WO2014034816A1 - Molding die manufacturing method, molding die, molding die regeneration method, and optical element manufacturing method - Google Patents

Molding die manufacturing method, molding die, molding die regeneration method, and optical element manufacturing method Download PDF

Info

Publication number
WO2014034816A1
WO2014034816A1 PCT/JP2013/073230 JP2013073230W WO2014034816A1 WO 2014034816 A1 WO2014034816 A1 WO 2014034816A1 JP 2013073230 W JP2013073230 W JP 2013073230W WO 2014034816 A1 WO2014034816 A1 WO 2014034816A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
outer peripheral
core
core mold
molding die
Prior art date
Application number
PCT/JP2013/073230
Other languages
French (fr)
Japanese (ja)
Inventor
芦田修平
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014034816A1 publication Critical patent/WO2014034816A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses

Definitions

  • the present invention relates to a method for producing a molding die for molding an optical element, a molding die for an optical element, a method for regenerating the molding die, and a method for producing an optical element using the molding die.
  • a mold that combines an outer peripheral mold and a core mold as a mold for manufacturing an optical element.
  • This mold is advantageous in that it is easy to process and does not take processing time.
  • the processing time can be shortened, which is excellent in terms of processing speed and economy.
  • the positional accuracy of the optical transfer surface and the stability of the height of the optical transfer surface are poor, and it is necessary to adjust the position of the core mold every time the mold is removed for maintenance etc. It becomes.
  • Patent Document 1 has poor reproducibility when the core mold is detached and attached for maintenance or the like, and there is a possibility that the position adjustment of the core mold may be prolonged.
  • the present invention provides a manufacturing method of a molding die that can be fixed with the position and height of the optical transfer surface being accurately and stably even if the outer peripheral die and the core die are configured. Objective.
  • the present invention provides a molding die for an optical element that can accurately stabilize the position of the optical transfer surface and the like as described above, a method for regenerating the molding die, and manufacturing an optical element using the molding die. It aims to provide a method.
  • a manufacturing method of a molding die according to the present invention is a manufacturing method of a molding die for molding an optical element, which includes a first die and a second die.
  • an integration step of integrating the core mold and the outer peripheral mold.
  • the core mold and the outer peripheral mold can be individually processed. Fabrication can be facilitated. Further, since the core mold can be selected and incorporated into the outer peripheral mold, the yield of the molding dies can be improved. Moreover, after integrating the core mold and the outer peripheral mold by oxidation, it can be handled as a semi-permanent integrated mold. Thereby, adjustment of a metal mold
  • the method for manufacturing a molding die includes a position adjusting step for adjusting the position of the core die with respect to the outer peripheral die before the integration step.
  • the position of each core mold can be individually adjusted with respect to the outer peripheral mold.
  • the position adjusting step is performed by supporting the core mold in the outer peripheral mold with the positioning member.
  • the core mold before integrating the core mold and the outer peripheral mold, the core mold can be held or supported in a stable state with respect to the outer peripheral mold.
  • a positioning step of positioning the core mold with respect to the outer peripheral mold is provided after the position adjustment step and before the integration step.
  • the positioning means that the core mold is temporarily fixed to the outer peripheral mold. In this case, since the core mold is temporarily fixed after adjusting the position of the core mold, in the integration process of the next process, the adjusted core mold can be integrated without shifting.
  • the positioning step is performed by thermally expanding the positioning member by heating.
  • the core mold can be easily positioned with respect to the outer peripheral mold.
  • the core mold and the outer peripheral mold have the same degree of thermal expansion, and the positioning member has a higher thermal expansion coefficient than that of the core mold.
  • the positioning member having a higher coefficient of thermal expansion than the core mold or the outer peripheral mold can contact the outer peripheral mold prior to the core mold, thereby positioning the core mold.
  • the core mold is made of a first metal material
  • the positioning member is made of a second metal material different from the first metal material
  • the core mold and the positioning member are Due to the difference in ionization tendency, the facing portion between the core mold and the positioning member is selectively oxidized.
  • the core mold and the positioning member are oxidized. In this case, by oxidizing the boundary between the core mold and the positioning member away from the optical transfer surface, it is possible to prevent stress from being applied to the optical transfer surface and distortion on the optical transfer surface.
  • the method includes a coating process for forming an antioxidant film on at least the optical transfer surface of the core mold.
  • a coating process for forming an antioxidant film on at least the optical transfer surface of the core mold.
  • a molding die according to the present invention is a molding die for an optical element including a first die and a second die, and at least one of the first and second die is A core mold having an optical transfer surface that forms an optical surface of the optical element, and an outer peripheral mold that supports the core mold from the periphery, and at least one of the core mold and the outer mold is oxidized to form the core mold and the outer mold.
  • An oxide part is selectively formed between the core type and the outer peripheral type, and the core part and the outer peripheral type are integrated via the oxide part.
  • the core die and the outer peripheral die can be individually processed, so that the die can be manufactured. It becomes easy. Moreover, after integrating the core mold and the outer peripheral mold, they can be handled as an integrated mold. Thereby, adjustment of a metal mold
  • a portion other than the optical transfer surface of the core mold is selectively oxidized to form the oxidized portion.
  • an antioxidant film is formed on at least the optical transfer surface of the core type.
  • the core mold is supported by the positioning member, and the core mold and the outer peripheral mold have the same thermal expansion coefficient, and the positioning member is higher than the thermal expansion coefficient of the core mold.
  • a plurality of core molds are inserted in one outer peripheral mold.
  • a molding die in which the position and height of each core mold are precisely adjusted is obtained.
  • the method for regenerating a molding die according to the present invention includes a contact step of removing an oxidized portion by bringing an acid solution into contact with an oxidized portion of the molding die manufactured by the above-described manufacturing method of a molding die.
  • the core mold and the outer peripheral mold can be separated by dissolving the oxidized portion.
  • mold which have not deteriorated can be reused.
  • At least one of the core mold and the other outer peripheral mold is oxidized and selected in a state where the core mold from which the oxidized portion has been removed by the contact step is inserted into the other outer peripheral mold.
  • an integration step of forming an oxide portion made of oxide and integrating the core mold with another outer peripheral mold via the oxide portion is performed.
  • At least one of the outer peripheral mold and the other core mold is oxidized and selected in a state where the other core mold is inserted into the outer peripheral mold from which the oxidized portion has been removed by the contact step.
  • an integration step of forming an oxidized portion made of an oxide and integrating the outer peripheral mold and another core mold through the oxidized portion is provided.
  • the method for producing an optical element according to the present invention produces an optical element using the above-described molding die.
  • the optical element is molded using a molding die in which the position and height of the optical transfer surface with respect to the outer peripheral mold are precisely adjusted, a highly accurate surface shape, surface layout, etc.
  • the optical element which has can be manufactured. Further, the adjustment of the mold during the molding process can be shortened, and the manufacturing cost of the optical element can be reduced.
  • the method for manufacturing an optical element according to the present invention manufactures an optical element using a molding die regenerated by the above-described method for regenerating a molding die.
  • FIG. 3A is a partially enlarged cross-sectional view of a fixed mold in the molding die of FIG. 1
  • FIG. 3B is a side view of a core mold in the molding die.
  • 4A to 4D are views for explaining a method of manufacturing the molding die shown in FIG. 5A to 5C are views for explaining a method of regenerating the molding die shown in FIG. It is a side view of the core type
  • the molding mold 40 of the present embodiment includes a fixed mold 41 that is a first mold and a movable mold 42 that is a second mold. Both molds 41 and 42 can be opened and closed with a parting line PL as a boundary.
  • a mold space CV sandwiched between the fixed mold 41 and the movable mold 42 corresponds to the shape of a lens OL (see FIG. 2) as an optical element made of resin, for example.
  • the lens OL shown in FIG. 2 includes an optical function part OP having an optical function located substantially at the center of the lens OL, and an annular flange part FL extending from the optical function part OP in the outer diameter direction.
  • the fixed mold 41 includes a core mold 51, an outer peripheral mold 52, and a positioning member 53.
  • the core mold 51 is disposed to face a core mold 61 of the movable mold 42 described later in order to form a mold space CV.
  • the outer peripheral mold 52 is a mold member that holds or supports the core mold 51 from the periphery.
  • the outer peripheral mold 52 includes a through hole into which the core mold 51 is inserted.
  • the positioning member 53 is a member that positions the core die 51 from the back with respect to the outer peripheral die 52.
  • the core mold 51 and the outer peripheral mold 52 are generated later as a result of the surface of the core mold 51 being oxidized. They are integrated through an oxide portion OX made of oxide.
  • a plurality of core molds 51 are provided for one outer peripheral mold 52. That is, the outer peripheral mold 52 includes a plurality of through holes, and the core mold 51 is inserted at a plurality of locations in one outer peripheral mold 52.
  • an optical transfer surface 51a and a flange transfer surface 51b for defining a mold space CV are provided.
  • the optical transfer surface 51a is, for example, a concave surface, and is a transfer surface that molds one optical surface Sa of the optical function unit OP constituting the lens OL shown in FIG.
  • the flange transfer surface 51b is an annular flat surface, and is a transfer surface on which one flange surface Fa of the flange portion FL constituting the lens OL is molded.
  • a recess 51 c for fitting with the positioning member 53 is provided on the back surface of the core mold 51, that is, on the positioning member 53 side.
  • the diameter of the core mold 51 is, for example, 2.994 mm.
  • the core mold 51 is manufactured using WC (tungsten carbide), Ni, Cu, or an alloy thereof as a typical material.
  • the thermal expansion coefficient of WC is 3.8 ⁇ 10 ⁇ 6 to 6 ⁇ 10 ⁇ 6 [K ⁇ 1 ].
  • the thermal expansion coefficient of Ni is 13.4 ⁇ 10 ⁇ 6 [K ⁇ 1 ], and the thermal expansion coefficient of Ni is 16.5 ⁇ 10 ⁇ 6 [K ⁇ 1 ].
  • the material of the core mold 51 is not limited to the illustrated material, and any material that oxidizes and expands its volume may be used.
  • the core mold 51 has a surface portion other than the optical transfer surface 51a selectively oxidized.
  • the oxidized portion OX is formed in a ring shape or a cylindrical shape near the contact portion VX that is a boundary between the core die 51 and the positioning member 53 on the side surface of the core die 51.
  • the oxidized portion OX is an oxide of the material of the core mold 51, but is assumed to be different from the core mold 51 for convenience of explanation.
  • the oxidation part OX fills the clearance ZE between the core mold 51 and the outer peripheral mold 52, so that the core mold 51 is fixed to the outer peripheral mold 52.
  • the core mold 51 has an antioxidant film OM formed on at least one end of the optical transfer surface 51a so that the base surface to which the antioxidant film OM is applied is not oxidized.
  • the antioxidant film OM is coated on the side of the core mold 51 near the contact portion VX between the core mold 51 and the positioning member 53. That is, the member or material of the core mold 51 is exposed on the side surface of the core mold 51 near the contact portion VX.
  • the oxidized portion OX and the antioxidant film OM are exaggerated, but in actuality, they are thin films.
  • the outer peripheral mold 52 is formed with a through hole 52a having a cylindrical inner surface for inserting the core mold 51 and the positioning member 53. Moreover, the outer periphery type
  • mold 52 has the end surface 52b which forms the parting line PL.
  • the hole diameter of the through hole 52a of the outer peripheral mold 52 is, for example, 3.000 mm.
  • the distance (radial distance) between the core mold 51 and the outer peripheral mold 52 is preferably 1 to 7 ⁇ m on one side.
  • the outer peripheral mold 52 uses WC (tungsten carbide), Ni, Cu, or an alloy thereof as a typical material.
  • the outer peripheral mold 52 has the same thermal expansion coefficient or core mold as the core mold 51 so that the positions of the outer peripheral mold 52 and the core mold 51 do not change between hot (when molding is used) and cold (at room temperature).
  • a material having a thermal expansion coefficient equal to or lower than 51 is used.
  • the inner surface of the through hole 52a of the outer peripheral mold 52 is coated with an antioxidant film. Thereby, the oxidation of the through-hole 52a of the outer periphery mold
  • the positioning member 53 includes a lateral positioning member 53a and a height positioning member 53b in order to accurately determine the positions of the core mold 51 and the outer peripheral mold 52.
  • the lateral positioning member 53a is a cylindrical shaft-shaped member that positions the lateral direction of the core mold 51 (the XY direction perpendicular to the axis AX or the Z direction in FIG. 1).
  • the positioning member 53b in the height direction is a columnar member that positions the core mold 51 in the height direction (the axis AX in FIG. 1 or the Z direction parallel to the Z direction).
  • the positioning member 53 uses SUS (stainless steel) or the like as a typical material.
  • the lateral positioning member 53 a uses a material having a higher coefficient of thermal expansion than the core mold 51 and the outer peripheral mold 52.
  • the thermal expansion coefficient of SUS410 is 10.4 ⁇ 10 ⁇ 6 [K ⁇ 1 ]
  • the thermal expansion coefficient of SUS304 is 17.3 ⁇ 10 ⁇ 6 [K ⁇ 1 ].
  • the thermal expansion of the core mold 51 and the outer peripheral mold 52 is WC and the material of the lateral positioning member 53a is SUS304
  • the thermal expansion of the core mold 51 and the outer peripheral mold 52 from the lateral positioning member 53a.
  • the material of the positioning member 53a in the horizontal direction and the positioning member 53b in the height direction may be the same or different.
  • the movable mold 42 includes a core mold 61, an outer peripheral mold 62, and a positioning member 63.
  • the movable mold 42 is movable along the axis AX and opens and closes with respect to the fixed mold 41.
  • the core mold 61 is disposed to face the core mold 51 of the fixed mold 41 in order to form a mold space CV.
  • the outer peripheral mold 62 is a mold member that holds or supports the core mold 61 from the periphery.
  • the positioning member 63 is a member that positions the core die 61 from the back with respect to the outer peripheral die 62.
  • the core mold 61 and the outer peripheral mold 62 are integrated with each other by generating an oxidized portion when the core mold 61 is oxidized.
  • the structures of the core mold 61, the outer periphery mold 62, and the positioning member 63 are substantially the same as the structures of the core mold 51, the outer periphery mold 52, and the positioning member 53 of the fixed mold 41, and will not be described below as appropriate.
  • a plurality of core molds 61 are provided for one outer peripheral mold 62.
  • an optical transfer surface 61a and a flange transfer surface 61b for defining a mold space CV are provided.
  • the optical transfer surface 61a is a concave surface, and is a transfer surface that molds the other optical surface Sb of the optical function part OP constituting the lens OL shown in FIG.
  • the flange transfer surface 61b is an annular flat surface, and is a transfer surface for forming the other flange surface Fb of the flange portion FL constituting the lens OL.
  • a recess 61 c for fitting with the positioning member 63 is provided on the back surface of the core mold 61, that is, on the positioning member 63 side.
  • the outer peripheral mold 62 a through hole 62a for inserting the core mold 61 and the positioning member 63 is formed. Moreover, the outer periphery type
  • mold 62 has the end surface 62b which forms the parting line PL.
  • the positioning member 63 includes a lateral positioning member 63a and a height positioning member 63b in order to accurately determine the positions of the core mold 61 and the outer peripheral mold 62. At the tip of the positioning member 63a, that is, on the core die 61 side, a convex portion 63c for fitting with the core die 61 is provided.
  • the molding die 40 is provided with a flow path for supplying resin to the mold space CV.
  • the core mold 51, the outer periphery mold 52, and the positioning member 53 are each produced.
  • Each member 51, 52, 53 is produced by, for example, cutting.
  • WC is used as the material of the core mold 51 and the outer peripheral mold 52.
  • SUS is used as the material of the positioning member 53.
  • an anti-oxidation film OM is coated on the portion of the core mold 51 that is not desired to be oxidized (for example, near the optical transfer surface 51a or the side surface of the core mold 51 unrelated to positioning) by using, for example, vacuum deposition (see FIG. (Refer FIG. 3A etc.).
  • the inner surface of the through hole 52a of the outer peripheral mold 52 is also coated with an antioxidant film (not shown) using, for example, vacuum deposition.
  • the positioning member 53b in the height direction is inserted into the through hole 52a of the outer peripheral mold 52, and the bottom surface of the member 53a is brought into contact with the upper surface so that the height of the core mold 51 with respect to the outer peripheral mold 52 becomes a desired state. Adjust to. At this time, the height is determined in consideration of the difference in coefficient of thermal expansion between the outer peripheral mold 52 and the positioning members 53a and 53b.
  • the core mold 51 is supported in the outer peripheral mold 52 by the lateral positioning member 53a and the height positioning member 53b.
  • a microscope, a laser displacement meter, or the like can be used as an indirect confirmation method of the position.
  • a laser displacement meter it can be easily observed even at high temperatures. Therefore, when a laser displacement meter is used, positioning can be performed while adjusting the position in the positioning step.
  • the side surface of the core mold 51 and the inner wall of the through hole 52a of the outer peripheral mold 52 are not in contact. That is, the final position of the core mold 51 and the positioning member 53 is determined by the thermal expansion of the positioning member 53, and the center of the outer peripheral mold 52 and the center of the core mold 51 coincide. Further, the position of the core mold 51 in the direction of the optical axis AX is set to a correct position where the molded product has an intended thickness.
  • the surfaces of the optical transfer surface 51a and the outer peripheral mold 52 are provided with an antioxidant film OM and are not oxidized by heat treatment.
  • the SUS member of the positioning member 53 and the WC member of the outer peripheral mold 52 are in close contact with each other under heating, the oxidation does not proceed. Even if there is a gap between the positioning member 53 and the outer peripheral mold 52, oxidation does not proceed because a passive layer of Cr oxide is formed on the SUS surface.
  • the volume of each member 51, 52, 53 contracts. Even if the volume of each member 51, 52, 53 shrinks, the core mold 51 and the outer peripheral mold 52 are in a semi-permanently fixed state via the oxidation part OX.
  • the core mold 51 is fixed to the outer peripheral mold 52 is confirmed, for example, by applying the same load as at the time of molding, or by performing trial driving (molding).
  • the fixed mold 41 in which the core mold 51 is fixed to the outer peripheral mold 52 in a state where the position of the core mold 51 is accurately adjusted is completed.
  • positioning member 53 may be removed from the outer peripheral mold 52 once it has been oxidized and fixed.
  • the molding die 40 is used by being incorporated in an injection molding machine, and the fixed die 41 is fixed to a stationary platen of the injection molding machine, and a movable die 42 is used. Is fixed to the movable platen of the injection molding machine.
  • both molds 41 and 42 are heated to a temperature suitable for molding by a mold temperature controller (not shown).
  • the movable platen that supports the movable die 42 is brought close to the fixed platen that supports the fixed die 41, and is moved to the die contact position where the fixed die 41 and the movable die 42 are in contact with each other to close the die.
  • mold clamping is performed to clamp the fixed mold 41 and the movable mold 42 with a necessary pressure.
  • an injection device (not shown) is operated to inject the molten resin into the mold space CV between the fixed mold 41 and the movable mold 42 that are clamped at a necessary pressure. .
  • the fixed mold 41 and the movable mold 42 are appropriately heated by the mold temperature controller, and the molten resin supplied from the injection apparatus is slowly cooled.
  • the fixed mold 41 and the movable mold 42 are separated from each other by performing mold opening for retracting the movable mold 42.
  • the lens OL as an optical element can be taken out between the both molds 41 and 42.
  • the optical transfer surfaces 51a and 61a of the core dies 51 and 61 of both the dies 41 and 42 may be damaged or dust may not be used.
  • the core molds 51 and 61 and the outer peripheral molds 52 and 62 can be separated by the reproduction method described below, and new core molds 51 and 61 can be incorporated into the outer peripheral molds 52 and 62, for example.
  • the core mold 51 and the outer periphery mold 52 are immersed in a solution of an acid or the like (for example, hydrochloric acid or an acid containing hydrochloric acid).
  • an acid or the like for example, hydrochloric acid or an acid containing hydrochloric acid.
  • the oxidized portion is removed.
  • the core mold 51 and the outer peripheral mold 52 are separated.
  • the positioning member 53 remains in the fixed mold 41, the positioning member 53 is also separated.
  • the state of the separated core mold 51 and outer peripheral mold 52 is confirmed, and a reusable member is selected. Thereby, the separated core mold 51 and outer peripheral mold 52 can be selectively replaced with new ones.
  • the core mold 51 is reused, thereby reducing the manufacturing cost of the molding die 40. That is, by removing the oxidation part OX, the core mold 51 and the outer peripheral mold 52 are separated, and a usable mold part is regenerated. Instead of immersing the mold in an acid solution or the like, it may be brought into contact with at least the oxidation part OX by spraying an acid solution (another type contact process). In this case, the oxidized portion OX can be easily removed even if the mold size is large.
  • the core molds 51 and 61 and the outer peripheral molds 52 and 62 can be individually processed by cutting the base material, unlike the integral mold.
  • the mold can be easily manufactured.
  • the core molds 51 and 61 can be selected and incorporated into the outer peripheral molds 52 and 62, the yield of the molding dies 40 can be improved.
  • the core molds 51 and 61 and the outer peripheral molds 52 and 62 are integrated by oxidation, they can be handled as a semi-permanently integrated mold. Thereby, adjustment of a metal mold
  • a lens used in a compound-eye optical system of a compound-eye imaging device that forms a plurality of images on an image sensor using a plurality of lenses arranged two-dimensionally and reconstructs one image from the obtained plurality of images.
  • an optical element having a plurality of optical surfaces such as an array
  • the molding die 40 of this embodiment since the molding die 40 can be assembled after the core dies 51 and 61 are selected, the yield of the molding die 40 can be improved.
  • the molding die 40 of this embodiment can separate the core molds 51 and 61 and the outer peripheral molds 52 and 62 by melting the oxidized portion. Thereby, the core type
  • the molding die and the like of the second embodiment is a modification of the molding die and the like of the first embodiment, and the parts that are not particularly described are the same as those of the first embodiment.
  • the core mold 51 is coated with an antioxidant film OM so that two members of the core mold 51 are exposed.
  • the oxidation part OX is formed in two places in the shape of a ring zone in the vicinity of the contact part VX (see FIG. 3A) that is the boundary between the core mold 51 of the core mold 51 and the positioning member 53.
  • the molding die etc. which concern on this embodiment were demonstrated, the molding die etc. which concern on this invention are not restricted to said thing.
  • the shape, size, number, arrangement interval, and the like of the optical transfer surfaces 51a and 61a and the like can be appropriately changed according to the application and function.
  • the core dies 51 and 61 and the positioning member 53 are fitted, but the core dies 51 and 61 and the positioning member 53 may be welded.
  • the pattern and range of the antioxidant film OM applied to the core molds 51 and 61 are examples, and can be changed as appropriate.
  • the core molds 51 and 61 are oxidized, but the outer peripheral molds 52 and 62 may be oxidized.
  • the entire core mold 51, 61 is coated with the antioxidant film OM.
  • an antioxidant film is coated on the through holes 52a and 62a of the outer peripheral molds 52 and 62 other than the portions to be oxidized (portions away from the optical transfer surfaces 51a and 61a). Note that only the necessary portions of both the core molds 51 and 61 and the outer peripheral molds 52 and 62 may be selectively oxidized.
  • a plurality of through holes are provided in one outer peripheral mold 52, 62 and a plurality of core molds 51, 61 are provided.
  • the number of core molds 51, 61 depends on the use and function of the molded product. It can be changed as appropriate.
  • one or more core molds 51 and 61 may be provided in one outer peripheral mold 52 and 62.
  • the core molds 51 and 61 are fixed to the outer peripheral molds 52 and 62 through the oxidation part OX in both the fixed mold 41 and the movable mold 42. Only one of 42 may be fixed by the above method. For example, if only the core mold 51 of the fixed mold 41 is fixed by the above method, the core mold 61 of the movable mold 42 can be used as a protruding mechanism.
  • the molding die 40 is an injection molding die, but it may be a pressing die for molding a glass molded product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The purpose of the present invention is to provide a molding die manufacturing method capable of fixing the position and height of optical transfer surfaces stably and with good precision even when the molding die is configured from peripheral molds and core molds. A method for manufacturing a molding die (40) provided with a fixed die (41), which is a first die, and a movable die (42), which is a second die. The method comprises: a member-manufacturing process for manufacturing the core molds (51, 61) and peripheral molds (52, 62) that configure the fixed die (41) and the movable die (42), the core molds having optical transfer surfaces (51a, 61a) for forming the optical surfaces (Sa, Sb) of a lens (OL), which is an optical element, and the peripheral molds being for supporting the core molds (51, 61) from the perimeter; and a unifying process for unifying the core molds (51, 61) with the peripheral molds (52, 62) via an oxidized section (OX) formed between the core molds (51, 61) and the peripheral molds (52, 62) by oxidizing the core molds (51, 61) when the core molds (51, 61) are inserted in the peripheral molds (52, 62).

Description

成形金型の製造方法、成形金型、成形金型の再生方法、及び光学素子の製造方法Method for manufacturing molding die, molding die, method for regenerating molding die, and method for manufacturing optical element
 本発明は、光学素子成形用の成形金型の製造方法、光学素子用の成形金型、当該成形金型の再生方法、及び当該成形金型を用いた光学素子の製造方法に関する。 The present invention relates to a method for producing a molding die for molding an optical element, a molding die for an optical element, a method for regenerating the molding die, and a method for producing an optical element using the molding die.
 光学素子を製造するための成形金型として、外周型とコア型とを組み合わせた金型がある。この金型は、加工しやすく、加工時間がかからないという利点がある。特に、例えば光学素子の多数個取り用の金型の場合において、加工時間を短縮することができ、加工の迅速性及び経済性の観点で優れている。 There is a mold that combines an outer peripheral mold and a core mold as a mold for manufacturing an optical element. This mold is advantageous in that it is easy to process and does not take processing time. In particular, in the case of a mold for taking a large number of optical elements, for example, the processing time can be shortened, which is excellent in terms of processing speed and economy.
 しかしながら、外周型とコア型とを組み合わせた金型では、光学転写面の位置精度及び光学転写面の高さの安定性が悪く、メンテナンス等で金型を取り外す度にコア型の位置調整が必要となる。特に、高精度な面形状を要求される光学素子において、コア型と外周型との位置決めを高精度に行う必要がある場合に、コア型の位置を精度良く安定した状態で固定することが重要である。 However, in the mold that combines the outer periphery mold and the core mold, the positional accuracy of the optical transfer surface and the stability of the height of the optical transfer surface are poor, and it is necessary to adjust the position of the core mold every time the mold is removed for maintenance etc. It becomes. In particular, in optical elements that require high-accuracy surface shapes, it is important to fix the position of the core mold in an accurate and stable state when it is necessary to position the core mold and the outer peripheral mold with high precision. It is.
 また、コア型の位置決め方法として、高温時における外周型とコア型との熱膨張差を利用して、キャビティ(型空間)に対して位置決めを行う方法がある(特許文献1参照)。 Also, as a method for positioning the core mold, there is a method for positioning with respect to the cavity (mold space) using a difference in thermal expansion between the outer peripheral mold and the core mold at a high temperature (see Patent Document 1).
 しかしながら、特許文献1の方法では、メンテナンス等でコア型の脱着を行ったときの繰り返しの再現性が悪く、コア型の位置調整が長引くおそれがある。 However, the method of Patent Document 1 has poor reproducibility when the core mold is detached and attached for maintenance or the like, and there is a possibility that the position adjustment of the core mold may be prolonged.
特開平11-90964号公報JP 11-90964 A
 本発明では、外周型とコア型とで構成されていても、これらを光学転写面の位置及び高さを精度良く安定した状態で固定することができる成形金型の製造方法を提供することを目的とする。 The present invention provides a manufacturing method of a molding die that can be fixed with the position and height of the optical transfer surface being accurately and stably even if the outer peripheral die and the core die are configured. Objective.
 本発明は、上述のように光学転写面の位置等を精度良く安定させることができる光学素子用の成形金型、当該成形金型の再生方法、及び当該成形金型を用いた光学素子の製造方法を提供することを目的とする。 The present invention provides a molding die for an optical element that can accurately stabilize the position of the optical transfer surface and the like as described above, a method for regenerating the molding die, and manufacturing an optical element using the molding die. It aims to provide a method.
 上記課題を解決するため、本発明に係る成形金型の製造方法は、第1の金型と、第2の金型とを備える光学素子成形用の成形金型の製造方法であって、第1及び第2の金型の少なくとも一方の金型を構成する光学素子の光学面を形成する光学転写面を有するコア型と、コア型を周囲から支持する外周型とを作製する部材作製工程と、コア型を外周型に挿入した状態で、コア型及び外周型の少なくとも一方を酸化させ、コア型と外周型との間に選択的に酸化物からなる酸化部を形成し、該酸化部を介してコア型と外周型とを一体化する一体化工程とを備える。 In order to solve the above problems, a manufacturing method of a molding die according to the present invention is a manufacturing method of a molding die for molding an optical element, which includes a first die and a second die. A member manufacturing step of manufacturing a core mold having an optical transfer surface that forms an optical surface of an optical element constituting at least one of the first and second molds, and an outer peripheral mold that supports the core mold from the periphery; In the state where the core mold is inserted into the outer peripheral mold, at least one of the core mold and the outer peripheral mold is oxidized, and an oxide portion made of an oxide is selectively formed between the core mold and the outer peripheral mold. And an integration step of integrating the core mold and the outer peripheral mold.
 上記成形金型の製造方法によれば、母材を切削加工することで一体的な金型を製造する場合と異なり、コア型と外周型とを個別に加工することができるため、金型の作製を容易にすることができる。また、コア型の選別をして外周型に組み込むことができるため、成形金型の歩留まりを向上させることができる。また、酸化によってコア型と外周型とを一体化させた後は、半恒久的に一体化した金型として取り扱うことができる。これにより、製造した成形金型を用いて光学素子を製造する成形工程の際に金型の調整を省略することができ、光学素子の製造コストを下げることができる。つまり、本製造方法により、一体化した金型のメリットと、一体化していない金型のメリットの双方を併せ持つ成形金型を製造することができる。 According to the above method for manufacturing a mold, unlike the case of manufacturing an integral mold by cutting a base material, the core mold and the outer peripheral mold can be individually processed. Fabrication can be facilitated. Further, since the core mold can be selected and incorporated into the outer peripheral mold, the yield of the molding dies can be improved. Moreover, after integrating the core mold and the outer peripheral mold by oxidation, it can be handled as a semi-permanent integrated mold. Thereby, adjustment of a metal mold | die can be abbreviate | omitted in the shaping | molding process which manufactures an optical element using the manufactured metal mold | die, and the manufacturing cost of an optical element can be reduced. That is, according to this manufacturing method, it is possible to manufacture a molding die having both the advantages of an integrated die and the advantages of a non-integrated die.
 本発明の具体的な態様又は観点では、上記成形金型の製造方法において、一体化工程前に、外周型に対するコア型の位置を調整する位置調整工程を備える。この場合、コア型が複数ある場合、各コア型を外周型に対して個別に位置調整することができる。 In a specific aspect or viewpoint of the present invention, the method for manufacturing a molding die includes a position adjusting step for adjusting the position of the core die with respect to the outer peripheral die before the integration step. In this case, when there are a plurality of core molds, the position of each core mold can be individually adjusted with respect to the outer peripheral mold.
 本発明の別の観点では、位置調整工程は、コア型を位置決め部材で外周型内に支持することによって行う。この場合、コア型と外周型とを一体化させる前に、外周型に対してコア型を安定した状態で保持又は支持することができる。 In another aspect of the present invention, the position adjusting step is performed by supporting the core mold in the outer peripheral mold with the positioning member. In this case, before integrating the core mold and the outer peripheral mold, the core mold can be held or supported in a stable state with respect to the outer peripheral mold.
 本発明のさらに別の観点では、位置調整工程後、一体化工程前に、外周型に対してコア型を位置決めする位置決め工程を備える。ここで、位置決めとは、外周型に対してコア型を一時的に固定させることを意味する。この場合、コア型の位置を調整した後にコア型を一時的に固定させるため、次工程の一体化工程において、調整したコア型の位置をずらすことなく一体化させることができる。 In still another aspect of the present invention, a positioning step of positioning the core mold with respect to the outer peripheral mold is provided after the position adjustment step and before the integration step. Here, the positioning means that the core mold is temporarily fixed to the outer peripheral mold. In this case, since the core mold is temporarily fixed after adjusting the position of the core mold, in the integration process of the next process, the adjusted core mold can be integrated without shifting.
 本発明のさらに別の観点では、位置決め工程は、位置決め部材を加熱することにより熱膨張させることによって行う。この場合、コア型を外周型に対して容易に位置決めすることができる。 In yet another aspect of the present invention, the positioning step is performed by thermally expanding the positioning member by heating. In this case, the core mold can be easily positioned with respect to the outer peripheral mold.
 本発明のさらに別の観点では、コア型と外周型とは同程度の熱膨張率を有し、位置決め部材は、コア型の熱膨張率よりも高い熱膨張率を有する。この場合、コア型や外周型よりも熱膨張率が高い位置決め部材が、コア型よりも先に外周型と接触し、コア型を位置決めすることができる。 In yet another aspect of the present invention, the core mold and the outer peripheral mold have the same degree of thermal expansion, and the positioning member has a higher thermal expansion coefficient than that of the core mold. In this case, the positioning member having a higher coefficient of thermal expansion than the core mold or the outer peripheral mold can contact the outer peripheral mold prior to the core mold, thereby positioning the core mold.
 本発明のさらに別の観点では、コア型は第1の金属材料からなり、位置決め部材は第1の金属材料とは異なる第2の金属材料からなり、一体化工程において、コア型と位置決め部材とのイオン化傾向の差により、コア型と位置決め部材との対向部位を選択的に酸化させる。この場合、光学転写面から離れたコア型と位置決め部材との境界を酸化させることにより、光学転写面に応力がかかって光学転写面に歪が生じることを防ぐことができる。 In still another aspect of the present invention, the core mold is made of a first metal material, the positioning member is made of a second metal material different from the first metal material, and in the integration step, the core mold and the positioning member are Due to the difference in ionization tendency, the facing portion between the core mold and the positioning member is selectively oxidized. In this case, by oxidizing the boundary between the core mold and the positioning member away from the optical transfer surface, it is possible to prevent stress from being applied to the optical transfer surface and distortion on the optical transfer surface.
 本発明のさらに別の観点では、コア型の少なくとも光学転写面に酸化防止膜を形成するコーティング工程を備える。この場合、光学転写面等の酸化防止膜がコートされた部分が酸化することを防ぐことができる。また、必要な部分のみを選択的に酸化させることができる。 In still another aspect of the present invention, the method includes a coating process for forming an antioxidant film on at least the optical transfer surface of the core mold. In this case, it is possible to prevent the portion coated with the antioxidant film such as the optical transfer surface from being oxidized. Moreover, only a necessary part can be selectively oxidized.
 本発明に係る成形金型は、第1の金型と、第2の金型とを備える光学素子用の成形金型であって、第1及び第2の金型の少なくとも一方の金型は、光学素子の光学面を形成する光学転写面を有するコア型と、コア型を周囲から支持する外周型とを有し、コア型及び外周型の少なくとも一方が酸化してコア型と外周型との間に選択的に酸化部を形成し、コア型と外周型とが酸化部を介して一体化している。 A molding die according to the present invention is a molding die for an optical element including a first die and a second die, and at least one of the first and second die is A core mold having an optical transfer surface that forms an optical surface of the optical element, and an outer peripheral mold that supports the core mold from the periphery, and at least one of the core mold and the outer mold is oxidized to form the core mold and the outer mold. An oxide part is selectively formed between the core type and the outer peripheral type, and the core part and the outer peripheral type are integrated via the oxide part.
 上記成形金型によれば、母材を切削加工することで一体的なものとなっている金型と異なり、コア型と外周型とを個別に加工することができるため、金型の作製が容易になる。また、コア型と外周型とを一体化させた後は、一体化した金型として取り扱うことができる。これにより、当該成形金型を用いて光学素子を製造する成形工程の際に金型の調整を短縮することができ、光学素子の製造コストを下げることができる。 According to the above molding die, unlike the die that is integrated by cutting the base material, the core die and the outer peripheral die can be individually processed, so that the die can be manufactured. It becomes easy. Moreover, after integrating the core mold and the outer peripheral mold, they can be handled as an integrated mold. Thereby, adjustment of a metal mold | die can be shortened in the shaping | molding process which manufactures an optical element using the said shaping | molding metal mold | die, and the manufacturing cost of an optical element can be reduced.
 本発明の別の観点では、上記成形金型において、コア型のうち光学転写面以外の部分が選択的に酸化して前記酸化部が形成されている。 In another aspect of the present invention, in the molding die, a portion other than the optical transfer surface of the core mold is selectively oxidized to form the oxidized portion.
 本発明のさらに別の観点では、コア型の少なくとも光学転写面に酸化防止膜が形成されている。 In yet another aspect of the present invention, an antioxidant film is formed on at least the optical transfer surface of the core type.
 本発明のさらに別の観点では、コア型は、位置決め部材で支持され、コア型と外周型とは同程度の熱膨張率を有し、位置決め部材は、コア型の熱膨張率よりも高い。 In yet another aspect of the present invention, the core mold is supported by the positioning member, and the core mold and the outer peripheral mold have the same thermal expansion coefficient, and the positioning member is higher than the thermal expansion coefficient of the core mold.
 本発明のさらに別の観点では、コア型は、1つの外周型において複数挿入されている。この場合、各コア型の位置及び高さが精密に調整された成形金型となる。 In yet another aspect of the present invention, a plurality of core molds are inserted in one outer peripheral mold. In this case, a molding die in which the position and height of each core mold are precisely adjusted is obtained.
 本発明に係る成形金型の再生方法は、上述の成形金型の製造方法によって製造された成形金型の酸化部に酸の溶液を接触させて酸化部を除去する接触工程を備える。 The method for regenerating a molding die according to the present invention includes a contact step of removing an oxidized portion by bringing an acid solution into contact with an oxidized portion of the molding die manufactured by the above-described manufacturing method of a molding die.
 上記成形金型の再生方法によれば、酸化した部分を溶かすことで、コア型と外周型とを分離することができる。これにより、劣化していないコア型や外周型を再利用することができる。 According to the method for regenerating the molding die, the core mold and the outer peripheral mold can be separated by dissolving the oxidized portion. Thereby, the core type | mold and outer periphery type | mold which have not deteriorated can be reused.
 本発明の別の観点では、上記再生方法において、接触工程により酸化部が除去されたコア型を他の外周型に挿入した状態で、コア型及び他の外周型の少なくとも一方を酸化させ、選択的に酸化物からなる酸化部を形成し、該酸化部を介してコア型と他の外周型とを一体化させる一体化工程を備える。 In another aspect of the present invention, in the above regeneration method, at least one of the core mold and the other outer peripheral mold is oxidized and selected in a state where the core mold from which the oxidized portion has been removed by the contact step is inserted into the other outer peripheral mold. And an integration step of forming an oxide portion made of oxide and integrating the core mold with another outer peripheral mold via the oxide portion.
 本発明の別の観点では、上記再生方法において、接触工程により酸化部が除去された外周型に他のコア型を挿入した状態で、外周型及び他のコア型の少なくとも一方を酸化させ、選択的に酸化物からなる酸化部を形成し、該酸化部を介して外周型と他のコア型とを一体化させる一体化工程を備える。 In another aspect of the present invention, in the above regeneration method, at least one of the outer peripheral mold and the other core mold is oxidized and selected in a state where the other core mold is inserted into the outer peripheral mold from which the oxidized portion has been removed by the contact step. In particular, there is provided an integration step of forming an oxidized portion made of an oxide and integrating the outer peripheral mold and another core mold through the oxidized portion.
 本発明に係る光学素子の製造方法は、上述の成形金型を用いて光学素子を製造する。 The method for producing an optical element according to the present invention produces an optical element using the above-described molding die.
 上記光学素子の製造方法によれば、外周型に対する光学転写面の位置及び高さが精密に調整された成形金型を用いて光学素子を成形するため、高精度な面形状や面配置等を有する光学素子を製造することができる。また、成形工程の際に金型の調整を短縮することができ、光学素子の製造コストを下げることができる。 According to the method for manufacturing an optical element, since the optical element is molded using a molding die in which the position and height of the optical transfer surface with respect to the outer peripheral mold are precisely adjusted, a highly accurate surface shape, surface layout, etc. The optical element which has can be manufactured. Further, the adjustment of the mold during the molding process can be shortened, and the manufacturing cost of the optical element can be reduced.
 本発明に係る光学素子の製造方法は、上述の成形金型の再生方法によって再生された成形金型を用いて光学素子を製造する。 The method for manufacturing an optical element according to the present invention manufactures an optical element using a molding die regenerated by the above-described method for regenerating a molding die.
第1実施形態の成形金型の側方断面図である。It is side sectional drawing of the shaping die of 1st Embodiment. 図1の成形金型によって成形される光学素子の側面図である。It is a side view of the optical element shape | molded by the shaping die of FIG. 図3Aは、図1の成形金型のうち固定金型の部分拡大断面図であり、図3Bは、成形金型のうちコア型の側面図である。FIG. 3A is a partially enlarged cross-sectional view of a fixed mold in the molding die of FIG. 1, and FIG. 3B is a side view of a core mold in the molding die. 図4A~4Dは、図1に示す成形金型の製造方法を説明する図である。4A to 4D are views for explaining a method of manufacturing the molding die shown in FIG. 図5A~5Cは、図1に示す成形金型の再生方法を説明する図である。5A to 5C are views for explaining a method of regenerating the molding die shown in FIG. 第2実施形態の成形金型のコア型の側面図である。It is a side view of the core type | mold of the shaping die of 2nd Embodiment.
〔第1実施形態〕
 以下、本発明の第1実施形態である成形金型等について、図面を参照しつつ説明する。
[First Embodiment]
Hereinafter, the molding die etc. which are 1st Embodiment of this invention are demonstrated, referring drawings.
A)成形金型
 図1に示すように、本実施形態の成形金型40は、第1金型である固定金型41と第2金型である可動金型42とで構成される。両金型41,42は、パーティングラインPLを境として開閉可能になっている。固定金型41と可動金型42とに挟まれた型空間CVは、例えば樹脂製の光学素子としてのレンズOL(図2参照)の形状に対応するものとなっている。図2に示すレンズOLは、レンズOLの略中央に位置する光学的機能を有する光学機能部OPと、光学機能部OPから外径方向に延在する環状のフランジ部FLとを備える。
A) Molding Mold As shown in FIG. 1, the molding mold 40 of the present embodiment includes a fixed mold 41 that is a first mold and a movable mold 42 that is a second mold. Both molds 41 and 42 can be opened and closed with a parting line PL as a boundary. A mold space CV sandwiched between the fixed mold 41 and the movable mold 42 corresponds to the shape of a lens OL (see FIG. 2) as an optical element made of resin, for example. The lens OL shown in FIG. 2 includes an optical function part OP having an optical function located substantially at the center of the lens OL, and an annular flange part FL extending from the optical function part OP in the outer diameter direction.
 固定金型41は、コア型51と、外周型52と、位置決め部材53とを備える。ここで、コア型51は、型空間CVを形成するため、後述する可動金型42のコア型61に対向して配置される。外周型52は、コア型51を周囲から保持又は支持する型部材である。換言すれば、外周型52はコア型51が挿入される貫通孔を備えている。位置決め部材53は、外周型52に対してコア型51を背後から位置決めする部材である。図3Aに拡大して示すように、本実施形態において、コア型51と外周型52とは、コア型51の表面が酸化する結果として、コア型51と外周型52とが後発的に生成された酸化物からなる酸化部OXを介して一体化している。 The fixed mold 41 includes a core mold 51, an outer peripheral mold 52, and a positioning member 53. Here, the core mold 51 is disposed to face a core mold 61 of the movable mold 42 described later in order to form a mold space CV. The outer peripheral mold 52 is a mold member that holds or supports the core mold 51 from the periphery. In other words, the outer peripheral mold 52 includes a through hole into which the core mold 51 is inserted. The positioning member 53 is a member that positions the core die 51 from the back with respect to the outer peripheral die 52. As shown in an enlarged view in FIG. 3A, in this embodiment, the core mold 51 and the outer peripheral mold 52 are generated later as a result of the surface of the core mold 51 being oxidized. They are integrated through an oxide portion OX made of oxide.
 コア型51は、1つの外周型52に対して複数設けられている。つまり、外周型52は複数の貫通孔を備えており、コア型51は、1つの外周型52において複数個所に挿入されている。コア型51の先端には、型空間CVを画成するための光学転写面51aとフランジ転写面51bとが設けられている。光学転写面51aは、例えば凹面であり、図2に示すレンズOLを構成する光学機能部OPの一方の光学面Saを成形する転写面である。フランジ転写面51bは、環状の平面であり、レンズOLを構成するフランジ部FLの一方のフランジ面Faを成形する転写面である。コア型51の背面、すなわち位置決め部材53側には、位置決め部材53と嵌合するための凹部51cが設けられている。コア型51の直径は、例えば2.994mmである。 A plurality of core molds 51 are provided for one outer peripheral mold 52. That is, the outer peripheral mold 52 includes a plurality of through holes, and the core mold 51 is inserted at a plurality of locations in one outer peripheral mold 52. At the tip of the core mold 51, an optical transfer surface 51a and a flange transfer surface 51b for defining a mold space CV are provided. The optical transfer surface 51a is, for example, a concave surface, and is a transfer surface that molds one optical surface Sa of the optical function unit OP constituting the lens OL shown in FIG. The flange transfer surface 51b is an annular flat surface, and is a transfer surface on which one flange surface Fa of the flange portion FL constituting the lens OL is molded. A recess 51 c for fitting with the positioning member 53 is provided on the back surface of the core mold 51, that is, on the positioning member 53 side. The diameter of the core mold 51 is, for example, 2.994 mm.
 コア型51は、典型的な材料としてWC(タングステンカーバイド)、Ni、Cu又はそれらの合金等を用いて作製される。WCの熱膨張率は、3.8×10-6~6×10-6〔K-1〕である。また、Niの熱膨張率は、13.4×10-6〔K-1〕であり、Niの熱膨張率は、16.5×10-6〔K-1〕である。なお、コア型51の材料は、例示したものに限らず、酸化して体積が膨張する材料であればよい。 The core mold 51 is manufactured using WC (tungsten carbide), Ni, Cu, or an alloy thereof as a typical material. The thermal expansion coefficient of WC is 3.8 × 10 −6 to 6 × 10 −6 [K −1 ]. The thermal expansion coefficient of Ni is 13.4 × 10 −6 [K −1 ], and the thermal expansion coefficient of Ni is 16.5 × 10 −6 [K −1 ]. The material of the core mold 51 is not limited to the illustrated material, and any material that oxidizes and expands its volume may be used.
 図3A及び3Bに示すように、コア型51は、光学転写面51a以外の表面部分が選択的に酸化している。具体的には、コア型51の側面のうちコア型51と位置決め部材53との境界である接触部VX付近に酸化部OXが輪帯状又は筒状に形成されている。酸化部OXは、コア型51の材料の酸化物であるが、説明の便宜上、コア型51とは別のものであるとする。酸化部OXがコア型51と外周型52とのクリアランスZEを埋めることにより、コア型51が外周型52に固定される。コア型51には少なくとも一端の光学転写面51aに酸化防止膜OMが形成されており、酸化防止膜OMを施した下地面が酸化しないようにしている。具体的には、コア型51と位置決め部材53との接触部VX付近のコア型51の側面以外に酸化防止膜OMをコーティングする。つまり、接触部VX付近のコア型51の側面については、コア型51の部材又は材料が露出した状態となる。なお、説明のために図では、酸化部OXや酸化防止膜OMを誇張して描いているが、実際には薄い膜となっている。 As shown in FIGS. 3A and 3B, the core mold 51 has a surface portion other than the optical transfer surface 51a selectively oxidized. Specifically, the oxidized portion OX is formed in a ring shape or a cylindrical shape near the contact portion VX that is a boundary between the core die 51 and the positioning member 53 on the side surface of the core die 51. The oxidized portion OX is an oxide of the material of the core mold 51, but is assumed to be different from the core mold 51 for convenience of explanation. The oxidation part OX fills the clearance ZE between the core mold 51 and the outer peripheral mold 52, so that the core mold 51 is fixed to the outer peripheral mold 52. The core mold 51 has an antioxidant film OM formed on at least one end of the optical transfer surface 51a so that the base surface to which the antioxidant film OM is applied is not oxidized. Specifically, the antioxidant film OM is coated on the side of the core mold 51 near the contact portion VX between the core mold 51 and the positioning member 53. That is, the member or material of the core mold 51 is exposed on the side surface of the core mold 51 near the contact portion VX. For the sake of explanation, in the drawing, the oxidized portion OX and the antioxidant film OM are exaggerated, but in actuality, they are thin films.
 外周型52には、コア型51や位置決め部材53を挿入させるため円筒内側面を有する貫通孔52aが形成されている。また、外周型52は、パーティングラインPLを形成する端面52bを有する。外周型52の貫通孔52aの孔径は、例えば3.000mmである。コア型51と外周型52とのクリアランスZEの距離(径方向の間隔)は、片側1~7μmであることが望ましい。 The outer peripheral mold 52 is formed with a through hole 52a having a cylindrical inner surface for inserting the core mold 51 and the positioning member 53. Moreover, the outer periphery type | mold 52 has the end surface 52b which forms the parting line PL. The hole diameter of the through hole 52a of the outer peripheral mold 52 is, for example, 3.000 mm. The distance (radial distance) between the core mold 51 and the outer peripheral mold 52 is preferably 1 to 7 μm on one side.
 外周型52は、典型的な材料としてWC(タングステンカーバイド)、Ni、Cu又はそれらの合金等を用いる。熱間(成形使用時)と冷間(常温時)とで外周型52とコア型51との位置が変化しないように、外周型52は、コア型51と同程度の熱膨張率又はコア型51の熱膨張率以下の熱膨張率の材料を使用する。 The outer peripheral mold 52 uses WC (tungsten carbide), Ni, Cu, or an alloy thereof as a typical material. The outer peripheral mold 52 has the same thermal expansion coefficient or core mold as the core mold 51 so that the positions of the outer peripheral mold 52 and the core mold 51 do not change between hot (when molding is used) and cold (at room temperature). A material having a thermal expansion coefficient equal to or lower than 51 is used.
 図示を省略するが、外周型52の貫通孔52aの内面には、酸化防止膜がコーティングされている。これにより、後述する一体化工程において、外周型52の貫通孔52aの酸化が防止される。 Although not shown, the inner surface of the through hole 52a of the outer peripheral mold 52 is coated with an antioxidant film. Thereby, the oxidation of the through-hole 52a of the outer periphery mold | type 52 is prevented in the integration process mentioned later.
 位置決め部材53は、コア型51と外周型52との位置を正確に決めるために、横方向の位置決め部材53aと、高さ方向の位置決め部材53bとを有する。横方向の位置決め部材53aは、コア型51の横方向(図1の軸AX又はZ方向に垂直なXY方向)を位置決めする円柱軸状の部材である。位置決め部材53aの先端、すなわちコア型51側には、コア型51と嵌合するための凸部53cが設けられている。高さ方向の位置決め部材53bは、コア型51の高さ方向(図1の軸AX又はZ方向に平行なZ方向)を位置決めする円柱状の部材である。位置決め部材53は、典型的な材料としてSUS(ステンレス鋼)等を用いる。特に横方向の位置決め部材53aはコア型51及び外周型52よりも熱膨張率が高い材料を使用する。例えば、SUS410の熱膨張率は、10.4×10-6〔K-1〕であり、SUS304の熱膨張率は、17.3×10-6〔K-1〕である。本実施形態で、例えば、コア型51及び外周型52の材料をWCとし、横方向の位置決め部材53aの材料をSUS304とすると、横方向の位置決め部材53aよりコア型51や外周型52の熱膨張率が高い組み合わせとなる。なお、横方向の位置決め部材53aと高さ方向の位置決め部材53bの材料は同じでも異なっていてもよい。 The positioning member 53 includes a lateral positioning member 53a and a height positioning member 53b in order to accurately determine the positions of the core mold 51 and the outer peripheral mold 52. The lateral positioning member 53a is a cylindrical shaft-shaped member that positions the lateral direction of the core mold 51 (the XY direction perpendicular to the axis AX or the Z direction in FIG. 1). On the tip of the positioning member 53a, that is, on the core mold 51 side, a protrusion 53c for fitting with the core mold 51 is provided. The positioning member 53b in the height direction is a columnar member that positions the core mold 51 in the height direction (the axis AX in FIG. 1 or the Z direction parallel to the Z direction). The positioning member 53 uses SUS (stainless steel) or the like as a typical material. In particular, the lateral positioning member 53 a uses a material having a higher coefficient of thermal expansion than the core mold 51 and the outer peripheral mold 52. For example, the thermal expansion coefficient of SUS410 is 10.4 × 10 −6 [K −1 ], and the thermal expansion coefficient of SUS304 is 17.3 × 10 −6 [K −1 ]. In this embodiment, for example, when the material of the core mold 51 and the outer peripheral mold 52 is WC and the material of the lateral positioning member 53a is SUS304, the thermal expansion of the core mold 51 and the outer peripheral mold 52 from the lateral positioning member 53a. A combination with a high rate. In addition, the material of the positioning member 53a in the horizontal direction and the positioning member 53b in the height direction may be the same or different.
 図1に戻って、可動金型42は、コア型61と、外周型62と、位置決め部材63とを備える。可動金型42は、軸AXに沿って移動可能になっており、固定金型41に対して開閉動作する。可動金型42において、コア型61は、型空間CVを形成するため、固定金型41のコア型51に対向して配置されている。外周型62は、コア型61を周囲から保持又は支持する型部材である。位置決め部材63は、外周型62に対してコア型61を背後から位置決めする部材である。本実施形態において、コア型61と外周型62とは、コア型61が酸化することによって酸化部が生成されこの酸化部を介して一体化している。コア型61、外周型62、及び位置決め部材63の構造は、固定金型41のコア型51、外周型52、及び位置決め部材53の構造と略同じであり、以下適宜説明を省略する。 Returning to FIG. 1, the movable mold 42 includes a core mold 61, an outer peripheral mold 62, and a positioning member 63. The movable mold 42 is movable along the axis AX and opens and closes with respect to the fixed mold 41. In the movable mold 42, the core mold 61 is disposed to face the core mold 51 of the fixed mold 41 in order to form a mold space CV. The outer peripheral mold 62 is a mold member that holds or supports the core mold 61 from the periphery. The positioning member 63 is a member that positions the core die 61 from the back with respect to the outer peripheral die 62. In the present embodiment, the core mold 61 and the outer peripheral mold 62 are integrated with each other by generating an oxidized portion when the core mold 61 is oxidized. The structures of the core mold 61, the outer periphery mold 62, and the positioning member 63 are substantially the same as the structures of the core mold 51, the outer periphery mold 52, and the positioning member 53 of the fixed mold 41, and will not be described below as appropriate.
 可動金型42においてもコア型61は、1つの外周型62に対して複数設けられている。コア型61の先端には、型空間CVを画成するための光学転写面61aとフランジ転写面61bとが設けられている。光学転写面61aは、凹面であり、図2に示すレンズOLを構成する光学機能部OPの他方の光学面Sbを成形する転写面である。フランジ転写面61bは、環状の平面であり、レンズOLを構成するフランジ部FLの他方のフランジ面Fbを成形する転写面である。コア型61の背面、すなわち位置決め部材63側には、位置決め部材63と嵌合するための凹部61cが設けられている。 Also in the movable mold 42, a plurality of core molds 61 are provided for one outer peripheral mold 62. At the tip of the core mold 61, an optical transfer surface 61a and a flange transfer surface 61b for defining a mold space CV are provided. The optical transfer surface 61a is a concave surface, and is a transfer surface that molds the other optical surface Sb of the optical function part OP constituting the lens OL shown in FIG. The flange transfer surface 61b is an annular flat surface, and is a transfer surface for forming the other flange surface Fb of the flange portion FL constituting the lens OL. A recess 61 c for fitting with the positioning member 63 is provided on the back surface of the core mold 61, that is, on the positioning member 63 side.
 外周型62には、コア型61や位置決め部材63を挿入させるための貫通孔62aが形成されている。また、外周型62は、パーティングラインPLを形成する端面62bを有する。 In the outer peripheral mold 62, a through hole 62a for inserting the core mold 61 and the positioning member 63 is formed. Moreover, the outer periphery type | mold 62 has the end surface 62b which forms the parting line PL.
 位置決め部材63は、コア型61と外周型62との位置を正確に決めるために、横方向の位置決め部材63aと、高さ方向の位置決め部材63bとを有する。位置決め部材63aの先端、すなわちコア型61側には、コア型61と嵌合するための凸部63cが設けられている。 The positioning member 63 includes a lateral positioning member 63a and a height positioning member 63b in order to accurately determine the positions of the core mold 61 and the outer peripheral mold 62. At the tip of the positioning member 63a, that is, on the core die 61 side, a convex portion 63c for fitting with the core die 61 is provided.
 なお、図示を省略するが、成形金型40には、型空間CVに樹脂を供給するための流路が設けられている。 Although not shown, the molding die 40 is provided with a flow path for supplying resin to the mold space CV.
B)成形金型の製造方法
 以下、図4A~4Dを参照しつつ、図1に示す成形金型40の製造方法について説明する。固定金型41について主に説明するが、可動金型42についても同様である。なお、図4A~4Dにおいて、説明をわかりやすくするために、各部材51,52,53間の間隔を誇張して描いているが、実際は微小な隙間となっている。
B) Manufacturing Method of Molding Mold Hereinafter, a manufacturing method of the molding die 40 shown in FIG. 1 will be described with reference to FIGS. 4A to 4D. Although the fixed mold 41 will be mainly described, the same applies to the movable mold 42. 4A to 4D, the intervals between the members 51, 52, and 53 are exaggerated for easy understanding. However, in reality, the gaps are minute.
〔部材作製工程〕
 まず、コア型51、外周型52、及び位置決め部材53をそれぞれ作製する。各部材51,52,53は、例えば切削加工等によって作製する。ここでは、コア型51及び外周型52の材料として例えばWCを用いる。また、位置決め部材53の材料としてSUSを用いる。
[Member manufacturing process]
First, the core mold 51, the outer periphery mold 52, and the positioning member 53 are each produced. Each member 51, 52, 53 is produced by, for example, cutting. Here, for example, WC is used as the material of the core mold 51 and the outer peripheral mold 52. Further, SUS is used as the material of the positioning member 53.
〔コーティング工程〕
 次に、コア型51のうち酸化させたくない箇所(例えば、光学転写面51a付近や位置決めに無関係なコア型51の側面等)に例えば真空蒸着等を利用して酸化防止膜OMをコートする(図3A等参照)。また、外周型52の貫通孔52aの内面にも例えば真空蒸着等を利用して酸化防止膜(不図示)をコートする。これにより、必要な箇所のみ選択的に酸化させることができる。
[Coating process]
Next, an anti-oxidation film OM is coated on the portion of the core mold 51 that is not desired to be oxidized (for example, near the optical transfer surface 51a or the side surface of the core mold 51 unrelated to positioning) by using, for example, vacuum deposition (see FIG. (Refer FIG. 3A etc.). The inner surface of the through hole 52a of the outer peripheral mold 52 is also coated with an antioxidant film (not shown) using, for example, vacuum deposition. As a result, only necessary portions can be selectively oxidized.
〔第1位置調整工程〕
 次に、コア型51と横方向の位置決め部材53aとを組み合わせて、外周型52に挿入する。この際、コア型51の光学転写面51aのXY方向の位置やZ軸まわりの方向を調整する。具体的には、コア型51の凹部51cに横方向の位置決め部材53aの凸部53cを嵌合させ、位置決め部材53aの位置を調整する。コア型51と外周型52との間及び横方向の位置決め部材53aと外周型52との間には、片側1~7μm程度の隙間があり、横方向の位置決め部材53aを動かすことでコア型51の外周型52に対するXY方向の位置等を調整することができる。なお、コア型51の外周型52に対する最終的な位置は、後述する位置決め工程における加熱処理によって決定する。
[First position adjustment process]
Next, the core mold 51 and the lateral positioning member 53 a are combined and inserted into the outer peripheral mold 52. At this time, the position of the optical transfer surface 51a of the core mold 51 in the XY direction and the direction around the Z axis are adjusted. Specifically, the convex portion 53c of the lateral positioning member 53a is fitted into the concave portion 51c of the core mold 51, and the position of the positioning member 53a is adjusted. There are gaps of about 1 to 7 μm on one side between the core mold 51 and the outer peripheral mold 52 and between the lateral positioning member 53a and the outer peripheral mold 52, and the core mold 51 can be moved by moving the lateral positioning member 53a. The position in the XY direction with respect to the outer peripheral mold 52 can be adjusted. The final position of the core mold 51 with respect to the outer peripheral mold 52 is determined by a heat treatment in a positioning process described later.
〔第2位置調整工程〕
 次に、外周型52の貫通孔52aに高さ方向の位置決め部材53bを挿入し、部材53aの底面を上面に当接させ、外周型52に対するコア型51の高さが所望の状態になるように調整する。この際、外周型52と位置決め部材53a,53bとの熱膨張率の差を考慮して高さを決める。第1及び第2位置調整工程後、図4Aに示すように、外周型52内にコア型51が横方向の位置決め部材53a及び高さ方向の位置決め部材53bに支持された状態となる。
[Second position adjustment step]
Next, the positioning member 53b in the height direction is inserted into the through hole 52a of the outer peripheral mold 52, and the bottom surface of the member 53a is brought into contact with the upper surface so that the height of the core mold 51 with respect to the outer peripheral mold 52 becomes a desired state. Adjust to. At this time, the height is determined in consideration of the difference in coefficient of thermal expansion between the outer peripheral mold 52 and the positioning members 53a and 53b. After the first and second position adjusting steps, as shown in FIG. 4A, the core mold 51 is supported in the outer peripheral mold 52 by the lateral positioning member 53a and the height positioning member 53b.
 第1及び第2位置調整工程において、位置の間接的な確認方法として、顕微鏡やレーザー変位計等を用いることができる。なお、レーザー変位計の場合、高温状態でも容易に観察できる。そのため、レーザー変位計を用いると、位置決め工程において、位置を調整しながら位置決めをすることができる。 In the first and second position adjustment steps, a microscope, a laser displacement meter, or the like can be used as an indirect confirmation method of the position. In the case of a laser displacement meter, it can be easily observed even at high temperatures. Therefore, when a laser displacement meter is used, positioning can be performed while adjusting the position in the positioning step.
〔位置決め工程〕
 次に、コア型51及び位置決め部材53を外周型52に挿入した状態で、例えば空気中、すなわち酸化雰囲気下で加熱する。加熱条件は、各部材51,52,53の材料によって異なるが、本実施形態の場合、例えば500℃で8時間加熱する。これにより、各部材51,52,53の体積が膨張する。この際、コア型51より位置決め部材53の熱膨張率の方が大きいため、図4Bに示すように、位置決め部材53の側面が外周型52の貫通孔52aの内壁と接触する。一方、コア型51の側面と外周型52の貫通孔52aの内壁は接触していない。つまり、位置決め部材53の熱膨張によりコア型51と位置決め部材53との最終的な位置が決定され、外周型52の中心とコア型51の中心とが一致する。また、光軸AX方向におけるコア型51の位置が、成形物が所期の厚みとなる正しい位置にセットされる。
[Positioning process]
Next, in a state where the core mold 51 and the positioning member 53 are inserted into the outer peripheral mold 52, for example, heating is performed in air, that is, in an oxidizing atmosphere. Although the heating conditions differ depending on the material of each member 51, 52, 53, in the case of this embodiment, for example, heating is performed at 500 ° C. for 8 hours. Thereby, the volume of each member 51,52,53 expands. At this time, since the thermal expansion coefficient of the positioning member 53 is larger than that of the core mold 51, the side surface of the positioning member 53 comes into contact with the inner wall of the through hole 52a of the outer peripheral mold 52 as shown in FIG. 4B. On the other hand, the side surface of the core mold 51 and the inner wall of the through hole 52a of the outer peripheral mold 52 are not in contact. That is, the final position of the core mold 51 and the positioning member 53 is determined by the thermal expansion of the positioning member 53, and the center of the outer peripheral mold 52 and the center of the core mold 51 coincide. Further, the position of the core mold 51 in the direction of the optical axis AX is set to a correct position where the molded product has an intended thickness.
〔一体化工程〕
 その後、コア型51のWC部材と異種の金属である位置決め部材53のSUS部材との接触部VXにおいて、イオン化傾向の差により酸化が進む。コア型51と外周型52との間には片側3μm程度の隙間があり、この隙間から酸素が入るため酸化が進む。これにより、図4Cに示すように、接触部VXにおいてコア型51のWC部材が酸化膨張し、コア型51と外周型52との間に酸化部OXが形成される。この酸化部OXを介してコア型51と外周型52とが相互に強固に固着することで一体化する。光学転写面51a及び外周型52の表面には、酸化防止膜OMを施してあり、熱処理によって酸化されることはない。なお、加熱下において、位置決め部材53のSUS部材と外周型52のWC部材とは密着しているため、酸化が進まない。位置決め部材53と外周型52との間に隙間が空いたとしても、SUS表面に酸化Crの不動態層が形成されるため酸化は進行しない。加熱終了後、図4Dに示すように、各部材51,52,53の体積が収縮する。各部材51,52,53の体積が収縮しても、酸化部OXを介してコア型51と外周型52とが半恒久的に固定された状態となる。コア型51が外周型52に固定されたことは、例えば成形時と同じ荷重を加えたり、試し打ち(成形)を行ったりすることで確認する。以上により、コア型51の位置を精度良く調整した状態でコア型51が外周型52に固定された固定金型41が完成する。
[Integration process]
Thereafter, oxidation proceeds at the contact portion VX between the WC member of the core mold 51 and the SUS member of the positioning member 53, which is a different metal, due to the difference in ionization tendency. There is a gap of about 3 μm on one side between the core mold 51 and the outer peripheral mold 52, and oxidation proceeds because oxygen enters from this gap. As a result, as shown in FIG. 4C, the WC member of the core mold 51 oxidizes and expands at the contact portion VX, and an oxidized portion OX is formed between the core mold 51 and the outer peripheral mold 52. The core mold 51 and the outer peripheral mold 52 are firmly fixed to each other through the oxidized portion OX to be integrated. The surfaces of the optical transfer surface 51a and the outer peripheral mold 52 are provided with an antioxidant film OM and are not oxidized by heat treatment. In addition, since the SUS member of the positioning member 53 and the WC member of the outer peripheral mold 52 are in close contact with each other under heating, the oxidation does not proceed. Even if there is a gap between the positioning member 53 and the outer peripheral mold 52, oxidation does not proceed because a passive layer of Cr oxide is formed on the SUS surface. After the heating, as shown in FIG. 4D, the volume of each member 51, 52, 53 contracts. Even if the volume of each member 51, 52, 53 shrinks, the core mold 51 and the outer peripheral mold 52 are in a semi-permanently fixed state via the oxidation part OX. The fact that the core mold 51 is fixed to the outer peripheral mold 52 is confirmed, for example, by applying the same load as at the time of molding, or by performing trial driving (molding). Thus, the fixed mold 41 in which the core mold 51 is fixed to the outer peripheral mold 52 in a state where the position of the core mold 51 is accurately adjusted is completed.
 なお、一旦酸化固定させた後は位置決め部材53を外周型52から取り外してもよい。 It should be noted that the positioning member 53 may be removed from the outer peripheral mold 52 once it has been oxidized and fixed.
C)光学素子の製造方法
 以下、図1に示す成形金型40を用いたレンズOLの製造方法について説明する。なお、図示を省略しているが、成形金型40は、射出成形機に組み込まれて使用されるものであり、固定金型41は、射出成形機の固定盤に固定され、可動金型42は、射出成形機の可動盤に固定される。
C) Manufacturing Method of Optical Element Hereinafter, a manufacturing method of the lens OL using the molding die 40 shown in FIG. 1 will be described. Although not shown, the molding die 40 is used by being incorporated in an injection molding machine, and the fixed die 41 is fixed to a stationary platen of the injection molding machine, and a movable die 42 is used. Is fixed to the movable platen of the injection molding machine.
 まず、金型温度調節機(不図示)により、両金型41,42を成形に適する温度まで加熱する。次に、可動金型42を支持する可動盤を固定金型41を支持する固定盤に近接させて、固定金型41と可動金型42とが接触する型当たり位置まで移動させて型閉じを行うとともに、固定金型41を可動金型42とを必要な圧力で締め付ける型締めを行う。次に、射出装置(不図示)を動作させて、型締めされた固定金型41と可動金型42との間の型空間CV中に、必要な圧力で溶融樹脂を注入する射出を行わせる。この際、上記金型温度調節機により、固定金型41と可動金型42とが適度に加熱されており、上記射出装置から供給される溶融樹脂が緩やかに冷却される。溶融樹脂が冷却されて十分硬化した段階で、可動金型42を後退させる型開きを行うことにより、固定金型41と可動金型42とが離間する。この結果、両金型41,42間から光学素子としてのレンズOLを取り出すことができる。 First, both molds 41 and 42 are heated to a temperature suitable for molding by a mold temperature controller (not shown). Next, the movable platen that supports the movable die 42 is brought close to the fixed platen that supports the fixed die 41, and is moved to the die contact position where the fixed die 41 and the movable die 42 are in contact with each other to close the die. At the same time, mold clamping is performed to clamp the fixed mold 41 and the movable mold 42 with a necessary pressure. Next, an injection device (not shown) is operated to inject the molten resin into the mold space CV between the fixed mold 41 and the movable mold 42 that are clamped at a necessary pressure. . At this time, the fixed mold 41 and the movable mold 42 are appropriately heated by the mold temperature controller, and the molten resin supplied from the injection apparatus is slowly cooled. When the molten resin is cooled and sufficiently cured, the fixed mold 41 and the movable mold 42 are separated from each other by performing mold opening for retracting the movable mold 42. As a result, the lens OL as an optical element can be taken out between the both molds 41 and 42.
 なお、上記のような射出成形を繰り返すと、両金型41,42のコア型51,61の光学転写面51a,61aに傷が入ったり、ごみが付着したりする等して使用できなくなる場合がある。この場合、以下に説明する再生方法によりコア型51,61と外周型52,62とを分離し、例えば外周型52,62に新たなコア型51,61を組み込むことができる。 If the injection molding as described above is repeated, the optical transfer surfaces 51a and 61a of the core dies 51 and 61 of both the dies 41 and 42 may be damaged or dust may not be used. There is. In this case, the core molds 51 and 61 and the outer peripheral molds 52 and 62 can be separated by the reproduction method described below, and new core molds 51 and 61 can be incorporated into the outer peripheral molds 52 and 62, for example.
D)成形金型の再生方法
 以下、図5A~5Cを参照しつつ、成形金型40の再生方法について説明する。固定金型41について主に説明するが、可動金型42についても同様である。再生方法において、後述する位置調整工程、位置決め工程、及び一体化工程は、上述した成形金型の製造方法と同様であるので詳しい記載を省略する。
D) Method of Regenerating Molding Mold Hereinafter, a method of regenerating the molding die 40 will be described with reference to FIGS. 5A to 5C. Although the fixed mold 41 will be mainly described, the same applies to the movable mold 42. In the reproduction method, the position adjusting step, the positioning step, and the integration step, which will be described later, are the same as the above-described manufacturing method of the molding die, and thus detailed description thereof is omitted.
〔事前工程〕
 まず、図5Aに示すように、固定金型41から位置決め部材53を外す。なお、本工程を省略してもよい。
[Preliminary process]
First, as shown in FIG. 5A, the positioning member 53 is removed from the fixed mold 41. Note that this step may be omitted.
〔浸漬工程〕
 次に、図5Bに示すように、コア型51と外周型52とを酸等(例えば塩酸や塩酸を含む酸等)の溶液に浸漬する。この浸漬工程(接触工程の一例)により、図5Cに示すように、酸化した部分(酸化部OX)が除去される。その後、コア型51と外周型52とを分離する。固定金型41中に位置決め部材53を残していた場合、位置決め部材53も分離される。分離したコア型51と外周型52の状態を確認し、再利用できる部材を選別する。これにより、分離されたコア型51や外周型52を選択的に新しいものに入れ替えることができる。例えば、コア型51が劣化しても外周型52を再利用することで、あるいは、一部のコア型51のみが劣化しても他のコア型51と外周型52とを再利用することで、さらに、外周型52のみが劣化してもコア型51を再利用することで、成形金型40の製造コストを下げることになる。つまり、酸化部OXが除去されることにより、コア型51と外周型52とが分離され、使用可能な型部分が再生されることになる。なお、金型を酸等の溶液に浸漬することに代えて、酸の溶液をスプレーするなどして少なくとも酸化部OXに接触させるようにしてもよい(別タイプの接触工程)。この場合、金型のサイズが大きくても酸化部OXの除去が容易である。
[Immersion process]
Next, as shown in FIG. 5B, the core mold 51 and the outer periphery mold 52 are immersed in a solution of an acid or the like (for example, hydrochloric acid or an acid containing hydrochloric acid). By this dipping process (an example of a contact process), as shown in FIG. 5C, the oxidized portion (oxidized portion OX) is removed. Thereafter, the core mold 51 and the outer peripheral mold 52 are separated. When the positioning member 53 remains in the fixed mold 41, the positioning member 53 is also separated. The state of the separated core mold 51 and outer peripheral mold 52 is confirmed, and a reusable member is selected. Thereby, the separated core mold 51 and outer peripheral mold 52 can be selectively replaced with new ones. For example, by reusing the outer peripheral mold 52 even if the core mold 51 deteriorates, or by reusing the other core mold 51 and the outer peripheral mold 52 even if only some of the core molds 51 deteriorate. Furthermore, even if only the outer peripheral mold 52 is deteriorated, the core mold 51 is reused, thereby reducing the manufacturing cost of the molding die 40. That is, by removing the oxidation part OX, the core mold 51 and the outer peripheral mold 52 are separated, and a usable mold part is regenerated. Instead of immersing the mold in an acid solution or the like, it may be brought into contact with at least the oxidation part OX by spraying an acid solution (another type contact process). In this case, the oxidized portion OX can be easily removed even if the mold size is large.
〔第1位置調整工程〕
 外周型52を再利用する場合、新たなコア型51と横方向の位置決め部材53aとを組み合わせて、外周型52に挿入する。コア型51の光学転写面51aのXY方向の位置等を調整する。
[First position adjustment process]
When the outer peripheral mold 52 is reused, the new core mold 51 and the lateral positioning member 53 a are combined and inserted into the outer peripheral mold 52. The position of the optical transfer surface 51a of the core mold 51 in the X and Y directions is adjusted.
〔第2位置調整工程〕
 次に、外周型52の貫通孔52aに高さ方向の位置決め部材53bを挿入し、外周型52に対するコア型51の高さが所望の状態になるように調整する(図4A参照)。
[Second position adjustment step]
Next, a positioning member 53b in the height direction is inserted into the through hole 52a of the outer peripheral mold 52, and the height of the core mold 51 with respect to the outer peripheral mold 52 is adjusted to a desired state (see FIG. 4A).
〔位置決め工程〕
 次に、コア型51及び位置決め部材53を外周型52に挿入した状態で空気中で加熱する。位置決め部材53が熱膨張することにより、外周型52の中心とコア型51の中心とが一致する(図4B参照)。
[Positioning process]
Next, the core mold 51 and the positioning member 53 are heated in the air while being inserted into the outer peripheral mold 52. As the positioning member 53 thermally expands, the center of the outer peripheral mold 52 and the center of the core mold 51 coincide (see FIG. 4B).
〔一体化工程〕
 その後、コア型51のWC部材と異種の金属である位置決め部材53のSUS部材との接触部VXにおいて、イオン化傾向の差により酸化が進む。これにより、接触部VXのコア型51のWC部材が酸化膨張し、コア型51と外周型52との間に酸化部OXが形成される(図4C参照)。この酸化部OXを介して、コア型51と外周型52とが一体化する(図4D参照)。
[Integration process]
Thereafter, oxidation proceeds at the contact portion VX between the WC member of the core mold 51 and the SUS member of the positioning member 53, which is a different metal, due to the difference in ionization tendency. As a result, the WC member of the core mold 51 of the contact portion VX oxidizes and expands, and an oxidized portion OX is formed between the core mold 51 and the outer peripheral mold 52 (see FIG. 4C). The core mold 51 and the outer peripheral mold 52 are integrated through the oxidation part OX (see FIG. 4D).
 以上説明した成形金型等によれば、母材を切削加工することで一体的な金型と異なり、コア型51,61と外周型52,62とを個別に加工することができるため、金型の作製が容易になる。また、コア型51,61の選別をして外周型52,62に組み込むことができるため、成形金型40の歩留まりを向上させることができる。また、酸化によってコア型51,61と外周型52,62とを一体化させた後は、半恒久的に一体化した金型として取り扱うことができる。これにより、当該成形金型40を用いて光学素子であるレンズOLを製造する成形工程の際に金型の調整を短縮することができ、レンズOLの製造コストを下げることができる。つまり、本実施形態の成形金型40は、一体化した金型のメリットと、一体化していない金型のメリットの双方を併せ持つ金型となる。 According to the molding die and the like described above, the core molds 51 and 61 and the outer peripheral molds 52 and 62 can be individually processed by cutting the base material, unlike the integral mold. The mold can be easily manufactured. Moreover, since the core molds 51 and 61 can be selected and incorporated into the outer peripheral molds 52 and 62, the yield of the molding dies 40 can be improved. Further, after the core molds 51 and 61 and the outer peripheral molds 52 and 62 are integrated by oxidation, they can be handled as a semi-permanently integrated mold. Thereby, adjustment of a metal mold | die can be shortened in the shaping | molding process which manufactures lens OL which is an optical element using the said metal mold 40, and the manufacturing cost of lens OL can be lowered | hung. That is, the molding die 40 of the present embodiment is a die having both the advantages of an integrated die and the advantages of a non-integrated die.
 特に、2次元配列された複数のレンズを用いて撮像素子上に複数の画像を結像し、得られた複数の画像から1つの画像を再構成する複眼撮像装置の複眼光学系に用いられるレンズアレイのような光学面が複数集まった光学素子を成形する場合、アレイ内の光学面形状のばらつきを抑える必要がある。本実施形態の成形金型40によれば、コア型51,61の選別をしてから成形金型40を組み立てることができるため、成形金型40の歩留まりを向上させることができる。 In particular, a lens used in a compound-eye optical system of a compound-eye imaging device that forms a plurality of images on an image sensor using a plurality of lenses arranged two-dimensionally and reconstructs one image from the obtained plurality of images. When molding an optical element having a plurality of optical surfaces such as an array, it is necessary to suppress variations in the shape of the optical surfaces in the array. According to the molding die 40 of this embodiment, since the molding die 40 can be assembled after the core dies 51 and 61 are selected, the yield of the molding die 40 can be improved.
 また、本実施形態の成形金型40は、酸化した部分を溶かすことで、コア型51,61と外周型52,62とを分離することができる。これにより、劣化していないコア型51,61や外周型52,62を再利用することができる。 Moreover, the molding die 40 of this embodiment can separate the core molds 51 and 61 and the outer peripheral molds 52 and 62 by melting the oxidized portion. Thereby, the core type | molds 51 and 61 and the outer periphery type | molds 52 and 62 which have not deteriorated can be reused.
〔第2実施形態〕
 以下、第2実施形態に係る成形金型等について説明する。なお、第2実施形態の成形金型等は第1実施形態の成形金型等を変形したものであり、特に説明しない部分は第1実施形態と同様である。
[Second Embodiment]
Hereinafter, a molding die and the like according to the second embodiment will be described. The molding die and the like of the second embodiment is a modification of the molding die and the like of the first embodiment, and the parts that are not particularly described are the same as those of the first embodiment.
 図6に示すように、コア型51は、コア型51の部材が2箇所露出するように酸化防止膜OMをコーティングしている。これにより、コア型51のコア型51と位置決め部材53との境界である接触部VX(図3A参照)付近に酸化部OXが2箇所輪帯状に形成される。コア型51に酸化部OXを2箇所設けることにより、コア型51を外周型52により安定した状態で固定させることができる。 As shown in FIG. 6, the core mold 51 is coated with an antioxidant film OM so that two members of the core mold 51 are exposed. Thereby, the oxidation part OX is formed in two places in the shape of a ring zone in the vicinity of the contact part VX (see FIG. 3A) that is the boundary between the core mold 51 of the core mold 51 and the positioning member 53. By providing two oxidation parts OX in the core mold 51, the core mold 51 can be fixed in a stable state by the outer peripheral mold 52.
 以上、本実施形態に係る成形金型等について説明したが、本発明に係る成形金型等は上記のものには限られない。例えば、上記実施形態において、光学転写面51a,61a等の形状、大きさ、数、配置間隔等は、用途や機能に応じて適宜変更することができる。 As mentioned above, although the molding die etc. which concern on this embodiment were demonstrated, the molding die etc. which concern on this invention are not restricted to said thing. For example, in the above-described embodiment, the shape, size, number, arrangement interval, and the like of the optical transfer surfaces 51a and 61a and the like can be appropriately changed according to the application and function.
 また、上記実施形態において、コア型51,61と位置決め部材53とを嵌合させたが、コア型51,61と位置決め部材53とを溶接してもよい。 In the above embodiment, the core dies 51 and 61 and the positioning member 53 are fitted, but the core dies 51 and 61 and the positioning member 53 may be welded.
 また、上記実施形態において、コア型51,61に施した酸化防止膜OMのパターンや範囲は例示であり、適宜変更することができる。 Further, in the above embodiment, the pattern and range of the antioxidant film OM applied to the core molds 51 and 61 are examples, and can be changed as appropriate.
 また、上記実施形態において、コア型51,61を酸化させたが、外周型52,62を酸化させてもよい。この場合、コア型51,61全体に酸化防止膜OMをコーティングする。また、外周型52,62の貫通孔52a,62aのうち酸化させる部分(光学転写面51a,61aから離れた部分)以外にも酸化防止膜をコーティングする。なお、コア型51,61及び外周型52,62の両方を必要部分のみ選択的に酸化させてもよい。 In the above embodiment, the core molds 51 and 61 are oxidized, but the outer peripheral molds 52 and 62 may be oxidized. In this case, the entire core mold 51, 61 is coated with the antioxidant film OM. Further, an antioxidant film is coated on the through holes 52a and 62a of the outer peripheral molds 52 and 62 other than the portions to be oxidized (portions away from the optical transfer surfaces 51a and 61a). Note that only the necessary portions of both the core molds 51 and 61 and the outer peripheral molds 52 and 62 may be selectively oxidized.
 また、上記実施形態において、1つの外周型52,62に複数の貫通孔を設けコア型51,61を複数設けたが、コア型51,61の数は、成形品の用途や機能に応じて適宜変更することができる。例えば、1つの外周型52,62にコア型51,61を1つ又は2つ以上設けてもよい。 In the above embodiment, a plurality of through holes are provided in one outer peripheral mold 52, 62 and a plurality of core molds 51, 61 are provided. The number of core molds 51, 61 depends on the use and function of the molded product. It can be changed as appropriate. For example, one or more core molds 51 and 61 may be provided in one outer peripheral mold 52 and 62.
 また、上記実施形態において、固定金型41及び可動金型42のいずれも酸化部OXを介してコア型51,61を外周型52,62に固定させたが、固定金型41及び可動金型42のいずれか一方のみを上記手法で固定させてもよい。例えば、固定金型41のコア型51のみを上記手法で固定させれば、可動金型42のコア型61を突出し機構として利用することができる。 In the above embodiment, the core molds 51 and 61 are fixed to the outer peripheral molds 52 and 62 through the oxidation part OX in both the fixed mold 41 and the movable mold 42. Only one of 42 may be fixed by the above method. For example, if only the core mold 51 of the fixed mold 41 is fixed by the above method, the core mold 61 of the movable mold 42 can be used as a protruding mechanism.
 また、上記実施形態において、成形金型40を射出成形用の金型としたが、ガラス製の成形品を成形するためのプレス用の金型としてもよい。 In the above embodiment, the molding die 40 is an injection molding die, but it may be a pressing die for molding a glass molded product.

Claims (18)

  1.  第1の金型と、第2の金型とを備える光学素子成形用の成形金型の製造方法であって、
     前記第1及び第2の金型のうち少なくとも一方の金型を構成する光学素子の光学面を形成する光学転写面を有するコア型と、前記コア型を周囲から支持する外周型とを作製する部材作製工程と、
     前記コア型を前記外周型に挿入した状態で、前記コア型及び前記外周型の少なくとも一方を酸化させ、前記コア型と前記外周型との間に選択的に酸化物からなる酸化部を形成し、該酸化部を介して前記コア型と前記外周型とを一体化する一体化工程とを備える、成形金型の製造方法。
    A method for producing a molding die for molding an optical element comprising a first die and a second die,
    A core mold having an optical transfer surface for forming an optical surface of an optical element constituting at least one of the first and second molds and an outer peripheral mold for supporting the core mold from the periphery are produced. Member production process;
    With the core mold inserted into the outer peripheral mold, at least one of the core mold and the outer peripheral mold is oxidized, and an oxide portion made of an oxide is selectively formed between the core mold and the outer peripheral mold. A method for producing a molding die, comprising: an integration step of integrating the core mold and the outer peripheral mold through the oxidation portion.
  2.  前記一体化工程前に、前記外周型に対する前記コア型の位置を調整する位置調整工程を備える、請求項1に記載の成形金型の製造方法。 The method for manufacturing a molding die according to claim 1, further comprising a position adjusting step of adjusting a position of the core die with respect to the outer peripheral die before the integrating step.
  3.  前記位置調整工程は、前記コア型を位置決め部材で前記外周型内に支持することによって行う、請求項2に記載の成形金型の製造方法。 The method for manufacturing a molding die according to claim 2, wherein the position adjusting step is performed by supporting the core die in the outer peripheral die with a positioning member.
  4.  前記位置調整工程後、前記一体化工程前に、前記外周型に対して前記コア型を位置決めする位置決め工程を備える、請求項2及び3のいずれか一項に記載の成形金型の製造方法。 The method for manufacturing a molding die according to any one of claims 2 and 3, further comprising a positioning step of positioning the core die with respect to the outer peripheral die before the integration step after the position adjusting step.
  5.  前記位置決め工程は、前記位置決め部材を加熱することにより熱膨張させることによって行う、請求項4に記載の成形金型の製造方法。 The method for manufacturing a molding die according to claim 4, wherein the positioning step is performed by thermally expanding the positioning member.
  6.  前記コア型と前記外周型とは同程度の熱膨張率を有し、前記位置決め部材は、前記コア型の熱膨張率よりも高い熱膨張率を有する、請求項5に記載の成形金型の製造方法。 The molding die according to claim 5, wherein the core mold and the outer peripheral mold have substantially the same coefficient of thermal expansion, and the positioning member has a coefficient of thermal expansion higher than that of the core mold. Production method.
  7.  前記コア型は第1の金属材料からなり、前記位置決め部材は前記第1の金属材料とは異なる第2の金属材料からなり、前記一体化工程において、前記コア型と前記位置決め部材とのイオン化傾向の差により、前記コア型と前記位置決め部材との対向部位を酸化させる、請求項3から6までのいずれか一項に記載の成形金型の製造方法。 The core mold is made of a first metal material, the positioning member is made of a second metal material different from the first metal material, and the ionization tendency between the core mold and the positioning member in the integration step. The manufacturing method of the molding die as described in any one of Claim 3-6 which oxidizes the opposing site | part of the said core type | mold and the said positioning member by the difference of these.
  8.  前記コア型の少なくとも光学転写面に酸化防止膜を形成するコーティング工程を備える、請求項1から7までのいずれか一項に記載の成形金型の製造方法。 The method for producing a molding die according to any one of claims 1 to 7, further comprising a coating step of forming an antioxidant film on at least the optical transfer surface of the core mold.
  9.  第1の金型と、第2の金型とを備える光学素子用の成形金型であって、
     前記第1及び第2の金型の少なくとも一方の金型は、光学素子の光学面を形成する光学転写面を有するコア型と、前記コア型を周囲から支持する外周型とを有し、
     前記コア型及び前記外周型の少なくとも一方が酸化して前記コア型と前記外周型との間に選択的に酸化部を形成し、前記コア型と前記外周型とが前記酸化部を介して一体化している、成形金型。
    A molding die for an optical element comprising a first die and a second die,
    At least one of the first and second molds includes a core mold having an optical transfer surface that forms an optical surface of an optical element, and an outer peripheral mold that supports the core mold from the periphery.
    At least one of the core mold and the outer peripheral mold is oxidized to selectively form an oxidized portion between the core mold and the outer peripheral mold, and the core mold and the outer peripheral mold are integrated via the oxidized portion. Molding mold that has become.
  10.  前記コア型のうち前記光学転写面以外の部分が選択的に酸化して前記酸化部が形成されている、請求項9に記載の成形金型。 The molding die according to claim 9, wherein a portion of the core mold other than the optical transfer surface is selectively oxidized to form the oxidized portion.
  11.  前記コア型の少なくとも光学転写面に酸化防止膜が形成されている、請求項9及び10のいずれか一項に記載の成形金型。 The molding die according to any one of claims 9 and 10, wherein an antioxidant film is formed on at least the optical transfer surface of the core mold.
  12.  前記コア型は、位置決め部材で支持され、
     前記コア型と前記外周型とは同程度の熱膨張率を有し、前記位置決め部材は、前記コア型の熱膨張率よりも高い、請求項9から11までのいずれか一項に記載の成形金型。
    The core mold is supported by a positioning member,
    The molding according to any one of claims 9 to 11, wherein the core mold and the outer peripheral mold have substantially the same coefficient of thermal expansion, and the positioning member is higher than the coefficient of thermal expansion of the core mold. Mold.
  13.  前記コア型は、1つの前記外周型において複数挿入されている、請求項9から12までのいずれか一項に記載の成形金型。 The molding die according to any one of claims 9 to 12, wherein a plurality of the core dies are inserted in one outer peripheral die.
  14.  請求項1から8までのいずれか一項に記載の成形金型の製造方法によって製造された成形金型の前記酸化部に酸の溶液を接触させて前記酸化部を除去する接触工程を備える、成形金型の再生方法。 A contact step of removing the oxidized portion by bringing an acid solution into contact with the oxidized portion of the molding die manufactured by the method for manufacturing a molded die according to any one of claims 1 to 8, A method for reclaiming molds.
  15.  前記接触工程により前記酸化部が除去された前記コア型を他の外周型に挿入した状態で、前記コア型及び前記他の外周型の少なくとも一方を酸化させ、選択的に酸化物からなる酸化部を形成し、該酸化部を介して前記コア型と前記他の外周型とを一体化させる一体化工程を備える、請求項14に記載の成形金型の再生方法。 In the state where the core mold from which the oxidized portion has been removed by the contacting step is inserted into another outer peripheral mold, at least one of the core mold and the other outer peripheral mold is oxidized, and an oxidized portion made of an oxide selectively. The molding die regeneration method according to claim 14, further comprising an integration step of forming the core mold and the other outer peripheral mold through the oxidation portion.
  16.  前記接触工程により酸化部が除去された前記外周型に他のコア型を挿入した状態で、前記外周型及び前記他のコア型の少なくとも一方を酸化させ、選択的に酸化物からなる酸化部を形成し、該酸化部を介して前記外周型と前記他のコア型とを一体化させる一体化工程を備える、請求項14に記載の成形金型の再生方法。 In a state where another core mold is inserted into the outer peripheral mold from which the oxidized portion has been removed by the contact step, at least one of the outer peripheral mold and the other core mold is oxidized, and an oxidized portion made of an oxide is selectively formed. The molding die regeneration method according to claim 14, further comprising an integration step of forming and integrating the outer peripheral mold and the other core mold through the oxidation portion.
  17.  請求項9から13までのいずれか一項に記載の成形金型を用いて光学素子を製造する、光学素子の製造方法。 A method for manufacturing an optical element, wherein the optical element is manufactured using the molding die according to any one of claims 9 to 13.
  18.  請求項15及び16のいずれか一項に記載の成形金型の再生方法によって再生された成形金型を用いて光学素子を製造する、光学素子の製造方法。 A method for manufacturing an optical element, wherein an optical element is manufactured using the molding die regenerated by the method for regenerating a molding die according to any one of claims 15 and 16.
PCT/JP2013/073230 2012-08-31 2013-08-29 Molding die manufacturing method, molding die, molding die regeneration method, and optical element manufacturing method WO2014034816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-191750 2012-08-31
JP2012191750 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034816A1 true WO2014034816A1 (en) 2014-03-06

Family

ID=50183621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073230 WO2014034816A1 (en) 2012-08-31 2013-08-29 Molding die manufacturing method, molding die, molding die regeneration method, and optical element manufacturing method

Country Status (1)

Country Link
WO (1) WO2014034816A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190964A (en) * 1997-09-24 1999-04-06 Olympus Optical Co Ltd Injection molding die and injection molding method
JP2006137142A (en) * 2004-11-15 2006-06-01 Konica Minolta Opto Inc Mold for optical element
JP2010042653A (en) * 2008-08-11 2010-02-25 Samsung Electro-Mechanics Co Ltd Core mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190964A (en) * 1997-09-24 1999-04-06 Olympus Optical Co Ltd Injection molding die and injection molding method
JP2006137142A (en) * 2004-11-15 2006-06-01 Konica Minolta Opto Inc Mold for optical element
JP2010042653A (en) * 2008-08-11 2010-02-25 Samsung Electro-Mechanics Co Ltd Core mold

Similar Documents

Publication Publication Date Title
US20060162384A1 (en) Press mold and method of manufacturing optical element
WO2011077934A1 (en) Mold and mold manufacturing method
JP2007119280A (en) Method for forming glass optical element
WO2014034816A1 (en) Molding die manufacturing method, molding die, molding die regeneration method, and optical element manufacturing method
JP6485449B2 (en) Mold for optical element and method for manufacturing optical element
JP4888487B2 (en) Mold apparatus for optical parts and setup method thereof
CN105819671A (en) Die assembly for molding glass optical element and manufacturing method of glass optical element
TWI388415B (en) Molding method for an optical element and optical element molding apparatus
JP3134581B2 (en) Mold for optical element molding
EP3403802B1 (en) Method for producing mold for rubber articles
JPH09188529A (en) Device for forming optical element
JP4952614B2 (en) Glass lens molding equipment
JP5809945B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP4951394B2 (en) Optical element molding method
WO2013047289A1 (en) Optical element manufacturing method, and forming mold
JP4695485B2 (en) Mold for molding and molding method
JP4132980B2 (en) Mold for optical element molding
JP4228341B2 (en) Molding equipment
JP2004106493A (en) Molding method of plastic molded article and mold for plastic molding
JP2007254234A (en) Method for producing molding die for optical element
JP2004217468A (en) Apparatus for shaping optical element and method for manufacturing mold
JP2014139112A (en) Method of producing plate-like workpiece provided with microstructure in surface
JP3042410B2 (en) Lens molding method and molding apparatus
KR20140101249A (en) Method of manufacturing plate workpiece with surface microstructures
JP4751818B2 (en) Mold for forming and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP