WO2014034834A1 - Heater - Google Patents

Heater Download PDF

Info

Publication number
WO2014034834A1
WO2014034834A1 PCT/JP2013/073266 JP2013073266W WO2014034834A1 WO 2014034834 A1 WO2014034834 A1 WO 2014034834A1 JP 2013073266 W JP2013073266 W JP 2013073266W WO 2014034834 A1 WO2014034834 A1 WO 2014034834A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
conductor
fine particles
heater
main
Prior art date
Application number
PCT/JP2013/073266
Other languages
French (fr)
Japanese (ja)
Inventor
神谷 哲
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2014533102A priority Critical patent/JP5748918B2/en
Publication of WO2014034834A1 publication Critical patent/WO2014034834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/46Heating elements having the shape of rods or tubes non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/78Heating arrangements specially adapted for immersion heating
    • H05B3/80Portable immersion heaters

Definitions

  • the present invention relates to a heater used in a hair iron, a water heater, an oxygen sensor, an air-fuel ratio sensor, a glow plug, a semiconductor manufacturing apparatus, or the like.
  • the heater for example, a heater in which a resistor made of a high melting point metal such as tungsten (W) and molybdenum (Mo) is embedded in a ceramic substrate mainly composed of alumina is used.
  • a heater is disclosed in Japanese Patent Laid-Open No. 2001-57284.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a heater capable of reducing the generation of radioactive noise.
  • the heater of the present invention is a heater including an insulating base and a resistor embedded in the insulating base, wherein the resistor is mainly composed of first conductive particles mainly composed of tungsten and molybdenum.
  • the second conductor particles include the second conductor particles, the first conductor particles have the main component of the second conductor particles as a subcomponent, and the second conductor particles have the main component of the first conductor particles as a subcomponent. It has as.
  • (A) is a partially transparent perspective view schematically showing an embodiment of the heater of the present invention
  • (b) is an enlarged view of a resistor showing an example of a main part of the present invention. It is an enlarged view of the resistor which shows the other example of the principal part of this invention. It is an enlarged view of the resistor which shows the other example of the principal part of this invention.
  • FIG. 1A is a partially transparent perspective view schematically showing one embodiment of the heater of the present invention.
  • FIG.1 (b) is an enlarged view of the resistor 2 which shows an example of the principal part of this invention.
  • the heater according to the present embodiment is a heater including an insulating base 1 and a resistor 2 embedded in the insulating base 1.
  • the resistor 2 includes first conductive particles 21 mainly containing tungsten (W) and second conductive particles 22 mainly containing molybdenum (Mo).
  • the first conductor particle 21 has the main component of the second conductor particle 22 as the subcomponent 210
  • the second conductor particle 22 has the main component of the first conductor particle 21 as the subcomponent 220. That is, the first conductor particles 21 containing W as the main component have Mo as the subcomponent 210, and the second conductor particles 22 containing Mo as the main component have W as the subcomponent 220.
  • the insulating substrate 1 is made of ceramics having insulating properties such as oxide ceramics, nitride ceramics or carbide ceramics. Specifically, alumina ceramics, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics, or the like can be used as such ceramics. In the heater of this embodiment, the insulating substrate 1 is made of alumina ceramics. Thereby, the oxidation resistance of the heater can be improved.
  • the insulating substrate 1 is a rod-shaped member.
  • the insulating base 1 is formed by providing a ceramic layer 12 around the outer periphery of a cylindrical ceramic core 11.
  • the outer diameter can be set to 1 to 30 mm, for example, and the length in the longitudinal direction can be set to 5 to 200 mm, for example.
  • the insulating substrate 1 may be a plate-like member.
  • the size of the main surface can be set to 5 to 200 mm square, for example, and the thickness can be set to 1 to 30 mm, for example.
  • a resistor 2 is embedded in the insulating substrate 1.
  • the resistor 2 is provided in a predetermined area between the ceramic core 11 and the ceramic layer 12 in a plate shape or a line shape.
  • the resistor 2 is formed in, for example, a meander shape, a spiral shape, or a wave shape.
  • the line width of the resistor 2 is, for example, 0.1 to 5 mm, and the thickness is 0.01 to 1 mm.
  • the resistor 2 includes first conductor particles 21 mainly composed of W and second conductor particles 22 mainly composed of Mo.
  • the first conductor particle 21 has the main component of the second conductor particle 22 as the subcomponent 210
  • the second conductor particle 22 has the main component of the first conductor particle 21 as the subcomponent 220.
  • the average particle diameters of the first conductor particles 21 and the second conductor particles 22 are, for example, 0.1 to 4 ⁇ m, respectively.
  • the first conductor particle 21 has the main component of the second conductor particle 22 as the subcomponent 210 and the second conductor particle 22 has the main component of the first conductor particle 21 as the subcomponent 220. It means that a relatively large component and a small component are present in one conductor particle. This can be observed by analyzing the cut cross-sectional structure with an electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • glass 25 is included between the first conductor particles 21 and the second conductor particles 22.
  • the glass 25 include glass containing silicon dioxide as a main component and containing magnesium oxide or calcium oxide as a subcomponent. Since the thermal expansion coefficient of the glass 25 is smaller than the thermal expansion coefficient of the resistor 2, the glass 25 does not remove the conductive particles even when a force is applied to peel off the conductive particles from the insulating substrate 1 at a high temperature. By pulling, the generation of cracks between the conductor particles can be reduced. As a result, the possibility that the resistor 2 is disconnected can be reduced. Thereby, durability of a heater can be improved.
  • the subcomponents 210 and 220 contained in the respective conductor particles of the first conductor particle 21 and the second conductor particle 22 are largely present in the surface layer portion including the surface of each conductor particle. Distributed.
  • conductive noise propagates in a large amount on the surface layer of conductive particles. Therefore, by distributing a large amount of the subcomponent metal in the surface layer portion of the conductor particles, it is possible to reduce the variation in resistance value in a portion where a lot of conductive noise is transmitted. Therefore, since conductive noise is transmitted more smoothly, generation
  • the surface layer means a region within 10% of the particle diameter from the surface of the conductor particles. It can be observed by using an electron beam microanalyzer (EPMA) that many subcomponents are distributed in the surface layer portion of the conductor particles.
  • EPMA electron beam microanalyzer
  • the heater has an electrode pad 3 and a power supply wiring 4 as shown in FIG.
  • the electrode pad 3 is formed on the surface of the insulating base 1 and is electrically connected to the resistor 2.
  • the electrode pad 3 is made of W, for example.
  • the power supply wiring 4 is electrically connected to the electrode pad 3.
  • the power supply wiring 4 is provided on the electrode pad 3.
  • the electrode pad 3 and the power supply wiring 4 are members for supplying electric power to the resistor 2 from an external electrode (not shown).
  • a sintering aid such as SiO 2 , CaO, MgO or ZrO 2 is added to a ceramic component such as alumina ceramic, silicon nitride ceramic, aluminum nitride ceramic or silicon carbide ceramic.
  • a ceramic slurry prepared by containing the above is prepared. This ceramic slurry is formed into a sheet to produce a ceramic green sheet. Or the said component is mixed and a plate-shaped or rod-shaped molded object is produced by press molding or extrusion molding.
  • the pattern of the conductive paste that becomes the resistor 2 is formed on one main surface of the ceramic green sheet or the molded body that becomes the insulating substrate 1 by using a method such as screen printing.
  • a material mainly composed of W and Mo that can be manufactured by simultaneous firing with the insulating substrate 1 is used.
  • W main particles, W fine particles, Mo main particles, and Mo fine particles are used as the conductor material of the resistor 2.
  • the W main particles and the Mo main particles have, for example, an average particle size of about 2 to 3 ⁇ m.
  • the W fine particles and the Mo fine particles have, for example, an average particle diameter of about 0.1 to 0.5 ⁇ m.
  • the surfaces of the W fine particles and the Mo fine particles are oxidized.
  • the surface of the W fine particles can be oxidized by putting W fine powder in a vacuum furnace and heating at 500 ° C. while flowing a certain amount of oxygen and nitrogen. it can.
  • the surface of the Mo fine particles can be oxidized by putting the powder of the Mo fine particles in a vacuum furnace and heating at 400 ° C. while flowing a certain amount of oxygen and nitrogen.
  • the weight ratio between the W main particles and Mo main particles and the W fine particles and Mo fine particles can be set to about 10: 1.
  • the reactivity with the main particles can be improved by adding fine particles with oxidized surfaces to the conductor material.
  • the surface activity of the fine particles increases even at a low temperature below the melting point, so that the fine particles easily enter the main particles.
  • the first conductor particle 21 has the main component of the second conductor particle 22 as the subcomponent 210
  • the second conductor particle 22 has the main component of the first conductor particle 21 as the subcomponent 220. can do.
  • the ease of entering the main particles can be improved by oxidizing the surface of the fine particles for the following reason. Specifically, by oxidizing the surface of the fine particles, it becomes easy to get wet with the liquid sintering aid surrounding the main particles, so that the fine particles are likely to enter the sintering aid. Since the main particles before sintering are surrounded by the sintering aid, the possibility of the fine particles coming into contact with the main particles is improved by facilitating the entry of the fine particles into the sintering aid. As a result, the possibility that the fine particles enter the main particles is improved.
  • glass powder may be added when the conductor material is prepared.
  • the glass powder may be added at a ratio of 0.001 to 0.1 mass% with respect to the total of W main particles, W fine particles, Mo main particles, and Mo fine particles.
  • the conductive paste can be produced by appropriately mixing and kneading ceramic raw materials, binders or organic solvents with these high melting point metals.
  • the heating position and the resistance value of the resistor 2 are changed by changing the length of the conductive paste pattern, the distance and interval of the folded pattern, and the line width of the pattern depending on the use of the heater. Is set to the desired value.
  • a ceramic green sheet or molded body of the same material is further laminated and adhered to the ceramic green sheet or molded body on which this pattern is formed.
  • a pattern to be the electrode pad 3 is provided on the back surface of the ceramic green sheet on which the pattern to be the resistor 2 is formed, and is electrically connected to the pattern to be the resistor 2.
  • a rod-like or plate-like molded body that becomes the insulating substrate 1 having the resistor 2 inside is obtained.
  • the obtained molded body is fired at about 1500 to 1600 ° C. Firing is performed in a non-oxidizing gas atmosphere such as hydrogen gas.
  • a non-oxidizing gas atmosphere such as hydrogen gas.
  • the firing time may be set short. Specifically, for example, baking may be performed for 18 hours to rise from room temperature to 1500 ° C., 3 hours at 1500 ° C., and then for 15 hours to fall from 1500 ° C. to 50 ° C.
  • a configuration in which a large amount of subcomponents are distributed in the surface layer portion of the conductor particles can be obtained.
  • a Ni plating film is provided on the electrode pad 3 on the main surface of the insulating substrate 1 by electrolytic plating. Further, the power supply wiring 4 is joined to the Ni plating film. For joining the power supply wiring 4, for example, Ag row can be used.
  • a heater can be manufactured.
  • An example of the heater of the present invention was produced as follows.
  • a ceramic green sheet having Al 2 O 3 as a main component and adjusted so that SiO 2 , CaO, MgO and ZrO 2 were within 10 mass% in total was produced.
  • W powder having an average particle diameter of 2 ⁇ m as W main particles, W powder having an average particle diameter of 0.1 ⁇ m as W fine particles, Mo powder having an average particle diameter of 2 ⁇ m as Mo main particles, and average as Mo fine particles Mo powder having a particle size of 0.1 ⁇ m was prepared.
  • the weight ratio between the W main particles and Mo main particles and the W fine particles and Mo fine particles was set to about 10: 1.
  • the conductive paste which has Mo and W as a main component used as the resistor 2 and the electrode pad 3 on the surface of this ceramic green sheet was printed on each pattern by the screen printing method.
  • the ceramic green sheet on which these are printed and the rod-shaped molded body produced by extrusion molding of the same material as the ceramic green sheet are applied and laminated by applying a laminated liquid in which ceramics of the same composition are dispersed. A laminate was obtained.
  • the rod-like laminate thus obtained was fired in a reducing atmosphere (nitrogen atmosphere) at 1500 to 1600 ° C.
  • Ni plating film having a thickness of 2 to 4 ⁇ m was provided on the electrode pad 3 on the main surface of the insulating substrate by electrolytic plating. Furthermore, the electrode pad 3 and the power supply wiring 4 were joined by Ag brazing.
  • the power supply wiring one made of nickel (Ni), having a diameter of 0.8 mm and a length of 50 mm was used.
  • a conductive paste was prepared without oxidizing the surface of the W fine particles and the Mo fine particles, and a heater of Sample 2 was prepared. Regarding conditions other than the presence or absence of surface oxidation, the preparation conditions of Sample 1 and the preparation conditions of Sample 2 are the same.
  • a heater of Sample 3 was fabricated using W fine particles having an average particle diameter of 0.3 ⁇ m and Mo fine particles having an average particle diameter of 0.3 ⁇ m. Regarding conditions other than the particle diameter of the W fine particles and the particle diameter of the Mo fine particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 3 are the same.
  • a heater of Sample 4 was fabricated using W fine particles having an average particle diameter of 1.5 ⁇ m and Mo fine particles having an average particle diameter of 1.5 ⁇ m. Regarding conditions other than the particle diameter of the W fine particles and the particle diameter of the Mo fine particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 4 are the same.
  • a heater of Sample 5 was manufactured using W main particles having an average particle diameter of 1 ⁇ m and Mo main particles having an average particle diameter of 1 ⁇ m. Regarding conditions other than the particle size of the W main particles and the Mo main particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 5 are the same.
  • a heater of Sample 6 was fabricated using W main particles having an average particle diameter of 3 ⁇ m and Mo main particles having an average particle diameter of 3 ⁇ m. Regarding the conditions other than the particle size of the W main particles and the particle size of the Mo main particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 6 are the same.
  • a heater of Sample 7 was produced without using W fine particles and Mo fine particles.
  • the preparation conditions of the sample 1 and the preparation conditions of the sample 7 are the same.
  • Insulating substrate 11 Ceramic core 12: Ceramic layer 2: Resistor 21: First conductor particle 210: Subcomponent 22: Second conductor particle 220: Subcomponent 25: Glass

Landscapes

  • Resistance Heating (AREA)

Abstract

This heater is provided with an insulating base body, and a resistor embedded in the insulating base body, and the resistor contains first conductor particles having tungsten as a main component, and second conductor particles having molybdenum as a main component, said first conductor particles having the main component of the second conductor particles as an accessory component, and said second conductor particles having the main component of the first conductor particles as an accessory component.

Description

ヒータheater
 本発明は、ヘアアイロン、水加熱用ヒータ、酸素センサ、空燃比センサ、グロープラグまたは半導体製造装置等に用いられるヒータに関するものである。 The present invention relates to a heater used in a hair iron, a water heater, an oxygen sensor, an air-fuel ratio sensor, a glow plug, a semiconductor manufacturing apparatus, or the like.
 ヒータとして、例えばアルミナを主成分とするセラミック基体の中にタングステン(W)およびモリブデン(Mo)等の高融点金属から成る抵抗体を埋設したヒータが利用されている。このようなヒータは、特開2001-57284号公報などに開示されている。 As the heater, for example, a heater in which a resistor made of a high melting point metal such as tungsten (W) and molybdenum (Mo) is embedded in a ceramic substrate mainly composed of alumina is used. Such a heater is disclosed in Japanese Patent Laid-Open No. 2001-57284.
 近年、例えば、酸素センサのようにヒータの周りに電子部品が配置される場合が多くなってきている。そして、今後、電子部品の高集積化がさらに進んだ場合には、ヒータに通電した場合に発生する伝導性ノイズが、抵抗体を流れる際に放射性ノイズとして放出されて、ヒータの周囲に配置された電子部品に影響を及ぼし、誤作動を引き起こすことが予想される。 In recent years, for example, electronic components are often arranged around a heater such as an oxygen sensor. In the future, when the integration of electronic parts is further advanced, conductive noise generated when the heater is energized is released as radioactive noise when flowing through the resistor and is arranged around the heater. It is expected to affect the electronic components and cause malfunctions.
 本発明は上記事情に鑑みてなされたもので、放射性ノイズの発生を低減することが可能なヒータを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a heater capable of reducing the generation of radioactive noise.
 本発明のヒータは、絶縁基体と、該絶縁基体に埋設された抵抗体とを備えたヒータであって、前記抵抗体はタングステンを主成分とする第1の導体粒子およびモリブデンを主成分とする第2の導体粒子を含み、前記第1の導体粒子が前記第2の導体粒子の主成分を副成分として有するとともに、前記第2の導体粒子が前記第1の導体粒子の主成分を副成分として有するものである。 The heater of the present invention is a heater including an insulating base and a resistor embedded in the insulating base, wherein the resistor is mainly composed of first conductive particles mainly composed of tungsten and molybdenum. The second conductor particles include the second conductor particles, the first conductor particles have the main component of the second conductor particles as a subcomponent, and the second conductor particles have the main component of the first conductor particles as a subcomponent. It has as.
(a)は本発明のヒータの一実施形態を概略的に示す一部透過斜視図、(b)は本発明の要部の一例を示す抵抗体の拡大図である。(A) is a partially transparent perspective view schematically showing an embodiment of the heater of the present invention, and (b) is an enlarged view of a resistor showing an example of a main part of the present invention. 本発明の要部の他の例を示す抵抗体の拡大図である。It is an enlarged view of the resistor which shows the other example of the principal part of this invention. 本発明の要部の他の例を示す抵抗体の拡大図である。It is an enlarged view of the resistor which shows the other example of the principal part of this invention.
 以下、本発明のヒータの一実施形態について図面を参照して詳細に説明する。 Hereinafter, an embodiment of the heater of the present invention will be described in detail with reference to the drawings.
 図1(a)は、本発明のヒータの一実施形態を概略的に示す一部透過斜視図である。図1(b)は本発明の要部の一例を示す抵抗体2の拡大図である。 FIG. 1A is a partially transparent perspective view schematically showing one embodiment of the heater of the present invention. FIG.1 (b) is an enlarged view of the resistor 2 which shows an example of the principal part of this invention.
 本実施の形態のヒータは、絶縁基体1と、絶縁基体1に埋設された抵抗体2とを備えたヒータである。抵抗体2はタングステン(W)を主成分とする第1の導体粒子21およびモリブデン(Mo)を主成分とする第2の導体粒子22を含む。第1の導体粒子21が第2の導体粒子22の主成分を副成分210として有するとともに、第2の導体粒子22が第1の導体粒子21の主成分を副成分220として有する。つまり、Wを主成分とする第1の導体粒子21が副成分210としてMoを有するとともに、Moを主成分とする第2導体粒子22が副成分220としてWを有する。 The heater according to the present embodiment is a heater including an insulating base 1 and a resistor 2 embedded in the insulating base 1. The resistor 2 includes first conductive particles 21 mainly containing tungsten (W) and second conductive particles 22 mainly containing molybdenum (Mo). The first conductor particle 21 has the main component of the second conductor particle 22 as the subcomponent 210, and the second conductor particle 22 has the main component of the first conductor particle 21 as the subcomponent 220. That is, the first conductor particles 21 containing W as the main component have Mo as the subcomponent 210, and the second conductor particles 22 containing Mo as the main component have W as the subcomponent 220.
 絶縁基体1は、例えば酸化物セラミックス、窒化物セラミックスまたは炭化物セラミックス等の絶縁性を備えたセラミックスから成る。具体的には、このようなセラミックスとして、アルミナ質セラミックス、窒化珪素質セラミックス、窒化アルミニウム質セラミックスまたは炭化珪素質セラミックス等を用いることができる。本実施形態のヒータにおいては、絶縁基体1はアルミナ質セラミックスから成る。これにより、ヒータの耐酸化性を向上できる。 The insulating substrate 1 is made of ceramics having insulating properties such as oxide ceramics, nitride ceramics or carbide ceramics. Specifically, alumina ceramics, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics, or the like can be used as such ceramics. In the heater of this embodiment, the insulating substrate 1 is made of alumina ceramics. Thereby, the oxidation resistance of the heater can be improved.
 絶縁基体1は棒状の部材である。絶縁基体1は、円柱状のセラミック芯材11の外周にセラミック層12が取り巻くように設けられて形成される。絶縁基体1が棒状、特に円柱状の場合には、外径を例えば1~30mm、長手方向の長さを例えば5~200mmに設定できる。また、絶縁基体1は、板状の部材であってもよい。絶縁基体1が板状の場合には、主面の大きさは例えば5~200mm角に設定でき、厚みは例えば1~30mmに設定できる。 The insulating substrate 1 is a rod-shaped member. The insulating base 1 is formed by providing a ceramic layer 12 around the outer periphery of a cylindrical ceramic core 11. When the insulating substrate 1 is rod-shaped, particularly cylindrical, the outer diameter can be set to 1 to 30 mm, for example, and the length in the longitudinal direction can be set to 5 to 200 mm, for example. Further, the insulating substrate 1 may be a plate-like member. When the insulating substrate 1 is plate-shaped, the size of the main surface can be set to 5 to 200 mm square, for example, and the thickness can be set to 1 to 30 mm, for example.
 また、絶縁基体1には、抵抗体2が埋設されている。抵抗体2は、セラミック芯材11とセラミック層12との間の所定の領域に、板状または線状に設けられている。抵抗体2が線状の場合には、抵抗体2は、例えば、ミアンダ状、渦巻き状または波形状等に形成される。抵抗体2の線幅は、例えば0.1~5mmであり、厚みは0.01~1mmである。 Further, a resistor 2 is embedded in the insulating substrate 1. The resistor 2 is provided in a predetermined area between the ceramic core 11 and the ceramic layer 12 in a plate shape or a line shape. When the resistor 2 is linear, the resistor 2 is formed in, for example, a meander shape, a spiral shape, or a wave shape. The line width of the resistor 2 is, for example, 0.1 to 5 mm, and the thickness is 0.01 to 1 mm.
 そして、抵抗体2はWを主成分とする第1の導体粒子21およびMoを主成分とする第2の導体粒子22を含む。第1の導体粒子21が第2の導体粒子22の主成分を副成分210として有するとともに、第2の導体粒子22が第1の導体粒子21の主成分を副成分220として有する。第1の導体粒子21および第2の導体粒子22の平均粒径は、例えば、それぞれ0.1~4μmである。 The resistor 2 includes first conductor particles 21 mainly composed of W and second conductor particles 22 mainly composed of Mo. The first conductor particle 21 has the main component of the second conductor particle 22 as the subcomponent 210, and the second conductor particle 22 has the main component of the first conductor particle 21 as the subcomponent 220. The average particle diameters of the first conductor particles 21 and the second conductor particles 22 are, for example, 0.1 to 4 μm, respectively.
 なお、第1の導体粒子21が第2の導体粒子22の主成分を副成分210として有するとともに、第2の導体粒子22が第1の導体粒子21の主成分を副成分220として有するとは、1つの導体粒子中に相対的に多く含まれる成分と少なく含まれる成分とが存在することを意味する。これは、切断した断面の組織を電子線マイクロアナライザ(EPMA)で分析することにより観察することができる。 The first conductor particle 21 has the main component of the second conductor particle 22 as the subcomponent 210 and the second conductor particle 22 has the main component of the first conductor particle 21 as the subcomponent 220. It means that a relatively large component and a small component are present in one conductor particle. This can be observed by analyzing the cut cross-sectional structure with an electron beam microanalyzer (EPMA).
 この構成によれば、Wの導体粒子とMoの導体粒子とがそれぞれ独立して存在している場合と比較して、各導体粒子の抵抗値のばらつきを低減できる。そのため、電流をスムーズに流すことができる。したがって、ヒータから発生する放射性ノイズを減衰させることができる。その結果、放射性ノイズによる周囲の電子部品への影響を低減することができる。また、上記の構成によって、原子間のすべりが起きにくくなることから抵抗体2の強度を向上させることができる。 According to this configuration, it is possible to reduce variation in resistance value of each conductor particle as compared with the case where the W conductor particles and the Mo conductor particles exist independently. As a result, the current can flow smoothly. Therefore, radioactive noise generated from the heater can be attenuated. As a result, it is possible to reduce the influence on the surrounding electronic components due to radioactive noise. In addition, the structure described above makes it difficult for slipping between atoms to occur, so that the strength of the resistor 2 can be improved.
 その結果、導体粒子間にクラックが生じることを低減できる。これにより、抵抗体2が断線する可能性を低減できる。その結果、ヒータの耐久性を向上させることができる。 As a result, the occurrence of cracks between the conductor particles can be reduced. Thereby, the possibility that the resistor 2 is disconnected can be reduced. As a result, the durability of the heater can be improved.
 また、図2に示すように、第1の導体粒子21および第2の導体粒子22の間にガラス25が含まれているのが好ましい。ガラス25としては、例えば二酸化ケイ素を主成分とするガラスであって、副成分として酸化マグネシウムまたは酸化カルシウムが含まれるもの等が挙げられる。このようなガラス25の熱膨張係数は抵抗体2の熱膨張係数よりも小さいので、高温時に絶縁基体1から導体粒子間を引き剥がそうとする力が働いたとしても、ガラス25が導体粒子を引っ張ることによって、導体粒子間におけるクラックの発生を低減できる。その結果、抵抗体2が断線する可能性を低減できる。これにより、ヒータの耐久性を向上できる。 Further, as shown in FIG. 2, it is preferable that glass 25 is included between the first conductor particles 21 and the second conductor particles 22. Examples of the glass 25 include glass containing silicon dioxide as a main component and containing magnesium oxide or calcium oxide as a subcomponent. Since the thermal expansion coefficient of the glass 25 is smaller than the thermal expansion coefficient of the resistor 2, the glass 25 does not remove the conductive particles even when a force is applied to peel off the conductive particles from the insulating substrate 1 at a high temperature. By pulling, the generation of cracks between the conductor particles can be reduced. As a result, the possibility that the resistor 2 is disconnected can be reduced. Thereby, durability of a heater can be improved.
 また、図3に示すヒータにおいては、第1の導体粒子21および第2の導体粒子22のそれぞれの導体粒子に含まれる副成分210、220は、それぞれの導体粒子の表面を含む表層部に多く分布している。一般的に、伝導性ノイズは導体粒子の表層部を多く伝わる。そこで、導体粒子の表層部に副成分の金属を多く分布させておくことによって、伝導性ノイズが多く伝わる部分において抵抗値のばらつきを低減することができる。そのため、伝導性ノイズがよりスムーズに伝わるので、抵抗体2における放射性ノイズの発生を低減することができる。その結果、放射性ノイズによる周囲の電子部品への影響を低減できる。 Further, in the heater shown in FIG. 3, the subcomponents 210 and 220 contained in the respective conductor particles of the first conductor particle 21 and the second conductor particle 22 are largely present in the surface layer portion including the surface of each conductor particle. Distributed. In general, conductive noise propagates in a large amount on the surface layer of conductive particles. Therefore, by distributing a large amount of the subcomponent metal in the surface layer portion of the conductor particles, it is possible to reduce the variation in resistance value in a portion where a lot of conductive noise is transmitted. Therefore, since conductive noise is transmitted more smoothly, generation | occurrence | production of the radioactive noise in the resistor 2 can be reduced. As a result, it is possible to reduce the influence on the surrounding electronic components due to the radioactive noise.
 なお、表層部とは導体粒子の表面から粒径の10%の範囲内の領域のことを意味する。導体粒子の表層部に副成分が多く分布していることは、電子線マイクロアナライザ(EPMA)を用いることにより、観察することができる。 The surface layer means a region within 10% of the particle diameter from the surface of the conductor particles. It can be observed by using an electron beam microanalyzer (EPMA) that many subcomponents are distributed in the surface layer portion of the conductor particles.
 ヒータは、図1に示すように、電極パッド3と電源配線4とを有する。電極パッド3は、絶縁基体1の表面に形成されており、抵抗体2に電気的に接続されている。電極パッド3は、例えば、Wから成る。また、電源配線4は、電極パッド3に電気的に接続されている。電源配線4は電極パッド3上に設けられている。電極パッド3および電源配線4は、抵抗体2に外部電極(図示せず)から電力を供給するための部材である。 The heater has an electrode pad 3 and a power supply wiring 4 as shown in FIG. The electrode pad 3 is formed on the surface of the insulating base 1 and is electrically connected to the resistor 2. The electrode pad 3 is made of W, for example. The power supply wiring 4 is electrically connected to the electrode pad 3. The power supply wiring 4 is provided on the electrode pad 3. The electrode pad 3 and the power supply wiring 4 are members for supplying electric power to the resistor 2 from an external electrode (not shown).
 次に、本実施の形態のヒータの製造方法について説明する。 Next, a method for manufacturing the heater according to the present embodiment will be described.
 まず、絶縁基体1を作製するために、アルミナ質セラミックス、窒化珪素質セラミックス、窒化アルミニウム質セラミックスまたは炭化珪素質セラミックス等のセラミック成分に、SiO、CaO、MgOまたはZrO等の焼結助剤を含有させて調製したセラミックスラリーを準備する。このセラミックスラリーをシート状に成形して、セラミックグリーンシートを作製する。または、上記成分を混合してプレス成型や押し出し成型等で板状または棒状の成型体を作製する。 First, in order to produce the insulating substrate 1, a sintering aid such as SiO 2 , CaO, MgO or ZrO 2 is added to a ceramic component such as alumina ceramic, silicon nitride ceramic, aluminum nitride ceramic or silicon carbide ceramic. A ceramic slurry prepared by containing the above is prepared. This ceramic slurry is formed into a sheet to produce a ceramic green sheet. Or the said component is mixed and a plate-shaped or rod-shaped molded object is produced by press molding or extrusion molding.
 この絶縁基体1と成るセラミックグリーンシートまたは成型体の一方の主面に、抵抗体2と成る導電性ペーストのパターンをそれぞれスクリーン印刷等の手法を用いて形成する。抵抗体2の材料としては、絶縁基体1との同時焼成によって作製が可能なWおよびMoを主成分とするものを用いる。 The pattern of the conductive paste that becomes the resistor 2 is formed on one main surface of the ceramic green sheet or the molded body that becomes the insulating substrate 1 by using a method such as screen printing. As the material of the resistor 2, a material mainly composed of W and Mo that can be manufactured by simultaneous firing with the insulating substrate 1 is used.
 より具体的には、抵抗体2の導体材料としては、例えばWの主粒子、Wの微粒子、Moの主粒子およびMoの微粒子を用いる。Wの主粒子およびMoの主粒子は、例えば平均粒径が2~3μm程度である。また、Wの微粒子およびMoの微粒子は、例えば平均粒径が0.1~0.5μm程度である。さらに、このWの微粒子およびMoの微粒子の表面を酸化させておく。具体的には、Wの微粒子に関しては、真空炉にWの微粒子の粉末を入れて、酸素と窒素とを一定量流しながら500℃で加熱することによって、Wの微粒子の表面を酸化させることができる。また、Moの微粒子に関しては、真空炉にMoの微粒子の粉末を入れて、酸素と窒素とを一定量流しながら400℃で加熱することによって、Moの微粒子の表面を酸化させることができる。ここで、Wの主粒子およびMoの主粒子と、Wの微粒子およびMoの微粒子との重さの割合は10:1程度に設定できる。 More specifically, as the conductor material of the resistor 2, for example, W main particles, W fine particles, Mo main particles, and Mo fine particles are used. The W main particles and the Mo main particles have, for example, an average particle size of about 2 to 3 μm. The W fine particles and the Mo fine particles have, for example, an average particle diameter of about 0.1 to 0.5 μm. Further, the surfaces of the W fine particles and the Mo fine particles are oxidized. Specifically, for the W fine particles, the surface of the W fine particles can be oxidized by putting W fine powder in a vacuum furnace and heating at 500 ° C. while flowing a certain amount of oxygen and nitrogen. it can. Regarding the Mo fine particles, the surface of the Mo fine particles can be oxidized by putting the powder of the Mo fine particles in a vacuum furnace and heating at 400 ° C. while flowing a certain amount of oxygen and nitrogen. Here, the weight ratio between the W main particles and Mo main particles and the W fine particles and Mo fine particles can be set to about 10: 1.
 表面が酸化された微粒子を導体材料に加えることによって、主粒子との反応性を向上させることができる。これにより、後述する焼成工程において、融点以下の低い温度でも微粒子の表面活性が上がることによって、微粒子が主粒子中に入り込みやすくなる。 The reactivity with the main particles can be improved by adding fine particles with oxidized surfaces to the conductor material. As a result, in the firing step described later, the surface activity of the fine particles increases even at a low temperature below the melting point, so that the fine particles easily enter the main particles.
 したがって、第1の導体粒子21が第2の導体粒子22の主成分を副成分210として有するとともに、第2の導体粒子22が第1の導体粒子21の主成分を副成分220として有する構成とすることができる。 Therefore, the first conductor particle 21 has the main component of the second conductor particle 22 as the subcomponent 210, and the second conductor particle 22 has the main component of the first conductor particle 21 as the subcomponent 220. can do.
 特に、微粒子の表面を酸化させることによって、主粒子への入り込みやすさを向上させることができるのは、以下の理由によるものと推測される。具体的には、微粒子の表面を酸化させることによって、主粒子をとりまく液状の焼結助剤にぬれ易くなることから、微粒子が焼結助剤中に入り込みやすくなる。焼結前の主粒子は焼結助剤に囲まれているから、焼結助剤中に微粒子が入り込み易くなることによって、微粒子が主粒子に接触する可能性が向上する。その結果、微粒子が主粒子に入り込む可能性が向上する。 Particularly, it is assumed that the ease of entering the main particles can be improved by oxidizing the surface of the fine particles for the following reason. Specifically, by oxidizing the surface of the fine particles, it becomes easy to get wet with the liquid sintering aid surrounding the main particles, so that the fine particles are likely to enter the sintering aid. Since the main particles before sintering are surrounded by the sintering aid, the possibility of the fine particles coming into contact with the main particles is improved by facilitating the entry of the fine particles into the sintering aid. As a result, the possibility that the fine particles enter the main particles is improved.
 また、第1の導体粒子21および第2の導体粒子22の粒界にガラス25が含まれている構成とするためには、導体材料の調合時にガラス粉末を添加すればよい。例えば、Wの主粒子、Wの微粒子、Moの主粒子およびMoの微粒子の合計に対して、ガラス粉末を0.001~0.1質量%の割合で添加すればよい。 Further, in order to obtain a configuration in which the glass 25 is included in the grain boundaries of the first conductor particles 21 and the second conductor particles 22, glass powder may be added when the conductor material is prepared. For example, the glass powder may be added at a ratio of 0.001 to 0.1 mass% with respect to the total of W main particles, W fine particles, Mo main particles, and Mo fine particles.
 また、導電性ペーストは、これらの高融点金属に適宜セラミック原料、バインダーまたは有機溶剤等を調合し混練することで、作製できる。 Also, the conductive paste can be produced by appropriately mixing and kneading ceramic raw materials, binders or organic solvents with these high melting point metals.
 このとき、ヒータの用途に応じて、抵抗体2と成る導電性ペーストのパターンの長さ、折り返しパターンの距離および間隔ならびにパターンの線幅を変更することにより、抵抗体2の発熱位置および抵抗値を所望の値に設定する。 At this time, the heating position and the resistance value of the resistor 2 are changed by changing the length of the conductive paste pattern, the distance and interval of the folded pattern, and the line width of the pattern depending on the use of the heater. Is set to the desired value.
 そして、このパターンが形成されたセラミックグリーンシートまたは成型体に、さらに同一材質のセラミックグリーンシートまたは成型体を積層して密着させる。このとき、抵抗体2と成るパターンが形成されたセラミックグリーンシートの裏面に電極パッド3となるパターンを設けておき、抵抗体2と成るパターンと電気的に接続しておく。上記のようにして、内部に抵抗体2を有する絶縁基体1と成る棒状または板状の成型体が得られる。 Then, a ceramic green sheet or molded body of the same material is further laminated and adhered to the ceramic green sheet or molded body on which this pattern is formed. At this time, a pattern to be the electrode pad 3 is provided on the back surface of the ceramic green sheet on which the pattern to be the resistor 2 is formed, and is electrically connected to the pattern to be the resistor 2. As described above, a rod-like or plate-like molded body that becomes the insulating substrate 1 having the resistor 2 inside is obtained.
 次に、得られた成形体を1500~1600℃程度で焼成する。焼成は水素ガス等の非酸化性ガス雰囲気中で行なう。このとき、第1の導体粒子21および第2の導体粒子22のそれぞれの導体粒子に含まれる副成分210、220が、それぞれの導体粒子の表層部に多く分布している構成とするためには、この焼成時間を短く設定すればよい。具体的には、例えば、常温から1500℃までの上昇に18時間、1500℃の状態で3時間、その後、1500℃から50℃までの下降に15時間かけて焼成を行なえばよい。このように、WおよびMoの微粒子の拡散が進行する1500~1600℃の時間を短く設定することにより、導体粒子の表層部に副成分が多く分布する構成とすることができる。 Next, the obtained molded body is fired at about 1500 to 1600 ° C. Firing is performed in a non-oxidizing gas atmosphere such as hydrogen gas. At this time, in order to obtain a configuration in which the subcomponents 210 and 220 contained in the respective conductor particles of the first conductor particle 21 and the second conductor particle 22 are distributed in a large amount in the surface layer portion of each conductor particle. The firing time may be set short. Specifically, for example, baking may be performed for 18 hours to rise from room temperature to 1500 ° C., 3 hours at 1500 ° C., and then for 15 hours to fall from 1500 ° C. to 50 ° C. As described above, by setting the time of 1500 to 1600 ° C. during which the diffusion of the fine particles of W and Mo proceeds to be short, a configuration in which a large amount of subcomponents are distributed in the surface layer portion of the conductor particles can be obtained.
 さらに絶縁基体1の主面の電極パッド3上に電解メッキにてNiメッキ膜を設ける。さらに、このNiメッキ膜に電源配線4を接合する。電源配線4の接合には、例えば、Agロウを用いることができる。 Further, a Ni plating film is provided on the electrode pad 3 on the main surface of the insulating substrate 1 by electrolytic plating. Further, the power supply wiring 4 is joined to the Ni plating film. For joining the power supply wiring 4, for example, Ag row can be used.
 以上のようにして、ヒータを作製することができる。 As described above, a heater can be manufactured.
 本発明のヒータの実施例を以下のようにして作製した。 An example of the heater of the present invention was produced as follows.
 まず、Alを主成分とし、SiO、CaO、MgOおよびZrOが合計で10質量%以内になるように調整したセラミックグリーンシートを作製した。 First, a ceramic green sheet having Al 2 O 3 as a main component and adjusted so that SiO 2 , CaO, MgO and ZrO 2 were within 10 mass% in total was produced.
 そして、Wの主粒子として平均粒径が2μmのW粉末、Wの微粒子として平均粒径が0.1μmのW粉末、Moの主粒子として平均粒径が2μmのMo粉末およびMoの微粒子として平均粒径が0.1μmのMo粉末を準備した。Wの主粒子およびMoの主粒子と、Wの微粒子およびMoの微粒子との重さの割合は10:1程度に設定した。 And, W powder having an average particle diameter of 2 μm as W main particles, W powder having an average particle diameter of 0.1 μm as W fine particles, Mo powder having an average particle diameter of 2 μm as Mo main particles, and average as Mo fine particles Mo powder having a particle size of 0.1 μm was prepared. The weight ratio between the W main particles and Mo main particles and the W fine particles and Mo fine particles was set to about 10: 1.
 なお、これらの粒径は、フィッシャー・サブ・シーブ・サイザー法によって測定した。さらに、Wの微粒子およびMoの微粒子に関しては、真空炉にこれらの粉末を入れるとともに、酸素と窒素とを一定量流しながら加熱することによって、Wの微粒子とMoの微粒子の表面を酸化させた。次に、Wの主粒子、Wの微粒子、Moの主粒子およびMoの微粒子をバインダーと共に混合することによって、導電性ペーストを作製した。 These particle sizes were measured by the Fischer sub-sieve sizer method. Further, with respect to the W fine particles and the Mo fine particles, these powders were put in a vacuum furnace and heated while flowing a certain amount of oxygen and nitrogen to oxidize the surfaces of the W fine particles and the Mo fine particles. Next, a conductive paste was prepared by mixing W main particles, W fine particles, Mo main particles, and Mo fine particles together with a binder.
 そして、このセラミックグリーンシートの表面に、抵抗体2および電極パッド3と成るMoおよびWを主成分とする導電性ペーストを、スクリーン印刷法にてそれぞれのパターンに印刷した。これらが印刷されたセラミックグリーンシートと、セラミックグリーンシートと同一材料を押し出し成型で作製した棒状の成型体とを、同一の組成のセラミックスを分散させた積層液を塗布して積層して、棒状の積層体を得た。 And the conductive paste which has Mo and W as a main component used as the resistor 2 and the electrode pad 3 on the surface of this ceramic green sheet was printed on each pattern by the screen printing method. The ceramic green sheet on which these are printed and the rod-shaped molded body produced by extrusion molding of the same material as the ceramic green sheet are applied and laminated by applying a laminated liquid in which ceramics of the same composition are dispersed. A laminate was obtained.
 こうして得られた棒状の積層体を1500~1600℃の還元雰囲気(窒素雰囲気)中で焼成した。 The rod-like laminate thus obtained was fired in a reducing atmosphere (nitrogen atmosphere) at 1500 to 1600 ° C.
 次に、絶縁基体の主面の電極パッド3上に電解メッキにて厚みが2~4μmのNiメッキ膜を設けた。さらに、電極パッド3と電源配線4とをAgロウによって接合した。電源配線としては、ニッケル(Ni)から成り、直径が0.8mm、長さが50mmのものを用いた。 Next, a Ni plating film having a thickness of 2 to 4 μm was provided on the electrode pad 3 on the main surface of the insulating substrate by electrolytic plating. Furthermore, the electrode pad 3 and the power supply wiring 4 were joined by Ag brazing. As the power supply wiring, one made of nickel (Ni), having a diameter of 0.8 mm and a length of 50 mm was used.
 このようにして、試料1のヒータを作製した。 In this way, a heater for Sample 1 was produced.
 また、Wの微粒子およびMoの微粒子の表面の酸化を行なわずに導電性ペーストを作製して、試料2のヒータを作製した。表面の酸化の有無以外の条件に関しては、試料1の作製条件と試料2の作製条件とは同一である。 Also, a conductive paste was prepared without oxidizing the surface of the W fine particles and the Mo fine particles, and a heater of Sample 2 was prepared. Regarding conditions other than the presence or absence of surface oxidation, the preparation conditions of Sample 1 and the preparation conditions of Sample 2 are the same.
 また、平均粒径が0.3μmであるWの微粒子および平均粒径が0.3μmであるMoの微粒子を用いて、試料3のヒータを作製した。Wの微粒子の粒径およびMoの微粒子の粒径以外の条件に関しては、試料1の作製条件と試料3の作製条件とは同一である。 Further, a heater of Sample 3 was fabricated using W fine particles having an average particle diameter of 0.3 μm and Mo fine particles having an average particle diameter of 0.3 μm. Regarding conditions other than the particle diameter of the W fine particles and the particle diameter of the Mo fine particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 3 are the same.
 また、平均粒径が1.5μmであるWの微粒子および平均粒径が1.5μmであるMoの微粒子を用いて、試料4のヒータを作製した。Wの微粒子の粒径およびMoの微粒子の粒径以外の条件に関しては、試料1の作製条件と試料4の作製条件とは同一である。 Further, a heater of Sample 4 was fabricated using W fine particles having an average particle diameter of 1.5 μm and Mo fine particles having an average particle diameter of 1.5 μm. Regarding conditions other than the particle diameter of the W fine particles and the particle diameter of the Mo fine particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 4 are the same.
 また、平均粒径が1μmであるWの主粒子および平均粒径が1μmであるMoの主粒子を用いて、試料5のヒータを作製した。Wの主粒子の粒径およびMoの主粒子の粒径以外の条件に関しては、試料1の作製条件と試料5の作製条件とは同一である。 Further, a heater of Sample 5 was manufactured using W main particles having an average particle diameter of 1 μm and Mo main particles having an average particle diameter of 1 μm. Regarding conditions other than the particle size of the W main particles and the Mo main particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 5 are the same.
 また、平均粒径が3μmであるWの主粒子および平均粒径が3μmであるMoの主粒子を用いて、試料6のヒータを作製した。Wの主粒子の粒径およびMoの主粒子の粒径以外の条件に関しては、試料1の作製条件と試料6の作製条件とは同一である。 Further, a heater of Sample 6 was fabricated using W main particles having an average particle diameter of 3 μm and Mo main particles having an average particle diameter of 3 μm. Regarding the conditions other than the particle size of the W main particles and the particle size of the Mo main particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 6 are the same.
 また、平均粒径が5μmであるWの主粒子および平均粒径が5μmであるMoの主粒子を用いるとともに、Wの微粒子およびMoの微粒子を用いずに試料7のヒータを作製した。Wの主粒子の粒径およびMoの主粒子の粒径ならびにWの微粒子の有無およびMoの微粒子の有無以外の条件に関しては、試料1の作製条件と試料7の作製条件とは同一である。 Further, while using W main particles having an average particle diameter of 5 μm and Mo main particles having an average particle diameter of 5 μm, a heater of Sample 7 was produced without using W fine particles and Mo fine particles. Regarding the conditions other than the particle diameters of the W main particles, the Mo main particles, the presence or absence of the W fine particles, and the presence or absence of the Mo fine particles, the preparation conditions of the sample 1 and the preparation conditions of the sample 7 are the same.
 上記の試料1~7の作製条件の主要部分を表1にまとめた。 The main parts of the preparation conditions for Samples 1 to 7 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた試料1~7のヒータを、抵抗体2を含む領域で切断して研磨した後に、電子線マイクロアナライザ(EPMA)による分析を行なった。その結果、表2に示すように、試料1、3、5、6に関しては、Wの主粒子の中にMoの微粒子が入り込んでいる様子およびMoの主粒子の中にWの微粒子が入り込んでいる様子が確認できた。つまり、試料1、3、5、6が本発明の構成になっていることが確認できた。また、試料2、4、7に関しては、Wの主粒子の中にMoの微粒子が入り込んでいる様子もMoの主粒子の中にWの微粒子が入り込んでいる様子も確認できなかった。 The obtained heaters of Samples 1 to 7 were cut and polished in the region including the resistor 2, and then analyzed by an electron beam microanalyzer (EPMA). As a result, as shown in Table 2, with respect to Samples 1, 3, 5, and 6, the state in which the fine particles of Mo are contained in the main particles of W and the fine particles of W are contained in the main particles of Mo. I was able to confirm. That is, it was confirmed that Samples 1, 3, 5, and 6 have the configuration of the present invention. For Samples 2, 4, and 7, it was not possible to confirm that the fine particles of Mo were contained in the main particles of W and the fine particles of W were contained in the main particles of Mo.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 特に試料1と試料2との比較から、微粒子の入り込みが起こるには微粒子の表面が酸化されている必要があることが分かった。さらに、試料1~4の比較から、それぞれの微粒子が大きすぎる場合にも、微粒子の入り込みが起こらないことが分かった。 Especially, it was found from the comparison between Sample 1 and Sample 2 that the surface of the fine particles needs to be oxidized in order for the fine particles to enter. Further, from comparison of samples 1 to 4, it was found that the entry of fine particles does not occur even when the respective fine particles are too large.
 また、試料1~7に対して、直流電流を流すとともに、オシロスコープを用いてヒータに流れるパルス波形および放射性ノイズを確認した。その結果、試料1、3、5、6に関しては、通電と同時にパルス波形が急峻になり、伝導性ノイズがが確認されたが、放射性ノイズは観測されなかった。一方、試料2、4、7に関しては、通電と同時にパルス波形が急峻になり、伝導性ノイズが確認された。さらに、同時にこの伝導性ノイズが抵抗体2を伝わったことによって生じたと思われる放射性ノイズが観察された。 In addition, a direct current was applied to Samples 1 to 7, and a pulse waveform and radioactive noise flowing through the heater were confirmed using an oscilloscope. As a result, for samples 1, 3, 5, and 6, the pulse waveform became steep at the same time as energization, and conductive noise was confirmed, but no radioactive noise was observed. On the other hand, for samples 2, 4, and 7, the pulse waveform became steep at the same time as energization, and conductive noise was confirmed. Furthermore, at the same time, radioactive noise that was thought to be caused by the conduction noise transmitted through the resistor 2 was observed.
 ここで、試料1、3、5、6に関して、ノイズが観測されなかった理由は、Wの導体粒子とMoの導体粒子がそれぞれ独立して存在している場合と比較して、各導体粒子の抵抗値のばらつきを低減でき、伝導性ノイズをスムーズに伝えることが可能になったためと思われる。 Here, the reason why noise was not observed for Samples 1, 3, 5, and 6 is that the conductive particles of W and the conductive particles of Mo are present independently of each other. It seems that the variation in resistance value can be reduced and the conductive noise can be transmitted smoothly.
1:絶縁基体
11:セラミック芯材
12:セラミック層
2:抵抗体
21:第1の導体粒子
210:副成分
22:第2の導体粒子
220:副成分
25:ガラス
1: Insulating substrate 11: Ceramic core 12: Ceramic layer 2: Resistor 21: First conductor particle 210: Subcomponent 22: Second conductor particle 220: Subcomponent 25: Glass

Claims (2)

  1.  絶縁基体と、該絶縁基体に埋設された抵抗体とを備えたヒータであって、前記抵抗体はタングステンを主成分とする第1の導体粒子およびモリブデンを主成分とする第2の導体粒子を含み、前記第1の導体粒子が前記第2の導体粒子の主成分を副成分として有するとともに、前記第2の導体粒子が前記第1の導体粒子の主成分を副成分として有するヒータ。 A heater comprising an insulating substrate and a resistor embedded in the insulating substrate, wherein the resistor includes first conductor particles mainly composed of tungsten and second conductor particles mainly composed of molybdenum. And a heater in which the first conductor particles have the main component of the second conductor particles as a subcomponent, and the second conductor particles have the main component of the first conductor particles as a subcomponent.
  2.  前記第1の導体粒子および前記第2の導体粒子のそれぞれの導体粒子に含まれる副成分は、それぞれの導体粒子の表層部に多く分布している請求項1に記載のヒータ。 2. The heater according to claim 1, wherein a large amount of subcomponents contained in each of the first conductive particles and the second conductive particles are distributed in a surface layer portion of each of the conductive particles.
PCT/JP2013/073266 2012-08-31 2013-08-30 Heater WO2014034834A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014533102A JP5748918B2 (en) 2012-08-31 2013-08-30 heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012190957 2012-08-31
JP2012-190957 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034834A1 true WO2014034834A1 (en) 2014-03-06

Family

ID=50183639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073266 WO2014034834A1 (en) 2012-08-31 2013-08-30 Heater

Country Status (2)

Country Link
JP (1) JP5748918B2 (en)
WO (1) WO2014034834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279791A (en) * 2017-10-31 2020-06-12 日本特殊陶业株式会社 Ceramic heater for heating fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023140158A (en) 2022-03-22 2023-10-04 日本碍子株式会社 Heater and heating member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137945A (en) * 1995-09-12 1997-05-27 Ngk Spark Plug Co Ltd Ceramic heater, ceramic glow plug and manufacture thereof
JP2001266639A (en) * 2000-03-16 2001-09-28 Ngk Spark Plug Co Ltd Metal resistor, heater having the metal resistor, and gas sensor with the heater
JP2002146465A (en) * 2000-11-06 2002-05-22 Ngk Spark Plug Co Ltd Metallic resistor, heater having the same metallic resistor and gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137945A (en) * 1995-09-12 1997-05-27 Ngk Spark Plug Co Ltd Ceramic heater, ceramic glow plug and manufacture thereof
JP2001266639A (en) * 2000-03-16 2001-09-28 Ngk Spark Plug Co Ltd Metal resistor, heater having the metal resistor, and gas sensor with the heater
JP2002146465A (en) * 2000-11-06 2002-05-22 Ngk Spark Plug Co Ltd Metallic resistor, heater having the same metallic resistor and gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279791A (en) * 2017-10-31 2020-06-12 日本特殊陶业株式会社 Ceramic heater for heating fluid

Also Published As

Publication number Publication date
JPWO2014034834A1 (en) 2016-08-08
JP5748918B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5665973B2 (en) Ceramic heater
US11011404B2 (en) Ceramic structure, member for substrate-holding apparatus, and method for producing the ceramic structure
JP2001253777A (en) Ceramic substrate
JP2001302330A (en) Ceramic substrate
JP2002160974A (en) Aluminium nitride sintered compact and its manufacturing method, ceramic substrate and its manufacturing method
JP2001247382A (en) Ceramic substrate
JP2007258609A (en) Heating apparatus
JP5748918B2 (en) heater
JP2001319967A (en) Method for manufacturing ceramic substrate
JP2020126913A (en) Ceramic member
JP2002170870A (en) Ceramic substrate and electrostatic chuck for semiconductor fabrication/inspection equipment
JP2001319966A (en) Electrostatic chuck
JP3425097B2 (en) Resistance element
JP2003243494A (en) Ceramic substrate
JP3885265B2 (en) Manufacturing method of ceramic circuit board
JP3965467B2 (en) Ceramic resistor, method for manufacturing the same, and electrostatic chuck
JP2006024433A (en) Ceramic heater
JP2001135465A (en) Ceramic heater
JP2001308168A (en) Ceramic substrate for semiconductor manufacturing and inspecting device
JP2001223260A (en) Electrostatic chuck
JP2007013210A (en) Method for manufacturing ceramic substrate
JP2003243495A (en) Ceramic substrate
JP2011192473A (en) Ceramic heater and method for manufacturing the same
JP2001313330A (en) Ceramic board for semiconductor manufacturing-checking apparatus
JP3663374B2 (en) Ceramic resistor, method for manufacturing the same, and electrostatic chuck

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014533102

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833463

Country of ref document: EP

Kind code of ref document: A1