WO2014035078A1 - 간섭 제거 수신 방법 및 단말 - Google Patents

간섭 제거 수신 방법 및 단말 Download PDF

Info

Publication number
WO2014035078A1
WO2014035078A1 PCT/KR2013/007229 KR2013007229W WO2014035078A1 WO 2014035078 A1 WO2014035078 A1 WO 2014035078A1 KR 2013007229 W KR2013007229 W KR 2013007229W WO 2014035078 A1 WO2014035078 A1 WO 2014035078A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
weight
crs
serving cell
bit string
Prior art date
Application number
PCT/KR2013/007229
Other languages
English (en)
French (fr)
Inventor
정만영
이상욱
황진엽
양윤오
임수환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/419,202 priority Critical patent/US9509482B2/en
Publication of WO2014035078A1 publication Critical patent/WO2014035078A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • One disclosure of the present specification relates to an interference cancellation reception method and a terminal.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink and single carrier-frequency division multiple access (SC-FDMA) in uplink.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDM converts serially input data into N parallel data and transmits the data on N orthogonal subcarriers. Subcarriers maintain orthogonality in the frequency dimension.
  • OFDMA refers to a multiple access method for realizing multiple access by independently providing each user with a part of subcarriers available in a system using OFDM as a modulation scheme.
  • LTE-A 3GPP LTE-Advanced
  • the interference can be further increased by such a small cell, therefore, the interference cancellation function is urgently needed.
  • one disclosure of the present specification is intended to propose a method for implementing an interference cancellation function.
  • the reception method includes removing interference by a cell-specific reference signal (CRS) of a neighboring cell from a bit string received from a serving cell; Determining a weight to be applied to the bit string; Applying the determined weight to the bit stream; The method may include decoding the weighted bit string.
  • weights to be applied may be determined according to whether or not the CRS collides with each other between neighboring cells that interfere with the serving cell.
  • weights to be applied may vary depending on whether or not the CRS collides with each other between neighboring cells that interfere with the serving cell.
  • the weighting step when the CRSs collide with each other between the serving cell and the interfering neighboring cells, the number of neighboring cells colliding with each other and the number of neighboring cells that do not collide with each other when the CRSs do not collide with each other are horizontally and columns.
  • the weight may be determined through the mapped table.
  • the receiving method includes checking whether a cyclic redundancy check (CRC) error exists for the decoded signal; If the CRC error is present, the method may further include determining whether a CRC error has occurred exceeding a maximum number of retransmissions.
  • CRC cyclic redundancy check
  • the receiving method may further include combining the received bit string with the previously received bit string after applying the weight to the received bit string when the received bit string is retransmitted according to HARQ.
  • the terminal includes an RF unit; And controlling the RF unit to remove interference by a cell-specific reference signal (CRS) of a neighboring cell from a bit string received from a serving cell, and to determine a weight to be applied to the bit string.
  • a processor that performs decoding after multiplying the bit string by the determined weight.
  • the processor may determine a weight to be applied depending on whether or not the CRS collides with each other between neighboring cells that interfere with the serving cell.
  • the reception performance can be further improved through the interference cancellation function.
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • 3 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • 5 shows a structure of an uplink subframe in 3GPP LTE.
  • FIG. 6 is a comparative example of a conventional single carrier system and a carrier aggregation system.
  • FIG. 7 is an exemplary diagram illustrating an operation of HARQ between a base station and a UE.
  • FIG. 8 illustrates a heterogeneous network including a macro cell and a small cell.
  • eICIC enhanced Inter-Cell Interference Coordination
  • FIG. 10 is a block diagram illustrating a structure of a UE according to one disclosure of the present specification.
  • FIG. 11 is a block diagram illustrating the operation of the interference canceling unit illustrated in FIG. 10 in a block form.
  • 12A and 12B show interference by a CRS of a neighbor cell.
  • FIG. 13 is a flowchart illustrating an improved demodulation process according to one disclosure of the present specification.
  • FIG. 14 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the UE includes a terminal, a mobile equipment (ME), a mobile station (MS), a user terminal (UT), a subscriber station (SS), and a wireless device (wireless). It may be called a Device, a Handheld Device, or an Access Terminal (AT).
  • the terminal may be a portable device having a communication function such as a mobile phone, a PDA, a smart phone, a wireless modem, a laptop, or the like, or a non-portable device such as a PC or a vehicle-mounted device. .
  • base station refers to a fixed station (fixed station) to communicate with the wireless device, in other terms such as eNB (evolved-NodeB), BTS (Base Transceiver System), Access Point (Access Point) Can be called.
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • Access Point Access Point
  • LTE includes LTE and / or LTE-A.
  • 1 is a wireless communication system.
  • a wireless communication system includes at least one base station (BS) 20.
  • Each base station 20 provides a communication service for a particular geographic area (generally called a cell) 20a, 20b, 20c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the UE 10 may be fixed or mobile, and may include a terminal, a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), and a wireless device (UE). It may be called other terms such as a wireless device, a personal digital assistant, a wireless modem, a handheld device, and the like.
  • the base station 20 generally refers to a fixed station for communicating with the terminal 10 and may be referred to by other terms such as an evolved-NodeB (eNodeB), a base transceiver system (BTS), and an access point. have.
  • eNodeB evolved-NodeB
  • BTS base transceiver system
  • the UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS.
  • the serving cell and the neighbor cell are relatively determined based on the terminal.
  • downlink means communication from the base station 20 to the UE 10
  • uplink means communication from the UE 10 to the base station 20.
  • the transmitter may be part of the base station 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the base station 20.
  • the wireless communication system includes a multiple-input multiple-output (MIMO) system, a multiple-input single-output (MIS) system, a single-input single-output (SISO) system, and a single-input multiple-output (SIMO) system.
  • MIMO multiple-input multiple-output
  • MIS multiple-input single-output
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • the transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • the receive antenna means a physical or logical antenna used to receive one signal or stream.
  • a wireless communication system can be largely divided into a frequency division duplex (FDD) method and a time division duplex (TDD) method.
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the uplink transmission and the downlink transmission are time-divided in the entire frequency band, and thus the downlink transmission by the base station and the uplink transmission by the terminal cannot be simultaneously performed.
  • uplink transmission and downlink transmission are performed in different subframes.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered from 0 to 19 slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be referred to as a scheduling unit for data transmission.
  • one radio frame may have a length of 10 ms
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • 3 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • an uplink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and includes a NUL resource block (RB) in a frequency domain.
  • the OFDM symbol is for representing one symbol period, and may be referred to as an SC-FDMA symbol, an OFDMA symbol, or a symbol period according to a system.
  • the RB includes a plurality of subcarriers in the frequency domain in resource allocation units.
  • the number NUL of resource blocks included in an uplink slot depends on an uplink transmission bandwidth set in a cell. Each element on the resource grid is called a resource element.
  • an exemplary resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of subcarriers and the OFDM symbols in the resource block is equal to this. It is not limited. The number of OFDM symbols or the number of subcarriers included in the resource block may be variously changed. The number of OFDM symbols may change depending on the length of a cyclic prefix (CP). For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP.
  • CP cyclic prefix
  • a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 10
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the radio frame includes 20 slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • a physical channel in 3GPP LTE is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PHICH Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a cyclic redundancy check (CRC) of a received PDCCH (referred to as a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the wireless device, attaches the CRC to the DCI, and masks a unique identifier (referred to as Radio Network Temporary Identifier (RNTI)) to the CRC according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the uplink channel includes a PUSCH, a PUCCH, a sounding reference signal (SRS), and a physical random access channel (PRACH).
  • PUSCH PUSCH
  • PUCCH Physical Uplink Control Channel
  • SRS sounding reference signal
  • PRACH physical random access channel
  • 5 shows a structure of an uplink subframe in 3GPP LTE.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) for transmitting uplink control information is allocated to the control region.
  • the data area is allocated a PUSCH (Physical Uplink Shared Channel) for transmitting data (in some cases, control information may also be transmitted).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • FIG. 6 is a comparative example of a conventional single carrier system and a carrier aggregation system.
  • a general FDD wireless communication system supports only one carrier for uplink and downlink to a user equipment.
  • the bandwidth of the carrier may vary, but one carrier is assigned to the terminal.
  • a general FDD wireless communication system performs data transmission and reception through one downlink band and one uplink band corresponding thereto.
  • the base station and the terminal transmit and receive data and / or control information scheduled in subframe units. Data is transmitted and received through the data area set in the uplink / downlink subframe, and control information is transmitted and received through the control area set in the uplink / downlink subframe.
  • the uplink / downlink subframe carries signals through various physical channels.
  • 5 illustrates the FDD scheme for the sake of convenience, the above description may be applied to the TDD scheme by dividing the radio frame into uplink / downlink in the time domain.
  • data transmission and reception through one downlink band and one uplink band corresponding thereto are referred to as a single carrier system.
  • Such a single carrier system may correspond to an example of communication in an LTE system.
  • the 3GPP LTE system supports up to 20MHz, although the uplink bandwidth and the downlink bandwidth may be different.
  • CA Carrier aggregation
  • a carrier aggregation (CA) system refers to a system in which one or more carriers having a bandwidth smaller than a target broadband is configured to configure the broadband when the wireless communication system attempts to support the broadband.
  • CA carrier aggregation
  • LTE-A LTE-Advanced
  • CA carrier aggregation
  • the carrier aggregation (CA) system may be referred to by other names such as a multiple carrier system, a bandwidth aggregation system, and the like.
  • a terminal may simultaneously transmit or receive one or a plurality of carriers according to capacity. That is, in a carrier aggregation (CA) system, a plurality of component carriers (CCs) may be allocated to a terminal.
  • the component carrier used in the present specification means a carrier used in a carrier aggregation system and may be abbreviated as a carrier.
  • a component carrier may refer to a frequency block or a center carrier of a frequency block for carrier aggregation according to a context, and these may be mixed with each other.
  • 6 (b) may correspond to an example of communication in the LTE-A system.
  • the UE may support a bandwidth of 60 MHz. Or, for example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • FIG. 5B illustrates a case where the bandwidth of the uplink component carrier and the bandwidth of the downlink component carrier are the same for convenience. However, the bandwidth of each component carrier can be determined independently.
  • the target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • 3GPP LTE systems can support bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz.
  • the bandwidth of the uplink component carrier may be configured as 5 MHz (UL CC0) + 20 MHz (UL CC1) + 20 MHz (UL CC2) + 20 MHz (UL CC3) + 5 MHz (UL CC4).
  • the bandwidth may be configured by defining a new bandwidth without using the bandwidth of the existing system as it is.
  • FIG. 6 (b) illustrates a case in which the number of uplink component carriers and the number of downlink component carriers are symmetrical for convenience.
  • the case where the number of downlink component carriers and the number of downlink component carriers are the same is called symmetric aggregation, and the case where the number is different is called asymmetric aggregation.
  • Asymmetric carrier aggregation may occur due to the limitation of available frequency bands or may be artificially established by network configuration. For example, even if the entire system band is composed of N CCs, a frequency band that a specific UE can receive may be limited to M ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific, or UE-specific manner.
  • a carrier aggregation (CA) system may be classified into a continuous carrier aggregation system in which each carrier is continuous and a non-contiguous carrier aggregation system in which each carrier is separated from each other.
  • a guard band may exist between each carrier.
  • a multi-carrier system or a carrier aggregation system it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • a cell may mean a pair of downlink frequency resources and uplink frequency resources.
  • the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • one DL CC or a pair of UL CCs and DL CCs may correspond to one cell.
  • one cell basically includes one DL CC and optionally includes a UL CC.
  • a terminal communicating with a base station through a plurality of DL CCs receives a service from a plurality of serving cells.
  • the downlink is composed of a plurality of DL CCs, but only one CC may be used for the uplink.
  • the terminal may be said to be provided with a service from a plurality of serving cells for the downlink, and the terminal may be said to be provided with a service from only one serving cell for the uplink.
  • the terminal in order to transmit and receive packet data through a cell, the terminal must first complete configuration for a specific cell.
  • the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell is completed.
  • the configuration may include a general process of receiving common physical layer parameters required for data transmission and reception, media access control (MAC) layer parameters, or parameters required for a specific operation in the RRC layer.
  • MAC media access control
  • the cell in the configuration complete state may exist in an activation or deactivation state.
  • activation means that data is transmitted or received or is in a ready state.
  • the UE may monitor or receive a control channel (PDCCH) and a data channel (PDSCH) of an activated cell in order to identify resources (which may be frequency, time, etc.) allocated thereto.
  • PDCCH control channel
  • PDSCH data channel
  • the terminal may receive system information (SI) required for packet reception from the deactivated cell.
  • SI system information
  • the terminal does not monitor or receive the control channel (PDCCH) and data channel (PDSCH) of the deactivated cell in order to check the resources (may be frequency, time, etc.) allocated to them.
  • the activation / deactivation of the component carrier can be identified with the concept of the activation / deactivation of the serving cell. For example, assuming that serving cell 1 is configured of DL CC1, activation of serving cell 1 means activation of DL CC1. If the serving cell 2 assumes that DL CC2 and UL CC2 are configured to be configured, activation of serving cell 2 means activation of DL CC2 and UL CC2. In this sense, each component carrier may correspond to a serving cell.
  • the concept of the serving cell which is generally understood in the prior art can be changed, it can be divided into primary cell (secondary cell) and secondary cell (secondary cell) again.
  • the primary cell refers to a cell operating at a primary frequency, and is a cell in which the terminal performs an initial connection establishment procedure or connection reestablishment with the base station, or is indicated as a primary cell in a handover process. It means a cell.
  • the secondary cell refers to a cell operating at the secondary frequency, and is established and used to provide additional radio resources once the RRC connection is established.
  • a primary component carrier refers to a component carrier (CC) corresponding to a primary cell.
  • the PCC is a CC in which the terminal initially makes a connection (connection or RRC connection) with the base station among several CCs.
  • the PCC is a special CC that manages a connection (Connection or RRC Connection) for signaling regarding a plurality of CCs and manages UE context, which is connection information related to a terminal.
  • the PCC is connected to the terminal and always exists in the active state in the RRC connected mode.
  • the downlink component carrier corresponding to the primary cell is called a downlink primary component carrier (DL PCC), and the uplink component carrier corresponding to the primary cell is called an uplink major component carrier (UL PCC).
  • DL PCC downlink primary component carrier
  • U PCC uplink major component carrier
  • Secondary component carrier refers to a CC corresponding to the secondary cell. That is, the SCC is a CC allocated to the terminal other than the PCC, and the SCC is an extended carrier for the additional resource allocation other than the PCC and may be divided into an activated or deactivated state.
  • the downlink component carrier corresponding to the secondary cell is referred to as a DL secondary CC (DL SCC), and the uplink component carrier corresponding to the secondary cell is referred to as an uplink secondary component carrier (UL SCC).
  • DL SCC DL secondary CC
  • UL SCC uplink secondary component carrier
  • the primary cell and the secondary cell have the following characteristics.
  • the primary cell is used for transmission of the PUCCH.
  • the primary cell is always activated, while the secondary cell is a carrier that is activated / deactivated according to specific conditions.
  • RLF Radio Link Failure
  • the primary cell may be changed by a security key change or a handover procedure accompanying a RACH (Random Access CHannel) procedure.
  • NAS non-access stratum
  • the primary cell is always configured with a pair of DL PCC and UL PCC.
  • a different CC may be configured as a primary cell for each UE.
  • the primary cell can be replaced only through a handover, cell selection / cell reselection process.
  • RRC signaling may be used to transmit system information of a dedicated secondary cell.
  • a plurality of component carriers (CCs), that is, a plurality of serving cells may be supported.
  • Such a carrier aggregation system may support cross-carrier scheduling.
  • Cross-carrier scheduling is a resource allocation of a PDSCH transmitted on another component carrier through a PDCCH transmitted on a specific component carrier and / or other components other than the component carrier basically linked with the specific component carrier.
  • a scheduling method for resource allocation of a PUSCH transmitted through a carrier That is, the PDCCH and the PDSCH may be transmitted through different downlink CCs, and the PUSCH may be transmitted through another uplink CC other than the uplink CC linked with the downlink CC through which the PDCCH including the UL grant is transmitted. .
  • a carrier indicator indicating a DL CC / UL CC through which a PDSCH / PUSCH for which PDCCH provides control information is transmitted is required.
  • a field including such a carrier indicator is hereinafter called a carrier indication field (CIF).
  • a carrier aggregation system supporting cross carrier scheduling may include a carrier indication field (CIF) in a conventional downlink control information (DCI) format.
  • CIF carrier indication field
  • DCI downlink control information
  • 3 bits may be extended, and the PDCCH structure may include an existing coding method, Resource allocation methods (ie, CCE-based resource mapping) can be reused.
  • 3GPP LTE uses synchronous HARQ in uplink transmission and asynchronous HARQ in downlink transmission.
  • Synchronous HARQ means that retransmission timing is fixed, and asynchronous HARQ does not have fixed retransmission timing. That is, in the synchronous HARQ, initial transmission and retransmission are performed in an HARQ period.
  • FIG. 7 is an exemplary diagram illustrating an operation of HARQ between a base station and a UE.
  • the HARQ operation is performed in the MAC layer for efficient data transmission, and a detailed HARQ operation process is as follows.
  • the base station i.e., the eNodeB 200, transmits scheduling information through a PDCCH (Physical Downlink Control CHannel) control channel to transmit data to the UE, that is, the UE 100 in a HARQ scheme.
  • PDCCH Physical Downlink Control CHannel
  • the UE 100 monitors the control channel, that is, the PDCCH, and checks scheduling information coming to the UE.
  • the UE 100 at the time associated with the PDCCH, the data from the eNodeB 200 via the physical shared channel (PSCH) (eg, shown in FIG. Data # 1 and data # 2).
  • PSCH physical shared channel
  • the UE 100 attempts to decrypt the data when it receives the data.
  • the terminal transmits HARQ feedback to the eNodeB 200 according to the decoding result. That is, the UE 100 transmits an ACK signal to the eNodeB 200 through PUCCH or PUSCH if the decoding succeeds.
  • the eNodeB 200 When the eNodeB 200 receives the ACK signal, the eNodeB 200 detects the successful data transmission to the terminal and transmits the next data.
  • the eNodeB 200 when the eNodeB 200 receives a NACK signal, it detects that data transmission to the UE 100 has failed and retransmits the same data in the same format or a new format at an appropriate time.
  • the UE 100 that transmits the NACK signal attempts to receive retransmitted data.
  • the UE 100 When the UE 100 receives the retransmitted data, the UE 100 attempts to decode again by combining with the data stored in the buffer in a variety of ways while failing to decode previously, and fails the ACK signal when the decoding succeeds.
  • the NACK signal is transmitted to the eNodeB 200 through a PUCCH or a PUSCH. The process of sending a NACK signal and receiving retransmission is repeated until the UE 100 successfully decodes the data.
  • HARQ has been described in a downward direction, that is, a direction from the eNodeB 200 to the UE 100.
  • FIG. 8 illustrates a heterogeneous network including a macro cell and a small cell.
  • next generation communication standards including 3GPP LTE-A, heterogeneous networks in which small cells with low power transmission power, such as picocells, femtocells or microcells, overlap in existing macro cell coverage are discussed.
  • a macro cell may overlap one or more micro cells.
  • the service of the macro cell is provided by the macro base station (Macro eNodeB, MeNB).
  • the macro cell and the macro base station may be used interchangeably.
  • the terminal connected to the macro cell may be referred to as a macro UE.
  • the macro terminal receives a downlink signal from the macro base station and transmits an uplink signal to the macro base station.
  • the small cell is also referred to as femto cell, pico cell or micro cell.
  • the service of the small cell is provided by a pico base station (Pico eNodeB), a home base station (Home eNodeB, HeNB), a relay node (Relay Node, RN) and the like.
  • a pico base station (Pico eNodeB), a home base station (Home eNodeB, HeNB), and a relay node (Relay Node, RN) are collectively referred to as a home base station (HeNB).
  • the micro cell and the home base station may be used interchangeably.
  • Small cells may be divided into OA (open access) cells and CSG (closed subscriber group) cells according to accessibility.
  • the OA cell refers to a cell which can receive a service at any time when the terminal is needed without additional access restriction.
  • the CSG cell refers to a cell in which only a specific authorized terminal can receive the service.
  • inter-cell interference becomes a problem because macro cells and small cells overlap. As shown, when the terminal is at the boundary between the macro cell and the small cell, the downlink signal from the macro cell may act as interference. Similarly, downlink signals of small cells can also act as interference.
  • the interference with the small cell 300 may be lost due to the interference from the macro cell 200. This means that the coverage of cell 300 is smaller than expected.
  • the connection with the macro cell 200 may be disconnected due to the interference from the small cell 300. That is, the shaded area is generated in the macro cell 200.
  • 3GPP attempts to solve such inter-cell interference problem by time division.
  • eICIC enhanced inter-cell interference coordination
  • the time division scheme introduced in LTE Release-10 is called enhanced inter-cell interference coordination (ICIC), which means that it has evolved compared to the existing frequency division scheme. It is called a primary cell, and the interfering cell is defined as a victim cell or a secondary cell, and in a specific subframe, an attacker cell or a primary cell performs data transmission. By stopping, the terminal can maintain the connection with the victim cell (Victim cell) or the secondary cell in the subframe. In other words, when heterogeneous cells coexist with one another, one cell stops transmitting signals to a terminal which receives a very high interference in a certain area so that the interference signal is hardly transmitted.
  • IIC enhanced inter-cell interference coordination
  • the essential control information is, for example, a cell-specific reference signal (CRS).
  • CRS cell-specific reference signal
  • the CRS signal is present in the 0, 4, 7, 11th OFDM symbols in each subframe on the time axis. Therefore, only the CRS signal is transmitted on the 0, 4, 7, 11th OFDM symbols in the ABS frame.
  • eICIC enhanced Inter-Cell Interference Coordination
  • the macro cell that is, the eNodeB 200 operates the illustrated subframe as ABS.
  • the small cell 300 corresponding to the picocell performs data transmission in the data region of the corresponding subframe, and the CRS is transmitted on symbols 0, 4, 7, and 11.
  • the corresponding subframe is operated according to the ABS, no data can be transmitted in the data area.
  • the CRS may be transmitted on a subframe operated according to the ABS.
  • FIG. 10 is a block diagram illustrating a structure of a UE according to one disclosure of the present specification.
  • Orthogonal Frequency Division Multiplexing (OFDM) is used for downlink, whereas Single-Carrier (SC) -FDMA similar to OFDM (OF) is used for uplink.
  • SC Single-Carrier
  • SC-FDMA may also be referred to as DFT-s OFDM.
  • the SC-FDMA transmission scheme it is possible to avoid the non-linear distortion interval of the power amplifier (power amplifier), and thus the transmission power efficiency can be increased in the terminal with limited power consumption. Accordingly, user throughput may be high.
  • SC-FDMA is also very similar to OFDM in that signals are divided into subcarriers using Fast Fourier Transform (FFT) and Inverse-FFT (IFFT).
  • FFT Fast Fourier Transform
  • IFFT Inverse-FFT
  • a problem in the conventional OFDM transmitter is that signals carried on each subcarrier on the frequency axis are converted into signals on the time axis by the IFFT. That is, since the IFFT is performed in the same parallel operation, an increase in Peak to Average Power Ratio (PAPR) occurs.
  • PAPR Peak to Average Power Ratio
  • SC-FDMA is performed by IFFT after DFT spreading unlike OFDM. That is, a transmission scheme in which IFFT is performed after DFT spreading is called SC-FDMA. Therefore, SC-FDMA is also called DFT spread OFDM (DFT-s-OFDM) in the same sense.
  • DFT-s-OFDM DFT spread OFDM
  • SC-FDMA are similar to that of OFDM, which provides robustness for multipath channels, and at the same time fundamentally solves the disadvantage of increasing PAPR through conventional IFFT operation, enabling efficient power amplifiers. It was made.
  • the UE 100 includes an RF unit 110.
  • the RF unit 110 includes a transmitter, that is, a Discrete Fourier Transform (DFT) unit 111, a subcarrier mapper 1122, an IFFT unit 113, a CP insertion unit 1144, and a wireless transmitter unit 115.
  • the transmitter of the RF unit 110 may be, for example, a scramble unit (scramble unit), a modulation mapper (modulation mapper), a layer mapper (not shown) and a layer permutator (not shown). It may further include, which may be disposed ahead of the DFT unit 111.
  • the transmitter of the RF unit 110 first passes the information through the DFT 111 before mapping the signal to the subcarrier. After the subcarrier mapping of the signal spread by the DFT unit 111 (or precoded with the same meaning) through the subcarrier mapper 112, the time axis is again passed through the IFFT (Inverse Fast Fourier Transform) unit 113. Make it a signal of the award.
  • IFFT Inverse Fast Fourier Transform
  • the peak-to-average power ratio (PAPR) of the time domain signal after the IFFT unit 113 is increased.
  • PAPR peak-to-average power ratio
  • SC-FDMA PAPR or CM (cubic metric) may be lowered.
  • the DFT unit 111 outputs complex-valued symbols by performing a DFT on the input symbols. For example, when Ntx symbols are input (where Ntx is a natural number), the DFT size is Ntx.
  • the DFT unit 111 may be called a transform precoder.
  • the subcarrier mapper 112 maps the complex symbols to each subcarrier in the frequency domain. The complex symbols may be mapped to resource elements corresponding to resource blocks allocated for data transmission.
  • the subcarrier mapper 112 may be called a resource element mapper.
  • the IFFT unit 53 performs an IFFT on the input symbol and outputs a baseband signal for data which is a time domain signal.
  • the CP inserting unit 114 copies a part of the rear part of the base band signal for data and inserts it in the front part of the base band signal for data.
  • ISI Inter-symbol interference
  • ICI inter-carrier interference
  • the 3GPP camp has been actively standardizing LTE-Advanced, which is an improvement of LTE, and has adopted a clustered DFT-s-OFDM scheme that allows non-contiguous resource allocation. have.
  • the clustered DFT-s OFDM transmission scheme is a variation of the conventional SC-FDMA transmission scheme.
  • the clustered DFT-s OFDM transmission scheme divides the data symbols passed through the precoder into a plurality of sub-blocks and maps the data symbols separated from each other in the frequency domain.
  • An important feature of the clustered DFT-s-OFDM scheme is that it enables frequency selective resource allocation, which can flexibly cope with a frequency selective fading environment.
  • the LTE system maintains a single carrier characteristic in the uplink, whereas the LTE-A system allows a case in which DFT_precoding data is discontinuously allocated on the frequency axis or simultaneously transmitted by the PUSCH and the PUCCH.
  • the RF unit 110 includes a receiver, for example, a wireless receiver 116, a CP canceller 117, an FFT unit 118, an interference canceller 119, and a receive buffer.
  • the wireless receiver 116, the CP remover 117, and the FFT unit 118 of the receiver perform the inverse functions of the wireless transmitter 115, the CP insertion unit 114, and the IFF unit 113 in the transmitter.
  • the interference canceling unit 119 removes or mitigates the interference included in the received signal.
  • the interference canceling unit 119 is added to cope with the recent surge in wireless data demand and to remove interference by small cells as shown in FIG. 8.
  • FIG. 11 is a block diagram illustrating the operation of the interference canceling unit illustrated in FIG. 10 in a block form.
  • the receiver that is, the IC receiver, to which the interference canceling unit is added, may be implemented by conceptually subtracting the interference signal from the received signal.
  • the complexity of the IC receiver depends on the maximum number of cells to be interference canceled and the type of signal to be removed.
  • FIG. 11 an operation of performing interference cancellation on up to two interference sources is shown as a block.
  • the signal to be subjected to interference cancellation may be a Cell-specific Reference Signal (CRS), a Physical Broadcasting Channel (PBCH), a Sync Channel (SCH), a Physical Downlink Shared Channel (PDSCH), or the like.
  • CRS Cell-specific Reference Signal
  • PBCH Physical Broadcasting Channel
  • SCH Sync Channel
  • PDSCH Physical Downlink Shared Channel
  • the reception efficiency can be improved, and thus it may not be necessary to remove the interference while causing implementation complexity.
  • PBCH since the same data is repeatedly transmitted from the base station every 10 ms in a 30 ms period, it may not be necessary to remove interference while causing implementation complexity.
  • a general demodulation process after demodulating a signal retransmitted through a PDSCH in each subframe with a channel estimate of a corresponding reception interval, combining with a previous signal and performing decoding with the combined signal. . More specifically as follows.
  • the received bit stream is demodulated using the channel estimation value through the CRS, and the weight using the signal-to-noise ratio (SNR) estimate is pre-applied, so it is simply added with the same weight to the retransmission signal. Will be combined.
  • SNR signal-to-noise ratio
  • the quality of the data signal received from the serving cell may change according to the number of neighboring cells to be subjected to the interference cancellation. Do. That is, in case of the receiver to which the interference cancellation function is applied to the CRS, the channel estimation / signal-to-noise ratio estimation of the serving cell is performed according to the number of neighboring cells to be interference canceled and whether or not the CRS collides with the serving cell. A change in reliability occurs. This will be described with reference to FIG. 12.
  • 12A and 12B show interference by a CRS of a neighbor cell.
  • the CRS of the interfering neighboring cell collides with the data of the serving cell.
  • the reliability of channel estimation through the CRS of the serving cell does not change significantly, whereas the actual noise power of the data region overlapping with the CRS from the neighbor cell is reduced compared to the noise power estimated through the CRS of the serving cell.
  • FIG. 13 is a flowchart illustrating an improved demodulation process according to one disclosure of the present specification.
  • the weighted S (NICC, NICNC) value is multiplied by the received bitstream currently received at the corresponding position in the receive buffer (S102), and then combined with the previously received bitstream.
  • the weights S can be obtained through the table below.
  • the NICC means the number of neighbor cells when the interference cancellation function is applied to the CRS of the neighbor cell colliding with the CRS of the serving cell.
  • the NICNC means the number of neighbor cells when the interference cancellation function is applied to the CRS of the neighbor cell that collides with the data but does not collide with the CRS of the serving cell.
  • Each weight value in the table of Table 1 may be determined according to the amount of interference that the CRS-IC can remove.
  • the table of Table 1 may exist for each interference channel.
  • these weights vary depending on the performance of the applied CRS-IC, and the optimum value can be determined through simple measurement under the condition that a certain amount of interference is applied.
  • the reception efficiency can be improved by considering the recombination of the previous signal with the weight of the reliability change of the received signal according to whether interference cancellation is applied.
  • embodiments described so far may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof. Specifically, this will be described with reference to FIG. 14.
  • FIG. 14 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 200 includes a processor 201, a memory 202, and an RF unit 203.
  • the memory 202 is connected to the processor 201 and stores various information for driving the processor 201.
  • the RF unit 203 is connected to the processor 201 to transmit and / or receive a radio signal.
  • the processor 201 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 51.
  • the wireless device 100 includes an RF unit 110, a processor 120, a memory 130 and.
  • the memory 130 is connected to the processor 121 and stores various information for driving the processor 121.
  • the RF unit 110 is connected to the processor 120 to transmit and / or receive a radio signal.
  • the processor 120 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the wireless device may be implemented by the processor 120.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
  • the present invention can be used in a terminal, base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서의 일 개시는 수신 방법을 제공한다. 상기 수신 방법은 서빙셀로부터 수신된 비트열에 이웃셀의 CRS(Cell-specific Reference Signal)에 의한 간섭을 제거하는 단계와; 상기 비트열에 적용할 가중치를 결정하는 단계와; 상기 결정된 가중치를 상기 비트열에 적용하는 단계와; 상기 가중치가 적용된 비트열을 디코딩하는 단계를 포함할 수 있다. 상기 가중치 결정 단계에서는 상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는지 혹은 충돌하지 않는지에 따라 적용할 가중치가 결정될 수 있다.

Description

간섭 제거 수신 방법 및 단말
본 명세서의 일 개시는 간섭 제거 수신 방법 및 단말에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다. OFDMA 이해하기 위해서는 OFDM을 알아야 한다. OFDM은 낮은 복잡도로 심볼간 간섭(inter-symbol interfe nce) 효과를 감쇄시킬 수 있어, 사용되고 있다. OFDM은 직렬로 입력되는 데이터를 N개의 병렬 데이터로 변환하여, N개의 직교 부반송파(subcarrier)에 실어 전송한다. 부반송파는 주파수 차원에서 직교성을 유지한다. 한편, OFDMA은 OFDM을 변조 방식으로 사용하는 시스템에 있어서 이용 가능한 부반송파의 일부를 각 사용자에게 독립적으로 제공하여 다중 접속을 실현하는 다중 접속 방법을 말한다.
최근에는 3GPP LTE의 진화인 3GPP LTE-A(LTE-Advanced)의 개발이 완료되고 있다.
또한, 최근에는 매크로셀과 소규모셀이 공존하는 이종 네트워크에 대한 논의가 진행중이다. 특히 매크로셀에 접속된 단말을 소규모셀로 분산시킴으로써, 트래픽을 우회시키기 위한 논의가 진행중이다.
한편, 이와 같은 소규모셀에 의해 간섭은 더욱더 증가될 수 있으며, 그에 따라 간섭 제거 기능이 절실히 필요한 실정이다.
따라서, 본 명세서의 일 개시는 간섭 제거 기능을 구현하는 방안을 제시하는 것을 목적으로 한다.
전술한 목적을 달성하기 위해서, 본 명세서의 일 개시는 간섭 제거 수신 방법을 제공한다. 상기 수신 방법은 서빙셀로부터 수신된 비트열에 이웃셀의 CRS(Cell-specific Reference Signal)에 의한 간섭을 제거하는 단계와; 상기 비트열에 적용할 가중치를 결정하는 단계와; 상기 결정된 가중치를 상기 비트열에 적용하는 단계와; 상기 가중치가 적용된 비트열을 디코딩하는 단계를 포함할 수 있다. 상기 가중치 결정 단계에서는 상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는지 혹은 충돌하지 않는지에 따라 적용할 가중치가 결정될 수 있다.
상기 가중치 결정 단계에서는 상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는지 혹은 충돌하지 않는지에 따라 적용할 가중치가 달라질 수 있다.
상기 가중치 결정 단계에서는 상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS들이 서로 충돌하는 경우 그 충돌하는 이웃셀의 개수와, CRS들이 서로 충돌하지 않는 경우 그 충돌하지 않는 이웃셀의 개수가 횡과 열로 각기 매핑되어진 테이블을 통해 상기 가중치가 결정될 수 있다.
상기 수신 방법은 상기 디코딩된 신호에 대해 CRC(Cyclic Redundancy Check) 오류가 존재하는지 확인하는 단계와; 상기 CRC 오류가 존재하는 경우, 최대 재전송 횟수를 초과하여 CRC 오류가 발생했는지를 판단하는 단계를 더 포함할 수 있다.
상기 수신 방법은 상기 수신 비트열이 HARQ에 따라 재전송된 것일 경우, 상기 수신 비트열에 상기 가중치를 적용한 후, 이전에 수신된 비트열과 결합하는 단계를 더 포함할 수 있다.
전술한 목적을 달성하기 위해서, 본 명세서의 일 개시는 단말을 또한 제공한다. 상기 단말은 RF부와; 그리고 상기 RF부를 제어하여, 서빙셀로부터 수신된 비트열에 서빙셀로부터 수신된 비트열에 이웃셀의 CRS(Cell-specific Reference Signal)에 의한 간섭을 제거하고, 상기 비트열에 적용할 가중치를 결정하고, 상기 비트열에 상기 결정된 가중치를 곱한 후 디코딩을 수행하는 프로세서를 포함할 수 있다. 여기서, 상기 프로세서는 상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는지 혹은 충돌하지 않는지에 따라 적용할 가중치를 결정할 수 있다.
본 명세서의 개시에 의하면, 간섭 제거 기능을 통하여 보다 수신 성능을 높일 수 있다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
도 5는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 6은 기존의 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 7은 기지국과 UE 간의 HARQ의 동작을 나타낸 예시도이다.
도 8은 매크로 셀과 소규모 셀을 포함하는 이종 네트워크를 도시한 도면이다.
도 9는 기지국 간 간섭을 해결하기 위한 eICIC(enhanced Inter-Cell Interference Coordination)를 나타낸 예시도이다.
도 10은 본 명세서의 일 개시에 따른 UE의 구조를 예시적으로 나타낸 블록도이다.
도 11은 도 10에 도시된 간섭 제거부의 동작을 블록화하여 나타낸 블록도이다.
도 12a 및 도 12b는 이웃셀의 CRS에 의한 간섭을 나타낸다.
도 13은 본 명세서의 일 개시에 따라 개선된 복조 과정을 나타낸 흐름도이다.
도 14는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
이하, 도면에서는 UE(User Equipment)가 도시되어 있으나, 상기 UE는 단말(Terminal), ME(Mobile Equipment), MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device), 휴대기기(Handheld Device), AT(Access Terminal)로 불릴 수 있다. 또한, 상기 단말은 휴대폰, PDA, 스마트 폰(Smart Phone), 무선 모뎀(Wireless Modem), 노트북 등과 같이 통신 기능을 갖춘 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다.
그리고 이하에서 사용되는 기지국이라는 용어는 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
도 1은 무선 통신 시스템이다.
도 1을 참조하여 알 수 있는 바와 같이, 무선 통신 시스템은 적어도 하나의 기지국(20; base station, BS)을 포함한다. 각 기지국(20)은 특정한 지리적 영역(일반적으로 셀이라고 함)(20a, 20b, 20c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. UE(10; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, 단말(terminal), MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNodeB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다.
UE은 통상적으로 하나의 셀에 속하는데, UE가 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 단말을 기준으로 상대적으로 결정된다.
이하에서, 하향링크는 기지국(20)에서 UE(10)로의 통신을 의미하며, 상향링크는 UE (10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(20)의 일부분이고, 수신기는 UE(10)의 일부분일 수 있다. 상향링크에서 송신기는 UE (10)의 일부분이고, 수신기는 기지국(20)의 일부분일 수 있다.
한편, 무선 통신 시스템은 MIMO(multiple-input multiple-output) 시스템, MISO(multiple-input single-output) 시스템, SISO(single-input single-output) 시스템 및 SIMO(single-input multiple-output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다. 이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다.
한편, 무선 통신 시스템은 크게 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 단말에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
이하에서는, LTE 시스템에 대해서 보다 상세하게 알아보기로 한다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 0부터 19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다.
도 3은 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 3을 참조하면, 상향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역(frequency domain)에서 NUL 자원블록(Resource Block, RB)을 포함한다. OFDM 심벌은 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 시스템에 따라 SC-FDMA 심벌, OFDMA 심벌 또는 심벌 구간이라고 할 수 있다. 자원블록은 자원 할당 단위로 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯에 포함되는 자원블록의 수 NUL 은 셀에서 설정되는 상향링크 전송 대역폭(bandwidth)에 종속한다. 자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 한다.
여기서, 하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 부반송파의 수와 OFDM 심벌의 수는 이에 제한되는 것은 아니다. 자원블록이 포함하는 OFDM 심벌의 수 또는 부반송파의 수는 다양하게 변경될 수 있다. OFDM 심벌의 수는 사이클릭 프리픽스(Cyclic Prefix, 이하 CP)의 길이에 따라 변경될 수 있다. 예를 들어, 노멀(normal) CP의 경우 OFDM 심벌의 수는 7이고, 확장된(extended) CP의 경우 OFDM 심벌의 수는 6이다.
도 3의 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다.
도 4는 하향링크 서브프레임의 구조를 나타낸다.
이는 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 4절을 참조할 수 있다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 따라서, 무선 프레임은 20개의 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V10.4.0에 의하면, 노멀(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V10.4.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC(Cyclic Redundancy Check)에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 기지국은 무선기기에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
3GPP TS 36.211 V10.4.0에 의하면, 상향링크 채널은 PUSCH, PUCCH, SRS(Sounding Reference Signal), PRACH(Physical Random Access Channel)을 포함한다.
도 5는 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역에는 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)가 할당된다. 데이터 영역은 데이터(경우에 따라 제어 정보도 함께 전송될 수 있다)가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)가 할당된다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티 이득을 얻을 수 있다.
도 6은 기존의 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 6(a)를 참조하면, 일반적인 FDD 방식 무선 통신 시스템은 상향링크와 하향링크에 하나의 반송파만을 단말에게 지원한다. 이때, 반송파의 대역폭은 다양할 수 있으나, 단말에게 할당되는 반송파는 하나이다.
즉, 일반적인 FDD 방식 무선 통신 시스템은 하나의 하향링크 대역과 이에 대응하는 하나의 상향링크 대역을 통해 데이터 송수신을 수행한다. 기지국과 단말은 서브프레임 단위로 스케줄링된 데이터 및/또는 제어 정보를 송수신한다. 데이터는 상/하향링크 서브프레임에 설정된 데이터 영역을 통해 송수신되고, 제어 정보는 상/하향링크 서브프레임에 설정된 제어 영역을 통해 송수신된다. 이를 위해, 상/하향링크 서브프레임은 다양한 물리 채널을 통해 신호를 나른다. 도 5은 편의상 FDD 방식을 위주로 설명했지만, 상술한 내용은 무선프레임을 시간 영역에서 상/하향링크로 구분함으로써 TDD 방식에도 적용될 수 있다.
도 6(a)에 나타난 바와 같이, 하나의 하향링크 대역과 이에 대응하는 하나의 상향링크 대역을 통해 데이터 송수신을 하는 것을 단일 반송파 시스템이라고 한다.
이러한 단일 반송파 시스템은 LTE 시스템에서의 통신 예에 대응할 수 있다. 이러한 3GPP LTE 시스템은 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만 최대 20MHz을 지원한다.
한편, 높은 데이터 전송률이 요구되고 있다. 이를 위한 가장 기본적이고 안정적인 해결 방안은 대역폭을 늘리는 것일 것이다.
그러나 주파수 자원은 현재를 기준으로 포화상태이며 다양한 기술들이 광범위한 주파수 대역에서 부분 부분 사용되고 있는 실정이다. 이러한 이유로 보다 높은 데이터 전송율 요구량을 충족시키기 위하여 광대역 대역폭을 확보하기 위한 방안으로 산재해 있는 대역들 각각이 독립적인 시스템을 동작할 수 있는 기본적인 요구사항을 만족하도록 설계하고, 다수의 대역들을 하나의 시스템으로 묶는 개념인 반송파 집성(carrier aggregation, CA)을 도입하고 있다.
즉, 반송파 집성(CA) 시스템은 무선 통신 시스템이 광대역을 지원하려고 할 때 목표로 하는 광대역보다 작은 대역폭을 가지는 1개 이상의 반송파를 모아서 광대역을 구성하는 시스템을 의미한다.
이러한 캐리어 집성(CA) 기술은 LTE-Advanced(이하, ‘LTE-A’라고 한다) 시스템에서도 채용되고 있다. 그리고, 반송파 집성(CA) 시스템은 다중 반송파 시스템(multiple carrier system), 대역폭 집합(Bandwidth aggregation) 시스템 등의 다른 명칭으로 불릴 수 있다.
반송파 집성(CA) 시스템에서 단말은 용량에 따라서 하나 또는 복수의 반송파를 동시에 전송 또는 수신할 수 있다. 즉, 반송파 집성(CA) 시스템에서는 단말에게 복수의 요소 반송파(component carrier : CC)가 할당될 수 있다. 본 명세서에서 사용되는 요소 반송파는 반송파 집성 시스템에서 사용되는 반송파를 의미하며 반송파로 약칭할 수 있다. 또한, 요소 반송파(component carrier)는 문맥에 따라 반송파 집성을 위한 주파수 블록 또는 주파수 블록의 중심 반송파를 의미할 수 있고 이들은 서로 혼용된다.
도 6(b)는 LTE-A 시스템에서의 통신 예에 대응할 수 있다.
도 6(b)를 참조하면, 상/하향링크에 각각 예를 들어, 3개의 20MHz의 요소 반송파가 할당되는 경우 단말에게 60MHz의 대역폭을 지원할 수 있다. 또는, 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다. 도 5(b)는 편의상 상향링크 요소 반송파의 대역폭과 하향링크 요소 반송파의 대역폭이 모두 동일한 경우를 도시하였다. 그러나, 각 요소 반송파의 대역폭은 독립적으로 정해질 수 있다. 1개 이상의 요소 반송파를 집성할 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원할 수 있다. 따라서, 예를 들어 상향링크 요소 반송파의 대역폭은 5MHz(UL CC0) + 20MHz(UL CC1) + 20MHz(UL CC2) + 20MHz(UL CC3) + 5MHz(UL CC4)와 같이 구성될 수 있다. 그러나, 하위 호환성(backward compatibility)을 고려하지 않는다면, 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
도 6(b)는 편의상 상향링크 요소 반송파과 개수와 하향링크 요소 반송파의 개수가 서로 대칭인 경우를 도시하였다. 이와 같이, 향링크 요소 반송파과 개수와 하향링크 요소 반송파의 개수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.
비대칭적 반송파 집성은 가용한 주파수 대역의 제한으로 인해 발생되거나 네트워크 설정에 의해 인위적으로 조성될 수 있다. 일 예로, 시스템 전체 대역이 N개의 CC로 구성되더라도 특정 단말이 수신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다. 반송파 집성에 대한 다양한 파라미터는 셀 특정(cell-specific), 단말 그룹 특정(UE group-specific) 또는 단말 특정 방식으로 설정될 수 있다.
한편, 반송파 집성(CA) 시스템은 각 반송파가 연속한 연속(contiguous) 반송파 집성 시스템과 각 반송파가 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 연속 반송파 집성 시스템에서 각 반송파 사이에 가드 밴드(guard band)가 존재할 수 있다. 이하에서 단순히 다중 반송파 시스템 또는 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다.
한편, 반송파 집성(CA) 기술에 의해, 종래 일반적으로 이해되던 셀(Cell)의 개념도 바뀌고 있다. 즉, 반송파 집성(CA) 기술에 의하면, 셀(Cell)이라 함은 한 쌍의 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다.
바꿔 말하면, 반송파 집성(CA) 기술에 따르면, 하나의 DL CC 또는 UL CC와 DL CC의 쌍(pair)이 하나의 셀에 대응될 수 있다. 혹은 하나의 셀은 하나의 DL CC를 기본적으로 포함하고 임의로(Optional) UL CC를 포함한다. 따라서, 복수의 DL CC를 통해 기지국과 통신하는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다. 이때, 하향링크는 복수의 DL CC로 구성되나, 상향링크는 하나의 CC만이 이용될 수 있다. 이 경우, 단말에서 하향링크에 대해서는 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있고, 상향링크에 대해서는 하나의 서빙 셀로부터만 서비스를 제공받는다고 할 수 있다.
한편, 셀을 통하여 패킷(packet) 데이터의 송수신이 이루어지기 위해서는, 단말은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC(media access control) 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. 단말은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화 상태의 셀과는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능하다. 단말은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(SI)를 수신할 수 있다. 반면, 단말은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
따라서, 반송파 집성(CA) 기술에 따르면, 요소 반송파의 활성화/비활성화는 곧 서빙 셀의 활성화/비활성화의 개념과 동일 시 될 수 있다. 예를 들어, 서빙 셀1이 DL CC1으로 구성되어 있다고 가정할 때, 서빙 셀1의 활성화는 DL CC1의 활성화를 의미한다. 만약, 서빙 셀2가 DL CC2와 UL CC2가 연결 설정되어 구성되어 있다고 가정할 때, 서빙 셀2의 활성화는 DL CC2와 UL CC2의 활성화를 의미한다. 이러한 의미에서, 각 요소 반송파는 서빙 셀(cell)에 대응될 수 있다.
다른 한편, 반송파 집성(CA) 기술에 의해, 종래 일반적으로 이해되던 서빙 셀(serving cell)의 개념이 바뀌어, 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell)로 재차 구분되어질 수 있다.
프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, 단말이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다.
세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고 추가적인 무선 자원을 제공하는데 사용된다.
PCC(primary component carrier)는 프라이머리 셀에 대응하는 요소 반송파(component carrier: CC)를 의미한다. PCC는 단말이 여러 CC 중에 초기에 기지국과 접속(Connection 혹은 RRC Connection)을 이루게 되는 CC이다. PCC는 다수의 CC에 관한 시그널링을 위한 연결(Connection 혹은 RRC Connection)을 담당하고, 단말과 관련된 연결정보인 단말문맥정보(UE Context)를 관리하는 특별한 CC이다. 또한, PCC는 단말과 접속을 이루게 되어 RRC 연결상태(RRC Connected Mode)일 경우에는 항상 활성화 상태로 존재한다. 프라이머리 셀에 대응하는 하향링크 요소 반송파를 하향링크 주요소 반송파(DownLink Primary Component Carrier, DL PCC)라 하고, 프라이머리 셀에 대응하는 상향링크 요소 반송파를 상향링크 주요소 반송파(UL PCC)라 한다.
SCC(secondary component carrier)는 세컨더리 셀에 대응하는 CC를 의미한다. 즉, SCC는 PCC 이외에 단말에 할당된 CC로서, SCC는 단말이 PCC 이외에 추가적인 자원할당 등을 위하여 확장된 반송파(Extended Carrier)이며 활성화 혹은 비활성화 상태로 나뉠 수 있다. 세컨더리 셀에 대응하는 하향링크 요소 반송파를 하향링크 부요소 반송파(DL Secondary CC, DL SCC)라 하고, 세컨더리 셀에 대응하는 상향링크 요소 반송파를 상향링크 부요소 반송파(UL SCC)라 한다.
프라이머리 셀과 세컨더리 셀은 다음과 같은 특징을 가진다.
첫째, 프라이머리 셀은 PUCCH의 전송을 위해 사용된다. 둘째, 프라이머리 셀은 항상 활성화되어 있는 반면, 세컨더리 셀은 특정 조건에 따라 활성화/비활성화되는 반송파이다. 셋째, 프라이머리 셀이 무선링크실패(Radio Link Failure; 이하 RLF)를 경험할 때, RRC 재연결이 트리거링(triggering)된다. 넷째, 프리이머리 셀은 보안키(security key) 변경이나 RACH(Random Access CHannel) 절차와 동반하는 핸드오버 절차에 의해서 변경될 수 있다. 다섯째, NAS(non-access stratum) 정보는 프라이머리 셀을 통해서 수신한다. 여섯째, FDD 시스템의 경우 언제나 프라이머리 셀은 DL PCC와 UL PCC가 쌍(pair)으로 구성된다. 일곱째, 각 단말마다 다른 요소 반송파(CC)가 프라이머리 셀로 설정될 수 있다. 여덟째, 프라이머리 셀은 핸드오버, 셀 선택/셀 재선택 과정을 통해서만 교체될 수 있다. 신규 세컨더리 셀의 추가에 있어서, 전용(dedicated) 세컨더리 셀의 시스템 정보를 전송하는데 RRC 시그널링이 사용될 수 있다.
상술한 바와 같이 반송파 집성 시스템에서는 단일 반송파 시스템과 달리 복수의 요소 반송파(component carrier, CC), 즉, 복수의 서빙 셀을 지원할 수 있다.
이러한 반송파 집성 시스템은 교차 반송파 스케줄링을 지원할 수 있다. 교차 반송파 스케줄링(cross-carrier scheduling)은 특정 요소 반송파를 통해 전송되는 PDCCH를 통해 다른 요소 반송파를 통해 전송되는 PDSCH의 자원 할당 및/또는 상기 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파 이외의 다른 요소 반송파를 통해 전송되는 PUSCH의 자원 할당을 할 수 있는 스케줄링 방법이다. 즉, PDCCH와 PDSCH가 서로 다른 하향링크 CC를 통해 전송될 수 있고, UL 그랜트를 포함하는 PDCCH가 전송된 하향링크 CC와 링크된 상향링크 CC가 아닌 다른 상향링크 CC를 통해 PUSCH가 전송될 수 있다. 이처럼 교차 반송파 스케줄링을 지원하는 시스템에서는 PDCCH가 제어정보를 제공하는 PDSCH/PUSCH가 어떤 DL CC/UL CC를 통하여 전송되는지를 알려주는 반송파 지시자가 필요하다. 이러한 반송파 지시자를 포함하는 필드를 이하에서 반송파 지시 필드(carrier indication field, CIF)라 칭한다.
교차 반송파 스케줄링을 지원하는 반송파 집성 시스템은 종래의 DCI(downlink control information) 포맷에 반송파 지시 필드(CIF)를 포함할 수 있다. 교차 반송파 스케줄링을 지원하는 시스템 예를 들어 LTE-A 시스템에서는 기존의 DCI 포맷(즉, LTE에서 사용하는 DCI 포맷)에 CIF가 추가되므로 3 비트가 확장될 수 있고, PDCCH 구조는 기존의 코딩 방법, 자원 할당 방법(즉, CCE 기반의 자원 맵핑)등을 재사용할 수 있다.
이제 3GPP LTE에서 HARQ에 대해 기술한다.
3GPP LTE는 상향링크 전송에서 동기(synchronous) HARQ를 사용하고, 하향링크 전송에서 비동기(asynchronous) HARQ를 사용한다. 동기 HARQ는 재전송 타이밍이 고정된 것을 말하고, 비동기 HARQ는 재전송 타이밍이 고정되지 않는다. 즉, 동기 HARQ는 HARQ 주기로 초기 전송과 재전송이 수행된다.
도 7은 기지국과 UE 간의 HARQ의 동작을 나타낸 예시도이다.
도 7에 도시된 바와 같이, 효율적인 데이터 전송을 위해 MAC 계층에서 HARQ 동작을 수행하도록 하고 있으며, 그 자세한 HARQ 동작 과정은 다음과 같다.
먼저, 기지국, 즉 eNodeB(200)은 HARQ 방식으로 데이터를 단말, 즉 UE(100)에게 전송하기 위해서 PDCCH (Physical Downlink Control CHannel) 제어채널을 통해서 스케줄링 정보 (Scheduling Information; 이하 스케줄링 정보)을 전송한다.
상기 UE(100)은 상기 제어 채널, 즉 PDCCH을 모니터링(Monitoring) 해서, 자신에게 오는 스케줄링 정보를 확인한다.
상기 스케줄링 정보의 확인에 따라 자신에 대한 정보가 있는 것으로 확인되면, 상기 UE(100)은 PDCCH와 연관된 시점에서 공용 채널(PSCH: Physical Shared Channel)을 통해 eNodeB(200)으로부터 데이터들(예컨대 도시된 데이터#1 및 데이터#2)을 수신한다.
상기 UE(100)은 데이터를 수신하면 상기 데이터의 복호화를 시도한다. 상기 단말은 상기 복호화 결과에 따라 HARQ 피드백을 eNodeB(200)으로 전송한다. 즉, 상기 UE(100)은 복호화에 성공하면 ACK 신호를, 실패하면 NACK 신호를 PUCCH 혹은 PUSCH를 통해 eNodeB(200)에 전송한다.
상기 eNodeB(200)은 ACK 신호를 수신하면 상기 단말로의 데이터 전송이 성공했음을 감지하고 다음 데이터를 전송한다.
그러나, 상기 eNodeB(200)이 NACK 신호를 수신하면 상기 UE(100)로의 데이터 전송이 실패했음을 감지하고 적절한 시점에 동일 데이터를 동일한 형식 또는 새로운 형식으로 재전송한다.
상기 NACK 신호를 전송한 UE(100)은 재전송되는 데이터의 수신을 시도한다.
상기 UE(100)은 재전송된 데이터를 수신하면, 이를 이전에 복호화에 실패한 채로 버퍼에 저장되어 있는 데이터와 다양한 방식으로 결합하여 다시 복호화를 시도하고, 복호화에 성공했을 경우 ACK 신호를, 실패했을 경우 NACK 신호를 PUCCH 혹은 PUSCH를 통해 상기 eNodeB(200)에 전송한다. 상기 UE(100) 데이터의 복호화에 성공할 때까지 NACK 신호를 보내고 재전송을 받는 과정을 반복한다.
지금까지는 하향 방향, 즉 상기 eNodeB(200)에서 상기 UE(100)로의 방향에서의 HARQ를 설명하였다.
도 8은 매크로 셀과 소규모 셀을 포함하는 이종 네트워크를 도시한 도면이다.
3GPP LTE-A를 비롯한 차세대 통신 표준에서는 기존 매크로 셀 커버러지 내에 저전력 송신 파워를 갖는 소규모 셀, 예컨대 피코셀, 펨토셀 또는 마이크로 셀이 중첩되어 존재하는 이종 네트워크가 논의되고 있다.
도 8을 참조하면, 매크로 셀은 하나 이상의 마이크로 셀과 중첩될 수 있다. 매크로 셀의 서비스는 매크로 기지국(Macro eNodeB, MeNB)에 의해 제공된다. 본 명세서에서 매크로 셀과 매크로 기지국은 혼용될 수 있다. 매크로 셀에 접속된 단말은 매크로 단말(Macro UE)로 지칭될 수 있다. 매크로 단말은 매크로 기지국으로부터 하향링크 신호를 수신하고, 매크로 기지국에게 상향링크 신호를 전송한다.
상기 소규모 셀은 펨토 셀, 피코 셀 또는 마이크로 셀로도 지칭된다. 소규모 셀의 서비스는 피코 기지국(Pico eNodeB), 홈 기지국(Home eNodeB, HeNB), 릴레이 노드(Relay Node, RN) 등에 의해 서비스가 제공된다. 편의상, 피코 기지국(Pico eNodeB), 홈 기지국(Home eNodeB, HeNB), 릴레이 노드(Relay Node, RN)를 홈 기지국(HeNB)으로 통칭한다. 본 명세서에서 마이크로 셀과 홈 기지국은 혼용될 수 있다.
소규모 셀은 접근성에 따라 OA(open access) 셀과 CSG(closed subscriber group) 셀로 나뉘어 질 수 있다. OA 셀은 단말이 별도의 접근 제한 없이 필요할 경우 언제든지 서비스를 받을 수 있는 셀을 의미한다. 반면, CSG 셀은 허가된 특정 단말만이 서비스를 받을 수 있는 셀을 의미한다.
이종 네트워크에서는 매크로 셀과 소규모 셀이 중첩되므로 셀간 간섭이 문제가 된다. 도시된 바와 같이, 단말이 매크로 셀과 소규모 셀의 경계에 있는 경우, 매크로 셀로부터의 하향링크 신호는 간섭으로 작용할 수 있다. 유사하게, 소규모 셀의 하향링크 신호도 역시 간섭으로 작용할 수 있다.
구체적인 예를 들어, 소규모 셀(300)에 접속한 단말(100)이 소규모 셀 경계면에 있을 때 매크로 셀(200)로부터의 간섭으로 인해 소규모 셀(300)과의 접속이 끊어질수 있는데, 이는 곧 소규모 셀(300)의 커버리지가 예상보다 작아짐을 의미한다.
또 다른 예로 매크로셀(200)에 접속한 단말(100)이 소규모 셀(300)영역에 있을 때 소규모 셀(300)로부터의 간섭으로 인해 매크로셀(200)과의 접속이 끊어질 수 있는데, 이는 곧 매크로 셀(200) 내에 음영지역이 발생함을 의미한다.
이러한 간섭 문제를 해결하는 가장 근본적인 방법은 이종망 간에 주파수를 서로 다르게 사용하는 것이다. 그러나, 주파수는 희소하고 값비싼 자원이기 때문에 사업자에게는 주파수 분할을 통한 해결 방법이 그다지 환영받지 못하였다.
따라서, 3GPP에서는 이러한 셀 간의 간섭(inter-cell interference) 문제를 시간분할을 통해 해결하고자 하였다.
이에 따라 최근 3GPP 에서는 간섭 협력 방법의 하나로써 eICIC(enhanced inter-cell interference coordination) 에 대한 활발한 연구가 수행되고 있다.
LTE Release-10에 도입된 시간분할 방식은 기존의 주파수 분할 방식에 대비하여 진화했다는 의미로 enhanced ICIC(Enhanced inter-cell interference Coordination)라고 불리는데, 간섭을 일으키는 셀을 각각 공격자 셀(Aggressor cell) 또는 1차 셀(Primary Cell)이라고 하고, 간섭을 받는 셀을 희생 셀(Victim cell) 또는 2차 셀(Secondary Cell)로 정의하고, 특정 서브프레임에서는 공격자 셀(Aggressor cell) 또는 1차 셀이 데이터 전송을 중지하여, 단말이 해당 서브프레임에서 희생 셀(Victim cell) 또는 2차 셀과 접속을 유지할 수 있게 하는 방법이다. 즉, 이 방법은 이종의 셀이 서로 공존할 경우, 어느 영역에서 상당히 높은 간섭을 받는 단말에 대해서 한쪽 셀이 신호의 전송을 잠시 중단함으로써 간섭 신호를 거의 보내지 않게 한다.
한편, 상기 데이터 전송이 중지되는 특정 서브프레임을 ABS(Almost Blank Subframe)라고 하며, 상기 ABS에 해당하는 서브프레임에서는 꼭 필요한 제어 정보 외에는 어떠한 데이터도 전송도 되지 않는다. 상기 꼭 필요한 제어 정보는 예를 들어, 공동 기준신호(CRS: Cell-specific Reference Signal)이다. 현재 3GPP LTE/LTE-A 규격에서 상기 CRS 신호는 시간 축으로 각 서브 프레임 내의 0, 4, 7, 11 번째 OFDM 심볼에 존재한다. 따라서 ABS가 적용된 서브프레임에서는 0, 4, 7, 11 번째 OFDM 심볼 상에서 CRS 신호만이 전송되게 된다.
도 9는 기지국 간 간섭을 해결하기 위한 eICIC(enhanced Inter-Cell Interference Coordination)를 나타낸 예시도이다.
도 9을 참조하면, 매크로셀, 즉, eNodeB(200)은 도시된 서브프레임을 ABS으로 동작한다.
상기 피코셀에 해당하는 소규모 셀(300)이 상기 해당 서브프레임의 데이터 영역에서는 데이터 전송을 수행하고, CRS는 0, 4, 7, 및 11번 심볼 상에서 전송된다.
반면, 매크로셀, 즉, eNodeB(200)은 상기 eICIC가 적용되면, 해당 서브프레임은 ABS에 따라 운용되어, 데이터 영역에서는 아무런 데이터도 전송되지 않을 수 있다. 다만, ABS에 따라 운용되는 서브프레임 상에서는 CRS만이 전송될 수 있다.
이상과 같이, 셀 간의 간섭(inter-cell interference) 문제를 eICIC 기법을 통해 해결하는 것 외에, UE(100)에 간섭 제거 기능을 추가하는 방안이 있을 수 있다. 이하에서는, 간섭 제거 기능을 추가하는 방안에 대해서 설명하기로 한다.
도 10은 본 명세서의 일 개시에 따른 UE의 구조를 예시적으로 나타낸 블록도이다.
LTE(Long-Term Evolution) 또는 LTE-A에서는 하향링크에서는 OFDM(Orthogonal Frequency Division Multiplexing)가 사용되지만, 상향링크에는 OFDM(과 유사한 SC(Single-Carrier)-FDMA가 사용된다.
SC-FDMA는 DFT-s OFDM(DFT-spread OFDM)이라고도 할 수 있다. SC-FDMA 전송 방식을 이용하는 경우, 전력 증폭기(power amplifier)의 비선형(non-linear) 왜곡 구간을 피할 수 있고, 따라서 전력 소모가 제한된 단말에서 전송 전력 효율이 높아질 수 있다. 이에 따라, 사용자 수율(user throughput)이 높아질 수 있다.
SC-FDMA 역시 FFT(Fast Fourier Transform)와 IFFT(Inverse-FFT)를 사용하여 부반송파에 나누어 신호를 전달하는 점에서, OFDM과 매우 유사하다. 그러나, 기존의 OFDM 송신기에서 문제가 되었던 것은 주파수 축상의 각 부반송파에 실려 있던 신호들이 IFFT에 의하여 시간 축의 신호로 변환된다는 데에 있다. 즉, IFFT가 병렬의 동일한 연산이 수행되는 형태이기에 PAPR(Peak to Average Power Ratio)의 증가가 발생하는 것이다. 이러한 PAPR의 증가를 방지하기 위해, SC-FDMA는 OFDM과 달리 DFT 확산(spreading) 후 IFFT가 수행한다. 즉, DFT 확산(spreading) 후 IFFT가 수행되는 전송 방식을 SC-FDMA라 한다. 따라서, SC-FDMA는 동일한 의미로 DFT spread OFDM(DFT-s-OFDM)으로도 불린다.
이와 같은, SC-FDMA의 장점은 OFDM과 비슷한 구조를 가짐으로써 다중 경로 채널에 대한 강인성을 얻는 동시에, 기존의 OFDM이 IFFT 연산을 통해 PAPR이 증가하는 단점을 근본적으로 해결함으로써 효율적인 전력증폭기 사용을 가능하게 하였다.
도 10을 참조하면, UE(100)는 RF부(110)을 포함한다. 상기 RF부(110)는 송신단, 즉 DFT(Discrete Fourier Transform)부(111), 부반송파 맵퍼(1122), IFFT부(113) 및 CP 삽입부(1144), 무선 송신부(115)를 포함한다. 상기 RF부(110)의 송신단은 예컨대 스크램블 유닛(미도시; scramble unit), 모듈레이션 맵퍼(미도시; modulation mapper), 레이어 맵퍼(미도시; layer mapper) 및 레이어 퍼뮤테이터(미도시; layer permutator)를 더 포함할 수 있으며, 이는 상기 DFT부(111)에 앞서 배치될 수 있다. 즉, 전술한 바와 같이 PAPR의 증가를 방지하기 위해서, 상기 RF부(110)의 송신단은 부반송파에 신호를 매핑하기 이전에 먼저 정보를 DFT(111)를 거치도록 한다. DFT부(111)에 의해 spreading(스프레딩)(또는 동일한 의미로 프리코딩) 된 신호를 부반송파 매퍼(112)를 통해 부반송파 매핑을 한 뒤에 다시 IFFT(Inverse Fast Fourier Transform)부(113)를 거쳐 시간축상의 신호로 만들어준다.
즉, DFT부(111), 부반송파 맵퍼(112) 및 IFFT부(113)의 상관관계에 의해 SC-FDMA에서는 IFFT부(113) 이 후의 시간 영역 신호의 PAPR(peak-to-average power ratio)이 OFDM과는 달리 크게 증가하지 않아 송신 전력 효율 측면에서 유리하게 된다. 즉, SC-FDMA에서는 PAPR 또는 CM(cubic metric)이 낮아질 수 있다.
DFT부(111)는 입력되는 심벌들에 DFT를 수행하여 복소수 심벌들(complex-valued symbol)을 출력한다. 예를 들어, Ntx 심벌들이 입력되면(단, Ntx는 자연수), DFT 크기(size)는 Ntx이다. DFT부(111)는 변환 프리코더(transform precoder)라 불릴 수 있다. 부반송파 맵퍼(112)는 상기 복소수 심벌들을 주파수 영역의 각 부반송파에 맵핑시킨다. 상기 복소수 심벌들은 데이터 전송을 위해 할당된 자원 블록에 대응하는 자원 요소들에 맵핑될 수 있다. 부반송파 맵퍼(112)는 자원 맵퍼(resource element mapper)라 불릴 수 있다. IFFT부(53)는 입력되는 심벌에 대해 IFFT를 수행하여 시간 영역 신호인 데이터를 위한 기본 대역(baseband) 신호를 출력한다. CP 삽입부(114)는 데이터를 위한 기본 대역 신호의 뒷부분 일부를 복사하여 데이터를 위한 기본 대역 신호의 앞부분에 삽입한다. CP 삽입을 통해 ISI(Inter-Symbol Interference), ICI(Inter-Carrier Interference)가 방지되어 다중 경로 채널에서도 직교성이 유지될 수 있다.
한편, 3GPP 진영에서는 LTE를 보다 개선한, LTE-Advanced의 표준화를 활발히 진행하고 있으며, 비연속적(non-contiguous)인 자원할당을 허용하는 클러스터된(clustered) DFT-s-OFDM 방식이 채택된 바 있다.
클러스터된(clustered) DFT-s OFDM 전송 방식은 기존의 SC-FDMA 전송 방식의 변형으로, 프리코더를 거친 데이터 심벌들을 복수의 서브 블록으로 나누고 이를 주파수 영역에서 서로 분리시켜 맵핑하는 방법이다. 상기 클러스터된(clustered) DFT-s-OFDM 방식의 중요한 특징은, 주파수 선택적 자원할당을 가능하게 함으로서, 주파수 선택적인 페이딩(frequency selective fading) 환경에 유연하게 대처할 수 있다는 점이라 할 수 있다.
이때, LTE-Advanced의 상향링크 액세스 방식으로 채택된 clustered DFT-s-OFDM 방식에서는 종래 LTE의 상향링크 액세스 방식인 SC-FDMA와는 다르게 비연속적인 자원 할당이 허용되므로, 전송되는 상향링크 데이터가 여러 개의 클러스터 단위로 분할되어질 수 있다.
즉, LTE 시스템은 상향링크의 경우 단일 반송파 특성을 유지하도록 되어 있는 반면, LTE-A 시스템에서는 DFT_precoding을 한 데이터를 주파수축으로 비연속적으로 할당하거나 PUSCH와 PUCCH가 동시에 전송하는 경우를 허용하고 있다.
다른 한편, 상기 RF부(110)는 수신단, 예컨대 무선 수신부(116), CP 제거부(117), FFT부(118), 간섭 제거부(119), 그리고 수신 버퍼 등을 포함한다. 상기 수신단의 무선 수신부(116), CP 제거부(117), FFT부(118)는 상기 송신단에서의 무선 송신부(115), CP 삽입부(114), IFF부(113)의 역기능을 수행한다.
상기 간섭 제거부(119)는 수신되는 신호에 포함되어 있는 간섭을 제거 또는 완화한다.
이러한 상기 간섭 제거부(119)는 최근 폭증하는 무선 데이터 요구량에 대처하기 위함과 아울러 도 8에서와 같이 소규모셀에 의한 간섭을 제거하기 위하여 추가된 것이다.
도 11은 도 10에 도시된 간섭 제거부의 동작을 블록화하여 나타낸 블록도이다.
간섭 제거부가 추가된 수신부, 즉 IC 수신부는 개념적으로 수신 신호에서 간섭 신호를 차감함으로써 구현할 수 있다.
이때, IC 수신부의 복잡도는, 간섭 제거의 대상이 되는 셀의 최대 개수와 제거할 신호의 종류에 따라 좌우된다. 도 11에서는 최대 2개의 간섭원에 대하여 간섭 제거를 수행하는 동작을 블록으로 나타내었다.
간섭 제거의 대상이 되는 신호는 CRS(Cell-specific Reference Signal), PBCH(Physical Broadcasting Channel), SCH(Sync Channel), PDSCH(Physical downlink shared channel 등이 될 수 있다.
특히, PDSCH의 경우 HARQ에 따라 기지국으로부터 재전송되므로, 수신 효율의 향상을 꾀할 수 있으므로, 구현상의 복잡도 까지 야기하면서 굳이 간섭 제거를 할 필요는 없을 수 있다. 마찬가지로, PBCH의 경우에도 30 ms 주기로 매 10 ms 마다 기지국으로부터 동일한 데이터가 반복해서 전송되므로, 구현상의 복잡도 까지 야기하면서 굳이 간섭 제거를 할 필요는 없을 수도 있다.
위와 같이, 이웃셀로부터의 PDSCH에 대해 간섭 제거를 수행하지 않고, 서빙셀로부터 PDSCH를 통해 전송/재전송되는 데이터를 CRS를 이용하여 통상적으로 복조하는 과정을 설명하면 다음과 같다.
간략하게는, 통상적인 복조 과정에 의하면, 각 서브프레임에서 PDSCH를 통해 재전송되어 온 신호를 해당 수신 구간의 채널 추정치를 가지고 복조 후, 이전 신호와 결합하고, 상기 결합된 신호를 가지고 복호를 수행한다 . 보다 구체적으로 다음과 같다.
1) 먼저, 수신 버퍼가 초기화된다.
2) 수신 버퍼의 해당 위치에 현재 수신된 수신 비트열을 이전에 수신된 비트열과 단순히 가산함으로써, 결합
3) 상기 결합된 신호에 대하여 디코딩이 수행된다
4) CRC 검출을 통한 오류 파악
5) 최대 재전송 횟수 내에서 CRC 오류 발생 시 위 2~4의 과정을 반복
6) 최대 재전송 횟수를 초과하여 CRC 오류 발생 시 수신 불능 통보 후 수신 과정 종료
7) CRC 오류 가 없을 경우 수신 완료 통보 후 수신 과정 종료
여기에서 수신 비트 열은 CRS 를 통한 채널 추정 값을 사용하여 복조가 되며, 신호 대 잡음 비(SNR) 추정 값을 사용한 가중치가 사전에 적용되어 있으므로, 단순히 동일한 가중치를 가지고 가산함에 의하여 재전송 신호에 대한 결합을 수행하게 된다.
한편, 이웃셀의 CRS에 대해서는 간섭 제거를 수행하는 것이 바람직할 수 있다.
그런데, 이웃셀의 CRS에 대해서 간섭 제거를 수행하게 되면, 간섭 제거의 대상이 되는 이웃셀의 개수에 따라, 서빙셀로부터 수신된 데이터 신호의 품질이 변화될 수 있으므로, 위 과정에 대한 개선이 필요하다. 즉, CRS에 대한 간섭 제거 기능이 적용된 수신부의 경우, 간섭 제거 대상이 되는 이웃셀의 개수와 그리고 서빙셀과 이웃셀 간의 CRS 충돌 여부에 따라, 서빙셀에 대한 채널 추정/신호 대 잡음 비 추정의 신뢰도의 변화가 발생한다. 이에 대해서 도 12을 참조하여 설명하기로 한다.
도 12a 및 도 12b는 이웃셀의 CRS에 의한 간섭을 나타낸다.
도 12a에 나타난 바와 같이, 서빙셀과 간섭을 일으키는 셀 간에 CRS가 충돌하는 경우, CRS에 대한 간섭 제거를 통하여 간섭을 일으키는 이웃셀로부터의 CRS 를 제거할 경우, 서빙셀의 CRS의 신뢰도가 증가하게 된다.
그러나 도 12b에 나타난 바와 같이, 설사 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 겹치지 않는다 하더라도, 간섭을 일으키는 이웃셀의 CRS는 서빙셀의 데이터와 충돌하게 되게 된다. 이 경우 서빙셀의 CRS를 통한 채널 추정의 신뢰도는 크게 변함이 없지만, 반면 이웃셀로부터의 CRS와 겹친 데이터 영역의 실제 잡음 전력은, 서빙셀의 CRS를 통하여 추정된 잡음 전력 대비 감소하게 된다.
결과적으로 CRS에 대한 간섭 제거를 수행하게 되는 경우, 전술한 복조 과정에 대한 개선이 필요하다.
이하, 본 명세서의 일 개시에 따라 개선된 복조 과정에 대해서 도 13를 참조하여 설명하면 다음과 같다.
도 13은 본 명세서의 일 개시에 따라 개선된 복조 과정을 나타낸 흐름도이다.
1) 먼저, 수신 버퍼가 초기화된다(S101),
2) 이어서, 수신 버퍼의 해당 위치에서 현재 수신된 수신 비트열에 가중치 S(NICC, NICNC) 값이 곱하여지고(S102), 이후 이전에 수신된 비트열과 결합된다
상기 가중치 S(NICC, NICNC)는 아래의 표를 통해서 얻어질 수 있다. 여기에서 NICC 는 서빙셀의 CRS와 충돌하는 이웃셀의 CRS에 대해 간섭 제거 기능을 적용하는 경우, 그 이웃셀의 개수를 의미한다. 그리고 NICNC는 서빙셀의 CRS과는 충돌하지 않으나 데이터와 충돌하는 이웃셀의 CRS에 대해 간섭 제거 기능을 적용하는 경우, 그 이웃셀의 개수를 의미한다.
3) 이어서, 상기 결합된 신호에 대하여 디코딩이 수행된다(S103).
4) 그리고 CRC 검출을 통한 오류 파악이 수행된다(S104)
5) 만약 CRS 오류가 있다면 최대 재전송 횟수를 초과하였는지가 확인된다(S106). 만약 최대 재전송 횟수 내에서 CRC 오류 발생 시 위 S103~S104의 과정이 반복된다.
6) 그러나 만약 최대 재전송 횟수를 초과하여, CRC 오류 발생 시 수신 불능 통보 후(S107), 수신 과정은 종료된다
7) 한편, CRC 오류가 없을 경우, 수신 완료 통보 후(S105), 수신 과정은 종료된다.
표 1
NIC NC
0 1 N-1 N
NIC C 0 1 S0_1 S0_N-1 S0_N
1 S1_0 S1_1 S1_N-1
N-1 SN-1_0 SN-1_1
N SN_0
표 1에 나타난 바와 같이, 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는 경우와 충돌하지 않는 경우, 각기 다른 가중치가 부여될 수 있다.
표 1 의 테이블의 각 가중치 값은 CRS-IC 가 제거할 수 있는 간섭의 양에 따라 결정될 수 있다.
추가적으로 2개 이상의 간섭 채널에 대해 간섭 제거를 수행하는 경우 표 1의 테이블은 각각의 간섭 채널 별로 존재할 수 있다.
한편, 예시적으로 최대 2개까지 입력되는 간섭을 제거할 수 있는 CRS-IC를 가정하여, 표 1의 값들을 예시화하면 표 2와 같다. 이때, CRS-IC 1번 수행 시 서빙셀의 CRS와 이웃셀의 CRS가 충돌하는 경우 3 dB, 서빙셀의 CRS와 이웃셀의 CRS가 충돌하지 않는 경우 2 dB 이득으로 가정한다.
표 2
NIC NC
0 1 2
NIC C 0 1 1.26 1.78
1 1.41 1.89
1.99
실제 구현 시 이러한 가중치는 적용된 CRS-IC 의 성능에 따라 가변되며, 일정량의 간섭을 인가한 상황하에서 간단한 실측을 통하여 최적의 값을 정할 수 있다.
이상의 과정을 통하여 간섭 제거의 적용 유무에 따른 수신 신호의 신뢰도 변화를 가중치로 하여 이전 신호와의 재결합에 고려함으로써, 수신 효율의 향상을 얻을 수 있다.
지금까지 설명한 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 구체적으로는 도 14를 참조하여 설명하기로 한다.
도 14는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(200)은 프로세서(processor, 201), 메모리(memory, 202) 및 RF부(RF(radio frequency) unit, 203)을 포함한다. 메모리(202)는 프로세서(201)와 연결되어, 프로세서(201)를 구동하기 위한 다양한 정보를 저장한다. RF부(203)는 프로세서(201)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(201)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(51)에 의해 구현될 수 있다.
무선기기(100)는 RF부(110), 프로세서(120), 메모리(130) 및 을 포함한다. 메모리(130)는 프로세서(121)와 연결되어, 프로세서(121)를 구동하기 위한 다양한 정보를 저장한다. RF부(110)는 프로세서(120)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(120)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 무선기기의 동작은 프로세서(120)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (12)

  1. 서빙셀로부터 수신된 비트열에 이웃셀의 CRS(Cell-specific Reference Signal)에 의한 간섭을 제거하는 단계와;
    상기 비트열에 적용할 가중치를 결정하는 단계와;
    상기 결정된 가중치를 상기 비트열에 적용하는 단계와;
    상기 가중치가 적용된 비트열을 디코딩하는 단계를 포함하고,
    상기 가중치 결정 단계에서는 상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는지 혹은 충돌하지 않는지에 따라 적용할 가중치가 결정되는 것을 특징으로 하는 간섭 제거 수신 방법.
  2. 제1항에 있어서, 상기 가중치 결정 단계에서는
    상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는지 혹은 충돌하지 않는지에 따라 적용할 가중치가 달라지는 것을 특징으로 하는 간섭 제거 수신 방법.
  3. 제1항에 있어서, 상기 가중치 결정 단계에서는
    상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS들이 서로 충돌하는 경우 그 충돌하는 이웃셀의 개수와, CRS들이 서로 충돌하지 않는 경우 그 충돌하지 않는 이웃셀의 개수가 횡과 열로 각기 매핑되어진 테이블을 통해 상기 가중치를 결정하는 것을 특징으로 하는 간섭 제거 수신 방법.
  4. 제1항에 있어서,
    상기 디코딩된 신호에 대해 CRC(Cyclic Redundancy Check) 오류가 존재하는지 확인하는 단계와;
    상기 CRC 오류가 존재하는 경우, 최대 재전송 횟수를 초과하여 CRC 오류가 발생했는지를 판단하는 단계를 더 포함하는 것을 특징으로 하는 간섭 제거 수신 방법.
  5. 제1항에 있어서,
    상기 수신 비트열이 HARQ에 따라 재전송된 것일 경우, 상기 수신 비트열에 상기 가중치를 적용한 후, 이전에 수신된 비트열과 결합하는 단계를 더 포함하는 것을 특징으로 하는 간섭 제거 수신 방법.
  6. 무선 통신 시스템의 단말로서,
    RF부와; 그리고
    상기 RF부를 제어하여, 서빙셀로부터 수신된 비트열에 서빙셀로부터 수신된 비트열에 이웃셀의 CRS(Cell-specific Reference Signal)에 의한 간섭을 제거하고, 상기 비트열에 적용할 가중치를 결정하고, 상기 비트열에 상기 결정된 가중치를 곱한 후 디코딩을 수행하는 프로세서를 포함하고,
    상기 프로세서는 상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는지 혹은 충돌하지 않는지에 따라 적용할 가중치를 결정하는 것을 특징으로 하는 단말.
  7. 제6항에 있어서, 상기 RF부는 간섭 제거기(Interference Cancellator)를 포함하는 것을 특징으로 하는 단말.
  8. 제6항에 있어서,
    상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS가 서로 충돌하는지 혹은 충돌하지 않는지에 따라 적용할 가중치가 달라지는 것을 특징으로 하는 단말.
  9. 제6항에 있어서, 상기 프로세서는
    상기 서빙셀과 간섭을 일으키는 이웃셀 간에 CRS들이 서로 충돌하는 경우 그 충돌하는 이웃셀의 개수와, CRS들이 서로 충돌하지 않는 경우 그 충돌하지 않는 이웃셀의 개수가 횡과 열로 각기 매핑되어진 테이블을 통해 상기 가중치를 결정하는 것을 특징으로 하는 단말.
  10. 제6항에 있어서, 상기 프로세서는
    상기 디코딩된 신호에 대해 CRC(Cyclic Redundancy Check) 오류가 존재하는지 확인하는 것을 특징으로 하는 단말.
  11. 제10항에 있어서, 상기 프로세서는
    상기 CRC 오류가 존재하는 경우, 최대 재전송 횟수를 초과하여 CRC 오류가 발생했는지를 더 판단하는 것을 특징으로 하는 단말.
  12. 제6항에 있어서, 상기 프로세서는
    상기 수신 비트열이 HARQ에 따라 재전송된 것일 경우, 상기 수신 비트열에 상기 가중치를 적용한 후, 이전에 수신된 비트열과 결합하는 것을 특징으로 하는 단말.
PCT/KR2013/007229 2012-08-31 2013-08-12 간섭 제거 수신 방법 및 단말 WO2014035078A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/419,202 US9509482B2 (en) 2012-08-31 2013-08-12 Receiving method for interference cancellation, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261695300P 2012-08-31 2012-08-31
US61/695,300 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014035078A1 true WO2014035078A1 (ko) 2014-03-06

Family

ID=50183838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007229 WO2014035078A1 (ko) 2012-08-31 2013-08-12 간섭 제거 수신 방법 및 단말

Country Status (2)

Country Link
US (1) US9509482B2 (ko)
WO (1) WO2014035078A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137778A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control information to remove and suppress interference in wireless communication system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160183232A1 (en) * 2014-12-19 2016-06-23 Futurewei Technologies, Inc. System and Method for Interference Coordination in Cellular Millimeter Wave Communications Systems
JP2016163148A (ja) * 2015-02-27 2016-09-05 富士通株式会社 無線通信装置、無線通信システム及びチャネル推定方法
WO2017001025A1 (en) * 2015-07-02 2017-01-05 Huawei Technologies Co., Ltd. Receiver device and methods thereof
WO2017133000A1 (zh) * 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 端到端传输数据的方法、设备和系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110319025A1 (en) * 2010-06-23 2011-12-29 Telefonaktiebolaget L M Ericsson (Publ) Reference Signal Interference Management in Heterogeneous Network Deployments
US20120021753A1 (en) * 2010-01-18 2012-01-26 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376243B2 (ja) * 2008-02-21 2013-12-25 シャープ株式会社 通信装置、通信システム、受信方法および通信方法
KR101246164B1 (ko) * 2008-07-22 2013-03-20 니폰덴신뎅와 가부시키가이샤 수신 방법 및 수신 장치
US9565011B2 (en) * 2009-06-04 2017-02-07 Qualcomm Incorporated Data transmission with cross-subframe control in a wireless network
US8737187B2 (en) * 2010-04-30 2014-05-27 Qualcomm Incorporated Interference cancellation
US8576742B2 (en) * 2010-10-06 2013-11-05 Qualcomm Incorporated Dynamic switching between common reference signal interference cancellation and resource element puncturing in a co-channel heterogeneous network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120021753A1 (en) * 2010-01-18 2012-01-26 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power
US20110319025A1 (en) * 2010-06-23 2011-12-29 Telefonaktiebolaget L M Ericsson (Publ) Reference Signal Interference Management in Heterogeneous Network Deployments

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HITACHI LTD.: "Performance Evaluation in Heterogeneous Networks Considering CRS Interference", 3GPP TSG-RAN WG1 MEETING #66BIS R1-113062, 10 October 2011 (2011-10-10), ZHUHAI, CHINA *
LG ELECTRONICS: "Considerations on CRS interference handling", 3GPP TSG RAN WG1 MEETING #70 R1-123511, 13 August 2012 (2012-08-13), QINGDAO, CHINA *
QUALCOMM INCORPORATED: "Discussion on signaling support for CRS interference handling", 3GPP TSG-RAN WGL#68BIS R1-121877, 26 March 2012 (2012-03-26), JEJU, KOREA *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137778A1 (en) * 2014-03-14 2015-09-17 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control information to remove and suppress interference in wireless communication system
US9698938B2 (en) 2014-03-14 2017-07-04 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control information to remove and suppress interference in wireless communication system
US10142053B2 (en) 2014-03-14 2018-11-27 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control information to remove and suppress interference in wireless communication system

Also Published As

Publication number Publication date
US9509482B2 (en) 2016-11-29
US20150207611A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
WO2014163302A1 (ko) 소규모 셀에서의 수신 방법 및 사용자 장치
WO2016072687A1 (ko) Noma 방식의 데이터 수신 방법 및 사용자 장치
WO2014112716A1 (ko) 간섭 제거를 통한 측정 수행 방법 및 단말
WO2014123387A1 (ko) 단말의 간섭 제거를 위한 지원 정보 전송 방법 및 서빙셀 기지국
WO2014119918A1 (ko) 간섭 제거 수신 방법 및 단말
WO2014098384A1 (ko) 변경된 시스템 정보 적용 방법 및 단말
WO2014123389A1 (ko) 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국
WO2014069929A1 (ko) 간섭 제거 수신 방법 및 단말
WO2014017765A1 (ko) 하향링크 동기 수행 방법 및 단말
WO2018030812A1 (en) Method and apparatus for supporting mechanisms for flexible duplex operations at symbol level in wireless communication system
WO2010039011A2 (ko) 서브프레임의 무선자원 할당 방법 및 장치
WO2014123388A1 (ko) 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국
WO2014185659A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 시스템 정보 수신 방법
WO2014109478A1 (ko) 탐색 신호에 기반한 소규모 셀 검출 방법
WO2014088218A1 (ko) 다중의 반송파 집성 및 다양한 통신 무선 액세스 기술을 지원하는 사용자 단말기의 rf 구조
WO2016052909A1 (ko) 셀룰러 통신과 d2d 통신을 동시 수행할 수 있는 단말기
WO2012128545A2 (ko) 상향링크 신호 전송방법 및 수신방법과, 사용자기기 및 기지국
WO2014112749A1 (ko) 간섭 제거 수신 방법 및 단말
WO2014181972A1 (ko) 소규모 셀 검출을 위한 탐색 신호 수신 방법
WO2014017746A1 (ko) Harq 수행 방법 및 단말
WO2014010850A1 (ko) 매크로셀과 소규모셀이 공존하는 환경에서 단말이 소규모셀을 검출하는 방법
WO2014077489A1 (ko) 매크로셀과 소규모셀이 공존할 때 소규모셀의 커버리지 확장 지역에서 측정을 수행하는 방법 및 단말
WO2014112825A1 (ko) 간섭 제거를 지원하기 위한 자원 할당 방법 및 서빙셀 기지국
WO2015115742A1 (ko) 측정 수행 방법
WO2015076470A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 송수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14419202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832648

Country of ref document: EP

Kind code of ref document: A1