WO2014034033A1 - Diffraction grating and manufacturing method for diffraction grating, grating unit and x-ray image pick-up unit - Google Patents

Diffraction grating and manufacturing method for diffraction grating, grating unit and x-ray image pick-up unit Download PDF

Info

Publication number
WO2014034033A1
WO2014034033A1 PCT/JP2013/004775 JP2013004775W WO2014034033A1 WO 2014034033 A1 WO2014034033 A1 WO 2014034033A1 JP 2013004775 W JP2013004775 W JP 2013004775W WO 2014034033 A1 WO2014034033 A1 WO 2014034033A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction grating
lattice
base material
region
main surface
Prior art date
Application number
PCT/JP2013/004775
Other languages
French (fr)
Japanese (ja)
Inventor
光 横山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014532759A priority Critical patent/JP6365299B2/en
Publication of WO2014034033A1 publication Critical patent/WO2014034033A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Definitions

  • the present invention relates to a bendable diffraction grating in which members having the same shape are periodically arranged, and a method of manufacturing a diffraction grating for manufacturing the diffraction grating.
  • the present invention relates to a grating unit in which a plurality of diffraction gratings are arranged, and an X-ray imaging apparatus using the diffraction grating and the grating unit.
  • the diffraction grating is used as a spectroscopic element having a one-dimensional periodic structure composed of a large number of parallel members in an optical system of various apparatuses.
  • the diffraction gratings are classified into transmission diffraction gratings and reflection diffraction gratings when classified by the diffraction method.
  • the transmission diffraction gratings periodically arrange light absorbing portions on a substrate that transmits light.
  • absorption means that more than 50% of light is absorbed by the diffraction grating
  • transmission means that more than 50% of light passes through the diffraction grating.
  • Near-infrared, visible light, or ultraviolet diffraction gratings can be manufactured relatively easily because near-infrared, visible light, and ultraviolet light are sufficiently absorbed by a very thin metal.
  • a metal film is deposited on a substrate such as glass to form a metal film on the substrate, and the metal film is patterned into a grating, whereby an amplitude type diffraction grating using a diffraction grating is manufactured.
  • the transmittance for visible light about 400 nm to about 800 nm
  • X-rays are generally very small in absorption by substances and the phase change is not so large.
  • the thickness of the gold is several tens of ⁇ m or more.
  • the ratio is a high aspect ratio of 5 or more.
  • a certain size may be required.
  • the size of a certain size for example, a square having a side of 20 cm or more ( ⁇ 20 cm or more) is large due to the diagnostic area to be diagnosed at one time. is necessary.
  • the above-described diffraction grating having a fine structure is often manufactured using a silicon wafer in which a fine processing technique is relatively established.
  • Patent Document 1 discloses a diffraction grating unit in which a plurality of diffraction gratings are arranged along a curved surface.
  • the grating disclosed in Patent Document 1 is composed of a plurality of small gratings arranged along a virtual cylindrical surface with a virtual line passing through the focal point of the radiation source as a central axis.
  • the diffraction grating has a high aspect ratio as described above, and an X-ray source that emits X-rays is generally a point wave source.
  • an X-ray source that emits X-rays is generally a point wave source.
  • the lattice (grid unit) disclosed in Patent Document 1 Since each small lattice is a plane, X-rays are incident obliquely in the region of both ends of the small lattice (adjacent portions of the small lattices adjacent to each other), resulting in so-called vignetting. End up. For this reason, noise is included in the result through the lattice, and the accuracy of the result is lowered.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a diffraction grating and a method of manufacturing a diffraction grating for manufacturing the diffraction grating.
  • the present invention also provides a grating unit in which a plurality of the diffraction gratings are arranged, and an X-ray imaging apparatus using the diffraction grating or the grating unit.
  • the grating region is formed on one main surface of the substrate, and the groove is formed on the other main surface facing the one main surface. It is a thing.
  • FIG. 1 is a perspective view showing a configuration of a lattice in the first embodiment.
  • FIG. 2 is a cross-sectional view for explaining the manufacturing process of the grating in the first embodiment.
  • the lattice DGa of this embodiment is opposed to the base 11, the lattice region 12 a formed on one main surface of the base 11, and the one main surface of the base 11. And a groove 13a formed on the other main surface.
  • the base material 11 is a plate-like member formed from a predetermined material.
  • the base material 11 since the lattice DGa is used for X-rays, the base material 11 is formed from a predetermined material having a characteristic of transmitting or absorbing X-rays.
  • the base material 11 may be formed of an appropriate material according to the intended use of the lattice DGa.
  • the base material 11 since the microfabrication technique is substantially established, the base material 11 is formed of silicon (Si) having a characteristic of transmitting X-rays, and is, for example, a silicon wafer.
  • the lattice region 12a is a region formed on one main surface of the base material 11 and periodically provided with a plurality of members having the same shape.
  • the lattice region 12a has a predetermined thickness (depth) H (Dz direction perpendicular to the lattice surface DxDy (normal direction of the lattice surface DxDy)).
  • a plurality of metal portions 121 having a length and extending linearly in one direction (long direction) Dx, and a plurality of silicon portions having the predetermined thickness H and extending linearly in the one direction Dx 122.
  • the metal portion 121 has a plate shape or a layer shape having a long linear shape extending in the one direction Dx on the lattice surface DxDy, and is a plate shape or a layer shape along the DxDz surface orthogonal to the lattice surface DxDy.
  • the silicon portion 122 has a plate shape or a layer shape having a long linear shape extending in the one direction Dx on the lattice surface DxDy, and is a plate shape or a layer shape along the DxDz plane orthogonal to the lattice surface DxDy.
  • the plurality of metal portions 121 and the plurality of silicon portions 122 are alternately arranged in the lattice plane DxDy in a direction (width direction) Dy orthogonal to the one direction Dx, and the width direction Dy is a normal line. Arranged parallel to the surface. For this reason, the plurality of metal portions 121 are respectively arranged at predetermined intervals in the width direction Dy orthogonal to the one direction Dx. In other words, the plurality of silicon portions 122 are disposed at predetermined intervals in the width direction Dy perpendicular to the one direction Dx.
  • the predetermined interval (pitch) P is constant in this embodiment.
  • the plurality of metal portions 121 are respectively arranged at equal intervals P in the width direction Dy and have a periodic structure. Therefore, the plurality of periodically provided members may be viewed as the metal portion 121, or the plurality of members may be viewed as the silicon portion 122, or alternatively, the plurality of the plurality of members. The member may be viewed as a set of silicon portion 122 and metal portion 121.
  • the metal portion 121 is formed of a metal having an action such as absorption or phase shift with respect to X-rays in order for the silicon portion 122 to function so as to transmit X-rays.
  • the metal of the metal portion 121 is preferably selected to absorb X-rays.
  • a metal or a noble metal having a relatively heavy atomic weight, more specifically, for example, gold (Au) and platinum. (Platinum, Pt) or the like.
  • the metal portion 121 has an appropriate thickness H so that, for example, X-rays can be sufficiently absorbed according to specifications.
  • the ratio of the thickness H to the width W in the metal portion 121 is, for example, a high aspect ratio of 5 or more.
  • the width W of the metal portion 121 is the length of the metal portion 121 in the width direction Dy
  • the thickness H of the metal portion 121 is the length of the metal portion 121 in the normal direction (depth direction) Dz of the lattice plane DxDy. Length.
  • the grating DG functions as a diffraction grating by appropriately setting the predetermined interval P according to the wavelength of the X-ray so as to satisfy the diffraction condition for the X-ray.
  • the metal portion 121 is not limited to a metal, and is similar to the silicon portion 122 as long as the metal portion 121 and the silicon portion 122 are different from each other and have properties corresponding to the intended use of the lattice DGa.
  • it may be formed of an appropriate material according to the intended use of the lattice DGa.
  • the groove 13a is a recess formed in the other main surface of the substrate 11 facing the one main surface in order to partially reduce the thickness of the substrate 11.
  • the groove 13a is formed on the other main surface facing the region where the lattice region 12a is formed.
  • the base material 11 is bent to such an extent that it does not break at the groove 13a, so that the periodicity of the metal portion 121 and the periodicity of the silicon portion 122 are maintained, and in order to prevent the occurrence of vignetting, as described above, Since there is no need to reduce the size, the above-mentioned disadvantages caused by reducing the size of the conventional small lattice do not occur.
  • the grooves 13a are provided in the base material 11 in an appropriate number and an appropriate size (for example, width w and depth h) according to the bending amount of the base material 11, that is, the lattice surface of the lattice region 12a.
  • three grooves 13 a-1 to 13 a-3 are formed on the base material 11.
  • each of the metal portion 121 and the silicon portion 122 is a plate shape or a layer shape having a long linear shape extending in the one direction Dx on the lattice plane DxDy, and in the one direction Dx.
  • the groove 13a Since it is a periodic structure having periodicity in the orthogonal width direction Dy, the groove 13a has a slit shape formed elongated along the long one direction Dx of the linear shape, and metal
  • Each of the portion 121 and the silicon portion 122 is formed with a predetermined depth H in the normal direction Dz of the lattice plane DxDy and with a predetermined width W in the width direction Dy. It is formed with a predetermined depth h in the line direction Dz and with a predetermined width w in the width direction Dy. Accordingly, in the example shown in FIG.
  • the groove 13a is a layered recess having a long linear shape extending in the one direction Dx on the lattice plane DxDy, and is formed on the DxDz plane orthogonal to the lattice plane DxDy. A layered recess along.
  • Such a lattice DGa is manufactured, for example, through the following steps. More specifically, in order to manufacture the lattice DGa of the present embodiment, first, a base material 11 which is a substrate formed of silicon such as a silicon wafer is prepared (FIG. 2A).
  • a lattice region 12a in which a plurality of members having the same shape are periodically provided is formed on one main surface of the substrate 11 (FIG. 2B, lattice region forming step).
  • the plurality of members are the metal portion 121 and the silicon portion 122 in the present embodiment.
  • Such a lattice region 12a includes, for example, International Publication WO2012 / 008118, International Publication WO2012 / 008119, International Publication WO2012 / 008120, International Publication WO2012 / 0886121, and Japanese Unexamined Patent Publication No. 2012-127865. It can manufacture using the well-known method disclosed by this.
  • a lattice includes, for example, a substrate including a first silicon layer and a second silicon layer attached to the first silicon layer and having a higher resistance than the first silicon layer (in the present embodiment).
  • such a lattice region 12a is formed by a resist layer forming step of forming a resist layer on a main surface of a silicon substrate (corresponding to the base material 11 of the present embodiment), and by patterning the resist layer.
  • the etching method in the etching step is preferably a Bosch process because the silicon substrate 11 can be etched substantially vertically.
  • this Bosch process the SF 6 plasma rich state and the C 4 F 8 plasma rich state are alternately repeated, thereby protecting the side wall in the recess formed by etching and etching the bottom surface in the recess. Is an etching method in which the process proceeds alternately.
  • a groove 13a is formed on the other main surface opposite to the one main surface of the substrate 11 (FIG. 2C, groove forming step).
  • a groove part 13a is formed by performing blade dicing with a blade so as to cut into the middle of the base material 11, for example.
  • the groove 13 a is formed in a resist layer forming step of forming a resist layer on the other main surface of the silicon base material 11, as in the lattice region 12 a, and the resist in the patterned portion by patterning the resist layer.
  • the bendable lattice DGa in this embodiment shown in FIG. 1 is manufactured.
  • a bending step of bending the lattice plane DxDy of the lattice region 12a may be performed. In this bending step, both ends of the lattice DGa may be supported and bent. By performing this bending process, a curved grating is provided.
  • the lattice DGa and the manufacturing method thereof in the present embodiment include the groove portion 13a on the other main surface facing the one main surface on which the lattice region 12a is formed, the thickness of the base material 11 is reduced at the groove portion 13a. For this reason, the lattice DGa is easily bent at the groove portion 13a where the substrate 11 is thin. Therefore, the lattice DGa having the above configuration can be bent. In addition, since the lattice DGa having the above configuration can be bent, the periodicity of the metal part 121 and the periodicity of the silicon part 122 are maintained in the plurality of members, in this embodiment, in order to prevent the occurrence of vignetting. As described above, since it is not necessary to reduce the size of the small lattice, the above-described disadvantage caused by reducing the size of the conventional small lattice does not occur.
  • FIG. 3 is a perspective view showing a configuration of a lattice in the second embodiment.
  • FIG. 4 is a cross-sectional view for explaining the manufacturing process of the grating in the second embodiment.
  • the lattice DGb in the second embodiment further includes a holding member 14 in the lattice DGa in the first embodiment. That is, as shown in FIGS. 3 and 4C, the lattice DGb in the second embodiment is formed on the base material 11, the lattice region 12 a formed on one main surface of the base material 11, and the one main surface of the base material 11. A groove portion 13a formed on the opposite main surface and a holding member 14 are provided. Since the base material 11, the lattice region 12a, and the groove portion 13a in the lattice DGb of the second embodiment are the same as the base material 11, the lattice region 12a, and the groove portion 13a in the lattice DGa of the first embodiment, description thereof is omitted. .
  • the holding member 14 is arranged relative to each other in the plurality of base material pieces before and after the division (positional relationship of the arrangement, each position of the base material pieces). In order to maintain the mutual positional relationship), it is a member disposed on one main surface of the base material 11 including a region facing the region where the groove 13a is formed.
  • the holding member 14 is formed in a layer shape (sheet shape) on the entire lattice surface of the lattice region 12 a. More specifically, for example, the holding member 14 is a sheet made of a resin material having an adhesive material on one main surface, and is adhered to the entire lattice surface of the lattice region 12a by the adhesive material.
  • Such a lattice DGb is manufactured, for example, through the following steps. More specifically, in order to manufacture the lattice DGb of the present embodiment, first, the base material 11 is prepared (FIG. 4A), and then the lattice region 12a is based on the lattice DGa of the first embodiment. It is formed on one main surface of the material 11 (FIG. 4B, lattice region forming step).
  • the holding member 14 is adhered to the entire lattice surface of the lattice region 12a by the adhesive material. (FIG. 4C, holding member disposing step).
  • the groove 13a is formed on the other main surface (FIG. 4D, groove forming step).
  • the bendable lattice DGb in the present embodiment shown in FIG. 3 is manufactured.
  • a bending step of bending the lattice plane DxDy of the lattice region 12a may be performed. In addition, this bending process may be bent until the base material 11 breaks.
  • an adhesive or an adhesive is applied to the crack (crack) CR generated in the groove portion 13a in the depth direction Dz by the bending process.
  • a filling member such as a putty may be filled and the crack CR may be filled.
  • the filling member is preferably a material having substantially the same properties as those of the base material 11 according to the intended use of the lattice DGb.
  • the lattice DGb is for X-rays, and the base material 11 is made of silicon. Therefore, when solidified, it is SOG (spin on glass) that becomes substantially equal to the X-ray transmittance of silicon. Is preferred.
  • the holding member 14 is formed on the entire lattice surface of the lattice region 12a.
  • a plurality of holding members 14 may be formed for each region of the main surface facing the region where the groove 13a is formed.
  • the holding member 14 may be disposed on the other surface of the base material 11 including at least the groove portion 13a.
  • the holding member 14 includes the region facing the region where the groove portion 13a is formed. May be disposed on one main surface of the substrate 11 and on the other surface of the base material 11 including at least the groove 13a.
  • the lattice DGb and the manufacturing method thereof include the holding member 14 disposed by the holding member disposing step, even if the base material 11 is broken by the bending step, the periodicity in the plurality of members, In the present embodiment, the periodicity of the metal portion 121 and the periodicity of the silicon portion 122 can be maintained.
  • each step is performed in the order of the lattice region forming step, the holding member disposing step, and the groove forming step.
  • the lattice region forming step, the groove forming step, and the holding member disposing step are performed in this order.
  • Each step may be performed.
  • each process is performed in the order of the lattice region forming step, the holding member disposing step, the groove forming step, and the bending step.
  • the lattice region forming step, the groove forming step, the bending step, and the holding are performed.
  • Each step may be performed in the order of the member disposing step, and for example, each step may be performed in the order of the lattice region forming step, the groove forming step, the holding member disposing step, and the bending step.
  • FIG. 5 is a perspective view showing a configuration of a lattice in the third embodiment.
  • FIG. 6 is a cross-sectional view for explaining the manufacturing process of the grating in the third embodiment.
  • FIG. 7 is a cross-sectional view for explaining a manufacturing process of a lattice in a modification of the third embodiment.
  • the lattices DGa and DGb in the first and second embodiments when the lattice plane DxDy of the lattice region 12a is bent by a bending process as shown in FIGS. 2D and 4E, the regions face the region where the groove 13a is formed.
  • the lattices DGa and DGb formed in the region of the main surface are narrow in width, and the periodicity of the metal portion 121 and the periodicity of the silicon portion 122 may be disturbed.
  • the lattice DGc in the third embodiment includes the metal portion 121 or the silicon portion provided in the region of the one main surface facing the region where the groove portion 13a is formed, among the plurality of metal portions 121 or the plurality of silicon portions 122.
  • the width W2 in the periodic direction 122 is formed so as to be wider than the width W1 of the metal portion 121 or the silicon portion 122 provided in another region.
  • Such a lattice DGc in the third embodiment includes, for example, as shown in FIGS. 5 and 6D, a base material 11, a lattice region 12 b formed on one main surface of the base material 11, and one of the base materials 11.
  • the groove portion 13a is formed on the other principal surface opposite to the principal surface.
  • a holding member 14 is provided. Note that the lattice DGc in the third embodiment may not include the holding member 14 in the same manner as the lattice DGa in the first embodiment.
  • the base material 11 and the groove 13a in the lattice DGc of the third embodiment are the same as the base material 11 and the groove 13a in the lattice DGa of the first embodiment, and the holding member 14 in the lattice DGc of the third embodiment is the first Since it is the same as the holding member 14 in the lattice DGb of the second embodiment, the description thereof is omitted.
  • the lattice region 12b is a region that is formed on one main surface of the base material 11 and that is provided with a plurality of members having the same shape and is opposed to a region of the plurality of metal portions 121 where the groove 13a is formed.
  • the first portion except that the width W2 in the periodic direction of the metal portion 121 provided in the region of the main surface is larger than the width W1 of the metal portion 121 provided in the other region. This is the same as the lattice region 12a in the lattice DGa of the embodiment.
  • the lattice region 12b includes a metal portion 121 and a silicon portion 122 similar to the lattice region 12a in the lattice DGa of the first embodiment, and a metal portion 123 formed with a width W2 wider than the width W1 of the metal portion 121.
  • the metal portion 123 having the width W2 is provided in a region of one main surface facing the region in which the groove 13a is formed. Since the metal portion 123 having the width W2 is the same as the metal portion 121 having the width W1 in the lattice region 12a in the lattice DGa of the first embodiment except that the width W is different, the description thereof is omitted.
  • Such a lattice DGc is manufactured, for example, through the following steps. More specifically, in order to manufacture the lattice DGc of this embodiment, as shown in FIG. 6, first, the base material 11 is prepared (FIG. 6A), and then the lattice region 12 b is one side of the base material 11. It is formed on the main surface (FIG. 6B, lattice region forming step). In the lattice region forming step in the third embodiment, for example, the lattice region 12b is formed instead of the lattice region 12a in the patterning step described in the lattice region forming step (FIG. 2B) of the first embodiment. Except for the point that the resist layer is patterned by a lithography method and the resist layer in the patterned portion is removed, this is the same as the method for manufacturing the lattice DGa in the first embodiment.
  • the holding member disposing step is performed (FIG. 6C), and the groove forming step is performed (FIG. 6D).
  • the groove forming step for example, alignment patterning is performed by a double-sided mask aligner, and etching is performed.
  • blade dicing may be performed using the alignment mark.
  • the bendable lattice DGc in this embodiment shown in FIG. 5 is manufactured.
  • a bending step of bending the lattice plane DxDy of the lattice region 12a may be performed.
  • this bending process may be bent until the base material 11 breaks.
  • the crack (crack) CR generated in the groove portion 13a in the depth direction Dz by the execution of the bending step may be filled with the filling member to fill the crack CR.
  • the width W2 of the metal portion 123 is wider than the width W1 of the other metal portion 121, even if the grid plane DxDy of the grid region 12b is curved by the bending process, The disturbance of the periodicity of the portion 121 can be suppressed to a small level.
  • the depth in the normal direction of the lattice plane DxDy in the metal portion 124 provided in the region of the one main surface facing the region in which the groove 13a is formed is as shown in FIG.
  • the depth of the other metal portion 121 may be deeper. That is, the lattice DGd according to the modification of the third embodiment is a method of the lattice plane DxDy in the metal portion 124 provided in the region of the main surface opposite to the region where the groove 13a is formed among the plurality of metal portions 121.
  • the lattice region 12c is formed so that the depth in the line direction is deeper than the depth of the metal portion 121 provided in another region. As shown in FIG.
  • the lattice DGd can be manufactured by the same steps as those shown in FIG.
  • the metal portion 123 has a depth that is different from that of the other metal portion 121 due to a so-called microloading effect, which is a phenomenon in which the etching rate is reduced as the pattern width is reduced. It is formed to be deeper.
  • FIG. 8 is a cross-sectional view showing the configuration of the grating in the fourth embodiment.
  • the gratings DGa to DGd in the first to third embodiments are bent so that the grating surface DxDy becomes a concave surface when the bending process is performed, but the bending process is performed as shown in FIG. 8A.
  • the grating surface DxDy may be bent so as to be a convex surface.
  • FIG. 8A shows an example of the lattice DGb of the second embodiment.
  • a groove 13b having a V-shaped cross section is preferable as shown in FIG. 8B instead of the groove 13a.
  • Such a groove 13b having a V-shaped cross section can be formed by anisotropic etching or dicing using a blade having a triangular cross section.
  • the gratings DG (DGa to DGd) in the first to fourth embodiments described above are diffraction gratings for X-rays.
  • the gratings DG (DGa to DGd) are not limited to those for X-rays. It may be a diffraction grating for waves of other wavelengths.
  • the metal portion 121 is formed between the silicon portions 122 adjacent to each other, but the space portion (gap portion, gap portion) is formed. It may be.
  • the predetermined interval P is set to a predetermined wavelength (for example, an X-ray wavelength) due to a difference in refractive index between the silicon portion 122 and the space portion.
  • a diffraction grating for example, a phase type diffraction grating.
  • the refractive index of the silicon portion 122 is a refractive index of silicon (Si)
  • the space portion is a refractive index of a predetermined gas (for example, air).
  • the one direction Dx in which the metal portions 121 and 123, the silicon portion 122, and the groove portions 13a and 13b extend coincides with the cleavage direction of the base material 11. It is preferable to do.
  • the base material 11 is a (100) silicon substrate, it is cleaved in the [110] direction or the [1-10] direction, so the one direction Dx coincides with the [110] direction or the [1-10] direction. It is preferable to do.
  • Such a lattice DG can be broken along the metal parts 121 and 123, the silicon part 122 and the groove parts 13a and 13b even if the base material 11 is broken by a bending process, and the breaking direction can be predicted. . Therefore, such a lattice DG and a method for manufacturing the lattice DG can design the lattice DG in consideration of breakage, and can realize the performance as designed more reliably.
  • the toughness of the holding member 14 is preferably higher than the toughness of the base material 11.
  • Such a lattice DG and a method of manufacturing the lattice DG can prevent the holding member 14 from breaking before the base material 11 is broken, and even if the base material 11 is broken by a bending process, the metal portion 121 is broken. , 123 and the reliability of the point that the periodicity of the silicon portion 122 can be maintained.
  • the X-ray absorption rate of the holding member 14 is preferably smaller than the X-ray absorption rate of the base material 11.
  • Such a grating DG and the method for manufacturing the grating DG can reduce the influence of the holding member 14 on the grating when the grating DG is used for X-rays.
  • FIG. 9 is a diagram for explaining an embodiment of the lattice.
  • a lattice region that is a square of 110 mm is formed on one main surface of an 8-inch silicon wafer having a thickness of 400 ⁇ m.
  • both sides of the lattice region (one set of opposite sides of the four sides of the lattice region) were cut off, and the lattice was cut out. Thereafter, the cut out lattice was cut into a depth of 250 ⁇ m from the other main surface where the lattice region was not formed, using a blade dicing apparatus, thereby forming a groove (FIG. 9C).
  • a lattice region having a depth of 100 ⁇ m is formed on a silicon wafer having a thickness of 400 ⁇ m and a groove portion having a thickness of 250 ⁇ m is formed, so that the thickness of the silicon wafer on which the groove portion is formed becomes 50 ⁇ m.
  • the arc-shaped portions remaining on the outer sides of both sides were bent along an arc having a radius of 1.4 m while being held on both sides.
  • a lattice region having a square of 110 mm is formed on one main surface of an 8-inch silicon wafer having a thickness of 400 ⁇ m.
  • an adhesive PET film adheresive polyethylene terephthalate film having a thickness of 90 ⁇ m was stuck as a holding member on the entire lattice region. Thereafter, this cut out lattice was cut into a depth of 332 ⁇ m from the other main surface where the lattice region was not formed with the same blade dicing apparatus to form a groove (FIG. 9C). As a result, a lattice region having a depth of 18 ⁇ m and a groove portion having a depth of 332 ⁇ m are formed on a silicon wafer having a thickness of 400 ⁇ m, so that the thickness of the silicon wafer having the groove portion becomes 50 ⁇ m.
  • the one direction Dx in which the gold part, the silicon part, and the groove part extend is preferably coincident with the cleavage direction of the silicon wafer. This was bent along an arc having a radius of 1.1 m while holding the arc-shaped portions remaining on the outer side in one direction Dx in which the gold portion, the silicon portion and the groove portion extend in the lattice region.
  • a space portion width 2.15 ⁇ m
  • the groove portion is arranged along a curved surface having a radius of 50 cm. If only the period corresponding to the part is 2.53 ⁇ m, the period corresponding to the groove part is approximately 2.5 ⁇ m.
  • the grating DG (DGa to DGd) and the grating unit of the above embodiment can be suitably used for an X-ray Talbot interferometer and a Talbot-Lau interferometer as an application example.
  • An X-ray Talbot interferometer and an X-ray Talbot-low interferometer using the grating DG and the grating unit will be described.
  • FIG. 10 is a perspective view showing a configuration of an X-ray Talbot interferometer in the fifth embodiment.
  • FIG. 11 is a top view showing a configuration of an X-ray Talbot-Lau interferometer in the sixth embodiment.
  • an X-ray Talbot interferometer 200A includes an X-ray source 201 that emits X-rays having a predetermined wavelength, and a phase type that diffracts X-rays emitted from the X-ray source 201.
  • the first and second diffraction gratings 202 and 203 include a first diffraction grating 202 and an amplitude-type second diffraction grating 203 that forms an image contrast by diffracting the X-rays diffracted by the first diffraction grating 202.
  • the X-ray having the image contrast caused by the second diffraction grating 203 is detected by, for example, an X-ray image detector 205 that detects the X-ray.
  • an X-ray image detector 205 that detects the X-ray.
  • at least one of the first diffraction grating 202 and the second diffraction grating 203 is the grating DG or the grating unit.
  • the lattice unit includes a plurality of lattices (small lattices, sub-lattices, lattice elements) arranged so as to form one lattice plane, and at least one of the plurality of lattices is the first to the above-described first to It is one of the lattices DG in the fourth embodiment.
  • lattices small lattices, sub-lattices, lattice elements
  • Equation 2 assumes that the first diffraction grating 202 is a phase type diffraction grating.
  • l ⁇ / (a / (L + Z1 + Z2)) (Formula 1)
  • Z1 (m + 1/2) ⁇ (d 2 / ⁇ ) (Formula 2)
  • l is the coherence distance
  • is the wavelength of X-rays (usually the center wavelength)
  • a is the aperture diameter of the X-ray source 201 in the direction substantially perpendicular to the diffraction member of the diffraction grating.
  • L is the distance from the X-ray source 201 to the first diffraction grating 202
  • Z1 is the distance from the first diffraction grating 202 to the second diffraction grating 203
  • Z2 is from the second diffraction grating 203
  • m is an integer
  • d is the period of the diffraction member (period of diffraction grating, grating constant, distance between centers of adjacent diffraction members, the pitch P).
  • X-rays are irradiated from the X-ray source 201 toward the first diffraction grating 202.
  • This irradiated X-ray produces a Talbot effect at the first diffraction grating 202 to form a Talbot image.
  • This Talbot image is acted on by the second diffraction grating 203 to form an image contrast of moire fringes.
  • This image contrast is detected by the X-ray image detector 205.
  • the Talbot effect means that when light enters the diffraction grating, the same image as the diffraction grating (self-image of the diffraction grating) is formed at a certain distance. Good, this self-image is called the Talbot image.
  • the diffraction grating is a phase type diffraction grating
  • the moire fringes are modulated by the subject S, and the modulation amount is caused by the refraction effect by the subject S. It is proportional to the angle at which the X-ray is bent. For this reason, the subject S and its internal structure are detected by analyzing the moire fringes.
  • the X-ray source 201 is a single point light source (point wave source), and such a single point light source has a single slit (single slit).
  • the X-ray radiated from the X-ray source 201 passes through the single slit of the single slit plate and passes through the subject S for the first diffraction. Radiated toward the grating 202.
  • the slit is an elongated rectangular opening extending in one direction.
  • the Talbot-Lau interferometer 200B includes an X-ray source 201, a multi-slit plate 204, a first diffraction grating 202, and a second diffraction grating 203, as shown in FIG. That is, the Talbot-Lau interferometer 200B further includes a multi-slit plate 204 in which a plurality of slits are formed in parallel on the X-ray emission side of the X-ray source 201 in addition to the Talbot interferometer 200A shown in FIG. Is done.
  • the multi slit plate 204 may be the lattice DG or the lattice unit in the first to fourth embodiments described above.
  • X-rays can be transmitted substantially parallel to the slits (the plurality of silicon portions 122). Since the intensities of the X-rays transmitted through the slits can be made substantially uniform, the multi-slit plate 204 can use the X-rays emitted from the X-ray source 201 as a better multi-light source.
  • the Talbot-Lau interferometer 200B By using the Talbot-Lau interferometer 200B, the X-ray dose radiated toward the first diffraction grating 202 through the subject S is increased compared to the Talbot interferometer 200A, so that a better moiré fringe can be obtained. It is done.
  • Examples of the first diffraction grating 202, the second diffraction grating 203, and the multi-slit plate 204 used in the Talbot interferometer 200A and the Talbot-low interferometer 200B are as follows.
  • the silicon portion 122 and the metal portion 121 are formed with the same width, and the metal portion 121 is formed of gold.
  • the distance R1 from the X-ray source 201 or the multi-slit plate 204 to the first diffraction grating 202 is 1.1 m
  • the distance R2 from the X-ray source 201 or the multi-slit plate 204 to the second diffraction grating 203 is In the case of 1.4 m
  • the first diffraction grating 202 has a pitch P of 4.5 ⁇ m
  • the silicon portion 122 has a thickness of 18 ⁇ m
  • the second diffraction grating 203 has a pitch P of 5.mu.m.
  • the grating DG and the grating unit can be used for various optical devices, but can be suitably used for an X-ray imaging device, for example.
  • an X-ray imaging apparatus using an X-ray Talbot interferometer treats X-rays as waves and detects a phase shift of the X-rays caused by passing through the subject to obtain a phase contrast method for obtaining a transmission image of the subject.
  • an improvement in sensitivity of about 1000 times is expected, so that the X-ray irradiation dose is, for example, 1/100 to 1 / 1000 has the advantage that it can be reduced.
  • an X-ray imaging apparatus including an X-ray Talbot interferometer using a grating unit including the grating DG will be described.
  • FIG. 12 is an explanatory diagram showing the configuration of the X-ray imaging apparatus according to the seventh embodiment.
  • an X-ray imaging apparatus 300 includes an X-ray imaging unit 301, a second diffraction grating 302, a first diffraction grating 303, and an X-ray source 304.
  • the X-ray source An X-ray power supply unit 305 that supplies power to 304, a camera control unit 306 that controls the imaging operation of the X-ray imaging unit 301, a processing unit 307 that controls the overall operation of the X-ray imaging apparatus 300, and an X-ray power source And an X-ray control unit 308 that controls the X-ray emission operation of the X-ray source 304 by controlling the power supply operation of the unit 305.
  • the X-ray source 304 is a device that emits X-rays by being supplied with power from the X-ray power supply unit 305 and emits X-rays toward the first diffraction grating 303.
  • the X-ray source 304 emits X-rays when a high voltage supplied from the X-ray power supply unit 305 is applied between the cathode and the anode, and electrons emitted from the cathode filament collide with the anode.
  • Device is a device that emits X-rays by being supplied with power from the X-ray power supply unit 305 and emits X-rays toward the first diffraction grating 303.
  • the X-ray source 304 emits X-rays when a high voltage supplied from the X-ray power supply unit 305 is applied between the cathode and the anode, and electrons emitted from the cathode filament collide with the anode.
  • the first diffraction grating 303 is a transmission type diffraction grating that generates a Talbot effect by X-rays emitted from the X-ray source 304.
  • the first diffraction grating 303 is, for example, the grating unit DG of the above-described embodiment.
  • the first diffraction grating 303 is configured so as to satisfy the conditions for generating the Talbot effect, and is a grating sufficiently coarser than the wavelength of X-rays emitted from the X-ray source 304, for example, a grating constant (period of the diffraction grating). It is a phase type diffraction grating in which d is about 20 times or more the wavelength of the X-ray.
  • the first diffraction grating 303 may be an amplitude type diffraction grating.
  • the second diffraction grating 302 is a transmission-type amplitude diffraction grating that is disposed at a position approximately L Talbot distance L away from the first diffraction grating 303 and diffracts the X-rays diffracted by the first diffraction grating 303.
  • the second diffraction grating 302 is also the grating DG or the grating unit of the above-described embodiment, for example.
  • the one or more gratings DG constituting the first diffraction grating 303 have X-rays so that the normal passing through the center of the light receiving surface passes through the radiation source of the X-ray source 304 as a point light source.
  • the grid DG is a virtual line centered on a virtual line passing through the radiation source of the X-ray source 304 so that a normal passing through the center of the light receiving surface passes through the radiation source of the X-ray source 304 as a point light source. It is preferable that they are arranged along the cylindrical surface.
  • Each of the first and second diffraction gratings 303 and 302 has a radius of curvature of about 1 m.
  • these 1st and 2nd diffraction gratings 303 and 302 are set to the conditions which comprise the Talbot interferometer represented by the above-mentioned Formula 1 and Formula 2.
  • the X-ray imaging unit 301 is an apparatus that captures an X-ray image diffracted by the second diffraction grating 302.
  • the X-ray imaging unit 301 is, for example, a flat panel detector (FPD) including a two-dimensional image sensor in which a thin film layer including a scintillator that absorbs X-ray energy and emits fluorescence is formed on a light receiving surface, and incident photons.
  • An image intensifier unit that converts the electrons into electrons on the photocathode, doubles the electrons on the microchannel plate, and causes the doubled electrons to collide with phosphors to emit light, and the output light of the image intensifier unit
  • An image intensifier camera including a two-dimensional image sensor.
  • the processing unit 307 is a device that controls the entire operation of the X-ray imaging apparatus 300 by controlling each unit of the X-ray imaging apparatus 300.
  • the processing unit 307 includes a microprocessor and its peripheral circuits, and is functionally An image processing unit 371 and a system control unit 372 are provided.
  • the system control unit 372 controls the X-ray emission operation in the X-ray source 304 via the X-ray power source unit 305 by transmitting and receiving control signals to and from the X-ray control unit 308, and the camera control unit 306.
  • the imaging operation of the X-ray imaging unit 301 is controlled by transmitting and receiving control signals between the X-ray imaging unit 301 and the X-ray imaging unit 301.
  • Under the control of the system control unit 372 X-rays are emitted toward the subject S, an image generated thereby is captured by the X-ray imaging unit 301, and an image signal is input to the processing unit 307 via the camera control unit 306.
  • the system control unit 372 controls the X-ray emission operation in the X-ray source 304 via the X-ray power source unit 305 by transmitting and receiving control signals to and from the X-ray control unit 308, and the camera control unit 306.
  • the imaging operation of the X-ray imaging unit 301 is controlled by transmitting and receiving control signals
  • the image processing unit 371 processes the image signal generated by the X-ray imaging unit 301 and generates an image of the subject S.
  • the subject S is placed on an imaging table including the X-ray source 304 inside (rear surface), so that the subject S is disposed between the X-ray source 304 and the first diffraction grating 303, and the X-ray imaging apparatus 300.
  • the system control unit 372 of the processing unit 307 controls the X-ray control unit 308 to emit X toward the subject S. Is output.
  • the X-ray control unit 308 causes the X-ray power supply unit 305 to supply power to the X-ray source 304, and the X-ray source 304 emits X-rays and irradiates the subject S with X-rays.
  • a Talbot image T is formed.
  • the formed X-ray Talbot image T is diffracted by the second diffraction grating 302 to generate moire and form moire fringe images.
  • the moire fringe image is picked up by the X-ray imaging unit 301 whose exposure time is controlled by the system control unit 372, for example.
  • the X-ray imaging unit 301 outputs the image signal of the moire fringe image to the processing unit 307 via the camera control unit 306. This image signal is processed by the image processing unit 371 of the processing unit 307.
  • the subject S is disposed between the X-ray source 304 and the first diffraction grating 303, the X-rays that have passed through the subject S are out of phase with the X-rays that do not pass through the subject S. For this reason, the X-rays incident on the first diffraction grating 303 include distortion in the wavefront, and the Talbot image T is deformed accordingly. For this reason, the moire fringes of the image generated by the superimposition of the Talbot image T and the second diffraction grating 302 are modulated by the subject S, and the X-rays are bent by the refraction effect of the subject S. Proportional to angle.
  • the subject S and its internal structure can be detected by analyzing the moire fringes.
  • a tomographic image of the subject S can be formed by X-ray phase CT (computed tomography).
  • first and second diffraction gratings 303 and 302 of this embodiment include the bendable grating DG in the above-described embodiment, a plurality of gratings can be arranged along the curved surface, and both ends of the grating
  • the so-called vignetting described above that occurs in the region of (adjacent portions of the lattices adjacent to each other) can be reduced. Therefore, such an X-ray imaging apparatus 300 can reduce noise caused by the vignetting and can obtain a clearer X-ray image.
  • Such an X-ray imaging apparatus includes a bendable grating DG, the periodicity in the metal part 121 and the silicon part 122 is maintained, and in order to prevent the occurrence of the vignetting, Since there is no need to reduce the size, the above-mentioned disadvantages caused by reducing the size of the conventional small lattice do not occur.
  • a Talbot interferometer is configured by the X-ray source 304, the first diffraction grating 303, and the second diffraction grating 302.
  • the Talbot-Lau interferometer may be configured by further arranging the grating DG or the grating unit in the above-described embodiment.
  • the lattice DG as the multi slit is set to have a radius of curvature of about 2 to 3 cm.
  • the subject S is disposed between the X-ray source 304 and the first diffraction grating 303, but the subject S is disposed between the first diffraction grating 303 and the second diffraction grating 302. May be arranged.
  • an X-ray image is captured by the X-ray imaging unit 301 and electronic data of the image is obtained, but may be captured by an X-ray film.
  • a diffraction grating is configured to face a base material, a grating region formed on one main surface of the base material, in which a plurality of members having the same shape are periodically provided, and the one main surface of the base material
  • Each of the plurality of members has a long linear shape extending in one direction on the one main surface, and the groove portion extends along the one direction. It is long.
  • such a diffraction grating has a groove on the other main surface facing the one main surface on which the grating region is formed, the thickness of the base material is reduced at the groove. For this reason, such a diffraction grating can be easily bent in a periodic direction perpendicular to the one direction at the groove portion, and can be bent at the groove portion. Since such a diffraction grating can be bent, the periodicity of the plurality of members is maintained, and it is not necessary to reduce the size of the small grating as described above in order to prevent the occurrence of vignetting. Therefore, the above-described disadvantages caused by reducing the size of the conventional small lattice do not occur.
  • a plurality of the base materials are provided on one main surface of the base material including at least the grating region, or on the other main surface of the base material including at least the groove.
  • a holding member for holding the mutual positional relationship between the plurality of base material pieces before and after the division.
  • such a diffraction grating includes the holding member, the periodicity of the plurality of members can be maintained even if the base material is broken by a bending process.
  • the width is wider than the width of the other members of the plurality of members.
  • the width of the periodic direction perpendicular to the one direction in the member provided in the region of the one main surface facing the region where the groove is formed is wider than the width of the other member. Even when the lattice plane is curved, the periodic disturbance in the plurality of members can be kept small.
  • a depth in a normal direction of the grating surface in the member provided in the region of the one main surface facing the region in which the groove portion is formed among the plurality of members is deeper than the depth of the other members of the plurality of members.
  • such a diffraction grating since the depth in the normal direction of the grating surface of the member provided in the region of the one main surface facing the region where the groove is formed is deeper than the depth of the other members, Even when the base material is broken by bending, it can be broken at this portion, and the broken portion can be predicted. Therefore, such a diffraction grating can be designed in consideration of breakage, and the performance as designed can be more reliably realized.
  • the one direction coincides with the cleavage direction of the substrate. Since such a diffraction grating is formed so that the groove portion coincides with the cleavage direction of the substrate, even if the substrate is broken by bending, it can be broken along the plurality of members and groove portions. And the direction of breakage can be predicted. Therefore, such a diffraction grating can be designed in consideration of breakage, and the performance as designed can be more reliably realized.
  • the toughness of the holding member is higher than the toughness of the base material.
  • such a diffraction grating has a toughness of the holding member higher than that of the base material, the holding member can be prevented from breaking before the base material breaks. However, the reliability that the periodicity in the plurality of members can be maintained is improved.
  • the X-ray absorption rate of the holding member is smaller than the X-ray absorption rate of the base material.
  • Such a diffraction grating can reduce the influence of the holding member on the grating when the grating is used for X-rays because the X-ray absorption rate of the holding member is smaller than the X-ray absorption rate of the base material. .
  • a method of manufacturing a diffraction grating includes a grating region forming step in which a grating region in which a plurality of members having the same shape are periodically provided is formed on one main surface of a base material, and one main surface of the base material
  • the said base material is a silicon wafer in the manufacturing method of the above-mentioned diffraction grating, Preferably.
  • the grating includes a groove portion on the other main surface opposite to the one main surface on which the grating region is formed. Therefore, the thickness of the base material is reduced at the groove portion. For this reason, a grating
  • the above-described diffraction grating manufacturing method further includes a bending step of bending the grating region.
  • a bending step of bending the grating region can provide a curved grating.
  • the above-described manufacturing method of the diffraction grating includes the base material including at least one main surface of the base material including a region facing the region where the groove portion is formed or at least the groove portion.
  • a holding member for disposing a holding member for holding the mutual arrangement relationship of the plurality of base material pieces before and after the division when the base material is divided into a plurality of base material pieces on the other surface of A disposing step is further provided.
  • mode when the said bending process is included in the manufacturing method of the above-mentioned diffraction grating, the said bending process may be bent until the said base material fractures
  • each step may be performed in the order of the lattice region forming step, the holding member disposing step, and the groove forming step, or each of the lattice region forming step, the groove forming step, and the holding member disposing step in this order.
  • the steps may be performed, or the lattice region forming step, the groove forming step, the bending step, and the holding member disposing step may be performed in this order, or the lattice region forming step, the groove forming step, and the holding member disposing step.
  • Each step may be performed in the order of the setting step and the bending step, or each step may be performed in the order of the lattice region forming step, the holding member disposing step, the groove forming step, and the bending step.
  • Such a method for manufacturing a diffraction grating includes a holding member arranged in the holding member arranging step, so that the periodicity in the plurality of members is maintained even when the base material is broken in the bending step. be able to.
  • the member provided in the region of the one main surface facing the region where the groove portion is formed is in the one direction.
  • the width in the orthogonal periodic direction is wider than the width of the other members among the plurality of members.
  • the width of the periodic direction perpendicular to the one direction in the member provided in the region of the one main surface facing the region where the groove is formed is larger than the width of the other member. Since it is wide, even when the lattice plane of the lattice region is curved by the bending process, it is possible to suppress the periodic disturbance in the plurality of members.
  • the grating surface of the member provided in the region of the one main surface facing the region where the groove portion is formed among the plurality of members.
  • the depth in the normal direction is deeper than the depth of the other members among the plurality of members.
  • the depth in the normal direction of the grating surface of the member provided in the region of the one main surface facing the region where the groove is formed is deeper than the depth of other members. Therefore, even if the base material is broken by the bending process, it can be broken at this portion, and the broken portion can be predicted. Therefore, such a method of manufacturing a diffraction grating can design a grating in consideration of breakage, and can realize performance as designed more reliably.
  • the one direction coincides with the cleavage direction of the base material.
  • the groove is formed so as to coincide with the cleavage direction of the base material. Therefore, even if the base material is broken by a bending process, the groove is formed along the plurality of members and groove parts. It can be ruptured and the rupture direction can be predicted. Therefore, such a method of manufacturing a diffraction grating can design a grating in consideration of breakage, and can realize performance as designed more reliably.
  • the toughness of the holding member is higher than the toughness of the base material.
  • the X-ray absorption rate of the holding member is smaller than the X-ray absorption rate of the base material.
  • Such a diffraction grating manufacturing method reduces the influence of the holding member on the grating when the grating is used for X-rays because the X-ray absorption rate of the holding member is smaller than the X-ray absorption rate of the substrate. be able to.
  • a lattice unit is a lattice unit including a plurality of lattices arranged so as to form one lattice plane, and at least one of the plurality of lattices is any of the above-described ones. This is a diffraction grating.
  • a grating unit including the diffraction grating is provided. Since such a grating unit includes a bendable diffraction grating, a plurality of gratings can be arranged along the curved surface, and the above-described occurrence occurs in the region of both ends of the grating (adjacent portions of the gratings adjacent to each other). The so-called vignetting can be reduced. Further, since such a grating unit includes a bendable diffraction grating, the periodicity of the plurality of members is maintained, and the size of the small grating is reduced as described above in order to prevent the occurrence of vignetting. Since it is not necessary, the above-mentioned disadvantages caused by reducing the size of the conventional small lattice are not caused.
  • An X-ray imaging apparatus includes an X-ray source that emits X-rays, a Talbot interferometer or a Talbot-low interferometer that is irradiated with X-rays emitted from the X-ray source, and the Talbot interference. And an X-ray image pickup device that captures an X-ray image by a Talbot-Lau interferometer, and the Talbot interferometer or Talbot-Lau interferometer includes any one of the above-described diffraction gratings and the above-described grating unit. At least one of them.
  • an X-ray imaging apparatus including the diffraction grating. Since such an X-ray imaging apparatus includes a bendable diffraction grating, a plurality of gratings can be arranged along the curved surface, and the above-described occurrence occurs in the region of both ends of the grating (adjacent portions of the gratings adjacent to each other). The so-called vignetting can be reduced. Therefore, such an X-ray imaging apparatus can reduce noise caused by the vignetting and can obtain a clearer X-ray imaging image.
  • Such an X-ray imaging apparatus includes a bendable diffraction grating, the periodicity of the plurality of members is maintained, and the size of the small grating is reduced as described above in order to prevent the occurrence of vignetting. Since there is no need to reduce the size, the above-mentioned disadvantages caused by reducing the size of the conventional small lattice do not occur.
  • a diffraction grating a diffraction grating manufacturing method, a grating unit, and an X-ray imaging apparatus can be provided.

Abstract

This diffraction grating, manufacturing method for the diffraction grating, grating unit, and X-ray image pick-up unit are configured so that a diffraction region is formed on a first main side of a substrate, and grooves are formed on a second main side opposing the first main side.

Description

回折格子および回折格子の製造方法、格子ユニットならびにX線撮像装置Diffraction grating, diffraction grating manufacturing method, grating unit, and X-ray imaging apparatus
 本発明は、互いに同じ形状の部材を周期的に配置した湾曲可能な回折格子およびこの回折格子を製造する回折格子の製造方法に関する。そして、本発明は、前記回折格子を複数並べた格子ユニットおよび前記回折格子や前記格子ユニットを用いたX線撮像装置に関する。 The present invention relates to a bendable diffraction grating in which members having the same shape are periodically arranged, and a method of manufacturing a diffraction grating for manufacturing the diffraction grating. The present invention relates to a grating unit in which a plurality of diffraction gratings are arranged, and an X-ray imaging apparatus using the diffraction grating and the grating unit.
 回折格子は、多数の平行な部材から成る一次元の周期構造を備えた分光素子として様々な装置の光学系に利用されており、近年では、X線撮像装置への応用も試みられている。回折格子には、回折方法で分類すると、透過型回折格子と反射型回折格子とがあり、さらに、透過型回折格子には、光を透過させる基板上に光を吸収する部分を周期的に配列した振幅型回折格子(吸収型回折格子)と、光を透過させる基板上に光の位相を変化させる部分を周期的に配列した位相型回折格子とがある。ここで、吸収とは、50%より多くの光が回折格子によって吸収されることをいい、透過とは、50%より多くの光が回折格子を透過することをいう。 The diffraction grating is used as a spectroscopic element having a one-dimensional periodic structure composed of a large number of parallel members in an optical system of various apparatuses. In recent years, an application to an X-ray imaging apparatus has been attempted. The diffraction gratings are classified into transmission diffraction gratings and reflection diffraction gratings when classified by the diffraction method. Furthermore, the transmission diffraction gratings periodically arrange light absorbing portions on a substrate that transmits light. There are an amplitude type diffraction grating (absorption type diffraction grating) and a phase type diffraction grating in which portions for changing the phase of light are periodically arranged on a substrate that transmits light. Here, absorption means that more than 50% of light is absorbed by the diffraction grating, and transmission means that more than 50% of light passes through the diffraction grating.
 近赤外線用、可視光用または紫外線用の回折格子は、近赤外線、可視光および紫外線が非常に薄い金属によって充分に吸収されることから、比較的容易に製作可能である。例えばガラス等の基板に金属が蒸着されて基板上に金属膜が形成され、該金属膜が格子にパターニングされることによって、回折格子による振幅型回折格子が作製される。可視光用の振幅型回折格子では、金属にアルミニウム(Al)が用いられる場合、アルミニウムにおける可視光(約400nm~約800nm)に対する透過率が0.001%以下であるので、金属膜は、例えば100nm程度の厚さで充分である。 Near-infrared, visible light, or ultraviolet diffraction gratings can be manufactured relatively easily because near-infrared, visible light, and ultraviolet light are sufficiently absorbed by a very thin metal. For example, a metal film is deposited on a substrate such as glass to form a metal film on the substrate, and the metal film is patterned into a grating, whereby an amplitude type diffraction grating using a diffraction grating is manufactured. In the amplitude type diffraction grating for visible light, when aluminum (Al) is used as the metal, the transmittance for visible light (about 400 nm to about 800 nm) in aluminum is 0.001% or less. A thickness of about 100 nm is sufficient.
 一方、X線は、周知の通り、一般に、物質による吸収が非常に小さく、位相変化もそれほど大きくはない。比較的良好な金(Au)でX線用の吸収型回折格子が製作される場合でも、金の厚さは、数十μm以上となる。このようにX線用の回折格子では、透過部分と吸収部分や位相の変化部分とを等幅で数μm~数十μmのピッチで周期構造を形成した場合、金部分の幅に対する厚さの比(アスペクト比=厚さ/幅)は、5以上の高アスペクト比となる。 On the other hand, as is well known, X-rays are generally very small in absorption by substances and the phase change is not so large. Even when an absorption diffraction grating for X-rays is manufactured with relatively good gold (Au), the thickness of the gold is several tens of μm or more. As described above, in the diffraction grating for X-rays, when a periodic structure is formed with a transmission portion, an absorption portion, and a phase change portion with a uniform width and a pitch of several μm to several tens of μm, The ratio (aspect ratio = thickness / width) is a high aspect ratio of 5 or more.
 また、このようなX線用の回折格子を所定の装置に用いる場合、或る程度の大きさが必要となる場合がある。例えば、X線用の回折格子をX線診断装置に用いる場合、一度に診断する診断面積の都合上、或る程度の大きさ、例えば一辺が20cm以上の正方形(□20cm以上)の大きさが必要である。一方、上記微細構造の回折格子は、微細加工技術が比較的確立されているシリコンウェハを用いて製造されることが多い。このシリコンウェハは、一般的に多用される大きさが直径6インチ(φ6インチ)であるため、このφ6インチのシリコンウェハから製作可能な回折格子は、一辺が約10cmの正方形(□約10cm)となる。このため、上述した□20cm以上の回折格子を実現するためには、この□約10cmの回折格子を複数繋げる必要がある。そこで、複数の回折格子を曲面に沿って配置した回折格子ユニットが例えば特許文献1に開示されている。この特許文献1に開示の格子は、放射線源の焦点を通る仮想線を中心軸とした仮想的な円筒面に沿って配列された複数の小格子から成るものである。 In addition, when such an X-ray diffraction grating is used in a predetermined apparatus, a certain size may be required. For example, when an X-ray diffraction grating is used in an X-ray diagnostic apparatus, the size of a certain size, for example, a square having a side of 20 cm or more (□ 20 cm or more) is large due to the diagnostic area to be diagnosed at one time. is necessary. On the other hand, the above-described diffraction grating having a fine structure is often manufactured using a silicon wafer in which a fine processing technique is relatively established. Since this silicon wafer generally has a diameter of 6 inches (φ6 inches), a diffraction grating that can be produced from this φ6 inch silicon wafer is a square (□ about 10 cm) with a side of about 10 cm. It becomes. For this reason, in order to realize the above-described diffraction grating of 20 cm or more, it is necessary to connect a plurality of diffraction gratings of about 10 cm. Therefore, for example, Patent Document 1 discloses a diffraction grating unit in which a plurality of diffraction gratings are arranged along a curved surface. The grating disclosed in Patent Document 1 is composed of a plurality of small gratings arranged along a virtual cylindrical surface with a virtual line passing through the focal point of the radiation source as a central axis.
 ところで、回折格子は、上述したように高アスペクト比であり、さらに、X線を放射するX線源は、一般に点波源である。このため、前記特許文献1に開示の格子(格子ユニット)のように、放射線源の焦点を通る仮想線を中心軸とした仮想的な円筒面に沿って複数の小格子を配列した場合でも、一つ一つの小格子は、平面であるため、小格子の両端部(互いに隣接する小格子の隣接部分)の領域では、X線が斜めに入射してしまい、この結果、いわゆるケラレが生じてしまう。このため、格子を介した結果にノイズが含まれてしまい、前記結果の精度が低下してしまう。 Incidentally, the diffraction grating has a high aspect ratio as described above, and an X-ray source that emits X-rays is generally a point wave source. For this reason, even when a plurality of small lattices are arranged along a virtual cylindrical surface with a virtual line passing through the focal point of the radiation source as a central axis, such as the lattice (grid unit) disclosed in Patent Document 1, Since each small lattice is a plane, X-rays are incident obliquely in the region of both ends of the small lattice (adjacent portions of the small lattices adjacent to each other), resulting in so-called vignetting. End up. For this reason, noise is included in the result through the lattice, and the accuracy of the result is lowered.
 一方、このようなケラレの発生を防止するために、小格子の大きさを小さくすることが考えられる。しかしながら、小格子の大きさを小さくすると、所定の大きさの回折格子ユニットを形成するために、より多くの小格子を前記仮想的な円筒面に沿って配列することが必要となる。この結果、各小格子間の位置合わせが難しく、また煩雑であり、各小格子間のつなぎ目で欠損が生じ易い。このように、小格子の大きさを小さくすると、1枚のウェハから製造可能な最大限の大きさの格子を製造したメリットが失われてしまう。 On the other hand, in order to prevent the occurrence of such vignetting, it is conceivable to reduce the size of the small lattice. However, if the size of the small grating is reduced, it is necessary to arrange a larger number of small gratings along the virtual cylindrical surface in order to form a diffraction grating unit of a predetermined size. As a result, alignment between the small lattices is difficult and complicated, and defects are likely to occur at the joints between the small lattices. Thus, if the size of the small lattice is reduced, the merit of manufacturing the maximum size lattice that can be manufactured from one wafer is lost.
特開2011-206161号公報JP 2011-206161 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、回折格子およびこの回折格子を製造する回折格子の製造方法を提供することである。そして、本発明は、前記回折格子を複数並べた格子ユニットおよび前記回折格子や前記格子ユニットを用いたX線撮像装置を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a diffraction grating and a method of manufacturing a diffraction grating for manufacturing the diffraction grating. The present invention also provides a grating unit in which a plurality of the diffraction gratings are arranged, and an X-ray imaging apparatus using the diffraction grating or the grating unit.
 本発明にかかる回折格子、この回折格子の製造方法、格子ユニットおよびX線撮像装置は、格子領域を基材の一方主面に形成し、前記一方主面に対向する他方主面に溝部を形成したものである。 In the diffraction grating, the diffraction grating manufacturing method, the grating unit, and the X-ray imaging apparatus according to the present invention, the grating region is formed on one main surface of the substrate, and the groove is formed on the other main surface facing the one main surface. It is a thing.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
第1実施形態における格子の構成を示す斜視図である。It is a perspective view which shows the structure of the grating | lattice in 1st Embodiment. 第1実施形態における格子の製造工程を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the grating | lattice in 1st Embodiment. 第2実施形態における格子の構成を示す斜視図である。It is a perspective view which shows the structure of the grating | lattice in 2nd Embodiment. 第2実施形態における格子の製造工程を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the grating | lattice in 2nd Embodiment. 第3実施形態における格子の構成を示す斜視図である。It is a perspective view which shows the structure of the grating | lattice in 3rd Embodiment. 第3実施形態における格子の製造工程を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the grating | lattice in 3rd Embodiment. 第3実施形態の変形形態おける格子の製造工程を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of the grating | lattice in the modification of 3rd Embodiment. 第4実施形態における格子の構成を示す断面図である。It is sectional drawing which shows the structure of the grating | lattice in 4th Embodiment. 格子の一実施例を説明するための図である。It is a figure for demonstrating one Example of a grating | lattice. 第5実施形態におけるX線用タルボ干渉計の構成を示す斜視図である。It is a perspective view which shows the structure of the Talbot interferometer for X-rays in 5th Embodiment. 第6実施形態におけるX線用タルボ・ロー干渉計の構成を示す上面図である。It is a top view which shows the structure of the Talbot low interferometer for X-rays in 6th Embodiment. 第7実施形態におけるX線撮像装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the X-ray imaging device in 7th Embodiment.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 (第1実施形態)
 図1は、第1実施形態における格子の構成を示す斜視図である。図2は、第1実施形態における格子の製造工程を説明するための断面図である。
(First embodiment)
FIG. 1 is a perspective view showing a configuration of a lattice in the first embodiment. FIG. 2 is a cross-sectional view for explaining the manufacturing process of the grating in the first embodiment.
 本実施形態の格子DGaは、図1および図2Cに示すように、基材11と、基材11の一方主面に形成された格子領域12aと、基材11の前記一方主面に対向する他方主面に形成された溝部13aとを備えている。 As shown in FIGS. 1 and 2C, the lattice DGa of this embodiment is opposed to the base 11, the lattice region 12 a formed on one main surface of the base 11, and the one main surface of the base 11. And a groove 13a formed on the other main surface.
 基材11は、所定の材料から形成された板状部材である。例えば、本実施形態では、格子DGaは、X線用に用いられることから、基材11は、X線を透過または吸収する特性を有する所定の材料から形成される。このように基材11は、格子DGaの使用用途に応じて適宜な材料で形成されてよい。そして、本実施形態では、微細加工技術が略確立されていることから、基材11は、X線を透過する特性を有するシリコン(Si)から形成されており、例えば、シリコンウェハである。 The base material 11 is a plate-like member formed from a predetermined material. For example, in this embodiment, since the lattice DGa is used for X-rays, the base material 11 is formed from a predetermined material having a characteristic of transmitting or absorbing X-rays. Thus, the base material 11 may be formed of an appropriate material according to the intended use of the lattice DGa. In this embodiment, since the microfabrication technique is substantially established, the base material 11 is formed of silicon (Si) having a characteristic of transmitting X-rays, and is, for example, a silicon wafer.
 格子領域12aは、基材11の一方主面に形成され、互いに同じ形状の複数の部材を周期的に設けた領域である。格子領域12aは、図1に示すようにDxDyDzの直交座標系を設定した場合に、所定の厚さ(深さ)H(格子面DxDyに垂直なDz方向(格子面DxDyの法線方向)の長さ)を有して一方向(長尺方向)Dxに線状に延びる複数の金属部分121と、前記所定の厚さHを有して前記一方向Dxに線状に延びる複数のシリコン部分122とを備えている。すなわち、この金属部分121は、格子面DxDyにおいて前記一方向Dxに延びる長尺な線条形状となる板状または層状であって、前記格子面DxDyに直交するDxDz面に沿った板状または層状である。シリコン部分122は、格子面DxDyにおいて前記一方向Dxに延びる長尺な線条形状となる板状または層状であって、前記格子面DxDyに直交するDxDz面に沿った板状または層状である。 The lattice region 12a is a region formed on one main surface of the base material 11 and periodically provided with a plurality of members having the same shape. When the orthogonal coordinate system of DxDyDz is set as shown in FIG. 1, the lattice region 12a has a predetermined thickness (depth) H (Dz direction perpendicular to the lattice surface DxDy (normal direction of the lattice surface DxDy)). A plurality of metal portions 121 having a length and extending linearly in one direction (long direction) Dx, and a plurality of silicon portions having the predetermined thickness H and extending linearly in the one direction Dx 122. That is, the metal portion 121 has a plate shape or a layer shape having a long linear shape extending in the one direction Dx on the lattice surface DxDy, and is a plate shape or a layer shape along the DxDz surface orthogonal to the lattice surface DxDy. It is. The silicon portion 122 has a plate shape or a layer shape having a long linear shape extending in the one direction Dx on the lattice surface DxDy, and is a plate shape or a layer shape along the DxDz plane orthogonal to the lattice surface DxDy.
 そして、これら複数の金属部分121と複数のシリコン部分122とは、前記格子面DxDyにおいて、前記一方向Dxに直交する方向(幅方向)Dyに交互に、前記幅方向Dyを法線とするDxDz面に平行に、配設される。このため、複数の金属部分121は、前記一方向Dxと直交する幅方向Dyに所定の間隔を空けてそれぞれ配設される。言い換えれば、複数のシリコン部分122は、前記一方向Dxと直交する幅方向Dyに所定の間隔を空けてそれぞれ配設される。前記所定の間隔(ピッチ)Pは、本実施形態では、一定とされている。すなわち、複数の金属部分121(複数のシリコン部分122)は、前記幅方向Dyに等間隔Pでそれぞれ配設され、周期構造となっている。したがって、前記周期的に設けられた前記複数の部材は、金属部分121であると見てよく、あるいは、前記複数の部材は、シリコン部分122であると見てよく、さらに、あるいは、前記複数の部材は、シリコン部分122および金属部分121の組であると見てよい。 The plurality of metal portions 121 and the plurality of silicon portions 122 are alternately arranged in the lattice plane DxDy in a direction (width direction) Dy orthogonal to the one direction Dx, and the width direction Dy is a normal line. Arranged parallel to the surface. For this reason, the plurality of metal portions 121 are respectively arranged at predetermined intervals in the width direction Dy orthogonal to the one direction Dx. In other words, the plurality of silicon portions 122 are disposed at predetermined intervals in the width direction Dy perpendicular to the one direction Dx. The predetermined interval (pitch) P is constant in this embodiment. That is, the plurality of metal portions 121 (the plurality of silicon portions 122) are respectively arranged at equal intervals P in the width direction Dy and have a periodic structure. Therefore, the plurality of periodically provided members may be viewed as the metal portion 121, or the plurality of members may be viewed as the silicon portion 122, or alternatively, the plurality of the plurality of members. The member may be viewed as a set of silicon portion 122 and metal portion 121.
 金属部分121は、シリコン部分122がX線を透過するように機能するために、X線に対し吸収または位相シフト等の作用を持つ金属で形成される。金属部分121の金属は、一態様として、X線を吸収するものが好適に選択され、例えば、原子量が比較的重い元素の金属や貴金属、より具体的には、例えば、金(Au)およびプラチナ(白金、Pt)等である。また、金属部分121は、例えば仕様に応じて充分にX線を吸収することができるように、適宜な厚さHとされている。この結果、金属部分121における幅Wに対する厚さHの比(アスペクト比=厚さ/幅)は、例えば、5以上の高アスペクト比とされている。金属部分121の幅Wは、前記幅方向Dyにおける金属部分121の長さであり、金属部分121の厚さHは、前記格子面DxDyの法線方向(深さ方向)Dzにおける金属部分121の長さである。 The metal portion 121 is formed of a metal having an action such as absorption or phase shift with respect to X-rays in order for the silicon portion 122 to function so as to transmit X-rays. As an aspect, the metal of the metal portion 121 is preferably selected to absorb X-rays. For example, a metal or a noble metal having a relatively heavy atomic weight, more specifically, for example, gold (Au) and platinum. (Platinum, Pt) or the like. In addition, the metal portion 121 has an appropriate thickness H so that, for example, X-rays can be sufficiently absorbed according to specifications. As a result, the ratio of the thickness H to the width W in the metal portion 121 (aspect ratio = thickness / width) is, for example, a high aspect ratio of 5 or more. The width W of the metal portion 121 is the length of the metal portion 121 in the width direction Dy, and the thickness H of the metal portion 121 is the length of the metal portion 121 in the normal direction (depth direction) Dz of the lattice plane DxDy. Length.
 格子DGは、一態様として、X線に対する回折条件を満たすように、前記所定の間隔PをX線の波長に応じて適宜に設定することにより、回折格子として機能する。 As an aspect, the grating DG functions as a diffraction grating by appropriately setting the predetermined interval P according to the wavelength of the X-ray so as to satisfy the diffraction condition for the X-ray.
 なお、金属部分121は、金属に限定するものではなく、金属部分121とシリコン部分122が互いに異なる性質であって格子DGaの使用用途に応じた性質を有していれば、シリコン部分122と同様に、格子DGaの使用用途に応じて適宜な材料で形成されてよい。 Note that the metal portion 121 is not limited to a metal, and is similar to the silicon portion 122 as long as the metal portion 121 and the silicon portion 122 are different from each other and have properties corresponding to the intended use of the lattice DGa. In addition, it may be formed of an appropriate material according to the intended use of the lattice DGa.
 溝部13aは、基材11の厚さを部分的に薄くするために、基材11の一方主面に対向する他方主面に形成された凹所である。溝部13aは、格子領域12aを形成した領域に対向する他方主面に形成される。溝部13aを基材11に形成することによって、基材11が部分的に肉薄となり、基材11を曲げ易くなる。したがって、溝部13aによって格子領域12aが湾曲し易くなる。そして、基材11が溝部13aで破断しない程度に曲げることによって、金属部分121の周期性やシリコン部分122の周期性が維持され、前記ケラレの発生を防止するために上述のように小格子の大きさを小さくする必要がないので従来の小格子の大きさを小さくすることによって生じる上述したデメリットを生じない。 The groove 13a is a recess formed in the other main surface of the substrate 11 facing the one main surface in order to partially reduce the thickness of the substrate 11. The groove 13a is formed on the other main surface facing the region where the lattice region 12a is formed. By forming the groove part 13a in the base material 11, the base material 11 becomes partially thin and the base material 11 becomes easy to bend. Accordingly, the lattice region 12a is easily curved by the groove 13a. Then, the base material 11 is bent to such an extent that it does not break at the groove 13a, so that the periodicity of the metal portion 121 and the periodicity of the silicon portion 122 are maintained, and in order to prevent the occurrence of vignetting, as described above, Since there is no need to reduce the size, the above-mentioned disadvantages caused by reducing the size of the conventional small lattice do not occur.
 溝部13aは、基材11、すなわち、格子領域12aの格子面の曲げ量に応じて、適宜な個数および適宜な大きさ(例えば幅wおよび深さh)で基材11に設けられる。図1に示す例では、3個の溝部13a-1~13a-3が基材11に形成されている。この図1に示す例では、金属部分121およびシリコン部分122のそれぞれが、前記格子面DxDyにおいて前記一方向Dxに延びる長尺な線条形状となる板状または層状であり、前記一方向Dxに直交する幅方向Dyに周期性を有する周期構造であることから、溝部13aは、この線条形状の長尺な前記一方向Dxに沿って長尺に形成されたスリット状であり、そして、金属部分121およびシリコン部分122のそれぞれが、前記格子面DxDyの法線方向Dzに所定の深さHで、前記幅方向Dyに所定の幅Wで形成されていることから、溝部13aは、この法線方向Dzに所定の深さhで、この幅方向Dyに所定の幅wで形成されている。したがって、溝部13aは、図1に示す例では、前記格子面DxDyにおいて前記一方向Dxに延びる長尺な線条形状となる層状の凹所であって、前記格子面DxDyに直交するDxDz面に沿った層状の凹所である。 The grooves 13a are provided in the base material 11 in an appropriate number and an appropriate size (for example, width w and depth h) according to the bending amount of the base material 11, that is, the lattice surface of the lattice region 12a. In the example shown in FIG. 1, three grooves 13 a-1 to 13 a-3 are formed on the base material 11. In the example shown in FIG. 1, each of the metal portion 121 and the silicon portion 122 is a plate shape or a layer shape having a long linear shape extending in the one direction Dx on the lattice plane DxDy, and in the one direction Dx. Since it is a periodic structure having periodicity in the orthogonal width direction Dy, the groove 13a has a slit shape formed elongated along the long one direction Dx of the linear shape, and metal Each of the portion 121 and the silicon portion 122 is formed with a predetermined depth H in the normal direction Dz of the lattice plane DxDy and with a predetermined width W in the width direction Dy. It is formed with a predetermined depth h in the line direction Dz and with a predetermined width w in the width direction Dy. Accordingly, in the example shown in FIG. 1, the groove 13a is a layered recess having a long linear shape extending in the one direction Dx on the lattice plane DxDy, and is formed on the DxDz plane orthogonal to the lattice plane DxDy. A layered recess along.
 このような格子DGaは、例えば、次の各工程を経ることによって製造される。より具体的には、本実施形態の格子DGaを製造するために、まず、シリコンウェハ等のシリコンによって形成された基板である基材11が用意される(図2A)。 Such a lattice DGa is manufactured, for example, through the following steps. More specifically, in order to manufacture the lattice DGa of the present embodiment, first, a base material 11 which is a substrate formed of silicon such as a silicon wafer is prepared (FIG. 2A).
 次に、互いに同じ形状の複数の部材を周期的に設けた格子領域12aが基材11の一方主面に形成される(図2B、格子領域形成工程)。前記複数の部材は、上述したように、本実施形態では、金属部分121およびシリコン部分122である。 Next, a lattice region 12a in which a plurality of members having the same shape are periodically provided is formed on one main surface of the substrate 11 (FIG. 2B, lattice region forming step). As described above, the plurality of members are the metal portion 121 and the silicon portion 122 in the present embodiment.
 このような格子領域12aは、例えば、国際公開WO2012/008118号公報、国際公開WO2012/008119号公報、国際公開WO2012/008120号公報、国際公開WO2012/086121号公報および特開2012-127685号公報等に開示された公知の手法を用いて製造することができる。一例を挙げると、このような格子は、例えば、第1シリコン層と前記第1シリコン層に付けられた前記第1シリコン層よりも高抵抗な第2シリコン層とを備える基板(本実施形態の基材11に対応する)における前記第2シリコン層の主面上にレジスト層を形成するレジスト層形成工程と、リソグラフィー法によって前記レジスト層をパターニングして前記パターニングした部分の前記レジスト層を除去するパターニング工程と、ドライエッチング法によって前記レジスト層を除去した部分に対応する前記第2シリコン層を前記第1シリコン層に少なくとも到達するまでエッチングしてスリット溝を形成するエッチング工程と、電鋳法によって、前記第1シリコン層に電圧を印加して前記スリット溝を金属で埋める電鋳工程とを実施することによって、製造される。また例えば、このような格子領域12aは、シリコン基板(本実施形態の基材11に対応する)の主面上にレジスト層を形成するレジスト層形成工程と、前記レジスト層をパターニングして前記パターニングした部分の前記レジスト層を除去するパターニング工程と、ドライエッチング法によって前記レジスト層を除去した部分に対応する前記シリコン基板をエッチングして所定の深さの凹部を形成するエッチング工程と、熱酸化法によって、前記シリコン基板における前記凹部の内表面に絶縁層を形成する絶縁層形成工程と、前記凹部の底部に形成された前記絶縁層の部分を除去する除去工程と、電鋳法によって、前記シリコン基板に電圧を印加して前記凹部を金属で埋める電鋳工程とを実施することによって、製造される。 Such a lattice region 12a includes, for example, International Publication WO2012 / 008118, International Publication WO2012 / 008119, International Publication WO2012 / 008120, International Publication WO2012 / 0886121, and Japanese Unexamined Patent Publication No. 2012-127865. It can manufacture using the well-known method disclosed by this. For example, such a lattice includes, for example, a substrate including a first silicon layer and a second silicon layer attached to the first silicon layer and having a higher resistance than the first silicon layer (in the present embodiment). A resist layer forming step of forming a resist layer on the main surface of the second silicon layer in the base material 11), and patterning the resist layer by lithography to remove the patterned portion of the resist layer. A patterning step, an etching step of forming a slit groove by etching the second silicon layer corresponding to a portion where the resist layer is removed by a dry etching method until at least the first silicon layer is reached, and an electroforming method And an electroforming step of applying a voltage to the first silicon layer to fill the slit groove with a metal. Thus, it is manufactured. Further, for example, such a lattice region 12a is formed by a resist layer forming step of forming a resist layer on a main surface of a silicon substrate (corresponding to the base material 11 of the present embodiment), and by patterning the resist layer. A patterning process for removing the resist layer in the etched part, an etching process for etching the silicon substrate corresponding to the part from which the resist layer has been removed by a dry etching method to form a recess having a predetermined depth, and a thermal oxidation method The insulating layer forming step of forming an insulating layer on the inner surface of the concave portion in the silicon substrate, the removing step of removing the portion of the insulating layer formed at the bottom of the concave portion, and the silicon by the electroforming method It is manufactured by applying a voltage to the substrate and performing an electroforming step of filling the recess with metal.
 なお、前記エッチング工程における前記エッチング法は、シリコンの基材11を略垂直にエッチングすることができることから、ボッシュ(Bosch)プロセスであることが好ましい。このボッシュプロセスは、SFプラズマがリッチな状態と、Cプラズマがリッチな状態とを交互に繰り返すことで、エッチングによって形成される凹所における側壁の保護と前記凹所における底面のエッチングとを交互に進行させるエッチング方法である。 The etching method in the etching step is preferably a Bosch process because the silicon substrate 11 can be etched substantially vertically. In this Bosch process, the SF 6 plasma rich state and the C 4 F 8 plasma rich state are alternately repeated, thereby protecting the side wall in the recess formed by etching and etching the bottom surface in the recess. Is an etching method in which the process proceeds alternately.
 次に、前記基材11の一方主面に対向する他方主面に溝部13aが形成される(図2C、溝部形成工程)。このような溝部13aは、例えば、基材11の途中まで切り込みを入れるように、ブレードでブレードダイシングを行うことによって形成される。また例えば、溝部13aは、格子領域12aと同様に、シリコンの基材11の他方主面上にレジスト層を形成するレジスト層形成工程と、前記レジスト層をパターニングして前記パターニングした部分の前記レジスト層を除去するパターニング工程と、ドライエッチング法によって前記レジスト層を除去した部分に対応するシリコンの基材11をエッチングして所定の深さhであって所定の幅wである凹部を形成するエッチング工程とによって、形成される。 Next, a groove 13a is formed on the other main surface opposite to the one main surface of the substrate 11 (FIG. 2C, groove forming step). Such a groove part 13a is formed by performing blade dicing with a blade so as to cut into the middle of the base material 11, for example. Further, for example, the groove 13 a is formed in a resist layer forming step of forming a resist layer on the other main surface of the silicon base material 11, as in the lattice region 12 a, and the resist in the patterned portion by patterning the resist layer. A patterning step for removing the layer, and etching for etching the silicon substrate 11 corresponding to the portion from which the resist layer has been removed by dry etching to form a recess having a predetermined depth h and a predetermined width w And the process.
 このような格子領域形成工程および溝部形成工程を実施することによって、図1に示す本実施形態における湾曲可能な格子DGaが製造される。 By performing such a lattice region forming step and a groove forming step, the bendable lattice DGa in this embodiment shown in FIG. 1 is manufactured.
 そして、このように製造された湾曲可能な格子DGaに対し、溝部形成工程の後に、さらに、格子面DxDyを所定の曲率半径を有する所定の曲面に沿わせるために、図2Dに示すように、格子領域12aの格子面DxDyを曲げる曲げ工程が実施されてもよい。この曲げ工程では、格子DGaの両端を支持して曲げてよい。この曲げ工程の実施によって、湾曲した格子が提供される。 Then, for the bendable lattice DGa manufactured in this manner, after the groove forming step, in order to further align the lattice surface DxDy with a predetermined curved surface having a predetermined curvature radius, as shown in FIG. A bending step of bending the lattice plane DxDy of the lattice region 12a may be performed. In this bending step, both ends of the lattice DGa may be supported and bent. By performing this bending process, a curved grating is provided.
 本実施形態における格子DGaおよびその製造方法は、格子領域12aを形成した一方主面に対向する他方主面に溝部13aを備えるので、この溝部13aの部分で基材11の厚さが薄くなる。このため、格子DGaは、この基材11が肉薄となった溝部13aの部分で、曲がり易くなる。したがって、上記構成の格子DGaは、湾曲可能である。そして、上記構成の格子DGaは、湾曲可能であるので、前記複数の部材、本実施形態では金属部分121の周期性やシリコン部分122の周期性が維持され、前記ケラレの発生を防止するために上述のように小格子の大きさを小さくする必要がないので従来の小格子の大きさを小さくすることによって生じる上述したデメリットを生じない。 Since the lattice DGa and the manufacturing method thereof in the present embodiment include the groove portion 13a on the other main surface facing the one main surface on which the lattice region 12a is formed, the thickness of the base material 11 is reduced at the groove portion 13a. For this reason, the lattice DGa is easily bent at the groove portion 13a where the substrate 11 is thin. Therefore, the lattice DGa having the above configuration can be bent. In addition, since the lattice DGa having the above configuration can be bent, the periodicity of the metal part 121 and the periodicity of the silicon part 122 are maintained in the plurality of members, in this embodiment, in order to prevent the occurrence of vignetting. As described above, since it is not necessary to reduce the size of the small lattice, the above-described disadvantage caused by reducing the size of the conventional small lattice does not occur.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第2実施形態)
 図3は、第2実施形態における格子の構成を示す斜視図である。図4は、第2実施形態における格子の製造工程を説明するための断面図である。
(Second Embodiment)
FIG. 3 is a perspective view showing a configuration of a lattice in the second embodiment. FIG. 4 is a cross-sectional view for explaining the manufacturing process of the grating in the second embodiment.
 第2実施形態における格子DGbは、第1実施形態における格子DGaにおいて、保持部材14をさらに備えている。すなわち、第2実施形態における格子DGbは、図3および図4Cに示すように、基材11と、基材11の一方主面に形成された格子領域12aと、基材11の一方主面に対向する他方主面に形成された溝部13aと、保持部材14とを備えている。これら第2実施形態の格子DGbにおける基材11、格子領域12aおよび溝部13aは、第1実施形態の格子DGaにおける基材11、格子領域12aおよび溝部13aと同様であるので、その説明を省略する。 The lattice DGb in the second embodiment further includes a holding member 14 in the lattice DGa in the first embodiment. That is, as shown in FIGS. 3 and 4C, the lattice DGb in the second embodiment is formed on the base material 11, the lattice region 12 a formed on one main surface of the base material 11, and the one main surface of the base material 11. A groove portion 13a formed on the opposite main surface and a holding member 14 are provided. Since the base material 11, the lattice region 12a, and the groove portion 13a in the lattice DGb of the second embodiment are the same as the base material 11, the lattice region 12a, and the groove portion 13a in the lattice DGa of the first embodiment, description thereof is omitted. .
 保持部材14は、基材11が複数の基材片に分割された場合に前記分割の前後で前記複数の基材片における互いの配置関係(配置の位置関係、各基材片の各位置に対する相互の位置関係)を保持するために、溝部13aを形成した領域に対向する領域を含む基材11の一方主面上に係合させて配設された部材である。図3に示す例では、保持部材14は、格子領域12aの格子面全面上に付けて層状(シート状)に形成されている。より具体的には、例えば、保持部材14は、一方主面に粘着材が付いた樹脂材料製シートであり、格子領域12aの格子面全面上に前記粘着材によって貼着されている。 When the base material 11 is divided into a plurality of base material pieces, the holding member 14 is arranged relative to each other in the plurality of base material pieces before and after the division (positional relationship of the arrangement, each position of the base material pieces). In order to maintain the mutual positional relationship), it is a member disposed on one main surface of the base material 11 including a region facing the region where the groove 13a is formed. In the example shown in FIG. 3, the holding member 14 is formed in a layer shape (sheet shape) on the entire lattice surface of the lattice region 12 a. More specifically, for example, the holding member 14 is a sheet made of a resin material having an adhesive material on one main surface, and is adhered to the entire lattice surface of the lattice region 12a by the adhesive material.
 このような格子DGbは、例えば、次の各工程を経ることによって製造される。より具体的には、本実施形態の格子DGbを製造するために、第1実施形態の格子DGaと同様に、まず、基材11が用意され(図4A)、次に、格子領域12aが基材11の一方主面に形成される(図4B、格子領域形成工程)。 Such a lattice DGb is manufactured, for example, through the following steps. More specifically, in order to manufacture the lattice DGb of the present embodiment, first, the base material 11 is prepared (FIG. 4A), and then the lattice region 12a is based on the lattice DGa of the first embodiment. It is formed on one main surface of the material 11 (FIG. 4B, lattice region forming step).
 次に、溝部13aを形成した領域に対向する領域を含む基材11の一方主面上、本実施形態では、格子領域12aの格子面全面上に、保持部材14が前記粘着材によって貼着されて配設される(図4C、保持部材配設工程)。 Next, on one main surface of the base material 11 including the region facing the region where the groove 13a is formed, in this embodiment, the holding member 14 is adhered to the entire lattice surface of the lattice region 12a by the adhesive material. (FIG. 4C, holding member disposing step).
 そして、次に、第1実施形態の格子DGaと同様に、他方主面に溝部13aが形成される(図4D、溝部形成工程)。 Then, similarly to the lattice DGa of the first embodiment, the groove 13a is formed on the other main surface (FIG. 4D, groove forming step).
 このような格子領域形成工程、保持部材配設工程および溝部形成工程を実施することによって、図3に示す本実施形態における湾曲可能な格子DGbが製造される。 By performing such a lattice region forming step, holding member disposing step, and groove forming step, the bendable lattice DGb in the present embodiment shown in FIG. 3 is manufactured.
 そして、このように製造された湾曲可能な格子DGbに対し、溝部形成工程の後に、さらに、格子面DxDyを所定の曲率半径を有する所定の曲面に沿わせるために、図4Eに示すように、格子領域12aの格子面DxDyを曲げる曲げ工程が実施されてもよい。なお、この曲げ工程は、基材11が破断するまで曲げられてもよい。 Then, for the bendable grating DGb manufactured in this manner, after the groove forming step, in order to further align the grating surface DxDy with a predetermined curved surface having a predetermined radius of curvature, as shown in FIG. A bending step of bending the lattice plane DxDy of the lattice region 12a may be performed. In addition, this bending process may be bent until the base material 11 breaks.
 ここで、この曲げ工程の実施によって溝部13aに深さ方向Dzに生じたクラック(割れ目)CRには、曲げ工程の実施によって曲げられた格子DGbの曲げ状態を維持するために、例えば接着剤やパテ等の充填部材が詰められ、クラックCRが埋められてもよい。この充填部材は、格子DGbの使用用途に応じた基材11の性質と略同様の性質を持つ材料が好ましい。本実施形態では、格子DGbは、X線用であって、基材11は、シリコンから形成されているので、固化するとシリコンのX線透過率と略等しくなるSOG(spin on glass)であることが好ましい。 Here, in order to maintain the bending state of the lattice DGb bent by the bending process, for example, an adhesive or an adhesive is applied to the crack (crack) CR generated in the groove portion 13a in the depth direction Dz by the bending process. A filling member such as a putty may be filled and the crack CR may be filled. The filling member is preferably a material having substantially the same properties as those of the base material 11 according to the intended use of the lattice DGb. In this embodiment, the lattice DGb is for X-rays, and the base material 11 is made of silicon. Therefore, when solidified, it is SOG (spin on glass) that becomes substantially equal to the X-ray transmittance of silicon. Is preferred.
 なお、上述では、保持部材14は、格子領域12aの格子面全面上に付けて形成されたが、溝部13aを形成した領域に対向する一方主面の領域部分ごとに複数形成されてもよい。また、保持部材14は、溝部13a上を少なくとも含む基材11の他方面上に配設されてもよく、あるいは、保持部材14は、溝部13aを形成した領域に対向する領域を含む基材11の一方主面上に、および、溝部13a上を少なくとも含む基材11の他方面上に配設されてもよい。 In the above description, the holding member 14 is formed on the entire lattice surface of the lattice region 12a. However, a plurality of holding members 14 may be formed for each region of the main surface facing the region where the groove 13a is formed. Further, the holding member 14 may be disposed on the other surface of the base material 11 including at least the groove portion 13a. Alternatively, the holding member 14 includes the region facing the region where the groove portion 13a is formed. May be disposed on one main surface of the substrate 11 and on the other surface of the base material 11 including at least the groove 13a.
 本実施形態の格子DGbおよびその製造方法は、保持部材配設工程によって配設された保持部材14を備えるので、仮に曲げ工程によって基材11が破断した場合でも、前記複数の部材における周期性、本実施形態では金属部分121の周期性やシリコン部分122の周期性を維持することができる。 Since the lattice DGb and the manufacturing method thereof according to the present embodiment include the holding member 14 disposed by the holding member disposing step, even if the base material 11 is broken by the bending step, the periodicity in the plurality of members, In the present embodiment, the periodicity of the metal portion 121 and the periodicity of the silicon portion 122 can be maintained.
 なお、上述の実施形態では、格子領域形成工程、保持部材配設工程、溝部形成工程の順に各工程が実施されたが、例えば、格子領域形成工程、溝部形成工程、保持部材配設工程の順に各工程が実施されてよい。また、上述の実施形態では、格子領域形成工程、保持部材配設工程、溝部形成工程、曲げ工程の順に各工程が実施されたが、例えば、格子領域形成工程、溝部形成工程、曲げ工程、保持部材配設工程の順に各工程が実施されてよく、また例えば、格子領域形成工程、溝部形成工程、保持部材配設工程、曲げ工程の順に各工程が実施されてよい。 In the above-described embodiment, each step is performed in the order of the lattice region forming step, the holding member disposing step, and the groove forming step. For example, the lattice region forming step, the groove forming step, and the holding member disposing step are performed in this order. Each step may be performed. In the above-described embodiment, each process is performed in the order of the lattice region forming step, the holding member disposing step, the groove forming step, and the bending step. For example, the lattice region forming step, the groove forming step, the bending step, and the holding are performed. Each step may be performed in the order of the member disposing step, and for example, each step may be performed in the order of the lattice region forming step, the groove forming step, the holding member disposing step, and the bending step.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第3実施形態)
 図5は、第3実施形態における格子の構成を示す斜視図である。図6は、第3実施形態における格子の製造工程を説明するための断面図である。図7は、第3実施形態の変形形態おける格子の製造工程を説明するための断面図である。
(Third embodiment)
FIG. 5 is a perspective view showing a configuration of a lattice in the third embodiment. FIG. 6 is a cross-sectional view for explaining the manufacturing process of the grating in the third embodiment. FIG. 7 is a cross-sectional view for explaining a manufacturing process of a lattice in a modification of the third embodiment.
 第1および第2実施形態における格子DGa、DGbでは、図2Dや図4Eに示すように曲げ工程によって格子領域12aの格子面DxDyを湾曲させた場合に、溝部13aが形成された領域に対向する一方主面の領域に形成された格子DGa、DGb部分は、幅が狭くなって金属部分121の周期性やシリコン部分122の周期性が乱れる場合がある。このため、第3実施形態における格子DGcは、複数の金属部分121または複数のシリコン部分122のうち、溝部13aを形成した領域に対向する一方主面の領域に設けられた金属部分121またはシリコン部分122における周期方向の幅W2が、他の領域に設けられた金属部分121またはシリコン部分122の幅W1よりも広くなるように、形成されている。 In the lattices DGa and DGb in the first and second embodiments, when the lattice plane DxDy of the lattice region 12a is bent by a bending process as shown in FIGS. 2D and 4E, the regions face the region where the groove 13a is formed. On the other hand, the lattices DGa and DGb formed in the region of the main surface are narrow in width, and the periodicity of the metal portion 121 and the periodicity of the silicon portion 122 may be disturbed. For this reason, the lattice DGc in the third embodiment includes the metal portion 121 or the silicon portion provided in the region of the one main surface facing the region where the groove portion 13a is formed, among the plurality of metal portions 121 or the plurality of silicon portions 122. The width W2 in the periodic direction 122 is formed so as to be wider than the width W1 of the metal portion 121 or the silicon portion 122 provided in another region.
 このような第3実施形態における格子DGcは、例えば、図5および図6Dに示すように、基材11と、基材11の一方主面に形成された格子領域12bと、基材11の一方主面に対向する他方主面に形成された溝部13aとを備え、さらに、図5および図6Dに示す例では、格子領域12bの格子面全面上に、第2実施形態における格子DGbと同様に保持部材14を備えている。なお、第3実施形態における格子DGcは、第1実施形態における格子DGaと同様に保持部材14を備えなくてもよい。これら第3実施形態の格子DGcにおける基材11および溝部13aは、第1実施形態の格子DGaにおける基材11および溝部13aと同様であり、第3実施形態の格子DGcにおける保持部材14は、第2実施形態の格子DGbにおける保持部材14と同様であるので、その説明を省略する。 Such a lattice DGc in the third embodiment includes, for example, as shown in FIGS. 5 and 6D, a base material 11, a lattice region 12 b formed on one main surface of the base material 11, and one of the base materials 11. In the example shown in FIGS. 5 and 6D, on the entire lattice surface of the lattice region 12b, as in the lattice DGb in the second embodiment, the groove portion 13a is formed on the other principal surface opposite to the principal surface. A holding member 14 is provided. Note that the lattice DGc in the third embodiment may not include the holding member 14 in the same manner as the lattice DGa in the first embodiment. The base material 11 and the groove 13a in the lattice DGc of the third embodiment are the same as the base material 11 and the groove 13a in the lattice DGa of the first embodiment, and the holding member 14 in the lattice DGc of the third embodiment is the first Since it is the same as the holding member 14 in the lattice DGb of the second embodiment, the description thereof is omitted.
 格子領域12bは、基材11の一方主面に形成され、互いに同じ形状の複数の部材を周期的に設けた領域であり、複数の金属部分121のうち、溝部13aを形成した領域に対向する一方主面の領域に設けられた金属部分121における周期方向の幅W2が、他の領域に設けられた金属部分121の幅W1よりも広くなるように、形成されている点を除き、第1実施形態の格子DGaにおける格子領域12aと同様である。すなわち、格子領域12bは、第1実施形態の格子DGaにおける格子領域12aと同様の金属部分121およびシリコン部分122と、この金属部分121の幅W1よりも広い幅W2で形成された金属部分123とを備え、この幅W2の金属部分123は、溝部13aを形成した領域に対向する一方主面の領域に設けられている。この幅W2の金属部分123は、幅Wが異なる点を除き、第1実施形態の格子DGaにおける格子領域12aにおける幅W1の金属部分121と同様であるので、その説明を省略する。 The lattice region 12b is a region that is formed on one main surface of the base material 11 and that is provided with a plurality of members having the same shape and is opposed to a region of the plurality of metal portions 121 where the groove 13a is formed. On the other hand, the first portion except that the width W2 in the periodic direction of the metal portion 121 provided in the region of the main surface is larger than the width W1 of the metal portion 121 provided in the other region. This is the same as the lattice region 12a in the lattice DGa of the embodiment. That is, the lattice region 12b includes a metal portion 121 and a silicon portion 122 similar to the lattice region 12a in the lattice DGa of the first embodiment, and a metal portion 123 formed with a width W2 wider than the width W1 of the metal portion 121. The metal portion 123 having the width W2 is provided in a region of one main surface facing the region in which the groove 13a is formed. Since the metal portion 123 having the width W2 is the same as the metal portion 121 having the width W1 in the lattice region 12a in the lattice DGa of the first embodiment except that the width W is different, the description thereof is omitted.
 このような格子DGcは、例えば、次の各工程を経ることによって製造される。より具体的には、本実施形態の格子DGcを製造するために、図6に示すように、まず、基材11が用意され(図6A)、次に、格子領域12bが基材11の一方主面に形成される(図6B、格子領域形成工程)。この第3実施形態における格子領域形成工程は、例えば、第1実施形態の格子領域形成工程(図2B)で説明した上述のパターニング工程で、格子領域12aに代え格子領域12bを形成するように、リソグラフィー法によってレジスト層をパターニングして前記パターニングした部分の前記レジスト層を除去する点を除き、第1実施形態における格子DGaの製造方法と同様である。 Such a lattice DGc is manufactured, for example, through the following steps. More specifically, in order to manufacture the lattice DGc of this embodiment, as shown in FIG. 6, first, the base material 11 is prepared (FIG. 6A), and then the lattice region 12 b is one side of the base material 11. It is formed on the main surface (FIG. 6B, lattice region forming step). In the lattice region forming step in the third embodiment, for example, the lattice region 12b is formed instead of the lattice region 12a in the patterning step described in the lattice region forming step (FIG. 2B) of the first embodiment. Except for the point that the resist layer is patterned by a lithography method and the resist layer in the patterned portion is removed, this is the same as the method for manufacturing the lattice DGa in the first embodiment.
 そして、次に、第2実施形態の格子DGbの製造方法と同様に、保持部材配設工程が実施され(図6C)、溝部形成工程が実施される(図6D)。溝部形成工程では、例えば、両面マスクアライナによって位置合わせパターニングが行われ、エッチングが行われる。あるいは、溝部形成工程では、位置合わせマークによってブレードダイシングが行われてもよい。 Then, similarly to the method of manufacturing the lattice DGb of the second embodiment, the holding member disposing step is performed (FIG. 6C), and the groove forming step is performed (FIG. 6D). In the groove forming step, for example, alignment patterning is performed by a double-sided mask aligner, and etching is performed. Alternatively, in the groove forming step, blade dicing may be performed using the alignment mark.
 このような格子領域形成工程、保持部材配設工程および溝部形成工程を実施することによって、図5に示す本実施形態における湾曲可能な格子DGcが製造される。 By performing such a lattice region forming step, a holding member disposing step, and a groove forming step, the bendable lattice DGc in this embodiment shown in FIG. 5 is manufactured.
 そして、このように製造された湾曲可能な格子DGcに対し、溝部形成工程の後に、さらに、格子面DxDyを所定の曲率半径を有する所定の曲面に沿わせるために、図6Eに示すように、格子領域12aの格子面DxDyを曲げる曲げ工程が実施されてもよい。なお、この曲げ工程は、基材11が破断するまで曲げられてもよい。ここで、この曲げ工程の実施によって溝部13aに深さ方向Dzに生じたクラック(割れ目)CRには、上述したように、充填部材が詰められてクラックCRが埋められてもよい。 Then, for the bendable grating DGc manufactured in this manner, after the groove forming step, in order to further align the grating surface DxDy with a predetermined curved surface having a predetermined curvature radius, as shown in FIG. A bending step of bending the lattice plane DxDy of the lattice region 12a may be performed. In addition, this bending process may be bent until the base material 11 breaks. Here, as described above, the crack (crack) CR generated in the groove portion 13a in the depth direction Dz by the execution of the bending step may be filled with the filling member to fill the crack CR.
 本実施形態の格子DGcおよびその製造方法は、金属部分123の幅W2が他の金属部分121の幅W1よりも広いので、曲げ工程によって格子領域12bの格子面DxDyが湾曲された場合でも、金属部分121の周期性の乱れを小さく抑えることができる。 In the grid DGc and the manufacturing method thereof according to the present embodiment, since the width W2 of the metal portion 123 is wider than the width W1 of the other metal portion 121, even if the grid plane DxDy of the grid region 12b is curved by the bending process, The disturbance of the periodicity of the portion 121 can be suppressed to a small level.
 なお、上述の第3実施形態において、溝部13aを形成した領域に対向する一方主面の領域に設けられた金属部分124における格子面DxDyの法線方向の深さは、図7に示すように、他の金属部分121の深さよりも深くてもよい。すなわち、この第3実施形態の変形形態の格子DGdは、複数の金属部分121のうち、溝部13aを形成した領域に対向する一方主面の領域に設けられた金属部分124における格子面DxDyの法線方向の深さが、他の領域に設けられた金属部分121の深さよりも深くなるように、形成された格子領域12cを備えている。この格子DGdは、図7に示すように、図6に示す各工程と同様の各工程によって製造することができる。なお、格子領域形成工程(図7B)では、エッチング法において、パターン幅の縮小とともにエッチング速度が低下する現象である、いわゆるマイクロローディング効果によって、金属部分123は、その深さが他の金属部分121よりも深くなるように、形成される。 In the third embodiment described above, the depth in the normal direction of the lattice plane DxDy in the metal portion 124 provided in the region of the one main surface facing the region in which the groove 13a is formed is as shown in FIG. The depth of the other metal portion 121 may be deeper. That is, the lattice DGd according to the modification of the third embodiment is a method of the lattice plane DxDy in the metal portion 124 provided in the region of the main surface opposite to the region where the groove 13a is formed among the plurality of metal portions 121. The lattice region 12c is formed so that the depth in the line direction is deeper than the depth of the metal portion 121 provided in another region. As shown in FIG. 7, the lattice DGd can be manufactured by the same steps as those shown in FIG. In the lattice region forming step (FIG. 7B), in the etching method, the metal portion 123 has a depth that is different from that of the other metal portion 121 due to a so-called microloading effect, which is a phenomenon in which the etching rate is reduced as the pattern width is reduced. It is formed to be deeper.
 このような格子DGdおよびその製造方法は、金属部分124の深さが他の金属部分121の深さよりも深いので、仮に曲げ工程によって基材11が破断した場合でも、この部分で破断させることができ、破断箇所が予測可能である。そして、溝部13aの位置と、このより深くした金属部分124の位置とが、図7Dに示すように、少々ずれたとしても、この部分の基材11の厚さがより薄いので、図7Eに示すように、この部分で優先的に破断させることができる。したがって、このような格子DGdおよびその製造方法は、破断を考慮した上で格子DGdを設計することができ、設計通りの性能をより確実に実現することができる。 In such a lattice DGd and the manufacturing method thereof, since the depth of the metal portion 124 is deeper than the depth of the other metal portion 121, even if the base material 11 is broken by the bending process, it can be broken at this portion. Can be predicted. 7D, even if the position of the groove 13a and the position of the deeper metal portion 124 are slightly shifted as shown in FIG. 7D, the thickness of the base material 11 in this portion is thinner. As shown, this part can be preferentially broken. Therefore, such a lattice DGd and its manufacturing method can design the lattice DGd in consideration of breakage, and can realize the performance as designed more reliably.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第4実施形態)
 図8は、第4実施形態における格子の構成を示す断面図である。第1ないし第3実施形態における格子DGa~DGdは、曲げ工程が実施される場合に、格子面DxDyが凹面となるように、曲げられたが、図8Aに示すように、曲げ工程が実施される場合に、格子面DxDyが凸面となるように、曲げられてもよい。図8Aには、第2実施形態の格子DGbの例が示されている。
(Fourth embodiment)
FIG. 8 is a cross-sectional view showing the configuration of the grating in the fourth embodiment. The gratings DGa to DGd in the first to third embodiments are bent so that the grating surface DxDy becomes a concave surface when the bending process is performed, but the bending process is performed as shown in FIG. 8A. In this case, the grating surface DxDy may be bent so as to be a convex surface. FIG. 8A shows an example of the lattice DGb of the second embodiment.
 なお、このような格子面DxDyが凸面となるように曲げられる場合では、溝部13aに代え、図8Bに示すように、断面V字状の溝部13bが好ましい。このような断面V字状の溝部13bは、異方性エッチングや、断面が三角形のブレードを用いたダイシングによって形成することができる。この溝部13bを用いることによって、格子面DxDyが凸面となるように曲げた場合に、溝部13bにおけるテーパ状の側面同士を互いに当接することができ、略隙間が無くなる。 In addition, in the case where such a lattice plane DxDy is bent so as to be a convex surface, a groove 13b having a V-shaped cross section is preferable as shown in FIG. 8B instead of the groove 13a. Such a groove 13b having a V-shaped cross section can be formed by anisotropic etching or dicing using a blade having a triangular cross section. By using the groove 13b, when the lattice surface DxDy is bent so as to be a convex surface, the tapered side surfaces of the groove 13b can be brought into contact with each other, and there is substantially no gap.
 なお、上述の第1ないし第4実施形態の格子DG(DGa~DGd)は、X線用の回折格子であったが、X線用に限らず、赤外線領域、可視光領域および紫外線領域等の他の波長の波に対する回折格子であってよい。 The gratings DG (DGa to DGd) in the first to fourth embodiments described above are diffraction gratings for X-rays. However, the gratings DG (DGa to DGd) are not limited to those for X-rays. It may be a diffraction grating for waves of other wavelengths.
 また、上述の第1ないし第4実施形態の格子DG(DGa~DGd)では、互いに隣接するシリコン部分122の間には、金属部分121が形成されたが、空間部分(空隙部分、ギャップ部分)であってもよい。このような金属部分121に代え空間部分を用いた格子DGは、これらシリコン部分122と前記空間部分との屈折率の相違によって、前記所定の間隔Pを所定の波長(例えばX線の波長)に応じて適宜に設定することにより、回折格子、例えば位相型回折格子として機能する。ここで、シリコン部分122の屈折率は、シリコン(Si)の屈折率であり、前記空間部分は、所定の気体(例えば空気)の屈折率である。 In the above-described lattices DG (DGa to DGd) of the first to fourth embodiments, the metal portion 121 is formed between the silicon portions 122 adjacent to each other, but the space portion (gap portion, gap portion) is formed. It may be. In such a grating DG using a space portion instead of the metal portion 121, the predetermined interval P is set to a predetermined wavelength (for example, an X-ray wavelength) due to a difference in refractive index between the silicon portion 122 and the space portion. By appropriately setting according to this, it functions as a diffraction grating, for example, a phase type diffraction grating. Here, the refractive index of the silicon portion 122 is a refractive index of silicon (Si), and the space portion is a refractive index of a predetermined gas (for example, air).
 また、上述の第1ないし第4実施形態の格子DG(DGa~DGd)において、金属部分121、123、シリコン部分122および溝部13a、13bが延びる一方向Dxは、基材11の劈開方向に一致することが好ましい。例えば、基材11が(100)のシリコン基板の場合、[110]方向や[1-10]方向に劈開するので、前記一方向Dxは、[110]方向や[1-10]方向に一致することが好ましい。このような格子DGは、仮に曲げ工程によって基材11が破断したとしても、金属部分121、123、シリコン部分122や溝部13a、13bに沿って破断させることができ、破断方向が予測可能である。したがって、このような格子DGおよび格子DGの製造方法は、破断を考慮した上で格子DGを設計することができ、設計通りの性能をより確実に実現することができる。 In the lattice DG (DGa to DGd) of the first to fourth embodiments described above, the one direction Dx in which the metal portions 121 and 123, the silicon portion 122, and the groove portions 13a and 13b extend coincides with the cleavage direction of the base material 11. It is preferable to do. For example, when the base material 11 is a (100) silicon substrate, it is cleaved in the [110] direction or the [1-10] direction, so the one direction Dx coincides with the [110] direction or the [1-10] direction. It is preferable to do. Such a lattice DG can be broken along the metal parts 121 and 123, the silicon part 122 and the groove parts 13a and 13b even if the base material 11 is broken by a bending process, and the breaking direction can be predicted. . Therefore, such a lattice DG and a method for manufacturing the lattice DG can design the lattice DG in consideration of breakage, and can realize the performance as designed more reliably.
 また、上述の第1ないし第4実施形態の格子DG(DGa~DGd)において、保持部材14の靱性は、基材11の靱性よりも高いことが好ましい。このような格子DGおよび格子DGの製造方法は、基材11が破断する前に保持部材14が破断することを防止することができ、仮に曲げ工程によって基材11が破断した場合でも金属部分121、123の周期性や、シリコン部分122の周期性を維持することができる点の信頼性が向上する。 In the lattice DG (DGa to DGd) of the first to fourth embodiments described above, the toughness of the holding member 14 is preferably higher than the toughness of the base material 11. Such a lattice DG and a method of manufacturing the lattice DG can prevent the holding member 14 from breaking before the base material 11 is broken, and even if the base material 11 is broken by a bending process, the metal portion 121 is broken. , 123 and the reliability of the point that the periodicity of the silicon portion 122 can be maintained.
 また、上述の第1ないし第4実施形態の格子DG(DGa~DGd)において、保持部材14のX線吸収率は、基材11のX線吸収率よりも小さいことが好ましい。このような格子DGおよび格子DGの製造方法は、格子DGがX線用に用いられる場合に保持部材14が格子に与える影響を低減することができる。 Further, in the lattice DG (DGa to DGd) of the first to fourth embodiments described above, the X-ray absorption rate of the holding member 14 is preferably smaller than the X-ray absorption rate of the base material 11. Such a grating DG and the method for manufacturing the grating DG can reduce the influence of the holding member 14 on the grating when the grating DG is used for X-rays.
 次に、一実施例について説明する。 Next, an example will be described.
 (実施例)
 図9は、格子の一実施例を説明するための図である。第1実施形態の格子DGaの一実施例として、図9に示すように、例えば、厚さ400μmの8インチシリコンウェハに、一片が110mmの正方形である格子領域が一方主面に形成された(図9A)。この格子領域は、周期5.3μmであって深さ100μmである金部分(=幅2.65μm)およびシリコン部分(=幅2.65μm)から成る吸収型格子である。次に、ブレードダイシング装置で、図9Bに示すように、格子領域の両側(格子領域の4辺のうちの互いに対向する一方の1組の両側)が切り落とされ、格子が切り出された。その後、この切り出した格子を格子領域が形成されていない他方主面から、同じくブレードダイシング装置で、深さ250μmの切り込みが入れられ、溝部が形成された(図9C)。結果、厚さ400μmのシリコンウェハに、深さ100μmの格子領域が形成されるとともに250μmの溝部が形成されることによって、溝部が形成されたシリコンウェハの肉厚は、50μmとなる。そして、これが、格子領域の、金部分、シリコン部分および溝部が延びる一方向Dx外側に残る円弧状の部分(前記切られなかった、格子領域の4辺のうちの互いに対向する他方の1組の両側の外側に残る円弧状の部分)を両サイドで保持されながら、半径1.4mの円弧に沿うよう曲げられた。
(Example)
FIG. 9 is a diagram for explaining an embodiment of the lattice. As an example of the lattice DGa of the first embodiment, as shown in FIG. 9, for example, a lattice region that is a square of 110 mm is formed on one main surface of an 8-inch silicon wafer having a thickness of 400 μm. FIG. 9A). This lattice region is an absorption type lattice composed of a gold portion (= width 2.65 μm) and a silicon portion (= width 2.65 μm) having a period of 5.3 μm and a depth of 100 μm. Next, with the blade dicing apparatus, as shown in FIG. 9B, both sides of the lattice region (one set of opposite sides of the four sides of the lattice region) were cut off, and the lattice was cut out. Thereafter, the cut out lattice was cut into a depth of 250 μm from the other main surface where the lattice region was not formed, using a blade dicing apparatus, thereby forming a groove (FIG. 9C). As a result, a lattice region having a depth of 100 μm is formed on a silicon wafer having a thickness of 400 μm and a groove portion having a thickness of 250 μm is formed, so that the thickness of the silicon wafer on which the groove portion is formed becomes 50 μm. Then, this is an arc-shaped portion remaining outside the one-direction Dx in which the gold portion, the silicon portion, and the groove portion extend (the other set of the other four sides of the lattice region that are not cut is opposed to each other). The arc-shaped portions remaining on the outer sides of both sides were bent along an arc having a radius of 1.4 m while being held on both sides.
 また、図示しないが、第2実施形態の格子DGbの一実施例として、例えば、厚さ400μmの8インチシリコンウェハに、一片が110mmの正方形である格子領域が一方主面に形成された。この格子領域は、周期4.3μmであって深さ18μmである空間部分(=幅2.15μm)およびシリコン部分(=幅2.15μm)から成る位相型格子である。次に、ブレードダイシング装置で、格子領域の両側が切り落とされ、格子が切り出された。次に、格子領域全面上に、保持部材として、厚さ90μmの粘着性PETフィルム(粘着性ポリエチレンテレフタレートフィルム)が貼着された。その後、この切り出した格子を格子領域が形成されていない他方主面から、同じくブレードダイシング装置で、深さ332μmの切り込みが入れられ、溝部が形成された(図9C)。結果、厚さ400μmのシリコンウェハに、深さ18μmの格子領域が形成されるとともに332μmの溝部が形成されることによって、溝部が形成されたシリコンウェハの肉厚は、50μmとなる。次に、半径50cmの曲面を持つ治具に押し当てられることによって、これが、溝部で破断された。ここで、金部分、シリコン部分および溝部が延びる一方向Dxは、シリコンウェハの劈開方向に一致することが好ましい。そして、これが、格子領域の、金部分、シリコン部分および溝部が延びる一方向Dx外側に残る円弧状の部分を両サイドで保持されながら、半径1.1mの円弧に沿うよう曲げられた。 Although not shown, as an example of the lattice DGb of the second embodiment, for example, a lattice region having a square of 110 mm is formed on one main surface of an 8-inch silicon wafer having a thickness of 400 μm. This grating region is a phase type grating having a space portion (= width 2.15 μm) and a silicon portion (= width 2.15 μm) having a period of 4.3 μm and a depth of 18 μm. Next, with a blade dicing apparatus, both sides of the lattice region were cut off, and the lattice was cut out. Next, an adhesive PET film (adhesive polyethylene terephthalate film) having a thickness of 90 μm was stuck as a holding member on the entire lattice region. Thereafter, this cut out lattice was cut into a depth of 332 μm from the other main surface where the lattice region was not formed with the same blade dicing apparatus to form a groove (FIG. 9C). As a result, a lattice region having a depth of 18 μm and a groove portion having a depth of 332 μm are formed on a silicon wafer having a thickness of 400 μm, so that the thickness of the silicon wafer having the groove portion becomes 50 μm. Next, it was broken at the groove by being pressed against a jig having a curved surface with a radius of 50 cm. Here, the one direction Dx in which the gold part, the silicon part, and the groove part extend is preferably coincident with the cleavage direction of the silicon wafer. This was bent along an arc having a radius of 1.1 m while holding the arc-shaped portions remaining on the outer side in one direction Dx in which the gold portion, the silicon portion and the groove portion extend in the lattice region.
 また、図示しないが、第3実施形態の格子DGcの一実施例として、例えば、周期が2.5μmであって深さが18μmである、空間部分(=幅2.15μm)およびシリコン部分(=幅2.15μm)の格子領域である場合、つまり、空間部分の幅:シリコン部分の幅=1:1の格子領域である場合、これが、半径50cmの曲面に沿うように配置された場合、溝部に対応する部分のみ、周期を2.53μmにすると、溝部に対応する部分の周期は、ほぼ2.5μmになる。 Although not shown, as an example of the grating DGc of the third embodiment, for example, a space portion (= width 2.15 μm) and a silicon portion (== period of 2.5 μm and depth 18 μm) In the case of the lattice region having a width of 2.15 μm, that is, the width of the space portion: the width of the silicon portion = 1: 1, the groove portion is arranged along a curved surface having a radius of 50 cm. If only the period corresponding to the part is 2.53 μm, the period corresponding to the groove part is approximately 2.5 μm.
 (第5および第6実施形態;タルボ干渉計およびタルボ・ロー干渉計)
 上記実施形態の格子DG(DGa~DGd)および格子ユニットは、一適用例として、X線用のタルボ干渉計およびタルボ・ロー干渉計に好適に用いることができる。この格子DGおよび格子ユニットを用いたX線用タルボ干渉計およびX線用タルボ・ロー干渉計について説明する。
(Fifth and sixth embodiments; Talbot interferometer and Talbot-Lau interferometer)
The grating DG (DGa to DGd) and the grating unit of the above embodiment can be suitably used for an X-ray Talbot interferometer and a Talbot-Lau interferometer as an application example. An X-ray Talbot interferometer and an X-ray Talbot-low interferometer using the grating DG and the grating unit will be described.
 図10は、第5実施形態におけるX線用タルボ干渉計の構成を示す斜視図である。図11は、第6実施形態におけるX線用タルボ・ロー干渉計の構成を示す上面図である。 FIG. 10 is a perspective view showing a configuration of an X-ray Talbot interferometer in the fifth embodiment. FIG. 11 is a top view showing a configuration of an X-ray Talbot-Lau interferometer in the sixth embodiment.
 実施形態のX線用タルボ干渉計200Aは、図10に示すように、所定の波長のX線を放射するX線源201と、X線源201から照射されるX線を回折する位相型の第1回折格子202と、第1回折格子202により回折されたX線を回折することにより画像コントラストを形成する振幅型の第2回折格子203とを備え、第1および第2回折格子202、203がX線タルボ干渉計を構成する条件に設定される。そして、第2回折格子203により画像コントラストの生じたX線は、例えば、X線を検出するX線画像検出器205によって検出される。そして、このX線用タルボ干渉計200Aでは、第1回折格子202および第2回折格子203の少なくとも一方は、前記格子DGまたは格子ユニットである。この格子ユニットは、1つの格子面を形成するように配置された複数の格子(小格子、サブ格子、格子素)を備え、これら複数の格子のうちの少なくとも1つは、上述の第1ないし第4実施形態における格子DGの何れかである。 As shown in FIG. 10, an X-ray Talbot interferometer 200A according to the embodiment includes an X-ray source 201 that emits X-rays having a predetermined wavelength, and a phase type that diffracts X-rays emitted from the X-ray source 201. The first and second diffraction gratings 202 and 203 include a first diffraction grating 202 and an amplitude-type second diffraction grating 203 that forms an image contrast by diffracting the X-rays diffracted by the first diffraction grating 202. Are set to the conditions constituting the X-ray Talbot interferometer. Then, the X-ray having the image contrast caused by the second diffraction grating 203 is detected by, for example, an X-ray image detector 205 that detects the X-ray. In the X-ray Talbot interferometer 200A, at least one of the first diffraction grating 202 and the second diffraction grating 203 is the grating DG or the grating unit. The lattice unit includes a plurality of lattices (small lattices, sub-lattices, lattice elements) arranged so as to form one lattice plane, and at least one of the plurality of lattices is the first to the above-described first to It is one of the lattices DG in the fourth embodiment.
 タルボ干渉計200Aを構成する前記条件は、次の式1および式2によって表される。式2は、第1回折格子202が位相型回折格子であることを前提としている。
l=λ/(a/(L+Z1+Z2))   ・・・(式1)
Z1=(m+1/2)×(d/λ)   ・・・(式2)
ここで、lは、可干渉距離であり、λは、X線の波長(通常は中心波長)であり、aは、回折格子の回折部材にほぼ直交する方向におけるX線源201の開口径であり、Lは、X線源201から第1回折格子202までの距離であり、Z1は、第1回折格子202から第2回折格子203までの距離であり、Z2は、第2回折格子203からX線画像検出器205までの距離であり、mは、整数であり、dは、回折部材の周期(回折格子の周期、格子定数、隣接する回折部材の中心間距離、前記ピッチP)である。
The conditions constituting the Talbot interferometer 200A are expressed by the following equations 1 and 2. Equation 2 assumes that the first diffraction grating 202 is a phase type diffraction grating.
l = λ / (a / (L + Z1 + Z2)) (Formula 1)
Z1 = (m + 1/2) × (d 2 / λ) (Formula 2)
Here, l is the coherence distance, λ is the wavelength of X-rays (usually the center wavelength), and a is the aperture diameter of the X-ray source 201 in the direction substantially perpendicular to the diffraction member of the diffraction grating. Yes, L is the distance from the X-ray source 201 to the first diffraction grating 202, Z1 is the distance from the first diffraction grating 202 to the second diffraction grating 203, and Z2 is from the second diffraction grating 203 The distance to the X-ray image detector 205, m is an integer, and d is the period of the diffraction member (period of diffraction grating, grating constant, distance between centers of adjacent diffraction members, the pitch P). .
 このような構成のX線用タルボ干渉計200Aでは、X線源201から第1回折格子202に向けてX線が照射される。この照射されたX線は、第1回折格子202でタルボ効果を生じ、タルボ像を形成する。このタルボ像が第2回折格子203で作用を受け、モアレ縞の画像コントラストを形成する。そして、この画像コントラストがX線画像検出器205で検出される。 In the X-ray Talbot interferometer 200A having such a configuration, X-rays are irradiated from the X-ray source 201 toward the first diffraction grating 202. This irradiated X-ray produces a Talbot effect at the first diffraction grating 202 to form a Talbot image. This Talbot image is acted on by the second diffraction grating 203 to form an image contrast of moire fringes. This image contrast is detected by the X-ray image detector 205.
 タルボ効果とは、回折格子に光が入射されると、或る距離に前記回折格子と同じ像(前記回折格子の自己像)が形成されることをいい、この或る距離をタルボ距離Lといい、この自己像をタルボ像という。タルボ距離Lは、回折格子が位相型回折格子の場合では、上記式2に表されるZ1となる(L=Z1)。タルボ像は、Lの奇数倍(=(2m+1)L、mは、整数)では、反転像が現れ、Lの偶数倍(=2mL)では、正像が現れる。 The Talbot effect means that when light enters the diffraction grating, the same image as the diffraction grating (self-image of the diffraction grating) is formed at a certain distance. Good, this self-image is called the Talbot image. When the diffraction grating is a phase type diffraction grating, the Talbot distance L is Z1 represented by the above formula 2 (L = Z1). In the Talbot image, an inverted image appears at an odd multiple of L (= (2m + 1) L, m is an integer), and a normal image appears at an even multiple of L (= 2 mL).
 ここで、X線源201と第1回折格子202との間に被検体Sが配置されると、前記モアレ縞は、被検体Sによって変調を受け、この変調量が被検体Sによる屈折効果によってX線が曲げられた角度に比例する。このため、モアレ縞を解析することによって被検体Sおよびその内部の構造が検出される。 Here, when the subject S is arranged between the X-ray source 201 and the first diffraction grating 202, the moire fringes are modulated by the subject S, and the modulation amount is caused by the refraction effect by the subject S. It is proportional to the angle at which the X-ray is bent. For this reason, the subject S and its internal structure are detected by analyzing the moire fringes.
 このような図10に示す構成のタルボ干渉計200Aでは、X線源201は、単一の点光源(点波源)であり、このような単一の点光源は、単一のスリット(単スリット)を形成した単スリット板をさらに備えることで構成することができ、X線源201から放射されたX線は、前記単スリット板の前記単スリットを通過して被写体Sを介して第1回折格子202に向けて放射される。前記スリットは、一方向に延びる細長い矩形の開口である。 In the Talbot interferometer 200A configured as shown in FIG. 10, the X-ray source 201 is a single point light source (point wave source), and such a single point light source has a single slit (single slit). The X-ray radiated from the X-ray source 201 passes through the single slit of the single slit plate and passes through the subject S for the first diffraction. Radiated toward the grating 202. The slit is an elongated rectangular opening extending in one direction.
 一方、タルボ・ロー干渉計200Bは、図11に示すように、X線源201と、マルチスリット板204と、第1回折格子202と、第2回折格子203とを備えて構成される。すなわち、タルボ・ロー干渉計200Bは、図10に示すタルボ干渉計200Aに加えて、X線源201のX線放射側に、複数のスリットを並列に形成したマルチスリット板204をさらに備えて構成される。 On the other hand, the Talbot-Lau interferometer 200B includes an X-ray source 201, a multi-slit plate 204, a first diffraction grating 202, and a second diffraction grating 203, as shown in FIG. That is, the Talbot-Lau interferometer 200B further includes a multi-slit plate 204 in which a plurality of slits are formed in parallel on the X-ray emission side of the X-ray source 201 in addition to the Talbot interferometer 200A shown in FIG. Is done.
 このマルチスリット板204は、上述した第1ないし第4実施形態における格子DGまたは前記格子ユニットであってよい。マルチスリット板204を、上述した第1ないし第4実施形態における格子DGまたは前記格子ユニットによって構成することによって、X線をスリット(前記複数のシリコン部分122)に略平行に透過させることができるので、各スリットを透過したX線の各強度を略均一にすることができるから、マルチスリット板204は、X線源201から放射されたX線を、より良好なマルチ光源とすることができる。 The multi slit plate 204 may be the lattice DG or the lattice unit in the first to fourth embodiments described above. By configuring the multi-slit plate 204 with the lattice DG or the lattice unit in the first to fourth embodiments described above, X-rays can be transmitted substantially parallel to the slits (the plurality of silicon portions 122). Since the intensities of the X-rays transmitted through the slits can be made substantially uniform, the multi-slit plate 204 can use the X-rays emitted from the X-ray source 201 as a better multi-light source.
 そして、タルボ・ロー干渉計200Bとすることによって、タルボ干渉計200Aよりも、被写体Sを介して第1回折格子202に向けて放射されるX線量が増加するので、より良好なモアレ縞が得られる。 By using the Talbot-Lau interferometer 200B, the X-ray dose radiated toward the first diffraction grating 202 through the subject S is increased compared to the Talbot interferometer 200A, so that a better moiré fringe can be obtained. It is done.
 このようなタルボ干渉計200Aやタルボ・ロー干渉計200Bに用いられる第1回折格子202、第2回折格子203およびマルチスリット板204の一例を挙げると、諸元は、次の通りである。なお、これらの例では、シリコン部分122と金属部分121とは、同幅に形成され、金属部分121は、金によって形成される。 Examples of the first diffraction grating 202, the second diffraction grating 203, and the multi-slit plate 204 used in the Talbot interferometer 200A and the Talbot-low interferometer 200B are as follows. In these examples, the silicon portion 122 and the metal portion 121 are formed with the same width, and the metal portion 121 is formed of gold.
 一例として、X線源201またはマルチスリット板204から第1回折格子202までの距離R1が1.1mであって、X線源201またはマルチスリット板204から第2回折格子203までの距離R2が1.4mである場合では、第1回折格子202は、そのピッチPが4.5μmであり、そのシリコン部分122の厚さが18μmであり、第2回折格子203は、そのピッチPが5.3μmであり、その金属部分121の厚さが100μmであり(アスペクト比=100/2.65)、そして、マルチスリット板204は、そのピッチPが22.8μmであり、その金属部分121の厚さが100μmである。 As an example, the distance R1 from the X-ray source 201 or the multi-slit plate 204 to the first diffraction grating 202 is 1.1 m, and the distance R2 from the X-ray source 201 or the multi-slit plate 204 to the second diffraction grating 203 is In the case of 1.4 m, the first diffraction grating 202 has a pitch P of 4.5 μm, the silicon portion 122 has a thickness of 18 μm, and the second diffraction grating 203 has a pitch P of 5.mu.m. 3 μm, the thickness of the metal portion 121 is 100 μm (aspect ratio = 100 / 2.65), and the multi-slit plate 204 has a pitch P of 22.8 μm and a thickness of the metal portion 121. Is 100 μm.
 (第7実施形態;X線撮像装置)
 前記格子DGおよび前記格子ユニットは、種々の光学装置に利用することができるが、例えば、X線撮像装置に好適に用いることができる。特に、X線タルボ干渉計を用いたX線撮像装置は、X線を波として扱い、被写体を通過することによって生じるX線の位相シフトを検出することによって、被写体の透過画像を得る位相コントラスト法の一つであり、被写体によるX線吸収の大小をコントラストとした画像を得る吸収コントラスト法に較べて、約1000倍の感度改善が見込まれ、それによってX線照射量が例えば1/100~1/1000に軽減可能となるという利点がある。本実施形態では、前記格子DGを含む格子ユニットを用いたX線タルボ干渉計を備えたX線撮像装置について説明する。
(Seventh embodiment; X-ray imaging apparatus)
The grating DG and the grating unit can be used for various optical devices, but can be suitably used for an X-ray imaging device, for example. In particular, an X-ray imaging apparatus using an X-ray Talbot interferometer treats X-rays as waves and detects a phase shift of the X-rays caused by passing through the subject to obtain a phase contrast method for obtaining a transmission image of the subject. Compared with an absorption contrast method that obtains an image in which the magnitude of X-ray absorption by a subject is a contrast, an improvement in sensitivity of about 1000 times is expected, so that the X-ray irradiation dose is, for example, 1/100 to 1 / 1000 has the advantage that it can be reduced. In the present embodiment, an X-ray imaging apparatus including an X-ray Talbot interferometer using a grating unit including the grating DG will be described.
 図12は、第7実施形態におけるX線撮像装置の構成を示す説明図である。図12において、X線撮像装置300は、X線撮像部301と、第2回折格子302と、第1回折格子303と、X線源304とを備え、さらに、本実施形態では、X線源304に電源を供給するX線電源部305と、X線撮像部301の撮像動作を制御するカメラ制御部306と、本X線撮像装置300の全体動作を制御する処理部307と、X線電源部305の給電動作を制御することによってX線源304におけるX線の放射動作を制御するX線制御部308とを備えて構成される。 FIG. 12 is an explanatory diagram showing the configuration of the X-ray imaging apparatus according to the seventh embodiment. In FIG. 12, an X-ray imaging apparatus 300 includes an X-ray imaging unit 301, a second diffraction grating 302, a first diffraction grating 303, and an X-ray source 304. Furthermore, in this embodiment, the X-ray source An X-ray power supply unit 305 that supplies power to 304, a camera control unit 306 that controls the imaging operation of the X-ray imaging unit 301, a processing unit 307 that controls the overall operation of the X-ray imaging apparatus 300, and an X-ray power source And an X-ray control unit 308 that controls the X-ray emission operation of the X-ray source 304 by controlling the power supply operation of the unit 305.
 X線源304は、X線電源部305から給電されることによって、X線を放射し、第1回折格子303へ向けてX線を照射する装置である。X線源304は、例えば、X線電源部305から供給された高電圧が陰極と陽極との間に印加され、陰極のフィラメントから放出された電子が陽極に衝突することによってX線を放射する装置である。 The X-ray source 304 is a device that emits X-rays by being supplied with power from the X-ray power supply unit 305 and emits X-rays toward the first diffraction grating 303. For example, the X-ray source 304 emits X-rays when a high voltage supplied from the X-ray power supply unit 305 is applied between the cathode and the anode, and electrons emitted from the cathode filament collide with the anode. Device.
 第1回折格子303は、X線源304から放射されたX線によってタルボ効果を生じる透過型の回折格子である。第1回折格子303は、例えば、上述した実施形態の格子ユニットDGである。第1回折格子303は、タルボ効果を生じる条件を満たすように構成されており、X線源304から放射されたX線の波長よりも充分に粗い格子、例えば、格子定数(回折格子の周期)dが当該X線の波長の約20倍以上である位相型回折格子である。なお、第1回折格子303は、振幅型回折格子であってもよい。 The first diffraction grating 303 is a transmission type diffraction grating that generates a Talbot effect by X-rays emitted from the X-ray source 304. The first diffraction grating 303 is, for example, the grating unit DG of the above-described embodiment. The first diffraction grating 303 is configured so as to satisfy the conditions for generating the Talbot effect, and is a grating sufficiently coarser than the wavelength of X-rays emitted from the X-ray source 304, for example, a grating constant (period of the diffraction grating). It is a phase type diffraction grating in which d is about 20 times or more the wavelength of the X-ray. The first diffraction grating 303 may be an amplitude type diffraction grating.
 第2回折格子302は、第1回折格子303から略タルボ距離L離れた位置に配置され、第1回折格子303によって回折されたX線を回折する透過型の振幅型回折格子である。この第2回折格子302も、第1回折格子303と同様に、例えば、上述した実施形態の格子DGまたは格子ユニットである。 The second diffraction grating 302 is a transmission-type amplitude diffraction grating that is disposed at a position approximately L Talbot distance L away from the first diffraction grating 303 and diffracts the X-rays diffracted by the first diffraction grating 303. Similarly to the first diffraction grating 303, the second diffraction grating 302 is also the grating DG or the grating unit of the above-described embodiment, for example.
 第1回折格子303において、第1回折格子303を構成する1または複数の格子DGは、受光面の中心を通る法線が点光源としてのX線源304の放射源を通るように、X線源304の前記放射源を通る仮想線を中心軸とした仮想的な円筒面に沿って配列されることが好ましく、また、第2回折格子302において、第2回折格子302を構成する1または複数の格子DGは、受光面の中心を通る法線が点光源としてのX線源304の放射源を通るように、X線源304の前記放射源を通る仮想線を中心軸とした仮想的な円筒面に沿って配列されることが好ましい。これら第1および第2回折格子303、302のそれぞれは、その曲率半径が1m程度に設定される。 In the first diffraction grating 303, the one or more gratings DG constituting the first diffraction grating 303 have X-rays so that the normal passing through the center of the light receiving surface passes through the radiation source of the X-ray source 304 as a point light source. It is preferably arranged along a virtual cylindrical surface with a virtual line passing through the radiation source of the source 304 as a central axis, and in the second diffraction grating 302, one or more constituting the second diffraction grating 302 The grid DG is a virtual line centered on a virtual line passing through the radiation source of the X-ray source 304 so that a normal passing through the center of the light receiving surface passes through the radiation source of the X-ray source 304 as a point light source. It is preferable that they are arranged along the cylindrical surface. Each of the first and second diffraction gratings 303 and 302 has a radius of curvature of about 1 m.
 そして、これら第1および第2回折格子303、302は、上述の式1および式2によって表されるタルボ干渉計を構成する条件に設定されている。 And these 1st and 2nd diffraction gratings 303 and 302 are set to the conditions which comprise the Talbot interferometer represented by the above-mentioned Formula 1 and Formula 2.
 X線撮像部301は、第2回折格子302によって回折されたX線の像を撮像する装置である。X線撮像部301は、例えば、X線のエネルギーを吸収して蛍光を発するシンチレータを含む薄膜層が受光面上に形成された二次元イメージセンサを備えるフラットパネルディテクタ(FPD)や、入射フォトンを光電面で電子に変換し、この電子をマイクロチャネルプレートで倍増し、この倍増された電子群を蛍光体に衝突させて発光させるイメージインテンシファイア部と、イメージインテンシファイア部の出力光を撮像する二次元イメージセンサとを備えるイメージインテンシファイアカメラなどである。 The X-ray imaging unit 301 is an apparatus that captures an X-ray image diffracted by the second diffraction grating 302. The X-ray imaging unit 301 is, for example, a flat panel detector (FPD) including a two-dimensional image sensor in which a thin film layer including a scintillator that absorbs X-ray energy and emits fluorescence is formed on a light receiving surface, and incident photons. An image intensifier unit that converts the electrons into electrons on the photocathode, doubles the electrons on the microchannel plate, and causes the doubled electrons to collide with phosphors to emit light, and the output light of the image intensifier unit An image intensifier camera including a two-dimensional image sensor.
 処理部307は、X線撮像装置300の各部を制御することによってX線撮像装置300全体の動作を制御する装置であり、例えば、マイクロプロセッサおよびその周辺回路を備えて構成され、機能的に、画像処理部371およびシステム制御部372を備えている。 The processing unit 307 is a device that controls the entire operation of the X-ray imaging apparatus 300 by controlling each unit of the X-ray imaging apparatus 300. For example, the processing unit 307 includes a microprocessor and its peripheral circuits, and is functionally An image processing unit 371 and a system control unit 372 are provided.
 システム制御部372は、X線制御部308との間で制御信号を送受信することによってX線電源部305を介してX線源304におけるX線の放射動作を制御すると共に、カメラ制御部306との間で制御信号を送受信することによってX線撮像部301の撮像動作を制御する。システム制御部372の制御によって、X線が被写体Sに向けて照射され、これによって生じた像がX線撮像部301によって撮像され、画像信号がカメラ制御部306を介して処理部307に入力される。 The system control unit 372 controls the X-ray emission operation in the X-ray source 304 via the X-ray power source unit 305 by transmitting and receiving control signals to and from the X-ray control unit 308, and the camera control unit 306. The imaging operation of the X-ray imaging unit 301 is controlled by transmitting and receiving control signals between the X-ray imaging unit 301 and the X-ray imaging unit 301. Under the control of the system control unit 372, X-rays are emitted toward the subject S, an image generated thereby is captured by the X-ray imaging unit 301, and an image signal is input to the processing unit 307 via the camera control unit 306. The
 画像処理部371は、X線撮像部301によって生成された画像信号を処理し、被写体Sの画像を生成する。 The image processing unit 371 processes the image signal generated by the X-ray imaging unit 301 and generates an image of the subject S.
 次に、本実施形態のX線撮像装置の動作について説明する。被写体Sが例えばX線源304を内部(背面)に備える撮影台に載置されることによって、被写体SがX線源304と第1回折格子303との間に配置され、X線撮像装置300のユーザ(オペレータ)によって図略の操作部から被写体Sの撮像が指示されると、処理部307のシステム制御部372は、被写体Sに向けてXを照射すべくX線制御部308に制御信号を出力する。この制御信号によってX線制御部308は、X線電源部305にX線源304へ給電させ、X線源304は、X線を放射して被写体Sに向けてX線を照射する。 Next, the operation of the X-ray imaging apparatus of this embodiment will be described. For example, the subject S is placed on an imaging table including the X-ray source 304 inside (rear surface), so that the subject S is disposed between the X-ray source 304 and the first diffraction grating 303, and the X-ray imaging apparatus 300. When the user (operator) instructs the subject S to capture an image of the subject S, the system control unit 372 of the processing unit 307 controls the X-ray control unit 308 to emit X toward the subject S. Is output. With this control signal, the X-ray control unit 308 causes the X-ray power supply unit 305 to supply power to the X-ray source 304, and the X-ray source 304 emits X-rays and irradiates the subject S with X-rays.
 照射されたX線は、被写体Sを介して第1回折格子303を通過し、第1回折格子303によって回折され、タルボ距離L(=Z1)離れた位置に第1回折格子303の自己像であるタルボ像Tが形成される。 The irradiated X-ray passes through the first diffraction grating 303 through the subject S, is diffracted by the first diffraction grating 303, and is a self-image of the first diffraction grating 303 at a position away from the Talbot distance L (= Z1). A Talbot image T is formed.
 この形成されたX線のタルボ像Tは、第2回折格子302によって回折され、モアレを生じてモアレ縞の像が形成される。このモアレ縞の像は、システム制御部372によって例えば露光時間などが制御されたX線撮像部301によって撮像される。 The formed X-ray Talbot image T is diffracted by the second diffraction grating 302 to generate moire and form moire fringe images. The moire fringe image is picked up by the X-ray imaging unit 301 whose exposure time is controlled by the system control unit 372, for example.
 X線撮像部301は、モアレ縞の像の画像信号をカメラ制御部306を介して処理部307へ出力する。この画像信号は、処理部307の画像処理部371によって処理される。 The X-ray imaging unit 301 outputs the image signal of the moire fringe image to the processing unit 307 via the camera control unit 306. This image signal is processed by the image processing unit 371 of the processing unit 307.
 ここで、被写体SがX線源304と第1回折格子303との間に配置されているので、被写体Sを通過したX線には、被写体Sを通過しないX線に対し位相がずれる。このため、第1回折格子303に入射したX線には、その波面に歪みが含まれ、タルボ像Tには、それに応じた変形が生じている。このため、タルボ像Tと第2回折格子302との重ね合わせによって生じた像のモアレ縞は、被写体Sによって変調を受けており、この変調量が被写体Sによる屈折効果によってX線が曲げられた角度に比例する。したがって、モアレ縞を解析することによって被写体Sおよびその内部の構造を検出することができる。また、被写体Sを複数の角度から撮像することによってX線位相CT(computed tomography)により被写体Sの断層画像が形成可能である。 Here, since the subject S is disposed between the X-ray source 304 and the first diffraction grating 303, the X-rays that have passed through the subject S are out of phase with the X-rays that do not pass through the subject S. For this reason, the X-rays incident on the first diffraction grating 303 include distortion in the wavefront, and the Talbot image T is deformed accordingly. For this reason, the moire fringes of the image generated by the superimposition of the Talbot image T and the second diffraction grating 302 are modulated by the subject S, and the X-rays are bent by the refraction effect of the subject S. Proportional to angle. Therefore, the subject S and its internal structure can be detected by analyzing the moire fringes. In addition, by imaging the subject S from a plurality of angles, a tomographic image of the subject S can be formed by X-ray phase CT (computed tomography).
 そして、本実施形態の第1および第2回折格子303、302では、上述した実施形態における湾曲可能な格子DGを含むので、複数の格子を曲面に沿って配置することができ、格子の両端部(互いに隣接する格子の隣接部分)の領域で生じる上述したいわゆるケラレを低減することができる。したがって、このようなX線撮像装置300は、前記ケラレによって生じるノイズを低減することができ、より鮮明なX線撮像画像を得ることができる。そして、このようなX線撮像装置は、湾曲可能な格子DGを含むので、金属部分121およびシリコン部分122における周期性が維持され、前記ケラレの発生を防止するために上述のように小格子の大きさを小さくする必要がないので従来の小格子の大きさを小さくすることによって生じる上述したデメリットを生じない。 Since the first and second diffraction gratings 303 and 302 of this embodiment include the bendable grating DG in the above-described embodiment, a plurality of gratings can be arranged along the curved surface, and both ends of the grating The so-called vignetting described above that occurs in the region of (adjacent portions of the lattices adjacent to each other) can be reduced. Therefore, such an X-ray imaging apparatus 300 can reduce noise caused by the vignetting and can obtain a clearer X-ray image. Since such an X-ray imaging apparatus includes a bendable grating DG, the periodicity in the metal part 121 and the silicon part 122 is maintained, and in order to prevent the occurrence of the vignetting, Since there is no need to reduce the size, the above-mentioned disadvantages caused by reducing the size of the conventional small lattice do not occur.
 なお、上述のX線撮像装置300は、X線源304、第1回折格子303および第2回折格子302によってタルボ干渉計を構成したが、X線源304のX線放射側にマルチスリットとしての上述した実施形態における格子DGまたは格子ユニットをさらに配置することで、タルボ・ロー干渉計を構成してもよい。このマルチスリットとしての格子DGは、その曲率半径が2~3cm程度に設定される。このようなタルボ・ロー干渉計とすることで、単スリットの場合よりも被写体Sに照射されるX線量を増加することができ、より良好なモアレ縞が得られ、より高精度な被写体Sの画像が得られる。 In the X-ray imaging apparatus 300 described above, a Talbot interferometer is configured by the X-ray source 304, the first diffraction grating 303, and the second diffraction grating 302. The Talbot-Lau interferometer may be configured by further arranging the grating DG or the grating unit in the above-described embodiment. The lattice DG as the multi slit is set to have a radius of curvature of about 2 to 3 cm. By using such a Talbot-Lau interferometer, the X-ray dose irradiated to the subject S can be increased as compared with the case of a single slit, a better moire fringe can be obtained, and the subject S with higher accuracy can be obtained. An image is obtained.
 また、上述のX線撮像装置300では、X線源304と第1回折格子303との間に被写体Sが配置されたが、第1回折格子303と第2回折格子302との間に被写体Sが配置されてもよい。 In the X-ray imaging apparatus 300 described above, the subject S is disposed between the X-ray source 304 and the first diffraction grating 303, but the subject S is disposed between the first diffraction grating 303 and the second diffraction grating 302. May be arranged.
 また、上述のX線撮像装置300では、X線の像がX線撮像部301で撮像され、画像の電子データが得られたが、X線フィルムによって撮像されてもよい。 Further, in the above-described X-ray imaging apparatus 300, an X-ray image is captured by the X-ray imaging unit 301 and electronic data of the image is obtained, but may be captured by an X-ray film.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる回折格子は、基材と、前記基材の一方主面に形成された、互いに同じ形状の複数の部材を周期的に設けた格子領域と、前記基材の一方主面に対向する他方主面に形成された溝部とを備え、前記複数の部材のそれぞれは、前記一方主面において、一方向に延びる長尺な線条形状であり、前記溝部は、前記一方向に沿って長尺である。 A diffraction grating according to one aspect is configured to face a base material, a grating region formed on one main surface of the base material, in which a plurality of members having the same shape are periodically provided, and the one main surface of the base material Each of the plurality of members has a long linear shape extending in one direction on the one main surface, and the groove portion extends along the one direction. It is long.
 このような回折格子は、格子領域を形成した一方主面に対向する他方主面に溝部を備えるので、この溝部の部分で基材の厚さが薄くなる。このため、このような回折格子は、溝部の部分で前記一方向と直交する周期方向に曲がり易くなり、溝部の部分で曲げることができる。そして、このような回折格子は、湾曲可能であるので、前記複数の部材における周期性が維持され、前記ケラレの発生を防止するために上述のように小格子の大きさを小さくする必要がないので従来の小格子の大きさを小さくすることによって生じる上述したデメリットを生じない。 Since such a diffraction grating has a groove on the other main surface facing the one main surface on which the grating region is formed, the thickness of the base material is reduced at the groove. For this reason, such a diffraction grating can be easily bent in a periodic direction perpendicular to the one direction at the groove portion, and can be bent at the groove portion. Since such a diffraction grating can be bent, the periodicity of the plurality of members is maintained, and it is not necessary to reduce the size of the small grating as described above in order to prevent the occurrence of vignetting. Therefore, the above-described disadvantages caused by reducing the size of the conventional small lattice do not occur.
 他の一態様では、上述の回折格子において、前記格子領域上を少なくとも含む前記基材の一方主面上、または前記溝部上を少なくとも含む前記基材の他方主面上に、前記基材が複数の基材片に分割された場合に前記分割の前後で前記複数の基材片における互いの配置関係を保持するための保持部材をさらに備える。 In another aspect, in the diffraction grating described above, a plurality of the base materials are provided on one main surface of the base material including at least the grating region, or on the other main surface of the base material including at least the groove. And a holding member for holding the mutual positional relationship between the plurality of base material pieces before and after the division.
 このような回折格子は、前記保持部材を備えるので、仮に曲げ工程によって基材が破断した場合でも、前記複数の部材における周期性を維持することができる。 Since such a diffraction grating includes the holding member, the periodicity of the plurality of members can be maintained even if the base material is broken by a bending process.
 他の一態様では、これら上述の回折格子において、前記複数の部材のうち、前記溝部を形成した領域に対向する前記一方主面の領域に設けられた部材における前記一方向に直交する周期方向の幅は、前記複数の部材のうちの他の部材の幅よりも広い。 In another aspect, in the above-described diffraction grating, a periodic direction orthogonal to the one direction in a member provided in the region of the one main surface facing the region in which the groove portion is formed among the plurality of members. The width is wider than the width of the other members of the plurality of members.
 このような回折格子は、溝部を形成した領域に対向する前記一方主面の領域に設けられた部材における前記一方向に直交する周期方向の幅が他の部材の幅よりも広いので、格子領域の格子面が湾曲された場合でも、前記複数の部材における周期性の乱れを小さく抑えることができる。 In such a diffraction grating, the width of the periodic direction perpendicular to the one direction in the member provided in the region of the one main surface facing the region where the groove is formed is wider than the width of the other member. Even when the lattice plane is curved, the periodic disturbance in the plurality of members can be kept small.
 他の一態様では、上述の回折格子において、前記複数の部材のうち、前記溝部を形成した領域に対向する前記一方主面の領域に設けられた前記部材における前記格子面の法線方向の深さは、前記複数の部材のうちの他の部材の深さよりも深い。 In another aspect, in the above-described diffraction grating, a depth in a normal direction of the grating surface in the member provided in the region of the one main surface facing the region in which the groove portion is formed among the plurality of members. The depth is deeper than the depth of the other members of the plurality of members.
 このような回折格子は、溝部を形成した領域に対向する前記一方主面の領域に設けられた前記部材における前記格子面の法線方向の深さが他の部材の深さよりも深いので、仮に曲げによって基材が破断した場合でも、この部分で破断させることができ、破断箇所が予測可能である。したがって、このような回折格子は、破断を考慮した上で格子を設計することができ、設計通りの性能をより確実に実現することができる。 In such a diffraction grating, since the depth in the normal direction of the grating surface of the member provided in the region of the one main surface facing the region where the groove is formed is deeper than the depth of the other members, Even when the base material is broken by bending, it can be broken at this portion, and the broken portion can be predicted. Therefore, such a diffraction grating can be designed in consideration of breakage, and the performance as designed can be more reliably realized.
 他の一態様では、これら上述の回折格子において、前記一方向は、前記基材の劈開方向に一致している。
このような回折格子は、溝部が、基材の劈開方向に一致するように形成されているので、仮に曲げによって基材が破断したとしても、前記複数の部材や溝部に沿って破断させることができ、破断方向が予測可能である。したがって、このような回折格子は、破断を考慮した上で格子を設計することができ、設計通りの性能をより確実に実現することができる。
In another aspect, in the above-described diffraction grating, the one direction coincides with the cleavage direction of the substrate.
Since such a diffraction grating is formed so that the groove portion coincides with the cleavage direction of the substrate, even if the substrate is broken by bending, it can be broken along the plurality of members and groove portions. And the direction of breakage can be predicted. Therefore, such a diffraction grating can be designed in consideration of breakage, and the performance as designed can be more reliably realized.
 他の一態様では、これら上述の回折格子において、前記保持部材の靱性は、前記基材の靱性よりも高いこと。 In another aspect, in the above-described diffraction grating, the toughness of the holding member is higher than the toughness of the base material.
 このような回折格子は、保持部材の靱性が基材の靱性よりも高いので、基材が破断する前に保持部材が破断することを防止することができ、仮に曲げによって基材が破断した場合でも前記複数の部材における周期性を維持することができる点の信頼性が向上する。 Since such a diffraction grating has a toughness of the holding member higher than that of the base material, the holding member can be prevented from breaking before the base material breaks. However, the reliability that the periodicity in the plurality of members can be maintained is improved.
 他の一態様では、これら上述の回折格子において、前記保持部材のX線吸収率は、前記基材のX線吸収率よりも小さい。 In another aspect, in the above-described diffraction grating, the X-ray absorption rate of the holding member is smaller than the X-ray absorption rate of the base material.
 このような回折格子は、保持部材のX線吸収率が基材のX線吸収率よりも小さいので、格子がX線用に用いられる場合に保持部材が格子に与える影響を低減することができる。 Such a diffraction grating can reduce the influence of the holding member on the grating when the grating is used for X-rays because the X-ray absorption rate of the holding member is smaller than the X-ray absorption rate of the base material. .
 一態様にかかる回折格子の製造方法は、互いに同じ形状の複数の部材を周期的に設けた格子領域を基材の一方主面に形成する格子領域形成工程と、前記基材の一方主面に対向する他方主面に溝部を形成する溝部形成工程とを備え、前記複数の部材のそれぞれは、前記一方主面において、一方向に延びる長尺な線条形状であり、前記溝部は、前記一方向に沿って長尺である。そして、他の一態様では、上述の回折格子の製造方法において、好ましくは、前記基材は、シリコンウェハである。 A method of manufacturing a diffraction grating according to one aspect includes a grating region forming step in which a grating region in which a plurality of members having the same shape are periodically provided is formed on one main surface of a base material, and one main surface of the base material A groove portion forming step of forming a groove portion on the other main surface facing each other, each of the plurality of members has a long linear shape extending in one direction on the one main surface, and the groove portion is It is long along the direction. And in another one aspect | mode, the said base material is a silicon wafer in the manufacturing method of the above-mentioned diffraction grating, Preferably.
 このような回折格子の製造方法では、格子は、格子領域を形成した一方主面に対向する他方主面に溝部を備えるので、この溝部の部分で基材の厚さが薄くなる。このため、格子は、溝部の部分で、前記一方向と直交する周期方向に曲がり易くなる。したがって、このような製造方法は、湾曲可能な格子を製造することができる。そして、このような製造方法によって製造された回折格子は、湾曲可能であるので、前記複数の部材における周期性が維持され、前記ケラレの発生を防止するために上述のように小格子の大きさを小さくする必要がないので従来の小格子の大きさを小さくすることによって生じる上述したデメリットを生じない。 In such a method of manufacturing a diffraction grating, the grating includes a groove portion on the other main surface opposite to the one main surface on which the grating region is formed. Therefore, the thickness of the base material is reduced at the groove portion. For this reason, a grating | lattice becomes easy to bend in the periodic direction orthogonal to the said one direction in the part of a groove part. Therefore, such a manufacturing method can manufacture a bendable grid. Since the diffraction grating manufactured by such a manufacturing method can be bent, the periodicity of the plurality of members is maintained, and the size of the small grating is prevented as described above in order to prevent the occurrence of vignetting. Therefore, the above-mentioned disadvantage caused by reducing the size of the conventional small lattice does not occur.
 また、他の一態様では、上述の回折格子の製造方法は、前記格子領域を曲げる曲げ工程をさらに備える。このような回折格子の製造方法は、湾曲した格子を提供することができる。 In another aspect, the above-described diffraction grating manufacturing method further includes a bending step of bending the grating region. Such a method of manufacturing a diffraction grating can provide a curved grating.
 また、他の一態様では、これら上述の回折格子の製造方法は、前記溝部を形成した領域に対向する領域を含む前記基材の一方主面上、または、前記溝部上を少なくとも含む前記基材の他方面上に、前記基材が複数の基材片に分割された場合に前記分割の前後で前記複数の基材片における互いの配置関係を保持するための保持部材を配設する保持部材配設工程をさらに備える。そして、他の一態様では、上述の回折格子の製造方法において、前記曲げ工程を含む場合には、前記曲げ工程は、前記基材が破断するまで曲げられてもよい。 In another aspect, the above-described manufacturing method of the diffraction grating includes the base material including at least one main surface of the base material including a region facing the region where the groove portion is formed or at least the groove portion. A holding member for disposing a holding member for holding the mutual arrangement relationship of the plurality of base material pieces before and after the division when the base material is divided into a plurality of base material pieces on the other surface of A disposing step is further provided. And in another one aspect | mode, when the said bending process is included in the manufacturing method of the above-mentioned diffraction grating, the said bending process may be bent until the said base material fractures | ruptures.
 このような製造方法では、格子領域形成工程、保持部材配設工程、溝部形成工程の順に各工程が実施されてよく、あるいは、格子領域形成工程、溝部形成工程、保持部材配設工程の順に各工程が実施されてよく、あるいは、格子領域形成工程、溝部形成工程、曲げ工程、保持部材配設工程の順に各工程が実施されてよく、あるいは、格子領域形成工程、溝部形成工程、保持部材配設工程、曲げ工程の順に各工程が実施されてよく、あるいは、格子領域形成工程、保持部材配設工程、溝部形成工程、曲げ工程の順に各工程が実施されてよい。 In such a manufacturing method, each step may be performed in the order of the lattice region forming step, the holding member disposing step, and the groove forming step, or each of the lattice region forming step, the groove forming step, and the holding member disposing step in this order. The steps may be performed, or the lattice region forming step, the groove forming step, the bending step, and the holding member disposing step may be performed in this order, or the lattice region forming step, the groove forming step, and the holding member disposing step. Each step may be performed in the order of the setting step and the bending step, or each step may be performed in the order of the lattice region forming step, the holding member disposing step, the groove forming step, and the bending step.
 このような回折格子の製造方法は、格子が保持部材配設工程によって配設された保持部材を備えるので、仮に曲げ工程によって基材が破断した場合でも、前記複数の部材における周期性を維持することができる。 Such a method for manufacturing a diffraction grating includes a holding member arranged in the holding member arranging step, so that the periodicity in the plurality of members is maintained even when the base material is broken in the bending step. be able to.
 また、他の一態様では、これら上述の回折格子の製造方法において、前記複数の部材のうち、前記溝部を形成した領域に対向する前記一方主面の領域に設けられた部材における前記一方向に直交する周期方向の幅は、前記複数の部材のうちの他の部材の幅よりも広い。 Further, in another aspect, in the above-described diffraction grating manufacturing method, in the plurality of members, the member provided in the region of the one main surface facing the region where the groove portion is formed is in the one direction. The width in the orthogonal periodic direction is wider than the width of the other members among the plurality of members.
 そして、このような回折格子の製造方法は、溝部を形成した領域に対向する前記一方主面の領域に設けられた部材における前記一方向に直交する周期方向の幅が他の部材の幅よりも広いので、曲げ工程によって格子領域の格子面が湾曲された場合でも、前記複数の部材における周期性の乱れを小さく抑えることができる。 In such a method of manufacturing a diffraction grating, the width of the periodic direction perpendicular to the one direction in the member provided in the region of the one main surface facing the region where the groove is formed is larger than the width of the other member. Since it is wide, even when the lattice plane of the lattice region is curved by the bending process, it is possible to suppress the periodic disturbance in the plurality of members.
 また、他の一態様では、上述の回折格子の製造方法において、前記複数の部材のうち、前記溝部を形成した領域に対向する前記一方主面の領域に設けられた前記部材における前記格子面の法線方向の深さは、前記複数の部材のうちの他の部材の深さよりも深い。 According to another aspect, in the above-described diffraction grating manufacturing method, the grating surface of the member provided in the region of the one main surface facing the region where the groove portion is formed among the plurality of members. The depth in the normal direction is deeper than the depth of the other members among the plurality of members.
 このような回折格子の製造方法は、溝部を形成した領域に対向する前記一方主面の領域に設けられた前記部材における前記格子面の法線方向の深さが他の部材の深さよりも深いので、仮に曲げ工程によって基材が破断した場合でも、この部分で破断させることができ、破断箇所が予測可能である。したがって、このような回折格子の製造方法は、破断を考慮した上で格子を設計することができ、設計通りの性能をより確実に実現することができる。 In such a method of manufacturing a diffraction grating, the depth in the normal direction of the grating surface of the member provided in the region of the one main surface facing the region where the groove is formed is deeper than the depth of other members. Therefore, even if the base material is broken by the bending process, it can be broken at this portion, and the broken portion can be predicted. Therefore, such a method of manufacturing a diffraction grating can design a grating in consideration of breakage, and can realize performance as designed more reliably.
 また、他の一態様では、これら上述の回折格子の製造方法において、前記一方向は、前記基材の劈開方向に一致している。 Also, in another aspect, in the above-described diffraction grating manufacturing method, the one direction coincides with the cleavage direction of the base material.
 このような回折格子の製造方法は、溝部が、基材の劈開方向に一致するように形成されているので、仮に曲げ工程によって基材が破断したとしても、前記複数の部材や溝部に沿って破断させることができ、破断方向が予測可能である。したがって、このような回折格子の製造方法は、破断を考慮した上で格子を設計することができ、設計通りの性能をより確実に実現することができる。 In such a method of manufacturing a diffraction grating, the groove is formed so as to coincide with the cleavage direction of the base material. Therefore, even if the base material is broken by a bending process, the groove is formed along the plurality of members and groove parts. It can be ruptured and the rupture direction can be predicted. Therefore, such a method of manufacturing a diffraction grating can design a grating in consideration of breakage, and can realize performance as designed more reliably.
 また、他の一態様では、これら上述の回折格子の製造方法において、前記保持部材の靱性は、前記基材の靱性よりも高い。 In another aspect, in the above-described diffraction grating manufacturing method, the toughness of the holding member is higher than the toughness of the base material.
 このような回折格子の製造方法は、保持部材の靱性が基材の靱性よりも高いので、基材が破断する前に保持部材が破断することを防止することができ、仮に曲げ工程によって基材が破断した場合でも前記複数の部材における周期性を維持することができる点の信頼性が向上する。 In such a method for manufacturing a diffraction grating, since the toughness of the holding member is higher than the toughness of the base material, it is possible to prevent the holding member from breaking before the base material breaks. The reliability of the point that the periodicity in the plurality of members can be maintained even when the material breaks.
 また、他の一態様では、これら上述の回折格子の製造方法において、前記保持部材のX線吸収率は、前記基材のX線吸収率よりも小さい。 In another aspect, in the above-described method for manufacturing a diffraction grating, the X-ray absorption rate of the holding member is smaller than the X-ray absorption rate of the base material.
 このような回折格子の製造方法は、保持部材のX線吸収率が基材のX線吸収率よりも小さいので、格子がX線用に用いられる場合に保持部材が格子に与える影響を低減することができる。 Such a diffraction grating manufacturing method reduces the influence of the holding member on the grating when the grating is used for X-rays because the X-ray absorption rate of the holding member is smaller than the X-ray absorption rate of the substrate. be able to.
 他の一態様にかかる格子ユニットは、1つの格子面を形成するように配置された複数の格子を備えた格子ユニットであって、前記複数の格子のうちの少なくとも1つとは、これら上述のいずれかの回折格子である。 A lattice unit according to another aspect is a lattice unit including a plurality of lattices arranged so as to form one lattice plane, and at least one of the plurality of lattices is any of the above-described ones. This is a diffraction grating.
 この構成によれば、前記回折格子を含む格子ユニットが提供される。そして、このような格子ユニットは、湾曲可能な回折格子を含むので、複数の格子を曲面に沿って配置することができ、格子の両端部(互いに隣接する格子の隣接部分)の領域で生じる上述したいわゆるケラレを低減することができる。さらに、このような格子ユニットは、湾曲可能な回折格子を含むので、前記複数の部材における周期性が維持され、前記ケラレの発生を防止するために上述のように小格子の大きさを小さくする必要がないので従来の小格子の大きさを小さくすることによって生じる上述したデメリットを生じない。 According to this configuration, a grating unit including the diffraction grating is provided. Since such a grating unit includes a bendable diffraction grating, a plurality of gratings can be arranged along the curved surface, and the above-described occurrence occurs in the region of both ends of the grating (adjacent portions of the gratings adjacent to each other). The so-called vignetting can be reduced. Further, since such a grating unit includes a bendable diffraction grating, the periodicity of the plurality of members is maintained, and the size of the small grating is reduced as described above in order to prevent the occurrence of vignetting. Since it is not necessary, the above-mentioned disadvantages caused by reducing the size of the conventional small lattice are not caused.
 他の一態様にかかるX線撮像装置は、X線を放射するX線源と、前記X線源から放射されたX線が照射されるタルボ干渉計またはタルボ・ロー干渉計と、前記タルボ干渉計またはタルボ・ロー干渉計によるX線の像を撮像するX線撮像素子とを備え、前記タルボ干渉計またはタルボ・ロー干渉計は、これら上述のいずれかの回折格子、および、上述の格子ユニットのうちの少なくとも1つを含む。 An X-ray imaging apparatus according to another aspect includes an X-ray source that emits X-rays, a Talbot interferometer or a Talbot-low interferometer that is irradiated with X-rays emitted from the X-ray source, and the Talbot interference. And an X-ray image pickup device that captures an X-ray image by a Talbot-Lau interferometer, and the Talbot interferometer or Talbot-Lau interferometer includes any one of the above-described diffraction gratings and the above-described grating unit. At least one of them.
 この構成によれば、前記回折格子を含むX線撮像装置が提供される。このようなX線撮像装置は、湾曲可能な回折格子を含むので、複数の格子を曲面に沿って配置することができ、格子の両端部(互いに隣接する格子の隣接部分)の領域で生じる上述したいわゆるケラレを低減することができる。したがって、このようなX線撮像装置は、前記ケラレによって生じるノイズを低減することができ、より鮮明なX線撮像画像を得ることができる。そして、このようなX線撮像装置は、湾曲可能な回折格子を含むので、前記複数の部材における周期性が維持され、前記ケラレの発生を防止するために上述のように小格子の大きさを小さくする必要がないので従来の小格子の大きさを小さくすることによって生じる上述したデメリットを生じない。 According to this configuration, an X-ray imaging apparatus including the diffraction grating is provided. Since such an X-ray imaging apparatus includes a bendable diffraction grating, a plurality of gratings can be arranged along the curved surface, and the above-described occurrence occurs in the region of both ends of the grating (adjacent portions of the gratings adjacent to each other). The so-called vignetting can be reduced. Therefore, such an X-ray imaging apparatus can reduce noise caused by the vignetting and can obtain a clearer X-ray imaging image. Since such an X-ray imaging apparatus includes a bendable diffraction grating, the periodicity of the plurality of members is maintained, and the size of the small grating is reduced as described above in order to prevent the occurrence of vignetting. Since there is no need to reduce the size, the above-mentioned disadvantages caused by reducing the size of the conventional small lattice do not occur.
 この出願は、2012年9月3日に出願された日本国特許出願特願2012-193163を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2012-193163 filed on September 3, 2012, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、回折格子および回折格子の製造方法、格子ユニットならびにX線撮像装置を提供することができる。 According to the present invention, a diffraction grating, a diffraction grating manufacturing method, a grating unit, and an X-ray imaging apparatus can be provided.

Claims (17)

  1.  基材と、
     前記基材の一方主面に形成された、互いに同じ形状の複数の部材を周期的に設けた格子領域と、
     前記基材の一方主面に対向する他方主面に形成された溝部とを備え、
     前記複数の部材のそれぞれは、前記一方主面において、一方向に延びる長尺な線条形状であり、
     前記溝部は、前記一方向に沿って長尺であること
     を特徴とする回折格子。
    A substrate;
    A lattice region formed on one main surface of the base material and periodically provided with a plurality of members having the same shape;
    A groove formed on the other main surface opposite to the one main surface of the substrate,
    Each of the plurality of members has a long linear shape extending in one direction on the one main surface,
    The groove is elongate along the one direction.
  2.  前記格子領域上を少なくとも含む前記基材の一方主面上、または前記溝部上を少なくとも含む前記基材の他方主面上に、前記基材が複数の基材片に分割された場合に前記分割の前後で前記複数の基材片における互いの配置関係を保持するための保持部材をさらに備えること
     を特徴とする請求項1に記載の回折格子。
    When the base material is divided into a plurality of base material pieces on one main surface of the base material including at least the lattice region or on the other main surface of the base material including at least the groove portion, the splitting is performed. The diffraction grating according to claim 1, further comprising a holding member for holding the mutual arrangement relationship of the plurality of base material pieces before and after the step.
  3.  前記複数の部材のうち、前記溝部を形成した領域に対向する前記一方主面の領域に設けられた部材における前記一方向に直交する周期方向の幅は、前記複数の部材のうちの他の部材の幅よりも広いこと
     を特徴とする請求項1または請求項2に記載の回折格子。
    Among the plurality of members, the width in the periodic direction orthogonal to the one direction in the member provided in the region of the one main surface facing the region where the groove is formed is the other member of the plurality of members. The diffraction grating according to claim 1, wherein the diffraction grating is wider than.
  4.  前記複数の部材のうち、前記溝部を形成した領域に対向する前記一方主面の領域に設けられた前記部材における前記格子面の法線方向の深さは、前記複数の部材のうちの他の部材の深さよりも深いこと
     を特徴とする請求項3に記載の回折格子。
    Of the plurality of members, the depth in the normal direction of the lattice plane in the member provided in the region of the one main surface facing the region in which the groove is formed is the other of the plurality of members. The diffraction grating according to claim 3, wherein the diffraction grating is deeper than a depth of the member.
  5.  前記一方向は、前記基材の劈開方向に一致していること
     を特徴とする請求項1ないし請求項4のいずれか1項に記載の回折格子。
    The diffraction grating according to any one of claims 1 to 4, wherein the one direction coincides with a cleavage direction of the base material.
  6.  前記保持部材の靱性は、前記基材の靱性よりも高いこと
     を特徴とする請求項2ないし請求項5のいずれか1項に記載の回折格子。
    The diffraction grating according to any one of claims 2 to 5, wherein the toughness of the holding member is higher than the toughness of the base material.
  7.  前記保持部材のX線吸収率は、前記基材のX線吸収率よりも小さいこと
     を特徴とする請求項2ないし請求項6のいずれか1項に記載の回折格子。
    The diffraction grating according to claim 2, wherein an X-ray absorption rate of the holding member is smaller than an X-ray absorption rate of the base material.
  8.  互いに同じ形状の複数の部材を周期的に設けた格子領域を基材の一方主面に形成する格子領域形成工程と、
     前記基材の一方主面に対向する他方主面に溝部を形成する溝部形成工程とを備え、
     前記複数の部材のそれぞれは、前記一方主面において、一方向に延びる長尺な線条形状であり、
     前記溝部は、前記一方向に沿って長尺であること
     を特徴とする回折格子の製造方法。
    A lattice region forming step in which a lattice region in which a plurality of members having the same shape are periodically provided is formed on one main surface of the substrate;
    A groove portion forming step of forming a groove portion on the other main surface opposite to the one main surface of the base material,
    Each of the plurality of members has a long linear shape extending in one direction on the one main surface,
    The method for manufacturing a diffraction grating, wherein the groove is elongated along the one direction.
  9.  前記格子領域を曲げる曲げ工程をさらに備えること
     を特徴とする請求項8に記載の回折格子の製造方法。
    The method of manufacturing a diffraction grating according to claim 8, further comprising a bending step of bending the grating region.
  10.  前記格子領域上を少なくとも含む前記基材の一方主面上、または、前記溝部上を少なくとも含む前記基材の他方面上に、前記基材が複数の基材片に分割された場合に前記分割の前後で前記複数の基材片における互いの配置関係を保持するための保持部材を配設する保持部材配設工程をさらに備えること
     を特徴とする請求項8または請求項9に記載の回折格子の製造方法。
    When the base material is divided into a plurality of base material pieces on one main surface of the base material including at least the lattice region or on the other surface of the base material including at least the groove portion, the splitting is performed. 10. The diffraction grating according to claim 8, further comprising a holding member disposing step of disposing a holding member for maintaining the mutual arrangement relationship of the plurality of base material pieces before and after the step. Manufacturing method.
  11.  前記複数の部材のうち、前記溝部を形成した領域に対向する前記一方主面の領域に設けられた部材における前記一方向に直交する周期方向の幅は、前記複数の部材のうちの他の部材の幅よりも広いこと
     を特徴とする請求項8ないし請求項10のいずれか1項に記載の回折格子の製造方法。
    Among the plurality of members, the width in the periodic direction orthogonal to the one direction in the member provided in the region of the one main surface facing the region where the groove is formed is the other member of the plurality of members. The method of manufacturing a diffraction grating according to claim 8, wherein the diffraction grating is wider than the width of the diffraction grating.
  12.  前記複数の部材のうち、前記溝部を形成した領域に対向する前記一方主面の領域に設けられた前記部材における前記格子面の法線方向の深さは、前記複数の部材のうちの他の部材の深さよりも深いこと
     を特徴とする請求項11に記載の回折格子の製造方法。
    Of the plurality of members, the depth in the normal direction of the lattice plane in the member provided in the region of the one main surface facing the region in which the groove is formed is the other of the plurality of members. The method for manufacturing a diffraction grating according to claim 11, wherein the depth is greater than a depth of the member.
  13.  前記一方向は、前記基材の劈開方向に一致しており、
     を特徴とする請求項8ないし請求項12のいずれか1項に記載の回折格子の製造方法。
    The one direction coincides with the cleavage direction of the substrate;
    The method for manufacturing a diffraction grating according to any one of claims 8 to 12, wherein:
  14.  前記保持部材の靱性は、前記基材の靱性よりも高いこと
     を特徴とする請求項8ないし請求項13のいずれか1項に記載の回折格子の製造方法。
    14. The method of manufacturing a diffraction grating according to claim 8, wherein the toughness of the holding member is higher than the toughness of the base material.
  15.  前記保持部材のX線吸収率は、前記基材のX線吸収率よりも小さいこと
     を特徴とする請求項8ないし請求項14のいずれか1項に記載の回折格子の製造方法。
    The method for manufacturing a diffraction grating according to claim 8, wherein an X-ray absorption rate of the holding member is smaller than an X-ray absorption rate of the base material.
  16.  1つの格子面を形成するように配置された複数の格子を備えた格子ユニットであって、
     前記複数の格子のうちの少なくとも1つとは、請求項1ないし請求項7のいずれか1項に記載の回折格子であること
     を特徴とする格子ユニット。
    A grid unit comprising a plurality of grids arranged to form one grid plane,
    The grating unit according to claim 1, wherein at least one of the plurality of gratings is the diffraction grating according to claim 1.
  17.  X線を放射するX線源と、
     前記X線源から放射されたX線が照射されるタルボ干渉計またはタルボ・ロー干渉計と、
     前記タルボ干渉計またはタルボ・ロー干渉計によるX線の像を撮像するX線撮像素子とを備え、
     前記タルボ干渉計またはタルボ・ロー干渉計は、請求項1ないし請求項7のいずれか1項に記載の回折格子、および、請求項16に記載の格子ユニットのうちの少なくとも1つを含むこと
     を特徴とするX線撮像装置。
    An X-ray source emitting X-rays;
    A Talbot interferometer or a Talbot-low interferometer irradiated with X-rays emitted from the X-ray source;
    An X-ray imaging device that captures an X-ray image by the Talbot interferometer or the Talbot-Lau interferometer,
    The Talbot interferometer or the Talbot-Lau interferometer includes at least one of the diffraction grating according to any one of claims 1 to 7 and the grating unit according to claim 16. A featured X-ray imaging apparatus.
PCT/JP2013/004775 2012-09-03 2013-08-07 Diffraction grating and manufacturing method for diffraction grating, grating unit and x-ray image pick-up unit WO2014034033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014532759A JP6365299B2 (en) 2012-09-03 2013-08-07 Diffraction grating, diffraction grating manufacturing method, grating unit, and X-ray imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-193163 2012-09-03
JP2012193163 2012-09-03

Publications (1)

Publication Number Publication Date
WO2014034033A1 true WO2014034033A1 (en) 2014-03-06

Family

ID=50182874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004775 WO2014034033A1 (en) 2012-09-03 2013-08-07 Diffraction grating and manufacturing method for diffraction grating, grating unit and x-ray image pick-up unit

Country Status (2)

Country Link
JP (1) JP6365299B2 (en)
WO (1) WO2014034033A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219024A (en) * 2014-05-14 2015-12-07 コニカミノルタ株式会社 Lattice, lattice unit, curved lattice and manufacturing method thereof, and x-ray imaging device
WO2016113856A1 (en) * 2015-01-14 2016-07-21 株式会社日立ハイテクノロジーズ Curved-surface optical element and method for manufacturing same
JPWO2015045596A1 (en) * 2013-09-26 2017-03-09 コニカミノルタ株式会社 X-ray metal grating, X-ray metal grating manufacturing method, X-ray metal grating unit and X-ray imaging apparatus
WO2018066198A1 (en) * 2016-10-06 2018-04-12 株式会社島津製作所 Diffraction grating unit, grating unit manufacturing method, and x-ray phase image photography device
JP2021509179A (en) * 2017-12-12 2021-03-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Devices and methods for aligning X-ray diffraction gratings with X-ray radiation sources, as well as X-ray image acquisition systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287001A (en) * 1991-03-15 1992-10-12 Sekinosu Kk Production of optical diffraction grating
JP2004327005A (en) * 2003-04-11 2004-11-18 Sankyo Seiki Mfg Co Ltd Optical head, diffraction element and its manufacturing method
JP2012013530A (en) * 2010-06-30 2012-01-19 Fujifilm Corp Diffraction grating, method for manufacturing the same, and radiographic device
WO2012056725A1 (en) * 2010-10-29 2012-05-03 富士フイルム株式会社 Radiation phase contrast imaging apparatus and radiation image detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287001A (en) * 1991-03-15 1992-10-12 Sekinosu Kk Production of optical diffraction grating
JP2004327005A (en) * 2003-04-11 2004-11-18 Sankyo Seiki Mfg Co Ltd Optical head, diffraction element and its manufacturing method
JP2012013530A (en) * 2010-06-30 2012-01-19 Fujifilm Corp Diffraction grating, method for manufacturing the same, and radiographic device
WO2012056725A1 (en) * 2010-10-29 2012-05-03 富士フイルム株式会社 Radiation phase contrast imaging apparatus and radiation image detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015045596A1 (en) * 2013-09-26 2017-03-09 コニカミノルタ株式会社 X-ray metal grating, X-ray metal grating manufacturing method, X-ray metal grating unit and X-ray imaging apparatus
JP2015219024A (en) * 2014-05-14 2015-12-07 コニカミノルタ株式会社 Lattice, lattice unit, curved lattice and manufacturing method thereof, and x-ray imaging device
WO2016113856A1 (en) * 2015-01-14 2016-07-21 株式会社日立ハイテクノロジーズ Curved-surface optical element and method for manufacturing same
WO2018066198A1 (en) * 2016-10-06 2018-04-12 株式会社島津製作所 Diffraction grating unit, grating unit manufacturing method, and x-ray phase image photography device
JPWO2018066198A1 (en) * 2016-10-06 2019-06-24 株式会社島津製作所 Diffraction grating unit, method of manufacturing grating unit and X-ray phase image photographing apparatus
JP2021509179A (en) * 2017-12-12 2021-03-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Devices and methods for aligning X-ray diffraction gratings with X-ray radiation sources, as well as X-ray image acquisition systems
JP6998472B2 (en) 2017-12-12 2022-01-18 コーニンクレッカ フィリップス エヌ ヴェ Devices and methods for aligning X-ray diffraction gratings with X-ray radiation sources, as well as X-ray image acquisition systems.

Also Published As

Publication number Publication date
JP6365299B2 (en) 2018-08-01
JPWO2014034033A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6365299B2 (en) Diffraction grating, diffraction grating manufacturing method, grating unit, and X-ray imaging apparatus
JP6436089B2 (en) Method for manufacturing curved grating
US8243879B2 (en) Source grating for X-rays, imaging apparatus for X-ray phase contrast image and X-ray computed tomography system
JP2008197593A (en) Transmission type diffraction grating for x-ray, x-ray talbot interferometer and x-ray imaging apparatus
US10153061B2 (en) Metal grating for X-rays, production method for metal grating for X-rays, metal grating unit for X-rays, and X-ray imaging device
US7639786B2 (en) X-ray optical transmission grating of a focus-detector arrangement of an X-ray apparatus for generating projective or tomographic phase contrast recordings of a subject
JP2009240378A (en) X-ray imaging apparatus and method of manufacturing slit member used for the same
JP2012161412A (en) Grid for use in radiation imaging and grid producing method, and radiation imaging system
JP6217381B2 (en) Lattice bending method
US20150316494A1 (en) X-ray shield grating and x-ray talbot interferometer including x-ray shield grating
EP3127861B1 (en) Method of manufacturing high aspect ratio structure and method of manufacturing ultrasonic probe
JP6149343B2 (en) Grating and grating unit and X-ray imaging apparatus
US20160233002A1 (en) X-Ray Metal Grating Structure Manufacturing Method And X-Ray Imaging Device
JP2012093429A (en) Grid for radiation imaging, method of manufacturing the same, and radiation imaging system
US20120148029A1 (en) Grid for use in radiation imaging, method for producing the same, and radiation imaging system
JP2012022239A (en) Diffraction grating, manufacturing method thereof, and radiographic apparatus
JP2014190778A (en) Manufacturing method for curved grating, curved grating, grating unit, and radiographic imaging apparatus
EP3538879B1 (en) Grating-based phase contrast imaging
WO2018066198A1 (en) Diffraction grating unit, grating unit manufacturing method, and x-ray phase image photography device
WO2012081376A1 (en) Grids for radiography and radiography system
JP2015219024A (en) Lattice, lattice unit, curved lattice and manufacturing method thereof, and x-ray imaging device
JP5258504B2 (en) Phase grating used in X-ray phase imaging and manufacturing method thereof, X-ray phase contrast image imaging apparatus using the phase grating, and X-ray computed tomography system
JP2014190781A (en) Manufacturing method for curved grating, curved grating, grating unit, and radiographic imaging apparatus
JP2016001264A (en) Grating, grating unit, curved grating and x-ray imaging device
JP2013057520A (en) Phase type diffraction grating, manufacturing method of phase type diffraction grating, and x-ray imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833120

Country of ref document: EP

Kind code of ref document: A1