WO2014034884A1 - Cryopreservable cell scaffold material - Google Patents

Cryopreservable cell scaffold material Download PDF

Info

Publication number
WO2014034884A1
WO2014034884A1 PCT/JP2013/073395 JP2013073395W WO2014034884A1 WO 2014034884 A1 WO2014034884 A1 WO 2014034884A1 JP 2013073395 W JP2013073395 W JP 2013073395W WO 2014034884 A1 WO2014034884 A1 WO 2014034884A1
Authority
WO
WIPO (PCT)
Prior art keywords
dextran
polymer
cell
group
cells
Prior art date
Application number
PCT/JP2013/073395
Other languages
French (fr)
Japanese (ja)
Inventor
和明 松村
Original Assignee
国立大学法人北陸先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北陸先端科学技術大学院大学 filed Critical 国立大学法人北陸先端科学技術大学院大学
Priority to JP2014533128A priority Critical patent/JP6270158B2/en
Publication of WO2014034884A1 publication Critical patent/WO2014034884A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0021Dextran, i.e. (alpha-1,4)-D-glucan; Derivatives thereof, e.g. Sephadex, i.e. crosslinked dextran
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells

Definitions

  • the present invention relates to a cell scaffold material capable of cryopreserving cells comprising a hydrogel obtained by crosslinking an ampholyte polymer having an amino group and a carboxyl group in the same molecule, and further to the cell scaffold material.
  • the present invention relates to a novel ampholyte polymer which can be suitably used.
  • tissue regeneration has achieved certain results, particularly with two-dimensional skin, cornea, and myocardium, and commercialization has partially started.
  • a technique for controlling differentiation by three-dimensionally culturing stem cells has been developed, and development of a regenerative tissue having a three-dimensional structure has been studied.
  • a collagen gel is used as a scaffold material that enables such three-dimensional cell culture.
  • DMSO dimethyl sulfoxide
  • Patent Document 1 WO 2009/157209
  • Patent Document 2 JP 2011-30557 A
  • an object of the present invention is to provide a cryopreservation agent that enables three-dimensional cell culture.
  • the present inventor has used a specific polymer cryopreservation agent as a cryopreservation agent for cells, and this polymer cryopreservation agent itself is subjected to a crosslinking reaction by a specific technique.
  • the cells suspended with the polymer cryopreservation agent were not damaged by the crosslinking reaction for gelation, and the cells embedded three-dimensionally in the gel were cryopreserved.
  • the inventors have found that high viability can be maintained even after thawing, and reached the present invention.
  • a three-dimensional structure capable of three-dimensional culture is formed from a suspension of cells, and the three-dimensional structure in which cells are embedded is frozen and thawed. Can do.
  • the polymer cryopreservation agent forms a gel, which provides a three-dimensional scaffold material for cell growth and / or differentiation. Accordingly, the present invention includes the following (1) to (1).
  • amphoteric electrolyte polymer having an amino group and a carboxyl group in the same molecule, wherein the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55 to 0.95 / 0.05.
  • the ampholyte polymer in the range of In a physiological solution, intermolecularly cross-linked A hydrogel in which a physiological solution is fixed as a dispersion medium.
  • the ampholyte polymer is an aminocarboxy dextran in which an amino group and a carboxyl group are introduced into dextran, and the polymer that is not an ampholyte is dextran. Or the ampholyte polymer is carboxylated ⁇ -poly-L-lysine,
  • a cell-embedded hydrogel comprising cells or tissues embedded in any one of (1) to (4).
  • a cell-embedded hydrogel for cryopreservation wherein cells or tissues are embedded in any one of (1) to (4).
  • the hydrogel according to the present invention is a gel that can be formed from a suspension in which cells are dispersed without damaging the cells.
  • the hydrogel is a three-dimensional scaffold material for cell proliferation and / or differentiation. Furthermore, this hydrogel protects embedded cells in the process of freezing and thawing. Therefore, the present invention also includes a cell cryoprotectant and a composition for cell cryoprotection using the hydrogel, a three-dimensional scaffold material for cell cryoprotection, and a hydrogel for cell cryoprotection.
  • the present invention includes the following (11) to (11).
  • (11) An amphoteric electrolyte polymer having an amino group and a carboxyl group in the same molecule, wherein the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55 to 0.95 / 0.05.
  • a method for producing a hydrogel comprising a step of gelling an amphoteric electrolyte polymer in the range of the above by intermolecular crosslinking in a physiological solution.
  • the ampholyte polymer is an aminocarboxy dextran in which an amino group and a carboxyl group are introduced into dextran, and the polymer that is not an ampholyte is dextran. Or the ampholyte polymer is carboxylated ⁇ -poly-L-lysine, (11) The production method of any one of (12). (14) The production method of any one of (11) to (14), wherein the ampholyte polymer is contained in a physiological solution in an amount of 1 to 60% by mass.
  • a step of dispersing or immersing cells or tissues together with an ampholyte polymer in a physiological solution comprising: (16) A step of cryopreserving the cell-embedded hydrogel produced by the production method of (15), A method for cryopreserving cells or tissues.
  • the present inventor uses the above-mentioned polymer cryopreservation agent to cryopreserve and thaw cells, and then gels by subjecting the obtained cell suspension to a crosslinking reaction by a specific technique. It was found that the cells suspended after being subjected to freezing and thawing were not damaged by the crosslinking reaction for gelation. According to such an embodiment, after the cell suspension is cryopreserved and thawed, it can be injected into a desired site for gelation. From the cell suspension at the desired site, A three-dimensional structure capable of original culture or three-dimensional growth can be formed. That is, an injectable gel material (injectable gel material) can be realized.
  • the polymer cryopreservation agent forms a gel, which provides a three-dimensional scaffold material for cell growth and / or differentiation. Therefore, the present invention also exists in an injectable gel material, an injectable gel material for cell cryoprotection, a gelling cell cryoprotectant, and a gelling cell cryoprotection by the ampholyte polymer. Also in the composition.
  • modified dextran can be particularly suitably used as the polymer cryopreservation agent.
  • This modified dextran is excellent in that it does not damage cells even when gelled by a crosslinking reaction.
  • this modified dextran is excellent in that high viability can be maintained even when cells three-dimensionally embedded in a gel are cryopreserved and thawed.
  • this modified dextran is excellent in that it can maintain high viability in cells that have undergone cryopreservation and thawing even when used as a polymer cryopreservation agent that is added to a cell suspension without gelation.
  • the present invention includes the following (21) to (21).
  • a cell cryopreservation agent comprising the aminocarboxyl dextran of (21).
  • (21) aminocarboxyl dextran is A solution for cell cryopreservation, which is dissolved and contained in a physiological solution at a concentration of 1 to 60% by mass.
  • the present invention includes the following (31) to (31).
  • (31) The aminocarboxyl dextran of (21), wherein the aminocarboxyl dextran is a carboxyl group-introduced aminated dextran obtained by introducing a carboxyl group into an aminated dextran.
  • (32) The cell cryopreservation agent according to (22), wherein the aminocarboxydextran is a carboxyl group-introduced aminated dextran obtained by introducing a carboxyl group into an aminated dextran.
  • the present invention includes the following (41) to (41).
  • (41) A method for producing a cell cryopreservation solution by dissolving the aminocarboxyl dextran of (21) or (31) in a physiological solution at a concentration of 1 to 60% by mass.
  • (42) Use of the aminocarboxyl dextran of (21) or (31) for producing a cell cryopreservation solution.
  • the present invention includes the following (51) to (51). (51) (23) or (33) a step of dispersing or immersing cells or tissue in the cell cryopreservation solution; Freezing the dispersed or immersed cells or tissues; A method of cryopreserving a cell or tissue comprising (52) (51) In the method of cryopreserving a cell or tissue, After the step of freezing the dispersed or immersed cells or tissues, Storing frozen cells or tissues under freezing; Thawing cells or tissues stored under freezing, A method of cryopreserving a cell or tissue comprising
  • the present invention includes the following (61) to (61).
  • (61) The aminocarboxyl dextran of (21) or (31) is intermolecularly crosslinked, A hydrogel in which a physiological solution is fixed as a dispersion medium.
  • (62) Intermolecular crosslinking of aminocarboxy dextran (61) is an intermolecular bridge formed by a triazole ring formation reaction between an azide group introduced into a molecule of aminocarboxydextran and a carbon-carbon triple bond moiety introduced into another molecule of aminocarboxydextran. gel.
  • the carbon-carbon triple bond moiety introduced into the aminocarboxydextran molecule The hydrogel according to (62), which is a carbon-carbon triple bond portion of a terminal alkyne group or a cyclooctyne ring-containing compound group.
  • (64) (61) A cell-embedded hydrogel obtained by embedding cells or tissues in any one of the hydrogels.
  • the present invention includes the following (71) to (71).
  • (71) An azide-introduced aminocarboxyl dextran in which an azide group capable of triazole ring formation reaction is introduced into the aminocarboxyl dextran of (21) or (31).
  • (72) A carbon-carbon triple bond-introduced aminocarboxyl dextran in which a carbon-carbon triple bond moiety capable of triazole ring formation reaction is introduced into the aminocarboxyl dextran of (21) or (31).
  • (73) As introduction of azido group, The —OH group of aminocarboxydextran has the following formula (I):
  • Y 1 is a spacer that can be introduced at the position of the —OH group of aminocarboxydextran
  • Y 1 is the following: —O—CO—O— (CH 2 ) n — (Where n is an integer from 1 to 24) —O—CO—O— (CH 2 —CH 2 —O) m ⁇ 1 —CH 2 —CH 2 — (Where m is an integer from 1 to 24) —O—NH— (CH 2 ) j — (Where j is an integer from 1 to 24) —O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CH 2 — (Where k is an integer from 1 to 24)
  • the carbon-carbon triple bond moiety introduced into the aminocarboxy dextran is The carbon-carbon triple bond-introduced aminocarboxyl dextran of (72), which is a terminal alkyne group or a cyclooctyne ring-containing compound group.
  • the —OH group of aminocarboxydextran is represented by the following formula (II) or formula (III):
  • Y 3 is a spacer that can be introduced at the position of the —OH group of aminocarboxydextran
  • R1 and R2 are Each independently hydrogen or a C1-C12 alkyl group, Alternatively, they integrally form a substituted or unsubstituted C6-C12 aromatic ring structure
  • R3 and R4 are Each independently hydrogen or a C1-C12 alkyl group, Alternatively, they together form a substituted or unsubstituted C6-C12 aromatic ring structure
  • a group of formula III is represented by the following formula IV:
  • Y 2 is, of the following: —O—CO—N (CH 3 ) — (CH 2 ) n — (Where n is an integer from 1 to 24) —O—CO—NH— (CH 2 —CH 2 —O) m-1 —CH 2 — (Where m is an integer from 1 to 24) —O—NH— (CH 2 ) j — (Where j is an integer from 1 to 24) —O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CH 2 — (Where k is an integer from 1 to 24)
  • Y 3 is, of the following: —O—CO—N (CH 3 ) — (CH 2 ) n —CO— (Where n is an integer from 1 to 24) —O—CO—NH— (CH 2 —CH 2 —O) m ⁇ 1 —CH 2 —CO— (Where m is an integer from 1 to 24) —O—NH— (CH 2 ) j —CO— (Where j is an integer from 1 to 24) —O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CO— (Where k is an integer from 1 to 24) A carbon-carbon triple bond-introduced aminocarboxyl dextran according to (73), wherein the spacer is a divalent group selected from the group consisting of (wherein the —N group of the cyclooctyne ring is bonded to the right end of each spacer).
  • the present invention includes the following (81) to (81).
  • (81) A dextran kit comprising any combination of the following (a) and (c), (a) and (d), (b) and (c): (A) the azide-introduced aminocarboxyl dextran of any of (71), (73) to (75), (B) Azide-introduced dextran (wherein azide introduction is as defined in any of (71), (73) to (74)), (C) the carbon-carbon triple bond-introduced aminocarboxyl dextran of any of (72), (75) to (79), (D) Carbon-carbon triple bond introduced dextran (however, carbon-carbon triple bond introduction is as defined in any of (72), (75) to (79)).
  • An aminocarboxyl dextran-containing composition comprising any combination of (81) (a) and (c), (a) and (d), and (b) and (c).
  • (83) (71) A cell cryopreservation agent comprising the aminocarboxyl dextran according to any one of (71) to (79).
  • (84) (71) to (79) any one of aminocarboxyl dextran is A solution for cell cryopreservation, which is dissolved and contained in a physiological solution at a concentration of 1 to 60% by mass.
  • the present invention includes the following (91) to (91).
  • (91) An additive for producing a cell-embedded hydrogel comprising the aminocarboxyl dextran according to any one of (71) to (79).
  • (92) A solution for producing a cell-embedded hydrogel, wherein the aminocarboxyl dextran according to any one of (71) to (79) is dissolved and contained in a physiological solution at a concentration of 1 to 60% by mass.
  • the solution for producing a cell-embedded hydrogel according to (92) wherein the physiological solution is physiological saline, cell culture liquid medium, or tissue culture liquid medium.
  • (94) (92) A cell-containing composition for producing a cell-embedded hydrogel, wherein cells or tissues are dispersed or immersed in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93).
  • (95) (94) A cell-embedded hydrogel obtained by gelling the cell-containing composition for producing a cell-embedded hydrogel.
  • (96) (82) An additive for producing a cell-embedded hydrogel comprising the aminocarboxydextran-containing composition.
  • (97) (82) A solution for producing a cell-embedded hydrogel, comprising the aminocarboxydextran-containing composition dissolved in a physiological solution at a concentration of 1 to 60% by mass as the aminocarboxydextran concentration.
  • the present invention includes the following (101) to (101).
  • (101) A method for producing a solution for producing a cell-embedded hydrogel by dissolving the aminocarboxyl dextran of any one of (71) to (79) in a physiological solution at a concentration of 1 to 60% by mass.
  • (102) Use of the aminocarboxyl dextran of any of (71) to (79) for producing a solution for producing a cell-embedded hydrogel.
  • (103) A cell-containing composition for producing a cell-embedded hydrogel by dispersing or immersing cells or tissues in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) A method of manufacturing things.
  • the present invention includes the following (111) to (11). (111) (92) to (93), (97) to (98) Step of dispersing or immersing cells or tissue in the cell-embedded hydrogel production solution Freezing the dispersed or immersed cells or tissue
  • a method of cryopreserving a cell or tissue comprising (112) (111)
  • After the step of freezing the dispersed or immersed cells or tissues Storing frozen cells or tissues under freezing; Thawing cells or tissues stored under freezing
  • a method of cryopreserving a cell or tissue comprising (113) A cell-containing composition for producing a cell-embedded hydrogel by dispersing or immersing cells or tissues in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) Preparing a product, Freezing the prepared cell-containing composition; Storing the frozen cell-containing composition under freezing; Thawing a cell-containing composition stored under freezing, A step of preparing
  • the present invention includes the following (121) to (121).
  • (121) A cell-containing composition for producing a cell-embedded hydrogel by dispersing or immersing cells or tissues in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) Preparing a product, Preparing the cell-embedded hydrogel by gelling the prepared cell-containing composition by an intermolecular cross-linking reaction of aminocarboxydextran; A method for producing a cell-embedded hydrogel from a cell-containing composition.
  • the formation reaction of the intermolecular bridge of aminocarboxy dextran is The production method of (131), which is a triazole ring formation reaction between an azide moiety and an alkyne moiety of aminocarboxydextran.
  • (133) A cell-containing composition for producing a cell-embedded hydrogel by dispersing or immersing cells or tissues in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) Preparing a product, Preparing the cell-embedded hydrogel by gelling the prepared cell-containing composition by an intermolecular cross-linking reaction of aminocarboxydextran; Freezing the prepared cell-embedded hydrogel, A method of cryopreserving a cell or tissue comprising (134) (132) In the method for cryopreserving cells and tissues, After the step of freezing the prepared cell-embedded hydrogel, Storing the frozen cell-embedded hydrogel under freezing; Thawing a cell-
  • the present inventors have found that it is particularly suitable to use modified polylysine as the polymer cryopreservation agent and gel with a specific crosslinking agent. Gelation by this combination is excellent in that cells are not damaged even when cells coexist during the gelation reaction.
  • This modified dextran is excellent in that high viability can be maintained even when cells three-dimensionally embedded in a gel are cryopreserved and thawed. Therefore, the present invention includes the following (141) to (141).
  • n is an integer such that the molecular weight of the compound of formula V is in the range of 1000 to 100,000
  • X is the following formula (VI):
  • (146) (144) A method for cryopreserving cells or tissues, wherein the cell-embedded hydrogel for cryopreservation according to (144) is cryopreserved.
  • the present invention includes the following (151) to (151).
  • (151) Carboxylated ⁇ -poly-L-lysine having a carboxyl group to amino group ratio (carboxyl group / amino group) in the range of 0.45 / 0.55 to 0.95 / 0.05,
  • 152) Physiology containing carboxylated ⁇ -poly-L-lysine in which the ratio of carboxyl group to amino group (carboxyl group / amino group) is in the range of 0.45 / 0.55 to 0.95 / 0.05.
  • Preparing a cell-containing composition by dispersing or immersing cells or tissues in an aqueous solution, The cell-containing composition is cross-linked by intermolecular cross-linking generated by an amide bond forming reaction between the amino group of ⁇ -poly-L-lysine and the N-hydroxysuccinimide group of multi-arm PEG to gel.
  • Preparing a cell-embedded hydrogel A method for producing a cell-embedded hydrogel comprising: (153) Physiology containing carboxylated ⁇ -poly-L-lysine in which the ratio of carboxyl group to amino group (carboxyl group / amino group) is in the range of 0.45 / 0.55 to 0.95 / 0.05.
  • Preparing a cell-containing composition by dispersing or immersing cells or tissues in an aqueous solution, Freezing the prepared cell-containing composition; Storing the frozen cell-containing composition under freezing; Thawing a cell-containing composition stored under freezing, The thawed cell-containing composition is cross-linked by intermolecular cross-linking generated by an amide bond forming reaction between the amino group of ⁇ -poly-L-lysine and the N-hydroxysuccinimide group of multi-arm PEG.
  • a step of gelling to prepare a cell-embedded hydrogel A method for producing a cell-embedded hydrogel comprising:
  • a three-dimensional structure containing cells can be safely frozen and thawed. Therefore, it becomes possible to store or transport cells and tissues that have been three-dimensionally cultured for a long period of time. Therefore, the present invention provides a technique for storing and transporting regenerated cells and tissues for a long period of time, which is necessary to realize the industrial spread of regenerative medicine.
  • FIG. 1 is a fluorescent photograph showing the results of cell viability determination after gelation of carboxylated polylysine.
  • FIG. 2 is a graph showing the survival rate of cells cryoprotected by Dex-PA solution.
  • FIG. 3 is a fluorescence photograph showing the results of viability determination of cells cryoprotected by a Dex-PA gel.
  • FIG. 4 is a fluorescence photograph observing the localization of Dex-PA in the vicinity of cells after freeze-thawing by FITC fluorescence.
  • FIG. 5 is a graph showing the concentration dependence of the cell cryoprotective activity of Dex-PA.
  • FIG. 6 is a photograph of the gel by Azide-Dex-PA and DBCO-Dex.
  • FIG. 1 is a fluorescent photograph showing the results of cell viability determination after gelation of carboxylated polylysine.
  • FIG. 2 is a graph showing the survival rate of cells cryoprotected by Dex-PA solution.
  • FIG. 3 is a flu
  • FIG. 7a is a fluorescent photograph showing the result of cell viability determination after freeze-thawing on a gel having an Azide: Alkyne ratio of 1: 4.
  • FIG. 7b is a fluorescence photograph showing the results of cell viability determination after freeze-thawing on a gel having an Azide: Alkyne ratio of 1: 6.
  • FIG. 7c is a fluorescence photograph showing the results of cell viability determination after freezing and thawing on a 1% collagen gel.
  • a hydrogel in which the ampholyte polymer in the range of .95 / 0.05 is intermolecularly crosslinked in a physiological solution, and the physiological solution is fixed as a dispersion medium can be obtained.
  • the hydrogel of the present invention can embed cells and tissues therein and protect them from damage caused by cryopreservation and thawing. Further, the hydrogel of the present invention itself provides a three-dimensional scaffold for cells. Three-dimensional scaffolds are considered very advantageous for cell growth and / or differentiation, and three-dimensional scaffolds that can cryoprotect cells are highly desirable. is there. In addition, the hydrogel of the present invention achieves a high cell survival rate because cell damage is minimized during the formation reaction of intermolecular crosslinks for gelation.
  • amphoteric electrolyte polymer The ampholyte polymer of the present invention has an amino group and a carboxyl group in the same molecule, and the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55 to It is in the range of 0.95 / 0.05. This ratio is preferably in the range of 0.45 / 0.55 to 0.95 / 0.05, more preferably in the range of 0.50 / 0.50 to 0.90 / 0.10, or for example The range may be 70 / 0.30 to 0.75 / 0.25.
  • Introduction of an amino group and a carboxyl group into a polymer molecule can be performed by a known modification means.
  • the amino group is subjected to carboxylation or acetylation using, for example, carboxylic anhydride.
  • a carboxyl group can be introduce
  • examples of the polymer into which an amino group and a carboxyl group are introduced include dextran.
  • Dextran is a polysaccharide polymer having glucose as a structural unit, and includes ⁇ -1,6 bonds and ⁇ -1,4 bonds.
  • dextran for example, commercially available dextran can be used.
  • the number average molecular weight includes, for example, a range of 1000 to 10,000,000, such as a range of 5000 to 1,000,000, such as a range of 10,000 to 500,000, such as a range of 10,000 to 100,000. Can be used.
  • amino groups and carboxyl groups are introduced in the above ratio with respect to dextran.
  • an atomic group having an amino group with respect to the hydroxyl group of dextran an atomic group having a carboxyl group is introduced with respect to a certain ratio of the introduced amino group, and the amino group And a carboxyl group can be introduced into dextran to form an ampholyte polymer.
  • Such an amino group can be introduced by a known means, for example, using carbonyldiimidazole (CDI) and a diamine compound.
  • the introduction of the carboxyl group to the amino group thus introduced can be carried out by a known means, for example, using carboxylic anhydride.
  • carboxylic anhydride examples include acetic anhydride, citric anhydride, succinic anhydride, glutaric anhydride, malic anhydride, fumaric anhydride, and maleic anhydride. Of these, succinic anhydride and acetic anhydride are preferred, and succinic anhydride is particularly preferred.
  • a carboxyl group may be introduce
  • the introduced carboxyl group can be further partially aminated by reacting it with a compound such as diamine, triamine or polyamine.
  • a compound such as diamine, triamine or polyamine.
  • diamine used in this way include ethylenediamine.
  • An example of introduction of an amino group and a carboxyl group into dextran is shown in the following scheme 1.
  • a polyamine can be used as the polymer having an amino group.
  • polyamino acids and aminated polysaccharides can be used.
  • polylysine, polyallylamine, polyarginine, polyarginine, polyglutamic acid, and polyaspartic acid can be used.
  • ⁇ -poly-L-lysine can be used as the polymer having an amino group.
  • the number average molecular weight is, for example, in the range of 1000 to 10,000,000, such as in the range of 5000 to 1,000,000, such as in the range of 10,000 to 500,000, such as 10,000 to 100. Those containing the range of 1,000 can be used.
  • a carboxyl group is introduced so that the amino group and the carboxyl group are in the above ratio with respect to the polymer having an amino group.
  • the introduction of the carboxyl group with respect to the amino group can be carried out by a known means. For example, it can be introduced using the carboxylic anhydride described above. Of these, succinic anhydride and acetic anhydride are preferred, and succinic anhydride is particularly preferred.
  • a carboxyl group may be introduce
  • the introduced carboxyl group can be further partially aminated by reacting it with a compound such as diamine, triamine or polyamine.
  • the hydrogel of the present invention is obtained by intermolecular crosslinking of the ampholyte polymer in a physiological solution.
  • the physiological solution include physiological saline, cell culture liquid medium, tissue culture liquid medium, and serum-free medium.
  • DMEM Dulbecco's modified Eagle MEM medium
  • the intermolecular cross-linking of the present invention can form a hydrogel by a cross-linking reaction even in a solution containing such various physiological substances and cells themselves.
  • the ampholyte polymer can be added to the physiological solution so as to have a concentration of, for example, 1 to 60% by mass, for example, 5 to 30% by mass.
  • the amphoteric electrolyte polymer and the hydrogel formed by crosslinking the amphoteric electrolyte polymer exhibit excellent cryoprotective effects themselves, and only this is suitably used as a cryoprotectant.
  • a known cryoprotectant can be additionally added to the physiological solution and used.
  • known cryoprotective substances include dimethyl sulfoxide, glycerol, ethylene glycol, trehalose, sucrose, and the like, or an antioxidant.
  • an antioxidant include polyphenols such as catalase, peroxidase, superoxide dismutase, vitamin E, vitamin C, and epigallocatechin gallate, or glutathione.
  • the intermolecular cross-linking is carried out by introducing an azido group introduced into a molecule of an ampholyte polymer or a molecule of a polymer that is not an ampholyte and another molecule of the ampholyte polymer or a non-ampholyte polymer.
  • An intermolecular bridge formed by a triazole ring-forming reaction with a carbon-carbon triple bond moiety introduced into another molecule of the molecule (however, a molecule introduced with an azide group and a molecule introduced with a carbon-carbon triple bond moiety) Among them, at least one of the molecules is an ampholyte polymer).
  • an azide group or a carbon-carbon triple bond moiety is introduced into the ampholyte polymer that is responsible for cell protection.
  • Cells are dispersed or tissue is immersed in the solution of the ampholyte polymer modified in this way.
  • a molecule having a carbon-carbon triple bond moiety or an azide group introduced so as to enable a triazole ring formation reaction with this modified ampholyte polymer molecule is added as if it were a cross-linking agent, and a triazole ring was added.
  • the formation reaction can proceed to form intermolecular crosslinks and gelation can be performed.
  • the molecule added as if it were a crosslinking agent may be an ampholyte polymer molecule or a polymer molecule that is not an ampholyte. This is because the total amount may be adjusted so that the amount of the ampholyte polymer in the finally formed gel becomes a desired amount or concentration.
  • aminocarboxy dextran can be used as the ampholyte polymer and dextran can be used as the non-ampholyte polymer.
  • an azide group is introduced into a molecule of an amphoteric electrolyte polymer or a molecule of a polymer that is not an ampholyte so that a triazole ring formation reaction is possible.
  • an atomic group having a terminal azide group can be introduced. For example, the following formula (I):
  • Y 1 is a spacer inserted as desired.
  • aminocarboxydextran is used as the ampholyte polymer or dextran is used as the polymer that is not an ampholyte, it is preferably a group that can be introduced into the hydroxyl group of the glucose ring of dextran.
  • Y 1 is, for example: —O—CO—O— (CH 2 ) n — (Where n is an integer from 1 to 24) —O—CO—O— (CH 2 —CH 2 —O) m ⁇ 1 —CH 2 —CH 2 — (Where m is an integer from 1 to 24) —O—NH— (CH 2 ) j — (Where j is an integer from 1 to 24) —O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CH 2 — (Where k is an integer from 1 to 24) Or a divalent spacer selected from the group consisting of (wherein —N 3 is bound to the right end of each spacer).
  • N, m, j, and k can be independently set to desired values. For example, they can be integers of 1 to 24, integers of 1 to 12, and integers of 1 to 6.
  • a carbon-carbon triple bond moiety is introduced into a molecule of an amphoteric electrolyte polymer or a non-ampholyte polymer molecule so that a triazole ring formation reaction is possible.
  • the terminal alkyne group or the cyclooctyne ring-containing compound group can be used as the group having a carbon-carbon triple bond moiety.
  • Y 2 and Y 3 are spacers inserted as desired.
  • aminocarboxydextran is used as the ampholyte polymer or dextran is used as the polymer that is not an ampholyte, it is preferably a group that can be introduced into the hydroxyl group of the glucose ring of dextran.
  • R1 and R2 are each independently hydrogen or a C1-C12 alkyl group, or together, a substituted or unsubstituted C6-C12 aromatic cyclic structure.
  • R3 and R4 are each independently hydrogen, a C1-C12 alkyl group, or together, a substituted or unsubstituted C6-C12 fragrance. It can be a group forming a group cyclic structure.
  • the substituted or unsubstituted C6-C12 aromatic ring structure may be a heterocyclic ring.
  • the substituted or unsubstituted C6-C12 aromatic ring structure can be a substituted or unsubstituted benzene ring.
  • the substituent on the benzene ring can be, for example, a C1-C12 alkyl group.
  • R 1 and R 2, R 3 and R 4 can be joined together to form an unsubstituted benzene ring, ie, a group represented by formula III can have the following formula IV:
  • Y 2 is the following: —O—CO—N (CH 3 ) — (CH 2 ) n — (Where n is an integer from 1 to 24) —O—CO—NH— (CH 2 —CH 2 —O) m-1 —CH 2 — (Where m is an integer from 1 to 24) —O—NH— (CH 2 ) j — (Where j is an integer from 1 to 24) —O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CH 2 — (Where k is an integer from 1 to 24) A divalent spacer selected from the group consisting of (wherein —C ⁇ CH 2 is bonded to the right end of each spacer).
  • N, m, j, and k can be independently set to desired values. For example, they can be integers of 1 to 24, integers of 1 to 12, and integers of 1 to 6.
  • said Y 3 is: —O—CO—N (CH 3 ) — (CH 2 ) n —CO— (Where n is an integer from 1 to 24) —O—CO—NH— (CH 2 —CH 2 —O) m ⁇ 1 —CH 2 —CO— (Where m is an integer from 1 to 24) —O—NH— (CH 2 ) j —CO— (Where j is an integer from 1 to 24) —O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CO— (Where k is an integer from 1 to 24) A divalent spacer selected from the group consisting of (wherein the —N group of the cyclooctyne ring is bound to the right end of each spacer).
  • N, m, j, and k can be independently set to desired values. For example, they can be integers of 1 to 24, integers of 1 to 12, and integers of 1 to 6.
  • the intermolecular crosslink is generated by an amide bond forming reaction between the amino group of the ampholyte polymer and the N-hydroxysuccinimide group of multi-arm PEG (polyethylene glycol).
  • multi-arm PEG polyethylene glycol
  • the number of branches (arms) meaning multi-arm can be selected according to the number of molecules intended for crosslinking, and can be 2 to 16, 2 to 8, 2 to 4, for example.
  • 4-arm PEG can be used.
  • the multi-arm PEG has the following formula (V):
  • the 4-arm PEG represented by N in the formula (V) may be an integer such that the molecular weight of the compound of the formula V is in the range of 1,000 to 100,000, for example, in the range of 1,000 to 50,000.
  • X in the above formula (V) represents the following formula (VI):
  • the ampholyte polymer crosslinked by multi-arm PEG is a carboxylated polylysine, preferably a carboxylated ⁇ -poly-L-lysine.
  • the amino group of the carboxylated ⁇ -poly-L-lysine is suitably cross-linked by multi-arm PEG (polyethylene glycol) to form a hydrogel.
  • the intermolecular cross-linking reaction for forming the hydrogel of the present invention proceeds rapidly under physiological conditions under atmospheric pressure, and further, coexistence of various molecules on the cell surface and components in the cell culture medium. Proceeds quickly even under. Therefore, after dispersing the cells or immersing the tissue in the solution for producing the hydrogel of the present invention, an intermolecular cross-linking reaction is performed to form a hydrogel, and a desired three-dimensional structure is obtained. It can also be cryopreserved with the tissue embedded in a hydrogel.
  • a desired three-dimensional structure can be formed in a living body by injecting into a site, for example, a site where a wound is desired to be healed, and performing an intermolecular crosslinking reaction in the physiological state to form a hydrogel.
  • intermolecular crosslinking can be performed under temperature conditions that allow cell culture, for example, at 35 to 38 ° C., for example, 37 ° C.
  • the intermolecular crosslinking reaction due to the formation of the triazole ring it can be accelerated by adopting known suitable conditions for the triazole ring formation reaction by the azide group and the carbon-carbon triple bond.
  • copper ions and ascorbic acid can be added in the reaction between the terminal alkyne group and the azide group.
  • the molar ratio of the azide group (azi group) to the terminal alkyne group can be used as long as it can be gel-formed.
  • It can be in the range of ⁇ 1: 2.
  • known suitable conditions for the amide bond formation reaction between an amino group and a group of N-hydroxysuccinimide This can be accelerated.
  • amphoteric electrolyte dextran The inventor of the present invention, when an ampholyte dextran (Dex-PA) obtained by introducing an amino group and a carboxyl group into dextran is gelled suitably without damaging cells and tissues when cross-linked by the above means. When it was found that the obtained hydrogel had an excellent cryoprotective effect, the ampholyte dextran (Dex-PA) was used as a solution without hydrogelation. Also found that it has an excellent cryoprotective effect.
  • Dex-PA ampholyte dextran
  • the present invention provides an aminocarboxyl dextran in which an amino group and a carboxyl group are introduced into dextran, wherein the ratio of the carboxyl group to the amino group (carboxyl group / amino group) is 0.45 / 0.55 to There is also a cell cryopreservation agent consisting of aminocarboxy dextran in the range of 0.95 / 0.05.
  • This ampholyte dextran (Dex-PA) has an excellent cryoprotective effect both when the azide group for the triazole ring formation reaction is introduced or when a carbon-carbon triple bond moiety is introduced. It was what you are doing.
  • an azide group-introduced aminocarboxyl dextran and a carbon-carbon triple bond moiety-introduced aminocarboxyl dextran are themselves excellent cell cryopreservation agents.
  • concentration of these dextran derivatives can be appropriately selected within a range in which a cytoprotective effect is exhibited. For example, 5-20%, 7-20%, 7-15%, It can be in the range of 8-14%, 10-13%, 10-12%.
  • a hydrogel can be formed by performing a crosslinking reaction under physiological conditions using a physiological solution and also at a temperature and atmospheric pressure. Therefore, there are no particular limitations on the cells and tissues that can be embedded in the hydrogel. Furthermore, in the present invention, the amphoteric electrolyte polymer and the hydrogel based on the amphoteric electrolyte polymer exhibit cryoprotective effects without penetrating into the cells. Therefore, there are no particular limitations on the cells and tissues that can exhibit the effect of cryoprotection.
  • such cells can include, for example, established cells for culture, fertilized eggs and egg cells of animals including humans, and also include, for example, sperm cells, ES cells, iPS cells, Examples include stem cells such as leaf stem cells, hematopoietic stem cells, neural stem cells, umbilical cord blood cells, animal cells or plant cells including humans such as hepatocytes, nerve cells, cardiomyocytes, vascular endothelial cells, vascular smooth muscle cells, blood cells, etc. Can do.
  • examples of such tissues / organs include skin, nerve, blood vessel, cartilage, cornea, liver, kidney, heart, islet, and the like, and further include cells derived therefrom. Can do.
  • the amphoteric electrolyte polymer PLL (0.50) aqueous solution is a polymer solution that can cryopreserve cells with high survival rate, and the cells are dispersed by the amino groups of the amphoteric electrolyte polymer PLL (0.50). It was found that it was possible to form a hydrogel while maintaining the cells with a high survival rate. In other words, the cells can be frozen and then thawed, and the gel can be immediately gelled without the need to remove the cell cryopreservation agent. It was found that it can be formed. Further, this hydrogel had biodegradability that biodegraded in 24 to 48 hours under culture conditions.
  • injectable gel three-dimensionally embedded cells engraft as it is
  • aminated dextran was made into a 10% solution, succinic anhydride was added, and reacted at 50 ° C. for 1 hour to prepare various carboxyl group-introduced aminated dextran (dextran ampholyte, (Dex-PA)).
  • Dex-PA carboxyl group-introduced aminated dextran
  • FIG. 2 is a bar graph showing the results.
  • the horizontal axis of FIG. 2 shows the ratio (%) of carboxyl groups to all amino groups in the modified dextran.
  • EDA-introduced azidated dextran and azide-introduced ampholyte dextran were synthesized by the same method as the above-described aminated dextran synthesis method.
  • FIG. 3 is a fluorescent photograph showing the result.
  • FIG. 3 is a photograph of double fluorescence staining of green and red in a color photograph, in which green fluorescence indicates cells that are alive and red fluorescence indicates cells that are not alive. . Viability was calculated by counting these.
  • Dex-PA by introducing an azide group and an alkyl group to cause a cross-linking reaction, and the cross-linking reaction and gelation also damage the cells embedded therein. And found a high survival rate. Furthermore, the Dex-PA hydrogel produced by the cross-linking reaction does not damage the cells even when cryopreserved with the cells embedded, that is, the Dex-PA hydrogel is embedded. The cells were found to have a high cryoprotective effect.
  • the amphoteric electrolyte polymer Dex-PA aqueous solution is a polymer solution capable of cryopreserving cells with high survival rate
  • the amphoteric electrolyte polymer Dex-PA has an azide group and a carbon-carbon triple bond.
  • a hydrogel is formed by cross-linking of the ampholyte polymer Dex-PA, a three-dimensional structure capable of three-dimensional culture is formed from the cell suspension, and the cells are embedded in the tertiary.
  • the original structure can be cryopreserved and thawed, so to speak, it provides a three-dimensional scaffold material for cell growth and / or differentiation through the process of cryopreservation and thawing. all right.
  • FIG. 4 is a photograph of the localization of Dex-PA in the vicinity of the cells observed by FITC fluorescence after freezing and thawing.
  • fluorescence was observed only around the cell membrane, and it was confirmed that the amphoteric electrolyte did not enter the cytoplasm. That is, from this result, it was found that the ampholyte polymer Dex-PA of the present invention cryoprotects cells without penetrating into the cells. That is, in the present invention, it was found that the cells were cryoprotected without penetrating into the cells by the scaffold material as the extracellular matrix.
  • Example 5 [Concentration dependence of cell cryoprotective activity of Dex-PA]
  • Dex-PA solution concentration 10%
  • carboxyl group introduction amounts frozen, thawed, and the same as the evaluation of survival rate.
  • the cryoprotective activity of a solution in which the concentration was changed from 5% to 15% using Azide-Dex-PA with a carboxyl group introduction amount of 65% was also examined. As a result, as shown in FIG. 5, it was found that 12% showed the highest cryoprotective activity.
  • Example 6 [Cell-embedded gel with Azide-Dex-PA and DBCO-Dex] As described later, according to the procedure of Scheme 9, a cell (L929) suspension was gelled to prepare a cell-embedded gel, and an experiment was conducted to examine its cytoprotective activity. A photograph of the gel obtained in this experiment is shown in FIG. In FIG. 6, the bottom of the container placed upside down is in the range surrounded by the upper elliptical line, and the resulting gel is observed there.
  • Table 1 shows the Azide-Dex-PA concentration A (mg / mL), DBCO-Dex concentration B (mg / mL), and the ratio in the mixed solution of azide and DBCO (Azide: Alkyne mole). Ratio) and gelation time.
  • FIG. 7A shows a gel having a ratio of Azide to DBCO (Alkyne) of 1: 4 (polymer concentration 10%)
  • FIG. 7B shows a gel having a ratio of Azide: Alkyne 1: 6 (polymer concentration of 10). %)
  • (C) of FIG. 7 shows the state of cells frozen and thawed in a 1% collagen gel.
  • the survival rate in FIG. 7A was 93%
  • the survival rate in FIG. 7B was 94%
  • the survival rate in FIG. 7C was 0%.
  • a three-dimensional structure containing cells can be safely frozen and thawed. Therefore, it becomes possible to store or transport cells and tissues that have been three-dimensionally cultured for a long period of time.
  • the present invention provides a technique for storing and transporting regenerated cells and tissues for a long period of time, which is necessary to realize the industrial spread of regenerative medicine.
  • the present invention is an industrially useful invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

The present invention provides a cryopreservative agent which enables the three-dimensional culture of cells. The present invention provides a hydrogel produced by the intermolecular crosslinking of an amphoteric electrolyte polymer in a physiological solution so that the amphoteric electrolyte polymer can be immobilized in the physiological solution that serves as a dispersion medium, wherein the amphoteric electrolyte polymer has both an amino group and a carboxyl group in the molecule and has a ratio of the content of the carboxyl group to the content of the amino group (i.e., a (carboxyl group)/(amino group) ratio) ranging from 0.45/0.55 to 0.95/0.05.

Description

凍結保存可能な細胞足場材料Cryopreservable cell scaffold material
 本発明は、アミノ基及びカルボキシル基を同一分子中に有する両性電解質高分子が架橋されてなるハイドロゲルからなる、細胞を凍結保存することが可能な細胞足場材料に関し、さらに、該細胞足場材料に好適に使用可能な新規な両性電解質高分子に関する。 The present invention relates to a cell scaffold material capable of cryopreserving cells comprising a hydrogel obtained by crosslinking an ampholyte polymer having an amino group and a carboxyl group in the same molecule, and further to the cell scaffold material. The present invention relates to a novel ampholyte polymer which can be suitably used.
 再生医療分野において組織の再生は特に二次元形状の皮膚や角膜、心筋などで一定の成果を収め、一部では商業化も始まっている。また、幹細胞を三次元的に培養することで分化を制御する技術が開発され、三次元構造を持った再生組織の開発が研究されている。このような三次元的な細胞培養を可能にする足場材料として、例えばコラーゲンゲルが用いられている。 In the field of regenerative medicine, tissue regeneration has achieved certain results, particularly with two-dimensional skin, cornea, and myocardium, and commercialization has partially started. In addition, a technique for controlling differentiation by three-dimensionally culturing stem cells has been developed, and development of a regenerative tissue having a three-dimensional structure has been studied. For example, a collagen gel is used as a scaffold material that enables such three-dimensional cell culture.
 一方、再生医療分野において、細胞や組織の再生や分化の制御技術が確立されたとしても、再生した細胞や組織を長期に保存したり輸送したりすることができなければ、再生医療の産業的な普及は難しい。そのために想定される有望な技術が、細胞や組織の凍結保存技術である。 On the other hand, even in the field of regenerative medicine, even if cell and tissue regeneration and differentiation control technology has been established, if the regenerated cells and tissues cannot be stored or transported for a long period of time, industrial technology for regenerative medicine Dissemination is difficult. For this purpose, a promising technique is a cryopreservation technique for cells and tissues.
 しかし、細胞や組織をそのまま凍結保存すると、通常は簡単に破壊されてしまい、解凍しても、生きた細胞や組織を回収することが難しい。例えば、上述のコラーゲンゲル中に包埋された細胞をそのまま凍結保存しても、その生存率は非常に低い。そのために、このような三次元構造体の凍結解凍は、特に困難であると考えられている。 However, if cells and tissues are stored frozen as they are, they are usually easily destroyed, and it is difficult to recover live cells and tissues even after thawing. For example, even if the cells embedded in the collagen gel described above are cryopreserved as they are, their survival rate is very low. For this reason, freezing and thawing of such a three-dimensional structure is considered to be particularly difficult.
 従来より、細胞や組織に凍結保存を可能にするために、細胞の凍結保存剤として、ジメチルスルホキシド(DMSO)などの低分子化合物を凍結前に添加することが提案されている。特にこのDMSOは、凍結保存剤として広く認められている分子である。 Conventionally, in order to enable cryopreservation of cells and tissues, it has been proposed to add a low molecular weight compound such as dimethyl sulfoxide (DMSO) as a cryopreservation agent for cells before freezing. In particular, this DMSO is a molecule widely recognized as a cryopreservation agent.
 しかし、本発明者の検討によれば、このような浸透性の低分子は、細胞への毒性や分化への影響が懸念されるという欠点があり、さらに、そのためにいずれ除去が必要となるといった欠点がある。そこで、本発明者は、細胞の凍結保存剤として、ポリリジン誘導体を使用する技術を提案してきた(特許文献1:WO2009/157209号、特許文献2:特開2011-30557号)。 However, according to the study by the present inventor, such a low-permeability molecule has a drawback in that there is a concern that the toxicity to cells and the influence on differentiation are concerned, and further, removal will eventually be required. There are drawbacks. Therefore, the present inventor has proposed a technique using a polylysine derivative as a cryopreservation agent for cells (Patent Document 1: WO 2009/157209, Patent Document 2: JP 2011-30557 A).
PCT国際公開 WO2009/157209号PCT International Publication WO2009 / 157209 日本国公開特許公報 特開2011-30557号Japanese Patent Publication No. JP2011-30557
 このようなポリリジン誘導体であっても、細胞を懸濁液として凍結保存するものであり、三次元的な細胞培養を可能とするものではなかった。そこで、本発明の目的は、三次元的な細胞培養を可能とする、凍結保存剤を提供することにある。 Even with such a polylysine derivative, cells were cryopreserved as a suspension and did not enable three-dimensional cell culture. Accordingly, an object of the present invention is to provide a cryopreservation agent that enables three-dimensional cell culture.
 本発明者は、細胞の凍結保存剤を鋭意研究した結果、細胞の凍結保存剤として特定の高分子凍結保存剤を使用して、この高分子凍結保存剤そのものに対して特定の手法によって架橋反応を行ってゲル化すると、高分子凍結保存剤とともに懸濁されていた細胞は、ゲル化のための架橋反応によっても損なわれず、ゲルのなかに三次元的に包埋された細胞を凍結保存した場合に、解凍後も高い生存性を維持できることを見いだして、本発明に到達した。この本願発明によれば、細胞の懸濁液から、三次元培養が可能である三次元構造体を形成して、細胞が包埋された三次元構造体のままで凍結保存して解凍することができる。この三次元構造体のなかで、高分子凍結保存剤はゲルを形成して、いわば、細胞の増殖及び/又は分化のための三次元足場材料を提供するものとなっている。したがって、本発明は、次の(1)~を含む。 As a result of intensive research on the cryopreservation agent for cells, the present inventor has used a specific polymer cryopreservation agent as a cryopreservation agent for cells, and this polymer cryopreservation agent itself is subjected to a crosslinking reaction by a specific technique. The cells suspended with the polymer cryopreservation agent were not damaged by the crosslinking reaction for gelation, and the cells embedded three-dimensionally in the gel were cryopreserved. In some cases, the inventors have found that high viability can be maintained even after thawing, and reached the present invention. According to the present invention, a three-dimensional structure capable of three-dimensional culture is formed from a suspension of cells, and the three-dimensional structure in which cells are embedded is frozen and thawed. Can do. Among these three-dimensional structures, the polymer cryopreservation agent forms a gel, which provides a three-dimensional scaffold material for cell growth and / or differentiation. Accordingly, the present invention includes the following (1) to (1).
(1)
 アミノ基及びカルボキシル基を同一分子中に有する両性電解質高分子であって、アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、両性電解質高分子が、
 生理的溶液中で、分子間架橋されて、
 生理的溶液が分散媒として固定されてなる、ハイドロゲル。
(2)
 分子間架橋が、
 両性電解質高分子の分子、又は両性電解質でない高分子の分子、に導入されたアジド基と、
 両性電解質高分子の別な分子、又は両性電解質でない高分子の別な分子、に導入された炭素炭素三重結合部分とのトリアゾール環形成反応によって生成された分子間架橋(ただし、アジド基が導入された分子と炭素炭素三重結合部分が導入された分子のうち、少なくともいずれかの分子が、両性電解質高分子である)、
 又は
 両性電解質高分子のアミノ基と、マルチアームPEGのN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって生成された分子間架橋、
である、(1)のハイドロゲル。
(3)
 両性電解質高分子が、アミノ基及びカルボキシル基がデキストランに導入されてなるアミノカルボキシルデキストランであり、両性電解質でない高分子がデキストランである、
 又は
 両性電解質高分子が、カルボキシル化されたε-ポリ-L-リジンである、
(1)~(2)のいずれかのハイドロゲル。
(4)
 両性電解質高分子が、生理的溶液中に1~60質量%含まれている、(1)~(3)のいずれかのハイドロゲル。
(5)
 (1)~(4)のいずれかのハイドロゲルに、細胞又は組織が包埋されてなる、細胞包埋ハイドロゲル。
(6)
 (1)~(4)のいずれかのハイドロゲルに、細胞又は組織が包埋されてなる、凍結保存用細胞包埋ハイドロゲル。
(7)
 (6)の凍結保存用細胞包埋ハイドロゲルを凍結保存する、細胞又は組織の凍結保存方法。
(1)
An amphoteric electrolyte polymer having an amino group and a carboxyl group in the same molecule, wherein the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55 to 0.95 / 0.05. The ampholyte polymer in the range of
In a physiological solution, intermolecularly cross-linked
A hydrogel in which a physiological solution is fixed as a dispersion medium.
(2)
Intermolecular crosslinking
An azido group introduced into a molecule of an ampholyte polymer or a molecule of a polymer that is not an ampholyte, and
Intermolecular crosslinks formed by a triazole ring formation reaction with a carbon-carbon triple bond moiety introduced into another molecule of the ampholyte polymer or another molecule of the non-ampholyte polymer (provided that an azide group is introduced) And at least one of the molecules introduced with the carbon-carbon triple bond moiety is an ampholyte polymer),
Or an intermolecular crosslink formed by an amide bond forming reaction between the amino group of the ampholyte polymer and the N-hydroxysuccinimide group of the multi-arm PEG,
The hydrogel of (1).
(3)
The ampholyte polymer is an aminocarboxy dextran in which an amino group and a carboxyl group are introduced into dextran, and the polymer that is not an ampholyte is dextran.
Or the ampholyte polymer is carboxylated ε-poly-L-lysine,
The hydrogel according to any one of (1) to (2).
(4)
The hydrogel according to any one of (1) to (3), wherein the amphoteric electrolyte polymer is contained in a physiological solution in an amount of 1 to 60% by mass.
(5)
A cell-embedded hydrogel comprising cells or tissues embedded in any one of (1) to (4).
(6)
A cell-embedded hydrogel for cryopreservation, wherein cells or tissues are embedded in any one of (1) to (4).
(7)
(6) A method for cryopreserving cells or tissues, wherein the cell-embedded hydrogel for cryopreservation is cryopreserved.
 本発明によるハイドロゲルは、細胞を分散させた懸濁液から、細胞を損なうことなく、形成可能なゲルである。そして、このハイドロゲルは、細胞の増殖及び/又は分化のための三次元足場材料となっている。さらに、このハイドロゲルは、凍結保存して解凍する過程において、包埋された細胞を保護するものとなっている。そこで、本発明は、上記ハイドロゲルによる、細胞凍結保護剤、細胞凍結保護用組成物にもあり、細胞凍結保護用三次元足場材料にもあり、細胞凍結保護用ハイドロゲルにもある。 The hydrogel according to the present invention is a gel that can be formed from a suspension in which cells are dispersed without damaging the cells. The hydrogel is a three-dimensional scaffold material for cell proliferation and / or differentiation. Furthermore, this hydrogel protects embedded cells in the process of freezing and thawing. Therefore, the present invention also includes a cell cryoprotectant and a composition for cell cryoprotection using the hydrogel, a three-dimensional scaffold material for cell cryoprotection, and a hydrogel for cell cryoprotection.
 さらに、本発明は、次の(11)~を含む。
 (11)
 アミノ基及びカルボキシル基を同一分子中に有する両性電解質高分子であって、アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、両性電解質高分子を、生理的溶液中で、分子間架橋して、ゲル化する工程、を含む、ハイドロゲルを製造する方法。
(12)
 分子間架橋して、ゲル化する工程が、
 両性電解質高分子の分子、又は両性電解質でない高分子の分子、に導入されたアジド基と、
 両性電解質高分子の別な分子、又は両性電解質でない高分子の別な分子、に導入された炭素炭素三重結合部分とのトリアゾール環形成反応によって分子間架橋して(ただし、アジド基が導入された分子と炭素炭素三重結合部分が導入された分子のうち、少なくともいずれかの分子が、両性電解質高分子である)、ゲル化する工程、
 又は
 両性電解質高分子のアミノ基と、添加されたマルチアームPEGのN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって分子間架橋して、ゲル化する工程、
である、(11)の製造方法。
(13)
 両性電解質高分子が、アミノ基及びカルボキシル基がデキストランに導入されてなるアミノカルボキシルデキストランであり、両性電解質でない高分子がデキストランである、
 又は
 両性電解質高分子が、カルボキシル化されたε-ポリ-L-リジンである、
(11)~(12)のいずれかの製造方法。
(14)
 両性電解質高分子が、生理的溶液中に1~60質量%含まれている、(11)~(14)のいずれかの製造方法。
(15)
 (11)~(14)のいずれかの製造方法において、分子間架橋して、ゲル化する工程の前に、
 生理的溶液中に、細胞又は組織を、両性電解質高分子とともに、分散又は浸漬する工程、
を含む、細胞包埋ハイドロゲルを製造する方法。
(16)
 (15)の製造方法において製造された細胞包埋ハイドロゲルを、凍結保存する工程、
を含む、細胞又は組織の凍結保存方法。
(17)
 (11)~(14)のいずれかの製造方法において、分子間架橋して、ゲル化する工程の前に、
 生理的溶液中に、細胞又は組織を、両性電解質高分子とともに、分散又は浸漬する工程、
 分散又は浸漬された細胞又は組織を、凍結保存する工程、
を含む、細胞又は組織の凍結保存後に、細胞包埋ハイドロゲルを製造する方法。
Furthermore, the present invention includes the following (11) to (11).
(11)
An amphoteric electrolyte polymer having an amino group and a carboxyl group in the same molecule, wherein the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55 to 0.95 / 0.05. A method for producing a hydrogel, comprising a step of gelling an amphoteric electrolyte polymer in the range of the above by intermolecular crosslinking in a physiological solution.
(12)
The process of intermolecular crosslinking and gelation
An azido group introduced into a molecule of an ampholyte polymer or a molecule of a polymer that is not an ampholyte, and
Cross-linked by a triazole ring formation reaction with a carbon-carbon triple bond moiety introduced into another molecule of the ampholyte polymer or another molecule of the non-ampholyte polymer (however, an azide group was introduced) A molecule and a carbon-carbon triple bond moiety-introduced molecule, at least one of which is an ampholyte polymer), gelling step,
Or a step of gelation by intermolecular crosslinking by an amide bond forming reaction between the amino group of the ampholyte polymer and the N-hydroxysuccinimide group of the added multi-arm PEG,
The manufacturing method of (11).
(13)
The ampholyte polymer is an aminocarboxy dextran in which an amino group and a carboxyl group are introduced into dextran, and the polymer that is not an ampholyte is dextran.
Or the ampholyte polymer is carboxylated ε-poly-L-lysine,
(11) The production method of any one of (12).
(14)
The production method of any one of (11) to (14), wherein the ampholyte polymer is contained in a physiological solution in an amount of 1 to 60% by mass.
(15)
In the production method of any one of (11) to (14), before the step of intermolecular crosslinking and gelation,
A step of dispersing or immersing cells or tissues together with an ampholyte polymer in a physiological solution;
A method for producing a cell-embedded hydrogel comprising:
(16)
A step of cryopreserving the cell-embedded hydrogel produced by the production method of (15),
A method for cryopreserving cells or tissues.
(17)
In the production method of any one of (11) to (14), before the step of intermolecular crosslinking and gelation,
A step of dispersing or immersing cells or tissues together with an ampholyte polymer in a physiological solution;
A step of cryopreserving the dispersed or immersed cells or tissues,
A method for producing a cell-embedded hydrogel after cryopreservation of cells or tissues.
 本発明者は、上記高分子凍結保存剤を使用して、細胞を凍結保存して解凍した後に、得られた細胞の懸濁液に対して、特定の手法によって架橋反応を行ってゲル化すると、凍結解凍を受けた後に懸濁されていた細胞は、ゲル化のための架橋反応によっても損なわれないことを見いだした。このような実施の態様によれば、細胞の懸濁液を凍結保存して解凍した後に、所望の部位に注入してゲル化させることができ、所望の部位で細胞の懸濁液から、三次元培養あるいは三次元増殖が可能である三次元構造体を形成させることができる。すなわち、インジェクタブルゲル材料(注入可能ゲル材料)が実現できる。この三次元構造体のなかで、高分子凍結保存剤はゲルを形成して、いわば、細胞の増殖及び/又は分化のための三次元足場材料を提供するものとなっている。したがって、本発明は、上記両性電解質高分子による、インジェクタブルゲル材料にもあり、細胞凍結保護用インジェクタブルゲル材料にもあり、ゲル化性細胞凍結保護剤にもあり、ゲル化性細胞凍結保護用組成物にもある。 The present inventor uses the above-mentioned polymer cryopreservation agent to cryopreserve and thaw cells, and then gels by subjecting the obtained cell suspension to a crosslinking reaction by a specific technique. It was found that the cells suspended after being subjected to freezing and thawing were not damaged by the crosslinking reaction for gelation. According to such an embodiment, after the cell suspension is cryopreserved and thawed, it can be injected into a desired site for gelation. From the cell suspension at the desired site, A three-dimensional structure capable of original culture or three-dimensional growth can be formed. That is, an injectable gel material (injectable gel material) can be realized. Among these three-dimensional structures, the polymer cryopreservation agent forms a gel, which provides a three-dimensional scaffold material for cell growth and / or differentiation. Therefore, the present invention also exists in an injectable gel material, an injectable gel material for cell cryoprotection, a gelling cell cryoprotectant, and a gelling cell cryoprotection by the ampholyte polymer. Also in the composition.
 本発明者は、上記高分子凍結保存剤として、修飾デキストランが特に好適に使用できることを見いだした。この修飾デキストランは、架橋反応によってゲル化させる場合にも細胞を損なわない点で優れている。また、この修飾デキストランは、ゲルのなかに三次元的に包埋された細胞を凍結保存して解凍した場合にも高い生存性を維持できる点で優れている。また、この修飾デキストランは、ゲル化することなく、細胞の懸濁液に添加する高分子凍結保存剤として使用した場合にも、凍結保存及び解凍を経た細胞に高い生存性を維持できる点で優れている。したがって、本発明は、次の(21)~を含む。 The present inventor has found that modified dextran can be particularly suitably used as the polymer cryopreservation agent. This modified dextran is excellent in that it does not damage cells even when gelled by a crosslinking reaction. In addition, this modified dextran is excellent in that high viability can be maintained even when cells three-dimensionally embedded in a gel are cryopreserved and thawed. In addition, this modified dextran is excellent in that it can maintain high viability in cells that have undergone cryopreservation and thawing even when used as a polymer cryopreservation agent that is added to a cell suspension without gelation. ing. Accordingly, the present invention includes the following (21) to (21).
(21)
 アミノ基及びカルボキシル基がデキストランに導入されてなる、アミノカルボキシルデキストランであって、
 アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、アミノカルボキシルデキストラン。
(22)
 (21)のアミノカルボキシルデキストランからなる、細胞凍結保存剤。
(23)
 (21)のアミノカルボキシルデキストランが、
 生理的溶液中に、1~60質量%の濃度で溶解されて含まれる、細胞凍結保存用溶液。
(24)
 生理的溶液が、生理食塩水、細胞培養液体培地、または組織培養液体培地である、(23)の細胞凍結保存用溶液。
(21)
An aminocarboxyl dextran in which an amino group and a carboxyl group are introduced into dextran,
An aminocarboxyl dextran having a ratio of carboxyl group to amino group (carboxyl group / amino group) in the range of 0.45 / 0.55 to 0.95 / 0.05.
(22)
A cell cryopreservation agent comprising the aminocarboxyl dextran of (21).
(23)
(21) aminocarboxyl dextran is
A solution for cell cryopreservation, which is dissolved and contained in a physiological solution at a concentration of 1 to 60% by mass.
(24)
The solution for cell cryopreservation according to (23), wherein the physiological solution is physiological saline, cell culture liquid medium, or tissue culture liquid medium.
 さらに、本発明は、次の(31)~を含む。
(31)
 アミノカルボキシルデキストランが、アミノ化デキストランにカルボキシル基が導入されてなるカルボキシル基導入アミノ化デキストランである、(21)のアミノカルボキシルデキストラン。
(32)
 アミノカルボキシルデキストランが、アミノ化デキストランにカルボキシル基が導入されてなるカルボキシル基導入アミノ化デキストランである、(22)の細胞凍結保存剤。
(33)
 アミノカルボキシルデキストランが、アミノ化デキストランにカルボキシル基が導入されてなるカルボキシル基導入アミノ化デキストランである、(23)~(24)のいずれかの細胞凍結保存用溶液。
Furthermore, the present invention includes the following (31) to (31).
(31)
The aminocarboxyl dextran of (21), wherein the aminocarboxyl dextran is a carboxyl group-introduced aminated dextran obtained by introducing a carboxyl group into an aminated dextran.
(32)
The cell cryopreservation agent according to (22), wherein the aminocarboxydextran is a carboxyl group-introduced aminated dextran obtained by introducing a carboxyl group into an aminated dextran.
(33)
The cell cryopreservation solution according to any one of (23) to (24), wherein the aminocarboxyl dextran is a carboxyl group-introduced aminated dextran obtained by introducing a carboxyl group into an aminated dextran.
 さらに、本発明は、次の(41)~を含む。
(41)
 (21)又は(31)のアミノカルボキシルデキストランを、生理的溶液中に、1~60質量%の濃度で溶解して、細胞凍結保存用溶液を製造する方法。
(42)
 細胞凍結保存用溶液を製造するための、(21)又は(31)のアミノカルボキシルデキストランの使用。
Furthermore, the present invention includes the following (41) to (41).
(41)
A method for producing a cell cryopreservation solution by dissolving the aminocarboxyl dextran of (21) or (31) in a physiological solution at a concentration of 1 to 60% by mass.
(42)
Use of the aminocarboxyl dextran of (21) or (31) for producing a cell cryopreservation solution.
 さらに、本発明は、次の(51)~を含む。
(51)
 (23)又は(33)の細胞凍結保存用溶液に、細胞又は組織を、分散又は浸漬する工程、
 分散又は浸漬された細胞又は組織を、凍結する工程、
を含む、細胞又は組織を凍結保存する方法。
(52)
 (51)の細胞又は組織を凍結保存する方法において、
 分散又は浸漬された細胞又は組織を、凍結する工程の後に、さらに、
 凍結された細胞又は組織を、凍結下で保存する工程、
 凍結下で保存された細胞又は組織を、解凍する工程、
を含む、細胞又は組織を凍結保存する方法。
Furthermore, the present invention includes the following (51) to (51).
(51)
(23) or (33) a step of dispersing or immersing cells or tissue in the cell cryopreservation solution;
Freezing the dispersed or immersed cells or tissues;
A method of cryopreserving a cell or tissue comprising
(52)
(51) In the method of cryopreserving a cell or tissue,
After the step of freezing the dispersed or immersed cells or tissues,
Storing frozen cells or tissues under freezing;
Thawing cells or tissues stored under freezing,
A method of cryopreserving a cell or tissue comprising
 さらに、本発明は、次の(61)~を含む。
(61)
 (21)又は(31)のアミノカルボキシルデキストランが分子間架橋されて、
 生理的溶液が分散媒として固定されてなる、ハイドロゲル。
(62)
 アミノカルボキシルデキストランの分子間架橋が、
 アミノカルボキシルデキストランの分子に導入されたアジド基と、アミノカルボキシルデキストランの別な分子に導入された炭素炭素三重結合部分とのトリアゾール環形成反応によって生成された分子間架橋である、(61)のハイドロゲル。
(63)
 アミノカルボキシルデキストランの分子に導入された炭素炭素三重結合部分が、
 末端アルキンの基、又はシクロオクチン環含有化合物の基の炭素炭素三重結合部分である、(62)のハイドロゲル。
(64)
 (61)~(63)のいずれかのハイドロゲルに、細胞又は組織が、包埋されてなる、細胞包埋ハイドロゲル。
Furthermore, the present invention includes the following (61) to (61).
(61)
The aminocarboxyl dextran of (21) or (31) is intermolecularly crosslinked,
A hydrogel in which a physiological solution is fixed as a dispersion medium.
(62)
Intermolecular crosslinking of aminocarboxy dextran
(61) is an intermolecular bridge formed by a triazole ring formation reaction between an azide group introduced into a molecule of aminocarboxydextran and a carbon-carbon triple bond moiety introduced into another molecule of aminocarboxydextran. gel.
(63)
The carbon-carbon triple bond moiety introduced into the aminocarboxydextran molecule
The hydrogel according to (62), which is a carbon-carbon triple bond portion of a terminal alkyne group or a cyclooctyne ring-containing compound group.
(64)
(61) A cell-embedded hydrogel obtained by embedding cells or tissues in any one of the hydrogels.
 さらに、本発明は、次の(71)~を含む。
(71)
 (21)又は(31)のアミノカルボキシルデキストランに、トリアゾール環形成反応が可能な、アジド基が導入された、アジド導入アミノカルボキシルデキストラン。
(72)
 (21)又は(31)のアミノカルボキシルデキストランに、トリアゾール環形成反応が可能な、炭素炭素三重結合部分が導入された、炭素炭素三重結合導入アミノカルボキシルデキストラン。
(73)
 アジド基の導入として、
 アミノカルボキシデキストランの-OH基が、次の式(I):
Furthermore, the present invention includes the following (71) to (71).
(71)
An azide-introduced aminocarboxyl dextran in which an azide group capable of triazole ring formation reaction is introduced into the aminocarboxyl dextran of (21) or (31).
(72)
A carbon-carbon triple bond-introduced aminocarboxyl dextran in which a carbon-carbon triple bond moiety capable of triazole ring formation reaction is introduced into the aminocarboxyl dextran of (21) or (31).
(73)
As introduction of azido group,
The —OH group of aminocarboxydextran has the following formula (I):
 -Y1-N3   (I)  -Y 1 -N 3 (I)
(ただし、Y1は、アミノカルボキシデキストランの-OH基の位置に導入可能なスペーサーである)
で表される基に置換されている、(71)のアジド導入アミノカルボキシルデキストラン。
(74)
 Y1が、次の:
 -O-CO-O-(CH2n
(ただし、nは、1~24の整数)
 -O-CO-O-(CH2-CH2-O)m-1-CH2-CH2
(ただし、mは、1~24の整数)
 -O-NH-(CH2j
(ただし、jは、1~24の整数)
 -O-NH-(CH2-CH2-O)k-1-CH2-CH2
(ただし、kは、1~24の整数)
からなる群から選択された二価基のスペーサー(ただし、-N3 は、各スペーサーの右端に結合する)である、(73)のアジド導入アミノカルボキシルデキストラン。
(75)
 アミノカルボキシルデキストランに導入された炭素炭素三重結合部分が、
 末端アルキンの基、又はシクロオクチン環含有化合物の基である、(72)の炭素炭素三重結合導入アミノカルボキシルデキストラン。
(76)
 炭素炭素三重結合部分の導入として、
 アミノカルボキシデキストランの-OH基が、次の式(II)又は式(III):
(Y 1 is a spacer that can be introduced at the position of the —OH group of aminocarboxydextran)
The azide-introduced aminocarboxyl dextran of (71) substituted by the group represented by these.
(74)
Y 1 is the following:
—O—CO—O— (CH 2 ) n
(Where n is an integer from 1 to 24)
—O—CO—O— (CH 2 —CH 2 —O) m−1 —CH 2 —CH 2
(Where m is an integer from 1 to 24)
—O—NH— (CH 2 ) j
(Where j is an integer from 1 to 24)
—O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CH 2
(Where k is an integer from 1 to 24)
The azido-introduced aminocarboxyl dextran of (73), which is a divalent spacer selected from the group consisting of (wherein —N 3 binds to the right end of each spacer).
(75)
The carbon-carbon triple bond moiety introduced into the aminocarboxy dextran is
The carbon-carbon triple bond-introduced aminocarboxyl dextran of (72), which is a terminal alkyne group or a cyclooctyne ring-containing compound group.
(76)
As the introduction of carbon-carbon triple bond moiety,
The —OH group of aminocarboxydextran is represented by the following formula (II) or formula (III):
 -Y2-C≡CH   (II)  -Y 2 -C≡CH (II)
(ただし、Y2は、アミノカルボキシデキストランの-OH基の位置に導入可能なスペーサーである) (Y 2 is a spacer that can be introduced at the position of the —OH group of aminocarboxydextran)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(ただし、Y3は、アミノカルボキシデキストランの-OH基の位置に導入可能なスペーサーであり、
 R1及びR2は、
  それぞれ独立して、水素、又はC1~C12のアルキル基であるか、
  あるいは、一体となって、置換又は無置換の、C6~C12の芳香族環状構造を形成しており、
 R3及びR4は、
  それぞれ独立して、水素、又はC1~C12のアルキル基であるか、
  あるいは、一体となって、置換又は無置換の、C6~C12の芳香族環状構造を形成している)
で表される基に置換されている、(72)又は(75)の炭素炭素三重結合導入アミノカルボキシルデキストラン。
(77)
 式IIIで表される基が、次の式IV:
(However, Y 3 is a spacer that can be introduced at the position of the —OH group of aminocarboxydextran,
R1 and R2 are
Each independently hydrogen or a C1-C12 alkyl group,
Alternatively, they integrally form a substituted or unsubstituted C6-C12 aromatic ring structure,
R3 and R4 are
Each independently hydrogen or a C1-C12 alkyl group,
Alternatively, they together form a substituted or unsubstituted C6-C12 aromatic ring structure)
A carbon-carbon triple bond-introduced aminocarboxyl dextran of (72) or (75), which is substituted with a group represented by:
(77)
A group of formula III is represented by the following formula IV:
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(ただし、Y3は、アミノカルボキシデキストランの-OH基の位置に導入可能なスペーサーである)
で表される基である、(76)の炭素炭素三重結合導入アミノカルボキシルデキストラン。
(78)
 Y2が、次の:
 -O-CO-N(CH3)-(CH2n
(ただし、nは、1~24の整数)
 -O-CO-NH-(CH2-CH2-O)m-1-CH2
(ただし、mは、1~24の整数)
 -O-NH-(CH2j
(ただし、jは、1~24の整数)
 -O-NH-(CH2-CH2-O)k-1-CH2-CH2
(ただし、kは、1~24の整数)
からなる群から選択された二価基のスペーサーである(ただし、-C≡CH は、各スペーサーの右端に結合する)、(73)の炭素炭素三重結合導入アミノカルボキシルデキストラン。
(79)
 Y3が、次の:
 -O-CO-N(CH3)-(CH2n-CO-
(ただし、nは、1~24の整数)
 -O-CO-NH-(CH2-CH2-O)m-1-CH2-CO-
(ただし、mは、1~24の整数)
 -O-NH-(CH2j-CO-
(ただし、jは、1~24の整数)
 -O-NH-(CH2-CH2-O)k-1-CH2-CO-
(ただし、kは、1~24の整数)
からなる群から選択された二価基のスペーサーである(ただし、シクロオクチン環の-N基は、各スペーサーの右端に結合する)、(73)の炭素炭素三重結合導入アミノカルボキシルデキストラン。
(Y 3 is a spacer that can be introduced at the position of the —OH group of aminocarboxydextran)
A carbon-carbon triple bond-introduced aminocarboxyl dextran of (76), which is a group represented by:
(78)
Y 2 is, of the following:
—O—CO—N (CH 3 ) — (CH 2 ) n
(Where n is an integer from 1 to 24)
—O—CO—NH— (CH 2 —CH 2 —O) m-1 —CH 2
(Where m is an integer from 1 to 24)
—O—NH— (CH 2 ) j
(Where j is an integer from 1 to 24)
—O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CH 2
(Where k is an integer from 1 to 24)
A carbon-carbon triple bond-introduced aminocarboxyl dextran according to (73), which is a divalent spacer selected from the group consisting of (wherein —C≡CH is bonded to the right end of each spacer).
(79)
Y 3 is, of the following:
—O—CO—N (CH 3 ) — (CH 2 ) n —CO—
(Where n is an integer from 1 to 24)
—O—CO—NH— (CH 2 —CH 2 —O) m−1 —CH 2 —CO—
(Where m is an integer from 1 to 24)
—O—NH— (CH 2 ) j —CO—
(Where j is an integer from 1 to 24)
—O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CO—
(Where k is an integer from 1 to 24)
A carbon-carbon triple bond-introduced aminocarboxyl dextran according to (73), wherein the spacer is a divalent group selected from the group consisting of (wherein the —N group of the cyclooctyne ring is bonded to the right end of each spacer).
 さらに、本発明は、次の(81)~を含む。
(81)
 次の(a)と(c)、(a)と(d)、(b)と(c)のいずれかの組み合わせを含んでなる、デキストランのキット:
 (a) (71)、(73)~(75)のいずれかのアジド導入アミノカルボキシルデキストラン、
 (b) アジド導入デキストラン(ただし、アジド導入は(71)、(73)~(74)のいずれかに規定された通りである)、
 (c) (72)、(75)~(79)のいずれかの炭素炭素三重結合導入アミノカルボキシルデキストラン、
 (d) 炭素炭素三重結合導入デキストラン(ただし、炭素炭素三重結合導入は(72)、(75)~(79)のいずれかに規定された通りである)。
(82)
 (81)の(a)と(c)、(a)と(d)、(b)と(c)のいずれかの組み合わせを含む、アミノカルボキシルデキストラン含有組成物。
(83)
 (71)~(79)のいずれかのアミノカルボキシルデキストランからなる、細胞凍結保存剤。
(84)
 (71)~(79)のいずれかのアミノカルボキシルデキストランが、
 生理的溶液中に、1~60質量%の濃度で溶解されて含まれる、細胞凍結保存用溶液。
Furthermore, the present invention includes the following (81) to (81).
(81)
A dextran kit comprising any combination of the following (a) and (c), (a) and (d), (b) and (c):
(A) the azide-introduced aminocarboxyl dextran of any of (71), (73) to (75),
(B) Azide-introduced dextran (wherein azide introduction is as defined in any of (71), (73) to (74)),
(C) the carbon-carbon triple bond-introduced aminocarboxyl dextran of any of (72), (75) to (79),
(D) Carbon-carbon triple bond introduced dextran (however, carbon-carbon triple bond introduction is as defined in any of (72), (75) to (79)).
(82)
An aminocarboxyl dextran-containing composition comprising any combination of (81) (a) and (c), (a) and (d), and (b) and (c).
(83)
(71) A cell cryopreservation agent comprising the aminocarboxyl dextran according to any one of (71) to (79).
(84)
(71) to (79) any one of aminocarboxyl dextran is
A solution for cell cryopreservation, which is dissolved and contained in a physiological solution at a concentration of 1 to 60% by mass.
 さらに、本発明は、次の(91)~を含む。
(91)
 (71)~(79)のいずれかのアミノカルボキシルデキストランからなる、細胞包埋ハイドロゲル製造用添加剤。
(92)
 (71)~(79)のいずれかのアミノカルボキシルデキストランが、生理的溶液中に、1~60質量%の濃度で溶解されて含まれる、細胞包埋ハイドロゲル製造用溶液。
(93)
 生理的溶液が、生理食塩水、細胞培養液体培地、または組織培養液体培地である、(92)の細胞包埋ハイドロゲル製造用溶液。
(94)
 (92)~(93)のいずれかの細胞包埋ハイドロゲル製造用溶液に、細胞又は組織が、分散又は浸漬されてなる、細胞包埋ハイドロゲル製造用細胞含有組成物。
(95)
 (94)の細胞包埋ハイドロゲル製造用細胞含有組成物が、ゲル化されてなる、細胞包埋ハイドロゲル。
(96)
 (82)のアミノカルボキシルデキストラン含有組成物からなる、細胞包埋ハイドロゲル製造用添加剤。
(97)
 (82)のアミノカルボキシルデキストラン含有組成物が、生理的溶液中に、アミノカルボキシデキストランの濃度として1~60質量%の濃度で溶解されて含まれる、細胞包埋ハイドロゲル製造用溶液。
(98)
 生理的溶液が、生理食塩水、細胞培養液体培地、または組織培養液体培地である、(97)の細胞包埋ハイドロゲル製造用溶液。
(99)
 (97)~(98)のいずれかの細胞包埋ハイドロゲル製造用溶液に、細胞又は組織が、分散又は浸漬されてなる、細胞包埋ハイドロゲル製造用細胞含有組成物。
(100)
 (99)の細胞包埋ハイドロゲル製造用細胞含有組成物が、ゲル化されてなる、細胞包埋ハイドロゲル。
Furthermore, the present invention includes the following (91) to (91).
(91)
An additive for producing a cell-embedded hydrogel comprising the aminocarboxyl dextran according to any one of (71) to (79).
(92)
A solution for producing a cell-embedded hydrogel, wherein the aminocarboxyl dextran according to any one of (71) to (79) is dissolved and contained in a physiological solution at a concentration of 1 to 60% by mass.
(93)
(92) The solution for producing a cell-embedded hydrogel according to (92), wherein the physiological solution is physiological saline, cell culture liquid medium, or tissue culture liquid medium.
(94)
(92) A cell-containing composition for producing a cell-embedded hydrogel, wherein cells or tissues are dispersed or immersed in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93).
(95)
(94) A cell-embedded hydrogel obtained by gelling the cell-containing composition for producing a cell-embedded hydrogel.
(96)
(82) An additive for producing a cell-embedded hydrogel comprising the aminocarboxydextran-containing composition.
(97)
(82) A solution for producing a cell-embedded hydrogel, comprising the aminocarboxydextran-containing composition dissolved in a physiological solution at a concentration of 1 to 60% by mass as the aminocarboxydextran concentration.
(98)
The solution for producing a cell-embedded hydrogel according to (97), wherein the physiological solution is physiological saline, cell culture liquid medium, or tissue culture liquid medium.
(99)
A cell-containing composition for producing a cell-embedded hydrogel, wherein cells or tissues are dispersed or immersed in the solution for producing a cell-embedded hydrogel according to any one of (97) to (98).
(100)
(99) A cell-embedded hydrogel obtained by gelling the cell-containing composition for producing a cell-embedded hydrogel.
 さらに、本発明は、次の(101)~を含む。
(101)
 (71)~(79)のいずれかのアミノカルボキシルデキストランを、生理的溶液中に、1~60質量%の濃度で溶解して、細胞包埋ハイドロゲル製造用溶液を製造する方法。
(102)
 細胞包埋ハイドロゲル製造用溶液を製造するための、(71)~(79)のいずれかのアミノカルボキシルデキストランの使用。
(103)
 (92)~(93)及び(97)~(98)のいずれかの細胞包埋ハイドロゲル製造用溶液に、細胞又は組織を、分散又は浸漬して、細胞包埋ハイドロゲル製造用細胞含有組成物を製造する方法。
(104)
 細胞包埋ハイドロゲル製造用細胞含有組成物を製造するための、(92)~(93)及び(97)~(98)のいずれかの細胞包埋ハイドロゲル製造用溶液の使用。
(105)
 (94)又は(99)の細胞包埋ハイドロゲル製造用細胞含有組成物を、ゲル化して、細胞包埋ハイドロゲルを製造する方法。
(106)
 細胞包埋ハイドロゲルを製造するための、(94)又は(99)の細胞包埋ハイドロゲル製造用細胞含有組成物の使用。
Furthermore, the present invention includes the following (101) to (101).
(101)
A method for producing a solution for producing a cell-embedded hydrogel by dissolving the aminocarboxyl dextran of any one of (71) to (79) in a physiological solution at a concentration of 1 to 60% by mass.
(102)
Use of the aminocarboxyl dextran of any of (71) to (79) for producing a solution for producing a cell-embedded hydrogel.
(103)
A cell-containing composition for producing a cell-embedded hydrogel by dispersing or immersing cells or tissues in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) A method of manufacturing things.
(104)
Use of the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) for producing a cell-containing composition for producing a cell-embedded hydrogel.
(105)
A method for producing a cell-embedded hydrogel by gelling the cell-containing composition for producing a cell-embedded hydrogel according to (94) or (99).
(106)
Use of the cell-containing composition for producing a cell-embedded hydrogel according to (94) or (99) for producing a cell-embedded hydrogel.
 さらに、本発明は、次の(111)~を含む。
(111)
 (92)~(93)、(97)~(98)のいずれかの細胞包埋ハイドロゲル製造用溶液に、細胞又は組織を、分散又は浸漬する工程
 分散又は浸漬された細胞又は組織を、凍結する工程、
を含む、細胞又は組織を凍結保存する方法。
(112)
 (111)の細胞及び組織の凍結保存方法において、
 分散又は浸漬された細胞又は組織を、凍結する工程の後に、さらに、
 凍結された細胞又は組織を、凍結下で保存する工程、
 凍結下で保存された細胞又は組織を、解凍する工程、
を含む、細胞又は組織を凍結保存する方法。
(113)
 (92)~(93)、(97)~(98)のいずれかの細胞包埋ハイドロゲル製造用溶液に、細胞又は組織を、分散又は浸漬して、細胞包埋ハイドロゲル製造用細胞含有組成物を調製する工程、
 調製された細胞含有組成物を、凍結する工程、
 凍結された細胞含有組成物を、凍結下で保存する工程、
 凍結下で保存された細胞含有組成物を、解凍する工程、
 解凍された細胞含有組成物を、アミノカルボキシルデキストランの分子間架橋の形成反応によって、ゲル化して、細胞包埋ハイドロゲルを調製する工程、
を含む、凍結保存された細胞含有組成物から、細胞包埋ハイドロゲルを、製造する方法。
(114)
 アミノカルボキシルデキストランの分子間架橋の形成反応が、
 アミノカルボキシルデキストランのアジド部分とアルキン部分とのトリアゾール環形成反応である、(113)の製造方法。
Furthermore, the present invention includes the following (111) to (11).
(111)
(92) to (93), (97) to (98) Step of dispersing or immersing cells or tissue in the cell-embedded hydrogel production solution Freezing the dispersed or immersed cells or tissue The process of
A method of cryopreserving a cell or tissue comprising
(112)
(111) In the method for cryopreserving cells and tissues,
After the step of freezing the dispersed or immersed cells or tissues,
Storing frozen cells or tissues under freezing;
Thawing cells or tissues stored under freezing,
A method of cryopreserving a cell or tissue comprising
(113)
A cell-containing composition for producing a cell-embedded hydrogel by dispersing or immersing cells or tissues in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) Preparing a product,
Freezing the prepared cell-containing composition;
Storing the frozen cell-containing composition under freezing;
Thawing a cell-containing composition stored under freezing,
A step of preparing a cell-embedded hydrogel by gelling the thawed cell-containing composition by an intermolecular cross-linking reaction of aminocarboxydextran;
A method for producing a cell-embedded hydrogel from a cryopreserved cell-containing composition.
(114)
The formation reaction of the intermolecular bridge of aminocarboxy dextran is
The production method of (113), which is a triazole ring formation reaction between an azide moiety and an alkyne moiety of aminocarboxydextran.
 さらに、本発明は、次の(121)~を含む。
(121)
 (92)~(93)、(97)~(98)のいずれかの細胞包埋ハイドロゲル製造用溶液に、細胞又は組織を、分散又は浸漬して、細胞包埋ハイドロゲル製造用細胞含有組成物を調製する工程、
 調製された細胞含有組成物を、アミノカルボキシルデキストランの分子間架橋の形成反応によって、ゲル化して、細胞包埋ハイドロゲルを調製する工程、
を含む、細胞含有組成物から、細胞包埋ハイドロゲルを、製造する方法。
(132)
 アミノカルボキシルデキストランの分子間架橋の形成反応が、
 アミノカルボキシルデキストランのアジド部分とアルキン部分とのトリアゾール環形成反応である、(131)の製造方法。
(133)
 (92)~(93)、(97)~(98)のいずれかの細胞包埋ハイドロゲル製造用溶液に、細胞又は組織を、分散又は浸漬して、細胞包埋ハイドロゲル製造用細胞含有組成物を調製する工程、
 調製された細胞含有組成物を、アミノカルボキシルデキストランの分子間架橋の形成反応によって、ゲル化して、細胞包埋ハイドロゲルを調製する工程、
 調製された細胞包埋ハイドロゲルを、凍結する工程、
を含む、細胞又は組織を凍結保存する方法。
(134)
 (132)の細胞及び組織の凍結保存方法において、
 調製された細胞包埋ハイドロゲルを、凍結する工程の後に、さらに、
 凍結された細胞包埋ハイドロゲルを、凍結下で保存する工程、
 凍結下で保存された細胞包埋ハイドロゲルを、解凍する工程、
を含む、細胞又は組織を凍結保存する方法。
(135)
 アミノカルボキシルデキストランの分子間架橋の形成反応が、
 アミノカルボキシルデキストランのアジド部分とアルキン部分とのトリアゾール環形成反応である、(133)~(134)のいずれかの製造方法。
Furthermore, the present invention includes the following (121) to (121).
(121)
A cell-containing composition for producing a cell-embedded hydrogel by dispersing or immersing cells or tissues in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) Preparing a product,
Preparing the cell-embedded hydrogel by gelling the prepared cell-containing composition by an intermolecular cross-linking reaction of aminocarboxydextran;
A method for producing a cell-embedded hydrogel from a cell-containing composition.
(132)
The formation reaction of the intermolecular bridge of aminocarboxy dextran is
The production method of (131), which is a triazole ring formation reaction between an azide moiety and an alkyne moiety of aminocarboxydextran.
(133)
A cell-containing composition for producing a cell-embedded hydrogel by dispersing or immersing cells or tissues in the solution for producing a cell-embedded hydrogel according to any one of (92) to (93) and (97) to (98) Preparing a product,
Preparing the cell-embedded hydrogel by gelling the prepared cell-containing composition by an intermolecular cross-linking reaction of aminocarboxydextran;
Freezing the prepared cell-embedded hydrogel,
A method of cryopreserving a cell or tissue comprising
(134)
(132) In the method for cryopreserving cells and tissues,
After the step of freezing the prepared cell-embedded hydrogel,
Storing the frozen cell-embedded hydrogel under freezing;
Thawing a cell-embedded hydrogel stored under freezing,
A method of cryopreserving a cell or tissue comprising
(135)
The formation reaction of the intermolecular bridge of aminocarboxy dextran is
The production method of any one of (133) to (134), which is a triazole ring formation reaction of an azide moiety and an alkyne moiety of aminocarboxydextran.
 さらに、本発明者は、上記高分子凍結保存剤として修飾ポリリジンを使用して、特定の架橋剤でゲル化すると、特に好適であることを見いだした。この組み合わせによるゲル化は、ゲル化反応時に細胞を共存させていた場合にも、細胞を損なわない点で優れたものである。また、この修飾デキストランは、ゲルのなかに三次元的に包埋された細胞を凍結保存して解凍した場合にも高い生存性を維持できる点で優れたものである。したがって、本発明は、次の(141)~を含む。 Furthermore, the present inventors have found that it is particularly suitable to use modified polylysine as the polymer cryopreservation agent and gel with a specific crosslinking agent. Gelation by this combination is excellent in that cells are not damaged even when cells coexist during the gelation reaction. This modified dextran is excellent in that high viability can be maintained even when cells three-dimensionally embedded in a gel are cryopreserved and thawed. Therefore, the present invention includes the following (141) to (141).
(141)
 アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、カルボキシル化されたε-ポリ-L-リジンが、
 生理的溶液中で、ε-ポリ-L-リジンのアミノ基と、マルチアームPEGのN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって生成された分子間架橋によって架橋されて、
 生理的溶液が分散媒として固定されてなる、ハイドロゲル。
(142)
 マルチアームPEGが、次の式(V):
(141)
Carboxylated ε-poly-L-lysine having a carboxyl group to amino group ratio (carboxyl group / amino group) in the range of 0.45 / 0.55 to 0.95 / 0.05
In physiological solution, crosslinked by intermolecular crosslinking generated by an amide bond forming reaction between the amino group of ε-poly-L-lysine and the group of N-hydroxysuccinimide of multi-arm PEG,
A hydrogel in which a physiological solution is fixed as a dispersion medium.
(142)
Multi-arm PEG has the following formula (V):
 C[CO-(CH2-CH2-O)n-X]4   (V) C [CO— (CH 2 —CH 2 —O) n —X] 4 (V)
(ただし、nは、式Vの化合物の分子量が1000~100000の範囲となる整数であり、
 Xは、次の式(VI):
(Where n is an integer such that the molecular weight of the compound of formula V is in the range of 1000 to 100,000,
X is the following formula (VI):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
で表される基である)
で表される4アームPEGである、(141)のハイドロゲル。
(143)
 カルボキシル化されたε-ポリ-L-リジンが、生理的溶液中に1~60質量%含まれている、(141)のハイドロゲル。
(144)
 (141)~(142)のいずれかのハイドロゲルに、細胞又は組織が包埋されてなる、細胞包埋ハイドロゲル。
(145)
 (141)~(142)のいずれかのハイドロゲルに、細胞又は組織が包埋されてなる、凍結保存用細胞包埋ハイドロゲル。
(146)
 (144)の凍結保存用細胞包埋ハイドロゲルを凍結保存する、細胞又は組織の凍結保存方法。
Is a group represented by
(141) The hydrogel which is 4 arm PEG represented by these.
(143)
The hydrogel according to (141), wherein 1 to 60% by mass of carboxylated ε-poly-L-lysine is contained in a physiological solution.
(144)
A cell-embedded hydrogel in which cells or tissues are embedded in any of the hydrogels according to (141) to (142).
(145)
A cell-embedded hydrogel for cryopreservation, wherein cells or tissues are embedded in the hydrogel of any one of (141) to (142).
(146)
(144) A method for cryopreserving cells or tissues, wherein the cell-embedded hydrogel for cryopreservation according to (144) is cryopreserved.
 さらに、本発明は、次の(151)~を含む。
 (151)
 アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、カルボキシル化されたε-ポリ-L-リジンを、
 生理的溶液中で、ε-ポリ-L-リジンのアミノ基と、マルチアームPEGのN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって生成された分子間架橋によって架橋して、ゲル化する工程、
を含む、ハイドロゲルを製造する方法。
(152)
 アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、カルボキシル化されたε-ポリ-L-リジンを含む生理的溶液に、細胞又は組織を、分散又は浸漬して、細胞含有組成物を調製する工程、
 細胞含有組成物を、ε-ポリ-L-リジンのアミノ基と、マルチアームPEGのN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって生成された分子間架橋によって架橋して、ゲル化して、細胞包埋ハイドロゲルを調製する工程、
を含む、細胞包埋ハイドロゲルを製造する方法。
(153)
 アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、カルボキシル化されたε-ポリ-L-リジンを含む生理的溶液に、細胞又は組織を、分散又は浸漬して、細胞含有組成物を調製する工程、
 調製された細胞含有組成物を、凍結する工程、
 凍結された細胞含有組成物を、凍結下で保存する工程、
 凍結下で保存された細胞含有組成物を、解凍する工程、
 解凍された細胞含有組成物を、ε-ポリ-L-リジンのアミノ基と、マルチアームPEGのN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって生成された分子間架橋によって架橋して、ゲル化して、細胞包埋ハイドロゲルを調製する工程、
を含む、細胞包埋ハイドロゲルを製造する方法。
Furthermore, the present invention includes the following (151) to (151).
(151)
Carboxylated ε-poly-L-lysine having a carboxyl group to amino group ratio (carboxyl group / amino group) in the range of 0.45 / 0.55 to 0.95 / 0.05,
In physiological solution, cross-linked by intermolecular cross-linking generated by amide bond formation reaction between amino group of ε-poly-L-lysine and N-hydroxysuccinimide group of multi-arm PEG to gel The process of
A method for producing a hydrogel, comprising:
(152)
Physiology containing carboxylated ε-poly-L-lysine in which the ratio of carboxyl group to amino group (carboxyl group / amino group) is in the range of 0.45 / 0.55 to 0.95 / 0.05. Preparing a cell-containing composition by dispersing or immersing cells or tissues in an aqueous solution,
The cell-containing composition is cross-linked by intermolecular cross-linking generated by an amide bond forming reaction between the amino group of ε-poly-L-lysine and the N-hydroxysuccinimide group of multi-arm PEG to gel. Preparing a cell-embedded hydrogel,
A method for producing a cell-embedded hydrogel comprising:
(153)
Physiology containing carboxylated ε-poly-L-lysine in which the ratio of carboxyl group to amino group (carboxyl group / amino group) is in the range of 0.45 / 0.55 to 0.95 / 0.05. Preparing a cell-containing composition by dispersing or immersing cells or tissues in an aqueous solution,
Freezing the prepared cell-containing composition;
Storing the frozen cell-containing composition under freezing;
Thawing a cell-containing composition stored under freezing,
The thawed cell-containing composition is cross-linked by intermolecular cross-linking generated by an amide bond forming reaction between the amino group of ε-poly-L-lysine and the N-hydroxysuccinimide group of multi-arm PEG. A step of gelling to prepare a cell-embedded hydrogel,
A method for producing a cell-embedded hydrogel comprising:
 本発明によれば、細胞を含む三次元構造体を、安全に凍結保存して解凍することができる。そのために、三次元培養された細胞や組織を、長期に保存し、あるいは輸送することが可能となる。したがって、本発明は、再生医療の産業的な普及を実現するために必要となる、再生した細胞や組織を長期に保存し輸送する技術を、提供するものである。 According to the present invention, a three-dimensional structure containing cells can be safely frozen and thawed. Therefore, it becomes possible to store or transport cells and tissues that have been three-dimensionally cultured for a long period of time. Therefore, the present invention provides a technique for storing and transporting regenerated cells and tissues for a long period of time, which is necessary to realize the industrial spread of regenerative medicine.
図1はカルボキシル化ポリリジンのゲル化後の細胞の生死判定の結果を示す蛍光写真である。FIG. 1 is a fluorescent photograph showing the results of cell viability determination after gelation of carboxylated polylysine. 図2はDex-PA溶液により凍結保護された細胞の生存率を示すグラフである。FIG. 2 is a graph showing the survival rate of cells cryoprotected by Dex-PA solution. 図3はDex-PAのゲルにより凍結保護された細胞の生死判定の結果を示す蛍光写真である。FIG. 3 is a fluorescence photograph showing the results of viability determination of cells cryoprotected by a Dex-PA gel. 図4はFITCの蛍光によって凍結解凍後のDex-PAの細胞近傍の局在を観察した蛍光写真である。FIG. 4 is a fluorescence photograph observing the localization of Dex-PA in the vicinity of cells after freeze-thawing by FITC fluorescence. 図5はDex-PAの細胞凍結保護活性の濃度依存性を示すグラフである。FIG. 5 is a graph showing the concentration dependence of the cell cryoprotective activity of Dex-PA. 図6はAzide-Dex-PAとDBCO-Dexによるゲルの写真である。FIG. 6 is a photograph of the gel by Azide-Dex-PA and DBCO-Dex. 図7aはAzide:Alkyneの比が1:4のゲルでの凍結解凍後の細胞の生死判定の結果を示す蛍光写真である。FIG. 7a is a fluorescent photograph showing the result of cell viability determination after freeze-thawing on a gel having an Azide: Alkyne ratio of 1: 4. 図7bはAzide:Alkyneの比が1:6のゲルでの凍結解凍後の細胞の生死判定の結果を示す蛍光写真である。FIG. 7b is a fluorescence photograph showing the results of cell viability determination after freeze-thawing on a gel having an Azide: Alkyne ratio of 1: 6. 図7cは1%コラーゲンゲルでの凍結解凍後の細胞の生死判定の結果を示す蛍光写真である。FIG. 7c is a fluorescence photograph showing the results of cell viability determination after freezing and thawing on a 1% collagen gel.
 具体的な実施の形態をあげて、以下に本発明を詳細に説明する。本発明は、以下にあげる具体的な実施他の形態に限定されるものではない。 The present invention will be described in detail below with specific embodiments. The present invention is not limited to the following specific embodiments and other embodiments.
 本発明によれば、アミノ基及びカルボキシル基を同一分子中に有する両性電解質高分子であって、アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、両性電解質高分子が、生理的溶液中で、分子間架橋されて、生理的溶液が分散媒として固定されてなる、ハイドロゲルを、得ることができる。 According to the present invention, an ampholyte polymer having an amino group and a carboxyl group in the same molecule, wherein the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55-0. A hydrogel in which the ampholyte polymer in the range of .95 / 0.05 is intermolecularly crosslinked in a physiological solution, and the physiological solution is fixed as a dispersion medium can be obtained.
 本発明のハイドロゲルは、細胞及び組織をそのなかに包埋して、凍結保存と解凍によるダメージから、細胞及び組織を、保護することができるものとなっている。さらに、本発明のハイドロゲルは、それ自体が細胞に三次元構造の足場を提供するものとなっている。三次元構造の足場は、細胞の増殖及び/又は分化のために非常に有利であると考えられており、細胞を凍結保護することができる三次元構造の細胞足場材料は、非常に望ましいものである。加えて、本発明のハイドロゲルは、そのゲル化のための分子間架橋の形成反応時に、細胞の損傷が最小化されており、細胞の高い生存率を達成したものとなっている。 The hydrogel of the present invention can embed cells and tissues therein and protect them from damage caused by cryopreservation and thawing. Further, the hydrogel of the present invention itself provides a three-dimensional scaffold for cells. Three-dimensional scaffolds are considered very advantageous for cell growth and / or differentiation, and three-dimensional scaffolds that can cryoprotect cells are highly desirable. is there. In addition, the hydrogel of the present invention achieves a high cell survival rate because cell damage is minimized during the formation reaction of intermolecular crosslinks for gelation.
[両性電解質高分子]
 本発明の両性電解質高分子は、アミノ基及びカルボキシル基を同一分子中に有するものとなっており、アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある。この比率は、好ましくは、0.45/0.55~0.95/0.05の範囲、さらに好ましくは0.50/0.50~0.90/0.10の範囲、あるいは例えば0.70/0.30~0.75/0.25の範囲とすることができる。
[Amphoteric electrolyte polymer]
The ampholyte polymer of the present invention has an amino group and a carboxyl group in the same molecule, and the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55 to It is in the range of 0.95 / 0.05. This ratio is preferably in the range of 0.45 / 0.55 to 0.95 / 0.05, more preferably in the range of 0.50 / 0.50 to 0.90 / 0.10, or for example The range may be 70 / 0.30 to 0.75 / 0.25.
 高分子の分子中へのアミノ基及びカルボキシル基の導入は、公知の修飾手段によって行うことができる。好適な実施の態様において、高分子にアミノ基を導入した後に、あるいはアミノ基を有する高分子を準備した後に、例えば、無水カルボン酸を用いて、カルボキシル化、あるいはアセチル化を行って、アミノ基及びカルボキシル基を上記比率の範囲となるように、導入することができる。 Introduction of an amino group and a carboxyl group into a polymer molecule can be performed by a known modification means. In a preferred embodiment, after introducing an amino group into the polymer or after preparing a polymer having an amino group, the amino group is subjected to carboxylation or acetylation using, for example, carboxylic anhydride. And a carboxyl group can be introduce | transduced so that it may become the range of the said ratio.
[デキストラン]
 好ましい実施の態様において、アミノ基及びカルボキシル基が導入される高分子としては、デキストランをあげることができる。デキストランは、グルコースを構成単位とする多糖類の高分子であり、α-1,6結合、及びα-1,4結合を含む。デキストランとしては、例えば市販されているデキストランを使用することができる。数平均分子量としては、例えば1000~10,000,000の範囲、例えば5000~1000,000の範囲、例えば10,000~500,000の範囲、例えば10,000~100,000の範囲を含むものを、使用することができる。
[Dextran]
In a preferred embodiment, examples of the polymer into which an amino group and a carboxyl group are introduced include dextran. Dextran is a polysaccharide polymer having glucose as a structural unit, and includes α-1,6 bonds and α-1,4 bonds. As dextran, for example, commercially available dextran can be used. The number average molecular weight includes, for example, a range of 1000 to 10,000,000, such as a range of 5000 to 1,000,000, such as a range of 10,000 to 500,000, such as a range of 10,000 to 100,000. Can be used.
 本発明の両性電解質高分子とするために、デキストランに対して、アミノ基及びカルボキシル基が、上記比率で導入される。好適な実施の態様において、デキストランの水酸基に対して、アミノ基を有する原子団を導入した後に、導入されたアミノ基の一定割合に対して、カルボキシル基を有する原子団を導入して、アミノ基及びカルボキシル基をデキストランに導入して、両性電解質高分子とすることができる。このようなアミノ基の導入は、公知の手段によって行うことができ、例えば、カルボニルジイミダゾール(CDI)とジアミン化合物を使用して、導入することができる。このように導入されたアミノ基に対するカルボキシル基の導入は、公知の手段によって行うことができ、例えば、無水カルボン酸を使用して、導入することができる。無水カルボン酸としては、例えば、無水酢酸、無水クエン酸、無水コハク酸、無水グルタル酸、無水リンゴ酸、無水フマル酸、及び無水マレイン酸を挙げることができる。これらのうち、無水コハク酸及び無水酢酸が好ましく、無水コハク酸が特に好ましい。また、アミノ基は、上記のようにカルボキシル基を導入してもよく、アミノ基及びカルボキシル基が上記比率の範囲となるように、アミノ基を公知の手段でアセチル化してブロックしてもよい。導入されたカルボキシル基は、これに対してジアミン、トリアミン、ポリアミンなどの化合物と反応させることにより、さらに一部アミノ化することもできる。このように用いるジアミンとしては、例えば、エチレンジアミンを挙げることができる。デキストランへのアミノ基及びカルボキシル基の導入の一例を、次のスキーム1に示す。 In order to obtain the ampholyte polymer of the present invention, amino groups and carboxyl groups are introduced in the above ratio with respect to dextran. In a preferred embodiment, after introducing an atomic group having an amino group with respect to the hydroxyl group of dextran, an atomic group having a carboxyl group is introduced with respect to a certain ratio of the introduced amino group, and the amino group And a carboxyl group can be introduced into dextran to form an ampholyte polymer. Such an amino group can be introduced by a known means, for example, using carbonyldiimidazole (CDI) and a diamine compound. The introduction of the carboxyl group to the amino group thus introduced can be carried out by a known means, for example, using carboxylic anhydride. Examples of the carboxylic anhydride include acetic anhydride, citric anhydride, succinic anhydride, glutaric anhydride, malic anhydride, fumaric anhydride, and maleic anhydride. Of these, succinic anhydride and acetic anhydride are preferred, and succinic anhydride is particularly preferred. Moreover, a carboxyl group may be introduce | transduced into an amino group as mentioned above, and you may block by acetylating an amino group by a well-known means so that an amino group and a carboxyl group may become the range of the said ratio. The introduced carboxyl group can be further partially aminated by reacting it with a compound such as diamine, triamine or polyamine. Examples of the diamine used in this way include ethylenediamine. An example of introduction of an amino group and a carboxyl group into dextran is shown in the following scheme 1.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[ポリアミン]
 好ましい実施の態様において、アミノ基を有する高分子として、ポリアミンを使用することができる。ポリアミンとしては、例えば、ポリアミノ酸、アミノ化多糖類を使用することができ、例えば、ポリリジン、ポリアリルアミン、ポリアルギニン、ポリアルギニン、ポリグルタミン酸、ポリアスパラギン酸を使用することができる。好ましい実施の態様において、アミノ基を有する高分子として、ε-ポリ-L-リジンを使用することができる。このような高分子として、数平均分子量としては、例えば1000~10,000,000の範囲、例えば5000~1000,000の範囲、例えば10,000~500,000の範囲、例えば10,000~100,000の範囲を含むものを、使用することができる。
[Polyamine]
In a preferred embodiment, a polyamine can be used as the polymer having an amino group. As the polyamine, for example, polyamino acids and aminated polysaccharides can be used. For example, polylysine, polyallylamine, polyarginine, polyarginine, polyglutamic acid, and polyaspartic acid can be used. In a preferred embodiment, ε-poly-L-lysine can be used as the polymer having an amino group. As such a polymer, the number average molecular weight is, for example, in the range of 1000 to 10,000,000, such as in the range of 5000 to 1,000,000, such as in the range of 10,000 to 500,000, such as 10,000 to 100. Those containing the range of 1,000 can be used.
 本発明の両性電解質高分子とするために、アミノ基を有する高分子に対して、アミノ基及びカルボキシル基が、上記比率となるように、カルボキシル基が導入される。アミノ基に対するカルボキシル基の導入は、公知の手段によって行うことができ、例えば、上述した無水カルボン酸を使用して、導入することができる。これらのうち、無水コハク酸及び無水酢酸が好ましく、無水コハク酸が特に好ましい。また、アミノ基は、上記のようにカルボキシル基を導入してもよく、アミノ基及びカルボキシル基が上記比率の範囲となるように、アミノ基を公知の手段でアセチル化してブロックしてもよい。導入されたカルボキシル基は、これに対してジアミン、トリアミン、ポリアミンなどの化合物と反応させることにより、さらに一部アミノ化することもできる。 In order to obtain the ampholyte polymer of the present invention, a carboxyl group is introduced so that the amino group and the carboxyl group are in the above ratio with respect to the polymer having an amino group. The introduction of the carboxyl group with respect to the amino group can be carried out by a known means. For example, it can be introduced using the carboxylic anhydride described above. Of these, succinic anhydride and acetic anhydride are preferred, and succinic anhydride is particularly preferred. Moreover, a carboxyl group may be introduce | transduced into an amino group as mentioned above, and you may block by acetylating an amino group by a well-known means so that an amino group and a carboxyl group may become the range of the said ratio. The introduced carboxyl group can be further partially aminated by reacting it with a compound such as diamine, triamine or polyamine.
[生理的溶液]
 本発明のハイドロゲルは、上記両性電解質高分子が、生理的溶液中で分子間架橋されてなるものである。生理的溶液としては、例えば、生理食塩水、細胞培養液体培地、組織培養液体培地、無血清培地を挙げることができる。例えば、ダルベッコ改変イーグルMEM培地(DMEM)を好ましいものとして挙げることができる。本発明の分子間架橋は、このような種々の生理物質や細胞そのものを含む溶液中においても、架橋反応が進行して、ハイドロゲルを形成することができるものとなっている。好適な実施の態様において、両性電解質高分子は、生理的溶液中に、例えば1~60質量%の濃度、例えば5~30質量%の濃度となるように添加することができる。本発明において、両性電解質高分子、及び両性電解質高分子が架橋されてなるハイドロゲルは、それ自体が優れた凍結保護の効果を発揮するものとなっており、これだけを凍結保護剤として好適に使用することができるものであるが、所望により、公知の凍結保護物質を、生理的溶液中に追加的に添加して、使用することもできる。このような公知の凍結保護物質としては、ジメチルスルホキシドやグリセロール、エチレングリコール、トレハロース、スクロースなどを挙げることができ、あるいは抗酸化剤を挙げることができる。このような抗酸化剤としては、例えば、カタラーゼ、ペルオキシダーゼ、スーパーオキシドジスムターゼ、ビタミンE、ビタミンC、エピガロカテキンガレートなどのポリフェノール類またはグルタチオンなどを、挙げることができる。
[Physiological solution]
The hydrogel of the present invention is obtained by intermolecular crosslinking of the ampholyte polymer in a physiological solution. Examples of the physiological solution include physiological saline, cell culture liquid medium, tissue culture liquid medium, and serum-free medium. For example, Dulbecco's modified Eagle MEM medium (DMEM) can be mentioned as a preferable one. The intermolecular cross-linking of the present invention can form a hydrogel by a cross-linking reaction even in a solution containing such various physiological substances and cells themselves. In a preferred embodiment, the ampholyte polymer can be added to the physiological solution so as to have a concentration of, for example, 1 to 60% by mass, for example, 5 to 30% by mass. In the present invention, the amphoteric electrolyte polymer and the hydrogel formed by crosslinking the amphoteric electrolyte polymer exhibit excellent cryoprotective effects themselves, and only this is suitably used as a cryoprotectant. However, if desired, a known cryoprotectant can be additionally added to the physiological solution and used. Examples of such known cryoprotective substances include dimethyl sulfoxide, glycerol, ethylene glycol, trehalose, sucrose, and the like, or an antioxidant. Examples of such an antioxidant include polyphenols such as catalase, peroxidase, superoxide dismutase, vitamin E, vitamin C, and epigallocatechin gallate, or glutathione.
[分子間架橋:トリアゾール環形成反応]
 好適な実施の態様において、分子間架橋は、両性電解質高分子の分子、又は両性電解質でない高分子の分子、に導入されたアジド基と、両性電解質高分子の別な分子、又は両性電解質でない高分子の別な分子、に導入された炭素炭素三重結合部分とのトリアゾール環形成反応によって生成された分子間架橋(ただし、アジド基が導入された分子と炭素炭素三重結合部分が導入された分子のうち、少なくともいずれかの分子が、両性電解質高分子である)とすることができる。すなわち、まず、細胞保護を担う両性電解質高分子に対して、アジド基又は炭素炭素三重結合部分を導入してものを用意する。このように修飾された両性電解質高分子の溶液に細胞を分散し、あるいは組織を浸漬しておく。次いで、この修飾された両性電解質高分子の分子とトリアゾール環形成反応が可能となるように炭素炭素三重結合部分又はアジド基が導入された分子を、あたかも架橋剤のように添加して、トリアゾール環形成反応を進行させて、分子間の架橋を形成し、ゲル化を行うことができる。あたかも架橋剤のように添加する分子は、両性電解質高分子の分子であってもよく、両性電解質でない高分子の分子であってもよい。最終的に形成されるゲル中の両性電解質高分子の量が、所望の量あるいは濃度となるように、総量を調整すればよいからである。好適な実施の態様において、両性電解質高分子として、アミノカルボキシルデキストランを使用することができ、両性電解質でない高分子として、デキストランを使用することができる。
[Intermolecular crosslinking: Triazole ring formation reaction]
In a preferred embodiment, the intermolecular cross-linking is carried out by introducing an azido group introduced into a molecule of an ampholyte polymer or a molecule of a polymer that is not an ampholyte and another molecule of the ampholyte polymer or a non-ampholyte polymer. An intermolecular bridge formed by a triazole ring-forming reaction with a carbon-carbon triple bond moiety introduced into another molecule of the molecule (however, a molecule introduced with an azide group and a molecule introduced with a carbon-carbon triple bond moiety) Among them, at least one of the molecules is an ampholyte polymer). That is, first, an azide group or a carbon-carbon triple bond moiety is introduced into the ampholyte polymer that is responsible for cell protection. Cells are dispersed or tissue is immersed in the solution of the ampholyte polymer modified in this way. Next, a molecule having a carbon-carbon triple bond moiety or an azide group introduced so as to enable a triazole ring formation reaction with this modified ampholyte polymer molecule is added as if it were a cross-linking agent, and a triazole ring was added. The formation reaction can proceed to form intermolecular crosslinks and gelation can be performed. The molecule added as if it were a crosslinking agent may be an ampholyte polymer molecule or a polymer molecule that is not an ampholyte. This is because the total amount may be adjusted so that the amount of the ampholyte polymer in the finally formed gel becomes a desired amount or concentration. In a preferred embodiment, aminocarboxy dextran can be used as the ampholyte polymer and dextran can be used as the non-ampholyte polymer.
[アジド基の導入]
 好適な実施の態様において、トリアゾール環形成反応が可能となるように、両性電解質高分子の分子、または両性電解質でない高分子の分子に、アジド基が導入される。好適な実施の態様において、アジド基を末端に有する原子団を導入することができる。例えば、次の式(I):
[Introduction of azido group]
In a preferred embodiment, an azide group is introduced into a molecule of an amphoteric electrolyte polymer or a molecule of a polymer that is not an ampholyte so that a triazole ring formation reaction is possible. In a preferred embodiment, an atomic group having a terminal azide group can be introduced. For example, the following formula (I):
 -Y1-N3   (I)  -Y 1 -N 3 (I)
で表される基を導入することができる。ただし、Y1は、所望により挿入されるスペーサーである。両性電解質高分子としてアミノカルボキシデキストラン、あるいは、両性電解質でない高分子としてデキストランを使用する場合には、デキストランのグルコース環の水酸基の位置に導入可能な基とすることが好ましい。好適な実施の態様において、具体的には、Y1は、例えば、次の:
 -O-CO-O-(CH2n
(ただし、nは、1~24の整数)
 -O-CO-O-(CH2-CH2-O)m-1-CH2-CH2
(ただし、mは、1~24の整数)
 -O-NH-(CH2j
(ただし、jは、1~24の整数)
 -O-NH-(CH2-CH2-O)k-1-CH2-CH2
(ただし、kは、1~24の整数)
からなる群から選択された二価基のスペーサー(ただし、-N3 は、各スペーサーの右端に結合する)とすることができる。上記n、m、j、kは、それぞれ独立して、所望の値とすることができるが、例えば、1~24の整数、1~12の整数、1~6の整数とすることができる。
Can be introduced. Y 1 is a spacer inserted as desired. When aminocarboxydextran is used as the ampholyte polymer or dextran is used as the polymer that is not an ampholyte, it is preferably a group that can be introduced into the hydroxyl group of the glucose ring of dextran. In a preferred embodiment, specifically, Y 1 is, for example:
—O—CO—O— (CH 2 ) n
(Where n is an integer from 1 to 24)
—O—CO—O— (CH 2 —CH 2 —O) m−1 —CH 2 —CH 2
(Where m is an integer from 1 to 24)
—O—NH— (CH 2 ) j
(Where j is an integer from 1 to 24)
—O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CH 2
(Where k is an integer from 1 to 24)
Or a divalent spacer selected from the group consisting of (wherein —N 3 is bound to the right end of each spacer). N, m, j, and k can be independently set to desired values. For example, they can be integers of 1 to 24, integers of 1 to 12, and integers of 1 to 6.
[炭素炭素三重結合部分の導入]
 好適な実施の態様において、トリアゾール環形成反応が可能となるように、両性電解質高分子の分子、または両性電解質でない高分子の分子に、炭素炭素三重結合部分が導入される。好適な実施の態様において、炭素炭素三重結合部分を有する基として、末端アルキンの基、又はシクロオクチン環含有化合物の基を、使用することができる。次の式(II)又は式(III):
[Introduction of carbon-carbon triple bond moiety]
In a preferred embodiment, a carbon-carbon triple bond moiety is introduced into a molecule of an amphoteric electrolyte polymer or a non-ampholyte polymer molecule so that a triazole ring formation reaction is possible. In a preferred embodiment, the terminal alkyne group or the cyclooctyne ring-containing compound group can be used as the group having a carbon-carbon triple bond moiety. The following formula (II) or formula (III):
 -Y2-C≡CH   (II)  -Y 2 -C≡CH (II)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
で表される基を導入することができる。ただし、Y2及びY3は、所望により挿入されるスペーサーである。両性電解質高分子としてアミノカルボキシデキストラン、あるいは、両性電解質でない高分子としてデキストランを使用する場合には、デキストランのグルコース環の水酸基の位置に導入可能な基とすることが好ましい。 Can be introduced. However, Y 2 and Y 3 are spacers inserted as desired. When aminocarboxydextran is used as the ampholyte polymer or dextran is used as the polymer that is not an ampholyte, it is preferably a group that can be introduced into the hydroxyl group of the glucose ring of dextran.
 上記式IIIにおいて、R1及びR2は、それぞれ独立して、水素、又はC1~C12のアルキル基であるか、あるいは、一体となって、置換又は無置換の、C6~C12の芳香族環状構造を形成する基とすることができ、R3及びR4は、それぞれ独立して、水素、又はC1~C12のアルキル基であるか、あるいは、一体となって、置換又は無置換の、C6~C12の芳香族環状構造を形成する基とすることができる。置換又は無置換のC6~C12の芳香族環状構造は、複素環であってもよい。好適な実施の態様において、置換又は無置換のC6~C12の芳香族環状構造は、置換又は無置換のベンゼン環とすることができる。ベンゼン環の置換基は、例えば、C1~C12のアルキル基とすることができる。好適な実施の態様において、R1及びR2、R3及びR4は、それぞれ一体となって、無置換のベンゼン環を形成することができ、すなわち、式IIIであらわされる基は、次の式IV: In the above formula III, R1 and R2 are each independently hydrogen or a C1-C12 alkyl group, or together, a substituted or unsubstituted C6-C12 aromatic cyclic structure. R3 and R4 are each independently hydrogen, a C1-C12 alkyl group, or together, a substituted or unsubstituted C6-C12 fragrance. It can be a group forming a group cyclic structure. The substituted or unsubstituted C6-C12 aromatic ring structure may be a heterocyclic ring. In a preferred embodiment, the substituted or unsubstituted C6-C12 aromatic ring structure can be a substituted or unsubstituted benzene ring. The substituent on the benzene ring can be, for example, a C1-C12 alkyl group. In a preferred embodiment, R 1 and R 2, R 3 and R 4 can be joined together to form an unsubstituted benzene ring, ie, a group represented by formula III can have the following formula IV:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で表される基とすることができる。 It can be set as the group represented by these.
 好適な実施の態様において、上記Y2が、次の:
 -O-CO-N(CH3)-(CH2n
(ただし、nは、1~24の整数)
 -O-CO-NH-(CH2-CH2-O)m-1-CH2
(ただし、mは、1~24の整数)
 -O-NH-(CH2j
(ただし、jは、1~24の整数)
 -O-NH-(CH2-CH2-O)k-1-CH2-CH2
(ただし、kは、1~24の整数)
からなる群から選択された二価基のスペーサー(ただし、-C≡CH は、各スペーサーの右端に結合する)とすることができる。上記n、m、j、kは、それぞれ独立して、所望の値とすることができるが、例えば、1~24の整数、1~12の整数、1~6の整数とすることができる。
In a preferred embodiment, Y 2 is the following:
—O—CO—N (CH 3 ) — (CH 2 ) n
(Where n is an integer from 1 to 24)
—O—CO—NH— (CH 2 —CH 2 —O) m-1 —CH 2
(Where m is an integer from 1 to 24)
—O—NH— (CH 2 ) j
(Where j is an integer from 1 to 24)
—O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CH 2
(Where k is an integer from 1 to 24)
A divalent spacer selected from the group consisting of (wherein —C≡CH 2 is bonded to the right end of each spacer). N, m, j, and k can be independently set to desired values. For example, they can be integers of 1 to 24, integers of 1 to 12, and integers of 1 to 6.
 好適な実施の態様において、上記Y3が、次の:
 -O-CO-N(CH3)-(CH2n-CO-
(ただし、nは、1~24の整数)
 -O-CO-NH-(CH2-CH2-O)m-1-CH2-CO-
(ただし、mは、1~24の整数)
 -O-NH-(CH2j-CO-
(ただし、jは、1~24の整数)
 -O-NH-(CH2-CH2-O)k-1-CH2-CO-
(ただし、kは、1~24の整数)
からなる群から選択された二価基のスペーサー(ただし、シクロオクチン環の-N基は、各スペーサーの右端に結合する)とすることができる。上記n、m、j、kは、それぞれ独立して、所望の値とすることができるが、例えば、1~24の整数、1~12の整数、1~6の整数とすることができる。
In a preferred embodiment, said Y 3 is:
—O—CO—N (CH 3 ) — (CH 2 ) n —CO—
(Where n is an integer from 1 to 24)
—O—CO—NH— (CH 2 —CH 2 —O) m−1 —CH 2 —CO—
(Where m is an integer from 1 to 24)
—O—NH— (CH 2 ) j —CO—
(Where j is an integer from 1 to 24)
—O—NH— (CH 2 —CH 2 —O) k-1 —CH 2 —CO—
(Where k is an integer from 1 to 24)
A divalent spacer selected from the group consisting of (wherein the —N group of the cyclooctyne ring is bound to the right end of each spacer). N, m, j, and k can be independently set to desired values. For example, they can be integers of 1 to 24, integers of 1 to 12, and integers of 1 to 6.
 デキストランへのアジド基、及びアルキンの基の導入の一例を、次のスキーム2に示す。 An example of introduction of an azide group and an alkyne group into dextran is shown in the following scheme 2.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[分子間架橋:マルチアームPEG]
 好適な実施の態様において、分子間架橋は、両性電解質高分子のアミノ基と、マルチアームPEG(ポリエチレングリコール)のN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって生成された分子間架橋、とすることができる。すなわち、マルチアームPEG(ポリエチレングリコール)が架橋剤となって、両性電解質高分子の分子間に架橋を形成する。そのため、マルチアームのマルチの意味する分枝(アーム)の数は、架橋を意図する分子数によって選択することができ、例えば、2~16、2~8、2~4とすることができる。好ましい実施の態様において、4アームPEGを使用することができる。例えば、マルチアームPEGは、次の式(V):
[Intermolecular crosslinking: Multi-arm PEG]
In a preferred embodiment, the intermolecular crosslink is generated by an amide bond forming reaction between the amino group of the ampholyte polymer and the N-hydroxysuccinimide group of multi-arm PEG (polyethylene glycol). , And can be. That is, multi-arm PEG (polyethylene glycol) serves as a cross-linking agent to form cross-links between molecules of the ampholyte polymer. Therefore, the number of branches (arms) meaning multi-arm can be selected according to the number of molecules intended for crosslinking, and can be 2 to 16, 2 to 8, 2 to 4, for example. In a preferred embodiment, 4-arm PEG can be used. For example, the multi-arm PEG has the following formula (V):
 C[CO-(CH2-CH2-O)n-X]4   (V) C [CO— (CH 2 —CH 2 —O) n —X] 4 (V)
で表される4アームPEGとすることができる。上記式(V)のnは、式Vの化合物の分子量が、例えば1,000~100,000の範囲、1,000~50,000の範囲となる整数とすることができる。上記式(V)のXは、次の式(VI): The 4-arm PEG represented by N in the formula (V) may be an integer such that the molecular weight of the compound of the formula V is in the range of 1,000 to 100,000, for example, in the range of 1,000 to 50,000. X in the above formula (V) represents the following formula (VI):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で表される基とすることができる。好適な実施の態様において、マルチアームPEG(ポリエチレングリコール)によって架橋される両性電解質高分子は、カルボキシル化されたポリリジンであり、好ましくは、カルボキシル化されたε-ポリ-L-リジンである。カルボキシル化ε-ポリ-L-リジンのアミノ基は、マルチアームPEG(ポリエチレングリコール)によって好適に架橋されて、ハイドロゲルを形成する。 It can be set as the group represented by these. In a preferred embodiment, the ampholyte polymer crosslinked by multi-arm PEG (polyethylene glycol) is a carboxylated polylysine, preferably a carboxylated ε-poly-L-lysine. The amino group of the carboxylated ε-poly-L-lysine is suitably cross-linked by multi-arm PEG (polyethylene glycol) to form a hydrogel.
[分子間架橋反応]
 本発明のハイドロゲルを形成するための分子間架橋反応は、大気圧下での生理的な条件下で、速やかに進行し、さらに、細胞表面の種々の分子や、細胞培地中の成分の共存下でも、速やかに進行する。そのため、本発明のハイドロゲルの製造用の溶液に、細胞を分散し、あるいは組織を浸漬した後に、分子間架橋反応を行ってハイドロゲルを形成して、所望の三次元構造体として、細胞や組織がハイドロゲルに包埋された状態で凍結保存することもできる。これに加えて、ハイドロゲルの製造用の溶液に、細胞を分散し、あるいは組織を浸漬した後に、ハイドロゲルを形成させることなく、溶液の状態で凍結保存した後に、解凍し、それを所望の部位、例えば創傷を治癒したい部位に注入して、その生理的な状態で、分子間架橋反応を行ってハイドロゲルを形成して、所望の三次元構造体を生体内で形成させることもできる。好適な実施の態様において、細胞培養可能な温度条件下で、例えば35~38℃、例えば37℃で、分子間架橋を行うことができる。
[Intermolecular crosslinking reaction]
The intermolecular cross-linking reaction for forming the hydrogel of the present invention proceeds rapidly under physiological conditions under atmospheric pressure, and further, coexistence of various molecules on the cell surface and components in the cell culture medium. Proceeds quickly even under. Therefore, after dispersing the cells or immersing the tissue in the solution for producing the hydrogel of the present invention, an intermolecular cross-linking reaction is performed to form a hydrogel, and a desired three-dimensional structure is obtained. It can also be cryopreserved with the tissue embedded in a hydrogel. In addition to this, after dispersing cells or immersing the tissue in a solution for producing a hydrogel, freezing it in a solution state without forming a hydrogel, thawing it, and then A desired three-dimensional structure can be formed in a living body by injecting into a site, for example, a site where a wound is desired to be healed, and performing an intermolecular crosslinking reaction in the physiological state to form a hydrogel. In a preferred embodiment, intermolecular crosslinking can be performed under temperature conditions that allow cell culture, for example, at 35 to 38 ° C., for example, 37 ° C.
 トリアゾール環形成による分子間架橋反応を加速させたい場合には、アジド基と炭素炭素三重結合によるトリアゾール環形成反応の公知の好適条件を採用して、これを加速することができる。例えば、末端アルキンの基とアジド基の反応において、銅イオンとアスコルビン酸を添加することができる。アジド基(アジ基)と末端アルキンの基のモル比は、ゲル形成可能な範囲であれば使用することができるが、例えば、7:1~1:7、7:1~1:5、7:1~1:3、6:1~1:6、6:1~1:4、6:1~1:2、4:1~1:4、4:1~1:2、2:1~1:2の範囲とすることができる。あるいは、上記NHS-マルチアームPEGを用いたアミド結合形成反応による分子間架橋反応を加速させたい場合には、アミノ基とN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応の公知の好適条件を採用して、これを加速することができる。 When it is desired to accelerate the intermolecular crosslinking reaction due to the formation of the triazole ring, it can be accelerated by adopting known suitable conditions for the triazole ring formation reaction by the azide group and the carbon-carbon triple bond. For example, copper ions and ascorbic acid can be added in the reaction between the terminal alkyne group and the azide group. The molar ratio of the azide group (azi group) to the terminal alkyne group can be used as long as it can be gel-formed. For example, 7: 1 to 1: 7, 7: 1 to 1: 5, 7 : 1 to 1: 3, 6: 1 to 1: 6, 6: 1 to 1: 4, 6: 1 to 1: 2, 4: 1 to 1: 4, 4: 1 to 1: 2, 2: 1 It can be in the range of ~ 1: 2. Alternatively, when it is desired to accelerate the intermolecular crosslinking reaction by the amide bond formation reaction using the NHS-multi-arm PEG, known suitable conditions for the amide bond formation reaction between an amino group and a group of N-hydroxysuccinimide This can be accelerated.
[両性電解質デキストラン]
 本発明者は、アミノ基及びカルボキシル基をデキストランに導入して得た両性電解質デキストラン(Dex-PA)が、上記手段によって分子間架橋した場合に、細胞及び組織を損なうことなく、好適にゲル化できること、得られたハイドロゲルが優れた凍結保護の効果を有していることを、見いだして、さらに、この両性電解質デキストラン(Dex-PA)が、ハイドロゲル化することなく、溶液として使用した場合においても、優れた凍結保護の効果を有していることを、見いだした。したがって、本発明は、アミノ基及びカルボキシル基がデキストランに導入されてなる、アミノカルボキシルデキストランであって、アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、アミノカルボキシルデキストランからなる、細胞凍結保存剤にもある。この両性電解質デキストラン(Dex-PA)は、上記トリアゾール環形成反応のためのアジド基を導入した場合にも、あるいは、炭素炭素三重結合部分を導入した場合にも、優れた凍結保護の効果を有しているものであった。したがって、アジド基導入アミノカルボキシルデキストラン、及び炭素炭素三重結合部分導入アミノカルボキシルデキストランもまた、それ自体が、優れた細胞凍結保存剤となっているものである。これらのデキストラン誘導体の濃度(ポリマー濃度、デキストラン濃度)は、細胞保護効果を発揮する範囲内において、適宜選択することができるが、例えば、5~20%、7~20%、7~15%、8~14%、10~13%、10~12%の範囲とすることができる。
[Amphoteric electrolyte dextran]
The inventor of the present invention, when an ampholyte dextran (Dex-PA) obtained by introducing an amino group and a carboxyl group into dextran is gelled suitably without damaging cells and tissues when cross-linked by the above means. When it was found that the obtained hydrogel had an excellent cryoprotective effect, the ampholyte dextran (Dex-PA) was used as a solution without hydrogelation. Also found that it has an excellent cryoprotective effect. Accordingly, the present invention provides an aminocarboxyl dextran in which an amino group and a carboxyl group are introduced into dextran, wherein the ratio of the carboxyl group to the amino group (carboxyl group / amino group) is 0.45 / 0.55 to There is also a cell cryopreservation agent consisting of aminocarboxy dextran in the range of 0.95 / 0.05. This ampholyte dextran (Dex-PA) has an excellent cryoprotective effect both when the azide group for the triazole ring formation reaction is introduced or when a carbon-carbon triple bond moiety is introduced. It was what you are doing. Therefore, an azide group-introduced aminocarboxyl dextran and a carbon-carbon triple bond moiety-introduced aminocarboxyl dextran are themselves excellent cell cryopreservation agents. The concentration of these dextran derivatives (polymer concentration, dextran concentration) can be appropriately selected within a range in which a cytoprotective effect is exhibited. For example, 5-20%, 7-20%, 7-15%, It can be in the range of 8-14%, 10-13%, 10-12%.
[細胞及び組織]
 本発明において、生理的溶液を使用して、温度及び大気圧についても、生理的な条件下で架橋反応を行って、ハイドロゲルを形成することができる。そのために、ハイドロゲル中に包埋可能な細胞及び組織には、特に制限がない。さらに、本発明においては、両性電解質高分子、及び両性電解質高分子によるハイドロゲルが、細胞内に浸透することなく、凍結保護の効果を発揮するものとなっている。そのために、凍結保護の効果が発揮可能な細胞及び組織には、特に制限がない。好適な実施の態様において、このような細胞としては、例えば、培養用樹立細胞、ヒトを含む動物の受精卵および卵細胞を挙げることができ、また、例えば、精細胞、ES細胞、iPS細胞、間葉系幹細胞、造血系幹細胞、神経幹細胞、臍帯血細胞などの幹細胞、肝細胞、神経細胞、心筋細胞、血管内皮細胞、血管平滑筋細胞、血球細胞などのヒトを含む動物細胞もしくは植物細胞を挙げることができる。好適な実施の態様において、このような組織・臓器としては、皮膚、神経、血管、軟骨、角膜、肝臓、腎臓、心臓、膵島などを挙げることができ、さらに、これらに由来する細胞を挙げることができる。
[Cells and tissues]
In the present invention, a hydrogel can be formed by performing a crosslinking reaction under physiological conditions using a physiological solution and also at a temperature and atmospheric pressure. Therefore, there are no particular limitations on the cells and tissues that can be embedded in the hydrogel. Furthermore, in the present invention, the amphoteric electrolyte polymer and the hydrogel based on the amphoteric electrolyte polymer exhibit cryoprotective effects without penetrating into the cells. Therefore, there are no particular limitations on the cells and tissues that can exhibit the effect of cryoprotection. In preferred embodiments, such cells can include, for example, established cells for culture, fertilized eggs and egg cells of animals including humans, and also include, for example, sperm cells, ES cells, iPS cells, Examples include stem cells such as leaf stem cells, hematopoietic stem cells, neural stem cells, umbilical cord blood cells, animal cells or plant cells including humans such as hepatocytes, nerve cells, cardiomyocytes, vascular endothelial cells, vascular smooth muscle cells, blood cells, etc. Can do. In a preferred embodiment, examples of such tissues / organs include skin, nerve, blood vessel, cartilage, cornea, liver, kidney, heart, islet, and the like, and further include cells derived therefrom. Can do.
 以下に実施例をあげて、本発明を詳細に説明する。本発明は、以下に例示する実施例に限定されるものではない。
[実施例1]
[カルボキシル化ポリリジンによるハイドロゲル]
[カルボキシル化ポリリジンの合成]
 ε-ポリ-L-リジン(チッソ、分子量4000)25%水溶液を5mLとり、無水コハク酸(和光純薬)を0.5-0.9g添加し、50℃で1時間反応させ、カルボキシル化ポリリジンを作成した。カルボキシル基の導入量は、アミノ基定量である、TNBS法を用い、アミノ基の減少量より計算し求めた。アミノ基のモル数に対して50%のモル数のカルボキシル基を導入したものをPLL(0.50)と表記する。
Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited to the examples illustrated below.
[Example 1]
[Hydrogel with carboxylated polylysine]
[Synthesis of carboxylated polylysine]
5 mL of 25% aqueous solution of ε-poly-L-lysine (Chisso, molecular weight 4000) was added, 0.5-0.9 g of succinic anhydride (Wako Pure Chemical Industries) was added, and reacted at 50 ° C for 1 hour to prepare carboxylated polylysine . The amount of carboxyl group introduced was determined by calculating from the amount of amino group decrease using the TNBS method, which is amino group quantification. A product in which 50% of a carboxyl group is introduced with respect to the number of moles of amino group is expressed as PLL (0.50).
[カルボキシル化ポリリジンによる細胞の凍結保存]
 1×106個のマウス線維芽細胞L929細胞を、クライオバイアル(Simport Plastics)中にて1mLの10%PLL(0.50)培地溶液(無血清培地、Dulbecco's Modified Eagle Medium(DMEM)、シグマ社)中に懸濁し、-80℃のフリーザー中に放置することで凍結保存を行った。解凍は37℃の湯浴中にて速やかに融解し、培地で洗浄したのち、トリパンブルー染色により生死判定を行った。その結果、95%以上の生存率を確認した。
[Cryopreservation of cells with carboxylated polylysine]
1 × 10 6 mouse fibroblast L929 cells in 1 mL of 10% PLL (0.50) medium solution (serum-free medium, Dulbecco's Modified Eagle Medium (DMEM), Sigma) in cryovials (Simport Plastics) And stored in a freezer at −80 ° C. for cryopreservation. Thawing was immediately thawed in a 37 ° C. hot water bath, washed with a medium, and then judged to be alive by trypan blue staining. As a result, a survival rate of 95% or more was confirmed.
[カルボキシル化ポリリジンのゲル化]
 次に解凍し終わった懸濁液を、24wellの培養用プレートに移し、10%の4官能ポリエチレングリコール(4-armed functional PEG)(N-ヒドロキシスクシンイミド末端)(日油、Sunbright PTE-100S、分子量1万)培地溶液を添加することで速やかにゲル化させた。ゲルの上部に培養液を添加し、37℃インキュベータ中で6時間後に、Live-deadアッセイキット(旧invitrogen、現Life Technologies社製)により細胞の生死判定を行ったところ、80%以上の生存率を確認した。図1は、この結果を示す蛍光写真である。図1は、カラー写真においては、緑と赤の二重の蛍光染色の写真となっており、緑の蛍光は生存している細胞を示し、赤の蛍光は生存していない細胞を示している。生存率はこれらを計数することによって算出した。また、そのゲルをインキュベータ中で放置することにより、48時間後にはすべてのゲルが溶解し、細胞が培養プレートに接着していることを確認した。
[Gelation of carboxylated polylysine]
The thawed suspension is then transferred to a 24-well culture plate and 10% tetrafunctional polyethylene glycol (4-armed functional PEG) (N-hydroxysuccinimide end) (NOF, Sunbright PTE-100S, molecular weight) 10,000) It was made to gel quickly by adding a medium solution. When the culture medium was added to the top of the gel and the cell viability was determined using the Live-dead assay kit (formerly invitrogen, now Life Technologies) after 6 hours in a 37 ° C incubator, the survival rate was 80% or higher. It was confirmed. FIG. 1 is a fluorescent photograph showing this result. FIG. 1 is a photograph of double fluorescence staining of green and red in a color photograph, where green fluorescence indicates cells that are alive and red fluorescence indicates cells that are not alive. . Viability was calculated by counting these. Further, by leaving the gel in an incubator, it was confirmed that all the gel was dissolved after 48 hours and the cells were adhered to the culture plate.
 以上のカルボキシル化ポリリジンの合成から、ハイドロゲル形成と培養までの実験手順を、次のスキーム3にまとめた。 The experimental procedure from synthesis of the above carboxylated polylysine to hydrogel formation and culture is summarized in the following scheme 3.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[結果のまとめ]
 以上の実験から、両性電解質高分子PLL(0.50)水溶液は細胞を高い生存率で凍結保存することが可能な高分子溶液であり、両性電解質高分子PLL(0.50)のアミノ基によって細胞が分散された状態で細胞を高い生存率で維持しつつハイドロゲルを形成することが可能であることがわかった。つまり、細胞を凍結保存した後に解凍して、細胞の凍結保存剤を除去する必要なく、そのまますぐにゲル化する作業を行うことができ、高い生存率で細胞を包埋したまま、ハイドロゲルを形成することができることがわかった。さらに、このハイドロゲルは、培養条件下で24~48時間で生分解するという生分解性を有するものであった。つまり、例えば、患部に細胞液を注入した後にゲル化させて、数日でそのゲル自体は生分解して、三次元的に包埋された細胞がそのまま生着するという、いわゆるインジェクタブルゲル(注入可能ゲル)を実現するものとなっていることがわかった。
[Summary of results]
From the above experiments, the amphoteric electrolyte polymer PLL (0.50) aqueous solution is a polymer solution that can cryopreserve cells with high survival rate, and the cells are dispersed by the amino groups of the amphoteric electrolyte polymer PLL (0.50). It was found that it was possible to form a hydrogel while maintaining the cells with a high survival rate. In other words, the cells can be frozen and then thawed, and the gel can be immediately gelled without the need to remove the cell cryopreservation agent. It was found that it can be formed. Further, this hydrogel had biodegradability that biodegraded in 24 to 48 hours under culture conditions. That is, for example, after injecting cell fluid into the affected area, it is gelled, and within a few days, the gel itself is biodegraded, and the so-called injectable gel (three-dimensionally embedded cells engraft as it is) It was found that it was possible to realize an injectable gel).
[実施例2]
[デキストランによるハイドロゲル]
[アミノ化デキストランの合成]
 デキストラン(名糖産業、分子量7万)1.5gをジメチルスルホキシド(DMSO)90mLに溶解し、3.0gのカルボニルジイミダゾール(CDI)を添加し、50℃15分反応させた。その後、1.35mLのエチレンジアミン(EDA)を添加し、50℃18時間反応させることで64.1%の導入率(単位糖残基あたりのEDAの導入数)のアミノ化デキストラン(Amino-Dex)を得た。得られたアミノ化デキストランを10%溶液とし、無水コハク酸を加え、50℃で1時間反応させることで種々のカルボキシル基導入アミノ化デキストラン(デキストラン両性電解質、(Dex-PA))を作成した。この合成の手順を、次のスキーム4にまとめた。
[Example 2]
[Hydrogel by Dextran]
[Synthesis of aminated dextran]
1.5 g of dextran (name sugar industry, molecular weight 70,000) was dissolved in 90 mL of dimethyl sulfoxide (DMSO), 3.0 g of carbonyldiimidazole (CDI) was added, and the mixture was reacted at 50 ° C. for 15 minutes. Then, 1.35 mL of ethylenediamine (EDA) was added and reacted at 50 ° C. for 18 hours to obtain an aminated dextran (Amino-Dex) with an introduction rate of 64.1% (the number of EDA introduced per unit sugar residue). . The obtained aminated dextran was made into a 10% solution, succinic anhydride was added, and reacted at 50 ° C. for 1 hour to prepare various carboxyl group-introduced aminated dextran (dextran ampholyte, (Dex-PA)). The synthetic procedure is summarized in Scheme 4 below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 それらDex-PAの細胞凍結保護活性を調べるために、10%Dex-PA溶液1mL中に1.0×106個のL929細胞を懸濁し、上記凍結法と同じ方法で凍結、解凍し、生存率を評価した。その結果、アミノ基に対するカルボキシル基の割合が、50-90%において、ほぼ80%以上の高い生存率が得られることが確認され、Dex-PAも細胞凍結保護活性を持つ事を確認した。図2は、この結果を示す棒グラフである。図2の横軸は、修飾デキストラン中の全アミノ基に対するカルボキシル基の割合(%)を示す。図2の縦軸は、異なった割合(比率)でカルボキシル基が導入されたDex-PAを10%含有する溶液中でL929細胞を凍結させた後の細胞の生存率(%)である。この結果から、アミノ基とカルボキシル基を導入して両性高分子電解質となった修飾デキストラン(Dex-PA)は、高い細胞凍結保護効果を示すことがわかった。 In order to investigate the cell cryoprotective activity of these Dex-PA, 1.0 × 10 6 L929 cells were suspended in 1 mL of 10% Dex-PA solution, frozen and thawed in the same way as the above freezing method, and the survival rate was increased. evaluated. As a result, it was confirmed that a high survival rate of almost 80% or more was obtained when the ratio of the carboxyl group to the amino group was 50-90%, and that Dex-PA also had cell cryoprotective activity. FIG. 2 is a bar graph showing the results. The horizontal axis of FIG. 2 shows the ratio (%) of carboxyl groups to all amino groups in the modified dextran. The vertical axis in FIG. 2 represents the cell viability (%) after freezing L929 cells in a solution containing 10% of Dex-PA into which carboxyl groups were introduced at different ratios (ratio). From this result, it was found that modified dextran (Dex-PA), which was converted into an amphoteric polymer electrolyte by introducing an amino group and a carboxyl group, exhibited a high cell cryoprotective effect.
[アジド基含有デキストランの合成]
[3-アジドプロパノールの合成]
 2.34gのアジ化ナトリウム(東京化成)と0.05gのテトラブチルアンモニウム硫酸水素塩(東京化成)を6mlの水に溶解し、1.5mLの3-クロロプロパノール(東京化成)を添加し、80℃で24時間反応させ、その後室温で12時間放置した。ジエチルエーテルで抽出した溶液を乾燥し、3-アジドプロパノールを得た。
[Synthesis of azide group-containing dextran]
[Synthesis of 3-azidopropanol]
Dissolve 2.34 g sodium azide (Tokyo Kasei) and 0.05 g tetrabutylammonium hydrogen sulfate (Tokyo Kasei) in 6 ml water, add 1.5 mL 3-chloropropanol (Tokyo Kasei) The reaction was allowed to proceed for 24 hours, and then allowed to stand at room temperature for 12 hours. The solution extracted with diethyl ether was dried to obtain 3-azidopropanol.
[アジドデキストラン(Az-Dex)の合成]
 0.1gのデキストランを6mLのDMSOに溶解し、0.06gのCDI(カルバモイルジイミダゾール)を添加し、50℃2時間反応させた。その後、0.018gの3-アジドプロパノールを添加し、24時間反応させた。アジド導入率はNMRにて評価し、その結果は10%(単位糖残基あたり)であった(後述のスキーム3の化合物B)。このアジドデキストラン(Az-Dex)の合成の手順を、後述のスキーム3に示す。その後、上述のアミノ化デキストラン合成法と同じ手法でEDA導入アジド化デキストランおよびアジド導入両性電解質デキストラン(Az-Dex-PA)を合成した。
[Synthesis of Azidodextran (Az-Dex)]
0.1 g of dextran was dissolved in 6 mL of DMSO, 0.06 g of CDI (carbamoyldiimidazole) was added and reacted at 50 ° C. for 2 hours. Thereafter, 0.018 g of 3-azidopropanol was added and allowed to react for 24 hours. The azide introduction rate was evaluated by NMR, and the result was 10% (per unit sugar residue) (compound B in Scheme 3 described later). The procedure for synthesizing this azidodextran (Az-Dex) is shown in Scheme 3 below. Thereafter, EDA-introduced azidated dextran and azide-introduced ampholyte dextran (Az-Dex-PA) were synthesized by the same method as the above-described aminated dextran synthesis method.
[アルキン含有デキストランの合成]
 0.5gのデキストランを30mLのDMSOに溶解し、0.1gのCDI(カルバモイルジイミダゾール)を添加し、50℃で2時間反応させた。その後、52.1μLのN-メチルプロパルギルアミン(東京化成)を添加し、24時間反応させることでアルキン置換デキストラン(Alk-Dex)を合成した。アルキン導入率はNMRにて評価し、導入率はNMR~12.4%(単位糖残基あたり)であった(後述のスキーム3の化合物C)。このアルキン含有デキストラン(Alk-Dex)の合成の手順を、後述のスキーム5に示す。
[Synthesis of alkyne-containing dextran]
0.5 g of dextran was dissolved in 30 mL of DMSO, 0.1 g of CDI (carbamoyldiimidazole) was added and reacted at 50 ° C. for 2 hours. Thereafter, 52.1 μL of N-methylpropargylamine (Tokyo Kasei) was added and reacted for 24 hours to synthesize alkyne-substituted dextran (Alk-Dex). The alkyne introduction rate was evaluated by NMR, and the introduction rate was NMR˜12.4% (per unit sugar residue) (compound C of Scheme 3 described later). The procedure for synthesizing this alkyne-containing dextran (Alk-Dex) is shown in Scheme 5 below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[ハイドロゲル形成]
 10%Az-Dex-PA培地溶液と10%Alk-Dexを当量混合し、銅イオンとしてCuSO4を0.2mg/mL、アスコルビン酸を0.8mg/mLの濃度以上で添加すると速やかにゲル化することが確認できた。このゲル化をもたらしたトリアゾール環形成の反応を説明する模式図を、スキーム6に示す。
[Hydrogel formation]
When 10% Az-Dex-PA medium solution and 10% Alk-Dex are mixed in an equivalent amount and CuSO4 is added as copper ions at a concentration of 0.2 mg / mL and ascorbic acid at a concentration of 0.8 mg / mL or higher, gelation may occur quickly. It could be confirmed. A schematic diagram illustrating the reaction of triazole ring formation resulting in this gelation is shown in Scheme 6.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 そこで、1.0×106個のL929を10%Az-Dex-PA培地溶液に懸濁し、10%Alk-Dex、CuSO4、アスコルビン酸を加えてゲル化させ、-80℃にて凍結を行い、解凍後の生存率を実施例1と同様にLive-Deadアッセイで確認したところ、生存率約70%であった。図3は、この結果を示す蛍光写真である。図3は、カラー写真においては、緑と赤の二重の蛍光染色の写真となっており、緑の蛍光は生存している細胞を示し、赤の蛍光は生存していない細胞を示している。生存率はこれらを計数することによって算出した。この結果から、アジド基とアルキル基を導入して架橋反応を生じさせることによって、Dex-PAをゲル化できること、その架橋反応とゲル化によっても、そのなかに包埋された細胞は損なわれることなく、高い生存率を示すことがわかった。さらに、架橋反応によって生成したDex-PAのハイドロゲルは、そのなかに細胞を包埋したまま、凍結保存を行っても、細胞は損なわれず、すなわち、Dex-PAのハイドロゲルは、包埋された細胞に対して、高い凍結保護効果を示すことがわかった。 Therefore, 1.0 × 10 6 L929 were suspended in 10% Az-Dex-PA medium solution, gelled with 10% Alk-Dex, CuSO4, ascorbic acid, frozen at -80 ° C, and thawed When the subsequent survival rate was confirmed by Live-Dead assay in the same manner as in Example 1, the survival rate was about 70%. FIG. 3 is a fluorescent photograph showing the result. FIG. 3 is a photograph of double fluorescence staining of green and red in a color photograph, in which green fluorescence indicates cells that are alive and red fluorescence indicates cells that are not alive. . Viability was calculated by counting these. From this result, it is possible to gel Dex-PA by introducing an azide group and an alkyl group to cause a cross-linking reaction, and the cross-linking reaction and gelation also damage the cells embedded therein. And found a high survival rate. Furthermore, the Dex-PA hydrogel produced by the cross-linking reaction does not damage the cells even when cryopreserved with the cells embedded, that is, the Dex-PA hydrogel is embedded. The cells were found to have a high cryoprotective effect.
[結果のまとめ]
 以上の実験から、両性電解質高分子Dex-PA水溶液は細胞を高い生存率で凍結保存することが可能な高分子溶液であること、両性電解質高分子Dex-PAにアジド基と炭素炭素三重結合の基を導入してトリアゾール環形成反応によって架橋することによって細胞が分散された状態で細胞を高い生存率で維持しつつハイドロゲルを形成できること、細胞が包埋された両性電解質高分子Dex-PAのハイドロゲルは凍結保存して解凍しても細胞を高い生存率で維持して保護するものとなっていることが、わかった。つまり、両性電解質高分子Dex-PAの架橋によるハイドロゲルを形成させれば、細胞の懸濁液から、三次元培養が可能である三次元構造体を形成して、細胞が包埋された三次元構造体のままで凍結保存して解凍することができ、いわば、凍結保存と解凍の過程を通じて、細胞の増殖及び/又は分化のための三次元足場材料を提供するものとなっていることがわかった。
[Summary of results]
From the above experiments, the amphoteric electrolyte polymer Dex-PA aqueous solution is a polymer solution capable of cryopreserving cells with high survival rate, and the amphoteric electrolyte polymer Dex-PA has an azide group and a carbon-carbon triple bond. By introducing a group and crosslinking by a triazole ring formation reaction, it is possible to form a hydrogel while maintaining the cells at a high survival rate in a dispersed state, and of the amphoteric electrolyte polymer Dex-PA in which the cells are embedded It was found that the hydrogel preserves and protects cells with a high survival rate even when frozen and thawed. In other words, if a hydrogel is formed by cross-linking of the ampholyte polymer Dex-PA, a three-dimensional structure capable of three-dimensional culture is formed from the cell suspension, and the cells are embedded in the tertiary. The original structure can be cryopreserved and thawed, so to speak, it provides a three-dimensional scaffold material for cell growth and / or differentiation through the process of cryopreservation and thawing. all right.
[比較例1]
[コラーゲンゲル中での細胞の凍結保存]
 セルマトリックスタイプI-A(新田ゼラチン)を用いてL929をコラーゲンゲル中に分散させた。それをそのまま-80℃で凍結させ、解凍後に生存率を調べたところ、すべての細胞が死滅し、生存率は0%であった。この結果から、従来から用いられている一般的なゲル中で細胞を凍結することは非常に困難であることがわかった。
[Comparative Example 1]
[Cryopreservation of cells in collagen gel]
Cell matrix type IA (Nitta Gelatin) was used to disperse L929 in the collagen gel. When it was frozen as it was at −80 ° C. and the survival rate was examined after thawing, all cells were killed and the survival rate was 0%. From this result, it was found that it was very difficult to freeze cells in a general gel used conventionally.
[実施例3]
[シクロオクチン含有デキストランの合成]
 実施例2に準じて、実施例2のアルキン含有デキストランに代えて、N-メチルプロパルギルアミンの代わりにジベンジルシクロオクチン酸(DBCO-acid)をデキストランに導入して、シクロオクチンの基を有するデキストランを合成した(DBCO-Dex)。この合成の手順を次のスキーム7に示す。
[Example 3]
[Synthesis of cyclooctyne-containing dextran]
In accordance with Example 2, in place of alkyne-containing dextran of Example 2, dibenzylcyclooctanoic acid (DBCO-acid) was introduced into dextran instead of N-methylpropargylamine, and dextran having a cyclooctyne group Was synthesized (DBCO-Dex). The procedure of this synthesis is shown in the following scheme 7.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 このDBCO-DexとAz-Dex-PAとの間に生じるトリアゾール環形成反応を説明する模式図を、スキーム8に示す。 Schematic diagram illustrating the triazole ring formation reaction that occurs between DBCO-Dex and Az-Dex-PA is shown in Scheme 8.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[実施例4]
[両性電解質高分子Dex-PAと細胞との相互作用]
 両性電解質高分子Dex-PAと細胞との相互作用を検討するために、次の実験を行った。
[Example 4]
[Interaction of ampholyte polymer Dex-PA with cells]
In order to investigate the interaction between the ampholyte polymer Dex-PA and cells, the following experiment was conducted.
 FITC(同仁化学)導入デキストランから作成したDex-PAでL929を凍結し、解凍後に共晶点レーザー顕微鏡で観察した。得られた蛍光写真を、図4に示す。図4は、凍結解凍後に、FITCの蛍光によってDex-PAの細胞近傍の局在を観察した写真である。その結果、細胞膜周辺のみに蛍光が見られ、細胞質内には両性電解質が進入していないことが確認された。つまり、この結果から、本発明の両性電解質高分子Dex-PAは、細胞内へ浸透することなく、細胞を凍結保護していることがわかった。すなわち、本発明において、細胞外マトリックスとしての足場材料によって、細胞内に浸透することなく、細胞を凍結保護していることがわかった。 L929 was frozen with Dex-PA made from dextran introduced with FITC (Dojindo), and after thawing, it was observed with a eutectic point laser microscope. The obtained fluorescence photograph is shown in FIG. FIG. 4 is a photograph of the localization of Dex-PA in the vicinity of the cells observed by FITC fluorescence after freezing and thawing. As a result, fluorescence was observed only around the cell membrane, and it was confirmed that the amphoteric electrolyte did not enter the cytoplasm. That is, from this result, it was found that the ampholyte polymer Dex-PA of the present invention cryoprotects cells without penetrating into the cells. That is, in the present invention, it was found that the cells were cryoprotected without penetrating into the cells by the scaffold material as the extracellular matrix.
[実施例5]
[Dex-PAの細胞凍結保護活性の濃度依存性]
 Dex-PAの細胞凍結保護活性を、さらに検討するために、以下の実験を行った。実施例2において、種々のカルボキシル基導入量のDex-PA溶液(濃度10%)1mlに1×106個のL929細胞を懸濁し、凍結、融解して、生存率を評価した場合と同様の手法で、カルボキシル基導入量65%のAzide-Dex-PAを用いて、その濃度を5%から15%まで変えた溶液の凍結保護活性についても調べた。その結果、図5に示すように12%で最も高い凍結保護活性を示すことがわかった。
[Example 5]
[Concentration dependence of cell cryoprotective activity of Dex-PA]
In order to further investigate the cell cryoprotective activity of Dex-PA, the following experiment was performed. In Example 2, 1 × 10 6 L929 cells were suspended in 1 ml of Dex-PA solution (concentration 10%) with various carboxyl group introduction amounts, frozen, thawed, and the same as the evaluation of survival rate. The cryoprotective activity of a solution in which the concentration was changed from 5% to 15% using Azide-Dex-PA with a carboxyl group introduction amount of 65% was also examined. As a result, as shown in FIG. 5, it was found that 12% showed the highest cryoprotective activity.
[実施例6]
[Azide-Dex-PAとDBCO-Dexによる細胞包埋ゲル]
 後述するように、スキーム9の手順にしたがって、細胞(L929)懸濁液をゲル化させて、細胞包埋ゲルを作成して、その細胞保護活性を調べる実験を行った。この実験で得られたゲルの写真を、図6として示す。図6には、逆さまに置かれた容器の底が上部の楕円の線で囲んだ範囲にあり、そこに得られたゲルが観察されている。
[Example 6]
[Cell-embedded gel with Azide-Dex-PA and DBCO-Dex]
As described later, according to the procedure of Scheme 9, a cell (L929) suspension was gelled to prepare a cell-embedded gel, and an experiment was conducted to examine its cytoprotective activity. A photograph of the gel obtained in this experiment is shown in FIG. In FIG. 6, the bottom of the container placed upside down is in the range surrounded by the upper elliptical line, and the resulting gel is observed there.
[スキーム9]
Figure JPOXMLDOC01-appb-I000015
[Scheme 9]
Figure JPOXMLDOC01-appb-I000015
[Azide-Dex-PAとDBCO-Dexの混合溶液のゲル化]
 Azide-Dex-PAとDBCO-Dexの混合溶液のゲル化の条件を検討した。
 ゲル化に関しては、ポリマー濃度及びazide-Dex-PAのアジド導入率とDBCO-DexのDBCO導入率に依存してゲル化時間や硬さが変化する。ゲル化時間は、試験管に入れた混合溶液が固まり、逆さまにした時に流動性が失われた時間として定義した。以下の表1に、混合時におけるAzide-Dex-PAの濃度A(mg/mL)、DBCO-Dex濃度B(mg/mL)と、アジドとDBCOの混合溶液中の割合(Azide : Alkyneのモル比)、ゲル化時間(Gelation time)を示した。
[Gelification of a mixed solution of Azide-Dex-PA and DBCO-Dex]
The conditions for gelation of a mixed solution of Azide-Dex-PA and DBCO-Dex were examined.
Regarding gelation, the gelation time and hardness vary depending on the polymer concentration, the azide introduction rate of azide-Dex-PA and the DBCO introduction rate of DBCO-Dex. Gelation time was defined as the time when the mixed solution in a test tube solidified and lost fluidity when turned upside down. Table 1 below shows the Azide-Dex-PA concentration A (mg / mL), DBCO-Dex concentration B (mg / mL), and the ratio in the mixed solution of azide and DBCO (Azide: Alkyne mole). Ratio) and gelation time.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記のように、高分子の濃度が低くなればゲル化時間が長くなり、30mg/mL以下では、1時間経過後においてもゲル化しなかった(表1において、×と示した)。また、DBCO(アルキン)に対するアジドの量を増やしていくとゲル化時間が長くなる傾向が見られた。ゲル化時間が長いゲルほど柔らかかった。 As described above, when the polymer concentration was low, the gelation time was long, and at 30 mg / mL or less, gelation did not occur even after 1 hour (indicated as x in Table 1). Moreover, the tendency for gelation time to become long was seen when the quantity of the azide with respect to DBCO (alkyne) was increased. The longer the gel time, the softer the gel.
[細胞包埋ゲルの作成と凍結保護活性の検討]
 次に、Azide-Dex-PAとDBCO-Dexの混合溶液中に、L929細胞を1×106個懸濁し、ゲル化するのを待って-80℃のフリーザーにゲルを放置することで凍結した。解凍後の生存率を、実施例2の図3と同様に、Live/Deadアッセイにより確認した。図7の(a)はAzideとDBCO(Alkyne)の比が1:4のゲル(ポリマー濃度10%)、図7の(b)はAzide:Alkyneの比が1:6のゲル(ポリマー濃度10%)、図7の(c)が1%コラーゲンゲル中で凍結し、解凍した細胞の様子である。図7の(a)の生存率は93%、図7の(b)の生存率は94%、図7の(c)0%であった。
[Creation of cell-embedded gel and examination of cryoprotective activity]
Next, 1 × 10 6 L929 cells were suspended in a mixed solution of Azide-Dex-PA and DBCO-Dex, waited for gelation, and frozen by leaving the gel in a freezer at −80 ° C. . The survival rate after thawing was confirmed by the Live / Dead assay in the same manner as in FIG. FIG. 7A shows a gel having a ratio of Azide to DBCO (Alkyne) of 1: 4 (polymer concentration 10%), and FIG. 7B shows a gel having a ratio of Azide: Alkyne 1: 6 (polymer concentration of 10). %), (C) of FIG. 7 shows the state of cells frozen and thawed in a 1% collagen gel. The survival rate in FIG. 7A was 93%, the survival rate in FIG. 7B was 94%, and the survival rate in FIG. 7C was 0%.
 本発明によれば、細胞を含む三次元構造体を、安全に凍結保存して解凍することができる。そのために、三次元培養された細胞や組織を、長期に保存し、あるいは輸送することが可能となる。本発明は、再生医療の産業的な普及を実現するために必要となる、再生した細胞や組織を長期に保存し輸送する技術を、提供するものである。本発明は、産業上有用な発明である。 According to the present invention, a three-dimensional structure containing cells can be safely frozen and thawed. Therefore, it becomes possible to store or transport cells and tissues that have been three-dimensionally cultured for a long period of time. The present invention provides a technique for storing and transporting regenerated cells and tissues for a long period of time, which is necessary to realize the industrial spread of regenerative medicine. The present invention is an industrially useful invention.

Claims (19)

  1.  アミノ基及びカルボキシル基を同一分子中に有する両性電解質高分子であって、アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、両性電解質高分子が、
     生理的溶液中で、分子間架橋されて、
     生理的溶液が分散媒として固定されてなる、ハイドロゲル。
    An amphoteric electrolyte polymer having an amino group and a carboxyl group in the same molecule, wherein the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55 to 0.95 / 0.05. The ampholyte polymer in the range of
    In a physiological solution, intermolecularly cross-linked
    A hydrogel in which a physiological solution is fixed as a dispersion medium.
  2.  分子間架橋が、
     両性電解質高分子の分子、又は両性電解質でない高分子の分子、に導入されたアジド基と、
     両性電解質高分子の別な分子、又は両性電解質でない高分子の別な分子、に導入された炭素炭素三重結合部分とのトリアゾール環形成反応によって生成された分子間架橋(ただし、アジド基が導入された分子と炭素炭素三重結合部分が導入された分子のうち、少なくともいずれかの分子が、両性電解質高分子である)、
     又は
     両性電解質高分子のアミノ基と、マルチアームPEGのN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって生成された分子間架橋、
    である、請求項1に記載のハイドロゲル。
    Intermolecular crosslinking
    An azido group introduced into a molecule of an ampholyte polymer or a molecule of a polymer that is not an ampholyte, and
    Intermolecular crosslinks formed by a triazole ring formation reaction with a carbon-carbon triple bond moiety introduced into another molecule of the ampholyte polymer or another molecule of the non-ampholyte polymer (provided that an azide group is introduced) And at least one of the molecules introduced with the carbon-carbon triple bond moiety is an ampholyte polymer),
    Or an intermolecular crosslink formed by an amide bond forming reaction between the amino group of the ampholyte polymer and the N-hydroxysuccinimide group of the multi-arm PEG,
    The hydrogel according to claim 1, wherein
  3.  両性電解質高分子が、アミノ基及びカルボキシル基がデキストランに導入されてなるアミノカルボキシルデキストランであり、両性電解質でない高分子がデキストランである、
     又は
     両性電解質高分子が、カルボキシル化されたε-ポリ-L-リジンである、
    請求項1~2のいずれかに記載のハイドロゲル。
    The ampholyte polymer is an aminocarboxy dextran in which an amino group and a carboxyl group are introduced into dextran, and the polymer that is not an ampholyte is dextran.
    Or the ampholyte polymer is carboxylated ε-poly-L-lysine,
    The hydrogel according to any one of claims 1 and 2.
  4.  両性電解質高分子が、生理的溶液中に1~60質量%含まれている、請求項1~3のいずれかに記載のハイドロゲル。 The hydrogel according to any one of claims 1 to 3, wherein the ampholyte polymer is contained in a physiological solution in an amount of 1 to 60% by mass.
  5.  請求項1~4のいずれかに記載のハイドロゲルに、細胞又は組織が包埋されてなる、細胞包埋ハイドロゲル。 A cell-embedded hydrogel comprising cells or tissues embedded in the hydrogel according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載のハイドロゲルに、細胞又は組織が包埋されてなる、凍結保存用細胞包埋ハイドロゲル。 A cell-embedded hydrogel for cryopreservation, wherein cells or tissues are embedded in the hydrogel according to any one of claims 1 to 4.
  7.  請求項6の凍結保存用細胞包埋ハイドロゲルを凍結保存する、細胞又は組織の凍結保存方法。 A method for cryopreserving cells or tissues, wherein the cell-embedded hydrogel for cryopreservation according to claim 6 is cryopreserved.
  8.  アミノ基及びカルボキシル基を同一分子中に有する両性電解質高分子であって、アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、両性電解質高分子を、生理的溶液中で、分子間架橋して、ゲル化する工程、を含む、ハイドロゲルを製造する方法。 An amphoteric electrolyte polymer having an amino group and a carboxyl group in the same molecule, wherein the ratio of carboxyl group to amino group (carboxyl group / amino group) is 0.45 / 0.55 to 0.95 / 0.05. A method for producing a hydrogel, comprising a step of gelling an amphoteric electrolyte polymer in the range of the above by intermolecular crosslinking in a physiological solution.
  9.  分子間架橋して、ゲル化する工程が、
     両性電解質高分子の分子、又は両性電解質でない高分子の分子、に導入されたアジド基と、
     両性電解質高分子の別な分子、又は両性電解質でない高分子の別な分子、に導入された炭素炭素三重結合部分とのトリアゾール環形成反応によって分子間架橋して(ただし、アジド基が導入された分子と炭素炭素三重結合部分が導入された分子のうち、少なくともいずれかの分子が、両性電解質高分子である)、ゲル化する工程、
     又は
     両性電解質高分子のアミノ基と、添加されたマルチアームPEGのN-ヒドロキシコハク酸イミドの基とのアミド結合形成反応によって分子間架橋して、ゲル化する工程、
    である、請求項8に記載の製造方法。
    The process of intermolecular crosslinking and gelation
    An azido group introduced into a molecule of an ampholyte polymer or a molecule of a polymer that is not an ampholyte, and
    Cross-linked by a triazole ring formation reaction with a carbon-carbon triple bond moiety introduced into another molecule of the ampholyte polymer or another molecule of the non-ampholyte polymer (however, an azide group was introduced) A molecule and a carbon-carbon triple bond moiety-introduced molecule, at least one of which is an ampholyte polymer), gelling step,
    Or a step of gelation by intermolecular crosslinking by an amide bond forming reaction between the amino group of the ampholyte polymer and the N-hydroxysuccinimide group of the added multi-arm PEG,
    The manufacturing method according to claim 8, wherein
  10.  両性電解質高分子が、アミノ基及びカルボキシル基がデキストランに導入されてなるアミノカルボキシルデキストランであり、両性電解質でない高分子がデキストランである、
     又は
     両性電解質高分子が、カルボキシル化されたε-ポリ-L-リジンである、
    請求項8~9のいずれかに記載の製造方法。
    The ampholyte polymer is an aminocarboxy dextran in which an amino group and a carboxyl group are introduced into dextran, and the polymer that is not an ampholyte is dextran.
    Or the ampholyte polymer is carboxylated ε-poly-L-lysine,
    The production method according to any one of claims 8 to 9.
  11.  両性電解質高分子が、生理的溶液中に1~60質量%含まれている、請求項8~10のいずれかに記載の製造方法。 11. The production method according to claim 8, wherein the ampholyte polymer is contained in 1 to 60% by mass in the physiological solution.
  12.  請求項8~11のいずれかに記載の製造方法において、分子間架橋して、ゲル化する工程の前に、
     生理的溶液中に、細胞又は組織を、両性電解質高分子とともに、分散又は浸漬する工程、
    を含む、細胞包埋ハイドロゲルを製造する方法。
    In the production method according to any one of claims 8 to 11, before the step of intermolecular crosslinking and gelation,
    A step of dispersing or immersing cells or tissues together with an ampholyte polymer in a physiological solution;
    A method for producing a cell-embedded hydrogel comprising:
  13.  請求項12に記載の製造方法において製造された細胞包埋ハイドロゲルを、凍結保存する工程、
    を含む、細胞又は組織の凍結保存方法。
    A step of cryopreserving the cell-embedded hydrogel produced by the production method according to claim 12,
    A method for cryopreserving cells or tissues.
  14.  請求項8~12のいずれかに記載の製造方法において、分子間架橋して、ゲル化する工程の前に、
     生理的溶液中に、細胞又は組織を、両性電解質高分子とともに、分散又は浸漬する工程、
     分散又は浸漬された細胞又は組織を、凍結保存する工程、
    を含む、細胞又は組織の凍結保存後に、細胞包埋ハイドロゲルを製造する方法。
    In the production method according to any one of claims 8 to 12, before the step of intermolecular crosslinking and gelation,
    A step of dispersing or immersing cells or tissues together with an ampholyte polymer in a physiological solution;
    A step of cryopreserving the dispersed or immersed cells or tissues,
    A method for producing a cell-embedded hydrogel after cryopreservation of cells or tissues.
  15.  アミノ基及びカルボキシル基がデキストランに導入されてなる、アミノカルボキシルデキストランであって、
     アミノ基に対するカルボキシル基の比率(カルボキシル基/アミノ基)が、0.45/0.55~0.95/0.05の範囲にある、アミノカルボキシルデキストラン。
    An aminocarboxyl dextran in which an amino group and a carboxyl group are introduced into dextran,
    An aminocarboxyl dextran having a ratio of carboxyl group to amino group (carboxyl group / amino group) in the range of 0.45 / 0.55 to 0.95 / 0.05.
  16.  請求項15に記載のアミノカルボキシルデキストランに、トリアゾール環形成反応が可能な、アジド基が導入された、アジド導入アミノカルボキシルデキストラン。 An azido-introduced aminocarboxyl dextran in which an azide group capable of triazole ring formation reaction is introduced into the aminocarboxyl dextran according to claim 15.
  17.  請求項15に記載のアミノカルボキシルデキストランに、トリアゾール環形成反応が可能な、炭素炭素三重結合部分が導入された、炭素炭素三重結合導入アミノカルボキシルデキストラン。 A carbon-carbon triple bond-introduced aminocarboxyl dextran in which a carbon-carbon triple bond part capable of triazole ring formation reaction is introduced into the aminocarboxyl dextran according to claim 15.
  18.  請求項15~17のいずれかに記載のアミノカルボキシルデキストランからなる、細胞凍結保存剤。 A cell cryopreservation agent comprising the aminocarboxyl dextran according to any one of claims 15 to 17.
  19.  請求項15~17のいずれかに記載のアミノカルボキシルデキストランが、
     生理的溶液中に、1~60質量%の濃度で溶解されて含まれる、細胞凍結保存用溶液。
    The aminocarboxyl dextran according to any one of claims 15 to 17,
    A solution for cell cryopreservation, which is dissolved and contained in a physiological solution at a concentration of 1 to 60% by mass.
PCT/JP2013/073395 2012-08-31 2013-08-30 Cryopreservable cell scaffold material WO2014034884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014533128A JP6270158B2 (en) 2012-08-31 2013-08-30 Cryopreservable cell scaffold material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-191634 2012-08-31
JP2012191634 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034884A1 true WO2014034884A1 (en) 2014-03-06

Family

ID=50183688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073395 WO2014034884A1 (en) 2012-08-31 2013-08-30 Cryopreservable cell scaffold material

Country Status (2)

Country Link
JP (1) JP6270158B2 (en)
WO (1) WO2014034884A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002432A (en) * 2014-06-19 2016-01-12 テルモ株式会社 Manufacturing method of gel with dispersed cells and cell dispersed gel manufactured by the manufacturing method
CN106075599A (en) * 2016-07-06 2016-11-09 青岛大学 A kind of can cell in-situ cladding porous congeal glue and preparation method thereof
CN110029084A (en) * 2019-04-12 2019-07-19 河海大学常州校区 A kind of regulatable nonuniformity glucan 3D gel of partial cross-linking intensity, preparation method and applications method
CN110049789A (en) * 2016-12-13 2019-07-23 米伦纽姆医药公司 The conformal coating of biological surface
JP2020022501A (en) * 2019-11-01 2020-02-13 学校法人明治大学 Biological sample storage container
JP2020156523A (en) * 2020-07-06 2020-10-01 学校法人明治大学 Biological sample storage container
EP3789488A4 (en) * 2018-03-30 2021-12-29 Ajinomoto Co., Inc. Composition that contains polylysine analog and promotes cell growth
US11655343B2 (en) 2016-03-24 2023-05-23 Takeda Pharmaceutical Company Limited Alginate hydrogel compositions
EP4306549A1 (en) * 2022-07-13 2024-01-17 Adocia Hydrogels for cell therapy
WO2024013355A1 (en) * 2022-07-13 2024-01-18 Adocia Hydrogels for cell therapy
US11998002B2 (en) 2018-03-16 2024-06-04 University Of Warwick Cryopreserving processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502443A (en) * 1992-10-15 1996-03-19 クールター コーポレイション Particles having gelatin-aminodextran coating and method for producing the same
WO2009039307A2 (en) * 2007-09-19 2009-03-26 The Regents Of The University Of Colorado Hydrogels and methods for producing and using the same
JP2011030557A (en) * 2009-08-04 2011-02-17 Bio Verde:Kk Cell freeze damage preventing liquid for medical use
WO2012165462A1 (en) * 2011-05-31 2012-12-06 国立大学法人 東京大学 Hydrogel and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0910412B1 (en) * 1996-07-01 2003-04-23 Universiteit Utrecht Hydrolysable hydrogels for controlled release
GB0211529D0 (en) * 2002-05-20 2002-06-26 First Water Ltd Ionic hydrogels with low aqueous fluid absorption
US20060127873A1 (en) * 2002-07-16 2006-06-15 Caroline Hoemann Composition for cytocompatible, injectable, self-gelling chitosan solutions for encapsulating and delivering live cells or biologically active factors
CA2677532A1 (en) * 2007-02-06 2008-08-14 Incept, Llc Polymerization with precipitation of proteins for elution in physiological solution
CA2759727A1 (en) * 2009-04-22 2010-10-28 Board Of Regents, The University Of Texas System Hydrogels for combinatorial delivery of immune-modulating biomolecules
US8940335B2 (en) * 2010-06-01 2015-01-27 Baxter International Inc. Process for making dry and stable hemostatic compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502443A (en) * 1992-10-15 1996-03-19 クールター コーポレイション Particles having gelatin-aminodextran coating and method for producing the same
WO2009039307A2 (en) * 2007-09-19 2009-03-26 The Regents Of The University Of Colorado Hydrogels and methods for producing and using the same
JP2011030557A (en) * 2009-08-04 2011-02-17 Bio Verde:Kk Cell freeze damage preventing liquid for medical use
WO2012165462A1 (en) * 2011-05-31 2012-12-06 国立大学法人 東京大学 Hydrogel and method for producing same

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CAI,L. ET AL.: "Optimal poly(L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions", BIOMACROMOLECULES, vol. 13, 25 April 2012 (2012-04-25), pages 1663 - 1674 *
DE GEEST,B.G. ET AL.: "Degradable multilayer films and hollow capsules via a 'Click' strategy", MACROMOL.RAPID COMMUN., vol. 29, 2008, pages 1111 - 1118 *
KAZUAKI MATSUMURA ET AL.: "Antifreeze polyamino acids as novel cryoprotectant in the regenerative medicine and food industry", BIO IND., vol. 28, 2011, pages 35 - 42 *
LIU,S.Q. ET AL.: "Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery", BIOMATERIALS, vol. 30, 2009, pages 1453 - 1461 *
MATSUMURA,K ET AL.: "Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties", BIOMATERIALS, vol. 30, 2009, pages 4842 - 4849 *
TAHIR,M.N. ET AL.: "Introduction of various functionalities into polysaccharides using alkynyl ethers as precursors ; Pentynyl dextrans", CARBOHYDRATE POLYMERS, vol. 88, 7 December 2011 (2011-12-07), pages 154 - 164 *
WILLIAMS,R.J.: "The surface activity of PVP and other polymers and their antihemolytic capacity", CRYOBIOLOGY, vol. 20, 1983, pages 521 - 526 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016002432A (en) * 2014-06-19 2016-01-12 テルモ株式会社 Manufacturing method of gel with dispersed cells and cell dispersed gel manufactured by the manufacturing method
US11655343B2 (en) 2016-03-24 2023-05-23 Takeda Pharmaceutical Company Limited Alginate hydrogel compositions
CN106075599A (en) * 2016-07-06 2016-11-09 青岛大学 A kind of can cell in-situ cladding porous congeal glue and preparation method thereof
JP7125398B2 (en) 2016-12-13 2022-08-24 ミレニアム ファーマシューティカルズ, インコーポレイテッド Conformal coating of biological surfaces
CN110049789A (en) * 2016-12-13 2019-07-23 米伦纽姆医药公司 The conformal coating of biological surface
JP2020501646A (en) * 2016-12-13 2020-01-23 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Conformal coating on biological surfaces
US11998002B2 (en) 2018-03-16 2024-06-04 University Of Warwick Cryopreserving processes
EP3789488A4 (en) * 2018-03-30 2021-12-29 Ajinomoto Co., Inc. Composition that contains polylysine analog and promotes cell growth
CN110029084B (en) * 2019-04-12 2023-04-07 河海大学常州校区 Heterogeneous glucan 3D gel with adjustable local crosslinking strength, and preparation method and application method thereof
CN110029084A (en) * 2019-04-12 2019-07-19 河海大学常州校区 A kind of regulatable nonuniformity glucan 3D gel of partial cross-linking intensity, preparation method and applications method
JP2020022501A (en) * 2019-11-01 2020-02-13 学校法人明治大学 Biological sample storage container
JP2020156523A (en) * 2020-07-06 2020-10-01 学校法人明治大学 Biological sample storage container
EP4306549A1 (en) * 2022-07-13 2024-01-17 Adocia Hydrogels for cell therapy
WO2024013355A1 (en) * 2022-07-13 2024-01-18 Adocia Hydrogels for cell therapy

Also Published As

Publication number Publication date
JPWO2014034884A1 (en) 2016-08-08
JP6270158B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6270158B2 (en) Cryopreservable cell scaffold material
JP5726525B2 (en) Composition for cryopreservation of cells and tissues
Jain et al. Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry
JP2023109957A (en) Cryoprotecting agent, cryoprotecting and cryopreserved compositions, uses thereof, and methods of cryopreservation
Liu et al. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture
Jin et al. Injectable chitosan-based hydrogels for cartilage tissue engineering
Zhao et al. In situ cross-linked polysaccharide hydrogel as extracellular matrix mimics for antibiotics delivery
JP5219030B2 (en) Stimulus-responsive degradation gel
JP5630979B2 (en) Animal stem cell cryopreservation solution
Le Thi et al. Enzymatically crosslinkable hyaluronic acid-gelatin hybrid hydrogels as potential bioinks for tissue regeneration
DK2804475T3 (en) Cryopreservation of Cells, Tissues and Organs
Sun et al. Covalently crosslinked hyaluronic acid‐chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering
WO2009006780A1 (en) A method for the formation of a rapid-gelling biocompatible hydrogel and the preparation of a spraying agent
Chien et al. An in situ poly (carboxybetaine) hydrogel for tissue engineering applications
JP2022017508A (en) Cryopreservative compositions and methods of use thereof
WO2015150394A1 (en) Cryoprotective agent, cryoprotective and cryopreserved compositions, uses thereof, and methods of cryopreservation
JP2018048115A (en) Composition for freezing preservation and freezing preservation method of bovine reproductive cell
Cao et al. A broad-spectrum antibacterial and tough hydrogel dressing accelerates healing of infected wound in vivo
Wang et al. Trehalose glycopolymers for cryopreservation of tissue-engineered constructs
CN111333869A (en) Preparation method of degradable sustained-release gel for resisting novel coronavirus
CN104672484A (en) Cross-linked polysaccharide tissue engineering porous scaffold preparation method
JP2019033707A (en) Vitrification freezing preservation liquid and vitrification freezing preservation method
FR3039555A1 (en) PROCESS FOR PREPARING BIOCOMPATIBLE POLYMERIC AND BIODEGRADABLE THREE-DIMENSIONAL MATRICES AND APPLICATIONS
US20220175954A1 (en) Hypoxia-inducing cryogels
JP7333121B2 (en) Methods for Non-Cryopreservation or Transport of Stem Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833419

Country of ref document: EP

Kind code of ref document: A1