WO2014040572A1 - 苯并噻二唑衍生物的诱导抗虫作用及其应用 - Google Patents

苯并噻二唑衍生物的诱导抗虫作用及其应用 Download PDF

Info

Publication number
WO2014040572A1
WO2014040572A1 PCT/CN2013/083646 CN2013083646W WO2014040572A1 WO 2014040572 A1 WO2014040572 A1 WO 2014040572A1 CN 2013083646 W CN2013083646 W CN 2013083646W WO 2014040572 A1 WO2014040572 A1 WO 2014040572A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorenyl
group
substituted
insect
formula
Prior art date
Application number
PCT/CN2013/083646
Other languages
English (en)
French (fr)
Inventor
李宝聚
钱旭红
石延霞
徐玉芳
朱维平
赵振江
杜青山
李鹏飞
谢学文
Original Assignee
华东理工大学
中国农业科学院蔬菜花卉研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学, 中国农业科学院蔬菜花卉研究所 filed Critical 华东理工大学
Publication of WO2014040572A1 publication Critical patent/WO2014040572A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/82Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with three ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/14Thiadiazoles; Hydrogenated thiadiazoles condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention relates to the field of agricultural science and technology.
  • the invention relates to the use of a compound of formula A for inducing insect resistance in plants. Background technique
  • Horticultural crop pests have always been a major enemy of the safe development of this field.
  • Agricultural pesticides have played a huge role in the control of horticultural crop pests, but because of its high toxicity and high residue, it is a hidden danger of agricultural safety development.
  • Ecology and the environment create pressure.
  • researchers have focused their attention on the development of new pesticides with low (no) toxicity, high efficiency, and environmental protection.
  • using the plant's own defense system to treat insects will be the main direction for the development of new pesticides in the future.
  • the plant resistance activator itself has no significant bactericidal or bacteriostatic effect, but can induce the plant's own immune system to resist the invasion of the disease, but no mature report has been found to induce the insect resistance.
  • BTH Benzothiadiazol
  • An analog of Benzothiadiazol (BTH) has been studied and it has been found that BTH has a certain anti-pathogenic effect on fungal diseases of various vegetables, but BTH does not induce insect-resistant effects (Inbar M., Doostdar) ⁇ , Gerling D. & Maye .T., Induction of systemic acquired resistance in cotton by BTH has a negligible effect on phytophagous insects.
  • the plant activator itself has no insecticidal activity, and its metabolites do not have insecticidal activity.
  • the plant is sprayed to induce insect-resistant effects, and its mechanism of action completely breaks through the mode of traditional insecticidal mechanism; the use of plant resistance activators can It is a typical ecological pesticide to prevent and control a variety of pests, its insect resistance is effective and broad-spectrum, does not pollute the environment, and is conducive to maintaining a complex and delicate balance between microorganisms in the ecosystem.
  • the present invention is directed to a compound having an insect-inducing activity, a composition comprising the compound, and a method of inducing insect resistance using the compound.
  • the invention provides the use of a compound of formula A for the preparation of an insect resistant composition
  • R is selected from unsubstituted or substituted. Linear or branched fluorenyl, unsubstituted or substituted C 6 - 3 .
  • Aryl unsubstituted or substituted C 5 - 3 .
  • Heteroaryl unsubstituted or substituted C 6 - 3 .
  • Ra represents 1-3 substituents independently selected from the group consisting of H, halogen, CH fluorenyl, d- 4 halogenated fluorenyl, d- 4 methoxy, d- 4 halogenated fluorene Oxygen, nitro.
  • the R is a fluorine-containing group.
  • the R is a fluorine-containing fluorenyl group, a fluorine-containing aryl group, or a fluorine-containing heteroaryl group. In another preferred embodiment, R is substituted with from 3 to 10 fluorine atoms. ⁇ .
  • R is a phenyl group substituted by 1 to 5 fluorines.
  • the phenyl group in addition to the fluorine substituent, further contains 1 - 3 substituents selected from the group consisting of CH decyl, Cl, Br, I, NO 2 and 0CH 3 .
  • the insect resistance is an insect resistance induction.
  • the inducing insect resistance induces insect resistance in the following plants: food crops, vegetables, flowers, fruit trees.
  • the plant is selected from the group consisting of: cruciferous plant, Solanaceae, Cucurbitaceae; preferably, the plant is selected from the group consisting of: Capsicum, Solanum (So l Anum) plant, cucumber, etc.; more preferably, the plant is selected from the group consisting of: Chinese cabbage, kale, broccoli, broccoli, pepper, tomato, eggplant.
  • the pest is selected from the group consisting of: cabbage caterpillar, diamondback moth, beet armyworm, rapeseed meal, thrips, tobacco budworm, and sassafras.
  • R is selected from a fluorine-containing substituted linear or branched fluorenyl chain, an aryl group, a heteroaryl group, an aryl- 4 fluorenyl group or a heteroaryl group - 4 fluorenyl group, wherein the aryl group A aryl or heteroaryl fluorine-containing substituent.
  • the compound has the structure shown by formula (II) or (III):
  • n is an integer of 1 to 10
  • m is an integer of 1 to 10
  • q is an integer of 3 to 15
  • R 1 represents various fluorines. Substituted aryl or heteroaryl.
  • the compound of formula A is selected from the group consisting of:
  • the present invention provides a composition for inducing insect resistance, the composition comprising an agrochemically acceptable carrier and a compound of formula A as an inducing insecticidal active ingredient:
  • R is selected from unsubstituted or substituted. Linear or branched fluorenyl, unsubstituted or substituted C 6 - 3 .
  • Aryl unsubstituted or substituted C 5 - 3 .
  • Heteroaryl unsubstituted or substituted C 6 - 3 .
  • Ra represents 1-3 substituents independently selected from the group consisting of H, halogen, CH fluorenyl, d- 4 halogenated fluorenyl, d- 4 methoxy, d- 4 halogenated fluorene Oxygen, nitro.
  • the composition is an agricultural composition.
  • an insect-inducing composition comprising (a) an agrochemically acceptable carrier, (b) a compound of formula A as an insect-inducing active ingredient, And (c) other insect resistant compounds.
  • the present invention provides a method of inducing an insect resistance, the method comprising the steps of: applying a compound of Formula A or a composition of the second aspect to a plant, Wherein R is selected from unsubstituted or substituted. Linear or branched fluorenyl, unsubstituted or substituted C 6 - 3 . Aryl, unsubstituted or substituted C 5 - 3 . Heteroaryl, unsubstituted or substituted C 6 - 3 .
  • Ra represents 1-3 substituents independently selected from the group consisting of H, halogen, CH fluorenyl, d- 4 halogenated fluorenyl, d- 4 methoxy, d- 4 halogenated fluorene Oxygen, nitro.
  • the compound of the formula A is applied once after the seedling is released, and is applied once after transplanting or planting the seedling, and then applied once every other day or 10 days, continuous application. 3 to 7 times, preferably three or five times.
  • the compound of formula A is applied at a concentration of from 1 to 100 mg/L, such as 10 mg/L, 25 mg/L,
  • kits for inducing insect resistance comprising a container and the second aspect of the invention contained in the container Composition, and instructions for use.
  • the description describes the method of the third aspect of the invention.
  • Figure 1 shows the insect-inducing effect of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate on Chinese cabbage, wherein: Figure A. 50 mg/L Induced insect resistance of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate to cabbage; Figure B. Controlled leaves without drug treatment (close-up beet night The wormhole after the moth feeds).
  • Figure 2 shows the insect-inducing effect of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate on cabbage, wherein: Figure A. 60 mg/L worm The control effect of phthalonitrile on cabbage plutella xylostella; B. Induction resistance of 50 mg/L 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate to cabbage Insect effect, C. Control leaves without drug treatment (wormhole after feeding on beet armyworm).
  • Figure 3 shows the insect-inducing effect of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate on pepper, wherein: Figure A. 50 mg/L Induced insect resistance of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate to pepper; B. Controlled leaves without drug treatment The wormhole after feeding).
  • the compound of formula A has an anti-insect effect, and the compound not only induces the insect resistance of the crop to the main pest, but also reduces or mitigates the threat of pests and reduces
  • the use of chemical pesticides reduces ecological pressure and reduces farmers' economic losses. These compounds have industrialization and commercialization prospects, have huge market value in international and domestic markets, have broad application prospects, and have significant economic benefits.
  • the present invention has been completed on this basis.
  • Preferred fluorenyl groups include fluorenyl groups having from 2 to 8 carbon atoms, from 2 to 4 carbon atoms, from 3 to 8 carbon atoms, from 1 to 3 carbon atoms, such as methyl, ethyl, propyl, iso Propyl, butyl, isobutyl, sec-butyl, tert-butyl and the like.
  • the thiol group may be substituted by one or more substituents, for example, by a thiol or a thiol group.
  • the fluorenyl group may be a fluorenyl group substituted with 3 to 15 fluorine atoms, or the fluorenyl group may be a fluorenyl group substituted with a fluorinated fluorenyl group.
  • _ 4 methoxy refers to a straight or branched decyloxy group having from 1 to 4 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy , isobutoxy, sec-butoxy, tert-butoxy, or the like.
  • aryl denotes a monocyclic, bicyclic or tricyclic aromatic radical containing from 6 to 14 carbon atoms, including phenyl, naphthyl, phenanthryl, anthracenyl, fluorenyl, II, tetra Hydronaphthalenyl, indanyl and the like.
  • the aryl group may be optionally substituted by one to five, for example 1, 2, 3, 4 or 5 substituents selected from the group consisting of: halogen, d- 4 aldehyde group, -6 straight or branched fluorenyl group, cyano group , nitro, amino, hydroxy, hydroxymethyl, halogen-substituted fluorenyl (eg trifluoromethyl), halogen-substituted oxirane (eg trifluoromethoxy), carboxyl, C 1-4 decyloxy, Ethoxycarbonyl, N(CH 3 ) and C 4 acyl groups.
  • substituents selected from the group consisting of: halogen, d- 4 aldehyde group, -6 straight or branched fluorenyl group, cyano group , nitro, amino, hydroxy, hydroxymethyl, halogen-substituted fluorenyl (eg trifluoromethyl), halogen-substituted
  • an aryl group may be substituted with from 1 to 3 groups selected from the group consisting of: halogen, -OH, d_4 nonyloxy, _4 fluorenyl, -NO 2 , -NH 2 , -N(CH 3 ) 2 , carboxyl and Ethoxycarbonyl and the like.
  • the aryl group may further contain other substituents as described above, such as Cl, Br, I, -OH, C 1-4 decyloxy (eg methoxy), C 1-4 fluorenyl, -NO 2 , -NH 2 , -N(CH 3 ) 2 , a carboxyl group, an ethoxycarbonyl group, and the like.
  • substituents such as Cl, Br, I, -OH, C 1-4 decyloxy (eg methoxy), C 1-4 fluorenyl, -NO 2 , -NH 2 , -N(CH 3 ) 2 , a carboxyl group, an ethoxycarbonyl group, and the like.
  • heteroaryl denotes 5-14 ring atoms, and 6, 10 or 14 electrons are shared on the ring system, and the ring atoms contained are carbon atoms and are selected from oxygen, nitrogen or 1-3 heteroatoms of sulfur.
  • Useful heteroaryl groups include thienyl, furanyl, pyranyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, including but not limited to 2-pyridyl, 3-pyridyl and 4-pyridyl, pyridyl Azinyl, pyrimidinyl and the like.
  • the heteroaryl group may be optionally substituted with from 1 to 5, for example 1, 2, 3, 4 or 5 substituents selected from the group consisting of: halogen, _4 aldehyde, -6 straight or branched fluorenyl, cyano, Nitro, amino, hydroxy, hydroxymethyl, halogen substituted fluorenyl (eg trifluoromethyl), halogen substituted oxirane (eg trifluoromethoxy), carboxyl, C 1-4 decyloxy, B Oxidyl, N(CH 3 ) and C1-4 acyl.
  • substituents selected from the group consisting of: halogen, _4 aldehyde, -6 straight or branched fluorenyl, cyano, Nitro, amino, hydroxy, hydroxymethyl, halogen substituted fluorenyl (eg trifluoromethyl), halogen substituted oxirane (eg trifluoromethoxy), carboxyl, C 1-4 decyloxy, B Ox
  • the heteroaryl group may further contain other substituents as described above, such as Cl, Br, -OH, d_ 4 decyloxy, _4 decyl, -NO 2 , - NH 2 , -N(CH 3 ) 2 , a carboxyl group, an ethoxycarbonyl group, and the like.
  • halogen as used herein means fluoro, chloro, bromo, or iodo.
  • halogenated refers to a group substituted with one or more of the above halogen atoms, which may be the same or different, such as a trifluoromethyl group, a pentafluoroethyl group, or the like.
  • the group R may be a C u) fluorenyl group substituted by fluorine or a d_4 fluorenyl group substituted by a fluoroindenyl group.
  • the total length of the carbon chain of the group R is usually from 1 to 10 carbon atoms.
  • R is a group such as CH 2 CF 2 CF 2 H, CH(CF 3 ) 2 , CH 2 CF 2 CF 2 CF 3 , CH 2 (CF 2 ) 4 H .
  • R is an aryl group substituted by fluorine or an aryl group - 4 fluorenyl group substituted by fluorine.
  • R is phenyl or benzyl substituted with 1-5 fluorines.
  • the phenyl group may also be substituted with a substituent selected from the group consisting of a nitro group and a hydroxyl group.
  • R is a 3 fluoro substituted phenyl group, a 5 fluoro substituted phenyl group, a 4 fluoro substituted phenyl group, a fluoro group substituted with fluorine and a nitro group, and the like.
  • Active ingredient The active ingredient in the method or composition of the invention is a compound of formula A,
  • R and Ra are as described above.
  • the compound structure is as shown in Formula I:
  • R is selected from a fluorine-substituted linear or branched fluorenyl chain, an aryl group, a heteroaryl group, an aryl-CV group, or a heteroaryl group - 4 fluorenyl group, wherein the aryl group or the hetero aryl group An aryl fluorine-containing substituent.
  • the compound of formula A is selected from the group consisting of:
  • the compound of formula A of the present invention is a compound of formula 1-1:
  • inducing insect resistance or “inducing insect resistance” as used herein has the same meaning. Specifically, the “inducing insect-resistant activity” described herein means that a compound itself has no insecticidal activity, and its metabolite has no insecticidal activity, but the compound can induce an insect-resistant action of the plant.
  • the inducing insect resistance induces insect resistance in the following plants: food crops, vegetables, flowers, fruit trees.
  • the plant is selected from the group consisting of: cruciferous plants, Solanaceae plants, Cucurbitaceae plants.
  • the plant is selected from the group consisting of: Capsicum, Solanum, Cucumber, and the like.
  • the plant is selected from the group consisting of: Chinese cabbage, kale, broccoli, broccoli, pepper, tomato, eggplant.
  • the insect is selected from the group consisting of: cabbage caterpillar, diamondback moth, beet armyworm, rapeseed meal, thrips, tobacco budworm, and sassafras. Inducing insect resistant composition
  • the insect-inducing composition provided by the present invention contains an agrochemically acceptable carrier and a compound of formula A as an insect-inducing active ingredient:
  • the invention provides an insect-inducing composition
  • an insect-inducing composition comprising: (a) an agrochemically acceptable carrier, (b) a compound of formula A as an insect-inducing active ingredient, and (c) other anti- Insect compound.
  • the compound of formula A is a compound of formula 1-1:
  • the agrochemically acceptable carrier includes a variety of solid carriers, liquid carriers, gas carriers, and the like, which are known in the art.
  • the solid carrier can be, for example, fine powder or granules of clay materials such as kaolin, diatomaceous earth, synthetic hydrated silica, bentonite, Fubasami clay and acid clay; various types of talc, ceramics and other inorganic materials such as sericite, quartz, sulfur Fine powder or granules of activated carbon, calcium carbonate and hydrated silica; and fine powder or granules of chemical fertilizers such as ammonium sulphate, ammonium phosphate, ammonium nitrate, urea and ammonium chloride.
  • clay materials such as kaolin, diatomaceous earth, synthetic hydrated silica, bentonite, Fubasami clay and acid clay
  • various types of talc, ceramics and other inorganic materials such as sericite, quartz, sulfur Fine powder or granules of activated
  • the liquid carrier may include, for example, water; alcohols such as methanol and ethanol; ketones such as acetone and methyl ethyl ketone; hydrocarbons such as hexamethylene, cyclohexanthene, kerosene and light oil; esters such as ethyl acetate and butyl acetate Esters; nitriles such as acetonitrile and isobutyronitrile; ethers such as diisopropyl ether and dioxins; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; halogenated hydrocarbons Such as methylene chloride, trichloroacetic acid and carbon tetrachloride; dimethyl sulfoxide; and vegetable oils such as soybean oil and cottonseed oil.
  • alcohols such as methanol and ethanol
  • ketones such as acetone and methyl ethyl ketone
  • hydrocarbons such as he
  • the gas carrier or propellant may include, for example, Freon gas, Tween gas, LPG (liquefied petroleum gas), dimethyl ether, and carbon dioxide.
  • the pesticide composition of the present invention may further contain a surfactant such as a mercaptosulfate, a mercaptosulfonate, a mercaptoarylsulfonate, a mercaptoaryl ether, and a polyepoxyfluorene derivative thereof, Polyglycol ethers, polyol esters and sugar alcohol derivatives.
  • a surfactant such as a mercaptosulfate, a mercaptosulfonate, a mercaptoarylsulfonate, a mercaptoaryl ether, and a polyepoxyfluorene derivative thereof, Polyglycol ethers, polyol esters and sugar alcohol derivatives.
  • the pesticidal composition of the present invention may further contain an adjuvant such as a fixing agent or a dispersing agent, for example, casein, gelatin, polysaccharides (such as starch, gum arabic, cellulose derivatives, and alginic acid), lignin derivatives, bentonite, and sugar.
  • an adjuvant such as a fixing agent or a dispersing agent, for example, casein, gelatin, polysaccharides (such as starch, gum arabic, cellulose derivatives, and alginic acid), lignin derivatives, bentonite, and sugar.
  • synthetic water-soluble polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrylic acid.
  • the pesticidal composition of the present invention may also include stabilizers such as PAP (isopropyl acid phosphate), BHT (2,6-di-tert-butyl-4-methylphenol), BHA (2-tert- a mixture of butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol), vegetable oils, mineral oils, surfactants, fatty acids and esters thereof.
  • stabilizers such as PAP (isopropyl acid phosphate), BHT (2,6-di-tert-butyl-4-methylphenol), BHA (2-tert- a mixture of butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol
  • PAP isopropyl acid phosphate
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • BHA 2-tert- a mixture of butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol
  • vegetable oils mineral oils
  • the agricultural chemical composition of the present invention can be prepared by mixing various components in the agricultural chemical composition of the present invention with each other.
  • the agricultural chemical composition of the present invention thus formulated can be used as it is or after being diluted with water.
  • it can be mixed with other insecticides, nematicides, acaricides, fungicides, fungicides, herbicides, plant growth regulators, synergists, fertilizers, soil conditioners and/or animal feeds. Or don't mix it but use it at the same time.
  • the present invention provides a method of inducing insect resistance, the method comprising applying a compound of the above formula A to a plant,
  • the compound of the formula A is applied once after the seedling is released, and is applied once after transplanting or planting the seedling, and then applied once every other day or 10 days, continuous application. 3 to 7 times, preferably three or five times.
  • the compound of formula A is administered at a concentration of 10 mg/L, 25 mg/L, 50 mg/L or 100 mg/L.
  • each type of seed is sterilized by soaking in a warm soup at 55 ° C for 15 minutes, and then germinated in a black and dark 28 ° C incubator.
  • the seeds are white, sow seedlings, after the seedlings are released, the leaves are evenly sprayed, and the plants are transplanted or planted for 1 time, then the application is applied once every 7 or 10 days.
  • the drug may be administered three or five times, and the number of inductions may be appropriately increased to seven times depending on the growth period of the plant.
  • the compound of formula A such as 2,2,2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate, is applied at a concentration of 10 mg/L. , 25 mg/L, 50 mg/L and 100 mg/L.
  • the method of the invention can control the horticultural crops by regulating the immunity of the crop itself and increasing the insect resistance of the crop, and can effectively control the horticultural crops, including Chinese cabbage, cabbage, broccoli, cabbage budworm, diamondback moth, cabbage moth, It is a new type of medicine with potential for development. It is a harmless environment-friendly compound and has a potential for development. It is a pestle, tomato, eggplant, pepper, thrips, tobacco budworm, and sassafras.
  • the compound of the formula A used in the present invention has no insecticidal activity per se, and its metabolite has no insecticidal activity, and the insect-resistant effect of the horticultural crop on the pest is between 60% and 90%, and the duration of action can be as long as 15 days.
  • the main advantages of the invention include:
  • the methods and compounds employed in the present invention are capable of obtaining comparable, even better, insect resistant results to conventional insecticides;
  • the compound used in the present invention or its metabolite has no insecticidal activity, but enhances the immunity of the crop itself and increases the insect resistance of the crop to achieve insect resistance. Therefore, the method of the present invention effectively controls horticultural crop pests. In addition, it does not induce the resistance of horticultural crop pests;
  • the compound used in the present invention has no residue in the soil and is therefore a pollution-free environmentally friendly compound.
  • the technical solutions of the present invention are further described below in conjunction with specific implementation examples, but the following embodiments are not It is intended that the present invention be limited by the various methods of application employed in accordance with the principles and teachings of the invention.
  • the experimental methods in the following examples which do not specify the specific conditions are usually in accordance with conventional conditions or according to the conditions recommended by the manufacturer. Percentages and parts are by weight unless otherwise stated. Method for determining insect resistance
  • the method for inducing insect resistance is determined by field measurement, that is, selecting adjacent fields of equal area and randomly dividing into treated fields and control fields; applying the compound of formula (A) to plants in the treated field, in the control field
  • the plants were subjected to clear water; the compound represented by the formula (A) was used to treat the number of live insects in the field and the control field, and the insect-resistant effect was induced according to the following formula (2).
  • the insect resistance effects of the medicaments were investigated 10 days and 30 days after the application, and the number of live insects and the number of live insects in each treatment were investigated, and the insect resistance was calculated according to the formula (2).
  • Example 1 the insect resistance effects of the medicaments were investigated 10 days and 30 days after the application, and the number of live insects and the number of live insects in each treatment were investigated, and the insect resistance was calculated according to the formula (2).
  • the insecticidal activity of 2, 2, 2-trifluoroethylbenzo [ 1, 2, 3 ] thiadiazole-7-carboxylate was measured for Pieris rapae.
  • the leaf butterfly was taken with a hole punch of 1 cm in diameter and placed in a petri dish for moisturizing treatment.
  • 2,2,2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate 101 ⁇ /, 25mg/L, 50mg/L and 100mg/L were separately dispensed by capillary dropper.
  • Each leaf butterfly drops the liquid, and after the solvent is volatilized, it is combined with another leafy butterfly coated with flour paste to form a poisonous leaf butterfly. After the preparation, it is placed in the hole of the 12-well tissue culture plate, and each treatment is repeated 4 times. , 12 toxic leaves were repeated for each, and a blank control was set.
  • the agent was formulated according to the test concentration, and the induced insect resistance spectrum was screened by using the benzothiadiazole derivative 2, 2, 2-trifluoroethylbenzo[ 1, 2, 3]thiadiazole- 7-formate 25mg/mL, the determination of horticultural crops induced by 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate in the field Resistance. 5mL, in cabbage, cabbage, broccoli, broccoli, tomato, apply the spray to the front and back of the leaves of the horticultural crops, evenly and uniformly, to ensure that the application of each plant is 0.
  • the induced resistance of Chinese cabbage to cabbage caterpillar after treatment with 2, 2, 2-trifluoroethylbenzo [1, 2, 3] thiadiazole-7-formate was used.
  • the concentration of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate used in the examples was 50, 25, 10 mg/mL, respectively, using an automatic micro atomizer.
  • the medicine is sprayed evenly on the front side of the leaves of the Chinese cabbage, and the droplets on the leaves are uniformly uniform. It is ensured that each application liquid is 0.5 mL, and the first spray application is applied in the four-leaf stage of Chinese cabbage.
  • the spray was induced once every day, 5 days, 7 days, 10 days, and 15 days, and induced a total of 3 times.
  • the experiment was arranged by random block group, the area of the plot was 24 m2, and each treatment was set up 4 times.
  • the cultivation and management conditions of each plot were basically the same.
  • Different concentrations of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate induced the resistance of Chinese cabbage to P. rapae, and the concentration was 25mg/mL.
  • the induced insect resistance effect of 7 days was 81.16%. The shorter the induction interval, the better the effect of inducing insect resistance.
  • Double liquid Clear water control one-one table 4 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate induced screening of Chinese cabbage against the growth of P. rapae and induction interval ( 30 days after application)
  • This example measures the induced resistance of cabbage to Plutella xylostella after treatment with 2,2,2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate in the field.
  • concentration of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate used in the examples was 50, 25, 10 mg/mL, respectively, using an automatic micro atomizer.
  • the medicine is sprayed evenly on the front and back of the leaves of the cabbage, and the droplets on the leaves are uniform. It is ensured that the application liquid is 0.5 mL per plant, and the first spray application is applied in the four-leaf stage of cabbage, every 3 days thereafter.
  • the spray was induced once every 5 days, 7 days, 10 days, and 15 days, and induced a total of 3 times.
  • the experiment was arranged by random block group, the area of the plot was 24 m2, and each treatment was set up 4 times.
  • the cultivation and management conditions of each plot were basically the same.
  • Different concentrations of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate induced the effect of cabbage on the insect resistance of Plutella xylostella, and the concentration of lOmg/mL induced interval
  • the induced insect resistance effect of 5 days was 81.16%.
  • the shorter the induction interval the better the effect of inducing insect resistance.
  • the induction interval is preferably 3 days, and the induction effect is still 84.
  • the benzothiadiazole derivative is 2 2 2-trifluoroethylbenzo[1 2 3]thiadiazole-7-, which induces resistance to cabbage cabbage in the field after treatment of cauliflower Evaluation. Used in the examples
  • the concentration of 2 2 2-trifluoroethylbenzo[ 1 2 3]thiadiazole-7-formate was 50 25 lOmg/mL, which was applied by an automatic micro sprayer and sprayed evenly on the front and back of the eggplant leaves. It is advisable to uniform the foliar droplets, and ensure that each application solution is 0.5 mL, which is sprayed for the first time in the four-leaf stage of broccoli, and then sprayed once every 5 days, and induced three times.
  • the experiment was arranged by random block group, the area of the plot was 24 m2, and each treatment was set up 4 times.
  • the cultivation and management conditions of each plot were basically the same.
  • the effect of the induced resistance of the sassafras was evaluated after treating the eggplant with 2,2,2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate.
  • concentration of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate used in the examples was 50, 25, 10 mg/mL, respectively, using an automatic micro atomizer.
  • the medicine is sprayed evenly on the front and back of the eggplant leaves, and the droplets on the leaves are evenly uniform. It is ensured that each application liquid is 0.5 mL, sprayed for the first time in the four-leaf stage of the eggplant, and sprayed every 5 days thereafter.
  • This example evaluates the effect of inducing resistance of 2,2,2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate to tobacco budworms after treatment in the field.
  • 2, 2, 2-trifluoroethylbenzo[1, 2, 3] used in the examples
  • the concentration of thiadiazole-7-formate is 50, 25, lOmg/mL, which is applied by automatic micro-sprayer and evenly sprayed onto the front and back of the pepper leaves. It is better to use uniform droplets on the leaf surface to ensure each plant.
  • the application solution was 0.5 mL, and the first spray application was applied to the pepper four-leaf stage, and then sprayed once every 5 days, and induced for 3 times.
  • the experiment was arranged by random block group, the area of the plot was 24 m2, and each treatment was set up 4 times.
  • the cultivation and management conditions of each plot were basically the same.
  • Different concentrations of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate induced the effect of pepper on the insect resistance of Tobacco budworm, and the lowest concentration of application was 10 mg/
  • the induced insect resistance of mL was up to 81.79%, and the effect was good.
  • the inducing effect was still more than 70. 00% 30 days after application.
  • Table 11 Screening results of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate-induced concentration of pepper against Tobacco larvae (10 days after application)
  • a kit is prepared, the kit containing: a. - a container, and the induced insect resistant composition of Example 8 (solvent is DMF) placed in the container; b. instructions for use.
  • Example 10
  • Example 11 The above Examples 1-9 were repeated using the other compounds shown in Table A; the results obtained show the corrected mortality of other compounds shown in Table A against P. rapae and the insect-resistant effects of induced crops with 2, 2, 2-3 The equivalent of fluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate; in other words, the other compounds shown in Table A do not produce direct insecticidal activity, and also induce crops to produce insect resistance.
  • the test host materials include cabbage, cabbage and pepper.
  • the varieties are Zhongbai 60, Zhonggan 21 and Zhongjiao 106.
  • the cabbage and cabbage are tested when they grow to 4 true leaves.
  • the test is carried out when the pepper grows to 10 true leaves. .
  • the dish is a green Campestris L.) Raphanus sativus Linn.), the varieties are Chinese vegetables May slow and Qiubai 2, when the plant height is 4 cm, it can be used for spawning of Plutella xylostella.
  • the above vegetable varieties are all cultivated by Chinese agriculture.
  • the control object is Plutella xylostella and beet armyworm
  • Plutella xylostella is collected from the Institute of Vegetables and Flowers of the Chinese Academy of Agricultural Sciences, self-cultivated cabbage (not sprayed with any pesticide), artificially reared on green vegetables and radish seedlings (Method for the large-scale breeding of Plutella xylostella in the vegetable radish seedling method.
  • beet armyworm is identified by natural insects in the field; the test inducer is 5% 2, 2, 2-trifluoroethylbenzo[1,3,3]thiadiazole-7-formate aqueous solution, supplied by East China University of Science and Technology; control insecticide is 10% insecticidal nitrile Suspending agent, product of BASF GmbH, Germany.
  • the Chinese vegetable May slow and the autumn white No. 2 vegetable seeds are mixed together and soaked at room temperature for 5 ⁇ 6 hours. After rinsing with water, the seeds are filtered and placed on a water-absorbing filter paper for germination. Spread the seeds of the germination evenly in the seedling tray. The thickness of the nutrient soil in the tray is 2/3 of the depth of the seedling tray. Watering before sowing makes the nutrient soil fully wet and covered with vermiculite. When the seedlings grow to 4 cm, they can be used for spawning by female Plutella xylostella.
  • the seedlings of up to about 4cm are placed in the adult insect worm box, and 300 cockroaches are placed in each larvae room. After 3 to 4 days, the cockroaches are feathered, and the adults after emergence can lay eggs on the same day.
  • a petri dish containing 10% sucrose water is placed in the center of the insect-feeding box. The sucrose water is fully adsorbed with cotton wool, so that the adult after the feathering stops on the absorbent cotton to absorb the sugar to supplement the body's nutrition. After the female lays eggs, the leaves with the eggs are taken out in time, 201, 48(4): 1 103- 1 106 ⁇ ).
  • Cabbage and cabbage seeds are rinsed clean, soaked for 6-7 hours, rinsed and dried, placed on absorbent paper for germination, directly seeded into 5x5 plastic nursery in isolation environment, seeded 3 seeds per plant, cabbage and cabbage When the number of true leaves is 3, the seedlings are started. One seed is kept per sputum, and the induction is applied to the leaves of 4 true leaves to ensure that there is no Plutella xylostella before application.
  • the test inducer was formulated into three concentrations of 50 mg/L, 25 mg/L and 10 mg/L, and the control insecticide 10% chlorfenapyr suspension was formulated into a concentration of 60 mg/L, which was treated with water. Control.
  • the prepared inducer is evenly sprayed onto the surface of the leaves using a sprayer, and the induction interval is 7 days. After the induction, the processed cabbage and cabbage are placed twice. Identification of resistance to Plutella xylostella was carried out in an isolated greenhouse. The treatments were placed in a separate greenhouse, and the leaves carrying the Plutella xylostella eggs were placed directly on each of the treated leaves.
  • the number of eggs per replicate was approximately 200 (Dickson MH, Shelton AM) , Eigenbrode SD, Vamosy ML, Mora M.. Selection for Resistance to Diamondback Moth (Plutrlla xylostella) in Cabbage. Hort Science, 1990, 25( 12):
  • the field test site is located in the cabbage planting base of Dongyangfang Village, Jixian County, Yanqing County.
  • the test inducer 5% of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate water set 50 mg / L, 25 mg / L, 10
  • Three concentrations of mg/L, the control insecticide 10% chlorfenapyr suspension was set to 60mg/L-concentration, and the clear water was used as a blank control.
  • the cabbage grows to 10 true leaves it is applied according to the dosage of 45 liters of water per acre, and the leaf spray is carried out with AGROLEX Singapore Li Nong backpack manual sprayer.
  • the interval between administrations was 7 days, and a total of 6 doses were applied. Repeat 4 times for each treatment, repeating 20 square meters each time.
  • the leaf injury index was investigated 1 week after the sixth application (Dickson MH, Shelton AM, Eigenbrode SD, Vamosy ML, Mora M. Ibid. and Stotz HU, Pittendrigh B. ., Kroymann J., Weniger K., Fritsche J ., Bauke A., Mitchell-olds ⁇ , Induced Plant Defense Response against Chewing Insects. Ethylene Signaling Reduces Resistance of Arabidopsis against Egyptian Cptton Worm But Not Diamondback Moth. Plant Physiology, 2000, 124(9): 10071017.), Calculation Inducing disease resistance. Both the pot experiment and the field test use the formula (1) to calculate the damage index, and the formula (2) is used to calculate the induced disease resistance.
  • Leaf damage grading standard 0, no damage; Grade 1, the damage area of the blade accounts for less than 5% of the whole leaf area; Grade 3, the damage area of the leaf occupies 6% ⁇ 15% of the total leaf area; Grade 5, the area of damage of the leaf occupies the entire leaf The area is 16% ⁇ 25%; 7th grade, the leaf damage area accounts for 26% ⁇ 50% of the whole leaf area; 9th grade, the leaf damage area accounts for more than 50% of the whole leaf area.
  • the induced insect resistance of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate to pepper was carried out at the Experimental Base of Daxing District Agriculture Bureau, Beijing.
  • the test inducer 5% of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate water set 50 mg / L, 25 mg / L, 10 Three concentrations of mg/L, 60 mg/L of the control insecticide 10% chlorfenapyr suspension, and clear water as a blank control.
  • the interval between administrations was 7 days and a total of 6 doses were applied. Repeat 4 times for each treatment, repeating 20 square meters each time.
  • the induction effect of 50 mg/L after application was 73.81% and 69.38%, respectively.
  • the control efficacy of the control insecticide 10% chlorfenapyr suspension 60 mg/L was 54.95% and 51.80%, respectively (Table 16), 5%
  • the effect of 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-formate on the induction of 50 mg/L was higher than that of the control insecticide. Control effect. It can be seen from the test results that 2, 2, 2-trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate has stable anti-insect effect on pepper, and 5% of 2 is analyzed. 2, 2-Trifluoroethylbenzo[1,2,3]thiadiazole-7-carboxylate induced infestation effect, it can be seen that with the increase of application concentration, the induced effect The trend of increase.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明提供了苯并噻二唑衍生物的诱导抗虫作用及其应用。具体地,本发明提供了式A化合物在制备抗虫组合物中的用途,式中各基团定义如说明书中所述。本发明还提供包含式A化合物的诱导抗虫组合物以及利用式A化合物或所述组合物诱导抗虫的方法。本发明的方法、化合物或组合物诱导作物对主要虫害的抗虫性,减少或减轻虫害的威胁,还能降低化学农药的使用量,减轻生态压力并减少经济损失,因此具有巨大的市场价值、应用前景和经济效益。

Description

苯并噻二唑衍生物的诱导抗虫作用及其应用
技术领域
本发明涉及农业科学技术领域。 具体地说, 本发明涉及式 A所示化合物在诱 导植物抗虫活性中的应用。 背景技术
园艺作物害虫一直是威胁该领域安全发展的大敌,农用杀虫剂在园艺作物害虫防 治中发挥了巨大的作用,但由于其具有高毒、高残留的特点,是农业安全发展的隐患, 对生态和环境造成压力。 目前已经将研究人员的注意力集中在以低 (无)毒、 高效、 绿 色环保等为最终目标的新农药开发上,尤其利用植物自身的防御系统来治虫将是今后 新农药开发的主要方向之一。
植物抗性激活剂本身没有显著的杀菌或抑菌作用, 但能诱发植物自身的免疫系 统, 以抵御病害的侵袭, 但目前尚未发现具有诱导抗虫作用的成熟报道。 例如, 目前 人们研究了氟唑活化酯 (Benzothiadiazol , 简称 BTH)的类似物, 发现 BTH对多种 蔬菜的真菌病害具有一定抗病效果, 但 BTH并没有诱导抗虫的效果 (Inbar M., Doostdar Η·, Gerling D. &Maye .T., Induction of systemic acquired resistance in cotton by BTH has a negligible effect on phytophagous insects. Entomologia
Experimentalis et Applicata 2001 , 99: 65—70)。
植物激活剂本身无杀虫活性,其代谢产物亦不存在杀虫活性,通过植株喷施达到 诱导抗虫作用, 它的作用机制完全突破了传统杀虫机制的模式; 使用植物抗性激活剂 可以防治多种虫害, 其抗虫性具有持效性和广谱性, 不污染环境, 有利于维持生态系 统中微生物之间复杂而微妙的平衡关系, 是典型的生态型农药。
因此, 本领域急需能够诱导植物抗虫活性的植物抗性激活剂。 发明内容
本发明旨在提供具有诱导作物抗虫活性的化合物、 包含所述化合物的组合物 以及利用该化合物诱导抗虫活性的方法。 在第一方面, 本发明提供一种式 A化合物的用途, 所述化合物用于制备抗虫 组合物
Figure imgf000002_0001
(A) 式中, R选自未取代的或取代的 。直链或支链垸基、未取代的或取代的 C6-3。 芳基、 未取代的或取代的 C5-3。杂芳基、 未取代的或取代的 C6-3。芳基 -C 6垸基-或杂 芳基 -d-6垸基-, 其中, 所述的取代指具有一个或多个选自下组的取代基: 卤素、 d-4垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基;
Ra表示位于苯环上的 1 -3个独立地选自下组的取代基: H、 卤素、 CH垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基。
在另一优选例中, 所述的 R是含氟的基团。
在另一优选例中, 所述的 R是含氟的垸基、 含氟的芳基、 含氟的杂芳基。 在另一优选例中, R是被 3- 10个氟原子取代的 。垸基。
在另一优选例中, R是被 1-5个氟取代的苯基。
在另一优选例中, 除氟取代基外, 苯基上还含有 1 -3个选自 CH垸基、 Cl、 Br、 I、 N02和 0CH3的取代基。
在另一优选的实施方式中, 所述的抗虫是诱导抗虫。
在另一优选的实施方式中, 所述的诱导抗虫是诱导以下植物产生抗虫性: 粮 食作物、 蔬菜、 花卉、 果树。
在另一优选的实施方式中, 所述的植物选自下组: 十字花科植物、 茄科植物、 葫芦科植物; 较佳地, 所述植物选自: 辣椒属植物、 茄属(So l anum)植物、 黄瓜属 等; 更佳地, 所述的植物选自: 大白菜、 甘蓝、 花椰菜、 青花菜、 辣椒、 番茄、 茄子。
在另一实施方式中, 所述的虫选自: 菜青虫、 小菜蛾、 甜菜夜蛾、 菜蚜、 蓟 马、 烟青虫、 茶黄螨。
在另一实施方式中, 所述的化合物结构如式 I所示:
Figure imgf000003_0001
(I)
式中, R选自含氟取代的直链或支链垸基链、 芳基、 杂芳基、 芳基 - _4垸基- 或杂芳基 - _4垸基-, 其中, 所述芳基或杂芳基含氟取代基。
在另一实施方式中, 所述化合物具有下式 (II)或 (III)所示结构:
Figure imgf000003_0002
Figure imgf000004_0001
(m)
式(Π)中, n为 1〜10的整数, m为 1〜10的整数, q为 3〜15的整数 式 (III)中, n为 0〜4的整数, R1代表各种含氟取代的芳基或杂芳基。
在另一实施方式中, 所述的式 A化合物选自下组:
Figure imgf000004_0002
在第二方面, 本发明提供一种诱导抗虫的组合物, 所述的组合物含有农药学 上可接受的载体和作为诱导抗虫活性成分的式 A化合物:
Figure imgf000005_0001
(A)
式中, R选自未取代的或取代的 。直链或支链垸基、未取代的或取代的 C6-3。 芳基、 未取代的或取代的 C5-3。杂芳基、 未取代的或取代的 C6-3。芳基 -C 6垸基-或杂 芳基 -d-6垸基-, 其中, 所述的取代指具有一个或多个选自下组的取代基: 卤素、 d-4垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基;
Ra表示位于苯环上的 1 -3个独立地选自下组的取代基: H、 卤素、 CH垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基。
在另一优选例中, 所述的组合物为农用组合物。
在另一优选例中,提供了一种诱导抗虫的组合物,所述的组合物含有(a)农药 学上可接受的载体、 (b)作为诱导抗虫活性成分的式 A的化合物、 和(c)其他的抗 虫化合物。 在第三方面, 本发明提供诱导抗虫的方法, 所述方法包括以下步骤: 将式 A化合物或第二方面所述的组合物施用于植物,
Figure imgf000005_0002
式中, R选自未取代的或取代的 。直链或支链垸基、未取代的或取代的 C6-3。 芳基、 未取代的或取代的 C5-3。杂芳基、 未取代的或取代的 C6-3。芳基 -C 6垸基-或杂 芳基 -d-6垸基-, 其中, 所述的取代指具有一个或多个选自下组的取代基: 卤素、 d-4垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基;
Ra表示位于苯环上的 1 -3个独立地选自下组的取代基: H、 卤素、 CH垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基。
在一优选例中, 式 A化合物在播种苗出齐后叶面施药一次, 移栽或定植缓苗 后再施药 1次, 此后每隔 Ί天或 10天施药 1次, 连续施药 3次至 7次, 优选三次 或五次。
在一优选例中, 式 A化合物的施用浓度为 l- 100mg/L, 如 10 mg/L、 25 mg/L、
50 mg/L或 100 mg/L o 在本发明的第四方面, 提供了一种诱导抗虫的试剂盒, 所述试剂盒包括容器 以及装于所述容器中的本发明第二方面所述的组合物, 以及使用说明书。 较佳地, 所述说明书描述了本发明第三方面所述的方法。 应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文(如实施例) 中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。 限于篇幅, 在此不再一一累述。 附图说明
图 1显示了 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对白菜的诱导抗虫 效果, 其中: 图 A. 50 mg/L的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对白 菜的诱导抗虫效果; 图 B. 未经药剂处理的对照叶片 (密布甜菜夜蛾取食后的虫 洞)。
图 2显示了 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对甘蓝的诱导抗虫 效果,其中:图 A. 60 mg/L虫螨腈对甘蓝小菜蛾的防治效果; B. 50 mg/L的 2, 2, 2- 三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对甘蓝的诱导抗虫效果, C. 未经药剂处理 的对照叶片 (密布甜菜夜蛾取食后的虫洞)。
图 3显示了 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对辣椒的诱导抗虫 效果, 其中: 图 A. 50 mg/L的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对辣 椒的诱导抗虫效果; B. 未经药剂处理的对照叶片 (密布甜菜夜蛾取食后的虫洞)。 具体实施方式
本发明人经过广泛而深入的研究, 出乎意料地发现式 A化合物具有诱导抗虫 作用, 该类化合物不仅诱导作物对主要虫害的抗虫持久性, 以减少或减轻虫害的 威胁, 还能降低化学农药的使用量, 减轻生态压力, 并减少农民经济损失; 该类 化合物具有产业化、 商品化前景, 在国际和国内具有巨大的市场价值, 应用前景 广阔, 经济效益显著。 在此基础上完成了本发明。 基团定义
本文所用的术语" C u)直链或支链垸基"指碳链长度为 1 - 10个碳原子的饱和 直链或支链垸基。 优选的垸基包括长 2-8个碳原子、 2-4个碳原子、 3-8个碳原子、 1 -3个碳原子不等的垸基, 例如甲基、 乙基、 丙基、 异丙基、 丁基、 异丁基、 仲丁 基、 叔丁基等等。 垸基可以被一个或多个取代基取代, 例如被 ^素或 ^代垸基取 代。 例如, 垸基可以是被 3- 15个氟原子取代的垸基, 或者垸基可以是被氟代垸基 取代的垸基。
本文所用的术语 " _4垸氧基" 指具有 1 -4个碳原子的直链或支链垸氧基, 例如甲氧基、 乙氧基、 丙氧基、 异丙氧基、 丁氧基、 异丁氧基、 仲丁氧基、 叔丁 氧基、 或类似基团。 本文所用的术语 "芳基"表示指含有 6-14个碳原子的单环、 双环或三环芳族 基团, 包括苯基、 萘基、 菲基、 蒽基、 茚基、 II基、 四氢化萘基、 二氢化茚基等。 芳基可任选地被 1-5个, 例如 1、 2、 3、 4或 5个选自以下的取代基取代: 卤素、 d_4醛基、 _6直链或支链垸基、 氰基、 硝基、 氨基、 羟基、 羟甲基、 卤素取代的 垸基 (例如三氟甲基)、 卤素取代的垸氧基 (例如三氟甲氧基)、羧基、 C1-4垸氧基、 乙氧甲酰基、 N(CH3)和 C 4酰基。
例如, 芳基可以被 1-3个选自以下的基团取代: 卤素, -OH, d_4垸氧基, _4 垸基、 -NO2、 -NH2、 -N(CH3)2、 羧基和乙氧甲酰基等。
任选地, 除含有氟取代基外, 芳基上还可以含有上文所述的其它取代基, 例 如 Cl、 Br、 I、 -OH, C1-4垸氧基 (例如甲氧基)、 C1-4垸基、 -NO2、 -NH2、 -N(CH3)2、 羧基和乙氧甲酰基等。
本文所用的术语 "杂芳基 " 表示含有 5-14个环原子, 并且有 6个, 10个或 14个电子在环体系上共用, 而且所含环原子是碳原子和选自氧、 氮或硫的 1-3个 杂原子。
有用的杂芳基包括噻吩基、 呋喃基、 吡喃基、 吡咯基、 咪唑基、 吡唑基、 吡 啶基, 包括但不制于 2-吡啶基、 3-吡啶基和 4-吡啶基、 吡嗪基、 嘧啶基等。
杂芳基可任选被 1-5个, 例如 1、 2、 3、 4或 5个选自以下的取代基取代: 卤 素、 _4醛基、 _6直链或支链垸基、 氰基、 硝基、 氨基、 羟基、 羟甲基、 卤素取 代的垸基 (例如三氟甲基)、 卤素取代的垸氧基 (例如三氟甲氧基)、 羧基、 C1-4垸 氧基、 乙氧甲酰基、 N(CH3)和 C1-4酰基。 任选地, 除含有氟取代基外, 杂芳基上 还可以含有上文所述的其它取代基, 例如 Cl、 Br、 -OH, d_4垸氧基, _4垸基、 -NO2、 -NH2、 -N(CH3)2、 羧基和乙氧甲酰基等。
本文所用的术语 "卤素" 指氟、 氯、 溴、 或碘。 术语 "卤代的" 指被相同或 不同的一个或多个上述卤原子取代的基团, 例如三氟甲基、 五氟乙基、 或类似基 团。
本发明中, 基团 R可以是被氟取代的 C u)垸基, 或被氟代垸基取代的 d_4 垸基。 基团 R的碳链总长通常为 1-10个碳原子。
在其它实施方式中, R为 CH2CF2CF2H、CH(CF3)2、CH2CF2CF2CF3、CH2(CF2)4H 等基团。
在其它实施方式中, 本发明中, R是被氟取代的芳基或被氟取代的芳基 - _4 垸基-。 在优选实施例中, R是被 1-5个氟取代的苯基或苄基。在其它实施方式中, 苯基还可以被选自硝基和羟基的取代基取代。
在其它实施方式中, R为 3氟取代的苯基、 5氟取代的苯基、 4氟取代的苯基、 含有氟和硝基取代的苯基等。 活性成分 本发明方法或组合物中的活性成分是式 A所示化合物,
Figure imgf000008_0001
(A)
式中, R和 Ra如上所述。
在优选的实施方式中, 所述的化合物结构如式 I所示:
Figure imgf000008_0002
(I)
式中, R选自含氟取代的直链或支链垸基链、 芳基、 杂芳基、 芳基 -CV, 或杂芳基 - _4垸基-, 其中, 所述芳基或杂芳基含氟取代基。
在更优选的实施方式中, 所述的式 A化合物选自下组:
表 A
COOCH2CF: COOCH2CF2CF2H
Figure imgf000008_0003
Figure imgf000009_0001
、 禾口
在优选的实施方式中, 本发明的式 A所示化合物是式 1-1所示化合物:
Figure imgf000009_0002
(1-1)。 诱导抗虫活性
本文所用的术语 "诱导抗虫" 或 "诱导抗虫活性" 具有相同的意义。 具体地 说, 本文所述的 "诱导抗虫活性" 指某化合物本身没有杀虫活性, 其代谢产物亦 不存在杀虫活性, 但该化合物能够诱导植物的抗虫作用。
在具体的实施方式中, 所述的诱导抗虫是诱导以下植物产生抗虫性: 粮食作 物、 蔬菜、 花卉、 果树。
在优选的实施方式中, 所述的植物选自下组: 十字花科植物、 茄科植物、 葫 芦科植物。
在进一步优选的实施方式中, 所述植物选自: 辣椒属植物、 茄属(Solanum) 植物、 黄瓜属等。
在还要优选的实施方式中, 所述的植物选自: 大白菜、 甘蓝、 花椰菜、 青花 菜、 辣椒、 番茄、 茄子。
在优选的实施方式中, 所述的虫选自: 菜青虫、 小菜蛾、 甜菜夜蛾、 菜蚜、 蓟马、 烟青虫、 茶黄螨。 诱导抗虫的组合物
本发明提供的诱导抗虫的组合物含有农药学上可接受的载体和作为诱导抗虫 活性成分的式 A化合物:
Figure imgf000009_0003
(A) 在优选的实施方式中,本发明提供的诱导抗虫的组合物含有: (a)农药学上可 接受的载体、 (b)作为诱导抗虫活性成分的式 A化合物和(c)其他的抗虫化合物。
在优选的实施方式中, 所述式 A化合物是式 1-1所示化合物:
Figure imgf000010_0001
所述农药学上可接受的载体包括各种本领域已知的固体载体、 液体载体、 气 体载体等。 固体载体可以是, 例如, 粘土材料如高岭土、 硅藻土、 合成水合氧化 硅、 膨润土、 Fubasami粘土和酸性粘土的细粉或颗粒; 各类滑石、 陶瓷和其它无 机材料如绢云母、 石英、 硫磺、 活性炭、 碳酸钙和水合二氧化硅的细粉或颗粒; 以及化肥如硫酸铵、 磷酸铵、 硝酸铵、 尿素和氯化铵的细粉或颗粒。
液体载体可以包括例如, 水; 醇类如甲醇和乙醇; 酮类如丙酮和甲基乙基酮; 烃类如己垸、 环己垸、 煤油和轻油; 酯类如醋酸乙酯和醋酸丁酯; 腈类如乙腈和 异丁腈; 醚类如二异丙基醚和二噁垸; 酰胺类如 N, N-二甲基甲酰胺和 N, N-二 甲基乙酰胺; 卤代烃如二氯甲垸、 三氯乙垸和四氯化碳; 二甲基亚砜; 以及植物 油如豆油和棉籽油。
气体载体或者抛射剂可以包括例如, 氟利昂气体, 丁垸气体、 LPG (液化石油 气)、 二甲醚和二氧化碳。
本发明的农药组合物中还可含有表面活性剂, 如垸基硫酸盐、 垸基磺酸盐、 垸基芳基磺酸盐、 垸基芳基醚和它们的聚环氧乙垸衍生物、 聚乙二醇醚、 多元 醇 酯和糖醇衍生物。
本发明的农药组合物还可以含有辅助剂如固定剂或分散剂, 例如, 酪蛋白、 明胶、 多糖 (如淀粉、 阿拉伯树胶、 纤维素衍生物和海藻酸)、 木质素衍生物、 膨 润土、 糖以及如聚乙烯醇、 聚乙烯吡咯垸酮和聚丙烯酸等合成水溶性聚合物。
本发明的农药组合物还可以稳定剂可以包括例如, PAP (异丙基酸性磷酸酯)、 BHT(2, 6-二-叔 -丁基 -4-甲基苯酚)、 BHA(2-叔 -丁基 -4-甲氧基苯酚和 3-叔 -丁基 -4- 甲氧基苯酚的混合物)、 植物油、 矿物油、 表面活性剂、 脂肪酸及其酯。
可通过本发明农药组合物中的各种组分彼此混合而制备得到本发明的农药组 合物。
如此配制的本发明的农药组合物可以直接使用或者用水稀释后使用。 此外, 它可以与其它杀虫剂、 杀线虫剂、 杀螨剂、 杀菌剂、 防霉剂、 除草剂、 植物生长 调节剂、 增效剂、 肥料、 土壤调节剂和 /或动物饲料惨混使用或者不惨混但同时使 用。 诱导抗虫的方法
本发明提供诱导抗虫的方法, 所述方法包括将上述式 A化合物施用于植物,
Figure imgf000011_0001
在一优选例中, 式 A化合物在播种苗出齐后叶面施药一次, 移栽或定植缓苗 后再施药 1次, 此后每隔 Ί天或 10天施药 1次, 连续施药 3次至 7次, 优选三次 或五次。
在一优选例中, 式 A化合物的施用浓度为 10 mg/L、 25 mg/L、 50 mg/L或 100 mg/L。
在具体的实施方式中, 各类种子经 55°C条件下温汤浸种消毒 15分钟后, 黑 暗中 28 °C温箱中催芽。 待种子露白, 播种育苗, 播种苗出齐后开始叶面均匀喷雾 施药, 移栽或定植缓苗后再喷雾施药 1次, 此后每隔 7天或 10天诱导施药 1次, 连续施药 3次或 5次, 诱导次数亦可根据植株的生育期适当增加至 7次。
在具体的实施方式中, 式 A所示化合物, 例如 2, 2, 2-三氟乙基苯并 [ 1, 2, 3] 噻二唑 -7-甲酸酯的施用浓度为 10 mg/L, 25 mg/L, 50 mg/L和 100 mg/L。
本发明的方法通过调节作物自身的免疫能力, 增加作物自身抗虫能力达到抗 虫作用, 不但可以有效控制园艺作物, 包括大白菜、 甘蓝、 花椰菜、 青花菜菜青 虫、 小菜蛾、 甘蓝夜蛾、 菜蚜, 番茄、 茄子、 辣椒的蓟马、 烟青虫、 茶黄螨害虫, 且在土壤中无残留, 属无害环保型化合物, 具有开发潜力的新型药剂。 本发明采 用的式 A所示化合物本身无杀虫活性, 其代谢物无杀虫活性, 诱导园艺作物对害 虫的抗虫效果在 60%〜90%间, 持效期可长达 15天。 本发明的主要优点包括:
1. 本发明采用的方法和化合物能够获得与常用杀虫剂相当, 甚至更优的抗虫结 果;
2. 本发明采用的化合物本身或其代谢物并无杀虫活性, 而是通过调节作物自 身的免疫能力, 增加作物自身抗虫能力达到抗虫作用, 因此, 本发明方法在有效 控制园艺作物害虫之余不会诱导园艺作物害虫的抗药性;
3. 本发明采用的化合物在土壤中无残留, 因此属于无公害的环境友好型化 合物。 以下结合具体实施案例对本发明的技术方案进一步描述, 但以下实施案例不 构成对本发明的限制, 所有依据本发明的原理和技术手段采用的各种施用方法, 均属于本发明范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规条 件, 或按照制造厂商所建议的条件。 除非另外说明, 否则百分比和份数按重量计 算。 诱导抗虫效果的测定方法
诱导抗虫作用的测定方法采用田间测定, 即,选取面积相等的相邻多块田地, 随机分成处理田地和对照田地; 将式(A)所示化合物施用于处理田地中的植物, 对 照田地中的植物施以清水; 计数式(A)所示化合物处理田地与对照田地中的活虫 数, 根据下式(2)计算诱导抗虫效果。
诱导抗虫效果% = ^ ^^ ^ X 100
对照活虫数
式 (2 )
在具体的实施方式中, 分别于施药后 10天及 30天调查药剂的抗虫效果, 分 别调查对照活虫数与各处理的活虫数, 按照式 (2 ) 计算诱导抗虫效果。 实施例 1
以大白菜菜青虫 Pieris rapae)为对象进行 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻 二唑 -7-甲酸酯杀虫活性测定。选取室内饲养 3龄以上敏感试虫, 挑选龄期一致的 试虫, 饥饿 4h〜8h, 选取 50头幼虫, 用电子天平称量, 计算每头平均质量。
用直径 lcm的打孔器打取叶蝶, 放入培养皿中保湿处理。 用毛细管点滴器分 别点滴2,2,2-三氟乙基苯并[ 1,2,3]噻二唑-7-甲酸酯 101^/ 、 25mg/L、 50mg/L 和 100mg/L, 每片叶蝶点滴 药液, 待溶剂挥发后和另一片涂有面粉糊的叶蝶 对合制成夹毒叶蝶, 制作完成后放于 12孔组织培养板的孔内, 每处理 4次重复, 每个重复 12个夹毒叶片, 并设空白对照。 组织培养板每个孔内接 1头试虫, 接虫 2h〜4h后调查, 计算死亡率。 结果显示苯并噻二唑衍生物 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯最高浓度对大白菜菜青虫校正死亡率为 2. 11%, 而对照 杀虫剂 4. 5%高效氯氰菊酯乳油 2000倍液为 92. 55%, 证实苯并噻二唑衍生物 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯无杀虫活性。 表 1. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对大白菜菜青虫杀虫活 性测定
处理 校正死亡率% 药害情况
100 mg/L 2. 11
50 mg/L 2. 05
25 mg/L 3. 75 10 mg/L 4. 11
溶剂 2. 02
对照杀虫剂
4. 5%高效氯氰菊酯乳油 92. 55
2000倍液
清水对照 1. 75 实施例 2
诱抗谱筛选: 按试验浓度配好药剂, 本诱导抗虫谱的筛选采用苯并噻二唑衍 生物 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯 25mg/mL , 于田间测定 2, 2, 2- 三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯处理后园艺作物对各防治对象的诱导抗 性。 采用自动微量喷雾器施药, 均匀喷施到园艺作物叶片的正背面, 以叶面雾滴 均匀一致为宜, 保证每株施药液 0. 5mL, 于甘蓝、 白菜、 花椰菜、 青花菜、 番茄、 茄子、 辣椒四叶期第一次喷雾施药, 以后每隔 7天喷雾诱导一次, 共诱导 3次, 设 4次重复, 各小区栽培管理条件基本一致。 表 2. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对园艺作物虫害的诱导 抗虫谱(施药后 10天)
ί均诱抗效果 序号 防治对象 可土
(%)
1 大白菜 {Brassica rapa) 81. 16
2 菜青虫 甘蓝 {Brassica oleracea) 85. 30
3 {Pieris rapae) {Brassica oleracea var. i talic a) 83. 86
4 ¾W¾ {Brassica oleracea var. bo trytis) 86. 32
5 大白菜 {Brassica rapa) 81. 23
小菜蛾
6 甘蓝 {Brassica oleracea) 86. 21
{Plutella
7 {Brassica oleracea var. i talic a) 88. 68
xylostella)
8 ¾W¾ {Brassica oleracea var. bo trytis) 82. 42
9 大白菜 {Brassica rapa) 80. 62
10 甘蓝夜蛾 甘蓝 {Brassica oleracea) 78. 97
11 {Maine stra brassicae) {Brassica oleracea var. i talic a) 79. 03
12 ¾W¾ {Brassica oleracea var. bo trytis) 76. 89
13 大白菜 {Brassica rapa) 75. 89
14 菜蚜 甘蓝 {Brassica oleracea) 76. 34
15 {Lipaphis erysimi) {Brassica oleracea var. i talic a) 73. 89
16 ¾W¾ {Brassica oleracea var. bo trytis) 70. 66
17 茶黄螨 Solanum lycopersicum) 75. 42
18 {Polyphago tarsonemus ¾ Solanum melongena) 68. 86
19 la tus) ¾¾¾ { Chili pepper) 68. 46
20 {Solanum lycopersicum) 73. 85
烟青虫
21 ¾ {Solanum melongena) 65. 67
{Helio this assul ta)
22 ¾¾¾ { Chili pepper) 69. 86
23 莉马 {Solanum lycopersicum) 75. 39
24 ( Frankl iniella ¾ {Solanum melongena) 74. 84 25 occiden talis) ¾¾¾ { Chili pepper) 72. 93 实施例 3
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯不同诱导浓度和诱导间隔期对 大白菜抗菜青虫的诱抗效果筛选:
本实施例中,所采用的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯处理后 大白菜对菜青虫的诱导抗性效果。 实施例中所采用的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3] 噻二唑 -7-甲酸酯浓度分别为 50, 25, lOmg/mL , 采用自动微量喷雾器施药, 均匀 喷施到大白菜叶片的正背面, 以叶面雾滴均匀一致为宜, 保证每株施药液 0. 5mL, 于大白菜四叶期第一次喷雾施药, 以后每隔 3天、 5天、 7天、 10天、 15天喷雾 诱导一次, 共诱导 3次。 实验采用随机区组排列, 小区面积 24 m2, 每个处理设 4 次重复, 各小区栽培管理条件基本一致。 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7- 甲酸酯不同浓度喷雾诱导白菜对菜青虫的抗虫性效果明显, 其中浓度 25mg/mL诱 导间隔 7天的诱导抗虫效果可达 81. 16%。诱导间隔期越短,诱导抗虫性效果越好。 其中,诱导间隔 3天的诱导抗虫效果最好,在施药 30天后诱抗效果仍可达 86. 96%; 诱导间隔 5天的次之, 各浓度诱抗效果在 82. 61%以上; 诱导间隔 7天的也达到 72. 46%。 表 3. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导大白菜抗菜青虫浓 度和诱导间隔期筛选结果(施药后 10天)
浓度
处理 诱导抗虫效果(%) 药害情况
(mg/mL)
50 93. 87 一
诱导间隔期 3d 25 93. 25 一
10 91. 41 一
50 93. 25 一
诱导间隔期 5d 25 91. 41 一
10 90. 18 一
50 83. 44 一
诱导间隔期 7d 25 81. 60 一
10 76. 07 一
50 67. 48 一
诱导间隔期 10d 25 68. 10 一
10 64. 42 一
50 62. 58 一
诱导间隔期 15d 25 57. 06 一
10 一
对照杀虫剂
4. 5%高效氯氰菊酯乳油 2000 25 91. 41 一
倍液 清水对照 一 一 一 表 4. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导大白菜抗菜青虫浓 度和诱导间隔期筛选结果(施药后 30天)
Figure imgf000015_0001
实施例 4
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯不同诱导浓度和诱导间隔期对 甘蓝抗小菜蛾诱抗效果筛选:
本实施例于田间测定 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯处理后 甘蓝对小菜蛾的诱导抗性效果。 实施例中所采用的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3] 噻二唑 -7-甲酸酯浓度分别为 50, 25, lOmg/mL , 采用自动微量喷雾器施药, 均匀 喷施到甘蓝叶片的正背面, 以叶面雾滴均匀一致为宜, 保证每株施药液 0. 5mL, 于甘蓝四叶期第一次喷雾施药, 以后每隔 3天、 5天、 7天、 10天、 15天喷雾诱 导一次, 共诱导 3次。 实验采用随机区组排列, 小区面积 24 m2 , 每个处理设 4 次重复, 各小区栽培管理条件基本一致。 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7- 甲酸酯不同浓度喷雾诱导甘蓝对小菜蛾的抗虫性效果明显, 其中浓度 lOmg/mL诱 导间隔 5天的诱导抗虫效果可达 81. 16%。诱导间隔期越短,诱导抗虫性效果越好。 其中, 诱导间隔 3天的最好, 在施药 30天后诱抗效果仍可达 84. 06% ; 诱导间隔 5 天的次之, 各浓度诱抗效果在 81. 16%以上; 诱导间隔 7天的也达到 66. 67%。 表 5. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导甘蓝抗小菜蛾浓度 和诱导间隔期筛选结果(施药后 10天)
Figure imgf000016_0001
表 6. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导甘蓝抗小菜蛾浓度 和诱导间隔期筛选结果(施药后 30天)
浓度 诱导抗虫效果
处理 药害情况
(mg/mL) (%)
50 87. 12 一 诱导间隔期 3d 25 86. 36 一
10 82. 58 一
50 80. 68 一 诱导间隔期 5d 25 78. 79 一
10 一
50 73. 86 一 诱导间隔期 7d 25 70. 45 一
10 69. 70 一
50 65. 53 一 诱导间隔期 10d 25 54. 55 一
10 52. 65 一 诱导间隔期 15d 50 50. 76 一
25 49. 62 一 10 一 对照药剂:
18 85. 23 一
1. 8%阿维菌素乳油 1500倍液
清水对照 一 一 一 实施例 5
2, 2, 2-三氟乙基苯并 [ 1 2, 3]噻二唑 -7-甲酸酯不同诱导浓度对花椰菜抗甘蓝 夜蛾诱抗效果筛选:
本实施例中, 苯并噻二唑衍生物是 2 2 2-三氟乙基苯并 [ 1 2 3]噻二唑 -7-甲 , 于田间处理花椰菜后对甘蓝夜蛾的诱导抗性效果评价。 实施例中所采用的
2 2 2-三氟乙基苯并 [ 1 2 3]噻二唑 -7-甲酸酯浓度分别为 50 25 lOmg/mL , 采 用自动微量喷雾器施药, 均匀喷施到茄子叶片的正背面, 以叶面雾滴均匀一致为 宜, 保证每株施药液 0. 5mL, 于花椰菜四叶期第一次喷雾施药, 以后每隔 5天喷 雾诱导一次, 共诱导 3次。 实验采用随机区组排列, 小区面积 24 m2 , 每个处理 设 4次重复, 各小区栽培管理条件基本一致。 2 2, 2-三氟乙基苯并 [ 1 2, 3]噻二唑 -7-甲酸酯不同浓度喷雾诱导花椰菜对甘蓝夜蛾的抗虫性效果明显, 其中浓度 101^/1^的诱导抗虫效果可达81. 20%, 且持效性好, 在施药后 30天, 诱抗效果仍 可达 70. 00%以上。 表 7. 2, 2, 2-三氟乙基苯并 [ 1 2, 3]噻二唑 -7-甲酸酯诱导花椰菜抗甘蓝夜蛾 浓度筛选(施药后 10天)
处理 诱导抗虫效果(%) 药害情况
50 mg/ mL 92. 91 一
25 mg/mL 89. 76 一
10 mg/mL 82. 68 一
对照药剂
85. 83
0. 3%印楝素乳油 500倍液
清水对照 一 一 表 8. 2, 2, 2-三氟乙基苯并 [ 1 2, 3]噻二唑 -7-甲酸酯诱导花椰菜抗甘蓝夜蛾 浓度筛选(施药后 30天)
处理 诱导抗虫效果(%) 药害情况
50 mg/ mL 85. 19 ―
25 mg/mL 77. 78 ―
10 mg/mL 73. 46 ―
对照药剂
80. 25 ―
0. 3%印楝素乳油 500倍液
清水对照 实施例 6
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯不同诱导浓度对茄子抗茶黄螨 诱抗效果筛选:
本实施例用 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯处理茄子后对茶 黄螨的诱导抗性效果进行评价。 实施例中所采用的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3] 噻二唑 -7-甲酸酯浓度分别为 50, 25, lOmg/mL , 采用自动微量喷雾器施药, 均匀 喷施到茄子叶片的正背面, 以叶面雾滴均匀一致为宜, 保证每株施药液 0. 5mL, 于茄子四叶期第一次喷雾施药, 以后每隔 5天喷雾诱导一次, 共诱导 3次。 实验 采用随机区组排列, 小区面积 24 m2, 每个处理设 4次重复, 各小区栽培管理条件 基本一致。 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯不同浓度喷雾诱导茄子 对茶黄螨的抗虫性效果明显, 其中浓度 101^/1^的诱导抗虫效果可达81. 20%, 且 持效性好, 在施药后 30天, 诱抗效果仍可达 70. 00%以上。 表 9. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导茄子抗茶黄螨浓度 筛选结果(施药后 10天)
Figure imgf000018_0001
表 10. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导茄子抗茶黄螨浓度 筛选结果(施药后 30天)
Figure imgf000018_0002
实施例 7
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯不同诱导浓度对辣椒抗烟青虫 诱抗效果筛选:
本实施例评价 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯于田间处理后 辣椒对烟青虫的诱导抗性效果。 实施例中所采用的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3] 噻二唑 -7-甲酸酯浓度分别为 50, 25, lOmg/mL , 采用自动微量喷雾器施药, 均匀 喷施到辣椒叶片的正背面, 以叶面雾滴均匀一致为宜, 保证每株施药液 0. 5mL, 于辣椒四叶期第一次喷雾施药, 以后每隔 5天喷雾诱导一次, 共诱导 3次。 实验 采用随机区组排列, 小区面积 24 m2, 每个处理设 4次重复, 各小区栽培管理条 件基本一致。 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯不同浓度喷雾诱导辣 椒对烟青虫的抗虫性效果明显, 其中浓度最低施用浓度 lOmg/mL的诱导抗虫效果 可达 81. 69%, 且持效性好, 在施药后 30天, 诱抗效果仍可达 70. 00%以上。 表 11. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导辣椒抗烟青虫浓度 筛选结果(施药后 10天)
Figure imgf000019_0001
表 12. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导辣椒抗烟青虫浓度 筛选结果(施药后 30天)
Figure imgf000019_0002
实施例 8.
制备诱导抗虫组合物
利用水或 DMF作为溶剂制备包含 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸 酯的抗虫组合物, 其中 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯的浓度分别 为 10、 25、 50 mg/mL o 实施例 9.
制备诱导抗虫作用的试剂盒
制备一试剂盒, 所述试剂盒装有: a.—容器, 以及置于所述容器内的实施例 8的诱导抗虫组合物(溶剂为 DMF) ; b.使用说明书。 实施例 10
利用表 A所示的其它化合物重复以上实施例 1-9 ; 得到的结果显示表 A所示其它 化合物对大白菜菜青虫的校正死亡率以及诱导作物的抗虫作用与 2, 2, 2-三氟乙基 苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯的相当; 换言之, 表 A所示其它化合物不产生直接的 杀虫活性, 同样是诱导作物产生抗虫作用。 实施例 11
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对蔬菜的诱导抗虫研究 发明人以 ί=Ι {Brassica Pekinensis (Lour.) Rupr.)、 ^^.(Brassica napus L.)禾口辣 ^{Capsicum annuum Linn.)为研究对象, 小菜蛾 CP/Mte〃< xylostella L.)禾口甜菜夜蛾 (Spodoptera exigua Htibner)为防治对象,进行了该化合物在盆栽及田间小区条件下 的诱导抗虫试验。 通过盆栽试验发现, 50 mg/L的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3] 噻二唑 -7-甲酸酯诱导后对白菜小菜蛾的诱导抗虫效果最高达 75.45%±4.03%, 高 于杀虫剂 60 mg/L的虫螨腈的防治效果 (59.12%±7.27%);而田间试验发现 50 mg/L 的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导后对辣椒甜菜夜蛾的诱导 抗虫效果最高达 73.81 %±2.29%, 此时对照杀虫剂虫螨腈防效最高为
54.95%± 1.76% o本实施例结果表明 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯 对白菜和甘蓝的小菜蛾和辣椒的甜菜夜蛾可产生较好的诱导抗虫效果。
1. 材料与方法
1.1 试验材料
供试寄主材料包括白菜、 甘蓝和辣椒, 品种分别为中白 60、 中甘 21和中椒 106, 其中白菜和甘蓝生长至 4片真叶时进行试验, 辣椒生长至 10片真叶时进行 试验。 小菜娥词养寄主为青
Figure imgf000020_0001
campestris L.)禾口萝 Raphanus sativus Linn.) , 品种分别是中蔬五月慢和秋白 2号, 株高长至 4 cm时即可供小菜蛾产卵 用, 以上蔬菜品种均由中国农业科学院蔬菜花卉研究所提供; 防治对象为小菜蛾 和甜菜夜蛾, 小菜蛾蛹采自中国农业科学院蔬菜花卉研究所自种甘蓝地 (未喷洒任 何药剂), 在青菜、 萝卜苗上人工饲养产卵 (用青菜萝卜苗法室内大量饲养小菜蛾 的方法. 应用昆虫学报, 201 1, 48 ( 4 ) : 1 103- 1 106.), 甜菜夜蛾通过田间自然感 虫鉴定; 供试诱抗剂为 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯水剂, 由华东理工大学提供; 对照杀虫剂为 10%虫螨腈悬浮剂, 德国巴斯夫股份有限公 司产品。
1.2 试验方法
1.2.1 2,2,2-三氟乙基苯并 [1,2,3】噻二唑 -7-甲酸酯对十字花科蔬菜的诱导抗虫 性研究
1.2.1.1 供试小菜蛾虫卵准备
将中蔬五月慢和秋白二号蔬菜种子惨杂在一起在常温下浸泡 5〜6h, 用清水 冲洗干净后将种子滤干, 置于吸水的滤纸上进行催芽。 把催好芽的种子均匀撒播 于苗盘内, 盘中营养土厚度为苗盘深度的 2/3, 播种前浇水使营养土充分润湿, 以 蛭石覆盖。 待幼苗长至 4cm时就可供小菜蛾雌虫产卵用。
将长至 4cm左右的菜苗放入成虫养虫箱内, 每个养虫室放入 300只蛹, 3〜4 天后蛹羽化, 羽化后的成虫当天即可交尾产卵。 养虫箱中央放置盛有 10%蔗糖水 的培养皿, 蔗糖水用脱脂棉充分吸附, 以供羽化后的成虫停在脱脂棉上吸食糖水, 来补充体内营养。雌虫产卵后及时将带有卵的叶片取出备用 ^学 , 201 1, 48(4): 1 103- 1 106·)。
1.2.1.2 供试植物材料准备
将白菜、 甘蓝种子漂洗干净, 浸泡 6-7小时后冲洗晾干, 置于吸水的滤纸上进行 催芽, 在隔离环境内直接播种到 5x5塑料育苗钵内, 每株播种 3粒种子, 白菜和甘蓝 长至 3片真叶时开始间苗, 每钵保留 1株, 长至 4片真叶时开始进行诱导施药, 确保 施药前没有小菜蛾侵害。
1.2.1.3 2,2,2-三氟乙基苯并 [1,2,3】噻二唑 -7-甲酸酯诱导抗虫性测定
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对白菜、 甘蓝的诱导抗虫性测 定分别进行了盆栽试验和田间药效试验, 盆栽试验在中国农业科学院蔬菜花卉研 究所试验温室内进行, 田间试验在延庆旧县镇东阳坊村甘蓝种植基地进行。
将供试诱抗剂配制成 50 mg/L、25 mg/L和 10 mg/L三个浓度,对照杀虫剂 10% 虫螨腈悬浮剂配制成 60 mg/L浓度, 以清水处理为空白对照。 待白菜和甘蓝幼苗 长至 4片真叶时, 使用喷雾器将配制好的诱抗剂均匀地喷施到叶片的表面, 诱导 间隔期为 7天, 诱导两次后将各处理的白菜和甘蓝放入隔离温室内进行小菜蛾抗 性鉴定。 在隔离温室内将各药剂处理摆放整齐, 随后将携带小菜蛾虫卵的叶片直 接摆放到每个药剂处理的叶片上, 每重复摆放虫卵数约为 200粒 (Dickson M.H., Shelton A.M., Eigenbrode S.D., Vamosy M.L., Mora M.. Selection for Resistance to Diamondback Moth(Plutrlla xylostella) in Cabbage. Hort Science, 1990, 25( 12):
1643- 1646) , 3〜4d后卵完全孵化, 诱虫即以白菜和甘蓝叶片为食开始生长。 药剂 处理继续按照 7天间隔期持续施药 6次, 每个药剂处理重复 4次。
田间试验地点位于延庆县旧县镇东阳坊村甘蓝种植基地。 供试诱抗剂 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯水剂设置 50 mg/L、 25 mg/L、 10 mg/L三个浓度, 对照杀虫剂 10%虫螨腈悬浮剂设置 60mg/L—个浓度, 另设清水 为空白对照。 甘蓝长至 10片真叶时按照亩用药量 45升兑水施药, 用 AGROLEX 新加坡利农背负式手动喷雾器进行叶面喷雾。 施药间隔期为 7天, 共施药 6次。 每个处理 4次重复, 每次重复 20平方米。 1.2.1.4 损伤指数调査
于第 6次施药后 1周调查叶片的损伤指数 (Dickson M.H., Shelton A.M., Eigenbrode S.D., Vamosy M.L., Mora M. 同上和 Stotz H.U., Pittendrigh B. ., Kroymann J., Weniger K., Fritsche J., Bauke A., Mitchell-olds Τ·, Induced Plant Defence Response against Chewing Insects. Ethylene Signaling Reduces Resistance of Arabidopsis against Egyptian Cptton Worm But Not Diamondback Moth.Plant Physiology, 2000, 124(9): 10071017.), 计算诱导抗病效果。 室内盆栽试验和田间试 验均采用公式 ( 1)计算损伤指数, 采用公式 (2)计算诱导抗病效果。
叶片损伤分级标准: 0级, 无损伤; 1级, 叶片损伤面积占整个叶面积 5%以 下; 3级, 叶片损伤面积占整个叶面积 6%〜15%; 5级, 叶片损伤面积占整个叶 面积 16%〜25%; 7级, 叶片损伤面积占整个叶面积 26%〜50%; 9级, 叶片损伤 面积占整个叶面积 50%以上。
损伤指数 (%) = ∑ (各级病叶数 X 相对级数值) / (调查总叶数 X 9) X 100
(1)
诱导抗病效果(%) = (对照损伤指数 - 处理损伤指数)/ 对照损伤指数 X
100 (2)
1.2.2 2,2,2-三氟乙基苯并 [1,2,3】噻二唑 -7-甲酸酯对辣椒的诱导抗虫性研究
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对辣椒的诱导抗虫性在北京市 大兴区农业局试验基地进行。供试诱抗剂 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二 唑 -7-甲酸酯水剂设置 50 mg/L、 25 mg/L、 10 mg/L三个浓度, 对照杀虫剂 10%虫 螨腈悬浮剂设置 60 mg/L—个浓度, 另设清水为空白对照。 辣椒长至 10片真叶时 按照亩用药量 45升兑水施药, 用 AGROLEX新加坡利农背负式手动喷雾器进行 叶面喷雾。 施药间隔期为 7天, 共施药 6次。 每个处理 4次重复, 每次重复 20 平方米。
第 6次施药后一周进行调查, 每小区 5点取样, 每点调查 5个辣椒植株。 调 查标准及防效计算公式见 1.2.1.4。
2. 结果与分析
2.1 2,2,2-三氟乙基苯并 [1,2,3】噻二唑 -7-甲酸酯对白菜的诱导抗虫效果
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导白菜后对小菜蛾具有较好 的诱导抗虫效果 (图 1)。5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯水剂按 照 50 mg/L施药后的诱诱抗效果分别为 71.28%和 75.45%, 而对照杀虫剂 10%虫螨腈 悬浮剂的防效分别为 53.98%和 59.12% (表 13), 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3] 噻二唑 -7-甲酸酯水剂按照 50 mg/L施药后的诱抗效果均高于对照杀虫剂的防效。 从 试验结果看, 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导抗虫效果稳定, 分 析 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯各个处理间的诱导抗虫效 果, 可以看出随着施用浓度的增大, 诱抗效果有增高的趋势。
表 13. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对白菜的诱导抗虫效果
'J ' n '^ 损伤指数±标准差 平均防效 标准差 损伤指数±标准差 平均防效 标准差
5%2,2,2-三氟乙 50mg/L 3.83±1.02 71.28±7.61a 3.59±0.60 75.45±4.03a 基苯并 [1 ,2,3]噻 25mg/L 4.98±0.81 62.66±6.05ab 5.48±0.68 62.91±4.58b 二唑 -7-甲酸酯 10mg/L 9.48±1.55 28.92±6.35c 10.62±0.64 28.16±4.34c SL
10%虫螨腈 SC 60 mg/L 6.14±0.94 53.98±7.01b 6.04±1.08 59.12±7.27b 清水对照 清水 13.34±0.43 —― 14.79±0.68 ——
注: 同列数据后不同小写字母表示在 5%水平上的差异显著性。
2.2 2,2,2-三氟乙基苯并 [1,2,3】噻二唑 -7-甲酸酯对甘蓝的诱导抗虫效果
2.2.1 2,2,2-三氟乙基苯并 [1,2,3】噻二唑 -7-甲酸酯在盆栽试验中对甘蓝的诱导 抗虫效果
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导甘蓝后对小菜蛾具有较好 的诱导抗虫效果。 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯水剂按照 50 mg/L, 25 mg/L, 10 mg/L施药后的诱抗效果分别为 70.58%、 62.37%、 25.79% (表 14), 对照杀虫剂 10%虫螨腈悬浮剂 60 mg/L的防效为 60.84%。 2, 2, 2-三氟乙基 苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯 50 mg/L处理后的诱抗效果高于对照杀虫剂的防 效。 分析 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯各个处理间的诱导 抗虫效果, 可以看出随着施用浓度的增大, 诱抗效果有增高的趋势。
表 14. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对甘蓝的诱导抗虫效果 药剂 药剂浓度
损伤指数±标准差 平均防效°/^标准差
50mg/L 5.00±0.83 70.58±4.87a
5%的 2,2,2-三氟乙
基苯并 [1 ,2,3]噻二 25mg/L 6.39±0.42 62.37±2.46ab
唑 -7-甲酸酯 SL
10mg/L 12.61±1.05 25.79±6.19c
10%虫螨腈 SC 60 mg/L 6.65±0.79 60.84±4.67b
清水对照 清水 16.99±1.10
注: 同列数据后不同小写字母表示在 5%水平上的差异显著性。
2.2.2 2,2,2-三氟乙基苯并 [1,2,3】噻二唑 -7-甲酸酯在田间试验中对甘蓝的诱导 抗虫效果
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯在田间诱导甘蓝后对小菜蛾的 诱导抗性随着浓度的增加而升高。 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7- 甲酸酯水剂按照 50 mg/L, 25 mg/L, 10 mg/L施药后的诱抗效果分别为 46.48%、 36.51 % , 29.28% (表 15),对照杀虫剂 10%虫螨腈悬浮剂 60 mg/L的防效为 55.56%, 虫螨腈对小菜蛾的防效高于 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯 50 mg/L处理后的诱抗效果。
表 15. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对甘蓝的诱导抗虫效果 药剂 药剂浓度
损伤指数±标准差 平均防效°/<^标准差
50mg/L 10.14±0.36 46.48±0.06b
5%的 2,2,2-三氟
乙基苯并[1 ;2,3]
25mg/L 12.03±1.77 36.51±0.28c
噻二唑 -7-甲酸酯
SL
10mg/L 13.40±0.94 29.28±0.15c
10%虫螨腈 SC 60 mg/L 8.42±0.60 55.56±0.10a
清水对照 清水 18.95±1.19
注: 同列数据后不同小写字母表示在 5%水平上的差异显著性
2.3 2,2,2-三氟乙基苯并 [1,2,3】噻二唑 -7-甲酸酯对辣椒的诱导抗虫效果
2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯诱导辣椒后对甜菜夜蛾具有较 好的诱导抗性 (图 3)。 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯水剂按照
50 mg/L施药后的诱抗效果分别 73.81%和 69.38%, 对照杀虫剂 10%虫螨腈悬浮剂 60 mg/L的防效分别为 54.95%和 51.80% (表 16), 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻 二唑 -7-甲酸酯水剂按照 50 mg/L施药后的诱抗效果高于对照杀虫剂的防效。 从试验 结果可以看出, 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对辣椒的诱导抗虫效 果稳定, 分析 5%的 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯各个处理间的诱 导抗虫效果, 可以看出随着施用浓度的增大, 诱抗效果有增高的趋势。
表 16. 2, 2, 2-三氟乙基苯并 [ 1, 2, 3]噻二唑 -7-甲酸酯对辣椒的诱导抗虫效果 药剂 药剂浓度
损伤指数±标准差 平均防效/^标准差 损伤指数±标准差 平均防效/^标准差
5%的 2,2,2-三氟 50mg/L 5.32±0.47 73.81±2.29a 6.14±0.40 69.38±1.99a 乙基苯并 [1 ,2,3] 25mg/L 8.85±0.61 56.43±2.98b 9.58±0.74 52.25±3.67b 噻二唑 -7-甲酸酯 10mg/L 12.59±1.08 38.05±5.29c 13.28±1.05 33.82±5.23c SL
10%虫螨腈 SC 60 mg/L 9.16±0.36 54.95±1.76b 9.67±0.45 51.80±2.22b 清水对照 清水 20.32±2.43 20.06±1.88
注: 同列数据后不同小写字母表示在 5%水平上的差异显著性 t 从以上实施例的结果可以得出明确的结论: 采用式 (A)所示化合物处理植物能够 获得与常用杀虫剂相当, 甚至更优的抗虫结果; 由于式 (A)所示化合物本身或其代谢 物并无杀虫活性, 而是通过调节作物自身的免疫能力, 增加作物自身抗虫能力达 到抗虫作用, 因此, 本领域普通技术人员不难明白本发明方法不但可以有效控制 园艺作物害虫而不会诱导园艺作物害虫的抗药性, 其还在土壤中无残留, 属于无 公害的环境友好型化合物。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被 单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本 领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所 附权利要求书所限定的范围。

Claims

权 利 要 求
1. 一种式 A化合物的用途,
Figure imgf000026_0001
式中, R选自未取代的或取代的 。直链或支链垸基、未取代的或取代的 C6-3。 芳基、 未取代的或取代的 C5-3。杂芳基、 未取代的或取代的 C6-3。芳基 -C 6垸基-或杂 芳基 -d-6垸基-, 其中, 所述的取代指具有一个或多个选自下组的取代基: 卤素、 d-4垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基;
Ra表示位于苯环上的 1-3个独立地选自下组的取代基: H、 卤素、 CH垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基;
其特征在于, 用于制备抗虫组合物。
2. 如权利要求 1所述的用途, 其特征在于, 所述的抗虫是诱导抗虫。
3. 如权利要求 2所述的用途, 其特征在于, 所述的诱导抗虫是诱导以下植 物产生抗虫性: 粮食作物、 蔬菜、 花卉、 果树。
4. 如权利要求 3所述的用途, 其特征在于, 所述的植物选自下组: 十字花 科植物、 茄科植物、 葫芦科植物;
较佳地, 所述植物选自: 辣椒属植物、 茄属(Solanum)植物、 黄瓜属等; 更佳地, 所述的植物选自: 大白菜、 甘蓝、 花椰菜、 青花菜、 辣椒、 番茄、 茄子。
5. 如权利要求 1所述的用途, 其特征在于, 所述的虫选自: 菜青虫、 小菜 蛾、 甜菜夜蛾、 菜蚜、 蓟马、 烟青虫、 茶黄螨。
6. 如权利要求 1-5中任一所述的用途, 其特征在于, 所述的化合物结构如 式 I所示:
Figure imgf000026_0002
式中, R选自含氟取代的直链或支链垸基链、 芳基、 杂芳基、 芳基 - _4垸基- 或杂芳基 - _4垸基-, 其中, 所述芳基或杂芳基含氟取代基。
7.如权利要求 1-5中任一所述的用途,其特征在于,所述化合物具有下式 (II) 或 (III)所示结构:
Figure imgf000027_0001
(Π)
Figure imgf000027_0002
式(Π)中, n为 1〜10的整数, m为 1〜10的整数, q为 3〜15的整数; 式 (III)中, n为 0〜4的整数, R1代表各种含氟取代的芳基或杂芳基。
. 如权利要求 1-5中任一所述的用途, 其特征在于, 所述的式 A化合物选自
Figure imgf000027_0003
C〇〇CH2CF2CF2CF3 COOCH2CF2CF2CF2CF2H
Figure imgf000027_0004
9. 一种诱导抗虫的组合物, 其特征在于, 所述的组合物含有农药学上可接 受的载体和作为诱导抗虫活性成分的式 A化合物:
Figure imgf000028_0001
式中, R选自未取代的或取代的 。直链或支链垸基、未取代的或取代的 C6-3。 芳基、 未取代的或取代的 C5-3。杂芳基、 未取代的或取代的 C6-3。芳基 -C 6垸基-或杂 芳基 -d-6垸基-, 其中, 所述的取代指具有一个或多个选自下组的取代基: 卤素、 d-4垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基;
Ra表示位于苯环上的 1 -3个独立地选自下组的取代基: H、 卤素、 CH垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基。
10. 一种诱导抗虫的方法, 其特征在于, 所述方法包括以下步骤:
将式 A化合物或权利要求 9所述的组合物施用于植物,
Figure imgf000028_0002
式中, R选自未取代的或取代的 。直链或支链垸基、未取代的或取代的 C6-3。 芳基、 未取代的或取代的 C5-3。杂芳基、 未取代的或取代的 C6-3。芳基 -C 6垸基-或杂 芳基 -C 6垸基-, 其中, 所述的取代指具有一个或多个选自下组的取代基: 卤素、 d-4垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基;
Ra表示位于苯环上的 1 -3个独立地选自下组的取代基: H、 卤素、 CH垸基、 d-4卤代垸基、 d-4垸氧基、 d-4卤代垸氧基、 硝基。
PCT/CN2013/083646 2012-09-17 2013-09-17 苯并噻二唑衍生物的诱导抗虫作用及其应用 WO2014040572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210345773.4A CN103651412B (zh) 2012-09-17 2012-09-17 苯并噻二唑衍生物的诱导抗虫作用及其应用
CN201210345773.4 2012-09-17

Publications (1)

Publication Number Publication Date
WO2014040572A1 true WO2014040572A1 (zh) 2014-03-20

Family

ID=50277652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083646 WO2014040572A1 (zh) 2012-09-17 2013-09-17 苯并噻二唑衍生物的诱导抗虫作用及其应用

Country Status (2)

Country Link
CN (1) CN103651412B (zh)
WO (1) WO2014040572A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908967B2 (en) 2015-07-12 2018-03-06 Flexterra, Inc. Polymeric semiconductors and related devices
US10077262B2 (en) 2015-11-10 2018-09-18 Flexterra, Inc. Thienothiadiazole compounds and related semiconductor devices
US10115902B2 (en) 2015-11-10 2018-10-30 Flexterra, Inc. Azinothiadiazole compounds and related semiconductor devices
US10535822B2 (en) 2014-08-12 2020-01-14 Flexterra, Inc. Molecular and polymeric semiconductors and related devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384321A (en) * 1991-03-06 1995-01-24 Ciba-Geigy Corporation Microbicidal compositions
CN1172111A (zh) * 1996-07-05 1998-02-04 日本拜耳农药株式会社 1,2,3-苯并噻二唑衍生物
CN1311634A (zh) * 1998-07-30 2001-09-05 辛根塔参与股份公司 含有1,2,3-苯并噻二唑衍生物的农药组合物
CN101836640A (zh) * 2010-03-04 2010-09-22 中国农业科学院蔬菜花卉研究所 一种诱抗剂在控制园艺作物土传病害上的应用
CN102532059A (zh) * 2011-12-29 2012-07-04 华东理工大学 苯并[1,2,3]噻二唑含氟衍生物作为植物抗病激活剂的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384321A (en) * 1991-03-06 1995-01-24 Ciba-Geigy Corporation Microbicidal compositions
CN1172111A (zh) * 1996-07-05 1998-02-04 日本拜耳农药株式会社 1,2,3-苯并噻二唑衍生物
CN1311634A (zh) * 1998-07-30 2001-09-05 辛根塔参与股份公司 含有1,2,3-苯并噻二唑衍生物的农药组合物
CN101836640A (zh) * 2010-03-04 2010-09-22 中国农业科学院蔬菜花卉研究所 一种诱抗剂在控制园艺作物土传病害上的应用
CN102532059A (zh) * 2011-12-29 2012-07-04 华东理工大学 苯并[1,2,3]噻二唑含氟衍生物作为植物抗病激活剂的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535822B2 (en) 2014-08-12 2020-01-14 Flexterra, Inc. Molecular and polymeric semiconductors and related devices
US9908967B2 (en) 2015-07-12 2018-03-06 Flexterra, Inc. Polymeric semiconductors and related devices
US10077262B2 (en) 2015-11-10 2018-09-18 Flexterra, Inc. Thienothiadiazole compounds and related semiconductor devices
US10115902B2 (en) 2015-11-10 2018-10-30 Flexterra, Inc. Azinothiadiazole compounds and related semiconductor devices

Also Published As

Publication number Publication date
CN103651412B (zh) 2017-02-01
CN103651412A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2011107030A1 (zh) 一种诱抗剂在控制园艺作物土传病害上的应用
TW200911119A (en) Fungicidal active compound combination
CN104604938A (zh) 一种杀菌剂组合物及其用途
CN103583506B (zh) 一种利用拟长毛钝绥螨防治园艺作物害螨的方法
JP2016199526A (ja) 農園芸用殺菌剤組成物
WO2014040572A1 (zh) 苯并噻二唑衍生物的诱导抗虫作用及其应用
CN106922703A (zh) 一种杀菌组合物
JP5023276B2 (ja) 土壌病害防除剤および土壌病害防除方法
CN112772653B (zh) 二氢香豆素在抑制稗草种子萌发和生长中的应用
WO2015152702A1 (es) Extractos de cascarillas agrícolas efectivo para modificar el metabolismo de la plantas
CN103719115B (zh) 一种杀虫组合物
CN103749525B (zh) 一种杀虫组合物
CN104904719B (zh) 一种杀虫组合物及其控制有害生物的方法
CN105794798B (zh) 一种杀虫组合物
CN103749521A (zh) 一种杀虫组合物
CN109169688A (zh) 一种含杀虫环与甲氨基阿维菌素苯甲酸盐的杀虫组合物及其用途
CN114097802B (zh) 一种含氟环唑和稻瘟灵的乳油剂型
CN101843247B (zh) 基于吡蚜酮的农药组合物
CN104904743B (zh) 杀虫组合物
CN107318857A (zh) 一种杀虫组合物
CN107318862A (zh) 一种杀虫组合物
CN106982842A (zh) 一种杀菌组合物
CN105557721B (zh) 一种杀虫组合物
KR101265868B1 (ko) 벼 해충 동시방제제 및 이를 이용한 벼 해충 방제방법
JPH08104602A (ja) 植物の生体防御増強剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837034

Country of ref document: EP

Kind code of ref document: A1