WO2014038000A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2014038000A1
WO2014038000A1 PCT/JP2012/072493 JP2012072493W WO2014038000A1 WO 2014038000 A1 WO2014038000 A1 WO 2014038000A1 JP 2012072493 W JP2012072493 W JP 2012072493W WO 2014038000 A1 WO2014038000 A1 WO 2014038000A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal body
insulated
conversion device
unit
power conversion
Prior art date
Application number
PCT/JP2012/072493
Other languages
French (fr)
Japanese (ja)
Inventor
勇一郎 吉武
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2012/072493 priority Critical patent/WO2014038000A1/en
Publication of WO2014038000A1 publication Critical patent/WO2014038000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14325Housings specially adapted for power drive units or power converters for cabinets or racks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a power converter, and more particularly to isolation of the power converter.
  • Power converters are important key components in power electronics, and improving the conversion efficiency of power converters is an important issue.
  • miniaturization of the power converter board is also an important issue from the viewpoint of space saving and direct reduction of material cost.
  • Power converters such as inverters, converters, power conditioners and the like that exceed the rated 500 V are usually configured in units called unit cells.
  • power converter boards such as an inverter board, have a structure which stores a plurality of unit cells.
  • Patent documents 1 to 4 and Non-patent document 1 relate to an electric device having a high voltage conductor such as a pipeline bus bar or a winding conductor.
  • Patent Document 1 relates to an electrical device having a high voltage conductor: "The high voltage conductor is coated with two or more kinds of materials having different characteristics, for example, a material having good adhesion to metal, and the outside is further insulated It is described as “coating with the superior material of (2) to improve both the adhesion and the insulation” (see the summary). In addition, as a material having excellent insulating properties, it is described that "a method of coating an insulator such as epoxy or fluorine resin can be used” (see paragraph 0009).
  • Patent Documents 1 to 4 and Non-patent Document 1 it is difficult to apply the method of complex insulation disclosed in Patent Documents 1 to 4 and Non-patent Document 1 to a unitized power converter to complex insulation.
  • thermosetting resin as solid insulation
  • preheating of the unit body is required.
  • the inverter unit incorporated in the unit main body includes equipment with low heat resistance such as a capacitor, it is difficult to preheat the unit main body after assembling the inverter unit into the unit main body.
  • the unit case is assembled with, for example, a metal having a thickness of about 2 to 3 mm, the unit angle (bending radius) R is as small as, for example, 0.1 mm. For this reason, when solid insulation is mounted, swelling and peeling of the insulator tend to occur at the corners. On the other hand, since a thin (for example, 1 mm thick as described later) insulating coating is required in a wide area of the flat portion of the unit housing, it is required to maintain the strength of the insulator.
  • this invention makes it a subject to provide the power converter device which can be reduced in size and improved in reliability.
  • the present invention is a power converter characterized by providing a solid insulator so that an electric field concentration part of a sharp high voltage part may be covered.
  • FIG. 1 is an overall view of a power conversion device 1.
  • the power conversion device 1 includes a plurality of unit cells 2, a ventilation duct 7 for air cooling the unit cells 2, a panel case 8 for supporting the unit cells 2, and an insulating plate 9. Is equipped.
  • a power conversion device 1 such as an inverter, a converter, or a power conditioner is configured in units called unit cells 2.
  • power converter 1 is explained as what is a high voltage direct inverter.
  • the unit cell 2 has a switching element 23 (see FIG. 3) and the like, and since the switching element 23 (see FIG. 3) and the like generate heat, a ventilation duct 7 for air cooling the unit cell 2 is provided.
  • the unit cell 2 is disposed on the shelf plate 81 of the panel case 8 via the insulating plate 9.
  • the panel case 8 is a case of the power conversion device 1, and the shelf board 81 supports the unit cell 2.
  • the panel case 8 and the shelf plate 81 are formed of metal (for example, iron, SUS (Steel Use Stainless; stainless steel), hot-dip galvanized steel sheet, aluminum). Moreover, the panel case 8 and the shelf plate 81 are electrically grounded.
  • the high voltage direct inverter since a high voltage is applied to the unit cell 2 or components in the unit cell 2, it is necessary to insulate from the ground region, and it is necessary to secure the space insulation distance and the creepage insulation distance. Similarly, since the potentials and phases of the unit cells 2 are different from each other, it is necessary to secure a space insulation distance and a creepage insulation distance between the unit cells 2. Further, in the high voltage direct inverter, since the phase is different in each stage, it is recommended to secure the insulation distance defined by the standard.
  • the power conversion device 1 is a ground metal casing that supports the unit cell 2 and the unit cell 2 by laying the insulating plate 9 that is an insulator under the unit cell 2. It is possible to secure the insulation distance between the shelf board 81 and the like.
  • the space insulation distance is 60 mm, which is a large value.
  • the power converter may be miniaturized in order to secure the space insulation distance (for example, 60 mm for a 6 kV class inverter). It was difficult. Furthermore, when the switching element fails, the generation of the conductive gas significantly reduces the insulation and may cause a short circuit. For this reason, it was necessary to secure a longer distance between the upper surface of the unit cell 2 and the shelf plate 81 thereabove in consideration of the decrease in insulation due to the generation of the conductive gas.
  • FIG. 2 is a side view around the unit cell 2 of the power conversion device 1 according to the first embodiment as viewed in the direction of arrow A in FIG.
  • the shelf board 81 supporting the unit cell 2 is formed with a beam 82 for maintaining the structural strength.
  • the unit cell 2 (the unit case 21; see FIG. 3) has a high potential, so that the unit cell 2 (the unit case 21; see FIG. 3) and the shelf board 81 have a convex shape in the direction of the unit cell 2. Between the beam 82, the highest electric field is obtained. In order to shorten the space insulation distance between the unit cell 2 and the beam 82, it is necessary to improve the insulation.
  • the power conversion device 1 includes the metal body 5 to be insulated, which is the metal body 3 having the insulator 4 applied to the surface thereof.
  • the high electric field portion field concentration portion to be described later
  • a part of the unit cell 2 is covered with the metal body 5 to be insulated.
  • the space insulation distance between the unit cell 2 and the beam 82 can be shortened.
  • the conventional standard is established. Even if the space insulation distance is shortened (for example, about 50 to 90%), it is possible to have insulation properties equal to or more than conventional air insulation.
  • FIG. 3 is a schematic view for explaining the metal object 5 to be insulated of the power conversion device 1 according to the first embodiment, and is a cross-sectional view taken along the line BB of FIG.
  • the unit cell 2 includes a unit casing 21 formed by combining metal plates (for example, iron, SUS (Steel Use Stainless; stainless steel), aluminum), a switching element 23 such as an IGBT, and an IGBT.
  • a bus bar 26 which is a conductor (for example, copper, aluminum) electrically connecting the radiation fin 24 for cooling, the smoothing capacitor 25 electrically connected to the switching element 23, and the switching element 23 and the smoothing capacitor 25.
  • a control board (not shown).
  • the unit casing 21 is structured to have a potential (for example, the emitter potential of the IGBT) with respect to the ground (the shelf plate 81 and the beam 82).
  • the thickness of the beam 82 of the shelf plate 81 is about 5 mm, and the angle R (bending radius) of the end 83 is, for example, about 0.5 mm.
  • the unit housing 21 is formed of a metal plate having a thickness of about 2 mm, and the corner R (bending radius) of the end 22 is, for example, about 0.1 mm.
  • the unit cell 2 is solid-insulated. That is, the metal object 5 to be insulated is disposed so as to cover the electric field concentration portion.
  • the electric field concentration portion indicates a place where a voltage is applied, the geometric shape is sharp, and the distance to the ground plane is short.
  • the beam 82 of the shelf plate 81 is a thick member as compared with the unit housing 21 and the electric field concentration is alleviated by rounding the corner of the longitudinal end 83 of the beam 82 (increasing the bending radius R). can do.
  • unit housing 21 has a thickness of about 2 mm, and it is difficult to round the corner of its end 22 structurally, so the bending radius R can not be easily increased, and the geometrical shape is sharp.
  • the electric field is concentrated. For this reason, the to-be-insulated metal body 5 is arrange
  • the to-be-insulated metal body 5 includes the metal body 3 and the insulator 4 applied to the surface of the metal body 3 as described above, and as shown in FIG. It is done.
  • the metal body 3 is a substantially U-shaped member opened downward as shown in FIG. 3 and is made of a metal plate (for example, iron, SUS (Steel Use Stainless; stainless steel), molten steel plate, aluminum). It is formed by bending. Here, the metal body 3 is bent so as to form a bulge 31 that bulges outward. In addition, screw holes (not shown) for fixing to the unit housing 21 with the screws 32 are provided at both end portions of the metal body 3.
  • a metal plate for example, iron, SUS (Steel Use Stainless; stainless steel), molten steel plate, aluminum. It is formed by bending.
  • the metal body 3 is bent so as to form a bulge 31 that bulges outward.
  • screw holes (not shown) for fixing to the unit housing 21 with the screws 32 are provided at both end portions of the metal body 3.
  • the insulator 4 is an inner surface of the metal body 3 (a surface on the side of the unit case 21 when the metal body 5 covers the unit case 21), an outer surface (the metal case 5 to be insulated covers the unit case 21).
  • both ends of the metal body 3 fixed with the screws 32 are not covered with the insulator 4 and the metal body 3 is exposed. ing.
  • the thickness of the insulator 4 is preferably about 0.1 mm to 1.0 mm in a 6 kV class inverter and about 0.1 mm to 2.0 mm in an 11 kV class inverter. Thereby, since it can be set as the compound insulation structure of the insulator 4 and air, the insulation distance of the unit housing
  • the insulation improvement can be secured, so if the thickness is made excessive, the cost of the insulator 4 becomes Rising and undesirable.
  • the powder coating method is most desirable in terms of shortening the manufacturing time while preventing microdischarge by improving the adhesion to the metal body 3.
  • the thickness of the metal body 3 is desirably about 1 to 5 mm.
  • the insulator 4 is applied by fluid immersion. For this reason, when the plate thickness of the metal body 3 is less than 1 mm, the heat quantity of preheating is insufficient, and the thickness of the insulator 4 in one fluid immersion does not become a desired thickness, which is not desirable.
  • the plate thickness of the metal body 3 is made larger than 5 mm, the effect of shortening the insulation distance by the plate thickness of the metal body 3 is reduced, which is not desirable.
  • the substantially U-shaped metal body 3 which opens downward is provided on the outside (unit housing) at a portion corresponding to the end 22 of the unit housing 21 when the metal body 5 to be insulated is fitted into the unit cell 2. It is bent so as to form a bulge 31 which bulges on the side opposite to the end 22 of the body 21. And the insulator 4 is given so that the inner surface, the outer surface, and the side of the metal body 3 may be covered. By thus forming the bulge portion 31 in the metal body 3, the manufacturing cost of the metal body 5 to be insulated can be reduced.
  • the insulator 4 when the insulator 4 is applied to the surface of the metal body 3 when the metal body 3 is bent at a right angle without forming the bulge portion 31, the insulator 4 is accumulated in a fillet shape at the inner corner of the metal body 3.
  • the thickness is increased, which makes it difficult to mount the metal object 5 to be insulated on the unit cell 2 (unit housing 21). For this reason, the process of shaving a part of insulator 4 of the inner corner part of the metal body 3 etc. is needed, and the manufacturing cost of the to-be-insulated metal body 5 becomes high.
  • the process of scraping a part of the insulator 4 is Although not necessary, the masking process requires an artificial process, and the manufacturing cost of the metal object 5 to be insulated is increased.
  • the bulged portion 31 in the metal body 3 it is possible to absorb the stagnation of the insulator 4 generated in the inner corner portion of the metal body 3 and eliminate the process of scraping the insulator 4 partially.
  • the manufacturing cost of the metal object 5 to be insulated can be reduced.
  • the insulator 4 can be applied to both surfaces of the metal body 3 by forming the bulge portion 31 in the metal body 3, masking processing is also unnecessary, and the manufacturing cost of the metal body 5 to be insulated can be reduced. it can.
  • the above-described effect can be obtained by forming the bulging portion 31 so as to expand, for example, by about 0.5 to 2.0 mm on the outer side (the side opposite to the end 22 of the unit housing 21, the left and right direction in FIG. You can get it.
  • the bulge 31 may be about 1 mm.
  • the geometrical shape of the bent portion of the metal body 3 is also gentler compared to the case where it is bent at a right angle, but a sufficient electric field relaxation effect can be obtained (for example, bending The radius R is not 5 mm or more).
  • the to-be-insulated metal body 5 since it can be set as the compound insulation structure of the insulator 4 and air, the insulation distance of the unit housing
  • the insulator 4 is not applied to the metal body 3 at both end portions (peripheral portions of screw holes not shown) of the metal object 5 to be insulated, and the metal body 3 is exposed.
  • the metal body 3 and the unit housing 21 are made to have the same potential by covering the unit metal 2 with the metal body 5 to be insulated and fixing the metal body 3 of the metal body 5 to be insulated and the unit housing 21 with the screws 32. It is possible to Thereby, discharge can be prevented from occurring between the metal body 3 and the unit housing 21. Further, since the metal body 3 and the beam 82 can bear the potential difference between the unit case 21 and the beam 82, a composite insulating structure of the insulator 4 and air can be obtained.
  • the exposed area (the position of the screw 32) of the metal body 3 of the metal body 5 to be insulated is formed at a position separated from the beam 82 (the shelf plate 81) by the space insulation distance or more, to secure insulation. It is possible to
  • the metal object 5 to be insulated there is a region where the metal member 3 is exposed around the screw holes at both ends of the metal member 5 to be insulated, and the metal member 3 and the unit housing 21 have the same potential with the screw 32. Although it has been described that they are fixed as described above, the present invention is not limited to this.
  • the insulator 4 is removed, and the metal body 3 and the unit case 21 are electrically connected by a wire to make the same potential. It may be.
  • the insulation property is significantly lowered by the change between the air atmosphere and the conductive gas atmosphere between the unit housing 21 and the beam 82. May cause a short circuit.
  • the space between the unit case 21 (metal body 3) and the beam 82 has a composite insulation structure of the insulator 4 and air.
  • the distance from the metal object 5) to the beam 82 is short. For this reason, even if it changes from an air atmosphere to a conductive gas atmosphere, the decrease in the insulation property is slight, and the insulation can be secured by the insulator 4, so that the occurrence of a short circuit can be prevented.
  • the exposed area (the position of the screw 32) of the metal body 3 of the metal object 5 to be insulated is not a composite insulation structure, and the insulation property is secured by air alone.
  • FIG. 7 is a graph showing the relationship between the dielectric breakdown voltage in the air atmosphere and the dielectric breakdown voltage in the conductive gas atmosphere.
  • the dielectric breakdown voltage in the air atmosphere is 1.0
  • the dielectric breakdown voltage in the conductive gas atmosphere is 1.5.
  • switching is performed by forming the exposed area (the position of the screw 32) of the metal body 3 of the metal object 5 to be insulated at a position 1.5 times or more the space insulation distance from the beam 82 (shelf plate 81). Even when the element fails and a conductive gas is generated, insulation can be secured to prevent the occurrence of a short circuit.
  • the substantially U-shaped insulated metal body 5 forms the insulated metal body 5 using the metal body 3 long in the longitudinal direction, and the exposed area of the metal body 3 of the insulated metal body 5 (
  • the position of the screw 32 at a position at least 1.5 times the space insulation distance from the beam 82 (shelf plate 81)
  • insulation can be secured and short circuit can be prevented from occurring. That is, the distance from the unit cell 2 (insulated metal body 5) to the beam 82 is shorter than the distance between the unit casing 21 and the beam 82 of the configuration in which the insulating property is ensured by the conventional air alone. Even if the switching element fails and a conductive gas is generated as it is, insulation can be secured to prevent occurrence of a short circuit.
  • the power conversion device 1 using the metal object 5 to be insulated can have an electric field concentration part as a composite insulation structure, and compared with a power conversion device having a configuration in which the insulation property is secured with conventional air alone, Even if the distance from the cell 2 to the beam 82 is shortened, insulation can be ensured to prevent a short circuit from occurring.
  • the power converter 1 can be miniaturized, and the integration rate of the unit cells 2 can be increased.
  • the metal member 3 can be used as an inner core of the insulator 4, and the strength of the insulator 4 can be maintained.
  • the unit metal 2 is covered with the metal object 5 to be insulated, it is not necessary to provide a solid insulator directly on the unit housing 21.
  • metal body 5 to be insulated is disposed so as to cover the unit cell 2. Therefore, when the unit cell 2 is taken out from the panel case 8, the metal object 5 to be insulated can be taken out together.
  • the metal body 5 to be insulated can be replaced or inspected in accordance with the replacement or inspection of the unit cell 2, and the workability of the replacement operation or the inspection operation can be improved. Further, if the metal object 5 to be insulated is also exchanged together with the unit cell 2, the reliability of the metal object 5 to be insulated can be secured.
  • the metal object 5 to be insulated is disposed so as to cover a part of the unit cell 2, the case of insulating the entire surface of the unit cell 2 or the case of insulating the lower surface of the shelf plate 81 and the entire surface of the beam 82 In comparison, the cost of the insulator can be reduced.
  • the metal object 5 to be insulated can improve productivity and improve attachment to the unit cell 2.
  • the power conversion device 1 using the metal object 5 can ensure insulation and prevent the occurrence of a short circuit. Thereby, the reliability of the power converter 1 can be improved.
  • FIG. 4 is a schematic view for explaining the insulated metal body 5A of the power conversion device according to the second embodiment, and is a cross-sectional view taken along the line BB in FIG.
  • the power converter according to the second embodiment differs from the power converter 1 according to the first embodiment (see FIGS. 1 to 3) in the configuration of the metal body 5 to be insulated.
  • 5 A of insulated metal bodies with which the power converter device which concerns on 2nd Embodiment is provided are demonstrated.
  • the same reference numerals are given to parts in common with the first embodiment, and duplicate explanations are omitted.
  • An insulated metal body 5A shown in FIG. 4 has a metal body 3A and an insulator 4A.
  • the metal body 3A is different from the metal body 3 of the first embodiment in that the bulge portion 31 is not formed.
  • the insulator 4A is different in that it is not applied to the inner surface of the metal body 3A (the surface on the side of the unit case 21 when the metal body 5A covers the unit case 21).
  • the metal body 3A is bent into a U shape by bending, the inner surface of the metal body 3A is masked, the insulator 4A is applied to the metal body 3A by a powder coating method or the like, and the masking is removed. An insulating metal body 5A is to be produced.
  • the order of the bending process of the metal body 3A and the masking process of the inner surface of the metal body 3A may be reversed.
  • the power conversion device insulated metal body 5A according to the second embodiment can eliminate the need for the bulge 31 of the metal body 3. For this reason, even metals which are difficult to process can be applied to the metal body 3A.
  • FIG. 5 is a schematic view for explaining the metal object 5B of the power conversion device according to the third embodiment, and is a cross-sectional view taken along the line BB of FIG.
  • the power converter according to the fourth embodiment differs from the power converter 1 according to the first embodiment (see FIGS. 1 to 3) in the configuration of the metal body 5 to be insulated.
  • the metal body 5B to be insulated provided in the power converter according to the third embodiment will be described below.
  • the same reference numerals are given to parts in common with the first embodiment, and duplicate explanations are omitted.
  • An insulated metal body 5B shown in FIG. 6 has a metal body 3B and an insulator 4B.
  • the metal body 3B includes an electric field relaxation member 33 attached to the end 22 (electric field concentration portion) of the unit housing 21 and a screw 32B for fixing the electric field relaxation member 33 to the unit housing 21 so as to be energized.
  • the insulator 4B is different in that the insulator 4B is provided on the outer surface of the metal body 3B and the upper portion of the unit housing 21.
  • the electric field relaxation member 33 is attached to the end 22 (field concentration portion) of the unit housing 21 with the screw 32B to form the metal body 3B, and the outer surface of the metal body 3B and the upper part of the unit housing 21 are coated by powder coating method or the like.
  • the insulator 4B is applied to form the metal object 5B to be insulated.
  • the electric field concentration is alleviated.
  • the electric field at the end 22 of the unit housing 21 having the highest electric field is alleviated, and the insulation distance can be further shortened.
  • the electric field reducing member 33 is directly attached to the unit housing 21.
  • the present invention is not limited to this.
  • the electric field relaxation member 33 may be provided on the metal object 5 to be insulated in the first embodiment. That is, the electric field relaxation member 33 is attached to the bent metal body 3 so that current can be supplied, the insulator 4 is applied to the metal body 3 to which the electric field relaxation member 33 is attached by powder coating method, etc. You may create Similarly, the electric field relaxation member 33 may be provided in the metal body 5A to be insulated of the second embodiment.
  • FIG. 6 is a schematic cross-sectional view of a unit cell 2A for explaining the composite insulation structure of the power conversion device according to the fourth embodiment.
  • the power conversion device 1 according to the first to third embodiments has been described as having a structure in which the unit housing 21 has a potential with respect to the ground (the shelf plate 81 and the beam 82), but the fourth embodiment
  • the unit cell 2A of the power conversion device according to the embodiment has a structure in which the unit casing 21 is grounded.
  • the same reference numerals are given to parts in common with the first embodiment, and duplicate explanations are omitted.
  • the unit cell 2A includes a unit casing 21 formed by combining metal plates (for example, iron, SUS, hot-dip galvanized steel sheet, aluminum), a switching element 23 such as an IGBT, and a radiation fin 24 for cooling the IGBT.
  • a smoothing capacitor 25 electrically connected to the switching element 23, a bus bar 26 which is a conductor (for example, copper, aluminum) electrically connecting the switching element 23 and the smoothing capacitor 25, a radiation fin 24 and a unit housing It has an insulation heat transfer member 27 which can insulate the body 21 and can transfer heat from the radiation fins 24 to the unit casing 21, a control board (not shown), and the like.
  • the switching element 23 such as an IGBT and the radiation fin 24 may have a potential due to neutral point grounding and the like.
  • insulation is secured with the unit housing 21 to short circuit. It is required to prevent the occurrence of
  • Insulators 41A and 41B are applied to the electric field concentration portion to shorten the insulation distance.
  • Insulating materials 41A and 41B are applied to the switching element 23, the radiation fin 24 and the bus bar 26 which are close to the side plate surfaces 21A and 21B of the unit casing 21 which are grounded, to form a composite insulating structure.
  • Insulators 41A and 41B may be provided only at the corner portions of the switching element 23, the radiation fin 24, and the bus bar 26 in which the electric field is particularly concentrated to form a composite insulation structure. Thereby, the insulation at the electric field concentration portion can be secured, and the unit cell 2A can be miniaturized.
  • the power converter concerning this embodiment is not limited to the composition of the above-mentioned embodiment, A various change is possible within the range which does not deviate from the meaning of an invention .
  • the power conversion device 1 according to the present embodiment has been described as a high voltage direct inverter, the present invention is not limited to this, and can be applied to a converter, a power conditioner, and the like.
  • the composite insulation of the unit housing 21 and the beam 83 will be described
  • the composite insulation of the switching element 23, the radiation fin 24, the bus bar 26 and the unit housing 21 the present invention is not limited to this, and can be applied to the entire space insulation between different potentials.

Abstract

Provided is a more compact power conversion device having improved reliability. A solid insulator (4) is provided so as to cover an electrical field concentrated section (22) of a sharp high-voltage section (21). The electrical field concentrated section (22) is covered by an insulated metal body (5) being the solid insulator (4) applied to a metal body (3). The metal body (3) is electrically connected to the high-voltage section (21). The metal body (3) has a bent section and a bulging section (31) is provided in the bent section. The insulated metal body (5) has the solid insulator (4) applied to both surfaces of the metal body (3).

Description

電力変換装置Power converter
 本発明は、電力変換装置に関し、特に電力変換装置の絶縁に関する。 The present invention relates to a power converter, and more particularly to isolation of the power converter.
 環境調和型社会を実現する上での重要な技術の一つとして、電気エネルギの有効活用が挙げられる。電気エネルギを有効に活用するためには、電気の形を最適に変えることができるパワーエレクトロニクス技術が必要不可欠である。 One of the important technologies to realize an environment-friendly society is the effective use of electrical energy. In order to make effective use of electrical energy, power electronics technology capable of optimally changing the form of electricity is essential.
 電力変換装置は、パワーエレクトロニクスにおける重要なキーコンポーネントであり、電力変換装置の変換効率を向上することが重要な課題となっている。また、電力、鉄道、産業などに用いられる大型の電力変換装置においては、省スペース化や直接材料費削減の観点から電力変換器盤の小型化も重要な課題となっている。 Power converters are important key components in power electronics, and improving the conversion efficiency of power converters is an important issue. In addition, in the case of large-sized power converters used for electric power, railways, industry, etc., miniaturization of the power converter board is also an important issue from the viewpoint of space saving and direct reduction of material cost.
 定格500Vを超えるインバータ、コンバータ、パワーコンディショナなどの電力変換装置は、通常、ユニットセルと呼ばれる単位で構成される。そして、インバータ盤などの電力変換器盤は、複数のユニットセルを格納する構造となっている。 Power converters such as inverters, converters, power conditioners and the like that exceed the rated 500 V are usually configured in units called unit cells. And power converter boards, such as an inverter board, have a structure which stores a plurality of unit cells.
 ユニットと盤筐体(電力変換器盤の筐体)の間、もしくは、ユニットの相互間には、空間絶縁距離および沿面絶縁距離を設けて、異なる電位を保つ必要がある。絶縁が保てなくなると、電力変換装置としての機能を失するばかりでなく、短絡時のアーク放電により電力変換器盤自体を大きく損傷するおそれがある。 It is necessary to provide a space insulation distance and a creepage insulation distance between the unit and the chassis (the casing of the power converter board) or between the units to maintain different potentials. If the insulation can not be maintained, not only the function as the power conversion device is lost, but also the power converter board itself may be greatly damaged by arc discharge at the time of short circuit.
 従来の電力変換器盤では、前述の空間絶縁距離を空気のみで絶縁しているため、絶縁距離を大きくとる必要があり、電力変換器盤の小型化が難しい状況にある。 In the conventional power converter board, since the above-mentioned space insulation distance is insulated only with air, it is necessary to take a large insulation distance, and it is difficult to miniaturize the power converter board.
 ところで、母線やスイッチギヤ(GIS(Gas Insulated Switch gear;ガス絶縁開閉装置)等の開閉装置)において、絶縁性に優れる固体と空気の複合絶縁構造を適用することで絶縁距離を短縮することが実用化されている。なお、複合絶縁の手法としては、特許文献1~4や非特許文献1に開示されている。 By the way, it is practical to shorten the insulation distance by applying a composite insulation structure of solid and air which is excellent in insulation property to a bus bar or a switchgear (switching device such as GIS (Gas Insulated Switch gear)). It has been The methods of composite insulation are disclosed in Patent Documents 1 to 4 and Non-Patent Document 1.
特開平5-190356号公報JP-A-5-190356 特開平8-203755号公報JP-A-8-203755 特開2009-99332号公報JP, 2009-99332, A 特開2010-97865号公報Unexamined-Japanese-Patent No. 2010-97865
 特許文献1~4や非特許文献1は、管路母線や巻線導体等の高電圧導体を有する電気機器に関するものである。 Patent documents 1 to 4 and Non-patent document 1 relate to an electric device having a high voltage conductor such as a pipeline bus bar or a winding conductor.
 例えば、特許文献1は、高電圧導体を有する電気機器に関して、「高電圧導体を特性の異る2種類以上の材料、例えば金属との接着性の良い材料で被覆し、更にその外側を絶縁特性の優れた材料で被覆し、接着性を絶縁性の両方を向上させる」と記載されている(要約参照)。また、絶縁特性の優れた材料としては、「例えば、エポキシやフッ素樹脂等の絶縁物をコーティングする手法を用いることができる」と記載されている(段落0009参照)。 For example, Patent Document 1 relates to an electrical device having a high voltage conductor: "The high voltage conductor is coated with two or more kinds of materials having different characteristics, for example, a material having good adhesion to metal, and the outside is further insulated It is described as "coating with the superior material of (2) to improve both the adhesion and the insulation" (see the summary). In addition, as a material having excellent insulating properties, it is described that "a method of coating an insulator such as epoxy or fluorine resin can be used" (see paragraph 0009).
 しかしながら、特許文献1~4や非特許文献1で開示された複合絶縁の手法を、ユニット構成の電力変換装置に適用して複合絶縁化することは困難である。 However, it is difficult to apply the method of complex insulation disclosed in Patent Documents 1 to 4 and Non-patent Document 1 to a unitized power converter to complex insulation.
 即ち、特許文献1~4や非特許文献1で開示された複合絶縁の手法では、固体絶縁として熱硬化性樹脂を適用するため、ユニット本体の予熱が必要となる。一方、ユニット本体に組み込まれるインバータユニットにはコンデンサなど耐熱性の低い機器が存在するため、ユニット本体にインバータユニットを組んだ後、ユニット本体を予熱することは困難である。 That is, in the method of composite insulation disclosed in Patent Documents 1 to 4 and Non-Patent Document 1, in order to apply a thermosetting resin as solid insulation, preheating of the unit body is required. On the other hand, since the inverter unit incorporated in the unit main body includes equipment with low heat resistance such as a capacitor, it is difficult to preheat the unit main body after assembling the inverter unit into the unit main body.
 また、ユニット筐体は、例えば厚さ2~3mm程度の金属で組み立てられるため、ユニット角(曲げ半径)Rは、例えば0.1mmと小さい。このため、固体絶縁を実装すると角部で絶縁物の膨らみや剥離が生じやすい。その一方で、ユニット筐体の平面部の広域に、薄い(例えば、後述するように厚さ1mm)絶縁塗装が必要であるため、絶縁物の強度を保つことが要求される。 Further, since the unit case is assembled with, for example, a metal having a thickness of about 2 to 3 mm, the unit angle (bending radius) R is as small as, for example, 0.1 mm. For this reason, when solid insulation is mounted, swelling and peeling of the insulator tend to occur at the corners. On the other hand, since a thin (for example, 1 mm thick as described later) insulating coating is required in a wide area of the flat portion of the unit housing, it is required to maintain the strength of the insulator.
 さらに、電力変換装置のスイッチング素子(例えばIGBT(Insulated Gate Bipolar Transistor;絶縁ゲートバイポーラトランジスタ))に異常が生じた場合、スイッチング素子由来の導電性ガスが生じることが報告されている。これにより、異電位間において、絶縁性が顕著に低下し、短絡を生じる事象が報告されている。 Furthermore, it has been reported that when an abnormality occurs in a switching element (for example, an IGBT (Insulated Gate Bipolar Transistor)) of a power converter, a conductive gas derived from the switching element is generated. As a result, the insulation property significantly decreases between different potentials, and an event causing a short circuit has been reported.
 そこで、本発明は、小型化と信頼性向上が可能な電力変換装置を提供することを課題とする。 Then, this invention makes it a subject to provide the power converter device which can be reduced in size and improved in reliability.
 このような課題を解決するために、本発明は、尖鋭した高電圧部の電界集中部を覆うように、固体絶縁物を設けることを特徴とする電力変換装置である。 In order to solve such a subject, the present invention is a power converter characterized by providing a solid insulator so that an electric field concentration part of a sharp high voltage part may be covered.
 本発明によれば、小型化と信頼性向上が可能な電力変換装置を提供することができる。 According to the present invention, it is possible to provide a power converter that can be miniaturized and improved in reliability.
電力変換装置の全体図である。It is a general view of a power converter. 図1の矢印A方向に見た第1実施形態に係る電力変換装置のユニットセル周辺における側面図である。It is a side view in the unit cell periphery of a power converter concerning a 1st embodiment seen in the arrow A direction of FIG. 第1実施形態に係る電力変換装置の被絶縁金属体を説明する模式図であり、図2のB-B線断面図である。It is a schematic diagram explaining the to-be-insulated metal body of the power converter device which concerns on 1st Embodiment, and is a BB sectional drawing of FIG. 第2実施形態に係る電力変換装置の被絶縁金属体を説明する模式図であり、図2のB-B線断面図である。It is a schematic diagram explaining the to-be-insulated metal body of the power converter device which concerns on 2nd Embodiment, and is a BB sectional drawing of FIG. 第3実施形態に係る電力変換装置の被絶縁金属体を説明する模式図であり、図2のB-B線断面図である。It is a schematic diagram explaining the to-be-insulated metal body of the power converter device which concerns on 3rd Embodiment, and is a BB sectional drawing of FIG. 第4実施形態に係る電力変換装置の複合絶縁構造説明するユニットセルの模式断面図である。It is a schematic cross section of a unit cell explaining the compound insulation structure of the power converter concerning a 4th embodiment. 空気雰囲気における絶縁破壊電圧と導電性ガス雰囲気における絶縁破壊電圧の関係を示すグラフである。It is a graph which shows the relationship between the dielectric breakdown voltage in air atmosphere, and the dielectric breakdown voltage in electroconductive gas atmosphere.
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。 Hereinafter, modes for carrying out the present invention (hereinafter, referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In each of the drawings, the same reference numerals are given to the common parts, and the duplicated explanation is omitted.
≪第1実施形態≫
 第1実施形態に係る電力変換装置1について、図1から図3を用いて説明する。図1は、電力変換装置1の全体図である。
First Embodiment
The power converter 1 according to the first embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is an overall view of a power conversion device 1.
 図1に示すように、電力変換装置1は、複数のユニットセル2と、ユニットセル2を空冷するための通風ダクト7と、ユニットセル2を支持する盤筐体8と、絶縁板9と、を備えている。 As shown in FIG. 1, the power conversion device 1 includes a plurality of unit cells 2, a ventilation duct 7 for air cooling the unit cells 2, a panel case 8 for supporting the unit cells 2, and an insulating plate 9. Is equipped.
 インバータ、コンバータ、パワーコンディショナなどの電力変換装置1は、ユニットセル2と呼ばれる単位で構成されている。なお、以下の説明において、電力変換装置1は、高圧ダイレクトインバータであるものとして説明する。 A power conversion device 1 such as an inverter, a converter, or a power conditioner is configured in units called unit cells 2. In the following description, power converter 1 is explained as what is a high voltage direct inverter.
 ユニットセル2は、スイッチング素子23(図3参照)等を有し、スイッチング素子23(図3参照)等が発熱するため、ユニットセル2を空冷するための通風ダクト7が設けられている。 The unit cell 2 has a switching element 23 (see FIG. 3) and the like, and since the switching element 23 (see FIG. 3) and the like generate heat, a ventilation duct 7 for air cooling the unit cell 2 is provided.
 ユニットセル2は、絶縁板9を介して、盤筐体8の棚板81の上に配置されている。盤筐体8は、電力変換装置1の筐体であり、棚板81は、ユニットセル2を支持する。盤筐体8および棚板81は、金属(例えば、鉄、SUS(Steel Use Stainless;ステンレス鋼)、溶融鍍金鋼板、アルミニウム)で形成されている。また、盤筐体8および棚板81は、電気的に接地されている。 The unit cell 2 is disposed on the shelf plate 81 of the panel case 8 via the insulating plate 9. The panel case 8 is a case of the power conversion device 1, and the shelf board 81 supports the unit cell 2. The panel case 8 and the shelf plate 81 are formed of metal (for example, iron, SUS (Steel Use Stainless; stainless steel), hot-dip galvanized steel sheet, aluminum). Moreover, the panel case 8 and the shelf plate 81 are electrically grounded.
 ここで、高圧ダイレクトインバータでは、ユニットセル2またはユニットセル2内部の部品に高電圧が印加されるため、接地領域と絶縁する必要があり、空間絶縁距離および沿面絶縁距離を確保する必要がある。同様に、ユニットセル2同士の電位および位相も異なるためそれぞれのユニットセル2の間において、空間絶縁距離および沿面絶縁距離を確保する必要がある。また、高圧ダイレクトインバータでは、各段で位相が異なるため、規格で定められる絶縁距離を確保することを推奨されている。 Here, in the high voltage direct inverter, since a high voltage is applied to the unit cell 2 or components in the unit cell 2, it is necessary to insulate from the ground region, and it is necessary to secure the space insulation distance and the creepage insulation distance. Similarly, since the potentials and phases of the unit cells 2 are different from each other, it is necessary to secure a space insulation distance and a creepage insulation distance between the unit cells 2. Further, in the high voltage direct inverter, since the phase is different in each stage, it is recommended to secure the insulation distance defined by the standard.
 このため、第1実施形態に係る電力変換装置1は、ユニットセル2の下に絶縁物である絶縁板9を敷くことにより、ユニットセル2とこのユニットセル2を支持する接地金属筐体である棚板81との間の絶縁距離を確保することができるようになっている。 Therefore, the power conversion device 1 according to the first embodiment is a ground metal casing that supports the unit cell 2 and the unit cell 2 by laying the insulating plate 9 that is an insulator under the unit cell 2. It is possible to secure the insulation distance between the shelf board 81 and the like.
 また、ユニットセル2の上面とその上部の接地金属筐体である棚板81との間の空間絶縁距離を確保することが必要となる。ちなみに、例えば、6kV級インバータでは空間絶縁距離は60mmであり、大きな値となっている。 In addition, it is necessary to secure a space insulation distance between the upper surface of the unit cell 2 and the shelf plate 81 which is a ground metal casing on the upper side thereof. Incidentally, for example, in the 6 kV class inverter, the space insulation distance is 60 mm, which is a large value.
 ここで、従来の空気のみで絶縁性を確保している構成の電力変換装置は、この空間絶縁距離(例えば、6kV級インバータで60mm)を確保するために、電力変換装置を小型化することが困難であった。さらに、スイッチング素子が故障した際に導電性ガスが生じることで、絶縁性が顕著に低下し、短絡が生じるおそれがある。このため、導電性ガスの発生による絶縁性の低下を考慮して、ユニットセル2の上面とその上部の棚板81との間の距離をより長く確保する必要があった。 Here, in the conventional power converter having a configuration in which insulation is ensured only by air, the power converter may be miniaturized in order to secure the space insulation distance (for example, 60 mm for a 6 kV class inverter). It was difficult. Furthermore, when the switching element fails, the generation of the conductive gas significantly reduces the insulation and may cause a short circuit. For this reason, it was necessary to secure a longer distance between the upper surface of the unit cell 2 and the shelf plate 81 thereabove in consideration of the decrease in insulation due to the generation of the conductive gas.
<複合絶縁構造>
 次に、第1実施形態に係る電力変換装置1のユニットセル2の上面とその上部の棚板81との間の絶縁構造(複合絶縁構造)について、図2を用いて説明する。図2は、図1の矢印A方向に見た第1実施形態に係る電力変換装置1のユニットセル2周辺における側面図である。
<Composite insulation structure>
Next, the insulation structure (composite insulation structure) between the upper surface of the unit cell 2 of the power conversion device 1 and the shelf plate 81 thereabove according to the first embodiment will be described with reference to FIG. FIG. 2 is a side view around the unit cell 2 of the power conversion device 1 according to the first embodiment as viewed in the direction of arrow A in FIG.
 図2に示すように、ユニットセル2を支持する棚板81は、構造強度を保つための梁82が形成されている。ユニットセル2(ユニット筐体21;図3参照)が高電位となることで、ユニットセル2(ユニット筐体21;図3参照)と、棚板81からユニットセル2の方向に凸形状となる梁82との間が、最も高電界となる。このユニットセル2と梁82との空間絶縁距離を短縮するため、絶縁性の向上が必要となる。 As shown in FIG. 2, the shelf board 81 supporting the unit cell 2 is formed with a beam 82 for maintaining the structural strength. The unit cell 2 (the unit case 21; see FIG. 3) has a high potential, so that the unit cell 2 (the unit case 21; see FIG. 3) and the shelf board 81 have a convex shape in the direction of the unit cell 2. Between the beam 82, the highest electric field is obtained. In order to shorten the space insulation distance between the unit cell 2 and the beam 82, it is necessary to improve the insulation.
 そこで、図2に示すように、第1実施形態に係る電力変換装置1は、絶縁物4を表面に施した金属体3である被絶縁金属体5を備え、ユニットセル2の上面と梁82による高電界部(後記する電界集中部)において、被絶縁金属体5でユニットセル2の一部を被覆するようになっている。 Therefore, as shown in FIG. 2, the power conversion device 1 according to the first embodiment includes the metal body 5 to be insulated, which is the metal body 3 having the insulator 4 applied to the surface thereof. In the high electric field portion (field concentration portion to be described later) according to the above, a part of the unit cell 2 is covered with the metal body 5 to be insulated.
 これにより、ユニットセル2と梁82との空間絶縁距離を短縮することが可能になる。換言すると、被絶縁金属体5の絶縁物4と、ユニットセル2(被絶縁金属体5)から梁82までの間の空気との複合絶縁構造を適用することで、従来の規格に定められた空間絶縁距離を短縮(例えば、50~90%程度)しても、従来の空気絶縁と同等以上の絶縁特性を有することが可能となる。 As a result, the space insulation distance between the unit cell 2 and the beam 82 can be shortened. In other words, by applying the composite insulation structure of the insulator 4 of the metal object 5 to be insulated and the air from the unit cell 2 (metal object 5 to be insulated) to the beam 82, the conventional standard is established. Even if the space insulation distance is shortened (for example, about 50 to 90%), it is possible to have insulation properties equal to or more than conventional air insulation.
<被絶縁金属体>
 次に、第1実施形態に係る電力変換装置1が備える被絶縁金属体5について、図3を用いて更に説明する。図3は、第1実施形態に係る電力変換装置1の被絶縁金属体5を説明する模式図であり、図2のB-B線断面図である。
<Insulated metal body>
Next, the to-be-insulated metal body 5 with which the power converter device 1 which concerns on 1st Embodiment is provided is further demonstrated using FIG. FIG. 3 is a schematic view for explaining the metal object 5 to be insulated of the power conversion device 1 according to the first embodiment, and is a cross-sectional view taken along the line BB of FIG.
 ユニットセル2は、金属板(例えば、鉄、SUS(Steel Use Stainless;ステンレス鋼)、溶融鍍金鋼板、アルミニウム)を組み合せて形成されたユニット筐体21と、IGBTなどのスイッチング素子23と、IGBTを冷却するための放熱フィン24と、スイッチング素子23と電気的に接続される平滑コンデンサ25と、スイッチング素子23および平滑コンデンサ25を電気的に接続する導電体(例えば、銅、アルミニウム)であるバスバ26と、制御基板(図示せず)等を有している。なお、ユニット筐体21は、接地(棚板81、梁82)に対して電位(例えば、IGBTのエミッタ電位)を持つ構造となっている。 The unit cell 2 includes a unit casing 21 formed by combining metal plates (for example, iron, SUS (Steel Use Stainless; stainless steel), aluminum), a switching element 23 such as an IGBT, and an IGBT. A bus bar 26 which is a conductor (for example, copper, aluminum) electrically connecting the radiation fin 24 for cooling, the smoothing capacitor 25 electrically connected to the switching element 23, and the switching element 23 and the smoothing capacitor 25. And a control board (not shown). The unit casing 21 is structured to have a potential (for example, the emitter potential of the IGBT) with respect to the ground (the shelf plate 81 and the beam 82).
 ここで、棚板81の梁82の厚みは、おおよそ5mm程度であり、その端部83の角R(曲げ半径)は、例えば0.5mm程度である。一方、ユニット筐体21は、厚さ2mm程度の金属板で形成されており、その端部22の角R(曲げ半径)は、例えば0.1mm程度である。 Here, the thickness of the beam 82 of the shelf plate 81 is about 5 mm, and the angle R (bending radius) of the end 83 is, for example, about 0.5 mm. On the other hand, the unit housing 21 is formed of a metal plate having a thickness of about 2 mm, and the corner R (bending radius) of the end 22 is, for example, about 0.1 mm.
 このように、梁82の端部83よりもユニット筐体21の端部22の方が、幾何形状が鋭く、電界集中が高いので、ユニットセル2側を固体絶縁化する。即ち、被絶縁金属体5は、電界集中部を覆うように配置される。ここで、電界集中部とは、電圧が印加されており、幾何形状が鋭く、かつ、接地面との距離が短い場所を示すものとする。 As described above, since the end 22 of the unit housing 21 has a sharper geometric shape and higher electric field concentration than the end 83 of the beam 82, the unit cell 2 is solid-insulated. That is, the metal object 5 to be insulated is disposed so as to cover the electric field concentration portion. Here, the electric field concentration portion indicates a place where a voltage is applied, the geometric shape is sharp, and the distance to the ground plane is short.
 棚板81の梁82は、ユニット筐体21と比較して肉厚の部材であり、梁82の長手方向の端部83の角を丸める(曲げ半径Rを大きくする)ことで電界集中を緩和することができる。一方、ユニット筐体21は、板厚2mm程度であり、かつ、構造的にその端部22の角を丸めることが難しいため、容易に曲げ半径Rを大きくすることはできず、幾何形状が鋭くなり、電界が集中する。このため、被絶縁金属体5は、ユニットセル2の一部(電界集中部)を覆うように配置される。 The beam 82 of the shelf plate 81 is a thick member as compared with the unit housing 21 and the electric field concentration is alleviated by rounding the corner of the longitudinal end 83 of the beam 82 (increasing the bending radius R). can do. On the other hand, unit housing 21 has a thickness of about 2 mm, and it is difficult to round the corner of its end 22 structurally, so the bending radius R can not be easily increased, and the geometrical shape is sharp. The electric field is concentrated. For this reason, the to-be-insulated metal body 5 is arrange | positioned so that a part (electric field concentration part) of the unit cell 2 may be covered.
 被絶縁金属体5は、前述したように、金属体3と、金属体3の表面に施された絶縁物4と、を備え、図3に示すように、ネジ32でユニット筐体21に固定されている。 The to-be-insulated metal body 5 includes the metal body 3 and the insulator 4 applied to the surface of the metal body 3 as described above, and as shown in FIG. It is done.
 金属体3は、図3に示すように、下に開口する略コの字状の部材であり、金属板(例えば、鉄、SUS(Steel Use Stainless;ステンレス鋼)、溶融鍍金鋼板、アルミニウム)を折り曲げ加工して形成される。ここで、金属体3は、外側に膨らむ膨らみ部31が形成されるように折り曲げ加工される。なお、金属体3の両端部には、ネジ32でユニット筐体21に固定されるためのネジ穴(図示せず)が設けられている。 The metal body 3 is a substantially U-shaped member opened downward as shown in FIG. 3 and is made of a metal plate (for example, iron, SUS (Steel Use Stainless; stainless steel), molten steel plate, aluminum). It is formed by bending. Here, the metal body 3 is bent so as to form a bulge 31 that bulges outward. In addition, screw holes (not shown) for fixing to the unit housing 21 with the screws 32 are provided at both end portions of the metal body 3.
 絶縁物4は、金属体3の内面(被絶縁金属体5がユニット筐体21を覆う際、ユニット筐体21の側となる面)、外面(被絶縁金属体5がユニット筐体21を覆う際、ユニット筐体21の反対側となる面)および側面を覆うように施され、ネジ32で固定される金属体3の両端部は、絶縁物4で覆われず、金属体3が露出している。 The insulator 4 is an inner surface of the metal body 3 (a surface on the side of the unit case 21 when the metal body 5 covers the unit case 21), an outer surface (the metal case 5 to be insulated covers the unit case 21). When covering the opposite side of the unit case 21 and the side, both ends of the metal body 3 fixed with the screws 32 are not covered with the insulator 4 and the metal body 3 is exposed. ing.
 絶縁物4の厚さは、6kV級インバータで0.1mm~1.0mm程度、11kV級インバータで0.1mm~2.0mm程度とすることが望ましい。これにより、絶縁物4と空気との複合絶縁構造とすることができるので、ユニット筐体21と梁82との絶縁距離を短くすることができる。なお、厚さを0.1mm未満とすると、絶縁物4による絶縁性の向上が小さく、望ましくない。一方、厚さを6kV級インバータで1.0mm程度(11kV級インバータで2.0mm程度)とすることにより、絶縁性の向上を確保できるため、厚さを過大とすると、絶縁物4のコストが上昇し、望ましくない。 The thickness of the insulator 4 is preferably about 0.1 mm to 1.0 mm in a 6 kV class inverter and about 0.1 mm to 2.0 mm in an 11 kV class inverter. Thereby, since it can be set as the compound insulation structure of the insulator 4 and air, the insulation distance of the unit housing | casing 21 and the beam 82 can be shortened. When the thickness is less than 0.1 mm, the improvement of the insulation property by the insulator 4 is small, which is not desirable. On the other hand, by setting the thickness to about 1.0 mm with a 6 kV class inverter (about 2.0 mm with an 11 kV class inverter), the insulation improvement can be secured, so if the thickness is made excessive, the cost of the insulator 4 becomes Rising and undesirable.
 折り曲げ加工された金属体3に、エポキシ樹脂による加圧成形、粉体塗装、スプレー絶縁などが適用され、金属体3の表面に絶縁物4が施されるようになっている。特に、金属体3との密着性向上により微小放電を防止しながら製造時間を短縮する点において、粉体塗装法が最も望ましい。 Pressure molding with epoxy resin, powder coating, spray insulation and the like are applied to the metal body 3 subjected to bending processing, and the insulator 4 is applied to the surface of the metal body 3. In particular, the powder coating method is most desirable in terms of shortening the manufacturing time while preventing microdischarge by improving the adhesion to the metal body 3.
 なお、金属体3の板厚は、1~5mm程度とすることが望ましい。粉体塗装法において金属体3の表面に絶縁物4を施す場合、金属体3を予熱した後、流動浸漬により絶縁物4を施す。このため、金属体3の板厚を1mm未満とすると、予熱の熱量が不足して、一度の流動浸漬による絶縁物4の厚さが所望の厚さとならず、望ましくない。一方、金属体3の板厚を5mmよりも過大とすると、金属体3の板厚の分だけ絶縁距離を短縮する効果が小さくなり、望ましくない。 The thickness of the metal body 3 is desirably about 1 to 5 mm. In the case of applying the insulator 4 to the surface of the metal body 3 in the powder coating method, after the metal body 3 is preheated, the insulator 4 is applied by fluid immersion. For this reason, when the plate thickness of the metal body 3 is less than 1 mm, the heat quantity of preheating is insufficient, and the thickness of the insulator 4 in one fluid immersion does not become a desired thickness, which is not desirable. On the other hand, when the plate thickness of the metal body 3 is made larger than 5 mm, the effect of shortening the insulation distance by the plate thickness of the metal body 3 is reduced, which is not desirable.
 また、下に開口する略コの字状の金属体3は、ユニットセル2に被絶縁金属体5を嵌め込んだ際、ユニット筐体21の端部22に対応する部分に、外側(ユニット筐体21の端部22と反対側)に膨らむ膨らみ部31が形成されるように折り曲げ加工される。そして、金属体3の内面、外面および側面を覆うように絶縁物4が施されるようになっている。このように、金属体3に膨らみ部31を形成することにより、被絶縁金属体5の製作コストを低減させることができる。 In addition, the substantially U-shaped metal body 3 which opens downward is provided on the outside (unit housing) at a portion corresponding to the end 22 of the unit housing 21 when the metal body 5 to be insulated is fitted into the unit cell 2. It is bent so as to form a bulge 31 which bulges on the side opposite to the end 22 of the body 21. And the insulator 4 is given so that the inner surface, the outer surface, and the side of the metal body 3 may be covered. By thus forming the bulge portion 31 in the metal body 3, the manufacturing cost of the metal body 5 to be insulated can be reduced.
 即ち、金属体3に膨らみ部31を形成せず、直角に折り曲げた場合、金属体3の表面に絶縁物4を施すと、金属体3の内側角部に絶縁物4がフィレット状に溜まって厚みが増してしまい、ユニットセル2(ユニット筐体21)に被絶縁金属体5を装着することが困難となる。このため、金属体3の内側角部の絶縁物4の一部を削るなどの工程が必要となり、被絶縁金属体5の製作コストが高くなる。 That is, when the insulator 4 is applied to the surface of the metal body 3 when the metal body 3 is bent at a right angle without forming the bulge portion 31, the insulator 4 is accumulated in a fillet shape at the inner corner of the metal body 3. The thickness is increased, which makes it difficult to mount the metal object 5 to be insulated on the unit cell 2 (unit housing 21). For this reason, the process of shaving a part of insulator 4 of the inner corner part of the metal body 3 etc. is needed, and the manufacturing cost of the to-be-insulated metal body 5 becomes high.
 また、金属体3に膨らみ部31を形成せず、直角に折り曲げ、金属体3の内面全体をマスキングした後、絶縁物4を施す場合、前述の絶縁物4の一部を削るなどの工程は不要となるが、マスキング処理には人為的な処理が必要であるため、被絶縁金属体5の製作コストが高くなる。 Moreover, after forming the bulge part 31 in the metal body 3 and bending it at a right angle to mask the entire inner surface of the metal body 3 and then applying the insulator 4, the process of scraping a part of the insulator 4 is Although not necessary, the masking process requires an artificial process, and the manufacturing cost of the metal object 5 to be insulated is increased.
 これに対し、金属体3に膨らみ部31を形成することにより、金属体3の内側角部に生じる絶縁物4の溜まりを吸収して、絶縁物4の一部を削るなどの工程が不要となり、被絶縁金属体5の製作コストを低減させることができる。また、金属体3に膨らみ部31を形成することにより、金属体3の両面に絶縁物4を施すことができるので、マスキング処理も不要となり、被絶縁金属体5の製作コストを低減させることができる。 On the other hand, by forming the bulged portion 31 in the metal body 3, it is possible to absorb the stagnation of the insulator 4 generated in the inner corner portion of the metal body 3 and eliminate the process of scraping the insulator 4 partially. The manufacturing cost of the metal object 5 to be insulated can be reduced. In addition, since the insulator 4 can be applied to both surfaces of the metal body 3 by forming the bulge portion 31 in the metal body 3, masking processing is also unnecessary, and the manufacturing cost of the metal body 5 to be insulated can be reduced. it can.
 なお、膨らみ部31は、外側(ユニット筐体21の端部22と反対側、図3の左右方向)に、例えば、0.5~2.0mm程度膨らむように形成することにより前述した効果を得ることができる。例えば、絶縁物4の厚さを1mmとする場合、膨らみ部31も1mm程度とすればよい。 In addition, the above-described effect can be obtained by forming the bulging portion 31 so as to expand, for example, by about 0.5 to 2.0 mm on the outer side (the side opposite to the end 22 of the unit housing 21, the left and right direction in FIG. You can get it. For example, when the thickness of the insulator 4 is 1 mm, the bulge 31 may be about 1 mm.
 ちなみに、膨らみ部31を形成することにより、金属体3の折り曲げ部の幾何形状も、直角に折り曲げる場合と比較すれば緩やかになるが、十分に電界緩和効果を得ることができるほど(例えば、曲げ半径Rを5mm以上)ではない。しかし、被絶縁金属体5を用いることにより、絶縁物4と空気との複合絶縁構造とすることができるので、ユニット筐体21と梁82との絶縁距離を短くすることができる。このため、金属体3の膨らみ部31は、電界緩和効果を目的としたものとは異なっている。 By the way, by forming the bulging portion 31, the geometrical shape of the bent portion of the metal body 3 is also gentler compared to the case where it is bent at a right angle, but a sufficient electric field relaxation effect can be obtained (for example, bending The radius R is not 5 mm or more). However, by using the to-be-insulated metal body 5, since it can be set as the compound insulation structure of the insulator 4 and air, the insulation distance of the unit housing | casing 21 and the beam 82 can be shortened. For this reason, the bulged portion 31 of the metal body 3 is different from that intended for the electric field relaxation effect.
 被絶縁金属体5の両端部(図示しないネジ穴の周辺部)は、図3に示すように、金属体3に絶縁物4が施されず、金属体3が露出するようになっている。被絶縁金属体5をユニットセル2に被せて、被絶縁金属体5の金属体3とユニット筐体21をネジ32で固定することにより、金属体3とユニット筐体21を同電位とすることができるようになっている。これにより、金属体3とユニット筐体21との間で放電が生じないようにすることができる。また、ユニット筐体21と梁82との電位差を金属体3と梁82とで担うことができるので、絶縁物4と空気との複合絶縁構造とすることができる。 As shown in FIG. 3, the insulator 4 is not applied to the metal body 3 at both end portions (peripheral portions of screw holes not shown) of the metal object 5 to be insulated, and the metal body 3 is exposed. The metal body 3 and the unit housing 21 are made to have the same potential by covering the unit metal 2 with the metal body 5 to be insulated and fixing the metal body 3 of the metal body 5 to be insulated and the unit housing 21 with the screws 32. It is possible to Thereby, discharge can be prevented from occurring between the metal body 3 and the unit housing 21. Further, since the metal body 3 and the beam 82 can bear the potential difference between the unit case 21 and the beam 82, a composite insulating structure of the insulator 4 and air can be obtained.
 ここで、被絶縁金属体5の金属体3の露出する領域(ネジ32の位置)は、梁82(棚板81)から空間絶縁距離以上離れた位置に形成されており、絶縁を確保することができるようになっている。 Here, the exposed area (the position of the screw 32) of the metal body 3 of the metal body 5 to be insulated is formed at a position separated from the beam 82 (the shelf plate 81) by the space insulation distance or more, to secure insulation. It is possible to
 なお、被絶縁金属体5は、被絶縁金属体5の両端部のネジ穴の周辺部に金属体3の露出する領域があり、ネジ32で金属体3とユニット筐体21が同電位となるように固定されるものとして説明したが、これに限られるものではなく、絶縁物4を削って、金属体3とユニット筐体21の間を配線で導通させることにより、同電位化する構成であってもよい。 In the metal object 5 to be insulated, there is a region where the metal member 3 is exposed around the screw holes at both ends of the metal member 5 to be insulated, and the metal member 3 and the unit housing 21 have the same potential with the screw 32. Although it has been described that they are fixed as described above, the present invention is not limited to this. The insulator 4 is removed, and the metal body 3 and the unit case 21 are electrically connected by a wire to make the same potential. It may be.
<導電性ガス>
 ここで、スイッチング素子が故障した際に、導電性ガスが発生した場合について検討する。
<Conductive gas>
Here, the case where the conductive gas is generated when the switching element breaks down is examined.
 従来の空気のみで絶縁性を確保している構成の電力変換装置は、ユニット筐体21と梁82の間が、空気雰囲気から導電性ガス雰囲気へと変化することにより、絶縁性が顕著に低下し、短絡が生じるおそれがある。 In the conventional power converter having a configuration in which the insulation property is ensured only by air, the insulation property is significantly lowered by the change between the air atmosphere and the conductive gas atmosphere between the unit housing 21 and the beam 82. May cause a short circuit.
 これに対し、第1実施形態に係る電力変換装置1は、ユニット筐体21(金属体3)と梁82の間が、絶縁物4と空気の複合絶縁構造となっており、ユニットセル2(被絶縁金属体5)から梁82までの間の距離が短くなっている。このため、空気雰囲気から導電性ガス雰囲気へと変化しても、絶縁性の低下はわずかであり、絶縁物4により絶縁を確保することができるので、短絡が生じることを防止することができる。 On the other hand, in the power conversion device 1 according to the first embodiment, the space between the unit case 21 (metal body 3) and the beam 82 has a composite insulation structure of the insulator 4 and air. The distance from the metal object 5) to the beam 82 is short. For this reason, even if it changes from an air atmosphere to a conductive gas atmosphere, the decrease in the insulation property is slight, and the insulation can be secured by the insulator 4, so that the occurrence of a short circuit can be prevented.
 また、被絶縁金属体5の金属体3の露出する領域(ネジ32の位置)は、複合絶縁構造とはなっておらず、空気のみで絶縁性を確保している。 In addition, the exposed area (the position of the screw 32) of the metal body 3 of the metal object 5 to be insulated is not a composite insulation structure, and the insulation property is secured by air alone.
 ここで、空気雰囲気における絶縁破壊電圧と導電性ガス雰囲気における絶縁破壊電圧の関係について、図7を用いて説明する。図7は、空気雰囲気における絶縁破壊電圧と導電性ガス雰囲気における絶縁破壊電圧の関係を示すグラフである。
 図7に示すように、絶縁距離比1.0かつ空気雰囲気における絶縁破壊電圧と、絶縁距離比1.5かつ導電性ガス雰囲気における絶縁破壊電圧が略等しくなっている。換言すれば、電位の異なる金属間の最短距離を、その電位差の空間絶縁距離の1.5倍以上とすることで、導電雰囲気が生じても絶縁が保たれていることがわかる。
Here, the relationship between the dielectric breakdown voltage in the air atmosphere and the dielectric breakdown voltage in the conductive gas atmosphere will be described with reference to FIG. FIG. 7 is a graph showing the relationship between the dielectric breakdown voltage in the air atmosphere and the dielectric breakdown voltage in the conductive gas atmosphere.
As shown in FIG. 7, the dielectric breakdown voltage in the air atmosphere is 1.0, and the dielectric breakdown voltage in the conductive gas atmosphere is 1.5. In other words, by setting the shortest distance between metals having different potentials to be 1.5 times or more of the space insulation distance of the potential difference, it is understood that the insulation is maintained even if the conductive atmosphere is generated.
 即ち、被絶縁金属体5の金属体3の露出する領域(ネジ32の位置)は、梁82(棚板81)から空間絶縁距離の1.5倍以上離れた位置に形成することにより、スイッチング素子が故障して導電性ガスが発生した場合でも、絶縁を確保して、短絡が生じることを防止することができる。 That is, switching is performed by forming the exposed area (the position of the screw 32) of the metal body 3 of the metal object 5 to be insulated at a position 1.5 times or more the space insulation distance from the beam 82 (shelf plate 81). Even when the element fails and a conductive gas is generated, insulation can be secured to prevent the occurrence of a short circuit.
 ここで、略コの字状の被絶縁金属体5は、長手方向に長い金属体3を用いて、被絶縁金属体5を作成し、被絶縁金属体5の金属体3の露出する領域(ネジ32の位置)を梁82(棚板81)から空間絶縁距離の1.5倍以上離れた位置に形成することにより、絶縁を確保して、短絡が生じることを防止することができる。即ち、ユニットセル2(被絶縁金属体5)から梁82までの間の距離を、従来の空気のみで絶縁性を確保している構成のユニット筐体21と梁82の間の距離よりも短くしたまま、スイッチング素子が故障して導電性ガスが発生した場合でも、絶縁を確保して、短絡が生じることを防止することができる。 Here, the substantially U-shaped insulated metal body 5 forms the insulated metal body 5 using the metal body 3 long in the longitudinal direction, and the exposed area of the metal body 3 of the insulated metal body 5 ( By forming the position of the screw 32 at a position at least 1.5 times the space insulation distance from the beam 82 (shelf plate 81), insulation can be secured and short circuit can be prevented from occurring. That is, the distance from the unit cell 2 (insulated metal body 5) to the beam 82 is shorter than the distance between the unit casing 21 and the beam 82 of the configuration in which the insulating property is ensured by the conventional air alone. Even if the switching element fails and a conductive gas is generated as it is, insulation can be secured to prevent occurrence of a short circuit.
<作用・効果>
 以下、被絶縁金属体5を用いた電力変換装置1の作用・効果について説明する。
<Operation and effect>
Hereinafter, the operation and effects of the power conversion device 1 using the insulated metal body 5 will be described.
 被絶縁金属体5を用いた電力変換装置1は、電界集中部を複合絶縁構造とすることができ、従来の空気のみで絶縁性を確保している構成の電力変換装置と比較して、ユニットセル2から梁82までの間の距離を短くしても、絶縁を確保して、短絡が生じることを防止することができる。これにより、電力変換装置1を小型化できるとともに、ユニットセル2の集積率を上げることができる。 The power conversion device 1 using the metal object 5 to be insulated can have an electric field concentration part as a composite insulation structure, and compared with a power conversion device having a configuration in which the insulation property is secured with conventional air alone, Even if the distance from the cell 2 to the beam 82 is shortened, insulation can be ensured to prevent a short circuit from occurring. Thus, the power converter 1 can be miniaturized, and the integration rate of the unit cells 2 can be increased.
 被絶縁金属体5の絶縁物4は金属体3に施されているので、金属体3を絶縁物4の内芯とすることができ、絶縁物4の強度を保つことができる。また、被絶縁金属体5をユニットセル2に被せる構造をしているため、ユニット筐体21に直接、固体の絶縁物を設ける必要がない。 Since the insulator 4 of the metal object 5 to be insulated is applied to the metal member 3, the metal member 3 can be used as an inner core of the insulator 4, and the strength of the insulator 4 can be maintained. In addition, since the unit metal 2 is covered with the metal object 5 to be insulated, it is not necessary to provide a solid insulator directly on the unit housing 21.
 ユニットセル2が故障した場合、被絶縁金属体5も損傷していることが想定される。本構成によれば、被絶縁金属体5はユニットセル2に被せるように配置されるため、ユニットセル2を盤筐体8から取り出すと、被絶縁金属体5も合わせて取り出すことができる。これにより、ユニットセル2の交換や点検にあわせて、被絶縁金属体5の交換や点検を行うことができ、交換作業や点検作業の作業性が向上する。また、ユニットセル2とともに被絶縁金属体5も交換すれば、被絶縁金属体5の信頼性も確保することができる。 When unit cell 2 fails, it is assumed that metal body 5 to be insulated is also damaged. According to this configuration, the metal object 5 to be insulated is disposed so as to cover the unit cell 2. Therefore, when the unit cell 2 is taken out from the panel case 8, the metal object 5 to be insulated can be taken out together. Thus, the metal body 5 to be insulated can be replaced or inspected in accordance with the replacement or inspection of the unit cell 2, and the workability of the replacement operation or the inspection operation can be improved. Further, if the metal object 5 to be insulated is also exchanged together with the unit cell 2, the reliability of the metal object 5 to be insulated can be secured.
 また、被絶縁金属体5は、ユニットセル2の一部を覆うように配置されるため、ユニットセル2の全面を絶縁する場合や、棚板81の下面および梁82の全面を絶縁する場合と比較して、絶縁物のコストを低減することができる。 Further, since the metal object 5 to be insulated is disposed so as to cover a part of the unit cell 2, the case of insulating the entire surface of the unit cell 2 or the case of insulating the lower surface of the shelf plate 81 and the entire surface of the beam 82 In comparison, the cost of the insulator can be reduced.
 また、被絶縁金属体5は、金属体3に膨らみ部31を形成することにより、生産性を向上させるとともに、ユニットセル2への取り付け性を向上させることができる。 Further, by forming the bulged portion 31 in the metal body 3, the metal object 5 to be insulated can improve productivity and improve attachment to the unit cell 2.
 被絶縁金属体5を用いた電力変換装置1は、スイッチング素子が故障して導電性ガスが発生した場合でも、絶縁を確保して、短絡が生じることを防止することができる。これにより、電力変換装置1の信頼性を向上させることができる。 Even when the switching element is broken and a conductive gas is generated, the power conversion device 1 using the metal object 5 can ensure insulation and prevent the occurrence of a short circuit. Thereby, the reliability of the power converter 1 can be improved.
≪第2実施形態≫
 次に、第2実施形態に係る電力変換装置について、図4を用いて説明する。図4は、第2実施形態に係る電力変換装置の被絶縁金属体5Aを説明する模式図であり、図2のB-B線断面図である。
Second Embodiment
Next, a power conversion device according to a second embodiment will be described with reference to FIG. FIG. 4 is a schematic view for explaining the insulated metal body 5A of the power conversion device according to the second embodiment, and is a cross-sectional view taken along the line BB in FIG.
 第2実施形態に係る電力変換装置は、第1実施形態に係る電力変換装置1(図1から図3参照)と比較して、被絶縁金属体5の構成が異なっている。以下、第2実施形態に係る電力変換装置の備える被絶縁金属体5Aについて説明する。なお、第1実施形態と共通する部分には同一の符号を付し重複した説明を省略する。 The power converter according to the second embodiment differs from the power converter 1 according to the first embodiment (see FIGS. 1 to 3) in the configuration of the metal body 5 to be insulated. Hereinafter, 5 A of insulated metal bodies with which the power converter device which concerns on 2nd Embodiment is provided are demonstrated. The same reference numerals are given to parts in common with the first embodiment, and duplicate explanations are omitted.
 図4に示す被絶縁金属体5Aは、金属体3Aと絶縁物4Aとを有している。金属体3Aは、第1実施形態の金属体3と比較して、膨らみ部31が形成されていない点で異なっている。また、絶縁物4Aは、金属体3Aの内面(被絶縁金属体5Aがユニット筐体21を覆う際、ユニット筐体21の側となる面)には施されていない点で異なっている。 An insulated metal body 5A shown in FIG. 4 has a metal body 3A and an insulator 4A. The metal body 3A is different from the metal body 3 of the first embodiment in that the bulge portion 31 is not formed. Further, the insulator 4A is different in that it is not applied to the inner surface of the metal body 3A (the surface on the side of the unit case 21 when the metal body 5A covers the unit case 21).
 即ち、金属体3Aを折り曲げ加工によりコの字状に折り曲げた後、金属体3Aの内面をマスキングし、粉体塗装法等により金属体3Aに絶縁物4Aを施し、マスキングを除去して、被絶縁金属体5Aを作成するようになっている。なお、金属体3Aの折り曲げ加工と金属体3Aの内面のマスキング処理の順番は逆でもよい。 That is, after the metal body 3A is bent into a U shape by bending, the inner surface of the metal body 3A is masked, the insulator 4A is applied to the metal body 3A by a powder coating method or the like, and the masking is removed. An insulating metal body 5A is to be produced. The order of the bending process of the metal body 3A and the masking process of the inner surface of the metal body 3A may be reversed.
 このように、第2実施形態に係る電力変換装置被絶縁金属体5Aは、金属体3の膨らみ部31を不要とすることができる。このため、加工しにくい金属であっても金属体3Aに適用することができる。 Thus, the power conversion device insulated metal body 5A according to the second embodiment can eliminate the need for the bulge 31 of the metal body 3. For this reason, even metals which are difficult to process can be applied to the metal body 3A.
≪第3実施形態≫
 次に、第3実施形態に係る電力変換装置について、図5を用いて説明する。図5は、第3実施形態に係る電力変換装置の被絶縁金属体5Bを説明する模式図であり、図2のB-B線断面図である。
Third Embodiment
Next, a power conversion device according to a third embodiment will be described with reference to FIG. FIG. 5 is a schematic view for explaining the metal object 5B of the power conversion device according to the third embodiment, and is a cross-sectional view taken along the line BB of FIG.
 第4実施形態に係る電力変換装置は、第1実施形態に係る電力変換装置1(図1から図3参照)と比較して、被絶縁金属体5の構成が異なっている。以下、第3実施形態に係る電力変換装置の備える被絶縁金属体5Bについて説明する。なお、第1実施形態と共通する部分には同一の符号を付し重複した説明を省略する。 The power converter according to the fourth embodiment differs from the power converter 1 according to the first embodiment (see FIGS. 1 to 3) in the configuration of the metal body 5 to be insulated. The metal body 5B to be insulated provided in the power converter according to the third embodiment will be described below. The same reference numerals are given to parts in common with the first embodiment, and duplicate explanations are omitted.
 図6に示す被絶縁金属体5Bは、金属体3Bと絶縁物4Bとを有している。金属体3Bは、ユニット筐体21の端部22(電界集中部)に取り付けられる電界緩和部材33と、電界緩和部材33をユニット筐体21と通電するように固定するネジ32Bと、を備えている。また、絶縁物4Bは、金属体3Bの外面およびユニット筐体21の上部に施されている点で異なっている。 An insulated metal body 5B shown in FIG. 6 has a metal body 3B and an insulator 4B. The metal body 3B includes an electric field relaxation member 33 attached to the end 22 (electric field concentration portion) of the unit housing 21 and a screw 32B for fixing the electric field relaxation member 33 to the unit housing 21 so as to be energized. There is. Further, the insulator 4B is different in that the insulator 4B is provided on the outer surface of the metal body 3B and the upper portion of the unit housing 21.
 即ち、ユニット筐体21の端部22(電界集中部)にネジ32Bで電界緩和部材33を取り付けて金属体3Bとし、金属体3Bの外面およびユニット筐体21の上部に粉体塗装法等により絶縁物4Bを施して、被絶縁金属体5Bを作成するようになっている。 That is, the electric field relaxation member 33 is attached to the end 22 (field concentration portion) of the unit housing 21 with the screw 32B to form the metal body 3B, and the outer surface of the metal body 3B and the upper part of the unit housing 21 are coated by powder coating method or the like. The insulator 4B is applied to form the metal object 5B to be insulated.
 電界緩和部材33の曲げ半径Rを大きく(例えば、5mm以上)することにより、電界集中を緩和するようになっている。これにより、最も電界が高いユニット筐体21の端部22の電界が緩和され、絶縁距離をさらに短縮することができる。 By increasing the bending radius R of the electric field relaxation member 33 (for example, 5 mm or more), the electric field concentration is alleviated. As a result, the electric field at the end 22 of the unit housing 21 having the highest electric field is alleviated, and the insulation distance can be further shortened.
 なお、第3実施形態において、電界緩和部材33をユニット筐体21に直接取り付けるものとして説明したが、これに限られるものではない。例えば、第1実施形態の被絶縁金属体5に電界緩和部材33を設けてもよい。即ち、折り曲げ加工された金属体3に電界緩和部材33を通電可能に取り付けて、電界緩和部材33が取り付けられた金属体3に粉体塗装法等により絶縁物4を施し、被絶縁金属体5を作成してもよい。同様に、第2実施形態の被絶縁金属体5Aに電界緩和部材33を設けてもよい。 In the third embodiment, the electric field reducing member 33 is directly attached to the unit housing 21. However, the present invention is not limited to this. For example, the electric field relaxation member 33 may be provided on the metal object 5 to be insulated in the first embodiment. That is, the electric field relaxation member 33 is attached to the bent metal body 3 so that current can be supplied, the insulator 4 is applied to the metal body 3 to which the electric field relaxation member 33 is attached by powder coating method, etc. You may create Similarly, the electric field relaxation member 33 may be provided in the metal body 5A to be insulated of the second embodiment.
≪第4実施形態≫
 次に、第4実施形態に係る電力変換装置について、図6を用いて説明する。図6は、第4実施形態に係る電力変換装置の複合絶縁構造説明するユニットセル2Aの模式断面図である。
Fourth Embodiment
Next, a power conversion device according to a fourth embodiment will be described using FIG. FIG. 6 is a schematic cross-sectional view of a unit cell 2A for explaining the composite insulation structure of the power conversion device according to the fourth embodiment.
 第1実施形態から第3実施形態に係る電力変換装置1は、ユニット筐体21が接地(棚板81、梁82)に対して電位を持つ構造となっているものとして説明したが、第4実施形態に係る電力変換装置のユニットセル2Aは、ユニット筐体21が接地されている構造となっている。なお、第1実施形態と共通する部分には同一の符号を付し重複した説明を省略する。 The power conversion device 1 according to the first to third embodiments has been described as having a structure in which the unit housing 21 has a potential with respect to the ground (the shelf plate 81 and the beam 82), but the fourth embodiment The unit cell 2A of the power conversion device according to the embodiment has a structure in which the unit casing 21 is grounded. The same reference numerals are given to parts in common with the first embodiment, and duplicate explanations are omitted.
 ユニットセル2Aは、金属板(例えば、鉄、SUS、溶融鍍金鋼板、アルミニウム)を組み合せて形成されたユニット筐体21と、IGBTなどのスイッチング素子23と、IGBTを冷却するための放熱フィン24と、スイッチング素子23と電気的に接続される平滑コンデンサ25と、スイッチング素子23および平滑コンデンサ25を電気的に接続する導電体(例えば、銅、アルミニウム)であるバスバ26と、放熱フィン24とユニット筐体21とを絶縁するとともに放熱フィン24からユニット筐体21へ伝熱可能な絶縁伝熱部材27と、制御基板(図示せず)等を有している。 The unit cell 2A includes a unit casing 21 formed by combining metal plates (for example, iron, SUS, hot-dip galvanized steel sheet, aluminum), a switching element 23 such as an IGBT, and a radiation fin 24 for cooling the IGBT. A smoothing capacitor 25 electrically connected to the switching element 23, a bus bar 26 which is a conductor (for example, copper, aluminum) electrically connecting the switching element 23 and the smoothing capacitor 25, a radiation fin 24 and a unit housing It has an insulation heat transfer member 27 which can insulate the body 21 and can transfer heat from the radiation fins 24 to the unit casing 21, a control board (not shown), and the like.
 中性点接地などにより、IGBTなどのスイッチング素子23と放熱フィン24が電位を有することがある。この場合、スイッチング素子23、放熱フィン24、バスバ26などの高電圧かつ金属がユニット筐体21の内部空間に露出している部分で、ユニット筐体21との間に絶縁を確保して、短絡が生じることを防止することが求められる。 The switching element 23 such as an IGBT and the radiation fin 24 may have a potential due to neutral point grounding and the like. In this case, in a portion where high voltage and metal such as the switching element 23, the radiation fin 24, and the bus bar 26 are exposed to the internal space of the unit housing 21, insulation is secured with the unit housing 21 to short circuit. It is required to prevent the occurrence of
 このため、図6に示すように、電界集中部に絶縁物41A,41Bを施して、絶縁距離を短縮するようになっている。接地されたユニット筐体21の側板面21A,21Bと近接し、幾何形状の鋭いスイッチング素子23、放熱フィン24、バスバ26に絶縁物41A,41Bを施して複合絶縁構造とする。なお、特に電界集中するスイッチング素子23、放熱フィン24、バスバ26の角部にのみ絶縁物41A,41Bを施して複合絶縁構造としてもよい。これにより、電界集中部での絶縁を確保して、ユニットセル2Aを小型化することができる。 For this reason, as shown in FIG. 6, insulators 41A and 41B are applied to the electric field concentration portion to shorten the insulation distance. Insulating materials 41A and 41B are applied to the switching element 23, the radiation fin 24 and the bus bar 26 which are close to the side plate surfaces 21A and 21B of the unit casing 21 which are grounded, to form a composite insulating structure. Insulators 41A and 41B may be provided only at the corner portions of the switching element 23, the radiation fin 24, and the bus bar 26 in which the electric field is particularly concentrated to form a composite insulation structure. Thereby, the insulation at the electric field concentration portion can be secured, and the unit cell 2A can be miniaturized.
≪変形例≫
 以上、本実施形態(第1~第4実施形態)に係る電力変換装置は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
 本実施形態に係る電力変換装置1は、高圧ダイレクトインバータであるものとして説明したが、これに限られるものではなく、コンバータ、パワーコンディショナなどにも適用することができる。
 また、第1から第3実施形態では、ユニット筐体21と梁83との複合絶縁について説明し、第4実施形態ではスイッチング素子23、放熱フィン24、バスバ26とユニット筐体21との複合絶縁について説明したが、これに限られるものではなく、異電位間の空間絶縁部全般に適用することができる。
«Modification»
As mentioned above, the power converter concerning this embodiment (the 1st-4th embodiment) is not limited to the composition of the above-mentioned embodiment, A various change is possible within the range which does not deviate from the meaning of an invention .
Although the power conversion device 1 according to the present embodiment has been described as a high voltage direct inverter, the present invention is not limited to this, and can be applied to a converter, a power conditioner, and the like.
In the first to third embodiments, the composite insulation of the unit housing 21 and the beam 83 will be described, and in the fourth embodiment, the composite insulation of the switching element 23, the radiation fin 24, the bus bar 26 and the unit housing 21. However, the present invention is not limited to this, and can be applied to the entire space insulation between different potentials.
1               電力変換装置
2,2A            ユニットセル
21              ユニット筐体(高電圧部)
22              端部(電界集中部、縁部)
23              スイッチング素子(電界集中部、高電圧部)
24              放熱フィン(電界集中部、高電圧部)
25              平滑コンデンサ
26              バスバ(電界集中部、高電圧部)
3,3A,3B         金属体
31              膨らみ部
32              ネジ(露出部)
32B             ネジ
33              電界緩和部材
4,4A,4B,41A,41B 絶縁物(固体絶縁物)
5,5A,5B         被絶縁金属体(複合絶縁構造)
7               通風ダクト
8               盤筐体
81              棚板
82              梁
83              端部
9               絶縁板
1 Power converter 2, 2A unit cell 21 unit case (high voltage part)
22 end (field concentration portion, edge)
23 Switching element (field concentration part, high voltage part)
24 Heat radiation fin (electric field concentration part, high voltage part)
25 smoothing capacitor 26 bus bar (field concentrated part, high voltage part)
3, 3A, 3B metal body 31 bulged portion 32 screw (exposed portion)
32B screw 33 electric field relaxation member 4, 4A, 4B, 41A, 41B insulator (solid insulator)
5,5A, 5B Insulated metal body (composite insulation structure)
7 Ventilation duct 8 panel case 81 shelf plate 82 beam 83 end 9 insulating plate

Claims (10)

  1.  尖鋭した高電圧部の電界集中部を覆うように、固体絶縁物を設ける
    ことを特徴とする電力変換装置。
    A power converter characterized in that a solid insulator is provided so as to cover an electric field concentration portion of a sharp high voltage portion.
  2.  前記固体絶縁物を金属体に施した被絶縁金属体で前記電界集中部が覆われる
    ことを特徴とする請求項1に記載の電力変換装置。
    The power conversion device according to claim 1, wherein the electric field concentration portion is covered with an insulated metal body in which the solid insulator is applied to a metal body.
  3.  前記金属体は、
     前記高電圧部と導通する
    ことを特徴とする請求項2に記載の電力変換装置。
    The metal body is
    The power conversion device according to claim 2, which is electrically connected to the high voltage unit.
  4.  前記金属体は、
     屈折部を有し、該屈折部に膨らみ部を設ける
    ことを特徴とする請求項2または請求項3に記載の電力変換装置。
    The metal body is
    The power conversion device according to claim 2 or 3, further comprising a refracting portion, wherein the refracting portion is provided with a bulging portion.
  5.  前記被絶縁金属体は、
     前記金属体の両面に前記固体絶縁物が施される
    ことを特徴とする請求項4に記載の電力変換装置。
    The said to-be-insulated metal body is
    The power conversion device according to claim 4, wherein the solid insulator is applied to both surfaces of the metal body.
  6.  前記金属体は、
     一方の面で前記高電圧部と接するとともに、
     他方の面に前記固体絶縁物が施される
    ことを特徴とする請求項2または請求項3に記載の電力変換装置。
    The metal body is
    In contact with the high voltage section on one side,
    The said solid insulator is given to the other side, The power converter device of Claim 2 or Claim 3 characterized by the above-mentioned.
  7.  前記被絶縁金属体は、
     前記固体絶縁物が施されない前記金属体の露出部を有し、
     前記露出部は、
     前記高電圧部と電位の異なる異電圧部から、空間絶縁距離の規格値の1.5倍以上離れた位置に設けられる
    ことを特徴とする請求項3に記載の電力変換装置。
    The said to-be-insulated metal body is
    It has an exposed portion of the metal body to which the solid insulator is not applied,
    The exposed portion is
    The power conversion device according to claim 3, wherein the power conversion device is provided at a position 1.5 or more times away from a standard value of a space insulation distance from a different voltage part having a potential different from the high voltage part.
  8.  前記高電圧部は、ユニットセル筐体であり、
     前記電界集中部は、前記ユニットセル筐体の縁部である
    ことを特徴とする請求項1に記載の電力変換装置。
    The high voltage unit is a unit cell housing,
    The said electric field concentration part is an edge part of the said unit cell housing | casing, The power converter device of Claim 1 characterized by the above-mentioned.
  9.  前記高電圧部は、スイッチング素子、該スイッチング素子の冷却フィン、バスバの少なくとも1つであり、
     前記電界集中部は、前記スイッチング素子、前記冷却フィン、前記バスバの少なくとも1つの端部である
    ことを特徴とする請求項1に記載の電力変換装置。
    The high voltage unit is at least one of a switching element, a cooling fin of the switching element, and a bus bar,
    The power conversion device according to claim 1, wherein the electric field concentration unit is at least one end of the switching element, the cooling fin, and the bus bar.
  10.  前記固体絶縁物は、
     粉体塗装により形成される
    ことを特徴とする請求項1に記載の電力変換装置。
    The solid insulator is
    The power converter according to claim 1, which is formed by powder coating.
PCT/JP2012/072493 2012-09-04 2012-09-04 Power conversion device WO2014038000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072493 WO2014038000A1 (en) 2012-09-04 2012-09-04 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072493 WO2014038000A1 (en) 2012-09-04 2012-09-04 Power conversion device

Publications (1)

Publication Number Publication Date
WO2014038000A1 true WO2014038000A1 (en) 2014-03-13

Family

ID=50236653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072493 WO2014038000A1 (en) 2012-09-04 2012-09-04 Power conversion device

Country Status (1)

Country Link
WO (1) WO2014038000A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3627982A1 (en) * 2018-09-18 2020-03-25 Delta Electronics, Inc. Insulated housing
EP4106504A1 (en) * 2021-06-15 2022-12-21 Hitachi Energy Switzerland AG Encapsulated converter cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358360A (en) * 1999-06-14 2000-12-26 Densei Lambda Kk Dc-dc converter
JP2007129861A (en) * 2005-11-07 2007-05-24 Meidensha Corp High-voltage inverter device
JP2010225720A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Power module
JP2011045234A (en) * 2009-08-21 2011-03-03 Alphana Technology Co Ltd Disk drive and method of manufacturing the disk drive
JP2012028552A (en) * 2010-07-23 2012-02-09 Nissan Motor Co Ltd Semiconductor module case structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358360A (en) * 1999-06-14 2000-12-26 Densei Lambda Kk Dc-dc converter
JP2007129861A (en) * 2005-11-07 2007-05-24 Meidensha Corp High-voltage inverter device
JP2010225720A (en) * 2009-03-23 2010-10-07 Mitsubishi Electric Corp Power module
JP2011045234A (en) * 2009-08-21 2011-03-03 Alphana Technology Co Ltd Disk drive and method of manufacturing the disk drive
JP2012028552A (en) * 2010-07-23 2012-02-09 Nissan Motor Co Ltd Semiconductor module case structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3627982A1 (en) * 2018-09-18 2020-03-25 Delta Electronics, Inc. Insulated housing
US10986745B2 (en) 2018-09-18 2021-04-20 Delta Electronics, Inc. Insulated housing having a cylindrical structure
EP4106504A1 (en) * 2021-06-15 2022-12-21 Hitachi Energy Switzerland AG Encapsulated converter cell module

Similar Documents

Publication Publication Date Title
CN102725931B (en) The DC-to-AC converter of distribution installing component and use distribution installing component
JP4429205B2 (en) Gas insulation equipment
US20110221268A1 (en) Power Converter and In-Car Electrical System
US10153088B2 (en) Capacitor, in particular intermediate circuit capacitor for a multi-phase system
WO2014129263A1 (en) Power conversion device
CN112166542A (en) Electrical lead for use in an electrical machine
WO2020217565A1 (en) Bus bar module
JP5828119B2 (en) Resin-sealed capacitor
US20180054114A1 (en) Electromagnetic shield for use in a power system
WO2014038000A1 (en) Power conversion device
KR101816758B1 (en) Unit module for bus bar, bus bar, and bus duct
JP6439483B2 (en) Power converter
US8890005B2 (en) High voltage arrangement comprising an insulating structure
WO2013179433A1 (en) Bus bar and power conversion device
WO2016008518A1 (en) Valve unit for hvdc power converter insulated by solid material and gas
JP7158963B2 (en) Molded stationary induction device
JP2016111794A (en) Power conversion device
JP7123705B2 (en) dry transformer
US20210398741A1 (en) Medium frquency transfomer
WO2024014478A1 (en) Wiring member for electrical instrument, and power conversion device
WO2022221996A1 (en) Bus-duct and associated manufacturing method
US20220302685A1 (en) Apparatus for providing an electrical connection to at least one electrical component
CN108780983B (en) The attachment device of electrical equipment
JP6060923B2 (en) Multilayer film capacitor, film capacitor module, and power conversion system
JP6519497B2 (en) Instrument transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP