を備えている。これらは、図示しない制御装置の指令を受けて排気ライン及びパージライン125が制御され、これら導入されるガスの量速度および排気の量速度のバランスにより、ロック室105内の圧力が第一の真空搬送室104内部と同等または少しだけ高い値及び大気搬送ユニット106内部の大気圧と同等または大気圧より少し高い値を含む所定の圧力に調節される。 Furthermore, a pressure gauge 124 capable of monitoring the pressure in the room and a purge line 125 capable of introducing a purge gas such as an inert gas into the transfer chamber while controlling the flow rate are provided. The exhaust line and the purge line 125 are controlled in response to a command from a control device (not shown), and the pressure in the lock chamber 105 is adjusted to the first vacuum by the balance between the amount rate of the introduced gas and the amount rate of the exhaust gas. The pressure is adjusted to a predetermined pressure including a value equivalent to or slightly higher than the inside of the transfer chamber 104 and a value equivalent to or slightly higher than the atmospheric pressure inside the atmospheric transfer unit 106.
 第一の真空搬送室104、第二の真空搬送室110は各々の平面形状が略矩形状を有した真空容器を含むユニットであり、これらは、実質的に同一と見なせる程度の構成上の差異を有する3つのユニットである。これら真空搬送室は、ドライポンプ121、バルブ122、排気配管123により構成される排気ラインを各々が備えている。また、真空搬送室内の圧力を監視することが可能な圧力計124、及び不活性ガス等のパージガスを流量制御しながら搬送室内に導入することが可能なパージライン125を備えている。各真空搬送室は、図示しない制御装置の指令を受けて、排気ライン及びパージライン125が制御され各々の真空搬送室内の圧力が所定の各圧力へと調整される。 The first vacuum transfer chamber 104 and the second vacuum transfer chamber 110 are units each including a vacuum vessel having a substantially rectangular shape in plan view, and these are structural differences that can be regarded as substantially the same. Are three units. Each of these vacuum transfer chambers is provided with an exhaust line constituted by a dry pump 121, a valve 122, and an exhaust pipe 123. Further, a pressure gauge 124 capable of monitoring the pressure in the vacuum transfer chamber and a purge line 125 capable of introducing a purge gas such as an inert gas into the transfer chamber while controlling the flow rate are provided. Each vacuum transfer chamber receives a command from a control device (not shown), and the exhaust line and the purge line 125 are controlled to adjust the pressure in each vacuum transfer chamber to a predetermined pressure.
 真空搬送中間室111は、内部が他の真空搬送室または真空処理室と同等の真空度まで減圧可能な真空容器であって、真空搬送室を互いに連結して、内部の室が連通されている。真空搬送室との間には、内部の室を連通して内側でウエハが搬送される通路を開放、遮断して分割するゲートバルブ120が配置されており、これらのゲートバルブ120が閉塞することによって、真空搬送中間室111と真空搬送室との間は気密に封止される。 The vacuum transfer intermediate chamber 111 is a vacuum container that can be depressurized to the same degree of vacuum as other vacuum transfer chambers or vacuum processing chambers. The vacuum transfer chambers are connected to each other and the internal chambers are communicated with each other. . Between the vacuum transfer chambers, there are arranged gate valves 120 that communicate with the internal chambers and open and shut off the passage through which the wafers are transferred inside, and the gate valves 120 are closed. Thus, the space between the vacuum transfer intermediate chamber 111 and the vacuum transfer chamber is hermetically sealed.
 また、真空搬送中間室111内部の室には、複数のウエハをこれらの面と面の間ですき間を開けて載せて水平に保持する収納部が配置されており、第一、第二の真空搬送室104,110の間でウエハが受け渡される際に、一端収納される中継室の機能を備えている。すなわち、一方の真空搬送室内の真空搬送ロボット108によって搬入され前記収納部に載せられたウエハが他方の真空搬送室内の真空搬送ロボット108により搬出されて当該真空搬送室に連結された真空処理室103またはロック室105に搬送される。 The chamber inside the vacuum transfer intermediate chamber 111 is provided with a storage unit that holds a plurality of wafers with a gap between these surfaces and holds them horizontally. When a wafer is transferred between the transfer chambers 104 and 110, it has a function of a relay chamber that is accommodated at one end. That is, the wafers loaded by the vacuum transfer robot 108 in one vacuum transfer chamber and placed on the storage unit are unloaded by the vacuum transfer robot 108 in the other vacuum transfer chamber and connected to the vacuum transfer chamber 103. Alternatively, it is transferred to the lock chamber 105.
 第一の真空搬送室104と第二の真空搬送室110との対面にある一面に相当する互いの側壁の間には真空搬送中間室111が配置されて両者を連結している。さらに他の一面に、内部が減圧されその内部にウエハが搬送されて、ウエハを処理する真空処理室103が接続される。本実施例では、真空処理室103は、真空容器を含んで構成された電界、磁界の発生手段、容器内部の減圧される空間を排気する真空ポンプを含む排気手段を含むユニット全体を示しており、内部の処理室においてエッチング処理、アッシング処理或いは他の半導体ウエハに施す処理が施される。また、各真空処理室103には、実施される処理に応じて供給される処理ガスが流れる管路が連結されている。 A vacuum transfer intermediate chamber 111 is arranged between the side walls corresponding to one surface facing the first vacuum transfer chamber 104 and the second vacuum transfer chamber 110 to connect the two. Further, the vacuum processing chamber 103 for processing the wafer is connected to the other surface by reducing the pressure inside and transferring the wafer to the inside. In this embodiment, the vacuum processing chamber 103 is an entire unit including an electric field and magnetic field generating unit configured to include a vacuum vessel, and an exhaust unit including a vacuum pump for exhausting a space to be decompressed inside the vessel. In the internal processing chamber, an etching process, an ashing process, or a process applied to another semiconductor wafer is performed. In addition, each vacuum processing chamber 103 is connected to a pipeline through which a processing gas supplied in accordance with the processing to be performed flows.
 第一の真空搬送室104には2個の真空処理室103が連結可能に構成されおり、本実施例においても2個の真空処理室を連結しているが、1個の真空処理室103が連結されてもよい。一方、第二の真空搬送室111には3個の真空処理室103連結可能に構成されているが、本実施例では2個までの真空処理室103が連結される。 The first vacuum transfer chamber 104 is configured so that two vacuum processing chambers 103 can be connected. In this embodiment, two vacuum processing chambers are also connected, but one vacuum processing chamber 103 is connected. It may be connected. On the other hand, the second vacuum transfer chamber 111 is configured so that three vacuum processing chambers 103 can be connected, but in this embodiment, up to two vacuum processing chambers 103 are connected.
 第一の真空搬送室104および第二の真空搬送室110は、その内部が搬送室とされており、第一の真空搬送室104には、真空下でロック室105と真空処理室103または真空搬送中間室111の何れかとの間でウエハを搬送する真空搬送ロボット108がその内部の空間の中央部分に配置されている。第二の真空搬送室110も前記同様に真空搬送ロボット108が内部の中央部分に配置されており、真空処理室103、真空搬送中間室111の何れかとの間でウエハの搬送を行う。 The inside of the first vacuum transfer chamber 104 and the second vacuum transfer chamber 110 is a transfer chamber, and the first vacuum transfer chamber 104 includes a lock chamber 105 and a vacuum processing chamber 103 or a vacuum under vacuum. A vacuum transfer robot 108 for transferring a wafer to / from any one of the transfer intermediate chambers 111 is disposed in the central portion of the internal space. Similarly to the second vacuum transfer chamber 110, the vacuum transfer robot 108 is arranged at the center of the inside, and the wafer is transferred between the vacuum processing chamber 103 and the vacuum transfer intermediate chamber 111.
 これら真空搬送ロボット108の各々の構成は同一である。前記真空搬送ロボット108は、そのアーム上にウエハが載せられて、第一の真空搬送室104では真空処理室103に配置されたウエハ台上とロック室105または真空搬送中間室111の何れかとの間でウエハの搬入、搬出を行う。これら真空処理室103、ロック室105、真空搬送中間室111、第一の真空搬送室104および第二の真空搬送室110の搬送室との間には、それぞれ気密に閉塞、開放可能なゲートバルブ120により連通する通路が設けられており、この通路は、ゲートバルブ120により開閉される。 The configuration of each of these vacuum transfer robots 108 is the same. The vacuum transfer robot 108 has a wafer placed on its arm, and in the first vacuum transfer chamber 104, the wafer is placed on the wafer stage disposed in the vacuum processing chamber 103 and either the lock chamber 105 or the vacuum transfer intermediate chamber 111. Wafer loading and unloading. Between these vacuum processing chambers 103, lock chambers 105, vacuum transfer intermediate chambers 111, first vacuum transfer chambers 104 and second vacuum transfer chambers 110, gate valves that can be closed and opened in an airtight manner, respectively. A passage communicating with 120 is provided, and this passage is opened and closed by the gate valve 120.
 また、本実施例の真空処理装置では複数のゲートバルブ120を備えているが、これらは何れも同一か同一と見倣せる程度に近似した構造、構成を備えたものであり、所謂同じ部品のユニットである。ゲートバルブ120は、内側にウエハが通過するゲートの一部を構成する開口を備えた通路とこれを囲む壁面とを備えた通路部と、開口に対して上または下方に移動する弁体と、弁体を駆動するアクチュエータ等の駆動部とを備えている。さらに、弁体は、上または下方に移動して開口の周囲の通路部の壁面に当接して通路内外を気密に封止するリング状に配置されたシール部材を、弁体の平面または平滑な曲面を有するシート面上に具備している。 In addition, the vacuum processing apparatus of the present embodiment includes a plurality of gate valves 120, all of which have a structure and a configuration that are similar to each other so that they can be regarded as the same or the same. Is a unit. The gate valve 120 includes a passage having an opening that forms part of a gate through which a wafer passes and a wall surface surrounding the passage, a valve body that moves upward or downward with respect to the opening, And a drive unit such as an actuator for driving the valve body. Further, the valve body moves upward or downward to contact a wall surface of the passage around the opening and seal the seal member arranged in a ring shape so that the inside and outside of the passage are hermetically sealed. It is provided on a sheet surface having a curved surface.
 本実施例では、大気側搬送ロボット109のアーム先端部のウエハ支持部上に載せられたウエハは、ウエハ支持部のウエハ接触面に配置された吸着装置により、ウエハ支持部上に吸着保持され、アームの動作によりウエハが支持部上で位置のズレが生じることが抑制される。特に、ウエハ支持部の接触面上に複数配置された開口から周囲のガスを吸引することで圧力を低下させてウエハを接触面上に吸着する構成を備えている。 In this embodiment, the wafer placed on the wafer support portion at the tip of the arm of the atmosphere-side transfer robot 109 is sucked and held on the wafer support portion by the suction device disposed on the wafer contact surface of the wafer support portion. The movement of the arm prevents the wafer from being displaced on the support portion. In particular, a configuration is provided in which the wafer is adsorbed on the contact surface by reducing the pressure by sucking ambient gas from openings arranged on the contact surface of the wafer support portion.
 一方、真空搬送ロボット108がウエハを載せるアーム先端部のウエハ支持部には、吸引による吸着を実施しない代わりに、支持部上にウエハと接して位置ズレを抑制する凸部、突起やピンが配置されアームの動作によりウエハがズレることを抑制している。また、このような位置ズレを抑制するためにアームの動作の速度、あるいは速度の変化の割合(加速度)を抑制しており、結果として、同じ距離のウエハの搬送には大気搬送ロボット109と比較して真空搬送ロボット108の方が時間を要し、搬送の効率は真空側ブロック102の方が低くなっている。 On the other hand, the wafer support part at the tip of the arm on which the vacuum transfer robot 108 places the wafer is not provided with suction by suction, but is provided with convex parts, protrusions, and pins on the support part that contact the wafer and suppress positional deviation. The movement of the arm prevents the wafer from shifting. In addition, in order to suppress such positional deviation, the speed of the arm operation or the rate of change (acceleration) of the speed is suppressed. As a result, compared with the atmospheric transfer robot 109 for transferring wafers of the same distance. Thus, the vacuum transfer robot 108 requires more time, and the transfer efficiency of the vacuum block 102 is lower.
 以下、本実施例では、ロック室内を大気圧から真空圧への切り替え時に大気中の水分凝縮が軽減される例を示す。 Hereinafter, in this embodiment, an example in which moisture condensation in the atmosphere is reduced when the lock chamber is switched from the atmospheric pressure to the vacuum pressure will be described.
 次に、このような真空処理装置100における、ウエハに対する処理を行う動作を以下に説明する。 Next, the operation of processing the wafer in the vacuum processing apparatus 100 will be described below.
 カセット台107の何れかの上に載せられたカセット内に収納された複数のウエハは、真空処理装置100の動作を調節する、何らかの通信手段により前記真空処理装置100に接続された図示しない制御装置から指令を受けて、または、真空処理装置100が設置される製造ラインの制御装置等からの指令を受けて、その処理が開始される。制御装置からの指令を受けた大気側搬送ロボット109は、カセット内の特定のウエハをカセットから取り出し、取り出したウエハをロック室105に搬送する。 A plurality of wafers housed in a cassette placed on any of the cassette tables 107 are connected to the vacuum processing apparatus 100 by some communication means for adjusting the operation of the vacuum processing apparatus 100, and a control device (not shown). The processing is started in response to a command from the control unit or a command from a control device or the like of the production line where the vacuum processing apparatus 100 is installed. Upon receiving the command from the control device, the atmosphere-side transfer robot 109 takes out a specific wafer in the cassette from the cassette and transfers the taken-out wafer to the lock chamber 105.
 ロック室105においては、大気側搬送ロボット109からウエハが搬入されるため、ロック室105内圧力をN2を導入し上昇させる。その際、ゲートバルブ120を開放時はロック室の圧力が大気搬送ユニット106内圧力より低い場合、ロック室へ大気が流入するため、ロック室105内圧力は大気搬送ユニット106より高い圧力まで上昇させ、ゲートバルブ120を開放する。 In the lock chamber 105, since the wafer is loaded from the atmosphere side transfer robot 109, the pressure in the lock chamber 105 is increased by introducing N2. At that time, when the gate valve 120 is opened, if the pressure in the lock chamber is lower than the pressure in the atmospheric transfer unit 106, the atmosphere flows into the lock chamber, so the pressure in the lock chamber 105 is increased to a pressure higher than that in the atmospheric transfer unit 106. Then, the gate valve 120 is opened.
 ゲートバルブ120開放後に、大気側搬送ロボット109よりウエハがロック室105へ搬入されるが、ウエハ搬入動作により大気を巻き込みながらロック室へ大気を流入させる可能性がある。このような大気流入を防止するために、ゲートバルブ120開放と同時かその直前から、ロック室105の天井またはウエハの高さ方向の搭載位置より上方の側壁の壁面上に配置された開口からパージライン125からのN2ガスを導入する。 After the gate valve 120 is opened, the wafer is loaded into the lock chamber 105 from the atmosphere-side transfer robot 109, but there is a possibility that the atmosphere flows into the lock chamber while the atmosphere is involved by the wafer loading operation. In order to prevent such inflow of air, purging from the opening placed on the ceiling of the lock chamber 105 or on the wall surface of the side wall above the mounting position in the height direction of the wafer at the same time or just before the gate valve 120 is opened. N2 gas from line 125 is introduced.
 本実施例では、特にロック室105の第一の真空搬送室104側の開口近傍に配置された開口からN2をパージすることで、ロック室105内部に下向き且つ大気搬送ユニット106の方向へ向かう図3に示すN2パージ方向401に沿ったN2パージを実施する。このようにロック室105の奥側(第一の真空搬送室104が配置された側)から前側(大気搬送ユニット106が配置された側)に向かうN2パージ方向401のガス流れを形成することで、大気搬送ユニット106内部のガス、例えば水蒸気を含む大気がロック室105内部へ流入することを防止する。なお、ロック室105から大気搬送ユニット106へのN2パージは、内部に収納されたウエハの近傍に乱流が形成されることを防止するため、ロック室の側壁面に配置された開口から行われることが望ましい。 In the present embodiment, in particular, the N2 is purged from an opening disposed near the opening on the first vacuum transfer chamber 104 side of the lock chamber 105, so that the inside of the lock chamber 105 is directed downward and toward the atmospheric transfer unit 106. N2 purge along the N2 purge direction 401 shown in FIG. Thus, by forming a gas flow in the N2 purge direction 401 from the back side of the lock chamber 105 (side where the first vacuum transfer chamber 104 is disposed) to the front side (side where the atmospheric transfer unit 106 is disposed). Further, the atmosphere containing the gas inside the atmospheric transfer unit 106, for example, the atmosphere containing water vapor, is prevented from flowing into the lock chamber 105. Note that the N2 purge from the lock chamber 105 to the atmospheric transfer unit 106 is performed from an opening disposed on the side wall surface of the lock chamber in order to prevent turbulent flow from being formed in the vicinity of the wafer accommodated therein. It is desirable.
 ロック室105内圧力を真空圧から大気圧へ上昇させる際にパージライン125から導入されるN2ガスと上記大気のロック室105内への流入を防止するために導入されるN2ガスは必要となる流量が異なり、前者の方が著しく大きい。このため本実施例のロック室105は相対的に小流量のN2ガスを供給するための対大気流入ライン302をパージライン125とは別に備えている。ガス導入する開口は共通しても良いが、ガス源または流量調節器及びこれらが連結された配管は別に配置する。 When the pressure in the lock chamber 105 is increased from the vacuum pressure to the atmospheric pressure, N2 gas introduced from the purge line 125 and N2 gas introduced to prevent the atmosphere from flowing into the lock chamber 105 are necessary. The flow rate is different and the former is significantly larger. For this reason, the lock chamber 105 of this embodiment is provided with an air inflow line 302 for supplying a relatively small flow rate of N 2 gas separately from the purge line 125. The opening for introducing the gas may be common, but the gas source or the flow rate controller and the pipe connected to these are arranged separately.
 ロック室105内部を真空圧から大気圧またはこれよりわずかに高い圧力値まで昇圧させるために、パージライン125からのN2ガスをロック室105内の上部の開口から導入する。ロック室105内の圧力が所定の値まで上昇したことが圧力計124からの出力により検出されると、パージライン125上のバルブが閉塞されてパージライン125からのN2ガスの導入が停止される。この後、ロック室105の大気搬送ユニット106側のゲートバルブ120を開放し、その直後から対大気流入ライン302上のバルブを開放し当該ラインからの相対的に小流量のN2ガスを前述の開口である導入口から大気搬送ユニット106に向かうN2パージ方向401に沿ってロック室105内へ供給する。そのような構成により、ロック室105内圧力を真空圧から大気圧へ上昇させる際にN2ライン125と大気流入防止のN2ライン302を併用し大気流入防止と生産性向上を両立させる。 In order to increase the pressure inside the lock chamber 105 from the vacuum pressure to the atmospheric pressure or a pressure value slightly higher than this, N 2 gas from the purge line 125 is introduced from the upper opening in the lock chamber 105. When it is detected by the output from the pressure gauge 124 that the pressure in the lock chamber 105 has increased to a predetermined value, the valve on the purge line 125 is closed and the introduction of N 2 gas from the purge line 125 is stopped. . Thereafter, the gate valve 120 on the atmosphere transfer unit 106 side of the lock chamber 105 is opened, and immediately after that, the valve on the air inflow line 302 is opened, and a relatively small flow rate of N 2 gas from the line is opened. Is supplied into the lock chamber 105 along the N2 purge direction 401 from the inlet to the atmospheric transfer unit 106. With such a configuration, when the pressure in the lock chamber 105 is increased from the vacuum pressure to the atmospheric pressure, the N2 line 125 and the N2 line 302 for preventing air inflow are used in combination to achieve both air inflow prevention and productivity improvement.
 図3に示すように、ロック室105から大気搬送ユニット106方向へN2パージ方向401にてN2パージを実施しロック室への大気流入を防止する場合には、前後のゲートバルブ120が遮蔽されて内部が仕切られている間はロック室105内圧力がN2供給圧力まで上昇し、ロック室内圧力が高くなりすぎる懸念がある。前述の問題点を回避する場合はゲートバルブ120の遮蔽のタイミングと同時にロック室105から大気搬送ユニット106方向へ図3に示すN2パージ方向401にて実施しているN2パージは供給を停止する必要がある。 As shown in FIG. 3, when N2 purge is performed in the N2 purge direction 401 from the lock chamber 105 toward the atmospheric transfer unit 106 to prevent air flow into the lock chamber, the front and rear gate valves 120 are shielded. While the interior is partitioned, the pressure in the lock chamber 105 rises to the N2 supply pressure, and there is a concern that the lock chamber pressure becomes too high. In order to avoid the above-mentioned problem, it is necessary to stop the supply of N2 purge performed in the N2 purge direction 401 shown in FIG. 3 from the lock chamber 105 toward the atmospheric transfer unit 106 simultaneously with the timing of shielding the gate valve 120. There is.
 ゲートバルブ120とN2供給停止のタイムラグは微小ではあるが、その際の大気混入の懸念もある。この問題点は、図3に示すように、大気搬送ユニット106側のゲートバルブ120においてその弁体が閉塞された状態で大気搬送ユニット106側の通路の天井またはウエハ150より上方の上部側壁の壁面にN2ガスの導入口を配置して大気ユニット内側にN2パージ方向402に沿ってN2ガスを供給する。このような構成ではゲートバルブ120の遮蔽のタイミングに関わらず、継続してN2パージを実施可能となり、少なくともゲートバルブ120が開放状態から閉塞するまでの間、継続的にパージを行うことで上記の問題が回避可能となる。 The time lag between the gate valve 120 and the N2 supply stoppage is very small, but there is a concern of air contamination at that time. As shown in FIG. 3, the problem is that the gate valve 120 on the atmospheric transfer unit 106 side is closed in the valve body, and the wall of the upper side wall above the wafer 150 or the ceiling of the passage on the atmospheric transfer unit 106 side. The N2 gas inlet is disposed in the air unit, and N2 gas is supplied along the N2 purge direction 402 inside the atmospheric unit. In such a configuration, the N2 purge can be continuously performed regardless of the timing of shielding the gate valve 120, and the above-described purge is performed at least until the gate valve 120 is closed from the open state. The problem can be avoided.
 上記説明した実施の例によれば、ロック室105内部に大気搬送ユニット106内部の大気等の水分を含んだガスが流入してロック室105内部を排気して大気圧から真空圧へ減圧する際に内部に異物を発生させることなく、且つ内部を高速で排気することが可能となり、生産性が高い真空処理装置を提供できる。 According to the embodiment described above, when a gas containing moisture such as the atmosphere in the atmospheric transfer unit 106 flows into the lock chamber 105 and exhausts the lock chamber 105 to reduce the pressure from the atmospheric pressure to the vacuum pressure. In addition, it is possible to exhaust the inside at a high speed without generating foreign matter inside, and it is possible to provide a vacuum processing apparatus with high productivity.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
101…大気側ブロック、
102…真空側ブロック、
103…真空処理室、
104…第一の真空搬送室、
105…ロック室、
106…大気搬送ユニット、
107…カセット台、
108…真空搬送ロボット、
109…大気搬送ロボット、
110…第二の真空搬送室、
111…真空搬送中間室、
120…ゲートバルブ、
121…ドライポンプ、
122…バルブ、
123…排気配管、
124…圧力計、  
125…パージライン、
150…ウエハ、
301…ファン、
302…対大気流入ライン、
401…N2パージ方向、
402…N2パージ方向。
101 ... Atmosphere side block,
102 ... Vacuum side block,
103 ... vacuum processing chamber,
104 ... first vacuum transfer chamber,
105 ... Lock room,
106 ... atmospheric transfer unit,
107 ... cassette stand,
108 ... Vacuum transfer robot,
109 ... atmospheric transfer robot,
110 ... second vacuum transfer chamber,
111 ... Vacuum transfer intermediate chamber,
120 ... Gate valve,
121 ... Dry pump,
122 ... Valve,
123 ... Exhaust piping,
124 ... Pressure gauge,
125 ... Purge line,
150 ... wafer,
301 ... Fan,
302 ... Air inflow line,
401 ... N2 purge direction,
402 ... N2 purge direction.

Claims (4)

  1.  その前面にウエハを収納したカセットが配置される台を有した大気搬送ユニットと、この大気搬送ユニットの後方に配置され所定の真空圧にされた内部を前記ウエハが搬送される真空搬送室と、この真空搬送室と連結されてその減圧された内部に配置された前記ウエハが処理される処理室を有した真空処理室と、前記真空搬送室と前記大気搬送ユニットとの間に配置されてこれらと連結され内部の圧力を大気圧と前記真空圧との間で可変に調節可能なロック室と、前記ロック室と前記大気搬送ユニットとの間及び真空搬送室との間に配置されて閉塞して前記ロック室内を気密に封止するゲートバルブとを備えた真空処理装置であって、前記ロック室に前記ウエハを搬入する際に前記ロック室内圧力を前記大気搬送ユニット内の圧力より高くした状態でゲートバルブを開放し、このゲートバルブを開放した後に不活性ガスを前記ロック室内部の後部から前記大気搬送ユニット内部へ向けて導入する機能を備えたことを特徴とする真空処理装置。 An atmospheric transfer unit having a table on which a cassette containing wafers is placed on the front surface, a vacuum transfer chamber in which the wafer is transferred inside the vacuum transfer unit disposed at the rear of the atmospheric transfer unit, and a predetermined vacuum pressure; A vacuum processing chamber having a processing chamber for processing the wafer, which is connected to the vacuum transfer chamber and disposed in the reduced pressure, and is disposed between the vacuum transfer chamber and the atmospheric transfer unit. And a lock chamber that is connected to the inside and can be variably adjusted between atmospheric pressure and the vacuum pressure, and is disposed between the lock chamber and the atmospheric transfer unit and between the vacuum transfer chamber and closed. A gate valve for hermetically sealing the lock chamber, wherein the lock chamber pressure is higher than the pressure in the atmospheric transfer unit when the wafer is loaded into the lock chamber. Opening the gate valve in state, the vacuum processing apparatus characterized by having a function of introducing toward the inside of the atmospheric transfer unit with an inert gas after opening the gate valve from the rear of the lock chamber.
  2.  請求項1に記載の真空処理装置であって、前記ロック室内圧力を前記真空圧から大気圧へ上昇させるためにガスを供給する大流量供給ラインと、前記ゲートバルブを開放した後に前記不活性ガスを供給する小流量ラインとを備えたことを特徴とする真空処理装置。 2. The vacuum processing apparatus according to claim 1, wherein a large flow rate supply line that supplies gas to raise the lock chamber pressure from the vacuum pressure to atmospheric pressure, and the inert gas after the gate valve is opened. 3. And a small flow line for supplying a vacuum.
  3.  請求項1または2に記載の真空処理装置であって、前記ロック室内の圧力を大気圧またはこれよりわずかに高い値まで上昇させるまで前記大流量ラインを用い、前記ゲートバルブを開放した後に前記小流量ラインから前記ロック室内へ前記不活性ガスの導入を実施するものであることを特徴とする真空処理装置。 3. The vacuum processing apparatus according to claim 1, wherein the large flow rate line is used until the pressure in the lock chamber is increased to an atmospheric pressure or a value slightly higher than the atmospheric pressure, and the small valve is opened after the gate valve is opened. A vacuum processing apparatus for introducing the inert gas from a flow line into the lock chamber.
  4.  請求項1乃至3の何れかに記載の真空処理装置であって、前記ゲートバルブを開放した後に前記ロック室内部の後上部に配置された開口から前記大気搬送ユニット内部に向けて前記不活性ガスを導入するものであることを特徴とする真空処理装置。 4. The vacuum processing apparatus according to claim 1, wherein the inert gas is directed toward an inside of the atmospheric transfer unit from an opening disposed at a rear upper portion of the lock chamber after the gate valve is opened. A vacuum processing apparatus that is characterized by introducing the above.
PCT/JP2012/073450 2012-09-13 2012-09-13 Vacuum processing device WO2014041656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073450 WO2014041656A1 (en) 2012-09-13 2012-09-13 Vacuum processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/073450 WO2014041656A1 (en) 2012-09-13 2012-09-13 Vacuum processing device

Publications (1)

Publication Number Publication Date
WO2014041656A1 true WO2014041656A1 (en) 2014-03-20

Family

ID=50277809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073450 WO2014041656A1 (en) 2012-09-13 2012-09-13 Vacuum processing device

Country Status (1)

Country Link
WO (1) WO2014041656A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291384A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Device for adjusting pressure and method for communicating chamber using the device
JP2004228562A (en) * 2002-12-18 2004-08-12 Boc Group Inc:The Load lock purge method and its equipment
JP2005243775A (en) * 2004-02-25 2005-09-08 Dainippon Screen Mfg Co Ltd Substrate processing device and atmosphere substituting method
JP2009534867A (en) * 2006-04-24 2009-09-24 アクセリス テクノロジーズ, インコーポレイテッド Load lock control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08291384A (en) * 1995-04-20 1996-11-05 Tokyo Electron Ltd Device for adjusting pressure and method for communicating chamber using the device
JP2004228562A (en) * 2002-12-18 2004-08-12 Boc Group Inc:The Load lock purge method and its equipment
JP2005243775A (en) * 2004-02-25 2005-09-08 Dainippon Screen Mfg Co Ltd Substrate processing device and atmosphere substituting method
JP2009534867A (en) * 2006-04-24 2009-09-24 アクセリス テクノロジーズ, インコーポレイテッド Load lock control

Similar Documents

Publication Publication Date Title
KR101220790B1 (en) Vaccum processing apparatus, method of operating the same, and storage medium
TWI544168B (en) A gate valve device, a substrate processing device, and a substrate processing method
KR100799415B1 (en) Purge system for a product container and table for use in the purge system
JP4251580B1 (en) Containment transport system
KR20210080633A (en) Substrate processing systems, apparatus, and methods with substrate carrier and purge chamber environmental controls
KR101238768B1 (en) Vacuum processing apparatus
US20190096702A1 (en) Substrate processing apparatus, substrate processing method, and computer storage medium
KR101155534B1 (en) Vacuum processing apparatus
JP6120621B2 (en) Vacuum processing apparatus and operation method thereof
JP2007035874A (en) Vacuum processing system
JP2013136839A (en) Vacuum processing system
KR20130105317A (en) Valve purge assembly for semiconductor manufacturing tools
US8794896B2 (en) Vacuum processing apparatus and zonal airflow generating unit
JP2015076458A (en) Vacuum processing apparatus
TW201347067A (en) Load lock device
JP5710194B2 (en) Vacuum processing equipment
WO2014041656A1 (en) Vacuum processing device
JP5892828B2 (en) Vacuum processing equipment
WO2012008439A1 (en) Substrate processing method and substrate processing system
JP2012114456A (en) Transfer vessel
JP6718755B2 (en) Vacuum processing apparatus and operating method thereof
JP5465979B2 (en) Semiconductor manufacturing equipment
TW201941344A (en) Vacuum processing apparatus and operating method of vacuum processing apparatus
KR20230157815A (en) substrate processing apparatus
TW202418448A (en) Substrate processing systems, apparatus, and methods with factory interface environmental controls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP