WO2012081376A1 - Grids for radiography and radiography system - Google Patents

Grids for radiography and radiography system Download PDF

Info

Publication number
WO2012081376A1
WO2012081376A1 PCT/JP2011/077178 JP2011077178W WO2012081376A1 WO 2012081376 A1 WO2012081376 A1 WO 2012081376A1 JP 2011077178 W JP2011077178 W JP 2011077178W WO 2012081376 A1 WO2012081376 A1 WO 2012081376A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
grids
ray
small
radiation
Prior art date
Application number
PCT/JP2011/077178
Other languages
French (fr)
Japanese (ja)
Inventor
金子 泰久
伊藤 嘉広
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012081376A1 publication Critical patent/WO2012081376A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Definitions

  • the present invention relates to a radiographic imaging grid and a radiographic imaging system for obtaining an image based on a phase change of radiation.
  • phase contrast image a high-contrast image
  • the first grid is disposed behind the subject as viewed from the X-ray source, and the second grid is disposed downstream from the first grid by the Talbot distance.
  • An X-ray image detector is disposed behind the second grid.
  • the first and second grids are striped grids in which X-ray absorbing portions and X-ray transmitting portions extended in one direction are alternately arranged along an arrangement direction orthogonal to the extending direction.
  • the Talbot distance is a distance at which X-rays that have passed through the first grid form a self-image due to the Talbot effect. This self-image is modulated by the interaction between the subject and the X-ray.
  • a plurality of fringe images generated by superposition (intensity modulation) of the self-image of the first grid and the second grid are detected based on the fringe scanning method.
  • the second grid is moved step by step with respect to the first grid, and an intensity modulation signal representing an intensity change of the pixel value accompanying the movement of the second grid is generated for each pixel.
  • a phase differential image is generated by calculating the phase shift amount (phase shift amount with and without the subject) of the intensity modulation signal.
  • a phase contrast image is obtained by integrating the phase differential image.
  • This fringe scanning method is also used in an imaging apparatus using laser light (see, for example, Non-Patent Document 2).
  • This X-ray imaging system is used for medical diagnosis.
  • it has been proposed to construct a large grid by manufacturing a plurality of small rectangular grids and laying them out without gaps see Patent Document 2.
  • the grid described in Patent Document 2 has a rectangular shape and its two opposing sides are parallel to the extending direction of the X-ray absorbing portion, it is easy to bend in a direction orthogonal to the extending direction and is durable against external force. There is a problem that the nature is low.
  • the boundary line between the adjacent small grids is parallel to the extending direction of the X-ray absorption unit, so the boundary line is There is a problem that artifacts are generated in the phase contrast image by acting like grid lines.
  • a first object of the present invention is to provide a radiographic imaging grid having high durability against external force and a radiographic imaging system using the radiographic imaging grid.
  • the second object of the present invention is to provide a radiographic imaging grid capable of preventing the occurrence of artifacts when a large grid is constructed by laying a plurality of small grids without gaps, and the radiographic imaging It is to provide a radiographic imaging system using a grid.
  • the grid for radiographic imaging of the present invention includes a plurality of radiation absorbing portions extending in one direction and a plurality of radiation absorbing portions extending in the one direction and arranged alternately with the radiation absorbing portions in a direction substantially orthogonal to the one direction.
  • a support substrate that supports the plurality of small grids.
  • the surface of the support substrate that supports the plurality of small grids is preferably a flat surface or a concave surface.
  • the radiographic imaging system of the present invention includes a radiation source, a first grid for generating a first periodic pattern image by passing the radiation emitted from the radiation source, and the first periodic pattern image.
  • a second grid that partially shields and generates a second periodic pattern image, and a radiation image detector that detects the second periodic pattern image are provided.
  • At least one of the first and second grids is configured by laying a plurality of small grids without gaps.
  • Each of the small grids includes a plurality of radiation absorbing portions extending in one direction, and a plurality of radiation transmitting portions extending in the one direction and arranged alternately with the radiation absorbing portions in a direction substantially orthogonal to the one direction.
  • the grid for radiographic imaging of the present invention has a grid outline composed of a plurality of sides non-parallel to the extending direction of the radiation absorbing portion and the radiation transmitting portion, durability against external force is improved.
  • the radiographic imaging grid of the present invention is a radiographic imaging grid configured by laying a plurality of small grids, and each side constituting the grid outline of the small grid includes a radiation absorbing unit and a radiation transmitting unit. Therefore, the generation of artifacts due to the boundary line between the small grids is reduced.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2. It is explanatory drawing explaining the manufacturing process of the small grid of a 1st grid. It is a top view which shows the silicon wafer in which the small grid was formed. It is a figure which shows the 1st grid of 2nd Embodiment, (A) is a top view, (B) is sectional drawing which follows the BB line of (A), (C) is C of (A). It is sectional drawing which follows the -C line. It is a top view which shows the modification of a small grid. It is a top view which shows the other modification of a small grid.
  • the X-ray imaging system 10 includes an X-ray source 11, a first grid 13, a second grid 14, and an X-ray image detector 15.
  • the X-ray source 11 has a rotating anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and faces the subject H. X-rays are emitted.
  • the first grid 13 and the second grid 14 are absorption type grids that absorb X-rays, and are disposed opposite to the X-ray source 11 in the Z direction, which is the X-ray irradiation direction. A space is provided between the X-ray source 11 and the first grid 13 so that the subject H can be arranged.
  • the X-ray image detector 15 is, for example, a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit, and is arranged behind the second grid 14.
  • FPD Flat Panel Detector
  • the first grid 13 is configured by laying a plurality of small grids 13a having a regular hexagonal grid outline (outer shape) on the flat surface 13c of the support substrate 13b without gaps.
  • the second grid 14 is configured by laying a plurality of small grids 14a having a regular hexagonal grid outline on the flat surface 14c of the support substrate 14b without gaps.
  • the second grid 14 has the same configuration as the first grid 13 except that the size is different. Therefore, detailed description of the first grid 14 is omitted.
  • the small grid 13 a includes a grid layer 22 including a plurality of X-ray absorption parts 20 and a plurality of X-ray transmission parts 21, and a conductive layer 23.
  • the X-ray absorption unit 20 is formed of a metal having X-ray absorption such as gold (Au) or platinum (Pt).
  • the X-ray transmission part 21 is made of single crystal silicon having X-ray transmission.
  • the conductive layer 23 is formed of a metal having X-ray absorption such as chromium (Cr).
  • the X-ray absorption unit 20 and the X-ray transmission unit 21 extend in the Y direction in the XY plane orthogonal to the Z direction. Further, the X-ray absorption unit 20 and the X-ray transmission unit 21 are alternately arranged along the X direction (a direction substantially orthogonal to the Z direction and the Y direction) to form a striped pattern.
  • the grid outline of the small grid 13a is composed of first to sixth sides 24a to 24f having the same length.
  • the extending directions of the X-ray absorption unit 20 and the X-ray transmission unit 21 are orthogonal to the second side 24b and the fifth 24e, and are not parallel to any of the first to sixth sides 24a to 24f.
  • the X-ray absorption unit 20 and the X-ray transmission unit 21 are arranged so as to be continuous in a straight line across adjacent small grids 13 a when a plurality of small grids 13 a are laid without gaps. ing.
  • the width W 1 in the X direction and the arrangement pitch P 1 of the X-ray absorber 20 are the distance between the X-ray source 11 and the first grid 13, the distance between the first grid 13 and the second grid 14, And it is determined according to the arrangement pitch of the X-ray absorption parts of the first grid 14 or the like.
  • the width W 1 is about 2 to 20 ⁇ m
  • the arrangement pitch P 1 is about 4 to 40 ⁇ m, which is twice as large.
  • the thickness T 1 in the Z direction of the X-ray absorber 20 is set to, for example, about 100 ⁇ m in consideration of the vignetting of cone-beam X-rays emitted from the X-ray source 11.
  • the first grid 13 projects incident X-rays onto the second grid 14 almost geometrically optically.
  • the X-ray radiated from the X-ray source 11 undergoes a phase change when passing through the subject H.
  • the X-ray passes through the first grid 13 and becomes a first periodic pattern image reflecting the transmission phase information of the subject H determined from the refractive index of the subject H and the transmitted optical path length.
  • the first periodic pattern image is intensity-modulated by being partially shielded by the second grid 14 and becomes a second periodic pattern image.
  • the second grid 14 is intermittently moved with respect to the first grid 13 at a predetermined scanning pitch, and the subject H is moved from the X-ray source 11 during each stop.
  • the X-ray image detector 15 radiates X-rays toward the center and captures a second periodic pattern image.
  • the scanning pitch is a value obtained by equally dividing (for example, dividing into 5) the arrangement pitch in the X direction of the X-ray absorbing portion of the first grid 14.
  • the phase differential of the intensity modulation signal for each pixel obtained by the X-ray image detector 15 is calculated by calculating the phase shift amount (phase shift amount with and without the subject).
  • An image is obtained.
  • the intensity modulation signal is a waveform signal representing intensity modulation of the pixel value with respect to the movement of the second grid 14.
  • the phase differential image corresponds to the angular distribution of X-rays refracted by the subject. By integrating this phase differential image along the X direction, a phase contrast image is obtained.
  • a conductive layer 23 is bonded or deposited on the lower surface of the silicon wafer 30.
  • the silicon wafer 30 is a substantially circular single crystal silicon wafer used in a normal semiconductor process.
  • the conductive layer 23 is formed of a conductive material such as chromium. As this conductive material, a material having a small difference in thermal expansion coefficient from the silicon wafer 30 is preferable, and Kovar, Invar, or the like may be used.
  • diffusion bonding performed while applying heat and pressure, or room temperature bonding in which the surfaces are activated in a high vacuum is used.
  • a resist layer 31 is formed on the upper surface of the silicon wafer 30.
  • the resist layer 31 is formed through, for example, a coating process in which a liquid resist is applied to the silicon wafer 30 by a coating method such as spin coating, a pre-baking process in which an organic solvent is evaporated from the applied liquid resist, and the like.
  • a striped exposure mask 32 having a line pattern with an arrangement pitch P 1 in the X direction is disposed above the resist layer 31, and light such as ultraviolet rays is transmitted through the exposure mask 32 through the resist layer 31. Is irradiated.
  • development processing is performed in FIG. 4D, and the exposed portion of the resist layer 31 is removed.
  • a striped etching mask 33 having a plurality of line patterns extending in the Y direction and arranged along the X direction is formed on the silicon wafer 30.
  • the resist layer 31 is a positive resist, but a negative resist may be used instead.
  • dry etching is performed through the etching mask 33, and a plurality of grooves 34 extending in the Y direction and arranged along the X direction are formed in the silicon wafer 30.
  • a Bosch process which is a deep trench dry etching capable of forming a groove 34 having a high aspect ratio, is used.
  • a cryo process may be used instead of the Bosch process.
  • an X-ray absorber 35 such as gold (Au) is embedded in the groove 34 by electrolytic plating using the conductive layer 23 as a seed layer.
  • a bonding substrate formed by the silicon wafer 30 and the conductive layer 23 is immersed in a plating solution, and the other electrode (anode) is disposed at a position facing the bonding substrate.
  • the other electrode anode
  • metal ions in the plating solution are deposited on the patterned substrate, and the X-ray absorber 35 is embedded in the groove 34.
  • the etching mask 33 is removed from the silicon wafer 30 by ashing or the like. Thereby, the grid structure of the small grid 13a is completed.
  • the X-ray absorber 35 corresponds to the X-ray absorber 20
  • the portion of the silicon wafer 30 adjacent to the X-ray absorber 35 corresponds to the X-ray transmitter 21.
  • the conductive layer 23 may be removed from the silicon wafer 30.
  • the small grid 13a is formed on the silicon wafer 30 as shown in FIG. And the small grid 13a is cut out from the silicon wafer 30 using the dicing apparatus (not shown) used with a general semiconductor process. At this time, by cutting while rotating the silicon wafer 30 by 60 degrees so as to form regular hexagonal grid outlines of the small grid 13a one by one, the first non-parallel to the extending direction of the X-ray absorbing unit 20 is performed. To sixth sides 24a to 24f are formed.
  • the X-ray absorber 20 is not cut along the extending direction when any one of the first to sixth sides 24a to 24f is formed. For this reason, defects, such as a crack, are hard to produce and the small grid 13a with high durability is manufactured. Moreover, since the grid outline of the small grid 13a is a regular hexagon, compared with the case where the conventional rectangular small grid is manufactured, there are few parts cut off from the silicon wafer 30, and productivity is high.
  • the manufacturing process of the small grid 13a is repeated a plurality of times or in parallel to form a plurality of small grids 13a. Then, a plurality of small grids 13a are laid without gaps on the flat surface 13c of the support substrate 13b formed of glass or the like, whereby the first grid 13 is completed.
  • the small grid 13a and the support substrate 13b are joined by an adhesive or the like. Further, the alignment of the adjacent small grids 13a is performed with reference to the positions of the sides and the X-ray absorbing unit 20 and the X-ray transmitting unit 21. In order to perform alignment with higher accuracy, an alignment mark (not shown) for aligning the small grid 13a may be provided on the flat surface 13c of the support substrate 13b.
  • the first grid 13 is configured by laying the small grids 13a having the regular hexagonal grid outline without gaps, and the small grids 13b having the regular hexagonal grid outlines are laid without gaps.
  • the second grid 14 is configured by packing. For this reason, the first and second grids 13 and 14 have high productivity.
  • the boundary line between the adjacent small grids 13a and the boundary line between the adjacent small grids 14a are not arranged in a straight line, the first and second grids 13 and 14 are not easily bent, and are resistant to external forces. High nature.
  • any of the sides constituting the grid outline of the small grids 13a and 14a is parallel to the extending direction of the X-ray absorbing unit 20, the side acts like a grid line and an artifact is generated in the phase contrast image.
  • the occurrence of artifacts is reduced.
  • the same reference numerals are used for the same configurations as those already described, and detailed description thereof is omitted.
  • the second grid uses the same configuration and manufacturing method as the first grid, except that the arrangement pitch and thickness of the X-ray absorption part and the X-ray transmission part are different. Therefore, detailed description is omitted.
  • the first and second grids are configured by disposing a plurality of small grids on a flat support substrate, but are configured by disposing the small grids on a concave support substrate. May be.
  • the first grid 40 includes a support substrate 41 having a concave surface 41 a and a plurality of small grids 42.
  • the plurality of small grids 42 are laid without any gaps on the concave surface 41a.
  • the small grid 42 has the same configuration as the small grid 13a of the first embodiment and has a regular hexagonal grid outline.
  • the shape of the concave surface 41a of the support substrate 41 is a shape along a spherical surface centered on the focal point of the X-ray source 11, and the X-rays radiated from the X-ray source 11 are incident substantially perpendicularly.
  • the grid outline of the small grid is a regular hexagon, but may be another regular polygon or a polygon other than a regular polygon.
  • the angle formed between each side of the small grid and the extending direction of the X-ray absorption part is preferably at least 3 °. Below, the modification of a small grid is shown.
  • the grid outline of the small grid 50 is a regular square and has first to fourth sides 51a to 51d.
  • the X-ray absorption parts 52 and the X-ray transmission parts 53 are each extended in the Y direction and alternately arranged along the X direction.
  • the extending directions of the X-ray absorption part 52 and the X-ray transmission part 53 are not parallel to any of the first to fourth sides 51a to 51d.
  • the grid outline of the small grid 60 is an equilateral triangle, and has first to third sides 61a to 61c.
  • the X-ray absorption unit 62 and the X-ray transmission unit 63 are each extended in the Y direction and alternately arranged along the X direction.
  • the extending directions of the X-ray absorption part 62 and the X-ray transmission part 63 are not parallel to any of the first to third sides 61a to 61c.
  • a large grid is configured by laying a plurality of small grids without gaps, but either one or both of the first and second grids are configured by a single small grid. May be.
  • first and second grids 13 and 14 are provided between the X-ray source 11 and the X-ray image detector 15.
  • a well-known radiation source grid multi-slit
  • WO 2006/131235 US Pat. No. 7,898,838, or the like may be provided between the grid 13 and the grid 13.
  • the present invention can be applied to the source grid.
  • the first grid projects geometrically optically the X-rays that have passed through the X-ray transmission part.
  • Japanese Patent No. 4445397 US Pat. No. 7,180,796
  • the Talbot effect may be generated by diffracting X-rays at the X-ray transmission part.
  • the first grid can be a phase grid instead of the absorption grid.
  • phase contrast image is generated by changing the relative positions of the first and second grids and performing imaging a plurality of times.
  • first and second grids are illustrated. It is also possible to generate a phase-contrast image by performing one-time shooting while fixing.
  • X-ray image detection is performed by performing one imaging while the first and second grids are fixed.
  • a spatial frequency spectrum is obtained by generating image data with a filter and Fourier transforming the intensity distribution of moire fringes in this image data, and separating the spectrum corresponding to the carrier frequency from this spatial frequency spectrum and performing an inverse Fourier transform. By doing so, a phase differential image is generated.
  • the grid of the present invention is also suitable for such an X-ray imaging system.
  • the subject H is arranged between the X-ray source and the first grid, but the subject H is arranged between the first grid and the second grid. Also good. In this case as well, a phase differential image and a phase contrast image can be similarly generated.
  • the above embodiments may be combined with each other within a consistent range.
  • the present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection.
  • the present invention is also applicable to a scattered radiation removal grid that removes scattered radiation in X-ray imaging.
  • the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like as X-rays as radiation.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided are grids for radiography with which resilience to external force is improved, and the occurrence of artifacts resulting from boundary lines between adjacent small grids is avoided. First and second grids (13, 14) are positioned between an x-ray source (11) and an x-ray image detection apparatus (15). The first and second grids (13, 14) have an identical configuration aside from having different widths, array pitches, and thicknesses in the x-ray absorbing parts thereof. The first grid (13) is configured by laying, without any gaps, a plurality of small grids (13a) comprising regular hexagonal grid contours, upon a flat face (13c) of a support substrate (13b). X-ray absorption parts and x-ray transmission parts, which extend along the y-axis in the small grids (13a), are positioned alternately along the x-axis in the small grids (13a). Each edge which configures the grid contours of the small grids (13a) is non-parallel with the y-axis.

Description

放射線画像撮影用グリッド及び放射線画像撮影システムRadiation imaging grid and radiation imaging system
 本発明は、放射線の位相変化に基づく画像を得るための放射線画像撮影用グリッド及び放射線画像撮影システムに関する。 The present invention relates to a radiographic imaging grid and a radiographic imaging system for obtaining an image based on a phase change of radiation.
 放射線、例えばX線は、物体に入射したとき、物体との相互作用により強度及び位相が変化する。物体でのX線の位相変化は、強度変化よりも大きいことが知られている。このX線の性質を利用し、X線の位相変化に基づいて、X線吸収能が低い被検体から高コントラストの画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。 When radiation, for example, X-rays enter an object, the intensity and phase change due to the interaction with the object. It is known that the phase change of X-rays at an object is larger than the intensity change. Research on X-ray phase imaging that uses this X-ray property to obtain a high-contrast image (hereinafter referred to as a phase contrast image) from a subject having a low X-ray absorption capacity based on the phase change of the X-ray is actively conducted. Has been done.
 このX線位相イメージングを行うX線画像撮影システムとして、2枚の透過型の回折格子(グリッド)を用いたものが知られている(例えば、特許文献1、非特許文献1参照)。このX線画像撮影システムでは、X線源から見て、被検体の背後に第1のグリッドを配置し、第1のグリッドからタルボ距離だけ下流に第2のグリッドを配置する。第2のグリッドの背後にはX線画像検出器が配置されている。第1及び第2のグリッドは、一方向に延伸されたX線吸収部及びX線透過部を、延伸方向と直交する配列方向に沿って交互に配列した縞状のグリッドである。タルボ距離とは、第1のグリッドを通過したX線が、タルボ効果によって自己像を形成する距離である。この自己像は、被検体とX線との相互作用により変調を受ける。 As an X-ray imaging system for performing this X-ray phase imaging, a system using two transmission diffraction gratings (grids) is known (for example, see Patent Document 1 and Non-Patent Document 1). In this X-ray imaging system, the first grid is disposed behind the subject as viewed from the X-ray source, and the second grid is disposed downstream from the first grid by the Talbot distance. An X-ray image detector is disposed behind the second grid. The first and second grids are striped grids in which X-ray absorbing portions and X-ray transmitting portions extended in one direction are alternately arranged along an arrangement direction orthogonal to the extending direction. The Talbot distance is a distance at which X-rays that have passed through the first grid form a self-image due to the Talbot effect. This self-image is modulated by the interaction between the subject and the X-ray.
 このX線画像撮影システムでは、第1のグリッドの自己像と第2のグリッドとの重ね合わせ(強度変調)により生じる縞画像を、縞走査法に基づいて複数枚検出する。具体的には、第1のグリッドに対して第2のグリッドを段階的に移動させ、第2のグリッドの移動に伴う画素値の強度変化を表す強度変調信号を画素ごとに生成する。この強度変調信号の位相ズレ量(被検体がある場合とない場合とでの位相のズレ量)を算出することにより位相微分画像が生成される。この位相微分画像を積分することにより位相コントラスト画像が得られる。この縞走査法は、レーザ光を利用した撮影装置においても用いられている(例えば、非特許文献2参照)。 In this X-ray imaging system, a plurality of fringe images generated by superposition (intensity modulation) of the self-image of the first grid and the second grid are detected based on the fringe scanning method. Specifically, the second grid is moved step by step with respect to the first grid, and an intensity modulation signal representing an intensity change of the pixel value accompanying the movement of the second grid is generated for each pixel. A phase differential image is generated by calculating the phase shift amount (phase shift amount with and without the subject) of the intensity modulation signal. A phase contrast image is obtained by integrating the phase differential image. This fringe scanning method is also used in an imaging apparatus using laser light (see, for example, Non-Patent Document 2).
 このX線画像撮影システムは、医療診断用途で用いられる。患者のように大きな被検体を撮影するには、X線画像検出器の大型化とともに、第1及び第2のグリッドを大型化する必要がある。第1及び第2のグリッドは、X線吸収部とX線透過部とが交互にμmオーダの配列ピッチで配置された微細構造を有するものであるため、大型のグリッドを一度に製造することは困難である。そこで、矩形状の小グリッドを複数個製造し、これらを隙間なく敷き詰めることによって大型のグリッドを構成することが提案されている(特許文献2参照)。 This X-ray imaging system is used for medical diagnosis. In order to image a large subject such as a patient, it is necessary to increase the size of the first and second grids as well as the size of the X-ray image detector. Since the first and second grids have a fine structure in which X-ray absorption parts and X-ray transmission parts are alternately arranged at an arrangement pitch of μm order, it is impossible to manufacture a large grid at a time. Have difficulty. Thus, it has been proposed to construct a large grid by manufacturing a plurality of small rectangular grids and laying them out without gaps (see Patent Document 2).
特許第4445397号公報Japanese Patent No. 4445397 特開2007-203061号公報JP 2007-203061 A
 しかしながら、特許文献2に記載のグリッドは、矩形状であり、その対向する2辺がX線吸収部の延伸方向と平行であるため、延伸方向と直交する方向に撓みやすく、外力に対して耐久性が低いという問題がある。また、このような構成の小グリッドを隙間なく敷詰めて大型のグリッドを製造した場合には、隣接する小グリッド間の境界線がX線吸収部の延伸方向と平行となるため、境界線がグリッド線のように作用して、位相コントラスト画像にアーチファクトが生じるという問題がある。 However, since the grid described in Patent Document 2 has a rectangular shape and its two opposing sides are parallel to the extending direction of the X-ray absorbing portion, it is easy to bend in a direction orthogonal to the extending direction and is durable against external force. There is a problem that the nature is low. In addition, when a large grid is manufactured by laying small grids having such a configuration without gaps, the boundary line between the adjacent small grids is parallel to the extending direction of the X-ray absorption unit, so the boundary line is There is a problem that artifacts are generated in the phase contrast image by acting like grid lines.
 本発明の第1の目的は、外力に対する耐久性の高い放射線画像撮影用グリッド、及びこの放射線画像撮影用グリッドを用いた放射線画像撮影システムを提供することにある。 A first object of the present invention is to provide a radiographic imaging grid having high durability against external force and a radiographic imaging system using the radiographic imaging grid.
 本発明の第2の目的は、複数の小グリッドを隙間なく敷詰めて大型のグリッドを構成した場合に、アーチファクトの発生を防止することを可能とする放射線画像撮影用グリッド、及びこの放射線画像撮影用グリッドを用いた放射線画像撮影システムを提供することにある。 The second object of the present invention is to provide a radiographic imaging grid capable of preventing the occurrence of artifacts when a large grid is constructed by laying a plurality of small grids without gaps, and the radiographic imaging It is to provide a radiographic imaging system using a grid.
 本発明の放射線画像撮影用グリッドは、一方向に延伸した複数の放射線吸収部と、前記一方向に延伸し、前記一方向とほぼ直交する方向に前記放射線吸収部と交互に配置された複数の放射線透過部と、前記一方向と非平行の複数の辺により構成されたグリッド輪郭と、を備えるものである。 The grid for radiographic imaging of the present invention includes a plurality of radiation absorbing portions extending in one direction and a plurality of radiation absorbing portions extending in the one direction and arranged alternately with the radiation absorbing portions in a direction substantially orthogonal to the one direction. A radiation transmitting portion; and a grid contour configured by a plurality of sides non-parallel to the one direction.
 また、本発明の放射線画像撮影用グリッドは、複数の小グリッドを隙間なく敷詰めることにより構成された放射線画像撮影用グリッドである。前記各小グリッドは、前記一方向に延伸し、前記一方向とほぼ直交する方向に前記放射線吸収部と交互に配置された複数の放射線透過部と、前記一方向と非平行の複数の辺により構成されたグリッド輪郭と、を備える。前記グリッド輪郭は、正六角形、正四角形、正三角形のうちのいずれかであることが好ましい。 The radiographic imaging grid of the present invention is a radiographic imaging grid configured by laying a plurality of small grids without gaps. Each of the small grids extends in the one direction, and includes a plurality of radiation transmitting portions arranged alternately with the radiation absorbing portion in a direction substantially orthogonal to the one direction, and a plurality of sides non-parallel to the one direction. A configured grid contour. The grid contour is preferably one of a regular hexagon, a regular square, and a regular triangle.
 また、前記複数の小グリッドを支持する支持基板を備えることが好ましい。前記支持基板の前記複数の小グリッドを支持する面は、平面または凹面であることが好ましい。 Further, it is preferable to include a support substrate that supports the plurality of small grids. The surface of the support substrate that supports the plurality of small grids is preferably a flat surface or a concave surface.
 さらに、本発明の放射線画像撮影システムは、放射線源と、前記放射線源から放射された放射線を通過させて第1の周期パターン像を生成する第1のグリッドと、前記第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2のグリッドと、前記第2の周期パターン像を検出する放射線画像検出器とを備える。前記第1及び第2のグリッドの少なくとも一方は、複数の小グリッドを隙間なく敷詰めることにより構成される。前記各小グリッドは、一方向に延伸した複数の放射線吸収部と、前記一方向に延伸し、前記一方向とほぼ直交する方向に前記放射線吸収部と交互に配置された複数の放射線透過部と、前記一方向と非平行の複数の辺により構成されたグリッド輪郭と、を有する。 Furthermore, the radiographic imaging system of the present invention includes a radiation source, a first grid for generating a first periodic pattern image by passing the radiation emitted from the radiation source, and the first periodic pattern image. A second grid that partially shields and generates a second periodic pattern image, and a radiation image detector that detects the second periodic pattern image are provided. At least one of the first and second grids is configured by laying a plurality of small grids without gaps. Each of the small grids includes a plurality of radiation absorbing portions extending in one direction, and a plurality of radiation transmitting portions extending in the one direction and arranged alternately with the radiation absorbing portions in a direction substantially orthogonal to the one direction. And a grid contour constituted by a plurality of sides that are non-parallel to the one direction.
 本発明の放射線画像撮影用グリッドは、放射線吸収部及び放射線透過部の延伸方向と非平行の複数の辺により構成されたグリッド輪郭を有するので、外力に対する耐久性が向上する。 Since the grid for radiographic imaging of the present invention has a grid outline composed of a plurality of sides non-parallel to the extending direction of the radiation absorbing portion and the radiation transmitting portion, durability against external force is improved.
 また、本発明の放射線画像撮影用グリッドは、複数の小グリッドを敷詰めることにより構成された放射線画像撮影用グリッドにおいて、小グリッドのグリッド輪郭を構成する各辺が、放射線吸収部及び放射線透過部の延伸方向と非平行であるので、小グリッド間の境界線によるアーチファクトの発生が低減される。 Further, the radiographic imaging grid of the present invention is a radiographic imaging grid configured by laying a plurality of small grids, and each side constituting the grid outline of the small grid includes a radiation absorbing unit and a radiation transmitting unit. Therefore, the generation of artifacts due to the boundary line between the small grids is reduced.
X線画像撮影システムの構成を示す模式図である。It is a schematic diagram which shows the structure of a X-ray imaging system. 第1のグリッドの構成を示す平面図である。It is a top view which shows the structure of a 1st grid. 図2のIII-III線に沿う断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 第1のグリッドの小グリッドの製造工程を説明する説明図である。It is explanatory drawing explaining the manufacturing process of the small grid of a 1st grid. 小グリッドが形成されたシリコンウェーハを示す平面図である。It is a top view which shows the silicon wafer in which the small grid was formed. 第2実施形態の第1のグリッドを示す図であり、(A)は平面図、(B)は、(A)のB-B線に沿う断面図、(C)は、(A)のC-C線に沿う断面図である。It is a figure which shows the 1st grid of 2nd Embodiment, (A) is a top view, (B) is sectional drawing which follows the BB line of (A), (C) is C of (A). It is sectional drawing which follows the -C line. 小グリッドの変形例を示す平面図である。It is a top view which shows the modification of a small grid. 小グリッドの他の変形例を示す平面図である。It is a top view which shows the other modification of a small grid.
[第1実施形態]
 図1において、X線画像撮影システム10は、X線源11、第1のグリッド13、第2のグリッド14、及びX線画像検出器15を備えている。X線源11は、周知のように、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、被検体Hに向けてX線を放射する。
[First Embodiment]
In FIG. 1, the X-ray imaging system 10 includes an X-ray source 11, a first grid 13, a second grid 14, and an X-ray image detector 15. As is well known, the X-ray source 11 has a rotating anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and faces the subject H. X-rays are emitted.
 第1のグリッド13及び第2のグリッド14は、X線を吸収する吸収型グリッドであり、X線照射方向であるZ方向においてX線源11に対向配置されている。X線源11と第1のグリッド13との間には、被検体Hが配置可能な間隔が設けられている。X線画像検出器15は、例えば、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)であり、第2のグリッド14の背後に配置されている。 The first grid 13 and the second grid 14 are absorption type grids that absorb X-rays, and are disposed opposite to the X-ray source 11 in the Z direction, which is the X-ray irradiation direction. A space is provided between the X-ray source 11 and the first grid 13 so that the subject H can be arranged. The X-ray image detector 15 is, for example, a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit, and is arranged behind the second grid 14.
 第1のグリッド13は、正六角形のグリッド輪郭(外形)を有する複数の小グリッド13aを、支持基板13bの平面13c上に隙間なく敷詰めることにより構成されている。同様に、第2のグリッド14は、正六角形のグリッド輪郭を有する複数の小グリッド14aを、支持基板14bの平面14c上に隙間なく敷詰めることにより構成されている。 The first grid 13 is configured by laying a plurality of small grids 13a having a regular hexagonal grid outline (outer shape) on the flat surface 13c of the support substrate 13b without gaps. Similarly, the second grid 14 is configured by laying a plurality of small grids 14a having a regular hexagonal grid outline on the flat surface 14c of the support substrate 14b without gaps.
 以下、第1のグリッド13を例にして、グリッドの構成を説明する。なお、第2のグリッド14は、大きさが異なること以外は、第1のグリッド13と同一の構成である。そのため、第1のグリッド14についての詳しい説明は省略する。 Hereinafter, the configuration of the grid will be described using the first grid 13 as an example. The second grid 14 has the same configuration as the first grid 13 except that the size is different. Therefore, detailed description of the first grid 14 is omitted.
 図2及び図3において、小グリッド13aは、複数のX線吸収部20及び複数のX線透過部21からなるグリッド層22と、導電層23とを有する。X線吸収部20は、金(Au)、白金(Pt)等のX線吸収性を有する金属により形成されている。X線透過部21は、X線透過性を有する単結晶シリコンにより形成されている。導電層23は、クロム(Cr)等のX線吸収性を有する金属により形成されている。 2 and 3, the small grid 13 a includes a grid layer 22 including a plurality of X-ray absorption parts 20 and a plurality of X-ray transmission parts 21, and a conductive layer 23. The X-ray absorption unit 20 is formed of a metal having X-ray absorption such as gold (Au) or platinum (Pt). The X-ray transmission part 21 is made of single crystal silicon having X-ray transmission. The conductive layer 23 is formed of a metal having X-ray absorption such as chromium (Cr).
 X線吸収部20及びX線透過部21は、それぞれZ方向に直交するXY面内におけるY方向に延伸している。また、X線吸収部20及びX線透過部21は、X方向(Z方向及びY方向にほぼ直交する方向)に沿って交互に配列されており、縞状のパターンを構成している。 The X-ray absorption unit 20 and the X-ray transmission unit 21 extend in the Y direction in the XY plane orthogonal to the Z direction. Further, the X-ray absorption unit 20 and the X-ray transmission unit 21 are alternately arranged along the X direction (a direction substantially orthogonal to the Z direction and the Y direction) to form a striped pattern.
 小グリッド13aのグリッド輪郭は、同一の長さを有する第1~第6の辺24a~24fにより構成されている。X線吸収部20及びX線透過部21の延伸方向は、第2の辺24bと第5の24eに直交し、第1~第6の辺24a~24fのいずれにも平行でない。 The grid outline of the small grid 13a is composed of first to sixth sides 24a to 24f having the same length. The extending directions of the X-ray absorption unit 20 and the X-ray transmission unit 21 are orthogonal to the second side 24b and the fifth 24e, and are not parallel to any of the first to sixth sides 24a to 24f.
 X線吸収部20及びX線透過部21は、図1に示すように複数の小グリッド13aを隙間なく敷詰めた際に、隣接する小グリッド13a間を跨いで一直線に連続するように配置されている。 As shown in FIG. 1, the X-ray absorption unit 20 and the X-ray transmission unit 21 are arranged so as to be continuous in a straight line across adjacent small grids 13 a when a plurality of small grids 13 a are laid without gaps. ing.
 X線吸収部20のX方向の幅W及び配列ピッチPは、X線源11と第1のグリッド13との間の距離、第1のグリッド13と第2のグリッド14との距離、及び第1のグリッド14のX線吸収部の配列ピッチ等に応じて決定される。例えば、幅Wは、およそ2~20μmであり、配列ピッチPはその倍の4~40μm程度である。X線吸収部20のZ方向への厚みTは、X線源11から放射されるコーンビーム状のX線のケラレを考慮して、例えば100μm程度とされている。第1のグリッド13は、入射X線をほぼ幾何光学的に第2のグリッド14に投影する。 The width W 1 in the X direction and the arrangement pitch P 1 of the X-ray absorber 20 are the distance between the X-ray source 11 and the first grid 13, the distance between the first grid 13 and the second grid 14, And it is determined according to the arrangement pitch of the X-ray absorption parts of the first grid 14 or the like. For example, the width W 1 is about 2 to 20 μm, and the arrangement pitch P 1 is about 4 to 40 μm, which is twice as large. The thickness T 1 in the Z direction of the X-ray absorber 20 is set to, for example, about 100 μm in consideration of the vignetting of cone-beam X-rays emitted from the X-ray source 11. The first grid 13 projects incident X-rays onto the second grid 14 almost geometrically optically.
 次に、X線画像撮影システム10の作用について説明する。X線源11から放射されたX線は、被検体Hを通過する際に位相変化が生じる。このX線は、第1のグリッド13を通過することにより、被検体Hの屈折率と透過光路長とから決定される被検体Hの透過位相情報を反映した第1の周期パターン像となる。 Next, the operation of the X-ray imaging system 10 will be described. The X-ray radiated from the X-ray source 11 undergoes a phase change when passing through the subject H. The X-ray passes through the first grid 13 and becomes a first periodic pattern image reflecting the transmission phase information of the subject H determined from the refractive index of the subject H and the transmitted optical path length.
 第1の周期パターン像は、第2のグリッド14により部分的に遮蔽されることにより強度変調され、第2の周期パターン像となる。本実施形態では、縞走査法に従い、第1のグリッド13に対して第2のグリッド14を、所定の走査ピッチで間欠的に移動させながら、その各停止中にX線源11から被検体Hに向けてX線を放射してX線画像検出器15により第2の周期パターン像を撮影する。走査ピッチは、第1のグリッド14のX線吸収部のX方向への配列ピッチを等分割(例えば、5分割)した値である。 The first periodic pattern image is intensity-modulated by being partially shielded by the second grid 14 and becomes a second periodic pattern image. In the present embodiment, according to the fringe scanning method, the second grid 14 is intermittently moved with respect to the first grid 13 at a predetermined scanning pitch, and the subject H is moved from the X-ray source 11 during each stop. The X-ray image detector 15 radiates X-rays toward the center and captures a second periodic pattern image. The scanning pitch is a value obtained by equally dividing (for example, dividing into 5) the arrangement pitch in the X direction of the X-ray absorbing portion of the first grid 14.
 この縞走査の結果、X線画像検出器15により得られる各画素ごとの強度変調信号の位相ズレ量(被検体がある場合とない場合とでの位相のズレ量)を算出することにより位相微分画像が得られる。ここで、強度変調信号とは、第2のグリッド14の移動に対する画素値の強度変調を表す波形信号である。位相微分画像は、被検体で屈折したX線の角度分布に対応する。この位相微分画像をX方向に沿って積分することにより、位相コントラスト画像が得られる。 As a result of the fringe scanning, the phase differential of the intensity modulation signal for each pixel obtained by the X-ray image detector 15 is calculated by calculating the phase shift amount (phase shift amount with and without the subject). An image is obtained. Here, the intensity modulation signal is a waveform signal representing intensity modulation of the pixel value with respect to the movement of the second grid 14. The phase differential image corresponds to the angular distribution of X-rays refracted by the subject. By integrating this phase differential image along the X direction, a phase contrast image is obtained.
 次に、第1のグリッド13の製造方法について説明する。なお、第2のグリッド14は、第1のグリッド13と同様に製造されるので、詳しい説明は省略する。 Next, a method for manufacturing the first grid 13 will be described. In addition, since the 2nd grid 14 is manufactured similarly to the 1st grid 13, detailed description is abbreviate | omitted.
 図4(A)において、シリコンウェーハ30の下面に、導電層23が接合または蒸着される。シリコンウェーハ30は、通常の半導体プロセスで用いられるほぼ円形の単結晶シリコンウェーハである。導電層23は、クロム等の導電性材料により形成される。この導電性材料としては、シリコンウェーハ30との熱膨張係数差が小さいものが好ましく、コバールやインバー等を用いてもよい。なお、シリコンウェーハ30に導電層23を接合する場合には、熱と圧力をかけながら行う拡散接合や、高真空中で表面を活性化させて接合する常温接合が用いられる。 4A, a conductive layer 23 is bonded or deposited on the lower surface of the silicon wafer 30. In FIG. The silicon wafer 30 is a substantially circular single crystal silicon wafer used in a normal semiconductor process. The conductive layer 23 is formed of a conductive material such as chromium. As this conductive material, a material having a small difference in thermal expansion coefficient from the silicon wafer 30 is preferable, and Kovar, Invar, or the like may be used. In addition, when bonding the conductive layer 23 to the silicon wafer 30, diffusion bonding performed while applying heat and pressure, or room temperature bonding in which the surfaces are activated in a high vacuum is used.
 図4(B)において、シリコンウェーハ30の上面に、レジスト層31が形成される。レジスト層31は、例えば、液状レジストをスピンコート等の塗布方法によってシリコンウェーハ30に塗布する塗布工程と、塗布された液状レジストから有機溶剤を蒸発させるプリベーク工程等を経て形成される。 In FIG. 4B, a resist layer 31 is formed on the upper surface of the silicon wafer 30. The resist layer 31 is formed through, for example, a coating process in which a liquid resist is applied to the silicon wafer 30 by a coating method such as spin coating, a pre-baking process in which an organic solvent is evaporated from the applied liquid resist, and the like.
 図4(C)において、X方向に配列ピッチPのラインパターンを有する縞模様の露光マスク32がレジスト層31の上方に配置され、露光マスク32を介して、紫外線等の光がレジスト層31に照射される。この露光後、図4(D)において、現像処理が行われ、レジスト層31の露光部分が除去される。これにより、シリコンウェーハ30には、Y方向に延伸され、かつX方向に沿って配列された複数のラインパターンを有する縞模様のエッチングマスク33が形成される。なお、上記レジスト層31は、ポジ型レジストであるが、これに代えて、ネガ型レジストを用いてもよい。 In FIG. 4C, a striped exposure mask 32 having a line pattern with an arrangement pitch P 1 in the X direction is disposed above the resist layer 31, and light such as ultraviolet rays is transmitted through the exposure mask 32 through the resist layer 31. Is irradiated. After this exposure, development processing is performed in FIG. 4D, and the exposed portion of the resist layer 31 is removed. As a result, a striped etching mask 33 having a plurality of line patterns extending in the Y direction and arranged along the X direction is formed on the silicon wafer 30. The resist layer 31 is a positive resist, but a negative resist may be used instead.
 図4(E)において、エッチングマスク33を介してドライエッチングが行われ、シリコンウェーハ30に、Y方向に延伸され、かつX方向に沿って配列された複数の溝34が形成される。このドライエッチングとしては、アスペクト比の高い溝34の形成が可能な深堀用ドライエッチングであるボッシュプロセスが用いられる。なお、ボッシュプロセスに代えて、クライオプロセスを用いてもよい。 4E, dry etching is performed through the etching mask 33, and a plurality of grooves 34 extending in the Y direction and arranged along the X direction are formed in the silicon wafer 30. As this dry etching, a Bosch process, which is a deep trench dry etching capable of forming a groove 34 having a high aspect ratio, is used. Note that a cryo process may be used instead of the Bosch process.
 図4(F)において、導電層23をシーズ層として、電解メッキ法により溝34内に金(Au)等のX線吸収材35が埋め込まれる。この電解メッキ法では、シリコンウェーハ30と導電層23とにより形成された接合基板が、メッキ液中に浸漬され、この接合基板と対向させた位置にもう一方の電極(陽極)が配置される。そして、導電層23と他方の電極との間に電流が流されることにより、メッキ溶液中の金属イオンがパターン加工した基板に析出され、溝34内にX線吸収材35が埋め込まれる。 4 (F), an X-ray absorber 35 such as gold (Au) is embedded in the groove 34 by electrolytic plating using the conductive layer 23 as a seed layer. In this electrolytic plating method, a bonding substrate formed by the silicon wafer 30 and the conductive layer 23 is immersed in a plating solution, and the other electrode (anode) is disposed at a position facing the bonding substrate. When a current is passed between the conductive layer 23 and the other electrode, metal ions in the plating solution are deposited on the patterned substrate, and the X-ray absorber 35 is embedded in the groove 34.
 図4(G)において、アッシング等により、シリコンウェーハ30上からエッチングマスク33が除去される。これにより、小グリッド13aのグリッド構造が完成する。ここで、X線吸収材35がX線吸収部20に対応し、X線吸収材35に隣接するシリコンウェーハ30の部分がX線透過部21に対応する。なお、この後、シリコンウェーハ30から導電層23を除去してもよい。 4G, the etching mask 33 is removed from the silicon wafer 30 by ashing or the like. Thereby, the grid structure of the small grid 13a is completed. Here, the X-ray absorber 35 corresponds to the X-ray absorber 20, and the portion of the silicon wafer 30 adjacent to the X-ray absorber 35 corresponds to the X-ray transmitter 21. Thereafter, the conductive layer 23 may be removed from the silicon wafer 30.
 以上の工程により、図5に示すように、シリコンウェーハ30には、小グリッド13aが形成される。そして、一般的な半導体プロセスで使用されるダイシング装置(図示せず)を用いて、シリコンウェーハ30から小グリッド13aが切り出される。このとき、小グリッド13aの正六角形のグリッド輪郭を一辺ずつ形成するように、シリコンウェーハ30を60度ずつ回転させながら切断を行うことにより、X線吸収部20の延伸方向に非平行の第1~第6の辺24a~24fが形成される。 Through the above steps, the small grid 13a is formed on the silicon wafer 30 as shown in FIG. And the small grid 13a is cut out from the silicon wafer 30 using the dicing apparatus (not shown) used with a general semiconductor process. At this time, by cutting while rotating the silicon wafer 30 by 60 degrees so as to form regular hexagonal grid outlines of the small grid 13a one by one, the first non-parallel to the extending direction of the X-ray absorbing unit 20 is performed. To sixth sides 24a to 24f are formed.
 このシリコンウェーハ30の切断工程では、第1~第6の辺24a~24fのいずれの辺を形成する際にも、X線吸収部20の延伸方向に沿った切断は行なわれない。このため、割れ等の不良が生じにくく、耐久性の高い小グリッド13aが製造される。また、小グリッド13aのグリッド輪郭が正六角形であるため、従来のような矩形状の小グリッドを製造する場合と比べて、シリコンウェーハ30から切り捨てられる部分が少なく、生産性が高い。 In the cutting process of the silicon wafer 30, the X-ray absorber 20 is not cut along the extending direction when any one of the first to sixth sides 24a to 24f is formed. For this reason, defects, such as a crack, are hard to produce and the small grid 13a with high durability is manufactured. Moreover, since the grid outline of the small grid 13a is a regular hexagon, compared with the case where the conventional rectangular small grid is manufactured, there are few parts cut off from the silicon wafer 30, and productivity is high.
 上記小グリッド13aの製造工程が複数回、繰り返しまたは並行して行なわれることにより、複数の小グリッド13aが形成される。そして、ガラス等により形成された支持基板13bの平面13c上に複数の小グリッド13aが隙間なく敷詰められることにより、第1のグリッド13が完成する。 The manufacturing process of the small grid 13a is repeated a plurality of times or in parallel to form a plurality of small grids 13a. Then, a plurality of small grids 13a are laid without gaps on the flat surface 13c of the support substrate 13b formed of glass or the like, whereby the first grid 13 is completed.
 なお、小グリッド13aと支持基板13bとの接合は、接着剤等により行なわれる。また、隣接する小グリッド13a同士の位置合わせは、各辺と、X線吸収部20及びX線透過部21との位置を基準として行なわれる。さらに精度よく位置合わせを行うために、支持基板13bの平面13c上に、小グリッド13aを位置合わせするためのアライメントマーク(図示せず)を設けてもよい。 Note that the small grid 13a and the support substrate 13b are joined by an adhesive or the like. Further, the alignment of the adjacent small grids 13a is performed with reference to the positions of the sides and the X-ray absorbing unit 20 and the X-ray transmitting unit 21. In order to perform alignment with higher accuracy, an alignment mark (not shown) for aligning the small grid 13a may be provided on the flat surface 13c of the support substrate 13b.
 以上のように、本実施形態では、正六角形のグリッド輪郭を有する小グリッド13aを隙間なく敷詰めることにより第1のグリッド13を構成し、正六角形のグリッド輪郭を有する小グリッド13bを隙間なく敷詰めることにより第2のグリッド14を構成している。このため、第1及び第2のグリッド13,14は生産性が高い。また、隣接する小グリッド13a間の境界線、及び隣接する小グリッド14a間の境界線はそれぞれ直線状に並んでいないため、第1及び第2のグリッド13,14はそれぞれ折れ曲がり難く、外力に対する耐久性が高い。 As described above, in the present embodiment, the first grid 13 is configured by laying the small grids 13a having the regular hexagonal grid outline without gaps, and the small grids 13b having the regular hexagonal grid outlines are laid without gaps. The second grid 14 is configured by packing. For this reason, the first and second grids 13 and 14 have high productivity. In addition, since the boundary line between the adjacent small grids 13a and the boundary line between the adjacent small grids 14a are not arranged in a straight line, the first and second grids 13 and 14 are not easily bent, and are resistant to external forces. High nature.
 また、小グリッド13a,14aのグリッド輪郭を構成するいずれかの辺がX線吸収部20の延伸方向と平行である場合には、該辺が格子線のように作用して位相コントラスト画像にアーチファクトが生じる可能性があるが、本実施形態では、小グリッド13a,14aのいずれの辺もX線吸収部20の延伸方向と平行でないため、アーチファクトの発生は低減される。 In addition, when any of the sides constituting the grid outline of the small grids 13a and 14a is parallel to the extending direction of the X-ray absorbing unit 20, the side acts like a grid line and an artifact is generated in the phase contrast image. However, in this embodiment, since neither side of the small grids 13a and 14a is parallel to the extending direction of the X-ray absorber 20, the occurrence of artifacts is reduced.
 以下では、本発明のその他の実施形態について説明する。なお、以下の各実施形態では、既に説明済みの実施形態と同じ構成については、同符号を用いて詳しい説明は省略する。また、以下の各実施形態においても、第2のグリッドは、X線吸収部及びX線透過部の配列ピッチ及び厚さ等が異なる以外は、第1のグリッドと同様の構成及び製造方法を用いるため、詳しい説明は省略する。 Hereinafter, other embodiments of the present invention will be described. In the following embodiments, the same reference numerals are used for the same configurations as those already described, and detailed description thereof is omitted. Also in each of the following embodiments, the second grid uses the same configuration and manufacturing method as the first grid, except that the arrangement pitch and thickness of the X-ray absorption part and the X-ray transmission part are different. Therefore, detailed description is omitted.
[第2実施形態]
 第1実施形態では、第1及び第2のグリッドを、平板状の支持基板に複数の小グリッドを配置することにより構成しているが、凹面状の支持基板に小グリッドを配置することにより構成してもよい。
[Second Embodiment]
In the first embodiment, the first and second grids are configured by disposing a plurality of small grids on a flat support substrate, but are configured by disposing the small grids on a concave support substrate. May be.
 図6において、第1のグリッド40は、凹面41aを有する支持基板41と、複数の小グリッド42とを有する。複数の小グリッド42は、凹面41a上に隙間なく敷詰められている。小グリッド42は、第1実施形態の小グリッド13aと同一構成であり、正六角形のグリッド輪郭を有する。支持基板41の凹面41aの形状は、X線源11の焦点を中心とした球面に沿った形状であり、X線源11から放射されたX線がほぼ垂直に入射する。 6, the first grid 40 includes a support substrate 41 having a concave surface 41 a and a plurality of small grids 42. The plurality of small grids 42 are laid without any gaps on the concave surface 41a. The small grid 42 has the same configuration as the small grid 13a of the first embodiment and has a regular hexagonal grid outline. The shape of the concave surface 41a of the support substrate 41 is a shape along a spherical surface centered on the focal point of the X-ray source 11, and the X-rays radiated from the X-ray source 11 are incident substantially perpendicularly.
[その他の実施形態]
 上記各実施形態では、小グリッドのグリッド輪郭を正六角形としているが、その他の正多角形や、正多角形以外の多角形としてもよい。なお、小グリッドの各辺とX線吸収部の延伸方向とのなす角は、少なくとも3°以上であることが好ましい。以下に、小グリッドの変形例を示す。
[Other Embodiments]
In each of the above embodiments, the grid outline of the small grid is a regular hexagon, but may be another regular polygon or a polygon other than a regular polygon. The angle formed between each side of the small grid and the extending direction of the X-ray absorption part is preferably at least 3 °. Below, the modification of a small grid is shown.
 図7において、小グリッド50のグリッド輪郭は正四角形であり、第1~第4の辺51a~51dを有する。X線吸収部52及びX線透過部53は、それぞれY方向に延伸されるとともに、X方向に沿って交互に配置されている。X線吸収部52及びX線透過部53の延伸方向は、第1~第4の辺51a~51dのいずれにも平行でない。 In FIG. 7, the grid outline of the small grid 50 is a regular square and has first to fourth sides 51a to 51d. The X-ray absorption parts 52 and the X-ray transmission parts 53 are each extended in the Y direction and alternately arranged along the X direction. The extending directions of the X-ray absorption part 52 and the X-ray transmission part 53 are not parallel to any of the first to fourth sides 51a to 51d.
 図8において、小グリッド60のグリッド輪郭は正三角形であり、第1~第3の辺61a~61cを有する。X線吸収部62及びX線透過部63は、それぞれY方向に延伸されるとともに、X方向に沿って交互に配置されている。X線吸収部62及びX線透過部63の延伸方向は、第1~第3の辺61a~61cのいずれにも平行でない。 In FIG. 8, the grid outline of the small grid 60 is an equilateral triangle, and has first to third sides 61a to 61c. The X-ray absorption unit 62 and the X-ray transmission unit 63 are each extended in the Y direction and alternately arranged along the X direction. The extending directions of the X-ray absorption part 62 and the X-ray transmission part 63 are not parallel to any of the first to third sides 61a to 61c.
 また、上記各実施形態では、複数の小グリッドを隙間なく敷詰めることにより大型のグリッドを構成しているが、第1及び第2のグリッドのいずれかまたは両方を、1つの小グリッドで構成してもよい。 In each of the above embodiments, a large grid is configured by laying a plurality of small grids without gaps, but either one or both of the first and second grids are configured by a single small grid. May be.
 また、上記各実施形態では、X線源11とX線画像検出器15との間に、第1及び第2のグリッド13,14のみを設けているが、さらに、X線源11と第1のグリッド13との間に、WO2006/131235号公報(米国特許第7889838号明細書)等に記された周知の線源グリッド(マルチスリット)を設けてもよい。この場合には、線源グリッドに本発明を適用することも可能である。 In each of the above embodiments, only the first and second grids 13 and 14 are provided between the X-ray source 11 and the X-ray image detector 15. A well-known radiation source grid (multi-slit) described in WO 2006/131235 (US Pat. No. 7,898,838) or the like may be provided between the grid 13 and the grid 13. In this case, the present invention can be applied to the source grid.
 また、上記各実施形態は、第1のグリッドは、そのX線透過部を通過したX線を幾何光学的に投影しているが、特許第4445397号公報(米国特許第7180979号明細書)等に記載のように、X線透過部でX線を回折することによりタルボ効果が生じる構成としてもよい。ただし、この場合には、第1及び第2のグリッドの間の距離をタルボ距離に設定する必要がある。また、この場合には、第1のグリッドは、吸収型グリッドに代えて位相型グリッドとすることが可能である。 In each of the above-described embodiments, the first grid projects geometrically optically the X-rays that have passed through the X-ray transmission part. However, Japanese Patent No. 4445397 (US Pat. No. 7,180,796) and the like As described above, the Talbot effect may be generated by diffracting X-rays at the X-ray transmission part. However, in this case, it is necessary to set the distance between the first and second grids to the Talbot distance. In this case, the first grid can be a phase grid instead of the absorption grid.
 また、上記各実施形態では、第1及び第2のグリッドの相対位置を変化させて複数回の撮影を行うことにより位相コントラスト画像を生成する例を示しているが、第1及び第2のグリッドを固定したまま1回の撮影を行うことにより位相コントラスト画像を生成することも可能である。 In each of the above-described embodiments, an example is shown in which the phase contrast image is generated by changing the relative positions of the first and second grids and performing imaging a plurality of times. However, the first and second grids are illustrated. It is also possible to generate a phase-contrast image by performing one-time shooting while fixing.
 例えば、国際公開WO2010/050483号公報(米国特許8009797号明細書)に記載のX線画像撮影システムでは、第1及び第2のグリッドを固定したまま1回の撮影を行うことによりX線画像検出器で画像データを生成し、この画像データ中のモアレ縞の強度分布をフーリエ変換することによって空間周波数スペクトルを取得し、この空間周波数スペクトルからキャリア周波数に対応したスペクトルを分離して逆フーリエ変換を行うことにより位相微分画像を生成している。このようなX線画像撮影システムにも、本発明のグリッドは好適である。 For example, in the X-ray imaging system described in International Publication No. WO2010 / 05083 (US Pat. No. 8,0097,979), X-ray image detection is performed by performing one imaging while the first and second grids are fixed. A spatial frequency spectrum is obtained by generating image data with a filter and Fourier transforming the intensity distribution of moire fringes in this image data, and separating the spectrum corresponding to the carrier frequency from this spatial frequency spectrum and performing an inverse Fourier transform. By doing so, a phase differential image is generated. The grid of the present invention is also suitable for such an X-ray imaging system.
 さらに、上記各実施形態では、被検体HをX線源と第1のグリッドとの間に配置しているが、被検体Hを第1のグリッドと第2のグリッドとの間に配置してもよい。この場合にも同様に位相微分画像及び位相コントラスト画像の生成が可能である。 Further, in each of the above embodiments, the subject H is arranged between the X-ray source and the first grid, but the subject H is arranged between the first grid and the second grid. Also good. In this case as well, a phase differential image and a phase contrast image can be similarly generated.
 上記各実施形態は、矛盾しない範囲で相互に組み合わせてもよい。本発明は、医療診断用の放射線画像撮影システムのほか、工業用や、非破壊検査等のその他の放射線撮影システムに適用可能である。また、本発明は、X線撮影において散乱線を除去する散乱線除去用グリッドにも適用可能である。さらに、本発明は、放射線として、X線以外にガンマ線等を用いる放射線画像撮影システムにも適用可能である。 The above embodiments may be combined with each other within a consistent range. The present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection. The present invention is also applicable to a scattered radiation removal grid that removes scattered radiation in X-ray imaging. Furthermore, the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like as X-rays as radiation.
 10 X線画像撮影システム
 13 第1のグリッド
 13a 小グリッド
 13b 支持基板
 13c 平面
 14 第2のグリッド
 14a 小グリッド
 14b 支持基板
 14c 平面
 20 X線吸収部
 21 X線透過部
 24a~24f 第1~第6の辺
 30 シリコンウェーハ
DESCRIPTION OF SYMBOLS 10 X-ray imaging system 13 1st grid 13a Small grid 13b Support substrate 13c Plane 14 2nd grid 14a Small grid 14b Support substrate 14c Plane 20 X-ray absorption part 21 X-ray transmission part 24a-24f 1st-6th Side 30 Silicon wafer

Claims (6)

  1.  一方向に延伸した複数の放射線吸収部と、
     前記一方向に延伸し、前記一方向とほぼ直交する方向に前記放射線吸収部と交互に配置された複数の放射線透過部と、
     前記一方向と非平行の複数の辺により構成されたグリッド輪郭と、
     を備えることを特徴とする放射線画像撮影用グリッド。
    A plurality of radiation absorbing portions extending in one direction;
    A plurality of radiation transmitting portions extending in the one direction and alternately arranged with the radiation absorbing portion in a direction substantially orthogonal to the one direction;
    A grid contour composed of a plurality of sides non-parallel to the one direction;
    A grid for radiographic imaging, comprising:
  2.  複数の小グリッドを隙間なく敷詰めることにより構成された放射線画像撮影用グリッドであって、前記各小グリッドは、
     前記一方向に延伸し、前記一方向とほぼ直交する方向に前記放射線吸収部と交互に配置された複数の放射線透過部と、
     前記一方向と非平行の複数の辺により構成されたグリッド輪郭と、
     を備えることを特徴とする放射線画像撮影用グリッド。
    A radiographic imaging grid configured by laying a plurality of small grids without gaps, each of the small grids,
    A plurality of radiation transmitting portions extending in the one direction and alternately arranged with the radiation absorbing portion in a direction substantially orthogonal to the one direction;
    A grid contour composed of a plurality of sides non-parallel to the one direction;
    A grid for radiographic imaging, comprising:
  3.  前記グリッド輪郭は、正六角形、正四角形、正三角形のうちのいずれかであることを特徴とする請求の範囲第2項に記載の放射線画像撮影用グリッド。 3. The radiographic imaging grid according to claim 2, wherein the grid outline is one of a regular hexagon, a regular square, and a regular triangle.
  4.  前記複数の小グリッドを支持する支持基板を備えることを特徴とする請求の範囲第2項に記載の放射線画像撮影用グリッド。 The radiographic imaging grid according to claim 2, further comprising a support substrate that supports the plurality of small grids.
  5.  前記支持基板の前記複数の小グリッドを支持する面は、平面または凹面であることを特徴とする請求の範囲第4項に記載の放射線画像撮影用グリッド。 The radiographic imaging grid according to claim 4, wherein a surface of the support substrate that supports the plurality of small grids is a flat surface or a concave surface.
  6.  放射線源と、前記放射線源から放射された放射線を通過させて第1の周期パターン像を生成する第1のグリッドと、前記第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2のグリッドと、前記第2の周期パターン像を検出する放射線画像検出器とを備える放射線画像撮影システムにおいて、
     前記第1及び第2のグリッドの少なくとも一方は、複数の小グリッドを隙間なく敷詰めることにより構成され、前記各小グリッドは、
    (A) 一方向に延伸した複数の放射線吸収部と、
    (B) 前記一方向に延伸し、前記一方向とほぼ直交する方向に前記放射線吸収部と交互に配置された複数の放射線透過部と、
    (C) 前記一方向と非平行の複数の辺により構成されたグリッド輪郭と、
     を有することを特徴とする放射線画像撮影システム。
    A radiation source, a first grid for generating a first periodic pattern image by passing radiation emitted from the radiation source, and a second periodic pattern by partially shielding the first periodic pattern image In a radiographic imaging system comprising a second grid for generating an image and a radiographic image detector for detecting the second periodic pattern image,
    At least one of the first and second grids is configured by laying a plurality of small grids without gaps,
    (A) a plurality of radiation absorbing portions extending in one direction;
    (B) a plurality of radiation transmitting portions extending in the one direction and alternately arranged with the radiation absorbing portion in a direction substantially orthogonal to the one direction;
    (C) a grid contour constituted by a plurality of sides non-parallel to the one direction;
    A radiographic imaging system comprising:
PCT/JP2011/077178 2010-12-14 2011-11-25 Grids for radiography and radiography system WO2012081376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-277950 2010-12-14
JP2010277950A JP2014039569A (en) 2010-12-14 2010-12-14 Grid for capturing radiation image and radiographic image capturing apparatus

Publications (1)

Publication Number Publication Date
WO2012081376A1 true WO2012081376A1 (en) 2012-06-21

Family

ID=46244489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077178 WO2012081376A1 (en) 2010-12-14 2011-11-25 Grids for radiography and radiography system

Country Status (2)

Country Link
JP (1) JP2014039569A (en)
WO (1) WO2012081376A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111839558A (en) * 2019-04-24 2020-10-30 株式会社岛津制作所 X-ray phase imaging device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219178B2 (en) * 2014-03-21 2015-12-22 Kabushiki Kaisha Toshiba Method to fabricate collimator structures on a direct conversion semiconductor X-ray detector
JP2015203571A (en) * 2014-04-10 2015-11-16 株式会社フジキン Manufacturing method of grid for scattered x-ray removal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845584A (en) * 1981-09-11 1983-03-16 Hitachi Cable Ltd Honeycomb structure material for collimator
JPH04500276A (en) * 1989-05-30 1992-01-16 イーストマン・コダツク・カンパニー X-ray grid for medical X-ray photography and method of its manufacture and use
JP2002529712A (en) * 1998-10-29 2002-09-10 ディレクト レディオグラフィ コーポレーション Anti-scatter radiation grid with detectors for detectors
JP2004516124A (en) * 2000-12-27 2004-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray inspection equipment
WO2007125833A1 (en) * 2006-04-24 2007-11-08 The University Of Tokyo X-ray image picking-up device and x-ray image picking-up method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845584A (en) * 1981-09-11 1983-03-16 Hitachi Cable Ltd Honeycomb structure material for collimator
JPH04500276A (en) * 1989-05-30 1992-01-16 イーストマン・コダツク・カンパニー X-ray grid for medical X-ray photography and method of its manufacture and use
JP2002529712A (en) * 1998-10-29 2002-09-10 ディレクト レディオグラフィ コーポレーション Anti-scatter radiation grid with detectors for detectors
JP2004516124A (en) * 2000-12-27 2004-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray inspection equipment
WO2007125833A1 (en) * 2006-04-24 2007-11-08 The University Of Tokyo X-ray image picking-up device and x-ray image picking-up method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111839558A (en) * 2019-04-24 2020-10-30 株式会社岛津制作所 X-ray phase imaging device
US11311260B2 (en) * 2019-04-24 2022-04-26 Shimadzu Corporation X-ray phase imaging apparatus

Also Published As

Publication number Publication date
JP2014039569A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5660910B2 (en) Method for manufacturing grid for radiographic imaging
JP5451150B2 (en) X-ray source grating and X-ray phase contrast image imaging apparatus
RU2562879C2 (en) Phase-contrast imaging device, having x-ray detector movable element, and corresponding method
US20120201349A1 (en) Grid for use in radiation imaging and grid producing method, and radiation imaging system
JP2012013530A (en) Diffraction grating, method for manufacturing the same, and radiographic device
JP2012045099A (en) Grid for capturing radiation image, method for manufacturing the same, and radiation image capturing system
JP2008197593A (en) Transmission type diffraction grating for x-ray, x-ray talbot interferometer and x-ray imaging apparatus
US20120148029A1 (en) Grid for use in radiation imaging, method for producing the same, and radiation imaging system
JP2012022239A (en) Diffraction grating, manufacturing method thereof, and radiographic apparatus
WO2012081376A1 (en) Grids for radiography and radiography system
JP6365299B2 (en) Diffraction grating, diffraction grating manufacturing method, grating unit, and X-ray imaging apparatus
JP2012093429A (en) Grid for radiation imaging, method of manufacturing the same, and radiation imaging system
JP5204880B2 (en) Radiation imaging grid, manufacturing method thereof, and radiation imaging system
JP6566839B2 (en) X-ray Talbot interferometer and Talbot interferometer system
WO2012053342A1 (en) Grid for radiation imaging, method for manufacturing same, and radiation imaging system
JP2012149982A (en) Lattice unit for radiological imaging, radiological imaging system and manufacturing method for lattice body
JP2012122840A (en) Grid for photographing radiation image, method for manufacturing the same, and radiation image photographing system
WO2013099652A1 (en) Radiography grid, method for producing same, and radiography system
EP3538879B1 (en) Grating-based phase contrast imaging
US20160256122A1 (en) Imaging System and Imaging Method
JP2012249847A (en) Grid for photographing radiation image, method for manufacturing the same, and system for photographing radiation image
JP2012068225A (en) Grid for capturing radiation image and manufacturing method thereof
JP2012132793A (en) Grid for taking radiation image, manufacturing method for the same and radiation image taking system
WO2012053368A1 (en) Grid for radiation imaging, method for manufacturing same, and radiation imaging system
JP2010099287A (en) Phase grating used for x-ray phase imaging, method of manufacturing the same, imaging apparatus of x-ray phase contrast image using the phase grating, and x-ray computer tomography system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP