WO2014034975A1 - Deposition apparatus for organic light-emitting diode encapsulation process - Google Patents

Deposition apparatus for organic light-emitting diode encapsulation process Download PDF

Info

Publication number
WO2014034975A1
WO2014034975A1 PCT/KR2012/006867 KR2012006867W WO2014034975A1 WO 2014034975 A1 WO2014034975 A1 WO 2014034975A1 KR 2012006867 W KR2012006867 W KR 2012006867W WO 2014034975 A1 WO2014034975 A1 WO 2014034975A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
flow
organic light
emitting diode
deposition apparatus
Prior art date
Application number
PCT/KR2012/006867
Other languages
French (fr)
Korean (ko)
Inventor
유운선
남궁성태
이태성
고재억
Original Assignee
에스엔유 프리시젼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스엔유 프리시젼 주식회사 filed Critical 에스엔유 프리시젼 주식회사
Priority to CN201280074524.4A priority Critical patent/CN104603968B/en
Publication of WO2014034975A1 publication Critical patent/WO2014034975A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to a deposition apparatus for an organic light emitting diode encapsulation process, and more particularly, to a deposition apparatus for an organic light emitting diode encapsulation process capable of depositing a source in a uniform thickness on a large area substrate.
  • An organic light emitting diode is a light emitting diode in which a light emitting layer is formed of a thin organic compound.
  • the organic light emitting diode (OLED) uses an electroluminescence phenomenon that generates light by passing a current through a fluorescent organic compound.
  • Such organic light emitting diodes generally implement main colors in three colors (Red, Green, Blue) independent pixel method, bioconversion method (CCM), and Curly filter method, and the amount of organic materials included in the light emitting material used Therefore, it is divided into low molecular organic light emitting diode and high molecular organic light emitting diode.
  • the driving method may be classified into a passive driving method and an active driving method.
  • Such an organic light emitting diode has characteristics such as high efficiency, low voltage driving, and simple driving by self-emission, and has an advantage of expressing a high quality video.
  • applications for flexible displays and organic electronic devices using flexible properties of organic materials are also expected.
  • the organic light emitting diode is manufactured by stacking an organic compound, which is a light emitting layer, on a substrate in the form of a thin film.
  • organic compounds used in organic light emitting diodes are very sensitive to impurities, oxygen, and moisture, and thus have a problem in that their properties are easily deteriorated by external exposure or moisture and oxygen penetration. Such deterioration of organic matters affects the luminescence properties of the organic light emitting diode and shortens its lifespan.
  • a thin film encapsulation is required to prevent oxygen, moisture, and the like from flowing into the organic light emitting layer.
  • the deposition apparatus for thin film encapsulation processes has also been changed to be suitable for depositing large area substrates.
  • the length of the portion where the source is injected that is, the nozzle portion, is also lengthened.
  • FIG. 1 illustrates an example of a deposition apparatus 20 for a conventional encapsulation process.
  • the length of the nozzle portion 21 is increased in order to deposit the large-area substrate 10, and flows in the nozzle portion 21.
  • the pressure drop of the source is generated, there is a problem that the uniformity of the source deposition is degraded by this pressure drop.
  • Figure 2 shows another example of a conventional deposition process deposition apparatus 30.
  • a pair of short nozzle portions 31 are adjacently coupled to each other, and each nozzle portion 31 ends Deposition apparatus 30 for separately supplying a source through was developed.
  • a source is supplied from each supply part 33 to the flow part 31 in a chamber, and in order to mount the nozzle part 32 which is a path
  • Separate fastening space for mounting and fastening the part 32 is required, and because of the fastening space, neighboring nozzle parts 32 are disposed to be spaced apart from each other, so that the source is not sprayed at the interface between the nozzle parts 32. There is a difficulty that the source is not evenly deposited on the substrate 10.
  • an object of the present invention is to solve such a conventional problem, by solving the problem of non-uniform deposition due to pressure drop by receiving the source in the divided injection furnace, it is possible to uniformly deposit the source on a large area substrate
  • the present invention provides a deposition apparatus for an organic light emitting diode encapsulation process.
  • the object is, according to the present invention, in the encapsulation process deposition apparatus for depositing (encapsulating) the source on the organic light emitting diode substrate disposed in the chamber portion, disposed in the chamber portion, for the source to flow therein
  • a plurality of flow portions in which a flow path is formed and the cross sections are in contact with each other;
  • a nozzle unit which is integrally mounted to the plurality of flow units and has an injection passage connected therein to inject the source supplied from the flow unit to the substrate; It is achieved by the deposition apparatus for an organic light emitting diode encapsulation process comprising a; a plurality of source supply for supplying each of the vaporized source to the plurality of flow.
  • a plurality of injection paths may be formed in the nozzle part to be connected to each flow part in the flow part.
  • the surface cut along the longitudinal direction of the injection path may be formed longer than the end of the source side is injected side end of the source is introduced.
  • the surface cut along the longitudinal direction of the injection path may be formed longer and longer toward the end of the source is injected from the end side of the source is introduced.
  • the nozzle part may include a taper part disposed above the contact boundary surface of the plurality of flow parts and having a triangular cross section, and one surface of the taper part constitutes one of the injection paths, and the other surface of the taper part is another one.
  • a pair of injection paths around the tapered portion may be provided adjacent to each other.
  • a deposition apparatus for an organic light emitting diode encapsulation process capable of encapsulating and depositing a source with a uniform thickness on a large area organic light emitting diode substrate is provided.
  • the nozzle unit is mounted on the flow unit without a separate fastening member, it is not necessary to form a space in which the fastening member is fastened on the nozzle unit or the flow unit, so that the source can be sprayed from the front of the nozzle unit, and neighboring nozzle units mutually The source can then be sprayed without interruption.
  • Figure 2 shows another example of a deposition apparatus for a conventional encapsulation process
  • Figure 3 shows a deposition apparatus for an organic light emitting diode encapsulation process according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of a flow part, a mounting part, and a nozzle part of the deposition apparatus for organic light emitting diode encapsulation process of FIG. 3;
  • FIG. 5 is a cross-sectional view illustrating an operation of the deposition apparatus for organic light emitting diode encapsulation process of FIG. 3.
  • FIG. 3 is a view illustrating a deposition apparatus for an organic light emitting diode encapsulation process according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of a flow part, a mounting portion, and a nozzle portion of the deposition apparatus for an organic light emitting diode encapsulation process of FIG. 3.
  • the deposition apparatus 100 for an organic light emitting diode encapsulation process includes a chamber part 110, a flow part 120, a heating part (not shown), a mounting part 130, and a nozzle part 140. ) And the source supply unit 150.
  • the chamber part 110 is a member for accommodating the substrate 10 therein in order to deposit the substrate 10 by a source injected from the nozzle part 140 which will be described later.
  • the chamber unit 110 is configured to control internal pressure, and a fixing unit 111 is provided therein for adsorbing and fixing the substrate 10 during the deposition process.
  • the fixing part 111 is preferably connected to a drive stage (not shown) for the transfer of the substrate 10 in order to proceed quickly.
  • the chamber 110 is provided with a predetermined vacuum pump (not shown) to generate a pressure difference with the outside and allow the vaporized source gas to fly from the nozzle unit 140 to the upper substrate 10. (110) It is desirable to make the interior into a vacuum state.
  • a plurality of the flow unit 120 is installed inside the chamber unit 110 and is provided to face the substrate 10 below the substrate 10 so as to spray the source upward.
  • the flow part 120 has a flow path 121 through which a source can move, and a through part 122 is formed to mount the nozzle part 140 described later on the substrate 10 side.
  • the pair of flow units 120 are disposed to be adjacent to each other, and the adjacent surfaces are coupled to be in contact with each other. Accordingly, a plurality of flow paths 121 formed in the flow part 120 are also provided, and the neighboring flow paths 121 are intermittently disposed based on the boundary surface between the flow parts 120.
  • the heating part (not shown) is a member that heats the flow part 120 to prevent the source, which is vaporized from the outside, from being liquefied in the flow part 120.
  • the mounting unit 130 is provided with a pair, the supply path 131 which is a path for receiving the source from the flow path 121 to provide to the injection path 141 of the nozzle unit 140 to be described later is formed to pass through.
  • the pair of mounting portions 130 are attached to the lower surface of the nozzle unit 140 in the longitudinal direction and accommodated in each through portion 122 so as to be mounted on the flow portion 120.
  • the nozzle unit 140 is integrally formed, and a pair of injection passages 141 are formed to penetrate the source supplied from the flow unit 120 to the outside, and each injection passage 141 is equipped with a mounting portion ( It is connected to the supply passage 131 of 130 is configured to receive a source from the flow unit 120.
  • the lower surface of the nozzle unit 140 surrounds each of the injection paths 141 and the mounting unit 130 is attached, and the mounting unit 130 is accommodated in the penetrating unit 122 so that the nozzle unit 140 is the flow unit 120. It can be mounted on.
  • each injection path 141 is configured such that the length of the side in contact with the mounting portion 130 is shorter than the length of the longitudinal section of the side on which the source is injected, the contact with the mounting portion 130 As the source is sprayed from the surface to the surface from which it is injected, it becomes longer and has a tapered shape.
  • a tapered portion 142 having a triangular cross section is formed at the center of the nozzle portion 140, and the nozzle portion 140 may be positioned on the boundary surface of the flow portion 120. Is fitted.
  • the tapered portion 142 constitutes one surface of one of the flow paths 121 described above, and the other surface of the tapered portion 142 constitutes one surface of the other flow path 121, thereby providing a pair of pairs.
  • Flow path 121 is provided symmetrically on both sides of the tapered portion 142.
  • the upper surface of the flow path 121 is configured to be connected to each other without being spaced apart on the same plane. That is, the ends of the respective injection paths 141 are configured to be connected to each other so as not to lose the continuity of the source injection in the longitudinal direction from the surface from which the source is discharged.
  • the nozzle unit 140 is mounted to the flow unit 120 in such a way that the mounting unit 130 extending downward is completely accommodated in the through portion 122 area of the flow unit 120, and thus receives a load downward.
  • the nozzle unit 140 may be easily mounted to the flow unit 120 without a separate fastening member only by the simple coupling between the through part 122 and the mounting part 130.
  • the injection path of the nozzle part 140 that receives the source from different source supply parts 150 adjacent to each other. 141 can be continuously connected to each other.
  • the nozzle unit 140 is preferably formed integrally by processing such that the tapered portion 142 is formed in the center portion and the pair of injection passages 141 penetrate the tapered portion 142. .
  • the source supply unit 150 is provided with a pair to vaporize the source of the liquid of the chamber unit 110 into the flow path 121 of the flow unit 120, the storage unit 151 and the vaporization unit 152 ).
  • the storage unit 511 is a member for storing before supplying a monomer solution used as a source in this embodiment.
  • the vaporization unit 152 is connected to the storage unit 151 by applying ultrasonic waves to atomize the monomer in the form of a solution flowing from the storage unit 151, and then heated to vaporize the monomer in the particulate state flow section 120 It is a member for supplying.
  • FIG. 5 is a cross-sectional view illustrating an operation of the deposition apparatus 100 for the organic light emitting diode encapsulation process of FIG. 3.
  • the vaporized source is prevented from being liquefied by heating the flow part 120 using a predetermined heating part before the vaporized source is supplied to the flow part 120 in the chamber part 110.
  • the source is supplied to the vaporization unit 152 from a storage unit 151 in which a monomer used as a source is stored in a solution form. At this time, the ultrasonic wave is applied to the vaporization unit 152 to atomize the source solution.
  • the source atomized in the vaporization unit 152 by increasing the temperature of the vaporization unit 152 is vaporized by causing a phase change to a gas state by the temperature in the heated vaporization unit 152.
  • the monomer sources vaporized in the pair of vaporizers 152 due to the pressure difference between the chamber 110 and the vaporizer 152 in a vacuum state are flow paths 121 in the fluidizer 120. Is transferred to). At this time, the source flows along the flow path 121 to be delivered to the supply path in the mounting unit 130, and passes through the supply path of the mounting unit 130 is transferred to the injection path (141).
  • the gas source provided from the flow part 120 is injected away from the injection path 141 at the end of the injection path 141, and is deposited on the upper substrate 10.
  • the fixing part 111 fixing the substrate by a predetermined driving stage moves at a constant speed
  • the substrate 10 moves by a source sprayed from the nozzle part 140 fixed at a predetermined position.
  • the source is deposited in front of the.
  • the surface of the injection path 141 is sprayed source is continuously connected to the adjacent injection path 141 without intermittent section, so that the source is not interrupted along the longitudinal direction of the injection path 141 Can be sprayed continuously.
  • the taper portion 142 is provided between the pair of injection passages 141, and the source is discharged to the contact surface of the tip portion of the taper portion 142 of the injection passage 141, thereby depositing on the substrate 10.
  • the uniformity of the source can be secured.
  • the conventional encapsulation deposition apparatus it is difficult to deposit a large-area substrate due to the pressure drop in the nozzle.
  • the portions from which the source is discharged are separated from each other.
  • the organic light emitting diode encapsulation process deposition apparatus 100 of the present embodiment it is possible to deposit a large area substrate with a uniform thickness without intermittent section.
  • the effect of using a plurality of nozzles may be realized through an easy processing method of forming a plurality of injection paths in an integrated nozzle unit, rather than combining the nozzle units separately manufactured, and may be more firmly manufactured.
  • a deposition barrier for an organic light emitting diode encapsulation process that solves the problem of uneven deposition due to pressure drop and uniformly deposits a source on a large area substrate is provided.

Abstract

The present invention relates to a deposition apparatus for an organic light-emitting diode encapsulation process. The deposition apparatus for an organic light-emitting diode encapsulation process according to the present invention encapsulates the organic light-emitting diode by depositing a source material onto the organic light-emitting diode substrate arranged in a chamber unit, and comprises: a plurality of flow units which are arranged within the chamber unit and which have a flow channel for the flow of the source material therein, the ends of the flow units contacting each other; a nozzle unit which is integrally arranged with the plurality of flow units and which has a spray channel therein that is connected to the flow channel so as to spray the source material supplied from the flow units onto the substrate; and a source material supply unit for supplying a source material to be deposited to the respective flow units. Thus, a deposition apparatus for an organic light-emitting diode encapsulation process that is capable of unintermittently depositing source materials onto a large substrate with a uniform thickness can be provided.

Description

유기발광다이오드 봉지공정용 증착장치Deposition apparatus for organic light emitting diode encapsulation process
본 발명은 유기발광다이오드 봉지공정용 증착장치에 관한 것으로서, 보다 상세하게는 대면적의 기판에 소스를 균일한 두께로 증착할 수 있는 유기발광다이오드 봉지공정용 증착장치에 관한 것이다.The present invention relates to a deposition apparatus for an organic light emitting diode encapsulation process, and more particularly, to a deposition apparatus for an organic light emitting diode encapsulation process capable of depositing a source in a uniform thickness on a large area substrate.
유기발광다이오드(OLED:Organic Light Emitting Diode)는 발광층이 박막의 유기 화합물로 이루어지는 발광 다이오드로서, 형광성 유기 화합물에 전류를 통과시켜 빛을 발생시키는 전계 발광 현상을 이용한다. 이러한 유기발광다이오드는 일반적으로 3색(Red, Green, Blue) 독립화소방식, 생변환 방식(CCM), 컬리 필터 방식 등으로 주요 컬러를 구현하며, 사용하는 발광재료에 포함된 유기물질의 양에 따라 저분자 유기발광다이오드와 고분자 유기발광다이오드로 구분된다. 또한, 구동방식에 따라 수동형 구동방식과 능동형 구동방식으로 구분될 수 있다.An organic light emitting diode (OLED) is a light emitting diode in which a light emitting layer is formed of a thin organic compound. The organic light emitting diode (OLED) uses an electroluminescence phenomenon that generates light by passing a current through a fluorescent organic compound. Such organic light emitting diodes generally implement main colors in three colors (Red, Green, Blue) independent pixel method, bioconversion method (CCM), and Curly filter method, and the amount of organic materials included in the light emitting material used Therefore, it is divided into low molecular organic light emitting diode and high molecular organic light emitting diode. In addition, the driving method may be classified into a passive driving method and an active driving method.
이러한 유기발광다이오드는 자체 발광에 의한 고효율, 저전압 구동, 간단한 구동 등의 특징을 가지고 있어, 고화질의 동영상을 표현할 수 있는 장점이 있다. 또한, 유기물의 유연한 특성을 이용한 플렉서블 디스플레이 및 유기물 전자소자에 대한 응용도 기대되고 있는 실정이다.Such an organic light emitting diode has characteristics such as high efficiency, low voltage driving, and simple driving by self-emission, and has an advantage of expressing a high quality video. In addition, applications for flexible displays and organic electronic devices using flexible properties of organic materials are also expected.
유기발광다이오드는 기판 상에 발광층인 유기 화합물을 박막의 형태로 적층하는 형태로 제조된다.The organic light emitting diode is manufactured by stacking an organic compound, which is a light emitting layer, on a substrate in the form of a thin film.
그러나, 유기발광다이오드에 사용되는 유기 화합물은 불순물, 산소 및 수분에 매우 민감하여 외부 노출 또는 수분, 산소 침투에 의해 특성이 쉽게 열화되는 문제를 안고 있다. 이러한 유기물의 열화현상은 유기발광다이오드의 발광특성에 영향을 미치고, 수명을 단축시키게 된다. 이러한 현상을 방지하기 위하여 유기발광층의 내부로 산소, 수분 등이 유입되는 것을 방지하기 위한 박막봉지공정(Thin Film Encapsulation)이 요구된다.However, organic compounds used in organic light emitting diodes are very sensitive to impurities, oxygen, and moisture, and thus have a problem in that their properties are easily deteriorated by external exposure or moisture and oxygen penetration. Such deterioration of organic matters affects the luminescence properties of the organic light emitting diode and shortens its lifespan. In order to prevent such a phenomenon, a thin film encapsulation is required to prevent oxygen, moisture, and the like from flowing into the organic light emitting layer.
한편, 시장이 플레이의 대면적화를 요구함에 따라 박막봉지공정용 증착장치도 대면적 기판의 증착에 적합하도록 변경되고 있다. 이러한 과정에서 소스가 분사되는 부분, 즉, 노즐부의 길이도 길이가 길어지고 있다. On the other hand, as the market demands a large play area, the deposition apparatus for thin film encapsulation processes has also been changed to be suitable for depositing large area substrates. In this process, the length of the portion where the source is injected, that is, the nozzle portion, is also lengthened.
도 1은 종래의 봉지공정용 증착장치(20)의 일례를 도시한 것이다.1 illustrates an example of a deposition apparatus 20 for a conventional encapsulation process.
다만, 도 1을 참조하면, 이러한 종래의 증착장치(20)에 의하면, 대면적 기판(10)을 증착하기 위해 노즐부(21)의 길이가 길어지고, 이러한 노즐부(21) 내에서 유동하는 소스의 압력강하가 발생하게 되며, 이러한 압력강하에 의하여 소스 증착의 균일성이 떨어지는 문제가 있었다. However, referring to FIG. 1, according to the conventional deposition apparatus 20, the length of the nozzle portion 21 is increased in order to deposit the large-area substrate 10, and flows in the nozzle portion 21. The pressure drop of the source is generated, there is a problem that the uniformity of the source deposition is degraded by this pressure drop.
또한, 고압을 통하여 노즐부(21)에 소스를 제공하는 경우에는 노즐부(21)로부터 소스가 분사되면서 액화되는 문제가 있었다.In addition, when a source is provided to the nozzle unit 21 through a high pressure, there is a problem that the source is sprayed from the nozzle unit 21 to be liquefied.
도 2는 종래의 봉지공정용 증착장치(30)의 다른예를 도시한 것이다.Figure 2 shows another example of a conventional deposition process deposition apparatus 30.
도 2를 참조하면, 도 1에서 도시된 종래의 증착장치(30)에서 발생하는 압력차 문제를 해결하기 위하여 짧은 노즐부(31) 한쌍을 서로 이웃하게 결합하고, 각각의 노즐부(31) 단부를 통하여 소스를 별도로 공급하는 증착장치(30)가 개발되었다.Referring to FIG. 2, in order to solve the pressure difference problem occurring in the conventional deposition apparatus 30 illustrated in FIG. 1, a pair of short nozzle portions 31 are adjacently coupled to each other, and each nozzle portion 31 ends Deposition apparatus 30 for separately supplying a source through was developed.
그러나, 소스가 각 공급부(33)로부터 챔내의 유동부(31)로 공급되고, 소스를 분사하기 위한 경로인 노즐부(32)를 유동부(31)에 장착하기 위해서는 유동부(31)에 노즐부(32)를 장착, 체결하기 위한 별도의 체결공간이 요구되며, 이러한 체결공간으로 인하여 이웃하는 노즐부(32)가 상호 이격되게 배치됨으로써 노즐부(32) 사이의 경계면에서 소스가 분사되지 않아 기판(10)에 소스가 균일하게 증착되지 않는 어려움이 있었다. However, a source is supplied from each supply part 33 to the flow part 31 in a chamber, and in order to mount the nozzle part 32 which is a path | route for injecting a source to the flow part 31, the nozzle in the flow part 31 is carried out. Separate fastening space for mounting and fastening the part 32 is required, and because of the fastening space, neighboring nozzle parts 32 are disposed to be spaced apart from each other, so that the source is not sprayed at the interface between the nozzle parts 32. There is a difficulty that the source is not evenly deposited on the substrate 10.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 구획된 분사로에 소스를 공급받음으로써 압력강하로 인한 불균일 증착문제를 해결하고 대면적의 기판에 소스를 균일하게 증착할 수 있는 유기발광다이오드 봉지공정용 증착장지를 제공함에 있다.Therefore, an object of the present invention is to solve such a conventional problem, by solving the problem of non-uniform deposition due to pressure drop by receiving the source in the divided injection furnace, it is possible to uniformly deposit the source on a large area substrate The present invention provides a deposition apparatus for an organic light emitting diode encapsulation process.
상기 목적은, 본 발명에 따라, 챔버부 내에 배치되는 유기발광다이오드 기판에 소스를 증착하여 봉지(encapsulating)하는 봉지공정용 증착장치에 있어서, 상기 챔버부 내에 배치되되, 내부에 소스가 유동하기 위한 유동로가 형성되며 단면이 상호 접촉하는 복수개의 유동부; 상기 복수개의 유동부에 일체로서 장착되되, 상기 유동부로부터 공급되는 소스를 기판측으로 분사하도록 상기 유동로와 연결되는 분사로가 내부에 형성되는 노즐부; 상기 복수개의 유동부에 기화된 소스를 각각 공급하기 위한 복수개의 소스 공급부;를 포함하는 것을 특징으로 하는 유기발광다이오드 봉지공정용 증착장치에 의해 달성된다.The object is, according to the present invention, in the encapsulation process deposition apparatus for depositing (encapsulating) the source on the organic light emitting diode substrate disposed in the chamber portion, disposed in the chamber portion, for the source to flow therein A plurality of flow portions in which a flow path is formed and the cross sections are in contact with each other; A nozzle unit which is integrally mounted to the plurality of flow units and has an injection passage connected therein to inject the source supplied from the flow unit to the substrate; It is achieved by the deposition apparatus for an organic light emitting diode encapsulation process comprising a; a plurality of source supply for supplying each of the vaporized source to the plurality of flow.
또한, 상기 분사로는 상기 유동부 내의 각 유동부와 연결되도록 상기 노즐부 내에 복수개가 형성될 수 있다.In addition, a plurality of injection paths may be formed in the nozzle part to be connected to each flow part in the flow part.
또한, 상기 분사로의 길이방향을 따라 절단한 면은 상기 소스가 유입되는 쪽의 단부보다 상기 소스가 분사되는 쪽의 단부가 더 길게 형성될 수 있다.In addition, the surface cut along the longitudinal direction of the injection path may be formed longer than the end of the source side is injected side end of the source is introduced.
또한, 상기 분사로의 길이방향을 따라 절단한 면은 소스가 유입되는 쪽의 단부로부터 상기 소스가 분사되는 쪽의 단부로 갈수록 점점 길게 형성될 수 있다.In addition, the surface cut along the longitudinal direction of the injection path may be formed longer and longer toward the end of the source is injected from the end side of the source is introduced.
또한, 상기 노즐부는 상기 복수개의 유동부의 접촉 경계면 상측에 배치되고 단면이 삼각형 형상인 테이퍼부를 포함하며, 상기 테이퍼부의 일면이 상기 어느 하나의 분사로의 면을 구성하고, 상기 테이퍼부의 타면이 다른 하나의 분사로의 면을 구성함으로써, 상기 테이퍼부를 중심으로 한 쌍의 분사로가 상호 이웃하게 마련될 수 있다.The nozzle part may include a taper part disposed above the contact boundary surface of the plurality of flow parts and having a triangular cross section, and one surface of the taper part constitutes one of the injection paths, and the other surface of the taper part is another one. By constituting the surface of the injection path of, a pair of injection paths around the tapered portion may be provided adjacent to each other.
본 발명에 따르면, 대면적의 유기발광다이오드 기판에 소스를 균일한 두께로 증착하여 봉지할 수 있는 유기발광다이오드 봉지공정용 증착장치가 제공된다.According to the present invention, a deposition apparatus for an organic light emitting diode encapsulation process capable of encapsulating and depositing a source with a uniform thickness on a large area organic light emitting diode substrate is provided.
또한, 별도의 체결부재 없이 노즐부가 유동부에 장착되어 노즐부 또는 유동부 상에 체결부재가 체결되는 공간을 형성할 필요가 없으므로 노즐부 전면으로부터 소스가 분사되도록 할 수 있으며, 이웃하는 노즐부가 서로 이어져 단속됨 없이 소스가 분사될 수 있다.In addition, since the nozzle unit is mounted on the flow unit without a separate fastening member, it is not necessary to form a space in which the fastening member is fastened on the nozzle unit or the flow unit, so that the source can be sprayed from the front of the nozzle unit, and neighboring nozzle units mutually The source can then be sprayed without interruption.
또한, 노즐부에 복수개의 분사로를 관통 형성하여 일체형으로 가공함으로써, 복수개 노즐을 접합하는 경우보다 더욱 견고하고, 용이한 공정을 통하여 가공될 수 있다.In addition, by forming a plurality of injection passages through the nozzle portion to be processed integrally, it can be processed through a more robust, easy process than when joining a plurality of nozzles.
도 1은 종래의 봉지공정용 증착장치의 일례를 도시한 것이고,1 shows an example of a deposition apparatus for a conventional encapsulation process,
도 2는 종래의 봉지공정용 증착장치의 다른예를 도시한 것이고,Figure 2 shows another example of a deposition apparatus for a conventional encapsulation process,
도 3은 본 발명의 일실시예에 따른 유기발광다이오드 봉지공정용 증착장치를 도시한 것이고,Figure 3 shows a deposition apparatus for an organic light emitting diode encapsulation process according to an embodiment of the present invention,
도 4는 도 3의 유기발광다이오드 봉지공정용 증착장치의 유동부와 장착부와 노즐부의 분해 사시도이고,4 is an exploded perspective view of a flow part, a mounting part, and a nozzle part of the deposition apparatus for organic light emitting diode encapsulation process of FIG. 3;
도 5는 도 3의 유기발광다이오드 봉지공정용 증착장치의 작동 단면도이다.5 is a cross-sectional view illustrating an operation of the deposition apparatus for organic light emitting diode encapsulation process of FIG. 3.
이하, 첨부한 도면을 참조하여 본 발명의 일실시예에 따른 유기발광다이오드 봉지공정용 증착장치에 대하여 상세하게 설명한다.Hereinafter, a deposition apparatus for an organic light emitting diode encapsulation process according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명의 일실시예에 따른 유기발광다이오드 봉지공정용 증착장치를 도시한 것이고, 도 4는 도 3의 유기발광다이오드 봉지공정용 증착장치의 유동부와 장착부와 노즐부의 분해 사시도이다.3 is a view illustrating a deposition apparatus for an organic light emitting diode encapsulation process according to an embodiment of the present invention, and FIG. 4 is an exploded perspective view of a flow part, a mounting portion, and a nozzle portion of the deposition apparatus for an organic light emitting diode encapsulation process of FIG. 3.
도 3 및 도 4를 참조하면, 상기 유기발광다이오드 봉지공정용 증착장치(100)는 챔버부(110)와 유동부(120)와 가열부(미도시)와 장착부(130)와 노즐부(140)와 소스 공급부(150)를 포함한다.3 and 4, the deposition apparatus 100 for an organic light emitting diode encapsulation process includes a chamber part 110, a flow part 120, a heating part (not shown), a mounting part 130, and a nozzle part 140. ) And the source supply unit 150.
상기 챔버부(110)는 후술하는 노즐부(140)로부터 분사되는 소스에 의하여 기판(10)을 증착하기 위하여 내부에 기판(10)을 수용하는 부재이다. 챔버부(110)는 내부 압력 조절이 가능하도록 구성되며, 내부에는 증착 공정시 기판(10)을 흡착, 고정하기 위한 고정부(111)가 마련된다. 또한, 고정부(111)는 신속한 작업 진행을 위하여 기판(10)의 이송을 위한 구동 스테이지(미도시)에 연결되는 것이 바람직하다.The chamber part 110 is a member for accommodating the substrate 10 therein in order to deposit the substrate 10 by a source injected from the nozzle part 140 which will be described later. The chamber unit 110 is configured to control internal pressure, and a fixing unit 111 is provided therein for adsorbing and fixing the substrate 10 during the deposition process. In addition, the fixing part 111 is preferably connected to a drive stage (not shown) for the transfer of the substrate 10 in order to proceed quickly.
한편, 챔버부(110)에는 외부와 압력차를 발생시키고 기화된 소스 기체가 노즐부(140)로부터 상측의 기판(10)으로 비상할 수 있도록 소정의 진공펌프(미도시)가 설치되어 챔버부(110) 내부를 진공상태로 만드는 것이 바람직하다.Meanwhile, the chamber 110 is provided with a predetermined vacuum pump (not shown) to generate a pressure difference with the outside and allow the vaporized source gas to fly from the nozzle unit 140 to the upper substrate 10. (110) It is desirable to make the interior into a vacuum state.
상기 유동부(120)는 복수개가 챔버부(110)의 내부에 설치되며, 상방으로 소스를 분사할 수 있도록 기판(10)의 하방에 기판(10)과 대향되도록 마련된다. 또한, 유동부(120)는 내부에 소스가 이동할 수 있는 유동로(121)가 형성되며, 기판(10)측으로 후술하는 노즐부(140)가 장착될 수 있도록 관통부(122)가 형성된다.A plurality of the flow unit 120 is installed inside the chamber unit 110 and is provided to face the substrate 10 below the substrate 10 so as to spray the source upward. In addition, the flow part 120 has a flow path 121 through which a source can move, and a through part 122 is formed to mount the nozzle part 140 described later on the substrate 10 side.
한 쌍의 유동부(120)는 상호 이웃되게 배치되되, 이웃하는 면이 상호 접촉되게 결합한다. 따라서, 유동부(120) 내부에 형성되는 유동로(121)도 복수개가 마련되며, 이웃하는 유동로(121)는 유동부(120)간의 경계면을 기준으로 단속적으로 배치된다.The pair of flow units 120 are disposed to be adjacent to each other, and the adjacent surfaces are coupled to be in contact with each other. Accordingly, a plurality of flow paths 121 formed in the flow part 120 are also provided, and the neighboring flow paths 121 are intermittently disposed based on the boundary surface between the flow parts 120.
상기 가열부(미도시)는 외부로부터 기화되어 제공되는 소스가 유동부(120) 내에서 액화되는 것을 방지하도록 유동부(120)를 가열하는 부재이다.The heating part (not shown) is a member that heats the flow part 120 to prevent the source, which is vaporized from the outside, from being liquefied in the flow part 120.
상기 장착부(130)는 한 쌍이 마련되되, 소스를 유동로(121)로부터 공급받아 후술하는 노즐부(140)의 분사로(141)로 제공하는 경로인 공급로(131)가 관통되게 형성된다.The mounting unit 130 is provided with a pair, the supply path 131 which is a path for receiving the source from the flow path 121 to provide to the injection path 141 of the nozzle unit 140 to be described later is formed to pass through.
한 쌍의 장착부(130)는 노즐부(140)의 하면에 길이방향을 따라서 길게 부착되고 각 관통부(122) 내에 수용됨으로써 유동부(120)에 장착된다.The pair of mounting portions 130 are attached to the lower surface of the nozzle unit 140 in the longitudinal direction and accommodated in each through portion 122 so as to be mounted on the flow portion 120.
상기 노즐부(140)는 일체로 형성되며, 유동부(120)로부터 공급되는 소스를 외부로 분사하기 위하여 한 쌍의 분사로(141)가 관통되게 형성되며, 각 분사로(141)는 장착부(130)의 공급로(131)와 연결되어 유동부(120)로부터 소스를 공급받도록 구성된다.The nozzle unit 140 is integrally formed, and a pair of injection passages 141 are formed to penetrate the source supplied from the flow unit 120 to the outside, and each injection passage 141 is equipped with a mounting portion ( It is connected to the supply passage 131 of 130 is configured to receive a source from the flow unit 120.
노즐부(140)의 하면에는 각 분사로(141)를 둘레를 감싸며 장착부(130)가 부착되어, 장착부(130)가 관통부(122)에 수용됨으로써 노즐부(140)는 유동부(120)에 장착될 수 있다.The lower surface of the nozzle unit 140 surrounds each of the injection paths 141 and the mounting unit 130 is attached, and the mounting unit 130 is accommodated in the penetrating unit 122 so that the nozzle unit 140 is the flow unit 120. It can be mounted on.
한편, 각 분사로(141)의 길이방향을 따라 절단한 면은 장착부(130)와 접촉하는 쪽의 길이가 소스가 분사되는 쪽 면의 종단면의 길이보다 짧게 구성되며, 장착부(130)와 접촉하는 면으로부터 소스가 분사되는 면으로 갈수록 점점 길어지게 형성됨으로써 테이퍼(tapered)진 형상을 갖는다.On the other hand, the surface cut along the longitudinal direction of each injection path 141 is configured such that the length of the side in contact with the mounting portion 130 is shorter than the length of the longitudinal section of the side on which the source is injected, the contact with the mounting portion 130 As the source is sprayed from the surface to the surface from which it is injected, it becomes longer and has a tapered shape.
또한, 노즐부(140)의 중앙에는 단면이 삼각형 형상인 테이퍼부(142)가 형성되며, 테이퍼부(142)의 하면이 유동부(120)의 경계면 상에 위치할 수 있도록 노즐부(140)가 장착된다.In addition, a tapered portion 142 having a triangular cross section is formed at the center of the nozzle portion 140, and the nozzle portion 140 may be positioned on the boundary surface of the flow portion 120. Is fitted.
이러한 테이퍼부(142)는 일면이 상술한 어느 하나의 유동로(121)의 일면을 구성하고, 테이퍼부(142)의 타면은 다른 하나의 유동로(121)의 일면을 구성함으로써, 한 쌍의 유동로(121)는 테이퍼부(142)를 중심으로 양 쪽에 대칭되게 마련된다.The tapered portion 142 constitutes one surface of one of the flow paths 121 described above, and the other surface of the tapered portion 142 constitutes one surface of the other flow path 121, thereby providing a pair of pairs. Flow path 121 is provided symmetrically on both sides of the tapered portion 142.
또한, 테이퍼부(142) 상측의 첨단부를 기준으로 양쪽에 유동로(121)의 소스 분사면이 형성되므로, 유동로(121)의 상면은 동일평면 상에서 이격없이 상호 연결되도록 구성된다. 즉, 소스가 토출되는 면에서 길이방향으로 소스 분사의 연속성을 잃지 않도록 각 분사로(141)의 단부가 서로 연결되도록 구성되는 것이다.In addition, since the source injection surface of the flow path 121 is formed on both sides with respect to the tip of the upper side of the tapered portion 142, the upper surface of the flow path 121 is configured to be connected to each other without being spaced apart on the same plane. That is, the ends of the respective injection paths 141 are configured to be connected to each other so as not to lose the continuity of the source injection in the longitudinal direction from the surface from which the source is discharged.
또한, 노즐부(140)는 하방으로 연장되는 장착부(130)가 유동부(120)의 관통부(122) 영역 내부에 완전히 수용되는 형태로 유동부(120)에 장착되므로, 하방으로 하중을 받게되는 노즐부(140)는 관통부(122)와 장착부(130)간의 간이 결합만으로 별도의 체결부재가 없이 유동부(120)에 용이하게 장착될 수 있다. In addition, the nozzle unit 140 is mounted to the flow unit 120 in such a way that the mounting unit 130 extending downward is completely accommodated in the through portion 122 area of the flow unit 120, and thus receives a load downward. The nozzle unit 140 may be easily mounted to the flow unit 120 without a separate fastening member only by the simple coupling between the through part 122 and the mounting part 130.
아울러, 유동부(120)와 노즐부(140)에 체결부재가 체결될 별도의 공간이 형성될 필요가 없으므로 이웃하는 서로 다른 소스 공급부(150)로부터 소스를 공급받는 노즐부(140)의 분사로(141)간을 서로 연속적으로 연결할 수 있다.In addition, since the separate portion for fastening the fastening member does not need to be formed in the flow part 120 and the nozzle part 140, the injection path of the nozzle part 140 that receives the source from different source supply parts 150 adjacent to each other. 141 can be continuously connected to each other.
한편, 상술한 노즐부(140)는 중앙부에 테이퍼부(142)가 형성되도록 하고 테이퍼부(142)를 경계로 한 쌍의 분사로(141)가 관통되도록 가공함으로써, 일체형으로 제작되는 것이 바람직하다.On the other hand, the nozzle unit 140 is preferably formed integrally by processing such that the tapered portion 142 is formed in the center portion and the pair of injection passages 141 penetrate the tapered portion 142. .
상기 소스 공급부(150)는 챔버부(110)의 액체로 된 소스를 기화시켜 유동부(120)의 유동로(121) 내로 공급하기 위하여 한 쌍이 마련되며, 저장부(151)와 기화부(152)를 포함한다.The source supply unit 150 is provided with a pair to vaporize the source of the liquid of the chamber unit 110 into the flow path 121 of the flow unit 120, the storage unit 151 and the vaporization unit 152 ).
상기 저장부(511)는 본 실시예에서 소스로 이용되는 모노머(monomer) 용액이 공급되기 전 저장하기 위한 부재이다.The storage unit 511 is a member for storing before supplying a monomer solution used as a source in this embodiment.
상기 기화부(152)는 저장부(151)와 연결되어 초음파를 인가함으로써 저장부(151)로부터 유입되는 용액 형태의 모노머를 미립화시킨 후에 이를 가열하여 미립자 상태의 모노머를 기화시켜 유동부(120)에 공급하기 위한 부재이다.The vaporization unit 152 is connected to the storage unit 151 by applying ultrasonic waves to atomize the monomer in the form of a solution flowing from the storage unit 151, and then heated to vaporize the monomer in the particulate state flow section 120 It is a member for supplying.
지금부터는 상술한 유기발광다이오드 봉지공정용 증착장치(100)의 일실시예의 작동에 대하여 설명한다.The operation of the embodiment of the deposition apparatus 100 for organic light emitting diode encapsulation process described above will now be described.
도 5는 도 3의 유기발광다이오드 봉지공정용 증착장치(100)의 작동 단면도이다.5 is a cross-sectional view illustrating an operation of the deposition apparatus 100 for the organic light emitting diode encapsulation process of FIG. 3.
먼저, 챔버부(110)내의 유동부(120)로 기화된 소스가 공급되기 전에 소정의 가열부를 이용하여 유동부(120)를 가열함으로써 기화된 소스가 액화되는 것을 방지하도록 한다.First, the vaporized source is prevented from being liquefied by heating the flow part 120 using a predetermined heating part before the vaporized source is supplied to the flow part 120 in the chamber part 110.
소스로 이용되는 모노머(monomer)가 용액형태로 저장되어 있는 저장부(151)로부터 소스를 기화부(152)로 공급한다. 이때, 기화부(152) 내에 초음파를 인가하여 소스 용액을 미립화한다.The source is supplied to the vaporization unit 152 from a storage unit 151 in which a monomer used as a source is stored in a solution form. At this time, the ultrasonic wave is applied to the vaporization unit 152 to atomize the source solution.
이와 동시에 기화부(152)의 온도를 높임으로써 기화부(152) 내에서 미립화된 소스는 가열된 기화부(152) 내의 온도에 의하여 기체상태로 상변화를 일으킴으로써 기화된다.At the same time, the source atomized in the vaporization unit 152 by increasing the temperature of the vaporization unit 152 is vaporized by causing a phase change to a gas state by the temperature in the heated vaporization unit 152.
도 5를 참조하면, 진공상태의 챔버부(110)와 기화부(152)와의 압력차이로 인하여 한 쌍의 기화부(152)에서 각각 기화된 모노머 소스는 유동부(120) 내의 유동로(121)로 이송된다. 이때, 소스는 유동로(121)를 따라서 유동하여 장착부(130) 내의 공급로에 전달되고, 장착부(130)의 공급로를 통과하여 분사로(141)에 이송된다.Referring to FIG. 5, the monomer sources vaporized in the pair of vaporizers 152 due to the pressure difference between the chamber 110 and the vaporizer 152 in a vacuum state are flow paths 121 in the fluidizer 120. Is transferred to). At this time, the source flows along the flow path 121 to be delivered to the supply path in the mounting unit 130, and passes through the supply path of the mounting unit 130 is transferred to the injection path (141).
유동부(120)로부터 제공되는 기체 소소는 분사로(141)의 단부에서 분사로(141)를 이탈하여 분사되고, 상측의 기판(10)에 증착된다. 이와 동시에, 소정의 구동 스테이지(미도시)에 의하여 기판을 고정하는 고정부(111)가 일정속도로 이동하면 일정한 위치에 고정된 노즐부(140)로부터 분사되는 소스에 의하여 이동하는 기판(10)의 전면에 소스가 증착되게 된다.The gas source provided from the flow part 120 is injected away from the injection path 141 at the end of the injection path 141, and is deposited on the upper substrate 10. At the same time, when the fixing part 111 fixing the substrate by a predetermined driving stage (not shown) moves at a constant speed, the substrate 10 moves by a source sprayed from the nozzle part 140 fixed at a predetermined position. The source is deposited in front of the.
한편, 소스가 분사되는 분사로(141)의 면은 이웃하는 분사로(141) 면과 단속되는 구간 없이 연속적으로 연결되므로 분사로(141)의 길이방향을 따라서 소스가 단속(斷續)됨 없이 연속적으로 분사될 수 있다.On the other hand, the surface of the injection path 141 is sprayed source is continuously connected to the adjacent injection path 141 without intermittent section, so that the source is not interrupted along the longitudinal direction of the injection path 141 Can be sprayed continuously.
즉, 한 쌍의 분사로(141) 사이에는 테이퍼부(142)가 마련되고, 분사로(141) 의 테이퍼부(142)의 첨단부의 접하는 면으로 소스가 방출됨으로써, 기판(10) 상에 증착되는 소스의 균일성을 확보할 수 있는 것이다.That is, the taper portion 142 is provided between the pair of injection passages 141, and the source is discharged to the contact surface of the tip portion of the taper portion 142 of the injection passage 141, thereby depositing on the substrate 10. The uniformity of the source can be secured.
따라서, 종래의 봉지공정용 증착장치에 의하면, 노즐내의 압력강하로 인하여 대면적 기판 증착에 어려움이 있고, 이를 해결하기 위하여 소스를 노즐의 양쪽에서 공급하는 경우에는 소스가 토출되는 부분이 상호 이격되어 기판상에 소스가 불연속으로 증착되는 문제가 있었으나, 본 실시예의 유기발광다이오드 봉지공정용 증착장치(100)에 의하면, 대면적 기판을 단속되는 구간없이 균일한 두께로 소스로 증착할 수 있게 된다.Therefore, according to the conventional encapsulation deposition apparatus, it is difficult to deposit a large-area substrate due to the pressure drop in the nozzle. In order to solve this problem, when the source is supplied from both sides of the nozzle, the portions from which the source is discharged are separated from each other. Although there was a problem in that the source is discontinuously deposited on the substrate, according to the organic light emitting diode encapsulation process deposition apparatus 100 of the present embodiment, it is possible to deposit a large area substrate with a uniform thickness without intermittent section.
또한, 별도로 제작되는 노즐부를 결합하는 형태가 아니라, 일체형의 노즐부에 복수개의 분사로를 형성하는 용이한 가공방식을 통하여 복수개 노즐을 이용하는 효과를 구현할 수 있으며, 더욱 견고하게 제작될 수 있다.In addition, the effect of using a plurality of nozzles may be realized through an easy processing method of forming a plurality of injection paths in an integrated nozzle unit, rather than combining the nozzle units separately manufactured, and may be more firmly manufactured.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be embodied in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.
구획된 분사로에 소스를 공급받음으로써 압력강하로 인한 불균일 증착문제를 해결하고 대면적의 기판에 소스를 균일하게 증착할 수 있는 유기발광다이오드 봉지공정용 증착장지가 제공된다.By supplying a source to a partitioned injection furnace, a deposition barrier for an organic light emitting diode encapsulation process that solves the problem of uneven deposition due to pressure drop and uniformly deposits a source on a large area substrate is provided.

Claims (5)

  1. 챔버부 내에 배치되는 유기발광다이오드 기판에 소스를 증착하여 봉지(encapsulating)하는 봉지공정용 증착장치에 있어서,An encapsulation deposition apparatus for encapsulating and depositing a source on an organic light emitting diode substrate disposed in a chamber,
    상기 챔버부 내에 배치되되, 내부에 소스가 유동하기 위한 유동로가 형성되며 단면이 상호 접촉하는 복수개의 유동부;A plurality of flow parts disposed in the chamber part and having a flow path therein for a source to flow therein, the cross sections contacting each other;
    상기 복수개의 유동부에 일체로서 장착되되, 상기 유동부로부터 공급되는 소스를 기판측으로 분사하도록 상기 유동로와 연결되는 분사로가 내부에 형성되는 노즐부;A nozzle unit which is integrally mounted to the plurality of flow units and has an injection passage connected therein to inject the source supplied from the flow unit to the substrate;
    상기 복수개의 유동부에 기화된 소스를 각각 공급하기 위한 소스 공급부;를 포함하는 것을 특징으로 하는 유기발광다이오드 봉지공정용 증착장치.And a source supply unit for supplying vaporized sources to the plurality of flow units, respectively.
  2. 제1항에 있어서,The method of claim 1,
    상기 분사로는 상기 유동부 내의 각 유동부와 연결되도록 상기 노즐부 내에 복수개가 형성되는 것을 특징으로 하는 유기발광다이오드 봉지공정용 증착장치.And a plurality of spraying paths are formed in the nozzle part so as to be connected to each of the flow parts in the flow part.
  3. 제2항에 있어서,The method of claim 2,
    상기 분사로의 길이방향을 따라 절단한 면은 상기 소스가 유입되는 쪽의 단부보다 상기 소스가 분사되는 쪽의 단부가 더 길게 형성되는 것을 특징으로 하는 유기발광다이오드 봉지공정용 증착장치.The surface cut along the longitudinal direction of the injection path is a deposition apparatus for an organic light emitting diode encapsulation process, characterized in that the end of the source is injected longer than the end of the source is introduced.
  4. 제3항에 있어서,The method of claim 3,
    상기 분사로의 길이방향을 따라 절단한 면은 소스가 유입되는 쪽의 단부로부터 상기 소스가 분사되는 쪽의 단부로 갈수록 점점 길게 형성되는 것을 특징으로 하는 유기발광다이오드 봉지공정용 증착장치.The surface cut along the longitudinal direction of the injection path is formed in the organic light emitting diode encapsulation process characterized in that the length is gradually formed from the end of the source is introduced toward the end of the injection side.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 노즐부는 상기 복수개의 유동부의 접촉 경계면 상측에 배치되고 단면이 삼각형 형상인 테이퍼부를 포함하며,The nozzle part includes a taper part disposed above the contact boundary surface of the plurality of flow parts and having a triangular cross section.
    상기 테이퍼부의 일면이 상기 어느 하나의 분사로의 면을 구성하고, 상기 테이퍼부의 타면이 다른 하나의 분사로의 면을 구성함으로써, 상기 테이퍼부를 중심으로 한 쌍의 분사로가 상호 이웃하게 마련되는 것을 특징으로 하는 유기발광다이오드 봉지공정용 증착장치.One side of the tapered portion constitutes the surface of one of the jetting paths, and the other side of the tapered portion constitutes the surface of the other jetting path, so that a pair of jetting paths are provided adjacent to each other around the taper part. Deposition apparatus for organic light emitting diode encapsulation process characterized in that.
PCT/KR2012/006867 2012-08-27 2012-08-28 Deposition apparatus for organic light-emitting diode encapsulation process WO2014034975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280074524.4A CN104603968B (en) 2012-08-27 2012-08-28 Organic light-emitting diode packaging technique precipitation equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120093514A KR101325864B1 (en) 2012-08-27 2012-08-27 Evaporating apparatus using for organic light emitting diode encapsulating process
KR10-2012-0093514 2012-08-27

Publications (1)

Publication Number Publication Date
WO2014034975A1 true WO2014034975A1 (en) 2014-03-06

Family

ID=49856862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006867 WO2014034975A1 (en) 2012-08-27 2012-08-28 Deposition apparatus for organic light-emitting diode encapsulation process

Country Status (4)

Country Link
KR (1) KR101325864B1 (en)
CN (1) CN104603968B (en)
TW (1) TWI479715B (en)
WO (1) WO2014034975A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090073360A (en) * 2007-12-31 2009-07-03 주성엔지니어링(주) Gas injection unit and apparatus for depositing thin film having the same
JP2009252400A (en) * 2008-04-02 2009-10-29 Fujikura Ltd Organic device and its manufacturing method
KR20100063292A (en) * 2008-12-03 2010-06-11 엘지디스플레이 주식회사 Top emission type organic electro-luminescence device and method for fabricating of the same
JP2011065947A (en) * 2009-09-18 2011-03-31 Toshiba Mobile Display Co Ltd Organic el device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517551B2 (en) * 2000-05-12 2009-04-14 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a light-emitting device
JP2006010617A (en) * 2004-06-29 2006-01-12 Konica Minolta Medical & Graphic Inc Manufacturing method of radiation conversion panel and its manufacture equipment
JP2007332458A (en) * 2006-05-18 2007-12-27 Sony Corp Vapor deposition apparatus, and vapor deposition source, and display device manufacturing method
JPWO2009034916A1 (en) * 2007-09-10 2010-12-24 株式会社アルバック Vapor release apparatus, organic thin film deposition apparatus, and organic thin film deposition method
KR101182265B1 (en) * 2009-12-22 2012-09-12 삼성디스플레이 주식회사 Evaporation Source and Deposition Apparatus having the same
JP5400749B2 (en) * 2010-12-01 2014-01-29 株式会社日立ハイテクノロジーズ Vapor deposition equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090073360A (en) * 2007-12-31 2009-07-03 주성엔지니어링(주) Gas injection unit and apparatus for depositing thin film having the same
JP2009252400A (en) * 2008-04-02 2009-10-29 Fujikura Ltd Organic device and its manufacturing method
KR20100063292A (en) * 2008-12-03 2010-06-11 엘지디스플레이 주식회사 Top emission type organic electro-luminescence device and method for fabricating of the same
JP2011065947A (en) * 2009-09-18 2011-03-31 Toshiba Mobile Display Co Ltd Organic el device

Also Published As

Publication number Publication date
CN104603968B (en) 2016-08-24
TW201409796A (en) 2014-03-01
KR101325864B1 (en) 2013-11-05
TWI479715B (en) 2015-04-01
CN104603968A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
KR101223489B1 (en) Apparatus for Processing Substrate
CN1986224B (en) Manufacturing equipment of display device and manufacturing method of display device
CN103303016B (en) Method of depositing organic material by using nozzle and device using the method
US8668956B2 (en) Vapor deposition particle emitting device, vapor deposition apparatus, vapor deposition method
KR101942471B1 (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
CN104120386A (en) Deposition apparatus and method of manufacturing organic light emitting diode display
WO2012118199A1 (en) Vapor-deposition device, vapor-deposition method, organic el display, and lighting device
CN103451625B (en) Deposition apparatus and method for manufacturing organic light emitting diode display using the same
KR101197403B1 (en) In-line deposition apparatus using multi-deposition type
US9614155B2 (en) Vapor deposition apparatus, vapor deposition method, and method for producing organic electroluminescent element
JP5512881B2 (en) Vapor deposition processing system and vapor deposition processing method
WO2014034975A1 (en) Deposition apparatus for organic light-emitting diode encapsulation process
KR20120012638A (en) Apparatus for forming thin film
KR101741806B1 (en) Linear evaporating source and deposition apparatus comprising the same
WO2012165792A2 (en) Vacuum deposition apparatus
KR20110104219A (en) Gas distribution unit and upright type deposition apparatus having the gas distribution unit
KR20210009391A (en) Vapor deposition apparatus
KR102203098B1 (en) Vapor deposition apparatus
KR101213965B1 (en) Spin nozzle type gas distribution unit and upright type deposition apparatus having the gas distribution unit
KR20130068926A (en) Evaporating source and vacuum depositing equipment including the evaporating source
WO2014034499A1 (en) Vapor deposition device, vapor deposition method, organic el display, and organic el lighting device
KR101667629B1 (en) Evaporator and apparatus to deposition having the same
JP2014232727A (en) Organic layer etching apparatus and organic layer etching method
KR20180066445A (en) Deposition Apparatus with Blocking Layer
KR20180112209A (en) Thin Film Deposition Apparatus Easy to Separate Crucible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883791

Country of ref document: EP

Kind code of ref document: A1