WO2014041232A1 - Collector and system for generating wave power - Google Patents

Collector and system for generating wave power Download PDF

Info

Publication number
WO2014041232A1
WO2014041232A1 PCT/ES2013/070644 ES2013070644W WO2014041232A1 WO 2014041232 A1 WO2014041232 A1 WO 2014041232A1 ES 2013070644 W ES2013070644 W ES 2013070644W WO 2014041232 A1 WO2014041232 A1 WO 2014041232A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
turbine
blades
chamber
collector
Prior art date
Application number
PCT/ES2013/070644
Other languages
Spanish (es)
French (fr)
Inventor
Manuel GRASES GALOFRÉ
José Manuel GRASES MENDOZA
Original Assignee
Sendekia, Arquitectura E Ingeniería Sostenible S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sendekia, Arquitectura E Ingeniería Sostenible S.L. filed Critical Sendekia, Arquitectura E Ingeniería Sostenible S.L.
Publication of WO2014041232A1 publication Critical patent/WO2014041232A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/20Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention refers to a capture device and a system for generating energy from the movement of waves.
  • the field of application of the present invention is part of the technical sector of wave energy capture, that is, the transformation of the kinetic energy of the waves, usually the waves of the sea, although it could also be applied in lakes or rivers of great wingspan
  • REPLACEMENT SHEET (Rule 26) descending moves the Venturi tube that houses the turbine in the same way. In this way, both in the ascent and in the descent of the floating body (crest and valley of the wave) and thanks to the mobile blades, the turbine always turns in one direction.
  • the turbine is connected to a generator arranged in the turbine itself or on the buoy.
  • WO 2010/1 10799 also describes a Venturi effect sensor that exploits the differential movement between deep water and the sea surface.
  • Document US2010 / 0158705 also describes a Venturi-type sensor system but arranged horizontally on the seabed. That is, it takes advantage of the movement of currents induced by waves that are not the object of the invention.
  • Venturi type sensor is described in GB 1587433 which refers to a tube with a restricted passage near the position of the turbine to increase the speed of the through flow.
  • the tube must have a length considerably greater than the diameter (5: 1 to 20: 1) of the tube to act effectively, which makes its construction more expensive and makes it difficult to anchor and install.
  • WO 2009/064190 describes an oscillating water column that houses a turbine driven by the movement of water inside the column.
  • the sensor of US 4,996,840 is a complex device that does not function as an oscillating guide column, since as described in the patent it works with a relative movement between two components, cylinders, that generate the flow in the turbine.
  • Other oscillating water columns (such as those described in US5005357 and WO2012167840) actually take advantage of the air currents caused inside a chamber by the movement of the waves to drive an air turbine, with a geometry very different from that presented in this invention.
  • REPLACEMENT SHEET (Rule 26) sensor for the use of wave energy composed of a resonant chamber or tank whose internal water level oscillates due to the action of the waves outside.
  • the resonance occurs because it has a lower opening of smaller section than the camera body. Additionally, because the fluid passes through a smaller section, there is an increase in the speed of the incoming flow that somewhat amplifies the effect of the wave.
  • the sensor described in the present invention differs from the oscillating water columns indicated in the state of the art since it achieves a response to waves similar to a conventional device of constant section, but with a shorter length (depth), due to that the lower opening of the resonant chamber increases the inertia of the system.
  • the lower opening which is of smaller section than the diameter of the collector body, generates an acceleration of the circulating flow that facilitates the incorporation of a hydraulic turbine.
  • the use of the submerged flotation chamber as a restriction element of the section of the resonant chamber and the fact of having a shorter length make it a compact, lightweight and more economical system.
  • the resonance frequency of the oscillating water column type collectors is essential to obtain an energy conversion efficiency, the effect achieved in this invention is shown below:
  • ⁇ 0 f * Area (lower) / Area (upper)
  • K is the rigidity of the system (force / displacement)
  • M is the mass (volume * density)
  • Length the measurement of the chamber in the direction perpendicular to the section, the Area (upper) area of the upper section of the sensor and the Area (lower), the area of the lower opening.
  • the Length or depth of the device is a very important parameter to increase the capacity to capture energy, since the energy of the wave decreases exponentially with the depth, the invention manages to obtain more energy since the length of the resonance chamber is shorter.
  • Venturi devices must be fully submerged, at greater depth and move due to a floating body that is on the surface of the wave, in no case the Venturi tube is integrated in the buoy as stated in the present invention.
  • the existing oscillating water column systems lack the advantages over the optimization in the generation granted by the incorporation of a hydraulic turbine in an obstruction of the resonance chamber, similar to those provided by the Venturi, although in this case, reducing the length and mechanical simplicity make the invention practical and cheaper solutions compared to other devices.
  • the present invention combines the advantage of an oscillating column accessible from the surface with the advantage of placing the turbine in a narrowing (lower opening) to take advantage of the acceleration of the proper flow of the Venturi effect.
  • the sensor is combined with a turbine, particularly a bidirectional axial hydraulic turbine with tilting blades, for example, as described in WO2013021089 and which is incorporated by reference.
  • the operation of the invention is based on the said chamber capturing the energy of the waves through an opening in its lower part that communicates the volume of water inside with the outside, generating a column of oscillating water inside it , due to the pressure variation caused by the waves in said lower chamber opening.
  • Said lower opening is of a smaller section than that of the chamber itself, that is, there is a
  • REPLACEMENT SHEET (Rule 26) narrowing with calculated dimensions to achieve resonance with the waves.
  • the collector chamber cannot be completely submerged.
  • the pressure in the chamber opening brings water to a certain level, so that when the wave level is lower (valley ) the water leaves the chamber due to the difference in level. That is, unlike the Venturi tubes seen in the state of the art, if the chamber were full of water or completely submerged there would be no appreciable movement in the turbine.
  • the sensor of the invention is located on the water-air surface and is smaller than the current ones since the length is reduced in proportion to the ratio (lower area / upper area), which It makes it a more robust sensor with improved characteristics in terms of the use of waves, even when it is very weak.
  • a minimum internal oscillation implies a minimum movement of the turbine, since it has to compress the air, energy transformation that we avoid with the incorporation of the hydraulic turbine.
  • a basic point of the sensor object of the invention is the relationship between buoyancy and the internal chamber. For this, the collector has a float located in its lower part and perimeter to the opening for the passage of water. The calculation of the float must be established depending on its installation in two ways: i) Tense straps: It must be ensured that the flotation, regardless of the waves, does not allow any straps to be weaned,
  • ballast Floating volume compensated with ballast, so that the average water level, that is, the average level of the surface without waves is equal to the internal level of the water in the chamber, which approximately corresponds to half of it , although it could vary depending on the specific conditions of the installation, always with the condition that the chamber cannot be completely filled with water, as indicated.
  • the hydraulic turbine is installed in the lower opening of the collector itself, so that it is submerged independently of the levels of the wave and the resonant chamber.
  • REPLACEMENT SHEET (Rule 26) Resonant accelerates the flow and in this way a more compact turbine is achieved and with a higher rotation regime.
  • the rotational energy of the turbine shaft drives an electrical generation system located on the collector itself or integrated in the turbine itself.
  • An important characteristic of operation is that the collector achieves greater use of energy while achieving a greater difference in the level of the external water relative to the level of flotation of the device. Therefore, the preferred implementation is very stable, especially avoiding the vertical movement of the same.
  • the versatility of the collector allows, in different embodiments of the generation system, to perform different types of installations, such as installations fixed to breakwaters, or coastal structures where the collector is subject to another fixed structure, or fixed near the coast, supported by structures auxiliary to the seabed; or far from the coast, floating as a buoy and attached by braces to the sea floor.
  • installations fixed to breakwaters, or coastal structures where the collector is subject to another fixed structure, or fixed near the coast, supported by structures auxiliary to the seabed; or far from the coast, floating as a buoy and attached by braces to the sea floor.
  • the float may be partially or completely filled with water or other ballast elements, so that the assembly is further strengthened, while in buoy-type installations, the float must ensure its stability.
  • the air chamber or buoy exerts at all times a buoyant force that strains some straps, regardless of the waves that act on it, avoiding its vertical movement.
  • the flotation chamber floats the collector and allows its own counterweights to be transported while the collector is moved to its installation site and, when it is to be anchored, supports the counterweights on the seabed and partially fills the float with water until it remains partially sunk
  • the recommended collector in another practical embodiment, may contain several resonant chambers and turbines, forming a set that generates more energy.
  • the recommended collector in another practical embodiment, may contain several resonant chambers and turbines, forming a set that generates more energy.
  • the bidirectional axial hydraulic turbine of tilting blades can be replaced by other means to transform the generated mechanical energy, for example, by an air turbine that works with the volume displaced by the water in the inside the resonant chamber or, for example, another
  • REPLACEMENT SHEET (Rule 26) mechanism as a linear motor installed inside the resonant chamber.
  • FIG 1 - Shows a schematic sectional view, according to a vertical section, of an exemplary embodiment of the sensor and wave generation system object of the invention.
  • FIG 2 - Shows a schematic plan view of the object of the invention in an embodiment with the cylindrical sensor.
  • FIG 3 - Shows a schematic plan view of the object of the invention in an embodiment with the sensor in quadrangle configuration
  • FIG 4 - Shows a sectional view of the sensor and the wave generation system shown in Figure 1, showing the difference in wave height, outer level greater than the level inside the sensor, with the direction of arrows being represented by arrows water flow that drives a bidirectional axial hydraulic turbine and its direction of rotation.
  • FIG 5 - Shows the view of figure 4, with the level of water outside the collector lower than the level inside it, the flow direction of the water that drives a bidirectional axial hydraulic turbine and the direction of flow having been represented by arrows turn of it.
  • FIG 6 - Shows a first perspective view of the sensor and system object of the invention.
  • FIG 7 - Shows a second perspective view of the collector and system object of the
  • FIG 8 - Shows an embodiment of the wave generation system, where the electric generator is then submerged and incorporated into the turbine shaft, protected by the turbine bulb.
  • FIG 9 - Shows an embodiment of the wave generation system, where the electric generator is a structural part of the turbine.
  • FIG 10 - Shows a use of the system of the invention as a coastal protection, in an example thereof fixedly installed to a breakwater.
  • FIG 11 - Shows a use of the system of the invention, in this case supported by a structure supported on the seabed, in an example thereof installed near the coast, at a shallow depth.
  • FIG 12 - Shows another form of use of the invention in the form of a floating buoy, in an example thereof installed at high depths, with tense anchors.
  • FIG 13 - Shows another form of use of the invention in the form of a floating buoy, in an example thereof installed at high depths, with flexible anchors, catenary type.
  • FIG 14 - Shows another form of use of the invention as a floating barrier.
  • the sensor device (1) in question comprises at least one resonant chamber (2), constituted by a steel or concrete structure forming the walls of a tank, opened in its upper part and partially closed in its lower part, and housing an energy extraction system such as a hydraulic turbine (3), particularly a bidirectional axial hydraulic turbine with self-orientating tilting vanes (6), rotating at all times in the same direction, although it could also incorporate another type of mechanism equally capable of harnessing the energy of the fluid when it enters and leaves the resonant chamber (2) through its lower opening (7).
  • the bidirectional axial hydraulic turbine (3) incorporates guide blades (4) on both sides of the impeller, which direct the inlet flow to the blades (6) thereof to optimize the efficiency of the machine.
  • This turbine (3) comprises an impeller, that is, a rotary body along its axial axis (5), to whose central perimeter zone a plurality of blades (6) are coupled, said axial axis (5) being,
  • REPLACEMENT SHEET (Rule 26) in this particular embodiment connected to an electric generator (8) through a multiplier box (9) that increases the rotational speed and with the implementation of a flywheel (10) that dampens the torque variations of the turbine that subsequently moves the electric generator (8).
  • the axial axis (5) in another embodiment, can be connected directly to the generator (8), without a multiplier box (9) or flywheel (10).
  • the turbine (3) is characterized, on the other hand, because the impeller is configured as a symmetrical body with respect to its axial axis (5) that allows its work in both directions of operation and because the blades (6) are coupled to said impeller by means of a radial pivot axis with tilting movement that allows its position angle to be varied so that the leading edge of said blades (6) changes orientation according to the direction of flow.
  • the symmetrical design of the cross section of each blade (6) allows to significantly optimize the use of flow in the turbine (3).
  • alternative embodiments thereof are indicated in Figures 8 and 9. More specifically, a second embodiment of the turbine (3 ') is shown in Figure 8 where the blades (6') are connected directly to a generator (8 ') integrated in the impeller, so that no type is necessary of axis to connect the generator and the turbine.
  • guide blades (4) are incorporated on both sides of the impeller that direct the inlet flow to the blades (6, 6 ', 6 ") thereof, to optimize the efficiency of the machine.
  • the resonant chamber (2) which comprises at least one resonant chamber (2) constituted by a steel or concrete structure forming the walls of a tank, open at the top and partially closed at the bottom (7) and which houses a turbine (3, 3 ', 3 ") as described, it can also house other mechanisms equally capable of harnessing the energy of the fluid entering and leaving the resonant chamber (2).
  • REPLACEMENT SHEET (Rule 26) To facilitate the maintenance of the system, there is a walkable platform (12) that allows access to the generator (8, 8 ', 8 ”) and has the possibility of opening easily in its central part to extract the hydraulic turbine (3, 3 ', 3").
  • the resonant chamber (2) depending on the installation needs and manufacturing possibilities, can be cylindrical as seen in Figure 2, square plan as seen in Figure 3, or in other ways that facilitate its manufacture and the adaptation of the solution to the location planned for its implementation.
  • Figures 4 and 5 show how the sensor (1) works.
  • Figure 4 it is shown that, at the moment that the outer level (NE) of the water is higher than the inside, that is, that the wave is above the average level of the water, the pressure in the opening ( 7) from the resonant chamber (2) brings the water inwards.
  • Figure 5 when the outer level (NE) of the wave is lower, the water leaves the resonant chamber (2) because a greater internal pressure is generated. This movement of the fluid entering and leaving the resonant chamber (2) through the opening (7) drives the turbine (3, 3 ', 3 ") or other energy converter.
  • the bottom of the resonant chamber (2) has a smaller section than this, that is, that the bottom of the resonant chamber (2) is only partially closed and with a geometry (dimensions) such that it generates resonance with the waves from the outside, maximizing the variation of the volume inside the sensor (1) to a maximum volume lower than the total volume of the resonant chamber (2)
  • the water level inside the chamber (2) is signaled by reference (NI) in reference to the interior level.
  • FIG. 6 A perspective view of the sensor (1) with the turbine (3) in an embodiment with the generator (8) located on the platform (12) is shown in figures 6 and 7.
  • the turbine (3) is located concentrically with respect to the opening (7) of the lower part of the resonant chamber (2), so that in this way the hydraulic energy captured by the device is better used.
  • (61) in the form of fins arranged perimetrically, which stabilize the rotational movement
  • the lower part of the sensor (1) comprises a perimeter float or flotation chamber (17), which fulfills the fundamental mission of maintaining the buoyancy and stability of the sensor (1).
  • the sensor (1) can be installed in a breakwater (13), providing the additional value of dissipating the energy that hits the coast. Its preferred embodiment in this case is with a rectangular plant like the one shown in Figure 3.
  • the flotation chamber (17) can be completely flooded, to behave as an additional structural reinforcement or be filled with other reinforcement material , as concrete, or similar. It can also be installed in other fixed or floating structures of the coast, where the collector (1) will be supported to this other structure.
  • the collector (1) can be fixed to the sea floor with the use of an auxiliary structure (14), as in figure 1 1, or it can be implanted in deep areas of floating form as a buoy, figures 12 and 13, or form a barrier, as shown in figure 14.
  • the senor (1) can be anchored with counterweights (15) and tensioned braces (16), with the air chamber (17) that exerts a buoyant force that tenses the mentioned braces (16) at all times .
  • a catenary (18) is used to anchor the sensor (1) through an auxiliary structure that supports a sheet in its lower part that stabilizes the assembly vertically 19.
  • the sensor (1) preferably operates in the most static way possible (in the vertical movement) and this is achieved by moving it to fixed structures or by means of the flotation chamber. In the latter case, the flotation exerted at all times keeps the anchors with tight straps or in the case of catenary the balance between the weight of the chain, ballast and buoyancy, regardless of whether the wave is at its upper or lower level, being restricted its vertical movement, however, lateral movement is not totally avoided. Horizontal movement is partially allowed to prevent breakage of the device in case of strong waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

The invention relates to a system for generating wave power, comprising at least one collector (1) including: a lower opening (7) providing access to a resonant chamber (2); and a turbine (3, 3', 3") with pivoting blades (6, 6', 6"), said turbine being disposed concentrically in the opening (7) of the collector (1) and connected to a generator (8, 8', 8").

Description

CAPTADOR Y SISTEMA DE GENERACIÓN DE ENERGÍA UNDIMOTRIZ Objeto de la invención La invención, tal y como expresa el enunciado de la presente memoria descriptiva, se refiere a un dispositivo de captación y un sistema de generación de energía a partir del movimiento de las olas. El campo de aplicación de la presente invención se enmarca dentro del sector técnico de la captación de energía undimotriz, es decir, de la transformación de la energía cinética de las olas, normalmente las olas del mar, aunque pudiera igualmente aplicarse en lagos o ríos de gran envergadura.  UNDIMOTRIC ENERGY GENERATOR SYSTEM AND SYSTEM Object of the invention The invention, as expressed in the present specification, refers to a capture device and a system for generating energy from the movement of waves. The field of application of the present invention is part of the technical sector of wave energy capture, that is, the transformation of the kinetic energy of the waves, usually the waves of the sea, although it could also be applied in lakes or rivers of great wingspan
Estado de la técnica State of the art
El propio solicitante es titular del documento WO2013021089 relativo a una turbina hidráulica de álabes basculantes para el aprovechamiento bidireccional de flujos que comprende un rodete rotatorio por su eje axial, que permite su trabajo en ambos sentidos de funcionamiento, incorporado en un alojamiento cilindrico y al que se acoplan múltiples álabes por medio de un eje de giro radial con movimiento basculante que permite variar su ángulo según la dirección del flujo, bien por la propia fuerza del fluido o con algún mecanismo que regula activamente su paso, tal como servomotores accionados por un ordenador. Opcionalmente incorpora palas directrices en la entrada y salida, fijas o vinculadas a un eje de rotación que permiten un movimiento de basculación variando así su ángulo de paso, y un difusor, cónico o toroidal, para minimizar las pérdidas de carga. No obstante, en dicho documento no se describe ningún tipo de captador, sino un difusor para minimizar las pérdidas de carga hidráulicas a la entrada y salida de la turbina. Los captadores son necesarios para convertir la energía cinética potencial de las olas en energía hidráulica aprovechable por la turbina. La ausencia de un captador eficiente imposibilita el aprovechamiento óptimo de la estructura descrita. The applicant himself is the holder of document WO2013021089 relating to a hydraulic turbine with tilting blades for the bidirectional use of flows comprising a rotary impeller along its axial axis, which allows its work in both directions of operation, incorporated in a cylindrical housing and to which multiple blades are coupled by means of a radial rotation axis with tilting movement that allows to vary its angle according to the direction of the flow, either by the fluid's own force or with some mechanism that actively regulates its passage, such as computer-driven servomotors . Optionally incorporates guide blades at the entrance and exit, fixed or linked to a rotation axis that allow a tilting movement thus varying its angle of passage, and a diffuser, conical or toroidal, to minimize load losses. However, this document does not describe any type of sensor, but a diffuser to minimize hydraulic load losses at the entrance and exit of the turbine. The sensors are necessary to convert the potential kinetic energy of the waves into hydraulic energy usable by the turbine. The absence of an efficient collector prevents the optimal use of the described structure.
Por otro lado existen otros documentos que describen otro tipo de captadores, como es el caso del documento US 4.447.740 el cual se refiere a una estructura de turbina semejante a la descrita anteriormente, es decir con álabes móviles, pero en este caso sí que dispone de un captador formado esencialmente por un tubo de Venturi. La flotabilidad de la estructura es otorgada por una boya situada a nivel del agua, que en su movimiento ascendente y On the other hand there are other documents that describe another type of collectors, as is the case of US 4,447,740 which refers to a turbine structure similar to that described above, that is to say with movable blades, but in this case it does It has a sensor consisting essentially of a Venturi tube. The buoyancy of the structure is granted by a buoy located at the water level, which in its upward movement and
1  one
HOJA DE REEMPLAZO (Regla 26) descendente mueve de igual forma el tubo de Venturi que aloja la turbina. De esta forma, tanto en la subida como en la bajada del cuerpo flotante (cresta y valle de la ola) y gracias a los álabes móviles, la turbina siempre gira en un sentido. La turbina está conectada con un generador dispuesto en la propia turbina o sobre la boya. El documento WO 2010/1 10799 describe igualmente un captador por efecto Venturi que explota el movimiento diferencial entre las aguas profundas y la superficie del mar. También el documento US2010/0158705 describe un sistema captador tipo Venturi pero dispuesto horizontalmente en el lecho del fondo marino. Es decir, que aprovecha el movimiento de corrientes inducidas por el oleaje que no es el objeto de la invención. Finalmente, otro captador tipo Venturi se describe en el documento GB 1587433 que se refiere a un tubo con un paso restringido cerca de la posición de la turbina para incrementar la velocidad del flujo pasante. No obstante, según se indica en este documento el tubo ha de tener una longitud considerablemente superior al diámetro (5:1 a 20: 1) del tubo para que actúe con eficacia, lo que encarece su construcción y dificulta su anclaje e instalación. REPLACEMENT SHEET (Rule 26) descending moves the Venturi tube that houses the turbine in the same way. In this way, both in the ascent and in the descent of the floating body (crest and valley of the wave) and thanks to the mobile blades, the turbine always turns in one direction. The turbine is connected to a generator arranged in the turbine itself or on the buoy. WO 2010/1 10799 also describes a Venturi effect sensor that exploits the differential movement between deep water and the sea surface. Document US2010 / 0158705 also describes a Venturi-type sensor system but arranged horizontally on the seabed. That is, it takes advantage of the movement of currents induced by waves that are not the object of the invention. Finally, another Venturi type sensor is described in GB 1587433 which refers to a tube with a restricted passage near the position of the turbine to increase the speed of the through flow. However, as indicated in this document, the tube must have a length considerably greater than the diameter (5: 1 to 20: 1) of the tube to act effectively, which makes its construction more expensive and makes it difficult to anchor and install.
Otro tipo de captador distinto a los tubos de Venturi es la columna de agua oscilante. El documento WO 2009/064190 describe una columna de agua oscilante que aloja una turbina accionada por el movimiento del agua en el interior de la columna. Por otro lado, el captador del documento US 4.996.840 es un dispositivo complejo que no funciona como columna de gua oscilante, ya que como se describe en la patente funciona con un movimiento relativo entre dos componentes, cilindros, que generan el flujo en la turbina. Otras columnas de agua oscilante (como las descritas en US5005357 y WO2012167840) en realidad aprovechan las corrientes de aire provocadas en el interior de una cámara por el movimiento de las olas para accionar una turbina de aire, con una geometría muy diferente a la presentada en esta invención. Another type of collector other than Venturi tubes is the oscillating water column. WO 2009/064190 describes an oscillating water column that houses a turbine driven by the movement of water inside the column. On the other hand, the sensor of US 4,996,840 is a complex device that does not function as an oscillating guide column, since as described in the patent it works with a relative movement between two components, cylinders, that generate the flow in the turbine. Other oscillating water columns (such as those described in US5005357 and WO2012167840) actually take advantage of the air currents caused inside a chamber by the movement of the waves to drive an air turbine, with a geometry very different from that presented in this invention.
Descripción de la invención En la actualidad, y como referencia al estado de la técnica descrito, debe señalarse que, si bien existen tecnologías y desarrollos en el campo de las máquinas hidráulicas y, específicamente, en diferentes tipos de captadores de la energía cinética de las olas, ninguno de estos captadores presenta unas características técnicas y estructurales semejantes a las del captador y sistema de generación que se reivindican en la presente invención. Description of the invention At present, and as a reference to the state of the art described, it should be noted that, although there are technologies and developments in the field of hydraulic machines and, specifically, in different types of sensors of the kinetic energy of the waves, none of these sensors has technical and structural characteristics similar to those of the sensor and generation system that are claimed in the present invention.
De forma concreta lo que la invención propone, en un primer aspecto de la invención, es un Specifically, what the invention proposes, in a first aspect of the invention, is a
2  2
HOJA DE REEMPLAZO (Regla 26) captador para el aprovechamiento de la energía de las olas compuesto por una cámara resonante o tanque cuyo nivel interno de agua oscila por la acción de las olas en el exterior. La resonancia se produce debido a que dispone de una abertura inferior de sección menor que el cuerpo de la cámara. De forma adicional, debido a que el fluido pasa por una sección más pequeña, se produce un incremento en la velocidad del flujo entrante que en cierto modo amplifica el efecto de la ola. REPLACEMENT SHEET (Rule 26) sensor for the use of wave energy composed of a resonant chamber or tank whose internal water level oscillates due to the action of the waves outside. The resonance occurs because it has a lower opening of smaller section than the camera body. Additionally, because the fluid passes through a smaller section, there is an increase in the speed of the incoming flow that somewhat amplifies the effect of the wave.
El captador descrito en la presente invención se diferencia de las columnas de agua oscilante indicadas en el estado de la técnica ya que logra una respuesta ante las olas similar a un dispositivo convencional de sección constante, pero con una longitud (profundidad) menor, debido a que la abertura inferior de la cámara resonante aumenta la inercia del sistema. The sensor described in the present invention differs from the oscillating water columns indicated in the state of the art since it achieves a response to waves similar to a conventional device of constant section, but with a shorter length (depth), due to that the lower opening of the resonant chamber increases the inertia of the system.
De forma adicional la abertura inferior, que es de sección menor que el diámetro del cuerpo del captador, genera una aceleración del flujo circulante que facilita la incorporación de una turbina hidráulica. La utilización de la cámara de flotación sumergida como elemento de restricción de la sección de la cámara resonante y el hecho de tener una menor longitud, le hacen un sistema compacto, ligero y más económico. Additionally, the lower opening, which is of smaller section than the diameter of the collector body, generates an acceleration of the circulating flow that facilitates the incorporation of a hydraulic turbine. The use of the submerged flotation chamber as a restriction element of the section of the resonant chamber and the fact of having a shorter length make it a compact, lightweight and more economical system.
La frecuencia de resonancia de los captadores del tipo columna de agua oscilante es fundamental para obtener una eficiencia de conversión de energía, a continuación se muestra el efecto logrado en esta invención: The resonance frequency of the oscillating water column type collectors is essential to obtain an energy conversion efficiency, the effect achieved in this invention is shown below:
Frecuencia de resonancia en las columnas de agua oscilante de sección constante (sin abertura inferior parcialmente cerrada): Resonant frequency in oscillating water columns of constant section (without lower opening partially closed):
Figure imgf000005_0001
Figure imgf000005_0001
Frecuencia resonancia de la invención:
Figure imgf000005_0002
Resonance frequency of the invention:
Figure imgf000005_0002
3 3
HOJA DE REEMPLAZO (Regla 26) 1REPLACEMENT SHEET (Rule 26) one
ú0 = f * Área(inferior)/Área(superior) ú 0 = f * Area (lower) / Area (upper)
Longitud  Length
Donde K es la rigidez del sistema (fuerza/desplazamiento), M es la masa (volumen*densidad), Longitud la medida de la cámara en dirección perpendicular a la sección, el Área (superior) el área de la sección superior del captador y el Área (inferior), el área de la abertura inferior. La Longitud o profundidad del dispositivo es un parámetro muy importante para aumentar la capacidad de captar energía, ya que la energía de la ola disminuye exponencialmente con la profundidad, la invención logra obtener más energía ya que la longitud de la cámara de resonancia es menor. Where K is the rigidity of the system (force / displacement), M is the mass (volume * density), Length the measurement of the chamber in the direction perpendicular to the section, the Area (upper) area of the upper section of the sensor and the Area (lower), the area of the lower opening. The Length or depth of the device is a very important parameter to increase the capacity to capture energy, since the energy of the wave decreases exponentially with the depth, the invention manages to obtain more energy since the length of the resonance chamber is shorter.
La diferencia más evidente respecto a los dispositivos tipo Venturi, es que estos han de estar totalmente sumergidos, a mayor profundidad y se mueven debido a un cuerpo flotante que se encuentra en la superficie de la ola, en ningún caso el tubo de Venturi está integrado en la boya como se plantea en la presente invención. Por otro lado, los sistemas de columnas de agua oscilantes existentes carecen de las ventajas respecto de la optimización en la generación que otorga la incorporación de una turbina hidráulica en una obstrucción de la cámara de resonancia, de forma similar a las que disponen los tubos de Venturi, aunque en este caso, disminuir la longitud y sencillez mecánica convierten la invención en soluciones prácticas y más económicas frente a los otros dispositivos. Paralelamente a las propiedades de resonancia otorgadas por la correcta relación de Longitud, Área Superior y Área Inferior, la presente invención combina la ventaja de una columna oscilante accesible desde la superficie con la ventaja de situar la turbina en un estrechamiento (abertura inferior) para aprovechar la aceleración del flujo propia del efecto Venturi. En un segundo aspecto de la invención el captador se combina con una turbina, particularmente, una turbina hidráulica axial bidireccional de álabes basculantes, por ejemplo, como la descrita en el documento WO2013021089 y que se incorpora como referencia. The most obvious difference with respect to Venturi devices is that they must be fully submerged, at greater depth and move due to a floating body that is on the surface of the wave, in no case the Venturi tube is integrated in the buoy as stated in the present invention. On the other hand, the existing oscillating water column systems lack the advantages over the optimization in the generation granted by the incorporation of a hydraulic turbine in an obstruction of the resonance chamber, similar to those provided by the Venturi, although in this case, reducing the length and mechanical simplicity make the invention practical and cheaper solutions compared to other devices. Parallel to the resonance properties granted by the correct relation of Length, Upper Area and Lower Area, the present invention combines the advantage of an oscillating column accessible from the surface with the advantage of placing the turbine in a narrowing (lower opening) to take advantage of the acceleration of the proper flow of the Venturi effect. In a second aspect of the invention, the sensor is combined with a turbine, particularly a bidirectional axial hydraulic turbine with tilting blades, for example, as described in WO2013021089 and which is incorporated by reference.
El funcionamiento de la invención está basado en que la citada cámara capta la energía de las olas a través de una abertura en su parte inferior que comunica el volumen de agua interior con el exterior, generando una columna de agua oscilante en el interior de la misma, debido a la variación de presión originada por las olas en dicha abertura inferior de la cámara. Dicha abertura inferior es de una sección menor que la de la propia cámara, es decir, que hay un The operation of the invention is based on the said chamber capturing the energy of the waves through an opening in its lower part that communicates the volume of water inside with the outside, generating a column of oscillating water inside it , due to the pressure variation caused by the waves in said lower chamber opening. Said lower opening is of a smaller section than that of the chamber itself, that is, there is a
4  4
HOJA DE REEMPLAZO (Regla 26) estrechamiento con unas dimensiones calculadas para lograr la resonancia con las olas. REPLACEMENT SHEET (Rule 26) narrowing with calculated dimensions to achieve resonance with the waves.
Es importante hacer notar que, a diferencia de los dispositivos tipo Venturi o de las columnas de agua oscilantes, la cámara del captador no puede estar completamente sumergida. Así, cuando la ola se encuentra por encima del nivel interno de agua (cresta), la presión en la abertura de la cámara hace entrar agua hasta un determinado nivel, de tal forma que, cuando el nivel de la ola está más bajo (valle) el agua sale de la cámara por la diferencia de nivel. Es decir, que al contrario de los tubos de Venturi vistos en el estado de la técnica, si la cámara estuviese llena de agua o totalmente sumergida no habría movimiento apreciable en la turbina. It is important to note that, unlike Venturi devices or oscillating water columns, the collector chamber cannot be completely submerged. Thus, when the wave is above the internal water level (ridge), the pressure in the chamber opening brings water to a certain level, so that when the wave level is lower (valley ) the water leaves the chamber due to the difference in level. That is, unlike the Venturi tubes seen in the state of the art, if the chamber were full of water or completely submerged there would be no appreciable movement in the turbine.
Por tanto, gracias a su estructura, el captador de la invención está situado en la superficie agua-aire y es de menores dimensiones que los actuales ya que se reduce la longitud en proporción a la relación (Área inferior/Área superior), lo que lo convierte en un captador más robusto y con unas características mejoradas en lo que respecta al aprovechamiento del oleaje, incluso cuando este es muy débil. Del mismo modo, en las columnas de agua oscilantes que integran turbinas de aire, una oscilación mínima interior implica un movimiento mínimo de la turbina, ya que se tiene que comprimir el aire, transformación de energía que evitamos con la incorporación de la turbina hidráulica. Un punto básico del captador objeto de la invención es la relación entre la flotabilidad y la cámara interna. Para ello, el captador dispone de un flotador situado en su parte inferior y perimetralmente a la abertura para el paso del agua. El cálculo del flotador ha de establecerse dependiendo de su instalación de dos formas: i) Tirantes tensos: Hay que garantizar que la flotación, independientemente del oleaje, no permita que se destense ningún tirante, Therefore, thanks to its structure, the sensor of the invention is located on the water-air surface and is smaller than the current ones since the length is reduced in proportion to the ratio (lower area / upper area), which It makes it a more robust sensor with improved characteristics in terms of the use of waves, even when it is very weak. In the same way, in the oscillating water columns that integrate air turbines, a minimum internal oscillation implies a minimum movement of the turbine, since it has to compress the air, energy transformation that we avoid with the incorporation of the hydraulic turbine. A basic point of the sensor object of the invention is the relationship between buoyancy and the internal chamber. For this, the collector has a float located in its lower part and perimeter to the opening for the passage of water. The calculation of the float must be established depending on its installation in two ways: i) Tense straps: It must be ensured that the flotation, regardless of the waves, does not allow any straps to be weaned,
ii) Volumen de flotación compensado con lastre, de tal forma que el nivel medio del agua, es decir, el nivel medio de la superficie sin oleaje es igual al nivel interno del agua en la cámara, que aproximadamente corresponda con la mitad de la misma, aunque podría variar en función de las condiciones específicas de la instalación, siempre con la condición de que no puede estar la cámara completamente llena de agua, tal y como se ha indicado.  ii) Floating volume compensated with ballast, so that the average water level, that is, the average level of the surface without waves is equal to the internal level of the water in the chamber, which approximately corresponds to half of it , although it could vary depending on the specific conditions of the installation, always with the condition that the chamber cannot be completely filled with water, as indicated.
En referencia al sistema de generación propiamente dicho, la turbina hidráulica está instalada en la propia abertura inferior del captador, de forma tal que se encuentra sumergida independiente de los niveles de la ola y de la cámara resonante. La obstrucción de la cámara In reference to the generation system itself, the hydraulic turbine is installed in the lower opening of the collector itself, so that it is submerged independently of the levels of the wave and the resonant chamber. Camera obstruction
5  5
HOJA DE REEMPLAZO (Regla 26) resonante acelera el flujo y de esta forma se logra una turbina más compacta y con un mayor régimen de giro. La energía rotacional del eje de la turbina acciona un sistema de generación eléctrico situado sobre el propio captador o integrado en la propia turbina. Una característica importante de funcionamiento es que el captador logra mayor aprovechamiento de la energía mientras logre una mayor diferencia de nivel del agua exterior relativa al nivel de flotación del dispositivo. Por ello la implantación preferente es muy estable, sobre todo evitando al máximo el movimiento vertical del mismo. La versatilidad del captador permite, en distintas realizaciones del sistema de generación, realizar diferentes tipos de instalaciones, como instalaciones fijadas a rompeolas, o estructuras costeras donde el captador está sujeto a otra estructura fija, o bien fijadas cerca de la costa, soportadas por estructuras auxiliares al fondo marino; o bien alejadas de la costa, flotantes a modo de boya y sujetas por tirantes al suelo marino. En las instalaciones fijas, el flotador puede estar parcial o totalmente lleno de agua u otros elementos de lastre, de tal forma que se robustece aún más el conjunto, mientras que en instalaciones tipo boya, el flotador ha de garantizar la estabilidad del mismo. REPLACEMENT SHEET (Rule 26) Resonant accelerates the flow and in this way a more compact turbine is achieved and with a higher rotation regime. The rotational energy of the turbine shaft drives an electrical generation system located on the collector itself or integrated in the turbine itself. An important characteristic of operation is that the collector achieves greater use of energy while achieving a greater difference in the level of the external water relative to the level of flotation of the device. Therefore, the preferred implementation is very stable, especially avoiding the vertical movement of the same. The versatility of the collector allows, in different embodiments of the generation system, to perform different types of installations, such as installations fixed to breakwaters, or coastal structures where the collector is subject to another fixed structure, or fixed near the coast, supported by structures auxiliary to the seabed; or far from the coast, floating as a buoy and attached by braces to the sea floor. In fixed installations, the float may be partially or completely filled with water or other ballast elements, so that the assembly is further strengthened, while in buoy-type installations, the float must ensure its stability.
En el caso de instalaciones flotantes, la cámara de aire o boya ejerce en todo momento una fuerza de flotación que tensa unos tirantes, independientemente de las olas que actúan sobre él, evitando su movimiento vertical. Además, la cámara de flotación hace flotar el captador y permite transportar sus propios contrapesos mientras el captador es trasladado a su lugar de instalación y, cuando va a ser fondeado, apoya los contrapesos en el fondo marino y llena parcialmente el flotador con agua hasta quedar parcialmente hundido. In the case of floating installations, the air chamber or buoy exerts at all times a buoyant force that strains some straps, regardless of the waves that act on it, avoiding its vertical movement. In addition, the flotation chamber floats the collector and allows its own counterweights to be transported while the collector is moved to its installation site and, when it is to be anchored, supports the counterweights on the seabed and partially fills the float with water until it remains partially sunk
Por otra parte cabe señalar que el captador preconizado, en otra realización práctica, puede contener varias cámaras resonantes y turbinas, formando un conjunto que genere más energía. Del mismo modo, puede existir una pluralidad de sistemas de generación, formando una planta de generación completa que, en determinadas ocasiones puede ser empleada incluso como barreras de protección contra oleaje, vertidos, contaminantes, etc. On the other hand it should be noted that the recommended collector, in another practical embodiment, may contain several resonant chambers and turbines, forming a set that generates more energy. Similarly, there can be a plurality of generation systems, forming a complete generation plant that, on certain occasions, can be used even as protective barriers against waves, spills, pollutants, etc.
Finalmente, en otras realizaciones del sistema de generación, la turbina hidráulica axial bidireccional de álabes basculantes puede ser sustituida por otros medios para transformar la energía mecánica generada, por ejemplo, mediante una turbina de aire que trabaje con el volumen desplazado por el agua en el interior de la cámara resonante o, por ejemplo, otro Finally, in other embodiments of the generation system, the bidirectional axial hydraulic turbine of tilting blades can be replaced by other means to transform the generated mechanical energy, for example, by an air turbine that works with the volume displaced by the water in the inside the resonant chamber or, for example, another
6  6
HOJA DE REEMPLAZO (Regla 26) mecanismo como un motor lineal instalado en el interior de la cámara resonante. REPLACEMENT SHEET (Rule 26) mechanism as a linear motor installed inside the resonant chamber.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que restrinjan la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to restrict the present invention. In addition, the present invention covers all possible combinations of particular and preferred embodiments indicated herein.
Breve descripción de las figuras Brief description of the figures
A continuación se describe de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta. A series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention that is presented as a non-limiting example thereof is described very briefly below.
FIG 1 - Muestra una vista esquemática en sección, según un corte vertical, de un ejemplo de realización del captador y sistema de generación undimotriz objeto de la invención. FIG 1 - Shows a schematic sectional view, according to a vertical section, of an exemplary embodiment of the sensor and wave generation system object of the invention.
FIG 2 - Muestra una vista esquemática en planta del objeto de la invención en una realización con el captador cilindrico.  FIG 2 - Shows a schematic plan view of the object of the invention in an embodiment with the cylindrical sensor.
FIG 3 - Muestra una vista esquemática en planta del objeto de la invención en una realización con el captador en configuración cuadrángulas  FIG 3 - Shows a schematic plan view of the object of the invention in an embodiment with the sensor in quadrangle configuration
FIG 4 - Muestra una vista en sección del captador y del sistema de generación undimotriz mostrado en la figura 1 , apreciándose la diferencia de altura de la ola, nivel exterior mayor que el nivel en el interior del captador, habiéndose representado mediante flechas el sentido de flujo del agua que acciona una turbina hidráulica axial bidireccional y el sentido de giro de la misma.  FIG 4 - Shows a sectional view of the sensor and the wave generation system shown in Figure 1, showing the difference in wave height, outer level greater than the level inside the sensor, with the direction of arrows being represented by arrows water flow that drives a bidirectional axial hydraulic turbine and its direction of rotation.
FIG 5 - Muestra la vista de la figura 4, con el nivel del agua exterior al captador menor que el nivel en el interior del mismo, habiéndose representado mediante flechas el sentido de flujo del agua que acciona una turbina hidráulica axial bidireccional y el sentido de giro de la misma.  FIG 5 - Shows the view of figure 4, with the level of water outside the collector lower than the level inside it, the flow direction of the water that drives a bidirectional axial hydraulic turbine and the direction of flow having been represented by arrows turn of it.
FIG 6 - Muestra una primera vista en perspectiva del captador y sistema objeto de la invención.  FIG 6 - Shows a first perspective view of the sensor and system object of the invention.
FIG 7 - Muestra una segunda vista en perspectiva del captador y sistema objeto de la  FIG 7 - Shows a second perspective view of the collector and system object of the
7  7
HOJA DE REEMPLAZO (Regla 26) invención. REPLACEMENT SHEET (Rule 26) invention.
FIG 8 - Muestra una realización del sistema de generación undimotriz, donde el generador eléctrico está sumergido e incorporado a continuación en el eje de la turbina, protegido por el bulbo de la turbina.  FIG 8 - Shows an embodiment of the wave generation system, where the electric generator is then submerged and incorporated into the turbine shaft, protected by the turbine bulb.
FIG 9 - Muestra una realización del sistema de generación undimotriz, donde el generador eléctrico es parte estructural de la turbina.  FIG 9 - Shows an embodiment of the wave generation system, where the electric generator is a structural part of the turbine.
FIG 10 - Muestra un empleo del sistema de la invención a modo de protección costera, en un ejemplo del mismo instalado de forma fija a un rompeolas. FIG 11 - Muestra un empleo del sistema de la invención, en este caso soportado por una estructura apoyada en el fondo marino, en un ejemplo del mismo instalado cerca de la costa, a una profundidad somera.  FIG 10 - Shows a use of the system of the invention as a coastal protection, in an example thereof fixedly installed to a breakwater. FIG 11 - Shows a use of the system of the invention, in this case supported by a structure supported on the seabed, in an example thereof installed near the coast, at a shallow depth.
FIG 12 - Muestra otra forma de empleo de la invención en forma de boya flotante, en un ejemplo del mismo instalado a profundidades elevadas, con anclajes tensos. FIG 13 - Muestra otra forma de empleo de la invención en forma de boya flotante, en un ejemplo del mismo instalado a profundidades elevadas, con anclajes flexibles, tipo catenaria.  FIG 12 - Shows another form of use of the invention in the form of a floating buoy, in an example thereof installed at high depths, with tense anchors. FIG 13 - Shows another form of use of the invention in the form of a floating buoy, in an example thereof installed at high depths, with flexible anchors, catenary type.
FIG 14 - Muestra otra forma de empleo de la invención como barrera flotante.  FIG 14 - Shows another form of use of the invention as a floating barrier.
Exposición de un modo detallado de realización de la invención Statement of a detailed embodiment of the invention
En las figuras adjuntas se muestran distintas realizaciones de la invención. Tal y como se observa en las figuras 1 a 5, el dispositivo captador (1) en cuestión comprende, al menos, una cámara resonante (2), constituida por una estructura de acero u hormigón formando las paredes de un tanque, abierto en su parte superior y cerrado parcialmente en su parte inferior, y que alberga un sistema de extracción de energía como por ejemplo una turbina hidráulica (3), particularmente una turbina hidráulica axial bidireccional con alabes (6) basculantes auto- orientables, girando en todo momento en la misma dirección, aunque también podría incorporar otro tipo de mecanismo igualmente capaz de aprovechar la energía del fluido cuando entra y sale de la cámara resonante (2) a través de su abertura inferior (7). En este caso, la turbina (3) hidráulica axial bidireccional incorpora unas palas directrices (4) a ambos lados del rodete, que dirigen el flujo de entrada a los alabes (6) de la misma para optimizar la eficiencia de la máquina. Various embodiments of the invention are shown in the attached figures. As can be seen in figures 1 to 5, the sensor device (1) in question comprises at least one resonant chamber (2), constituted by a steel or concrete structure forming the walls of a tank, opened in its upper part and partially closed in its lower part, and housing an energy extraction system such as a hydraulic turbine (3), particularly a bidirectional axial hydraulic turbine with self-orientating tilting vanes (6), rotating at all times in the same direction, although it could also incorporate another type of mechanism equally capable of harnessing the energy of the fluid when it enters and leaves the resonant chamber (2) through its lower opening (7). In this case, the bidirectional axial hydraulic turbine (3) incorporates guide blades (4) on both sides of the impeller, which direct the inlet flow to the blades (6) thereof to optimize the efficiency of the machine.
Esta turbina (3) comprende un rodete, es decir, un cuerpo rotatorio por su eje axial (5), a cuya zona perimetral central se acoplan una pluralidad de álabes (6), estando dicho eje axial (5), This turbine (3) comprises an impeller, that is, a rotary body along its axial axis (5), to whose central perimeter zone a plurality of blades (6) are coupled, said axial axis (5) being,
8  8
HOJA DE REEMPLAZO (Regla 26) en esta realización particular conectado con un generador eléctrico (8) a través de una caja multiplicadora (9) que aumenta la velocidad rotacional y con la implementación de un volante de inercia (10) que amortigua las variaciones de par de la turbina que posteriormente mueve el generador eléctrico (8). Cabe indicar que el eje axial (5), en otra realización puede ir conectado directamente al generador (8), sin caja multiplicadora (9) ni volante de inercia (10). REPLACEMENT SHEET (Rule 26) in this particular embodiment connected to an electric generator (8) through a multiplier box (9) that increases the rotational speed and with the implementation of a flywheel (10) that dampens the torque variations of the turbine that subsequently moves the electric generator (8). It should be noted that the axial axis (5), in another embodiment, can be connected directly to the generator (8), without a multiplier box (9) or flywheel (10).
La turbina (3) se caracteriza, por otro lado, porque el rodete se configura como un cuerpo simétrico respecto de su eje axial (5) que permite su trabajo en ambos sentidos de funcionamiento y porque los álabes (6) se acoplan a dicho rodete por medio de un eje de giro radial con movimiento basculante que permite variar su ángulo de posición para que el borde de ataque de dichos álabes (6) cambie de orientación según sea la dirección del flujo. El diseño simétrico de la sección transversal de cada álabe (6) permite optimizar notablemente el aprovechamiento del flujo en la turbina (3). No obstante de la realización de la turbina (3) mostrada, en las figuras 8 y 9 se indican realizaciones alternativas a la misma. Más concretamente, en la figura 8 se muestra una segunda realización de la turbina (3') donde los álabes (6') se conectan directamente a un generador (8') integrado en el rodete, de tal forma que no es necesario ningún tipo de eje para conectar el generador y la turbina. The turbine (3) is characterized, on the other hand, because the impeller is configured as a symmetrical body with respect to its axial axis (5) that allows its work in both directions of operation and because the blades (6) are coupled to said impeller by means of a radial pivot axis with tilting movement that allows its position angle to be varied so that the leading edge of said blades (6) changes orientation according to the direction of flow. The symmetrical design of the cross section of each blade (6) allows to significantly optimize the use of flow in the turbine (3). Despite the embodiment of the turbine (3) shown, alternative embodiments thereof are indicated in Figures 8 and 9. More specifically, a second embodiment of the turbine (3 ') is shown in Figure 8 where the blades (6') are connected directly to a generator (8 ') integrated in the impeller, so that no type is necessary of axis to connect the generator and the turbine.
Por otro lado, en la figura 9 se observa como la turbina (3") está compuesta por una pluralidad de álabes (6") y un rotor que incluye en su interior los imanes del rotor del generador eléctrico y en el interior se encuentra el embobinado (estator) (91) ambos elementos componen el generador eléctrico. Cojinetes de deslizamiento axial y radial (93) y (94) guían el movimiento de rotación del conjunto On the other hand, in figure 9 it can be seen how the turbine (3 ") is composed of a plurality of blades (6") and a rotor that includes inside the rotor magnets of the electric generator and inside is the winding (stator) (91) both elements make up the electric generator. Axial and radial slide bearings (93) and (94) guide the rotational movement of the assembly
En todas estas realizaciones de turbina hidráulica se incorporan a ambos lados del rodete unas palas directrices (4) que dirigen el flujo de entrada a los álabes (6, 6', 6") de la misma, para optimizar la eficiencia de la máquina. In all these hydraulic turbine embodiments, guide blades (4) are incorporated on both sides of the impeller that direct the inlet flow to the blades (6, 6 ', 6 ") thereof, to optimize the efficiency of the machine.
En referencia al captador (1), que comprende, al menos, una cámara resonante (2) constituida por una estructura de acero u hormigón formando las paredes de un tanque, abierto por su parte superior y parcialmente cerrado por su parte inferior (7) y que alberga una turbina (3, 3', 3") según se ha descrito, también puede albergar otro tipo de mecanismos igualmente capaces de aprovechar la energía del fluido que entra y sale de la cámara resonante (2). With reference to the sensor (1), which comprises at least one resonant chamber (2) constituted by a steel or concrete structure forming the walls of a tank, open at the top and partially closed at the bottom (7) and which houses a turbine (3, 3 ', 3 ") as described, it can also house other mechanisms equally capable of harnessing the energy of the fluid entering and leaving the resonant chamber (2).
9  9
HOJA DE REEMPLAZO (Regla 26) Para facilitar el mantenimiento del sistema, se cuenta con una plataforma transitable (12) que permite acceder al generador (8, 8', 8") y tiene la posibilidad de abrirse fácilmente en su parte central para extraer la turbina hidráulica (3, 3', 3"). REPLACEMENT SHEET (Rule 26) To facilitate the maintenance of the system, there is a walkable platform (12) that allows access to the generator (8, 8 ', 8 ") and has the possibility of opening easily in its central part to extract the hydraulic turbine (3, 3 ', 3").
La cámara resonante (2) dependiendo de las necesidades de instalación y posibilidades de fabricación, puede ser de planta cilindrica como se observa en la figura 2, de planta cuadrada como se observa en la figura 3, o de otras formas que faciliten su fabricación y la adaptación de la solución a la localización prevista para su implantación. The resonant chamber (2) depending on the installation needs and manufacturing possibilities, can be cylindrical as seen in Figure 2, square plan as seen in Figure 3, or in other ways that facilitate its manufacture and the adaptation of the solution to the location planned for its implementation.
En las figuras 4 y 5 se puede observar cómo funciona el captador (1). Así en la figura 4 se muestra como, en el momento que el nivel exterior (NE) del agua es más elevado que el interior, es decir, que la ola se encuentra por encima del nivel medio del agua, la presión en la abertura (7) de la cámara resonante (2) hace entrar el agua hacia el interior. Por otro lado, tal y como se observa en la figura 5, cuando el nivel exterior (NE) de la ola está más bajo, el agua sale de la cámara resonante (2) debido a que se genera una mayor presión interior. Este movimiento del fluido entrando y saliendo de la cámara resonante (2) por la abertura (7) acciona la turbina (3, 3', 3") u otro convertidor de energía. Es importante destacar que la abertura (7) de la parte inferior de la cámara resonante (2) tiene una menor sección que ésta, es decir, que la parte inferior de la cámara resonante (2) está sólo parcialmente cerrada y con una geometría (dimensiones) tal que genera resonancia con las olas del exterior, maximizando la variación del volumen en el interior del captador (1) hasta un volumen máximo inferior al volumen total de la cámara resonante (2). En las figuras 4 y 5, el nivel del agua en el interior de la cámara (2) está señalizado mediante la referencia (NI) en alusión al nivel interior. Figures 4 and 5 show how the sensor (1) works. Thus in Figure 4 it is shown that, at the moment that the outer level (NE) of the water is higher than the inside, that is, that the wave is above the average level of the water, the pressure in the opening ( 7) from the resonant chamber (2) brings the water inwards. On the other hand, as can be seen in Figure 5, when the outer level (NE) of the wave is lower, the water leaves the resonant chamber (2) because a greater internal pressure is generated. This movement of the fluid entering and leaving the resonant chamber (2) through the opening (7) drives the turbine (3, 3 ', 3 ") or other energy converter. It is important to note that the opening (7) of the part The bottom of the resonant chamber (2) has a smaller section than this, that is, that the bottom of the resonant chamber (2) is only partially closed and with a geometry (dimensions) such that it generates resonance with the waves from the outside, maximizing the variation of the volume inside the sensor (1) to a maximum volume lower than the total volume of the resonant chamber (2) In figures 4 and 5, the water level inside the chamber (2) is signaled by reference (NI) in reference to the interior level.
En las figuras 6 y 7 se muestra una vista en perspectiva del captador (1) con la turbina (3) en una realización con el generador (8) situado sobre la plataforma (12). La turbina (3) está situada concéntricamente respecto de la abertura (7) de la parte inferior de la cámara resonante (2), para que de este modo se aproveche mejor la energía hidráulica captada por el dispositivo. A perspective view of the sensor (1) with the turbine (3) in an embodiment with the generator (8) located on the platform (12) is shown in figures 6 and 7. The turbine (3) is located concentrically with respect to the opening (7) of the lower part of the resonant chamber (2), so that in this way the hydraulic energy captured by the device is better used.
Por otro lado, las paredes externas del captador (1) cuentan con refuerzos estabilizadoresOn the other hand, the external walls of the sensor (1) have stabilizing reinforcements
(61) en forma de aletas dispuestas perimetralmente, que estabilizan el movimiento rotacional (61) in the form of fins arranged perimetrically, which stabilize the rotational movement
10  10
HOJA DE REEMPLAZO (Regla 26) del captador, de igual forma pueden realizarse refuerzos estructurales en su interior. REPLACEMENT SHEET (Rule 26) of the sensor, similarly structural reinforcements can be made inside.
La parte inferior del captador (1) comprende un flotador o cámara de flotación (17) perimetral, que cumple la misión fundamental de mantener la flotabilidad y estabilidad del captador (1). The lower part of the sensor (1) comprises a perimeter float or flotation chamber (17), which fulfills the fundamental mission of maintaining the buoyancy and stability of the sensor (1).
Como se observa en la figura 10, el captador (1) puede ser instalado en un rompeolas (13), aportando el valor adicional de disipar la energía que choca contra la costa. Su realización preferente en este caso es con una planta rectangular como la mostrada en la figura 3. En este caso, la cámara de flotación (17) puede estar completamente inundada, para comportarse como un refuerzo estructural adicional o estar rellena de otro material de refuerzo, como hormigón, o similar. También podrá ir instalado en otras estructuras fijas o flotantes de la costa, donde el captador (1) irá soportado a esta otra estructura. As can be seen in figure 10, the sensor (1) can be installed in a breakwater (13), providing the additional value of dissipating the energy that hits the coast. Its preferred embodiment in this case is with a rectangular plant like the one shown in Figure 3. In this case, the flotation chamber (17) can be completely flooded, to behave as an additional structural reinforcement or be filled with other reinforcement material , as concrete, or similar. It can also be installed in other fixed or floating structures of the coast, where the collector (1) will be supported to this other structure.
El captador (1) puede estar fijo al suelo marino con el uso de una estructura auxiliar (14), como en la figura 1 1 , o puede implantarse en zonas profundas de forma flotante a modo de boya, figuras 12 y 13, o bien formar una barrera, como la mostrada en la figura 14. The collector (1) can be fixed to the sea floor with the use of an auxiliary structure (14), as in figure 1 1, or it can be implanted in deep areas of floating form as a buoy, figures 12 and 13, or form a barrier, as shown in figure 14.
En formato de boya, el captador (1) puede estar fondeado con contrapesos (15) y tirantes tensos (16), con la cámara de aire (17) que ejerce una fuerza de flotación que tensa los citados tirantes (16) en todo momento. En la realización mostrada en la figura 13, sin embargo, se emplea una catenaria (18) para anclar el captador (1) a través de una estructura auxiliar que soporta una chapa en su parte inferior que estabiliza el conjunto verticalmente 19. In buoy format, the sensor (1) can be anchored with counterweights (15) and tensioned braces (16), with the air chamber (17) that exerts a buoyant force that tenses the mentioned braces (16) at all times . In the embodiment shown in Figure 13, however, a catenary (18) is used to anchor the sensor (1) through an auxiliary structure that supports a sheet in its lower part that stabilizes the assembly vertically 19.
El captador (1) opera preferentemente de la forma más estática posible (en el movimiento vertical) y esto se logra andándolo a estructuras fijas o mediante la cámara de flotación. En este último caso, la flotación ejercida mantiene en todo momento los anclajes con tirantes tensos o en el caso de catenaria el equilibrio entre el peso de la cadena, lastre y flotabilidad, independientemente que la ola esté en su nivel superior o inferior, quedando restringido su movimiento vertical, sin embargo, el movimiento lateral no se evita totalmente. El movimiento horizontal se permite parcialmente para evitar la rotura del dispositivo en caso de fuerte oleaje. The sensor (1) preferably operates in the most static way possible (in the vertical movement) and this is achieved by moving it to fixed structures or by means of the flotation chamber. In the latter case, the flotation exerted at all times keeps the anchors with tight straps or in the case of catenary the balance between the weight of the chain, ballast and buoyancy, regardless of whether the wave is at its upper or lower level, being restricted its vertical movement, however, lateral movement is not totally avoided. Horizontal movement is partially allowed to prevent breakage of the device in case of strong waves.
11 eleven
HOJA DE REEMPLAZO (Regla 26) REPLACEMENT SHEET (Rule 26)

Claims

REIVINDICACIONES
1 - Captador (1) que comprende al menos una cámara (2) resonante con las olas y cuya parte superior está abierta y cubierta por una plataforma (12) removible y permeable, estando su parte inferior parcialmente cerrada caracterizado porque dicha parte inferior define una abertura (7), de menor sección, configurada con una geometría que maximiza la entrada de agua, y que además comprende una cámara de flotación (17) dispuesta perimetralmente en la parte inferior del captador (1) alrededor de la abertura (7). 1 - Sensor (1) comprising at least one chamber (2) resonant with the waves and whose upper part is open and covered by a removable and permeable platform (12), its lower part being partially closed characterized in that said lower part defines a opening (7), of smaller section, configured with a geometry that maximizes the entry of water, and which also comprises a flotation chamber (17) arranged perimetrically in the lower part of the sensor (1) around the opening (7).
2 - Captador (1) de acuerdo con la reivindicación 1 donde la relación entre el Área (superior) y el Área (inferior) y la longitud del captador (1) caracterizan la dinámica del captador o frecuencia de resonancia de acuerdo con: 2 - Sensor (1) according to claim 1 wherein the relationship between the Area (upper) and the Area (lower) and the length of the sensor (1) characterize the dynamics of the sensor or resonance frequency according to:
Figure imgf000014_0001
Figure imgf000014_0001
Donde K es la rigidez del sistema (fuerza/desplazamiento), M es la masa (volumen*densidad), el Área (superior) el área del cilindro superior del captador y el Área (inferior), el área de la abertura inferior. Where K is the rigidity of the system (force / displacement), M is the mass (volume * density), the Area (upper) the area of the upper cylinder of the collector and the Area (lower), the area of the lower opening.
3 - Captador (1) de acuerdo con cualquiera de las reivindicaciones 1 y 2 que cuenta con refuerzos estabilizadores (61) en forma de aletas dispuestas perimetralmente en sus paredes externas o refuerzos dispuestos en las paredes internas. 3 - Sensor (1) according to any of claims 1 and 2 which has stabilizing reinforcements (61) in the form of fins arranged perimetrically in its outer walls or reinforcements arranged in the inner walls.
4 - Captador (1) de acuerdo con cualquiera de las reivindicaciones 1-3 que es de planta cilindrica, cuadrada o de otras formas poligonales que faciliten su fabricación y adaptabilidad. 4 - Sensor (1) according to any of claims 1-3 which is cylindrical, square or other polygonal shapes that facilitate its manufacture and adaptability.
5 - Captador (1) de acuerdo con cualquiera de las reivindicaciones 1-4 donde la cámara de flotación (17) se encuentra total o parcialmente sumergida y es inundable. 5 - Sensor (1) according to any of claims 1-4 wherein the flotation chamber (17) is fully or partially submerged and is floodable.
12 12
HOJA DE REEMPLAZO (Regla 26) 6 - Sistema de generación de energía undimotriz que se caracteriza porque comprende al menos un captador (1) de acuerdo con cualquiera de las reivindicaciones 1-5 y una sistema de extracción de energía seleccionado entre: una turbina (3, 3', 3") hidráulica axial bidireccional de álabes basculantes; cualquier otro tipo de turbina hidráulica; una turbina de aire instalada en la parte superior del captador que trabaja con el volumen desplazado por el agua en el interior de la cámara resonante; por un motor lineal instalado en el interior de la cámara resonante; o por una combinación de los anteriores. REPLACEMENT SHEET (Rule 26) 6 - Wave power generation system characterized in that it comprises at least one sensor (1) according to any one of claims 1-5 and an energy extraction system selected from: a turbine (3, 3 ', 3 " ) bidirectional axial hydraulic of tilting vanes; any other type of hydraulic turbine; an air turbine installed in the upper part of the collector that works with the volume displaced by the water inside the resonant chamber; by a linear motor installed in the inside the resonant chamber; or by a combination of the above.
7 - Sistema de acuerdo con la reivindicación 6 que comprende al menos un captador (1) de acuerdo con cualquiera de las reivindicaciones 1-5 y una turbina (3, 3', 3") con álabes basculantes (6, 6', 6") dispuesta concéntricamente en la abertura (7) del captador (1) y conectada con un generador (8, 8', 8"). 7 - System according to claim 6 comprising at least one sensor (1) according to any of claims 1-5 and a turbine (3, 3 ', 3 ") with tilting vanes (6, 6', 6 ") concentrically arranged in the opening (7) of the sensor (1) and connected to a generator (8, 8 ', 8").
8 - Sistema de acuerdo con la reivindicación 7 donde la turbina (3, 3', 3") comprende unas palas directrices (4) configuradas para dirigir el flujo de entrada a los álabes (6, 6', 6"). 8 - System according to claim 7 wherein the turbine (3, 3 ', 3 ") comprises guide blades (4) configured to direct the inlet flow to the blades (6, 6', 6").
9 - Sistema de acuerdo con cualquiera de las reivindicaciones 7-8 donde la turbina (3) contiene un rodete o cuerpo rotatorio por su eje axial (5), a cuya zona perimetral central se acoplan una pluralidad de álabes (6), estando dicho eje axial (5) conectado con un generador eléctrico (8); y donde el rodete se configura como un cuerpo simétrico respecto de su eje axial (5) que permite su trabajo en ambos sentidos de funcionamiento y porque los álabes (6) se acoplan a dicho rodete por medio de un eje de giro radial con movimiento basculante que permite variar su ángulo de posición para que el borde de ataque de dichos álabes (6) cambie de orientación según sea la dirección del flujo, teniendo dichos álabes (6) un diseño simétrico en su sección transversal. 9 - System according to any of claims 7-8 wherein the turbine (3) contains a rotary impeller or body along its axial axis (5), to whose central perimeter zone a plurality of blades (6) are coupled, said being axial shaft (5) connected to an electric generator (8); and where the impeller is configured as a symmetrical body with respect to its axial axis (5) that allows its work in both directions of operation and because the blades (6) are coupled to said impeller by means of a radial rotation axis with tilting movement which allows its position angle to be varied so that the leading edge of said blades (6) changes orientation according to the direction of flow, said blades (6) having a symmetrical design in their cross section.
10 - Sistema de acuerdo con cualquiera de las reivindicaciones 7-8 donde la turbina (3') acciona un generador eléctrico que se encuentra en su parte superior, quedando un sistema sumergido y compacto. 10 - System according to any of claims 7-8 wherein the turbine (3 ') drives an electric generator that is located in its upper part, leaving a submerged and compact system.
1 1 - Sistema de acuerdo con cualquiera de las reivindicaciones 7-8 donde el rodete de la turbina contiene el rotor del generador y el estator, de tal forma que dicho rodete contiene los imanes del generador (91) a su vez el embobinado en su interior soporta el rotor permitiéndole el giro a través de unos cojinetes (93 y 94), quedando un sistema sumergido y compacto. 1 1 - System according to any of claims 7-8 wherein the turbine impeller contains the generator rotor and the stator, such that said impeller contains the generator magnets (91) in turn the winding in its inside it supports the rotor allowing it to rotate through bearings (93 and 94), leaving a submerged and compact system.
13  13
HOJA DE REEMPLAZO (Regla 26) 12 - Sistema de acuerdo con cualquiera de las reivindicaciones 6 a 11 que está instalado en un rompeolas (13) o en una estructura fija de costa. REPLACEMENT SHEET (Rule 26) 12 - System according to any of claims 6 to 11 which is installed in a breakwater (13) or in a fixed coast structure.
13 - Sistema de acuerdo con cualquiera de las reivindicaciones 6 a 11 que está fijado al suelo marino mediante una estructura auxiliar (14). 13 - System according to any of claims 6 to 11 that is fixed to the sea floor by an auxiliary structure (14).
14 - Sistema de acuerdo con cualquiera de las reivindicaciones 6 a 1 1 porque está fondeado mediante contrapesos (16) y tirantes tensos (15). 14 - System according to any one of claims 6 to 1 1 because it is anchored by counterweights (16) and tension braces (15).
15 - Sistema de acuerdo con cualquiera de las reivindicaciones 6 a 11 porque está fondeado mediante una catenaria (18) y contiene una estructura que soporta una placa de estabilización vertical (19). 15 - System according to any of claims 6 to 11 because it is anchored by means of a catenary (18) and contains a structure that supports a vertical stabilization plate (19).
16-Uso del sistema de acuerdo con cualquiera de las reivindicaciones 6 a 15 como barrera de protección marina o rompeolas flotante. 16-Use of the system according to any of claims 6 to 15 as a marine protection barrier or floating breakwater.
14 14
HOJA DE REEMPLAZO (Regla 26)  REPLACEMENT SHEET (Rule 26)
PCT/ES2013/070644 2012-09-17 2013-09-16 Collector and system for generating wave power WO2014041232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201231440 2012-09-17
ES201231440A ES2456190B1 (en) 2012-09-17 2012-09-17 POWER DEVICE AND GENERATOR DEVICE FROM LAS OLAS

Publications (1)

Publication Number Publication Date
WO2014041232A1 true WO2014041232A1 (en) 2014-03-20

Family

ID=50277677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070644 WO2014041232A1 (en) 2012-09-17 2013-09-16 Collector and system for generating wave power

Country Status (2)

Country Link
ES (1) ES2456190B1 (en)
WO (1) WO2014041232A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600112969A1 (en) * 2016-11-09 2018-05-09 Maximo Aurelio Peviani System for obtaining electricity from a wave motion.
US11319920B2 (en) 2019-03-08 2022-05-03 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation
EP4296503A1 (en) * 2022-06-24 2023-12-27 OctoMar ApS A wave energy power generation system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2028929A (en) * 1978-08-29 1980-03-12 English Electric Co Ltd Turbines
JPS60119379A (en) * 1983-11-30 1985-06-26 Kaiyo Kagaku Gijutsu Center Air-turbine type wave-power generation set equipped with resonance chamber for breakwater
WO1998041758A1 (en) * 1997-03-14 1998-09-24 Zakaria Khalil Doleh Apparatus for conversion of energy from the vertical movement of seawater
US20070137195A1 (en) * 2005-12-19 2007-06-21 Tayla Shashishekara S Wide bandwidth farms for capturing wave energy
WO2009064190A1 (en) * 2007-11-13 2009-05-22 Miljø-Produkter As A turbine device for an oscillating water column power plant
US20100038910A1 (en) * 2008-08-18 2010-02-18 Da Silva Othon Luiz electrical equipment generator of electrical power
US20100171313A1 (en) * 2009-01-08 2010-07-08 Glen Edward Cook Under the bottom ocean wave energy converter
DE102009008211A1 (en) * 2009-02-10 2010-08-12 Philipp Sinn Wave-driven power station for converting wave energy into usable energy, has openings on its lower side or is open downward, so that water level rises and falls unhindered with passing waves and activates propeller or turbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2028929A (en) * 1978-08-29 1980-03-12 English Electric Co Ltd Turbines
JPS60119379A (en) * 1983-11-30 1985-06-26 Kaiyo Kagaku Gijutsu Center Air-turbine type wave-power generation set equipped with resonance chamber for breakwater
WO1998041758A1 (en) * 1997-03-14 1998-09-24 Zakaria Khalil Doleh Apparatus for conversion of energy from the vertical movement of seawater
US20070137195A1 (en) * 2005-12-19 2007-06-21 Tayla Shashishekara S Wide bandwidth farms for capturing wave energy
WO2009064190A1 (en) * 2007-11-13 2009-05-22 Miljø-Produkter As A turbine device for an oscillating water column power plant
US20100038910A1 (en) * 2008-08-18 2010-02-18 Da Silva Othon Luiz electrical equipment generator of electrical power
US20100171313A1 (en) * 2009-01-08 2010-07-08 Glen Edward Cook Under the bottom ocean wave energy converter
DE102009008211A1 (en) * 2009-02-10 2010-08-12 Philipp Sinn Wave-driven power station for converting wave energy into usable energy, has openings on its lower side or is open downward, so that water level rises and falls unhindered with passing waves and activates propeller or turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 2010-K28174 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600112969A1 (en) * 2016-11-09 2018-05-09 Maximo Aurelio Peviani System for obtaining electricity from a wave motion.
US11319920B2 (en) 2019-03-08 2022-05-03 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation
US11835025B2 (en) 2019-03-08 2023-12-05 Big Moon Power, Inc. Systems and methods for hydro-based electric power generation
EP4296503A1 (en) * 2022-06-24 2023-12-27 OctoMar ApS A wave energy power generation system

Also Published As

Publication number Publication date
ES2456190B1 (en) 2015-02-11
ES2456190A1 (en) 2014-04-21

Similar Documents

Publication Publication Date Title
ES2393261T3 (en) Apparatus and control system for the generation of energy from wave energy
ES2396010T3 (en) Foundation body for a wind power installation
ES2383678T3 (en) Improved efficiency and survival wave energy converter system
ES2344472T3 (en) DEVICE AND INSTALLATION FOR THE GENERATION OF REGENERATIVE AND RENEWABLE ENERGY FROM WATER.
ES2393207T3 (en) Fully submerged wave energy converter
ES2578780T3 (en) Floating platform
ES2556654T3 (en) Vertical shaft turbine
ES2727655T3 (en) Improvements in the extraction of energy from ocean waves
JP2016533455A (en) Coastal conservation and wave energy power generation system
PT1518052E (en) Oscillating water column wave energy converter incorporated into caisson breakwater
ES2320846B1 (en) PLATFORM TO CAPTURE ENERGY OF THE WAVES.
WO2010043735A1 (en) Electric power station comprising mechanical marine rotors
WO2013029195A1 (en) Wave-power electricity generation system
WO2014041232A1 (en) Collector and system for generating wave power
WO2017055649A1 (en) Device for converting the kinetic energy of waves, water flows or wind into mechanical energy
ES2395688B1 (en) TILTING BLADES HYDRAULIC TURBINE FOR TWO-WAY USE OF FLOWS.
WO2014194438A1 (en) Device which converts tidal kinetic energy into electric energy and comprises a cross-flow water turbine capable of directing the captured flows in an optimal manner, redirecting and accelerating same toward an inner runner of the water turbine, and an electricity generating plant that uses said device
ES2291144B1 (en) "MACHINE FOR USE OF THE ENERGY OF THE WAVES OF THE SEA".
ES2235647A1 (en) Hydrodynamic turbine for sea currents
TWI659154B (en) Coastal protection and wave energy generation system
ES2475208T3 (en) Device for converting wave energy into mechanical energy
WO2011133009A2 (en) Sequential wave capture system that converts ocean waves into electrical energy
WO2013176535A9 (en) Independent wave capture module that converts ocean waves into electrical energy
ES2514990B2 (en) Airflow acceleration system for wind turbines
ES2526240B1 (en) Mechanical system for generating electric power from wave energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836766

Country of ref document: EP

Kind code of ref document: A1