WO2014040482A1 - 制冷设备 - Google Patents

制冷设备 Download PDF

Info

Publication number
WO2014040482A1
WO2014040482A1 PCT/CN2013/082036 CN2013082036W WO2014040482A1 WO 2014040482 A1 WO2014040482 A1 WO 2014040482A1 CN 2013082036 W CN2013082036 W CN 2013082036W WO 2014040482 A1 WO2014040482 A1 WO 2014040482A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
valve
new
piston
compressor
Prior art date
Application number
PCT/CN2013/082036
Other languages
English (en)
French (fr)
Inventor
龚炳新
Original Assignee
Gong Bingxin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210344608.7A external-priority patent/CN102829569B/zh
Application filed by Gong Bingxin filed Critical Gong Bingxin
Priority to EP13837218.0A priority Critical patent/EP2918946A4/en
Publication of WO2014040482A1 publication Critical patent/WO2014040482A1/zh
Priority to US14/656,718 priority patent/US9777949B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B23/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01B23/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the invention provides a novel refrigeration equipment using a refrigerant such as ammonia or methyl chloride as a working medium.
  • a refrigerant such as ammonia or methyl chloride
  • this new type of refrigeration equipment also includes three-way or multi-way valves, generators, cylinder banks and sealed containers.
  • the cylinder block can be sealed.
  • the atmospheric pressure in the vessel is used to generate electricity and compensate the compressor for power consumption, thus saving energy.
  • the present invention provides a novel refrigeration apparatus.
  • the new refrigeration equipment includes compressors, condensers, expansion valves, evaporators, three-way valves or multi-way valves, generators, cylinder banks and sealed containers. It also includes new cylinders, new valves, forks, and crashes. Blocks and other components.
  • the refrigerant sequentially flows through the compressor, the three-way valve or the multi-way valve, the cylinder block, the condenser, the expansion valve, the evaporator, and finally enters the compressor from the evaporator.
  • the cylinder bank can use the atmospheric pressure in the sealed container to generate electricity, compensate the compressor for power consumption, and achieve refrigeration through thermodynamic cycles.
  • the cylinder group of the new refrigeration equipment is installed in a sealed container, and the sealed container can exchange heat with the outside, and the sealed container is filled with air or other gas, and the pressure in the sealed container and the pressure at the outlet of the compressor are adjusted according to the ambient temperature, so that the sealed container is sealed.
  • the internal pressure is equal to or higher than the refrigerant liquefaction pressure at ambient temperature, which is equal to or lower than the compressor outlet pressure.
  • the cylinder group consists of two or more cylinders, such as cylinder 1 and cylinder 2, because the vapor refrigerant needs to undergo the suction and compression exhaust processes in the cylinder. These processes take time to complete, if the cylinder group is a single cylinder. New refrigeration equipment will not work continuously.
  • the volume of the cylinder is determined by the difference in flow between the flow rate of the vapor refrigerant at the compressor outlet and the flow rate of the liquid refrigerant through the expansion valve. The larger the flow difference, the larger the volume of the cylinder.
  • the number of cylinders is primarily determined by the cooling rate of the condenser. The faster the condenser is cooled, the less the number of cylinders required.
  • each cylinder is made of materials with good thermal insulation properties in order to keep the cylinders at the same temperature as the refrigerant vapors and reduce condensation losses.
  • the structure of each cylinder is the same.
  • Each cylinder has an inlet valve and an exhaust valve, and the piston can move inside these cylinders.
  • Each cylinder is connected to the condenser via a purge valve.
  • the intake ports of cylinders such as cylinder 1 and cylinder 2 can be connected to the outlet of the compressor in sequence. Accordingly, a three-way valve or multi-way valve is installed at the compressor outlet and is connected to the inlets of cylinders such as cylinders 1 and 2, and will enter the interior of cylinders such as cylinder 1 or cylinder 2 when the refrigerant leaves the compressor.
  • the vaporous refrigerant is rapidly adiabatically compressed in the compressor, the temperature rises, the pressure increases, and the vaporous refrigerant is discharged to the compressor, and the vapor refrigerant pressure at the compressor outlet is equal to or higher than the atmospheric pressure in the sealed container.
  • the vapor refrigerant After the vapor refrigerant exits the compressor, it enters the cylinder of cylinder 1 or cylinder 2 of the cylinder bank through a three-way valve or a multi-way valve, for example, first enters the cylinder 1. Initially, the piston is at the bottom of cylinder 1, the cylinder 1 exhaust valve is closed, the cylinder 1 inlet valve is open and the compressor is connected. Pulling the piston to make the steam from the compressor The refrigerant is introduced into the cylinder 1, and the amount of steam entering the cylinder 1 is adjusted by adjusting the pulling height of the piston. The cylinder is first determined according to the flow difference between the flow rate of the vapor refrigerant at the compressor outlet and the flow rate of the liquid refrigerant through the expansion valve.
  • the vaporized refrigerant After the vaporized refrigerant enters the condenser, it releases heat to the cooling water (or ambient air) until its temperature is equal to the ambient temperature.
  • the opening degree of the cylinder exhaust valve is adjusted according to the ambient temperature, so that the pressure in the condenser is equal to the pressure at which the refrigerant liquefies at ambient temperature, so that the vapor refrigerant is liquefied in the condenser.
  • the liquid refrigerant After leaving the condenser, the liquid refrigerant enters the expansion valve, is depressurized and cooled, partially vaporized, and then enters the evaporator.
  • the evaporator has a lower pressure due to the suction of the compressor.
  • the low temperature liquid refrigerant will absorb heat from the evaporator and the environment to become a normal temperature vapor refrigerant, which is finally sucked into the compressor for the next cycle.
  • the present invention uses a new type of cylinder that reduces the resistance to piston movement.
  • the new cylinder is housed in a sealed container.
  • the new type of cylinder includes a cylinder barrel, a rodless side end cover, a piston rod side end cover, a piston, a linear ball bearing in the center of the piston rod side end cover, a corrugated tubular tough soft airtight seal between the piston tip and the cylinder barrel, and the like.
  • the piston rod side end cover is open, the rodless side end cover is provided with an intake and exhaust port, and the intake and exhaust port is connected to the intake and exhaust valve.
  • Two new cylinders share a single piston rod to form a cylinder block.
  • the movement of the two new cylinders is linked.
  • the piston of the new cylinder on one side runs to the bottom of the cylinder, the piston of the new cylinder on the other side will run to the top of the cylinder and vice versa.
  • the shifting fork is mounted on the piston rod of the new cylinder.
  • the shifting fork pushes the collision block on the piston rod of the new valve to control the switch of the four new valves.
  • the intake valve of a new cylinder is closed, the exhaust valve is opened.
  • the intake valve of the other new cylinder is opened and the exhaust valve is closed, and vice versa.
  • the intake and exhaust of the new cylinders are controlled by controlling the switches of the four new valves.
  • the new valve includes a cylinder, a rodless side end cap, a piston rod side end cap, a piston, a linear ball bearing in the center of the piston rod side end cap, a corrugated tubular tough soft airtight seal between the piston tip and the cylinder barrel,
  • the main components such as the conventional valve, the piston rod side end opening.
  • a conventional valve is mounted on the rodless side end cap, one side of the stem is connected to the piston rod, and the other side is connected to the spool.
  • Two new valves are connected to the intake ports of the two new cylinders to form the intake valve. Two new valves share a single piston rod. The movement of the two new valves is linked. When the new valve on one side is closed, the new valve on the other side is opened, and vice versa. That is, when the intake port of one new cylinder is closed, the intake port of the other new cylinder is opened, and vice versa.
  • Two new valves are connected to the exhaust ports of the two new cylinders to form an exhaust valve.
  • Two new valves share a single piston rod. The movement of the two new valves is linked. When the new valve on one side is closed, the new valve on the other side is opened, and vice versa. That is, when the exhaust port of one new cylinder is closed, the exhaust port of the other new cylinder is opened, and vice versa.
  • the fork of the piston rod of the new cylinder is wound with a coil, the coil is perpendicular to the direction of movement of the piston rod, the piston rod
  • the motion drives the coil to move, and a magnet or an excitation device is installed parallel to the moving direction of the piston rod, and the coil moves to cut the magnetic lines of force to generate electricity.
  • FIG. 1 is a schematic view of a system of a novel refrigeration apparatus of the present invention.
  • FIG. 2 is a schematic view showing the structure of a novel cylinder and a novel valve of the novel refrigeration apparatus of the present invention.
  • New refrigeration equipment is very similar to traditional refrigeration equipment, so traditional refrigeration equipment can be converted to new refrigeration equipment.
  • a tee, a cylinder block and a sealed container are required between the compressor outlet of the conventional refrigeration unit and the condenser inlet.
  • the cylinder group consists of two cylinders made of materials with good thermal insulation properties. Each cylinder has an inlet valve and a steam exhaust valve. The piston can move inside the cylinders. Each cylinder passes through the exhaust valve. The condenser is connected, the tee is installed at the compressor outlet, and the inlet valve of the cylinder is connected.
  • the cylinder group is installed in a sealed container.
  • the sealed container is filled with air.
  • the pressure inside the sealed container is higher than the refrigerant liquefaction pressure at ambient temperature, which is equal to the compressor outlet pressure.
  • the pressure in the sealed container and the compressor outlet pressure are adjusted according to the ambient temperature.
  • the vaporous refrigerant can be smoothly entered into the cylinder and can be liquefied in the condenser.
  • the pressure in the sealed container should be set to be greater than 1. 1672 MPa, because at a pressure of 1.672 MPa, 30 degrees of ammonia will liquefy.
  • the pressure in the sealed vessel should be greater than 1.672 MPa to ensure that the ammonia refrigerant can be liquefied in the condenser.
  • the volume of the cylinder can be determined by the flow difference between the flow rate of the refrigerant vapor at the compressor outlet and the flow rate of the liquid refrigerant through the expansion valve. The larger the flow difference, the larger the volume of the cylinder.
  • the vaporous ammonia refrigerant is rapidly adiabatically compressed in the compressor, the temperature rises, and the pressure increases, so that the vapor refrigerant exits the compressor, and the vapor refrigerant pressure at the compressor outlet is equal to the gas pressure in the sealed container.
  • the vaporous ammonia refrigerant After the vaporous ammonia refrigerant exits the compressor, it enters the cylinder 1 or the cylinder 2 of the cylinder group through the cylinder 1 or the intake valve of the cylinder 2, for example, first enters the cylinder 1 first, and at the beginning, the piston is in the cylinder 1 At the bottom, the cylinder 1 exhaust valve is closed, the cylinder 1 inlet valve is open and the compressor is connected.
  • the starter pull-up piston introduces the vaporous ammonia refrigerant from the compressor into the cylinder 1, similar to the suction stroke of the Otto cycle. Since the movement of the two new cylinders is interlocked, when the piston of cylinder 1 runs to the top of the cylinder, the piston of cylinder 2 will run to the bottom of the cylinder.
  • the inlet valve of the cylinder 1 When the inlet valve of the cylinder 1 is closed, the inlet valve of the cylinder 2 is opened and connected to the outlet of the compressor, and the cylinder 2 repeats the same operation as the cylinder 1.
  • the reciprocating motion of the piston rod of the cylinder drives the coil to reciprocate, and the coil moves to cut the magnetic lines of force to generate electricity.
  • the vaporous ammonia refrigerant enters the condenser, it releases heat to the cooling water (or ambient air) until its temperature is equal to At ambient temperature, the vaporous ammonia refrigerant liquefies in the condenser.
  • the liquid ammonia refrigerant leaves the condenser and enters the expansion valve.
  • the pressure is lowered and partially vaporized, and then enters the evaporator.
  • the evaporator has a lower pressure due to the suction of the compressor.
  • the low temperature liquid ammonia refrigerant will absorb heat from the evaporator and the environment into a normal temperature vaporous ammonia refrigerant, and the vaporous ammonia refrigerant is finally sucked into the compressor for the next cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)

Abstract

一种制冷设备,该制冷设备除了包括压缩机(3)、冷凝器(10)、膨胀阀(1)和蒸发器(2)等常规部件外,还包括三通阀(4)或多通阀、发电机、气缸组(5,6)、密封容器(11)等主要部件,制冷剂依次流经压缩机(3)、三通阀(4)或多通阀、气缸组(5,6)、冷凝器(10)、膨胀阀(1)和蒸发器(2),最后从蒸发器(2)进入压缩机(3),气缸组(5,6)能利用密封容器(11)内部大气压力做功发电,并补偿压缩机(3)耗电,因此可以节约电能。

Description

说 明 书 制冷设备 技术领域
本发明提供一种以氨或氯甲烷等制冷剂为工质的新型制冷设备。这种新型制 冷设备除了包括压缩机、冷凝器、膨胀阀和蒸发器等常规部件外, 还包括三通阀 或多通阀、发电机、气缸组和密封容器等主要部件, 气缸组能利用密封容器内大 气压力做功发电, 并补偿压缩机耗电, 因此可以节约电能。
背景技术
我们知道,传统制冷设备非常耗电,传统制冷设备不能利用外界大气压力做 功发电并补偿压缩机耗电, 而全球面临着地球变暖、 化石燃料日渐枯竭的问题。
发明内容
为了解决上述问题,本发明提供一种新型制冷设备。这种新型制冷设备包括 压缩机、 冷凝器、 膨胀阀、 蒸发器、 三通阀或多通阀、 发电机、 气缸组和密封容 器等主要部件, 还包括新型气缸、 新型阀门、 拨叉、 撞块等零部件。
制冷剂依次流经压缩机、 三通阀或多通阀、 气缸组、 冷凝器、 膨胀阀、 蒸发 器, 最后从蒸发器进入压缩机。气缸组能利用密封容器内大气压力做功发电, 并 补偿压缩机耗电, 并通过热力学循环实现制冷。
这种新型制冷设备的气缸组安装在一个密封容器内,密封容器能够和外界进 行热交换,密封容器内充满空气或其它气体,根据环境温度调节密封容器内压力 和压缩机出口压力, 使密封容器内压力等于或高于环境温度下制冷剂液化压力, 等于或低于压缩机出口压力。
气缸组由气缸 1和气缸 2等两个或多个气缸组成,因为汽态制冷剂需要在气 缸内经历吸汽和压缩排汽过程,这些过程都需要时间来完成, 如果气缸组是单独 一个气缸, 新型制冷设备将不能连续工作。气缸的体积由压缩机出口的汽态制冷 剂的流量与液态制冷剂通过膨胀阀时的流量之间的流量差确定,流量差越大,气 缸的体积越大。气缸的数量主要由冷凝器的冷却速度确定,冷凝器的冷却速度越 快, 所需的气缸的数量越少。
这些气缸由隔热性能好的材料制成,目的是为了使气缸始终保持制冷剂蒸汽 所必须具有的温度, 减少冷凝损失。每个气缸的结构是相同的, 每个气缸都有进 汽阀和排汽阀, 活塞能够在这些气缸的内部移动。每个气缸通过排汽阀与冷凝器 连接。
气缸 1和气缸 2等气缸的进气口可以依次连接压缩机的出口。相应地, 一个 三通阀或多通阀安装在压缩机出口, 并连接气缸 1和气缸 2等气缸的入口, 当制 冷剂离开压缩机后将会进入气缸 1或气缸 2等气缸的内部。
汽态制冷剂在压缩机内被急速绝热压缩, 温度升高, 压强增大, 使汽态制冷 剂排出压缩机, 压缩机出口的汽态制冷剂压力等于或高于密封容器内大气压力。
汽态制冷剂排出压缩机后,通过三通阀或多通阀进入气缸组的气缸 1或气缸 2等气缸内, 例如, 先进入气缸 1内。 开始时, 活塞在气缸 1的底部, 气缸 1排 汽阀关闭,气缸 1进汽阀打开并连接压缩机。拉升活塞把从压缩机出来的汽态制 冷剂引入气缸 1, 通过调节活塞的拉升高度调节气缸 1进汽量, 根据压缩机出口 的汽态制冷剂的流量与液态制冷剂通过膨胀阀时的流量之间的流量差,先确定气 缸 1 所需的进汽量及活塞所需的拉升高度, 当活塞拉升到所需高度时, 气缸 1 进汽阀关闭, 排汽阀打开, 排汽阀的开度可调节, 排汽阀开启使气缸 1与其冷凝 器接通,汽态制冷剂进入冷凝器使气缸 1内压力降低,密封容器内大气压力使活 塞受压下降, 从而带动发电机发电。活塞被压到气缸 1底部后关闭排汽阀, 打开 进汽阀并连接压缩机, 再次拉升活塞。如此循环使密封容器内大气压力对活塞压 缩做功发电。
当气缸 1进汽阀关闭时, 气缸 2的进汽阀打开并连接压缩机的出口, 气缸 2 重复与气缸 1 同样的操作。 对于密封容器内气缸组的一系列气缸重复与气缸 1 同样的操作。
汽态制冷剂进入冷凝器后, 向冷却水 (或周围空气)放热,直到其温度等于环 境温度。根据环境温度调节气缸排汽阀的开度, 使冷凝器内压力等于环境温度下 制冷剂液化的压力, 使汽态制冷剂在冷凝器内液化。
液态制冷剂离开冷凝器后进入膨胀阀,降压降温并部分汽化,再进入蒸发器, 蒸发器由于压缩机的抽吸作用因而压强较低。低温液态制冷剂将从蒸发器及环境 中吸热而变为常温汽态制冷剂, 此汽态制冷剂最后被吸入压缩机进行下一循环。
本发明使用一种可减小活塞移动阻力的新型气缸。新型气缸安装在一个密封 容器内。 这种新型气缸包括缸筒、 无杆侧端盖、 活塞杆侧端盖、 活塞、 活塞杆侧 端盖中央的直线滚珠轴承、活塞顶端和缸筒之间的波纹管状坚韧柔软不透气密封 件等主要部件。活塞杆侧端盖开口, 无杆侧端盖上设有进排气口, 进排气口连接 进排气阀门。
两台新型气缸共用一根活塞杆, 构成一个气缸组。两台新型气缸的运动是联 动的, 当一边的新型气缸的活塞运行到气缸底部时, 另一边的新型气缸的活塞将 会运行到气缸顶部, 反之亦然。
新型气缸的活塞杆上安装有拨叉,拨叉推动新型阀门活塞杆上的撞块,控制 四台新型阀门的开关, 当一台新型气缸的进气阀关闭时, 其排气阀开启, 同时, 另一台新型气缸的进气阀开启, 其排气阀关闭, 反之亦然。通过控制四台新型阀 门的开关, 从而控制新型气缸的进气和排气。
这种新型阀门包括缸筒、 无杆侧端盖、 活塞杆侧端盖、 活塞、 活塞杆侧端盖 中央的直线滚珠轴承、 活塞顶端和缸筒之间的波纹管状坚韧柔软不透气密封件、 传统阀门等主要部件, 活塞杆侧端盖开口。无杆侧端盖上安装有传统阀门, 阀杆 一侧连接活塞杆, 另一侧连接阀芯。
两台新型阀门分别连接两台新型气缸的进气口, 构成进气阀。两台新型阀门 共用一根活塞杆。两台新型阀门的运动是联动的, 当一边的新型阀门关闭时, 另 一边的新型阀门开启, 反之亦然。 也就是当一台新型气缸的进气口关闭时, 另一 台新型气缸的进气口开启, 反之亦然。
两台新型阀门分别连接两台新型气缸的排气口, 构成排气阀。两台新型阀门 共用一根活塞杆。两台新型阀门的运动是联动的, 当一边的新型阀门关闭时, 另 一边的新型阀门开启, 反之亦然。 也就是当一台新型气缸的排气口关闭时, 另一 台新型气缸的排气口开启, 反之亦然。
新型气缸的活塞杆的拨叉上绕有线圈, 线圈垂直于活塞杆运动方向, 活塞杆 运动带动线圈运动,平行于活塞杆运动方向安装有磁铁或励磁装置, 线圈运动切 割磁力线, 进而发电。
附图说明
图 1是本发明新型制冷设备的系统示意图。
图 2是本发明新型制冷设备的新型气缸和新型阀门结构示意图。
具体实施方式
下面介绍一具体实施例, 具体实施方式不局限于此一例。
参照图 1和图 2。
新型制冷设备和传统制冷设备非常相似,因此可以把传统制冷设备改装成新 型制冷设备。
为了把传统制冷设备改装成新型制冷设备,需要在传统制冷设备的压缩机出 口和冷凝器进口之间安装一个三通、 一个气缸组及一个密封容器。
气缸组由两个气缸组成,这些气缸由隔热性能好的材料制成, 每个气缸都有 进汽阀和排汽阀, 活塞能够在这些气缸的内部移动, 每个气缸通过排汽阀与冷凝 器连接, 三通安装在压缩机出口, 并连接气缸的进汽阀。
气缸组安装在密封容器内,密封容器内充满空气,密封容器内压力高于环境 温度下制冷剂液化压力, 等于压缩机出口压力,根据环境温度调节密封容器内压 力和压缩机出口压力, 目的是使汽态制冷剂能够顺利进入气缸,及能够在冷凝器 里液化。 例如, 以氨为制冷剂, 如果环境温度为 30度, 则密封容器内压力应该 设定为大于 1. 1672Mpa, 因为在 1. 1672Mpa压力下, 30度的氨将会液化。考虑到 氨制冷剂在管道及气缸内的流动阻力损失, 密封容器内压力应该大于 1. 1672Mpa, 以保证氨制冷剂能够在冷凝器里液化。
气缸的体积可以根据压缩机出口汽态制冷剂的流量与液态制冷剂通过膨胀 阀时的流量之间的流量差确定, 流量差越大, 气缸的体积越大。
汽态氨制冷剂在压缩机内被急速绝热压缩, 温度升高, 压强增大, 使汽态制 冷剂排出压缩机, 压缩机出口的汽态制冷剂压力等于密封容器内气体压力。
汽态氨制冷剂排出压缩机后,通过气缸组的气缸 1或气缸 2的进气阀进入气 缸组的气缸 1或气缸 2内, 例如, 先进入气缸 1内, 开始时, 活塞在气缸 1的底 部, 气缸 1排汽阀关闭, 气缸 1进汽阀打开并连接压缩机。起动机拉升活塞把从 压缩机出来的汽态氨制冷剂引入气缸 1 内, 这个过程类似于奥托循环的吸气冲 程。 由于两台新型气缸的运动是联动的, 当气缸 1的活塞运行到气缸顶部时, 气 缸 2的活塞将会运行到气缸底部。当气缸 1的活塞运行到气缸顶部时,拨叉推动 阀门活塞杆上的撞块, 使气缸 1进汽阀关闭, 排汽阀打开, 排汽阀开启使气缸 1 与其冷凝器接通,汽态制冷剂进入冷凝器使气缸 1内压力降低,气缸 1的活塞受 密封容器内气体压力作用而下降。活塞被压到气缸 1底部后关闭排汽阀, 打开进 汽阀并连接压缩机, 再次拉升活塞。如此循环使密封容器内压力对活塞压缩做功 发电。
当气缸 1进汽阀关闭时, 气缸 2的进汽阀打开并连接压缩机的出口, 气缸 2 重复与气缸 1同样的操作。
气缸活塞杆的往复运动带动线圈往复运动,线圈运动切割磁力线,进而发电。 汽态氨制冷剂进入冷凝器后, 向冷却水 (或周围空气)放热,直到其温度等于 环境温度, 汽态氨制冷剂在冷凝器内液化。
液态氨制冷剂离开冷凝器后进入膨胀阀, 降压降温并部分汽化, 再进入蒸发 器, 蒸发器由于压缩机的抽吸作用因而压强较低。低温液态氨制冷剂将从蒸发器 及环境中吸热而变为常温汽态氨制冷剂,汽态氨制冷剂最后被吸入压缩机进行下 一循环。

Claims

权 利 要 求 书
, 一种新型制冷设备, 其特征在于: 它包括压缩机、冷凝器、膨胀阀、 蒸发器、 三通阀或多通阀、发电机、气缸组和密封容器等主要部件,还包括新型气缸、 新型阀门、拨叉、撞块等零部件, 制冷剂依次流经压缩机、三通阀或多通阀、 气缸组、 冷凝器、 膨胀阀、 蒸发器, 最后从蒸发器进入压缩机, 气缸组能利 用密封容器内大气压力做功发电, 并补偿压缩机耗电;
, 根据权利要求 1所述的一种新型制冷设备, 其特征在于: 所述的气缸组安装 在一个密封容器内, 密封容器能够和外界进行热交换, 密封容器内充满空气 或其它气体, 根据环境温度调节密封容器内压力和压缩机出口压力, 使密封 容器内压力等于或高于环境温度下制冷剂液化压力, 等于或低于压缩机出口 压力;
, 根据权利要求 1所述的一种新型制冷设备, 其特征在于: 所述的气缸组由两 个或多个气缸组成, 这些气缸由隔热性能好的材料制成, 每个气缸都有进汽 阀和排汽阀, 活塞能够在这些气缸的内部移动, 每个气缸通过排汽阀与冷凝 器连接, 一个三通阀或多通阀安装在压缩机出口, 并连接气缸 1和气缸 2等 气缸的入口;
, 根据权利要求 1所述的一种新型制冷设备, 其特征在于: 汽态制冷剂排出压 缩机后,通过三通阀或多通阀进入气缸组的气缸 1或气缸 2等气缸内,例如, 先进入气缸 1内, 开始时, 活塞在气缸 1的底部, 气缸 1排汽阀关闭, 气缸 1 进汽阀打开并连接压缩机。 拉升活塞把从压缩机出来的汽态制冷剂引入气 缸 1, 通过调节活塞的拉升高度调节气缸 1进汽量, 根据压缩机出口的汽态 制冷剂的流量与液态制冷剂通过膨胀阀时的流量之间的流量差, 先确定气缸
1 所需的进汽量及活塞所需的拉升高度, 当活塞拉升到所需高度时, 气缸 1 进汽阀关闭, 排汽阀打开, 排汽阀的开度可调节, 排汽阀开启使气缸 1与其 冷凝器接通, 汽态制冷剂进入冷凝器使气缸 1内压力降低, 密封容器内大气 压力使活塞受压下降, 从而带动发电机发电, 活塞被压到气缸 1底部后关闭 排汽阀, 打开进汽阀并连接压缩机, 再次拉升活塞, 如此循环使密封容器内 大气压力对活塞压缩做功发电, 当气缸 1进汽阀关闭时, 气缸 2的进汽阀打 开并连接压缩机的出口, 气缸 2重复与气缸 1同样的操作, 对于密封容器内 气缸组的一系列气缸重复与气缸 1同样的操作;
, 根据权利要求 1所述的一种新型制冷设备, 其特征在于: 所述的气缸组由两 台新型气缸构成, 两台新型气缸共用一根活塞杆, 两台新型气缸的运动是联 动的, 当一边的新型气缸的活塞运行到气缸底部时, 另一边的新型气缸的活 塞将会运行到气缸顶部, 反之亦然;
, 根据权利要求 1所述的一种新型制冷设备, 其特征在于: 所述的新型气缸的 活塞杆上安装有拨叉, 拨叉推动新型阀门活塞杆上的撞块, 控制四台新型阀 门的开关, 当一台新型气缸的进气阀关闭时, 其排气阀开启, 同时, 另一台 新型气缸的进气阀开启, 其排气阀关闭, 反之亦然, 通过控制四台新型阀门 的开关, 从而控制新型气缸的进气和排气;
, 根据权利要求 1所述的一种新型制冷设备, 其特征在于: 所述的新型阀门包 括缸筒、 无杆侧端盖、 活塞杆侧端盖、 活塞、 活塞杆侧端盖中央的直线滚珠 轴承、 活塞顶端和缸筒之间的波纹管状坚韧柔软不透气密封件、 传统阀门等 主要部件, 活塞杆侧端盖开口。 无杆侧端盖上安装有传统阀门, 阀杆一侧连 接活塞杆,另一侧连接阀芯,两台新型阀门分别连接两台新型气缸的进气口, 构成进气阀,两台新型阀门共用一根活塞杆,两台新型阀门的运动是联动的, 当一边的新型阀门关闭时, 另一边的新型阀门开启, 反之亦然, 也就是当一 台新型气缸的进气口关闭时, 另一台新型气缸的进气口开启, 反之亦然, 两 台新型阀门分别连接两台新型气缸的排气口, 构成排气阀, 两台新型阀门共 用一根活塞杆, 两台新型阀门的运动是联动的, 当一边的新型阀门关闭时, 另一边的新型阀门开启,反之亦然,也就是当一台新型气缸的排气口关闭时, 另一台新型气缸的排气口开启, 反之亦然;
, 根据权利要求 1所述的一种新型制冷设备, 其特征在于: 汽态氨制冷剂排出 压缩机后, 通过气缸组的气缸 1或气缸 2的进气阀进入气缸组的气缸 1或气 缸 2内, 例如, 先进入气缸 1内, 开始时, 活塞在气缸 1的底部, 气缸 1排 汽阀关闭, 气缸 1进汽阀打开并连接压缩机, 起动机拉升活塞把从压缩机出 来的汽态氨制冷剂引入气缸 1内, 由于两台新型气缸的运动是联动的, 当气 缸 1的活塞运行到气缸顶部时, 气缸 2的活塞将会运行到气缸底部, 当气缸 1的活塞运行到气缸顶部时, 拨叉推动阀门活塞杆上的撞块, 使气缸 1进汽 阀关闭, 排汽阀打开, 排汽阀开启使气缸 1与其冷凝器接通, 汽态制冷剂进 入冷凝器使气缸 1内压力降低, 气缸 1的活塞受密封容器内气体压力作用而 下降。 活塞被压到气缸 1底部后关闭排汽阀, 打开进汽阀并连接压缩机, 再 次拉升活塞, 当气缸 1进汽阀关闭时, 气缸 2的进汽阀打开并连接压缩机的 出口, 气缸 2重复与气缸 1同样的操作。
PCT/CN2013/082036 2012-09-13 2013-08-22 制冷设备 WO2014040482A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13837218.0A EP2918946A4 (en) 2012-09-13 2013-08-22 REFRIGERATION APPARATUS
US14/656,718 US9777949B2 (en) 2012-09-13 2015-03-13 Refrigeration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210344608.7 2012-09-13
CN201210344608.7A CN102829569B (zh) 2011-11-03 2012-09-13 新型制冷设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/656,718 Continuation-In-Part US9777949B2 (en) 2012-09-13 2015-03-13 Refrigeration apparatus

Publications (1)

Publication Number Publication Date
WO2014040482A1 true WO2014040482A1 (zh) 2014-03-20

Family

ID=50277600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082036 WO2014040482A1 (zh) 2012-09-13 2013-08-22 制冷设备

Country Status (3)

Country Link
US (1) US9777949B2 (zh)
EP (1) EP2918946A4 (zh)
WO (1) WO2014040482A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868266A (zh) * 2014-03-23 2014-06-18 龚炳新 新型节能制冷设备
CN104089440A (zh) * 2014-07-04 2014-10-08 龚炳新 节能制冷设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE545742C2 (sv) * 2020-11-02 2023-12-27 Johannes Gilberg Maskin för omvandling av i medie trycksatt värmeenergi till mekanisk energi

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1578982A (en) * 1976-03-25 1980-11-12 Krueger W F Apparatus for metering material from one location to another
DE19511758A1 (de) * 1995-03-30 1996-10-02 Klaus Obermann Gmbh Dosier- und Injektionspumpenanordnung
CN2394627Y (zh) * 1999-08-05 2000-09-06 张士博 便携式气动心肺复苏机
CN1526947A (zh) * 2003-09-19 2004-09-08 张东胜 气体动力机
CN102506220A (zh) * 2011-09-22 2012-06-20 北京理工大学 一种利用固体火箭驱动力的阀门快速关闭装置
CN102635414A (zh) * 2011-11-03 2012-08-15 龚炳新 新型热机及其循环
CN102829569A (zh) * 2011-11-03 2012-12-19 龚炳新 新型制冷设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823573A (en) * 1973-03-16 1974-07-16 V Cassady Automotive air conditioning apparatus
WO2005114835A2 (en) * 2004-05-21 2005-12-01 Lund Morten A Air compression apparatus and method of use
US7409833B2 (en) * 2005-03-10 2008-08-12 Sunpower, Inc. Dual mode compressor with automatic compression ratio adjustment for adapting to multiple operating conditions
US7607313B2 (en) * 2006-12-14 2009-10-27 Gm Global Technology Operations, Inc. Vehicle HVAC system
KR20100042969A (ko) * 2008-10-17 2010-04-27 선민영 발전시스템
DE102009057630A1 (de) * 2009-12-09 2011-06-16 Robert Bosch Gmbh Klimatisierungsvorrichtung und thermisch betriebenes Wärmepumpenmodul mit Druckübertrager sowie Verfahren zum Betreiben
US20110203304A1 (en) * 2010-02-25 2011-08-25 Mayekawa Mfg, Co., Ltd. Heat pump unit and reciprocating compressor for refrigerant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1578982A (en) * 1976-03-25 1980-11-12 Krueger W F Apparatus for metering material from one location to another
DE19511758A1 (de) * 1995-03-30 1996-10-02 Klaus Obermann Gmbh Dosier- und Injektionspumpenanordnung
CN2394627Y (zh) * 1999-08-05 2000-09-06 张士博 便携式气动心肺复苏机
CN1526947A (zh) * 2003-09-19 2004-09-08 张东胜 气体动力机
CN102506220A (zh) * 2011-09-22 2012-06-20 北京理工大学 一种利用固体火箭驱动力的阀门快速关闭装置
CN102635414A (zh) * 2011-11-03 2012-08-15 龚炳新 新型热机及其循环
CN102829569A (zh) * 2011-11-03 2012-12-19 龚炳新 新型制冷设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868266A (zh) * 2014-03-23 2014-06-18 龚炳新 新型节能制冷设备
CN103868266B (zh) * 2014-03-23 2016-05-18 龚炳新 新型节能制冷设备
CN104089440A (zh) * 2014-07-04 2014-10-08 龚炳新 节能制冷设备
US9920959B2 (en) 2014-07-04 2018-03-20 Bingxin Gong Refrigeration device

Also Published As

Publication number Publication date
US20150184897A1 (en) 2015-07-02
US9777949B2 (en) 2017-10-03
EP2918946A4 (en) 2016-10-05
EP2918946A1 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
CN101900447B (zh) 带调相机构的g-m制冷机
US9920959B2 (en) Refrigeration device
US8276384B2 (en) Ambient temperature thermal energy and constant pressure cryogenic engine
JP5355071B2 (ja) 磁気冷凍デバイスおよび磁気冷凍システム
CN101576327B (zh) 一种双温制冷循环系统
US11408406B2 (en) GM cryocooler and method of operating GM cryocooler
CN102809253B (zh) 两相流膨胀机
WO2014040482A1 (zh) 制冷设备
CN108800713B (zh) 采用斯特林制冷机的多温区风冷冰箱及控温方法
CN103930674A (zh) 气体平衡布雷顿循环式冷水蒸气低温泵
US10570851B2 (en) Heat engine
CN201764746U (zh) 带调相机构的g-m制冷机
WO2014018041A1 (en) Brayton cycle engine
CN102721223B (zh) 新型制冷机
JP6529850B2 (ja) 極低温冷凍機および極低温冷凍機の運転方法
CN106782011A (zh) 一种用于实训的制冷系统
JP6087168B2 (ja) 極低温冷凍機
Subiantoro Expander-based atmospheric water harvesting in the tropics
US20100263392A1 (en) Refrigerator
CN102374690A (zh) 一种热压缩机驱动的制冷机
CN102878620A (zh) 一种二相流制冷系统
CN202915475U (zh) 一种二相流制冷系统
KR102639944B1 (ko) 액화수소밸브용 시험장치
CN107062700A (zh) 一种高效节能的空气能制冷系统
CN102853589B (zh) 制冷机及其循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013837218

Country of ref document: EP