WO2013099652A1 - Radiography grid, method for producing same, and radiography system - Google Patents

Radiography grid, method for producing same, and radiography system Download PDF

Info

Publication number
WO2013099652A1
WO2013099652A1 PCT/JP2012/082463 JP2012082463W WO2013099652A1 WO 2013099652 A1 WO2013099652 A1 WO 2013099652A1 JP 2012082463 W JP2012082463 W JP 2012082463W WO 2013099652 A1 WO2013099652 A1 WO 2013099652A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
grid
small
groove
radiation
Prior art date
Application number
PCT/JP2012/082463
Other languages
French (fr)
Japanese (ja)
Inventor
金子 泰久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013099652A1 publication Critical patent/WO2013099652A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1648Ancillary equipment for scintillation cameras, e.g. reference markers, devices for removing motion artifacts, calibration devices

Definitions

  • the present invention relates to a grid used for radiographic imaging, a manufacturing method thereof, and a radiographic imaging system using the grid.
  • phase contrast image a high-contrast image
  • An X-ray imaging system for imaging a phase contrast image includes an X-ray source that irradiates X-rays, first and second grids, and a radiation image detector. A subject is placed between the X-ray source and the first grid, and while the first grid is moved intermittently, a plurality of fringe images whose intensity is modulated by superimposing the self-image of the first grid and the second grid are taken. Then, a phase contrast image is acquired based on a change caused by the subject superimposed on these fringe images.
  • This X-ray image capturing method is called a fringe scanning method.
  • the X-ray source emits X-rays that spread like a cone beam
  • vignetting of X-rays occurs at the periphery of the grid when a flat grid is used.
  • the grid is formed using, for example, a silicon wafer.
  • Japanese Patent Application Laid-Open No. 2007-203061 (corresponding to US Pat. No. 7,522,698), a plurality of flat small grids are arranged on the concave surface to locally form a flat plate.
  • a grid having a curved shape as a whole is disclosed.
  • Japanese Patent Laid-Open No. 2010-063646 (corresponding US Pat. No. 8,139,711) describes forming a grid on a flexible substrate and then bending the flexible substrate into a cylindrical surface. Has been.
  • Japanese Patent Application Laid-Open No. 2007-203061 when a small grid is arranged on a non-planar surface in accordance with the spread of X-rays, it is necessary to align the arrangement and inclination of each small grid with high accuracy. .
  • Japanese Patent Laid-Open No. 2007-203061 does not disclose a specific method for aligning each small grid with high accuracy when the small grids are arranged on a non-planar surface. For this reason, it is difficult to arrange the small grid in a cylindrical surface or a spherical surface with high accuracy to the extent that it can be used for actual photographing.
  • the flexible substrate has a large coefficient of thermal expansion and is easily deformed, as described in JP 2010-063646 A, when a grid is formed on the flexible substrate, the grid expands due to the thermal expansion of the flexible substrate. There is a problem that the accuracy of itself deteriorates.
  • Japanese Patent Application Laid-Open No. 2007-203061 and Japanese Patent Application Laid-Open No. 2010-063646 are combined, it is conceivable that a small grid is attached on the flexible substrate to curve the flexible substrate.
  • an alignment mark is provided as a guideline for placing a small grid on the flexible board, and the small grid is placed in accordance with the alignment mark.
  • the interval between the alignment marks is easily changed, it is difficult to form the alignment marks with high accuracy. Therefore, when a small grid is arranged on a flexible substrate, it is necessary to use an alignment mark with low accuracy as a reference, so that there remains a problem that it is difficult to arrange with high accuracy.
  • An object of the present invention is to provide a grid in which small grids are arranged with high accuracy on a curved surface, a manufacturing method thereof, and a radiographic imaging system.
  • the radiation image capturing grid of the present invention includes a plurality of small grids and a support substrate.
  • Each small grid includes a flat base substrate and a grid portion that is formed on the base substrate and generates a fringe image by partially transmitting the radiation emitted from the focal point of the radiation source.
  • the support substrate is formed by bonding a flexible first substrate and a second substrate having a smaller coefficient of thermal expansion than the first substrate.
  • the small grids are arranged in a predetermined arrangement on the second substrate according to the alignment marks provided on the second substrate. After arranging the small grids on the second substrate according to the alignment marks, the support substrate is curved so that the grid portion of each small grid faces the focal point of the radiation source.
  • the second substrate is a glass substrate and is divided according to the arrangement of the small grids as the support substrate is curved.
  • the section of the second substrate after the division and the laminated body of each small grid are integrally held by the curved first substrate.
  • a groove for specifying a bent position of the support substrate is provided on the surface of the second substrate.
  • the grooves are formed in a perforation along the surface of the second substrate.
  • the groove is obtained by partially cutting the second substrate in the thickness direction.
  • the groove may be formed by cutting the second substrate in the thickness direction.
  • a shape memory material can be used for the first substrate.
  • the small grid is, for example, an absorption grid having a grid portion formed by alternately arranging a radiation absorbing portion and a radiation transmitting portion. Further, the small grid may be a phase type grid having a grid portion formed by alternately arranging two kinds of members having radiation transparency.
  • the method for manufacturing a radiographic imaging grid includes a small grid manufacturing process, a support substrate forming process, a small grid attaching process, and a bending process.
  • the small grid forming step includes a plurality of small grids each having a flat base substrate and a grid portion that is formed on the base substrate and generates a fringe image by partially transmitting the radiation irradiated from the focal point of the radiation source.
  • a first substrate having a parallel plate shape and a second substrate having a parallel plate shape having a thermal expansion coefficient smaller than that of the first substrate are bonded together to form a support substrate.
  • the small grids are attached to the second substrate in a predetermined arrangement according to the alignment mark provided on the second substrate.
  • the support substrate to which the small grid is attached is bent so that the grid portion of each small grid faces the focal point of the radiation source.
  • a groove forming step of providing a groove for specifying the bent position of the support substrate on the second substrate is preferable to provide.
  • a low-rigidity treatment step for forming a low-rigidity portion having low rigidity on the first substrate.
  • the radiographic imaging system has a first grid, a second grid, and a radiographic image detector.
  • the first grid transmits a radiation emitted from the radiation source to generate a fringe image.
  • the second grid applies intensity modulation to the fringe image.
  • the radiation image detector detects a fringe image whose intensity is modulated by the second grid. Then, a phase contrast image is generated from the fringe image detected by the radiation image detector.
  • at least one of the first grid and the second grid includes a plurality of small grids and a support substrate.
  • the small grid includes a flat base substrate and a grid portion that is formed on the base substrate and generates a fringe image by partially transmitting the radiation irradiated from the focal point of the radiation source.
  • the support substrate is formed by bonding a flexible first substrate and a second substrate having a smaller coefficient of thermal expansion than the first substrate.
  • the support substrate is curved so that the grid portions of each small grid face the focal point of the radiation source after the small grids are arranged in a predetermined arrangement according to the alignment marks provided on the second substrate.
  • a radiation source grid may be further provided that is disposed between the radiation source and the first grid and forms radiation on a large number of lines by selectively shielding the radiation irradiated from the radiation source.
  • the radiation source grid preferably includes the plurality of small grids and a support substrate described above.
  • the present invention provides a support substrate after accurately arranging a small grid on a support substrate formed by bonding a flexible first substrate and a second substrate having a smaller coefficient of thermal expansion than the first substrate. And the small grid is aimed at the focal point of the radiation source. Thereby, this invention can arrange
  • FIG. 3 is a cross-sectional view of a second grid taken along line III-III in FIG. 2. It is sectional drawing which shows the structure of a small grid. It is sectional drawing which shows the process of joining an X-ray transparent board
  • the X-ray imaging system 10 includes an X-ray source 11, a source grid 12, a first grid 13, a second grid 14, and an X-ray along the Z direction that is an X-ray irradiation direction.
  • An image detector 15 is arranged.
  • the X-ray source 11 has a rotating anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and emits X-rays to the subject H.
  • the radiation source grid 12, the first grid 13, and the second grid 14 are absorption grids that absorb X-rays, and are disposed to face the X-ray source 11 in the Z direction.
  • the source grid 12, the first grid 13, and the second grid 14 are all provided with lattice lines along the X direction, and the X-rays emitted from the X-ray source 11 diffuse in a cone beam shape.
  • the cylindrical surface is curved in the Y direction.
  • the distance between the first grid 13 and the second grid 14 is not more than the minimum Talbot distance.
  • the X-ray image detector 15 is a flat panel detector using a semiconductor circuit, and is disposed behind the second grid 14.
  • X-rays radiated from the X-ray source 11 are partially shielded by the X-ray absorption part of the source grid 12, thereby reducing the effective focal size in the Y direction, and arranging many in the Y direction.
  • a line-shaped X-ray is formed.
  • the phase of each line-shaped X-ray changes when passing through the subject H.
  • a fringe image reflecting the transmission phase information of the subject H determined from the refractive index of the subject H and the transmitted optical path length is formed.
  • the striped image generated by each line-shaped X-ray is projected onto the second grid 14 and overlaps at the position of the second grid 14.
  • the stripe image is intensity-modulated by being partially shielded by the second grid 14.
  • the fringe scanning method is used to intermittently move the second grid 14 with respect to the first grid 13, and X-rays are irradiated from the X-ray source 11 to the subject H while the X-ray source 11 is stopped. Photographing is performed by the line image detector 15. This intermittent movement is performed in the Y direction at a constant scanning pitch obtained by equally dividing the lattice pitch (for example, divided into five pieces).
  • phase differential image corresponds to the distribution of the X-ray refraction angle in the subject H.
  • the second grid 14 includes five small grids 17 to 21. These small grids 17 to 21 are all formed in the same manner, and the outer shape is an elongated rectangular shape extending in the X direction, and the lattice lines are also provided along the X direction.
  • each of the small grids 17 to 21 is attached on the support substrate 23.
  • the small grids 17 to 21 are attached to each other at equal intervals and in parallel along the X direction when the support substrate 23 is flat.
  • the support substrate 23 is curved so as to have a cylindrical surface (convex to the X-ray image detector 15 side) when the second grid 14 is manufactured, the surface of the support substrate 23 is completed when the second grid 14 is completed. Although they are equally spaced along each, they will face different angles.
  • the small grid 19 disposed in the center of the support substrate 23 is substantially in front of the X-ray source 11 along the X direction. Be placed. Further, the small grids 18 and 20 are arranged to be inclined at a predetermined angle in the Y direction with respect to the central small grid 19. The small grids 17 and 21 are arranged to be inclined in the Y direction with respect to the small grids 18 and 20. As a result, the surfaces of the small grids 17 to 21 face the X-ray focal point 11a of the X-ray source 11 and are arranged substantially perpendicular to the X-ray incident direction.
  • the second grid 14 approximates a so-called convergence structure, and if each grid part (X absorption part 25 and X-ray transmission part 26 described later) of the small grids 17 to 21 is extended, all of the small grids 17 to 21 are extended.
  • the extended line of the grid structure is substantially converged to the X-ray focal point 11a.
  • the support substrate 23 is a double structure substrate in which a flexible substrate 26 (first substrate) and a glass substrate 27 (second substrate) are bonded together.
  • the flexible substrate 26 is flexible and has a low X-ray absorptivity (hereinafter referred to as X-ray transmissive) so as not to affect the X-ray image detected by the X-ray image detector 15.
  • X-ray transmissive X-ray absorptivity
  • it is formed of polyimide, polyethylene terephthalate (PET), polycarbonate (PC), dry film, parylene, acrylic resin, or the like.
  • PET polyethylene terephthalate
  • PC polycarbonate
  • the flexible substrate 26 has a larger thermal expansion coefficient than the glass substrate 27 or the like instead of being flexible.
  • the thermal expansion coefficient of polyimide is about 54 ⁇ 10 ⁇ 6 / ° C.
  • Polyethylene terephthalate is about 60 ⁇ 10 ⁇ 6 / ° C.
  • polycarbonate is about 70 ⁇ 10 ⁇ 6 / ° C.
  • acrylic resin is about 70 to 80 ⁇ 10 ⁇ 6 / ° C.
  • the thickness of the flexible substrate 26 is about 0.01 to 0.1 mm.
  • the glass substrate 27 is bonded to the flexible substrate 26 in order to reduce adverse effects due to the large thermal expansion coefficient of the flexible substrate 26, has X-ray transparency, and is flexible. It is formed of glass having a smaller thermal expansion coefficient than that of glass.
  • the glass substrate 27 is made of, for example, Pyrex glass or soda glass. Pyrex glass has a thermal expansion coefficient of about 3.2 ⁇ 10 ⁇ 6 / ° C., and soda glass has a thermal expansion coefficient of about 9.0 ⁇ 10 ⁇ 6 / ° C.
  • the thickness of the glass substrate 27 is about 0.1 to 0.7 mm.
  • the substrate bonded to the flexible substrate 26 has X-ray transparency and is a flexible substrate. If it is made of a material having a thermal expansion coefficient smaller than 26, it is not necessarily formed of glass.
  • a substrate formed of quartz, silicon, alumina, aluminum, titanium, a titanium alloy, nickel, stainless steel, or the like may be bonded to the flexible substrate 26 to form the support substrate 23.
  • the glass substrate 26 is a parallel plate at the stage of being bonded to the flexible substrate 26.
  • the glass substrate 26 cracks between the small grids 17 to 21. And is divided.
  • the completed second grid 14 is formed by arranging a sliced piece of the glass substrate 27 and the small grids 17 to 21 on the curved flexible substrate 26, and is curved by the flexible substrate 26.
  • the whole is integrally formed. That is, the laminated body of the slice of the glass substrate 27 and the small grids 17 to 21 is integrally held by the flexible substrate 26.
  • a substrate made of a metal material is used instead of the glass substrate 26, when the support substrate 23 is curved, the metal substrate spreads between the small grids 17 to 21 and cracks occur. Sometimes it stays together without entering.
  • each of the small grids 17 to 21 has a base substrate 31 and a grid portion 32.
  • the base substrate 31 is a substrate serving as a base when the grid portion 32 is formed.
  • the base substrate 31 is a material having X-ray transparency and a coefficient of thermal expansion smaller than that of the flexible substrate 26 (silicon, glass, carbon, etc.). Formed with.
  • the grid portion 32 has an X-ray absorbing portion 32a formed of gold, platinum, or the like, and an X-ray transmitting portion 32b formed of a material having X-ray permeability such as silicon.
  • the X-ray absorption part 32 a and the X-ray transmission part 32 b are provided extending in the X direction and provided perpendicular to the surface of the base substrate 31.
  • the X-ray absorption parts 32 a and the X-ray transmission parts 32 b are alternately provided along the surface of the base substrate 31 without a gap.
  • the X-ray absorption parts 32a and the X-ray transmission parts 32b are alternately arranged in the Y direction.
  • the other small grids 17 to 18 and 20 to 21 are inclined according to the curvature of the support substrate 23 as described above, but the structure is the same as that of the small grid 19.
  • the width W2 and the pitch P2 of the X-ray absorption part 32a are the distance between the source grid 12 and the first grid 13, the distance between the first grid 13 and the second grid 14, and the X-ray absorption part of the first grid 13. It depends on the pitch.
  • the width W2 is about 2 to 20 ⁇ m
  • the pitch P2 is about 4 to 40 ⁇ m.
  • the thickness T2 of the X-ray absorbing portion 25 is preferably as thick as possible in order to obtain high X-ray absorption, but is preferably about 100 ⁇ m in consideration of vignetting of X-rays.
  • the width W2 is 2.5 ⁇ m
  • the pitch P2 is 5 ⁇ m
  • the thickness T2 is 100 ⁇ m.
  • a seed layer 33 is provided between the base substrate 31 and the grid portion 32.
  • the seed layer 33 is a conductive layer for forming the X-ray absorption portion 32a.
  • the small grids 17 to 21 are attached to the surface of the glass substrate 27 with an adhesive 36, and the flexible substrate 26 and the glass substrate 27 are attached together with an adhesive 37.
  • the adhesives 36 and 37 may be any one having X-ray transparency and adhesiveness, and resist, parylene, polyimide, or the like may be used.
  • the thickness of the adhesives 36 and 37 is approximately 10 ⁇ m.
  • the radiation source grid 12 and the first grid 13 are composed of a plurality of small grids and a support substrate in which the small grids are bonded together with an adhesive. Further, the small grids of the source grid 12 and the first grid 13 are provided with a grid portion and a base substrate in the same manner as the second grid 14.
  • the structure of the grid part is the same as that of the grid part 32 of the second grid 14, but the width, pitch, and thickness of the X-ray absorption part and the X-ray transmission part differ depending on the arrangement and the like.
  • the grid manufacturing method of the present invention will be described using the second grid 14 as an example.
  • the manufacturing method of the source grid 12 and the 1st grid 13 is also the same, these description is abbreviate
  • the small grids 17 to 21 are manufactured as follows. As shown in FIG. 5, a base substrate 31 is bonded to the lower surface of an X-ray transparent substrate 41 formed of silicon or the like. At this time, a seed layer 33 is formed on the bonding surface between the base substrate 31 and the X-ray transparent substrate 41.
  • the X-ray transmissive substrate 41 Since the X-ray transmissive substrate 41 will later become the X-ray transmissive portion 32b of the grid portion 32, the X-ray transmissive substrate 41 is formed of the material of the X-ray transmissive portion 32b, and the thickness thereof is determined by the grid portion 32 (X-ray transmissive portion). It is the thickness of the transmission part 32b).
  • the X-ray transparent substrate 41 is particularly preferably made of a material having a thermal expansion coefficient substantially equal to that of the base substrate 31. This is because even if the temperature of the second grid 14 changes during use of the X-ray imaging apparatus 10, the grid portion is caused by the difference in thermal expansion coefficient between the base substrate 31 and the X-ray transmission portion 32 b (X-ray transmission substrate 41). This is to prevent 32 from being damaged.
  • the same silicon substrate may be used for the base substrate 31 and the X-ray transparent substrate 41.
  • the seed layer 33 is formed of, for example, Au or Ni, or a metal film made of a metal film such as Al, Ti, Cr, Cu, Ag, Ta, W, Pb, Pd, or Pt, or an alloy thereof. .
  • the seed layer 33 may be provided on the upper surface of the base substrate 31 and then bonded to the X-ray transmissive substrate 41, or may be provided on the lower surface of the X-ray transmissive substrate 41. It may be provided on both the upper surface of the base substrate 31 and the lower surface of the substrate 41 or the like.
  • an etching mask 42 is formed on the surface of the X-ray transparent substrate 41 by using a photolithography technique.
  • the etching mask 42 has a line-and-space pattern that extends linearly in the X direction and is periodically arranged at a predetermined pitch in the Y direction.
  • the width and pitch of the etching pattern 42 are the width W2 and the pitch P2 of the X-ray transmission part 32b.
  • the etching mask 42 When the etching mask 42 is formed, as shown in FIG. 7, by performing dry etching until the seeds layer 33 is exposed using the etching mask 42 as a mask, a plurality of grooves 43 and X-rays are formed in the X-ray transparent substrate 41. A transmission part 32b is formed. Since the groove 32 will later become the X-ray absorbing portion 32a, it is formed with a high aspect ratio of several ⁇ m in width and about 100 ⁇ m in depth. For this reason, deep etching dry etching such as a Bosch process or a cryo process is used for the dry etching for forming the groove 43 and the X-ray transmission part 32b. Alternatively, the groove may be formed by forming the X-ray transparent substrate 41 using a photosensitive resist instead of silicon and exposing it with synchrotron radiation.
  • the groove 43 is filled with an X-ray absorber such as gold by electrolytic plating.
  • the X-ray absorption part 32 a is formed in the groove 43.
  • the current terminal is connected to the sheath layer 33, and the X-ray transparent substrate 41 is immersed in the plating solution while being bonded to the base substrate 31.
  • another electrode anode
  • metal ions in the plating solution are deposited on the patterned X-ray transparent substrate 41, and gold is embedded in the grooves 43.
  • the etching mask 42 is removed by an ashing method or the like. Thereby, small grids 17 to 21 are formed.
  • the filling method of the X-ray absorber in the groove 43 is not limited to the above-described electrolytic plating method, and for example, the X-ray absorber may be filled in a paste form or a colloid form. In this case, since the seed layer 33 is unnecessary, the base substrate 31 and the X-ray transmissive substrate 41 may be directly bonded.
  • the support substrate 23 is formed as described below.
  • a glass substrate 27 is bonded to the surface of the flexible substrate 26 using an adhesive 37.
  • both the flexible substrate 26 and the glass substrate 27 have a parallel plate shape.
  • the support substrate 23 has a parallel plate shape.
  • linear grooves 51 extending in the X direction at predetermined intervals are formed in the glass substrate 27.
  • the groove 51 serves as a guide for bending, which is a position where the support substrate 23 is naturally bent when the support substrate 23 is bent in a later step.
  • the groove 51 is formed by partially cutting the glass substrate 27 in the depth direction, and the glass substrate 27 is left at the bottom of the groove 51. For this reason, even if the groove 51 is formed, the flexible substrate 26 is not exposed from the groove 51 and the glass substrate 27 is integrated.
  • the depth of the groove 51 is set to such a depth that the parallel plate shape of the support substrate 23 can be maintained in a later process due to the rigidity of the glass substrate 27. For this reason, even if the flexible substrate 26 expands (shrinks) due to a temperature change or a slight pressure is applied when the small grids 17 to 21 are attached, the glass substrate 27 is unintentionally divided by the grooves 51.
  • the space between the glass substrates 27 remaining between the grooves 51 does not expand or contract, and the support substrate 23 is not bent.
  • the groove 51 may be extremely shallow as long as the depth becomes a guide for bending.
  • the groove 51 has a linear shape extending to the end of the support substrate 23 in the X direction. Each groove 51 is parallel.
  • the groove 51 is formed by wet etching, sand blasting, laser irradiation or the like.
  • a resist pattern that exposes the grooves 51 to be formed is formed on the surface of the glass substrate 27, and the glass substrate 27 is etched using the resist pattern as a mask.
  • an alignment mark 52 is formed on the surface of the glass substrate 27.
  • the alignment mark 52 is a reference for aligning the small grids 17 to 21 in parallel along the groove 51 so that the intervals between the small grids 17 to 21 are constant. Therefore, the groove 51 and the alignment mark 52 need to be aligned with high accuracy.
  • the alignment mark 52 may be formed at the same time as the groove 51 at the same time as the groove 51, or may be formed at a different process from the formation of the groove 51.
  • the method for forming the groove 51 and the method for forming the alignment mark 52 may be different.
  • the alignment mark 52 may be formed first, and the groove 51 may be formed according to the alignment mark 52.
  • FIG. 10B shows an example in which a plurality of alignment marks 52 are provided at predetermined intervals on the side of the groove 51 and not hidden by the small grids 17 to 21 when the small grids 17 to 21 are arranged. (See also FIG. 11). If the small grids 17 to 21 are parallel to the groove 51 and the intervals between the small grids 17 to 21 can be set constant, the alignment mark 52 is located at a position where part or all of the alignment marks 52 are hidden by the small grids 17 to 21. It may be provided.
  • the small grids 17 to 21 previously produced have the base substrate 31 facing the glass substrate 27 as shown in FIG. Affixed using an adhesive 36. At this time, the small grids 17 to 21 are arranged on the glass substrate 27 with reference to the alignment mark 52 so that the positions of the small grids 17 to 21 are adjusted in parallel to the groove 51 in the center.
  • the support substrate 23 is curved as shown in FIG.
  • the stress due to the bending is concentrated in the groove 51, a crack 53 is generated in the groove 51 as a guide, and the glass substrate 27 is divided by the crack 53.
  • the support substrate 23 can be freely bent with the crack 53 as a fulcrum.
  • the second grid 14 is formed by curving the support substrate 23 so that the directions of the small grids 17 to 21 substantially coincide with the spread of cone-beam X-rays.
  • the support substrate 23 is curved to form the second grid 14.
  • the small grids 17 to 21 can be positioned with high accuracy. That is, the relative positional accuracy between the small grids 17 to 21 is good. For example, if the small grids 17 to 21 are to be arranged on a surface curved in a cylindrical shape in advance, the position and orientation of each small grid must be aligned three-dimensionally.
  • an alignment mark 52 for determining the arrangement of the small grids 17 to 21 is provided on the flexible substrate 26. Will be provided. However, since the flexible substrate 26 is more easily expanded and contracted than the glass substrate 27, when the alignment marks 52 are provided on the flexible substrate 26, the interval between the alignment marks 52 is likely to change. For this reason, even if the small grid is aligned according to the alignment mark provided on the flexible substrate 26, it is difficult to perform highly accurate alignment.
  • the small grids 17 to 21 are arranged on the support substrate 23 to which the flexible substrate 26 and the glass substrate 27 are bonded, and the alignment for aligning the small grids 17 to 21 is performed.
  • the glass substrate 27 has a smaller thermal expansion coefficient than the flexible substrate 26 and is difficult to expand or contract. Therefore, the small grids 17 to 21 are arranged according to the alignment mark 52 provided on the glass substrate 27. Thus, the small grids 17 to 21 can be easily aligned with high accuracy.
  • the position where the flexible substrate 26 is bent is indefinite between the small grids 17 to 21. Therefore, when the small grids 17 to 21 are directly arranged on the surface of the flexible substrate 26 and the flexible substrate 26 is curved, the bending positions are indeterminate between the small grids 17 to 21 according to the indefinite position between the small grids 17 to 21.
  • the support substrate 23 in which the flexible substrate 26 and the glass substrate 27 are bonded together as in the above-described embodiment and the groove 51 serving as a guide for bending the flexible substrate 26 is provided in the glass substrate 27, the flexible substrate 26. Is bent along the groove 51 (crack 53). For this reason, errors in the arrangement (angle) of the small grids 17 to 21 when the support substrate 23 is curved hardly occur, and the grid manufactured as in the above embodiment has high accuracy.
  • the width W2 and the pitch P2 of the X-ray transmission portion 32b are likely to change due to the expansion / contraction of the flexible substrate 26, but the small grids 17 to 21 are used.
  • the accuracy of the width W2 and the pitch P2 of the X-ray transmission part 32b is almost unaffected by the expansion / contraction of the flexible substrate 26 and is constant. For this reason, the grid formed like the above-mentioned embodiment can exhibit the stable performance.
  • the groove 51 and the alignment mark 52 are formed on the glass substrate 27 after the glass substrate 27 is bonded to the flexible substrate 26 to form the support substrate 23.
  • grooves 51 and alignment marks 52 are formed in advance on the glass substrate 27, and the glass substrate 27 on which the grooves 51 and the alignment marks 52 are already formed is bonded to the flexible substrate 26 to form the support substrate 23. May be. The same applies to the second and third embodiments described later.
  • a low-rigidity portion 61 is formed on the exposed surface of the flexible substrate 26 (the back surface of the support substrate 23) in accordance with the grooves 51 provided in the glass substrate 27.
  • the low-rigidity portion 61 is a portion that is low in rigidity among the flexible substrates 26 and is particularly easy to bend due to stress concentration when the support substrate 23 is bent.
  • the low-rigidity portion 61 is formed, for example, by forming a groove by etching or performing a local heat treatment such as laser irradiation.
  • the low rigidity portion 61 can be aligned with the groove 51 of the glass substrate 27 by observing the alignment mark 52 provided on the glass substrate 27 as an index.
  • the flexible substrate 26 is also provided with the low-rigidity portion 61 in accordance with the groove 51 of the glass substrate 27, the groove 51 and the low-rigidity portion 61 can be more reliably formed when the support substrate 23 is curved.
  • the support substrate 23 is curved along the surface. For this reason, the placement accuracy of the small grids 17 to 21 in the grid after bending the support substrate 23 becomes higher.
  • the low rigidity portion 61 is formed on the exposed surface of the flexible substrate 26 (the back surface of the support substrate 23). However, as shown in FIG. 14, the low rigidity portion 61 is bonded to the glass substrate 27. You may provide in the surface side. In this case, it is preferable to form the low rigidity portion 61 by local heat treatment by laser irradiation.
  • the low rigidity portion 61 is provided in the flexible substrate 26 in accordance with the groove 51 (and the alignment mark 52) provided in the glass substrate 27.
  • the low rigidity portion 61 is provided in the flexible substrate 26 in advance. 61 may be provided.
  • the low-rigidity portion 61 is provided in the flexible substrate 26 in advance, if the low-rigidity portion 61 is formed with a width equal to or less than the groove 51 provided in the glass substrate 27, the groove is caused by expansion / contraction of the flexible substrate 26 as described above. It is difficult to align 51 and the low rigidity portion 61 with high accuracy. Further, if the positions of the groove 51 and the low-rigidity portion 61 are deviated, the support substrate 23 cannot be a guide for bending.
  • the low-rigidity portion 61 is provided in advance on the flexible substrate 26 as described above, even if the position of the low-rigidity portion 61 is displaced due to the expansion / contraction of the flexible substrate 26, the low-rigidity portion 61 is directly below the groove 51. As shown, it is preferable to provide the low rigidity portion 61 wider than the groove 51.
  • the low-rigidity portion 61 is partially provided in the thickness direction of the flexible substrate 26, but the entire thickness direction corresponding to the groove 51 is the low-rigidity portion 61. good. However, processing is easier when the low-rigidity portion 61 is provided near the surface of the flexible substrate 26.
  • the groove 51 provided in the glass substrate 27 is linearly provided to the end of the support substrate 23.
  • the glass substrate 27 of the first and second embodiments is not provided.
  • the groove 51 may be formed in a perforated shape by a groove 62 in which the glass substrate 27 is cut and a joint portion 63 in which the glass substrate 27 is not cut.
  • the groove 62 may be provided so as to penetrate the glass substrate 27 and reach the flexible substrate 26.
  • the glass substrate 27 is not cut by the coupling portion 63 as in the Y-direction cross section (XVII cross section) including the coupling portion 63 shown in FIG. 17, so that a groove 62 is provided so as to penetrate the glass substrate 27.
  • the glass substrate 27 can maintain an integral shape by the coupling portion 63.
  • the support substrate 23 can ensure a certain degree of rigidity to such an extent that the flexible substrate 26 is not bent unintentionally in a later step.
  • channel formed in the glass substrate 27 is provided in the perforated form by the groove
  • bond part 63 are shown.
  • the flexible substrate 26 is cut out until the flexible substrate 26 is exposed, and the coupling portion 63 is not cut at all, if the groove 62 is longer than the above-described ratio, the glass substrate 27 is easily broken along the groove 62.
  • the coupling portion 63 is long, the coupling portion 63 is difficult to break along the groove 62 when the support substrate 23 is curved after the small grids 17 to 21 are arranged, and the groove 62 and the coupling portion 63 are bent guides. The role may not be fulfilled enough.
  • the groove 62 is cut until the flexible substrate 26 is exposed, and the coupling portion 63 is not cut at all.
  • the glass substrate 27 is partially left at the bottom of the groove 62.
  • a part of the glass substrate 27 may be cut.
  • a part of the surface of the glass substrate 27 corresponding to the coupling portion 63 may be cut. That is, when the support substrate 23 is curved, the groove 62 is more easily cracked than the coupling portion 63, has a certain rigidity so that there is no problem in a later process, and the groove 62 and the coupling portion are curved when the support substrate 23 is curved.
  • the depth of the groove 62 and the thickness of the glass substrate 27 at the coupling portion 63 are arbitrary.
  • the positions of the grooves 62 and the coupling portions 63 are compared in the Y direction in the guideline by the four grooves 62 and the coupling portions 63 formed on the support substrate 23, all the lines are displayed.
  • the positions of the groove 62 and the coupling portion 63 are aligned, but the positions of the groove 62 and the coupling portion 63 may be shifted on each line.
  • the arrangement period of the groove 62 and the coupling portion 63 is shifted by a half cycle between adjacent lines, and the coupling portion 63 on the adjacent line is formed at a position corresponding to the groove 62 on a certain line. You may do it.
  • a groove (and a connecting portion) is used in the glass substrate 27 as a guide for the bending position of the flexible substrate 26.
  • a low-rigidity portion 61 is provided in the flexible substrate 26. Also good. In this case, as shown in FIG. 19, a linear low-rigidity portion 61 is provided at a position corresponding to the groove 62 and the coupling portion 63 regardless of the groove 62 and the coupling portion 63 of the glass substrate 27.
  • the flexible substrate 26 may be provided with a low-rigidity portion 66 in a perforated shape only in a portion corresponding to the groove 62 of the glass substrate 27.
  • the bending promotion effect of the support substrate 23 by the groove 62 directly above and the bending promotion effect by the low-rigidity portion 66 are synergistic. For this reason, when the support substrate 23 is curved, stress for bending is transmitted to the coupling portion 63 along the groove 62 of the glass substrate 27 and the low-rigidity portion 66 of the flexible substrate 26 that are aligned on one straight line. It becomes easy, and even if the groove
  • the low rigidity portion 67 As shown in FIG. 21, by providing a low rigidity portion 67 at a position corresponding to the coupling portion 63 without providing a low rigidity portion below the groove 62 of the glass substrate 27, the low rigidity portion is provided in a perforated shape. Also good. In this case, the low rigidity processing of the flexible substrate 26 can be reduced, and at the same time, the bending direction of the flexible substrate 26 can be made more surely linear.
  • the low-rigidity portion 68 may be provided with a half-cycle shift with respect to the cycle of the groove 62 and the coupling portion 63 of the glass substrate 27.
  • the radiation source grid 12, the first grid 13, and the second grid 14 that are curved in a cylindrical shape in the Y direction are described as an example.
  • 14 may be spherically curved.
  • the small grids 17 to 17 that are extended in the X direction and arranged in the Y direction in the first to third embodiments described above. 21 may be further divided in the X direction, and the grids 12 to 14 may be curved in the X direction.
  • the groove provided in the glass substrate 27 so as to serve as a guide for bending the flexible substrate 26 may be provided along the Y direction as in the first to third embodiments.
  • the base substrate 31 is attached to the surface of the glass substrate 27 so that the grid portion 32 is exposed.
  • the grid portion 32 may be attached to the surface of the glass substrate 27 so that the base substrate 31 is exposed.
  • the grid is manufactured by bending the support substrate 23.
  • the support substrate 23 can be easily maintained in a curved shape. preferable.
  • the second grid 14 formed by curving the support substrate 23 is fixed by adhering to the same curved base 71 with an adhesive or the like. This makes it easier to maintain the curved shape of the support substrate 23 more reliably.
  • the second grid 14 may be attached to the pedestal 71 and the curved shape may be reliably fixed simultaneously by bending the support substrate 23 along the pedestal 71.
  • the base 71 may be made of any material as long as it is X-ray transparent, but is preferably formed of a material having a coefficient of thermal expansion smaller than that of the flexible substrate 26 at least.
  • a filler 72 is put into a gap generated between the small grids 17 to 21 as the support substrate 23 is curved, It may solidify.
  • the filler 72 may be made of an arbitrary material such as an epoxy adhesive, a silver paste, or a gold paste. However, it is preferable to use a filler made of an X-ray absorbing material such as silver paste or gold paste. When an X-ray absorbing filler is used, noise components such as artifacts caused by X-rays transmitted through the small grids 17 to 21 can be reduced.
  • a shape memory substrate 73 may be used instead of the flexible substrate 26.
  • the shape to be memorized is the curved shape of the support substrate 23, and is formed in a parallel plate shape when the second grid 14 is manufactured. Then, as in the first to third embodiments described above, after the small grids 17 to 21 are arranged, a process (for example, a heat treatment) for returning the shape memory substrate 73 to the memory shape is performed, whereby the support substrate 23 is changed. Curve to a predetermined shape.
  • the shape memory substrate 73 is used in this manner, an appropriate curved state of the second grid 14 can be easily maintained by the shape memory action of the shape memory substrate 73.
  • the shape memory substrate 73 can be formed of a shape memory polymer or a shape memory alloy.
  • the shape memory polymer is, for example, polynorbornene, trans polyisoprene, polyurethane or the like.
  • the shape memory alloy is, for example, NiTi, NiTiCo, NiTiCu or the like.
  • a composite substrate 76 in which a shape memory layer 74 made of a fiber-shaped shape memory polymer or shape memory alloy is knitted into a flexible resin (polyimide or the like) 75 is used instead of the flexible substrate 26 . You may use for.
  • the composite substrate 76 also exhibits substantially the same function and effect as the shape memory substrate 73.
  • the small grids 17 to 21 may be directly attached on the shape memory substrate 73 or the composite substrate 76 without attaching the glass substrate 27. good. This is because, in the case of the shape memory substrate 73 and the composite substrate 76, the thermal expansion coefficient is not as large as that of the flexible substrate 26.
  • the second grid 14 is formed using the five small grids 17 to 21, but the number of small grids used is not limited to five. At least two small grids are required to arrange the small grid in a cylindrical surface (or spherical shape), but in order to be closer to the cylindrical surface (spherical shape), the number of small grids is as large as possible. Better.
  • the source grid 12, the first grid 13, and the second grid 14 are all absorption grids, and the grid portion 32 includes the X-ray absorption portion 32a and the X-ray transmission portion 32b. And are formed alternately.
  • a so-called phase type grid may be used for the first grid 13.
  • the phase-type grid is a grid in which two types of members having X-ray transparency are alternately arranged perpendicular to the surface.
  • the X-ray absorption portion 32a is made of air. It is a layer (a state in which the X-ray absorber is not buried).
  • the present invention is also suitable when using a phase-type small grid.
  • the radiation source grid 12, the first grid 13, and the second grid 14 are all curved in a cylindrical shape, but at least the first grid 13 or the second grid 14 One side should just be curving in the shape of a cylindrical surface (or spherical shape).
  • the first and second grids are configured to linearly (geometrically optically) project the X-rays that have passed through the X-ray transmission part, but International Publication WO 2004/058070.
  • the Talbot interference effect may be generated by diffracting the X-rays at the X-ray transmission part.
  • the first grid can be a phase grid instead of the absorption grid.
  • the phase type grid forms a fringe image (self-image) generated by the Talbot interference effect at the position of the second grid.
  • the subject H is disposed between the X-ray source and the first grid, but the subject H may be disposed between the first grid and the second grid. In this case as well, a phase contrast image is similarly generated.
  • the source grid 12 is provided, but the source grid 12 may be omitted.
  • a striped one-dimensional grid having X-ray absorbing portions and X-ray transmitting portions that are extended in one direction and alternately arranged along the arrangement direction orthogonal to the extending direction will be described as an example.
  • the present invention can also be applied to a two-dimensional grid in which an X-ray absorption part and an X-ray transmission part are arranged in two orthogonal directions.
  • the phase contrast image may be generated by a fringe scanning method in which a plurality of shootings are performed, or the phase contrast image may be generated by a single shooting.
  • a checkered phase type grid is used for the first grid and a mesh pattern amplitude type is used for the second grid, as described in WO2010 / 050484.
  • the present invention described in the first to third embodiments, it is possible to provide a high-quality phase imaging grid particularly considering temperature change (and thermal expansion due to temperature change).
  • the degree of curvature of the grid may slightly change when an environmental temperature change occurs.
  • the contrast of the fringe image may deteriorate depending on the relative arrangement variation between the small grids 17 to 21.
  • the relative arrangement of the small grids 17 to 21 is accurate, deterioration of the contrast of the fringe image can be suppressed even if the environmental temperature changes.
  • the adhesive when the grid is manufactured, the adhesive may be heated to harden the adhesive, and the flexible substrate 26 may be thermally deformed by the heat. According to the present invention, the above-described heat deformation is performed. Even if there is, the small grids 17 to 21 can be arranged with relatively high accuracy.
  • the above embodiments may be combined with each other within a consistent range.
  • the present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection.
  • the grid of the present invention can also be applied to a scattered radiation removal grid that removes scattered radiation in X-ray imaging.
  • the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.

Abstract

This grid is provided with a plurality of small grids (18-20) and a support substrate (23). The small grids (18-20) have: a flat plate-shaped ground substrate (31); and grid sections (32) that are formed on the ground substrate (31) and that form a striped image as a result of locally transmitting radiation radiated from the focal point of a radiation source. The support substrate (23) is formed from a flexible substrate (26) having flexibility and a glass substrate (27) having a lower coefficient of thermal expansion than the flexible substrate (26) being pasted together, and the small grids (18-20) are arrayed at a predetermined disposition on the glass substrate (27) in accordance with alignment marks provided on the glass substrate (26). After pasting each small grid (18-20) on, the support substrate (23) is bent in a manner so that each grid section (32) faces the focal point of the radiation source.

Description

放射線画像撮影用グリッド及びその製造方法、並びに放射線画像撮影システムRadiation imaging grid, manufacturing method thereof, and radiation imaging system
 本発明は、放射線画像の撮影に用いられるグリッド及びその製造方法と、このグリッドを用いた放射線画像撮影システムに関する。 The present invention relates to a grid used for radiographic imaging, a manufacturing method thereof, and a radiographic imaging system using the grid.
 放射線(例えばX線)は、物体との相互作用により強度と位相とが変化し、位相変化が強度の変化よりも高い相互作用を示すことが知られている。近年、X線の位相変化に基づいて、X線吸収能が低い被検体から高コントラストの画像(以下、位相コントラスト画像と称する)を得るX線画像撮影システムが着目されている。 It is known that radiation (for example, X-rays) changes in intensity and phase due to interaction with an object, and the phase change exhibits a higher interaction than the change in intensity. In recent years, attention has been paid to an X-ray imaging system that obtains a high-contrast image (hereinafter referred to as a phase contrast image) from a subject having a low X-ray absorption capacity based on a phase change of X-rays.
 位相コントラスト画像を撮影するためのX線画像撮影システムは、X線を照射するX線源と、第1及び第2のグリッドと、放射線画像検出器とを有する。X線源と第1グリッドの間に被検体を配置し、第1グリッドを間欠移動しながら、第1グリッドの自己像と第2グリッドとの重ね合わせにより強度変調された縞画像を複数撮影し、これらの縞画像中に重畳される被検体による変化に基づいて位相コントラスト画像を取得する。このX線画像撮影方法は、縞走査法と呼ばれている。 An X-ray imaging system for imaging a phase contrast image includes an X-ray source that irradiates X-rays, first and second grids, and a radiation image detector. A subject is placed between the X-ray source and the first grid, and while the first grid is moved intermittently, a plurality of fringe images whose intensity is modulated by superimposing the self-image of the first grid and the second grid are taken. Then, a phase contrast image is acquired based on a change caused by the subject superimposed on these fringe images. This X-ray image capturing method is called a fringe scanning method.
 また、X線源はコーンビーム状に広がるX線を放射するので、平板状のグリッドを用いると、グリッドの周縁部においてX線にケラレが発生するという問題がある。ケラレを低減するためには、グリッドをX線の広がりに合わせて円筒面状(あるいは球面状)に湾曲させたものにすることが好ましいが、グリッドは例えばシリコンウェハを用いて形成されるため、平板状に作製したグリッドを湾曲させるとグリッドが破損してしまう場合がある。 Also, since the X-ray source emits X-rays that spread like a cone beam, there is a problem that vignetting of X-rays occurs at the periphery of the grid when a flat grid is used. In order to reduce vignetting, it is preferable to make the grid curved in a cylindrical shape (or spherical shape) in accordance with the spread of X-rays, but the grid is formed using, for example, a silicon wafer. When a grid produced in a flat plate shape is curved, the grid may be damaged.
 こうしたことから、例えば特開2007-203061号公報(対応米国特許第7,522,698号)には、複数の平板状の小グリッドを凹面上に配置することにより、局所的には平板状であるが全体としては湾曲した形状をしているグリッドが開示されている。また、特開2010-063646号公報(対応米国特許第8,139,711号)には、フレキシブル基板上にグリッドを形成した後、フレキシブル基板を湾曲させることで円筒面状に湾曲させることが記載されている。 For this reason, for example, in Japanese Patent Application Laid-Open No. 2007-203061 (corresponding to US Pat. No. 7,522,698), a plurality of flat small grids are arranged on the concave surface to locally form a flat plate. A grid having a curved shape as a whole is disclosed. Japanese Patent Laid-Open No. 2010-063646 (corresponding US Pat. No. 8,139,711) describes forming a grid on a flexible substrate and then bending the flexible substrate into a cylindrical surface. Has been.
 しかしながら、特開2007-203061号公報に記載のように、X線の広がりに合わせて小グリッドを非平面上に配置する場合、各小グリッドの配置や傾きを高精度に位置合わせする必要がある。しかし、特開2007-203061号公報は、小グリッドを非平面上に配列するときに、各小グリッドを高精度に位置合わせする具体的な方法までは開示をしていない。このため、実際の撮影に用いることが可能な程度に高精度に、小グリッドを円筒面状や球面状に配置することは困難である。 However, as described in Japanese Patent Application Laid-Open No. 2007-203061, when a small grid is arranged on a non-planar surface in accordance with the spread of X-rays, it is necessary to align the arrangement and inclination of each small grid with high accuracy. . However, Japanese Patent Laid-Open No. 2007-203061 does not disclose a specific method for aligning each small grid with high accuracy when the small grids are arranged on a non-planar surface. For this reason, it is difficult to arrange the small grid in a cylindrical surface or a spherical surface with high accuracy to the extent that it can be used for actual photographing.
 また、フレキシブル基板は、熱膨張率が大きく、変形容易であるため、特開2010-063646号公報に記載されているように、フレキシブル基板上にグリッドを形成すると、フレキシブル基板の熱膨張により、グリッド自体の精度が悪化するという問題がある。 In addition, since the flexible substrate has a large coefficient of thermal expansion and is easily deformed, as described in JP 2010-063646 A, when a grid is formed on the flexible substrate, the grid expands due to the thermal expansion of the flexible substrate. There is a problem that the accuracy of itself deteriorates.
 さらに、特開2007-203061号公報と特開2010-063646号公報を組み合わせるとすれば、小グリッドをフレキシブル基板上に貼り付けて、フレキシブル基板を湾曲させることが考えられる。この場合、フレキシブル基板上に小グリッドを配置する目安となるアライメントマークを設けておき、このアライメントマークに合わせて小グリッドを配置することになるが、フレキシブル基板の熱膨張率や変形容易性のために、アライメントマークの間隔等が変化しやすいので、アライメントマークを高精度に形成することが難しい。したがって、フレキシブル基板上に小グリッドを配置する場合、精度の悪いアライメントマークを基準にしなければならないので、高精度な配置が難しいという問題が残る。 Furthermore, if Japanese Patent Application Laid-Open No. 2007-203061 and Japanese Patent Application Laid-Open No. 2010-063646 are combined, it is conceivable that a small grid is attached on the flexible substrate to curve the flexible substrate. In this case, an alignment mark is provided as a guideline for placing a small grid on the flexible board, and the small grid is placed in accordance with the alignment mark. However, because of the thermal expansion coefficient and ease of deformation of the flexible board, In addition, since the interval between the alignment marks is easily changed, it is difficult to form the alignment marks with high accuracy. Therefore, when a small grid is arranged on a flexible substrate, it is necessary to use an alignment mark with low accuracy as a reference, so that there remains a problem that it is difficult to arrange with high accuracy.
 本発明は、湾曲した面上に小グリッドを高精度に配置したグリッド及びその製造方法、並びに放射線画像撮影システムを提供することを目的とする。 An object of the present invention is to provide a grid in which small grids are arranged with high accuracy on a curved surface, a manufacturing method thereof, and a radiographic imaging system.
 本発明の放射線画像撮影用グリッドは、複数の小グリッドと、支持基板とを備える。各々の小グリッドは、平板状の下地基板と、下地基板上に形成され、放射線源の焦点から照射される放射線を部分的に透過して縞画像を生成するグリッド部とを有する。支持基板は、可撓性を有する第1基板と、第1基板よりも熱膨張係数が小さい第2基板とを貼り合わせて形成される。小グリッドは、第2基板上に設けられたアライメントマークにしたがって、第2基板上に所定の配置で配列される。支持基板は、アライメントマークにしたがって第2基板上に小グリッドを配列した後に、各々の小グリッドのグリッド部が放射線源の焦点を向くように湾曲される。 The radiation image capturing grid of the present invention includes a plurality of small grids and a support substrate. Each small grid includes a flat base substrate and a grid portion that is formed on the base substrate and generates a fringe image by partially transmitting the radiation emitted from the focal point of the radiation source. The support substrate is formed by bonding a flexible first substrate and a second substrate having a smaller coefficient of thermal expansion than the first substrate. The small grids are arranged in a predetermined arrangement on the second substrate according to the alignment marks provided on the second substrate. After arranging the small grids on the second substrate according to the alignment marks, the support substrate is curved so that the grid portion of each small grid faces the focal point of the radiation source.
 第2基板はガラス基板であり、支持基板の湾曲にともなって小グリッドの配列に応じて分断される。分断後の第2基板の切片と各小グリッドの積層体は、湾曲した第1基板によって一体に保持される。 The second substrate is a glass substrate and is divided according to the arrangement of the small grids as the support substrate is curved. The section of the second substrate after the division and the laminated body of each small grid are integrally held by the curved first substrate.
 第2基板の表面には、支持基板の折れ曲がり位置を特定するための溝が設けられていることが好ましい。この溝は、例えば、第2基板の表面に沿ってミシン目状に設けられる。溝は、例えば、第2基板を厚さ方向に部分的に切削したものである。溝は、第2基板を厚さ方向に全て切削したものでも良い。このように、第2基板の表面に溝を設ける場合、第1基板には、第2基板に形成される溝に対応した直線上に、剛性を低下させた低剛性部を有することが好ましい。 It is preferable that a groove for specifying a bent position of the support substrate is provided on the surface of the second substrate. For example, the grooves are formed in a perforation along the surface of the second substrate. For example, the groove is obtained by partially cutting the second substrate in the thickness direction. The groove may be formed by cutting the second substrate in the thickness direction. Thus, when providing a groove | channel on the surface of a 2nd board | substrate, it is preferable that the 1st board | substrate has the low rigidity part which reduced rigidity on the straight line corresponding to the groove | channel formed in a 2nd board | substrate.
 第1基板には、形状記憶材料を用いることができる。 A shape memory material can be used for the first substrate.
 小グリッドは、例えば、放射線吸収部と放射線透過部を交互に配列して形成されたグリッド部を有する吸収型グリッドである。また、小グリッドは、放射線透過性を有する二種類の部材を交互に配列して形成されたグリッド部を有する位相型グリッドでも良い。 The small grid is, for example, an absorption grid having a grid portion formed by alternately arranging a radiation absorbing portion and a radiation transmitting portion. Further, the small grid may be a phase type grid having a grid portion formed by alternately arranging two kinds of members having radiation transparency.
 本発明の放射線画像撮影用グリッドの製造方法は、小グリッド製造工程と、支持基板形成工程と、小グリッド貼付工程と、湾曲工程とを備える。小グリッド形成工程は、平板状の下地基板と、下地基板上に形成され、放射線源の焦点から照射される放射線を部分的に透過して縞画像を生成するグリッド部とを有する複数の小グリッドを形成する。支持基板形成工程は、可撓性を有し、平行平板状の第1基板と、第1基板よりも熱膨張係数が小さい平行平板状の第2基板とを貼り合わせて支持基板を形成する。小グリッド貼付工程は、第2基板上に設けられたアライメントマークにしたがって、小グリッドを前記第2基板上に所定配列で貼り付ける。湾曲工程は、小グリッドが貼り付けられた支持基板を、各々の小グリッドのグリッド部が放射線源の焦点を向くように湾曲させる。 The method for manufacturing a radiographic imaging grid according to the present invention includes a small grid manufacturing process, a support substrate forming process, a small grid attaching process, and a bending process. The small grid forming step includes a plurality of small grids each having a flat base substrate and a grid portion that is formed on the base substrate and generates a fringe image by partially transmitting the radiation irradiated from the focal point of the radiation source. Form. In the support substrate forming step, a first substrate having a parallel plate shape and a second substrate having a parallel plate shape having a thermal expansion coefficient smaller than that of the first substrate are bonded together to form a support substrate. In the small grid attaching step, the small grids are attached to the second substrate in a predetermined arrangement according to the alignment mark provided on the second substrate. In the bending step, the support substrate to which the small grid is attached is bent so that the grid portion of each small grid faces the focal point of the radiation source.
 さらに、第2基板上に、支持基板の折れ曲がり位置を特定するための溝を設ける溝形成工程を備えることが好ましい。 Furthermore, it is preferable to provide a groove forming step of providing a groove for specifying the bent position of the support substrate on the second substrate.
 また、第1基板に剛性の低い低剛性部を形成する低剛性処理工程を備えることが好ましい。 Moreover, it is preferable to provide a low-rigidity treatment step for forming a low-rigidity portion having low rigidity on the first substrate.
 放射線画像撮影システムは、第1グリッドと、第2グリッドと、放射線画像検出器を有する。第1グリッドは、放射線源から放射された放射線を透過させて縞画像を生成する。第2グリッドは、縞画像に強度変調を与える。放射線画像検出器は、第2グリッドにより強度変調された縞画像を検出する。そして、放射線画像検出器により検出された縞画像から位相コントラスト画像を生成するものである。この放射線画像撮影システムにおいて、本発明の放射線画像撮影システムは、第1グリッドまたは第2グリッドの少なくとも一方は、複数の小グリッドと、支持基板とを備えたものになっている。小グリッドは、平板状の下地基板と、下地基板上に形成され、放射線源の焦点から照射される放射線を部分的に透過して縞画像を生成するグリッド部とを有する。支持基板は、可撓性を有する第1基板と、第1基板よりも熱膨張係数が小さい第2基板とを貼り合わせて形成される。支持基板は、小グリッドが第2基板上に設けられたアライメントマークにしたがって所定の配置で配列した後、各々の小グリッドのグリッド部が放射線源の焦点を向くように湾曲される。 The radiographic imaging system has a first grid, a second grid, and a radiographic image detector. The first grid transmits a radiation emitted from the radiation source to generate a fringe image. The second grid applies intensity modulation to the fringe image. The radiation image detector detects a fringe image whose intensity is modulated by the second grid. Then, a phase contrast image is generated from the fringe image detected by the radiation image detector. In this radiographic imaging system, in the radiographic imaging system of the present invention, at least one of the first grid and the second grid includes a plurality of small grids and a support substrate. The small grid includes a flat base substrate and a grid portion that is formed on the base substrate and generates a fringe image by partially transmitting the radiation irradiated from the focal point of the radiation source. The support substrate is formed by bonding a flexible first substrate and a second substrate having a smaller coefficient of thermal expansion than the first substrate. The support substrate is curved so that the grid portions of each small grid face the focal point of the radiation source after the small grids are arranged in a predetermined arrangement according to the alignment marks provided on the second substrate.
 放射線源と第1グリッドとの間に配置され、放射線源から照射された放射線を領域選択的に遮蔽して多数のライン上の放射線を形成する線源グリッドをさらに備えていても良い。この線源グリッドは、上述の複数の小グリッドと支持基板を備えるものであることが好ましい。 A radiation source grid may be further provided that is disposed between the radiation source and the first grid and forms radiation on a large number of lines by selectively shielding the radiation irradiated from the radiation source. The radiation source grid preferably includes the plurality of small grids and a support substrate described above.
 本発明は、可撓性を有する第1基板と、第1基板よりも熱膨張係数が小さい第2基板とを貼り合わせて形成された支持基板上に小グリッドを正確に配置した後に、支持基板を湾曲させ、小グリッドを放射線源の焦点に向けている。これにより、本発明は、湾曲した面上に小グリッドを高精度に配置することができる。 The present invention provides a support substrate after accurately arranging a small grid on a support substrate formed by bonding a flexible first substrate and a second substrate having a smaller coefficient of thermal expansion than the first substrate. And the small grid is aimed at the focal point of the radiation source. Thereby, this invention can arrange | position a small grid with high precision on the curved surface.
X線画像撮影システムの構成を示す説明図である。It is explanatory drawing which shows the structure of a X-ray imaging system. 第2グリッドの平面図である。It is a top view of the 2nd grid. 図2のIII-III線に沿った第2グリッドの断面図である。FIG. 3 is a cross-sectional view of a second grid taken along line III-III in FIG. 2. 小グリッドの構成を示す断面図である。It is sectional drawing which shows the structure of a small grid. X線透過性基板と下地基板を接合する工程を示す断面図である。It is sectional drawing which shows the process of joining an X-ray transparent board | substrate and a base substrate. X線透過性基板の表面にエッチングマスクを形成する工程を示す断面図である。It is sectional drawing which shows the process of forming an etching mask in the surface of a X-ray transparent substrate. シーズ層を露呈させるドライエッチングを行う工程を示す断面図である。It is sectional drawing which shows the process of performing the dry etching which exposes a seeds layer. 電解メッキにより溝にX線吸収剤を充填する工程を示す断面図である。It is sectional drawing which shows the process of filling a groove | channel with an X-ray absorber by electrolytic plating. 支持基板の構成及び製造手順を示す断面図である。It is sectional drawing which shows the structure and manufacturing procedure of a support substrate. 支持基板に溝及びアライメントマークを設ける工程を示す説明図である。It is explanatory drawing which shows the process of providing a groove | channel and an alignment mark in a support substrate. 支持基板に小グリッドを貼り付ける工程を示す説明図である。It is explanatory drawing which shows the process of sticking a small grid on a support substrate. 支持基板を湾曲させる工程を示す断面図である。It is sectional drawing which shows the process of curving a support substrate. フレキシブル基板に低剛性部を設ける例を示す断面図である。It is sectional drawing which shows the example which provides a low-rigidity part in a flexible substrate. 別の低剛性部を設ける例を示す断面図である。It is sectional drawing which shows the example which provides another low-rigidity part. ガラス基板に形成する溝をミシン目状に形成した例を示す説明図である。It is explanatory drawing which shows the example which formed the groove | channel formed in a glass substrate in the perforation shape. 溝を含む断面図である。It is sectional drawing containing a groove | channel. 結合部を含む断面図である。It is sectional drawing containing a connection part. ガラス基板に他の態様のミシン目状の溝を設けた例を示す説明図である。It is explanatory drawing which shows the example which provided the perforated groove | channel of the other aspect in the glass substrate. ガラス基板に形成する溝とフレキシブル基板に形成する低剛性部の対応関係を示す説明図である。It is explanatory drawing which shows the correspondence of the groove | channel formed in a glass substrate, and the low-rigidity part formed in a flexible substrate. ガラス基板に形成する溝とフレキシブル基板に形成する低剛性部の対応関係を示す説明図である。It is explanatory drawing which shows the correspondence of the groove | channel formed in a glass substrate, and the low-rigidity part formed in a flexible substrate. ガラス基板に形成する溝とフレキシブル基板に形成する低剛性部の対応関係を示す説明図である。It is explanatory drawing which shows the correspondence of the groove | channel formed in a glass substrate, and the low-rigidity part formed in a flexible substrate. ガラス基板に形成する溝とフレキシブル基板に形成する低剛性部の対応関係を示す説明図である。It is explanatory drawing which shows the correspondence of the groove | channel formed in a glass substrate, and the low-rigidity part formed in a flexible substrate. グリッドを球面状に湾曲して形成する例を示す説明図である。It is explanatory drawing which shows the example which curves and forms a grid in spherical shape. グリッド部をガラス基板に貼り付けた例を示す断面図である。It is sectional drawing which shows the example which affixed the grid part on the glass substrate. 湾曲したグリッドを台座に固定する例を示す断面図である。It is sectional drawing which shows the example which fixes the curved grid to a base. 小グリッドの隙間に充填剤を入れた例を示す断面図である。It is sectional drawing which shows the example which put the filler in the clearance gap between small grids. フレキシブル基板の代わりに形状記憶基板を用いる例を示す断面図である。It is sectional drawing which shows the example which uses a shape memory substrate instead of a flexible substrate. フレキシブル基板の代わりに複合基板を用いる例を示す断面図である。It is sectional drawing which shows the example which uses a composite substrate instead of a flexible substrate.
[第1実施形態]
 図1に示すように、X線画像撮影システム10は、X線照射方向であるZ方向に沿って、X線源11、線源グリッド12、第1グリッド13、第2グリッド14、及びX線画像検出器15が配置されている。
[First Embodiment]
As shown in FIG. 1, the X-ray imaging system 10 includes an X-ray source 11, a source grid 12, a first grid 13, a second grid 14, and an X-ray along the Z direction that is an X-ray irradiation direction. An image detector 15 is arranged.
 X線源11は、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、被検体HにX線を放射する。 The X-ray source 11 has a rotating anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and emits X-rays to the subject H.
 線源グリッド12、第1グリッド13及び第2グリッド14は、X線を吸収する吸収型グリッドであり、Z方向においてX線源11に対向配置されている。また、線源グリッド12、第1グリッド13及び第2グリッド14は、いずれも格子線がX方向に沿って設けられているとともに、X線源11から照射されるX線がコーンビーム状に拡散して照射されることに合わせて、Y方向に湾曲した円筒面状になっている。 The radiation source grid 12, the first grid 13, and the second grid 14 are absorption grids that absorb X-rays, and are disposed to face the X-ray source 11 in the Z direction. The source grid 12, the first grid 13, and the second grid 14 are all provided with lattice lines along the X direction, and the X-rays emitted from the X-ray source 11 diffuse in a cone beam shape. In accordance with the irradiation, the cylindrical surface is curved in the Y direction.
 線源グリッド12と第1グリッド13との間には、被検体Hが配置可能な間隔が設けられている。第1グリッド13と第2グリッド14との距離は、最小のタルボ距離以下とされている。 Between the radiation source grid 12 and the first grid 13, an interval at which the subject H can be arranged is provided. The distance between the first grid 13 and the second grid 14 is not more than the minimum Talbot distance.
 X線画像検出器15は、半導体回路を用いたフラットパネル検出器であり、第2グリッド14の背後に配置されている。 The X-ray image detector 15 is a flat panel detector using a semiconductor circuit, and is disposed behind the second grid 14.
 X線画像撮影システムの作用について説明する。X線源11から放射されたX線は、線源グリッド12のX線吸収部によって部分的に遮蔽されることにより、Y方向に関する実効的な焦点サイズが縮小され、Y方向に配列された多数のライン状のX線が形成される。各ライン状のX線は、被検体Hを通過する際に位相が変化する。この各X線が第1グリッド13を通過することにより、被検体Hの屈折率と透過光路長とから決定される被検体Hの透過位相情報を反映した縞画像が形成される。各ライン状のX線により生成された縞画像は、第2グリッド14に投影され、第2グリッド14の位置で重なり合う。 The operation of the X-ray imaging system will be described. X-rays radiated from the X-ray source 11 are partially shielded by the X-ray absorption part of the source grid 12, thereby reducing the effective focal size in the Y direction, and arranging many in the Y direction. A line-shaped X-ray is formed. The phase of each line-shaped X-ray changes when passing through the subject H. As each X-ray passes through the first grid 13, a fringe image reflecting the transmission phase information of the subject H determined from the refractive index of the subject H and the transmitted optical path length is formed. The striped image generated by each line-shaped X-ray is projected onto the second grid 14 and overlaps at the position of the second grid 14.
 縞画像は、第2グリッド14により部分的に遮蔽されることにより強度変調される。本実施形態では、縞走査法を用い、第1グリッド13に対して第2グリッド14を、間欠移動させるとともに、その停止中に、X線源11から被検体HにX線を照射してX線画像検出器15により撮影を行う。この間欠移動は、格子ピッチを等分割(例えば、5個に分割)した一定の走査ピッチでY方向に行う。 The stripe image is intensity-modulated by being partially shielded by the second grid 14. In the present embodiment, the fringe scanning method is used to intermittently move the second grid 14 with respect to the first grid 13, and X-rays are irradiated from the X-ray source 11 to the subject H while the X-ray source 11 is stopped. Photographing is performed by the line image detector 15. This intermittent movement is performed in the Y direction at a constant scanning pitch obtained by equally dividing the lattice pitch (for example, divided into five pieces).
 X線画像検出器15の各画素の画素データから強度変化を表す強度変調信号を作成し、その位相ズレ量(被検体Hがある場合とない場合とでの位相のズレ量)を算出することにより、位相微分画像が得られる。この位相微分画像は、被検体HでのX線の屈折角度の分布に対応する。この位相微分画像をX方向に沿って積分することにより、位相コントラスト画像が得られる。 An intensity modulation signal representing an intensity change is created from the pixel data of each pixel of the X-ray image detector 15, and the phase shift amount (the phase shift amount with and without the subject H) is calculated. Thus, a phase differential image is obtained. This phase differential image corresponds to the distribution of the X-ray refraction angle in the subject H. By integrating this phase differential image along the X direction, a phase contrast image is obtained.
 第1及び第2グリッド13,14は、サイズが異なるだけであるので、第2グリッド14を例にして、グリッドの構造を説明する。図2に示すように、第2グリッド14は、5枚の小グリッド17~21を備える。これらの小グリッド17~21は、いずれも同様に形成されており、外形はX方向に伸びた細長い矩形状であり、格子線もX方向に沿って設けられている。 Since the first and second grids 13 and 14 differ only in size, the grid structure will be described using the second grid 14 as an example. As shown in FIG. 2, the second grid 14 includes five small grids 17 to 21. These small grids 17 to 21 are all formed in the same manner, and the outer shape is an elongated rectangular shape extending in the X direction, and the lattice lines are also provided along the X direction.
 図3に示すように、各小グリッド17~21は、支持基板23上に貼りつけられている。小グリッド17~21は、支持基板23が平板状の時に互いに等間隔に、かつ、X方向に沿って平行に貼り付けられる。しかし、第2グリッド14の製造時に支持基板23が円筒面状に(X線画像検出器15側に凸)になるように湾曲されるので、第2グリッド14の完成時には、支持基板23の表面に沿って等間隔ではあるが、各々異なる角度を向くことになる。 As shown in FIG. 3, each of the small grids 17 to 21 is attached on the support substrate 23. The small grids 17 to 21 are attached to each other at equal intervals and in parallel along the X direction when the support substrate 23 is flat. However, since the support substrate 23 is curved so as to have a cylindrical surface (convex to the X-ray image detector 15 side) when the second grid 14 is manufactured, the surface of the support substrate 23 is completed when the second grid 14 is completed. Although they are equally spaced along each, they will face different angles.
 具体的には、第2グリッド14をX線源11側(Z方向)からみると、支持基板23の中央に配置された小グリッド19は、X線源11のほぼ正面にX方向に沿って配置される。また、小グリッド18,20は中央の小グリッド19に対して、Y方向に所定角度傾斜して配置される。小グリッド17,21は小グリッド18,20に対してY方向に傾斜して配置される。これにより、小グリッド17~21の表面は、X線源11のX線焦点11aを向き、X線の入射方向に対してほぼ垂直に配置されている。すなわち、第2グリッド14はいわゆる収束構造に近似し、小グリッド17~21の各グリッド部(後述するX吸収部25及びX線透過部26)を延長すれば、全ての小グリッド17~21のグリッド構造の延長線がX線焦点11aにほぼ収束するようになっている。 Specifically, when the second grid 14 is viewed from the X-ray source 11 side (Z direction), the small grid 19 disposed in the center of the support substrate 23 is substantially in front of the X-ray source 11 along the X direction. Be placed. Further, the small grids 18 and 20 are arranged to be inclined at a predetermined angle in the Y direction with respect to the central small grid 19. The small grids 17 and 21 are arranged to be inclined in the Y direction with respect to the small grids 18 and 20. As a result, the surfaces of the small grids 17 to 21 face the X-ray focal point 11a of the X-ray source 11 and are arranged substantially perpendicular to the X-ray incident direction. In other words, the second grid 14 approximates a so-called convergence structure, and if each grid part (X absorption part 25 and X-ray transmission part 26 described later) of the small grids 17 to 21 is extended, all of the small grids 17 to 21 are extended. The extended line of the grid structure is substantially converged to the X-ray focal point 11a.
 支持基板23は、フレキシブル基板26(第1基板)とガラス基板27(第2基板)を貼り合わせた2重構造の基板である。 The support substrate 23 is a double structure substrate in which a flexible substrate 26 (first substrate) and a glass substrate 27 (second substrate) are bonded together.
 フレキシブル基板26は可撓性であり、かつ、X線画像検出器15で検出するX線画像にほぼ影響がない程度にX線の吸収率が低い(以下、X線透過性があるという)基板であり、例えば、ポリイミドやポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ドライフィルム、パリレン、アクリル系樹脂等で形成される。但し、フレキシブル基板26は、可撓性である代わりにガラス基板27等と比較して、熱膨張係数が大きい。ポリイミドの熱膨張係数は約54×10-6/℃である。また、ポリエチレンテレフタレートは約60×10-6/℃、ポリカーボネートは約70×10-6/℃、アクリル系樹脂は約70~80×10-6/℃である。フレキシブル基板26の厚さは概ね0.01~0.1mm程度である。 The flexible substrate 26 is flexible and has a low X-ray absorptivity (hereinafter referred to as X-ray transmissive) so as not to affect the X-ray image detected by the X-ray image detector 15. For example, it is formed of polyimide, polyethylene terephthalate (PET), polycarbonate (PC), dry film, parylene, acrylic resin, or the like. However, the flexible substrate 26 has a larger thermal expansion coefficient than the glass substrate 27 or the like instead of being flexible. The thermal expansion coefficient of polyimide is about 54 × 10 −6 / ° C. Polyethylene terephthalate is about 60 × 10 −6 / ° C., polycarbonate is about 70 × 10 −6 / ° C., and acrylic resin is about 70 to 80 × 10 −6 / ° C. The thickness of the flexible substrate 26 is about 0.01 to 0.1 mm.
 ガラス基板27は、後述するようにフレキシブル基板26の熱膨張係数が大きいことによる弊害を低減するためにフレキシブル基板26に貼り合わせられるものであり、X線透過性を有し、かつ、フレキシブル基板26よりも熱膨張係数が小さいガラスで形成されている。ガラス基板27は、例えば、パイレックスガラスやソーダガラスで形成される。パイレックスガラスの熱膨張係数は約3.2×10-6/℃、ソーダガラスの熱膨張係数は約9.0×10-6/℃である。ガラス基板27の厚さは、概ね0.1~0.7mm程度である。 As will be described later, the glass substrate 27 is bonded to the flexible substrate 26 in order to reduce adverse effects due to the large thermal expansion coefficient of the flexible substrate 26, has X-ray transparency, and is flexible. It is formed of glass having a smaller thermal expansion coefficient than that of glass. The glass substrate 27 is made of, for example, Pyrex glass or soda glass. Pyrex glass has a thermal expansion coefficient of about 3.2 × 10 −6 / ° C., and soda glass has a thermal expansion coefficient of about 9.0 × 10 −6 / ° C. The thickness of the glass substrate 27 is about 0.1 to 0.7 mm.
 なお、ここではフレキシブル基板26にガラス基板27を貼り合わせて支持基板23を形成する例を挙げて説明するが、フレキシブル基板26に貼り合わせる基板は、X線透過性を有し、かつ、フレキシブル基板26よりも熱膨張係数が小さい材料で形成されていれば必ずしもガラスで形成されている必要はない。例えば、ガラス基板27の代わりに、石英、シリコン、アルミナ、アルミニウム、チタンやチタン合金、ニッケル、ステンレス等で形成された基板をフレキシブル基板26に貼り合わせて支持基板23を形成しても良い。 Here, an example in which the glass substrate 27 is bonded to the flexible substrate 26 to form the support substrate 23 will be described. However, the substrate bonded to the flexible substrate 26 has X-ray transparency and is a flexible substrate. If it is made of a material having a thermal expansion coefficient smaller than 26, it is not necessarily formed of glass. For example, instead of the glass substrate 27, a substrate formed of quartz, silicon, alumina, aluminum, titanium, a titanium alloy, nickel, stainless steel, or the like may be bonded to the flexible substrate 26 to form the support substrate 23.
 また、ガラス基板26はフレキシブル基板26に貼り合わせられる段階では平行平板であるが、小グリッド17~21を配置し、支持基板23を湾曲させると、ガラス基板26は小グリッド17~21間で亀裂を生じ、分断される。このため、完成状態の第2グリッド14は、湾曲したフレキシブル基板26上に、分断されたガラス基板27の切片と小グリッド17~21との積層体が配列されており、フレキシブル基板26によって湾曲しつつ、かつ、全体が一体に形成されている。すなわち、ガラス基板27の切片と小グリッド17~21との各々の積層体がフレキシブル基板26によって一体に保持されている。前述のように、ガラス基板26の代わりに金属系材料で形成された基板を用いる場合には、支持基板23の湾曲したときに、金属系基板が小グリッド17~21間で展延し、亀裂が入らずに一体になったままになっていることもある。 The glass substrate 26 is a parallel plate at the stage of being bonded to the flexible substrate 26. However, when the small grids 17 to 21 are arranged and the support substrate 23 is curved, the glass substrate 26 cracks between the small grids 17 to 21. And is divided. For this reason, the completed second grid 14 is formed by arranging a sliced piece of the glass substrate 27 and the small grids 17 to 21 on the curved flexible substrate 26, and is curved by the flexible substrate 26. However, the whole is integrally formed. That is, the laminated body of the slice of the glass substrate 27 and the small grids 17 to 21 is integrally held by the flexible substrate 26. As described above, when a substrate made of a metal material is used instead of the glass substrate 26, when the support substrate 23 is curved, the metal substrate spreads between the small grids 17 to 21 and cracks occur. Sometimes it stays together without entering.
 図4に示すように、小グリッド17~21は、下地基板31とグリッド部32とを有する。下地基板31は、グリッド部32を形成するときの下地となる基板であり、X線透過性を有し、少なくともフレキシブル基板26と比較して熱膨張係数が小さい材料(シリコンやガラス、カーボン等)で形成される。 As shown in FIG. 4, each of the small grids 17 to 21 has a base substrate 31 and a grid portion 32. The base substrate 31 is a substrate serving as a base when the grid portion 32 is formed. The base substrate 31 is a material having X-ray transparency and a coefficient of thermal expansion smaller than that of the flexible substrate 26 (silicon, glass, carbon, etc.). Formed with.
 グリッド部32は、金やプラチナ等で形成されたX線吸収部32aと、シリコン等のX線透過性を有する材料で形成されたX線透過部32bを有する。X線吸収部32aとX線透過部32bは、X方向に延伸して設けられているとともに、下地基板31の表面に垂直に設けられている。また、X線吸収部32a及びX線透過部32bは、下地基板31の表面に沿って隙間なく交互に設けられている。小グリッド19の場合、X線吸収部32a及びX線透過部32bはY方向に交互に配列されている。他の小グリッド17~18,20~21の場合、前述のように支持基板23の湾曲に応じて傾斜しているが、構造は小グリッド19と同様である。 The grid portion 32 has an X-ray absorbing portion 32a formed of gold, platinum, or the like, and an X-ray transmitting portion 32b formed of a material having X-ray permeability such as silicon. The X-ray absorption part 32 a and the X-ray transmission part 32 b are provided extending in the X direction and provided perpendicular to the surface of the base substrate 31. In addition, the X-ray absorption parts 32 a and the X-ray transmission parts 32 b are alternately provided along the surface of the base substrate 31 without a gap. In the case of the small grid 19, the X-ray absorption parts 32a and the X-ray transmission parts 32b are alternately arranged in the Y direction. The other small grids 17 to 18 and 20 to 21 are inclined according to the curvature of the support substrate 23 as described above, but the structure is the same as that of the small grid 19.
 X線吸収部32aの幅W2及びピッチP2は、線源グリッド12と第1グリッド13との距離、第1グリッド13と第2グリッド14との距離、及び第1グリッド13のX線吸収部のピッチ等によって決まる。例えば、幅W2は、2~20μm程度であり、ピッチP2は、4~40μm程度である。また、X線吸収部25の厚みT2は、高いX線吸収性を得るためには厚いほど良いが、X線のケラレを考慮して100μm程度とすることが好ましい。本実施形態では、例えば、幅W2を2.5μm、ピッチP2を5μm、厚みT2を100μmとする。なお、これらの値は全ての小グリッド17~21に共通である。 The width W2 and the pitch P2 of the X-ray absorption part 32a are the distance between the source grid 12 and the first grid 13, the distance between the first grid 13 and the second grid 14, and the X-ray absorption part of the first grid 13. It depends on the pitch. For example, the width W2 is about 2 to 20 μm, and the pitch P2 is about 4 to 40 μm. The thickness T2 of the X-ray absorbing portion 25 is preferably as thick as possible in order to obtain high X-ray absorption, but is preferably about 100 μm in consideration of vignetting of X-rays. In the present embodiment, for example, the width W2 is 2.5 μm, the pitch P2 is 5 μm, and the thickness T2 is 100 μm. These values are common to all the small grids 17 to 21.
 なお、下地基板31とグリッド部32の間にはシーズ層33が設けられているが、後述するようにシーズ層33は、X線吸収部32aを形成するための導電層である。また、小グリッド17~21は、接着剤36によってガラス基板27の表面に貼り付けられており、フレキシブル基板26とガラス基板27は接着剤37によって貼り合わせられている。接着剤36,37は、X線透過性と接着性を有するものであれば良く、レジストやパリレン、ポリイミド等を用いても良い。接着剤36,37の厚さは概ね10μm程度である。 A seed layer 33 is provided between the base substrate 31 and the grid portion 32. As will be described later, the seed layer 33 is a conductive layer for forming the X-ray absorption portion 32a. The small grids 17 to 21 are attached to the surface of the glass substrate 27 with an adhesive 36, and the flexible substrate 26 and the glass substrate 27 are attached together with an adhesive 37. The adhesives 36 and 37 may be any one having X-ray transparency and adhesiveness, and resist, parylene, polyimide, or the like may be used. The thickness of the adhesives 36 and 37 is approximately 10 μm.
 線源グリッド12及び第1グリッド13は、第2グリッド14と同様に、複数の小グリッドと、小グリッドが接着剤によって接合された支持基板とで構成されている。また、線源グリッド12及び第1グリッド13の小グリッドは、第2グリッド14と同様にグリッド部及び下地基板を備えている。グリッド部の構造も第2グリッド14のグリッド部32と同様であるが、X線吸収部及びX線透過部の幅やピッチ、厚さが各々の配置等に応じて異なる。 As with the second grid 14, the radiation source grid 12 and the first grid 13 are composed of a plurality of small grids and a support substrate in which the small grids are bonded together with an adhesive. Further, the small grids of the source grid 12 and the first grid 13 are provided with a grid portion and a base substrate in the same manner as the second grid 14. The structure of the grid part is the same as that of the grid part 32 of the second grid 14, but the width, pitch, and thickness of the X-ray absorption part and the X-ray transmission part differ depending on the arrangement and the like.
 次に、第2グリッド14を例にして、本発明のグリッドの製造方法について説明する。なお、線源グリッド12や第1グリッド13の製造方法も同様であるため、これらの説明は省略する。 Next, the grid manufacturing method of the present invention will be described using the second grid 14 as an example. In addition, since the manufacturing method of the source grid 12 and the 1st grid 13 is also the same, these description is abbreviate | omitted.
 まず、小グリッド17~21は次のように作製される。図5に示すように、シリコン等により形成されたX線透過性基板41の下面に下地基板31が接合される。このとき、下地基板31とX線透過性基板41の接合面には、シーズ層33が形成される。 First, the small grids 17 to 21 are manufactured as follows. As shown in FIG. 5, a base substrate 31 is bonded to the lower surface of an X-ray transparent substrate 41 formed of silicon or the like. At this time, a seed layer 33 is formed on the bonding surface between the base substrate 31 and the X-ray transparent substrate 41.
 X線透過性基板41は、後にグリッド部32のX線透過部32bになるので、X線透過性基板41はX線透過部32bの材料で形成され、その厚さはグリッド部32(X線透過部32b)の厚さである。また、X線透過性基板41は、下地基板31と熱膨張率がほぼ等しい材料であることが特に好ましい。これは、X線撮影装置10の使用中に第2グリッド14の温度が変化しても、下地基板31とX線透過部32b(X線透過性基板41)の熱膨張率の相違によりグリッド部32が破損してしまわないようにするためである。具体的には、例えば、下地基板31とX線透過性基板41に同じシリコン基板を用いれば良い。 Since the X-ray transmissive substrate 41 will later become the X-ray transmissive portion 32b of the grid portion 32, the X-ray transmissive substrate 41 is formed of the material of the X-ray transmissive portion 32b, and the thickness thereof is determined by the grid portion 32 (X-ray transmissive portion). It is the thickness of the transmission part 32b). The X-ray transparent substrate 41 is particularly preferably made of a material having a thermal expansion coefficient substantially equal to that of the base substrate 31. This is because even if the temperature of the second grid 14 changes during use of the X-ray imaging apparatus 10, the grid portion is caused by the difference in thermal expansion coefficient between the base substrate 31 and the X-ray transmission portion 32 b (X-ray transmission substrate 41). This is to prevent 32 from being damaged. Specifically, for example, the same silicon substrate may be used for the base substrate 31 and the X-ray transparent substrate 41.
 シーズ層33は、例えば、AuまたはNi、もしくはAl、Ti、Cr、Cu、Ag、Ta、W、Pb、Pd、Pt等の金属膜、あるいはそれらの合金を材料とする金属膜で形成される。シーズ層33は、下地基板31の上面に設けてからX線透過性基板41と接合しても良いし、X線透過性基板41の下面に設けても良い。下地基板31の上面とX線等か基板41の下面の両方に設けても良い。 The seed layer 33 is formed of, for example, Au or Ni, or a metal film made of a metal film such as Al, Ti, Cr, Cu, Ag, Ta, W, Pb, Pd, or Pt, or an alloy thereof. . The seed layer 33 may be provided on the upper surface of the base substrate 31 and then bonded to the X-ray transmissive substrate 41, or may be provided on the lower surface of the X-ray transmissive substrate 41. It may be provided on both the upper surface of the base substrate 31 and the lower surface of the substrate 41 or the like.
 次いで、図6に示すように、X線透過性基板41の表面には、フォトリソグラフィ技術を用いてエッチングマスク42が形成される。エッチングマスク42は、X方向に直線上に延伸され、かつ、Y方向に所定ピッチで周期的に配列されたラインアンドスペース状のパターンを有する。エッチングパターン42の幅及びピッチは、X線透過部32bの幅W2及びピッチP2とする。 Next, as shown in FIG. 6, an etching mask 42 is formed on the surface of the X-ray transparent substrate 41 by using a photolithography technique. The etching mask 42 has a line-and-space pattern that extends linearly in the X direction and is periodically arranged at a predetermined pitch in the Y direction. The width and pitch of the etching pattern 42 are the width W2 and the pitch P2 of the X-ray transmission part 32b.
 エッチングマスク42を形成すると、図7に示すように、エッチングマスク42をマスクとしてシーズ層33が露呈されるまでドライエッチングをすることにより、X線透過性基板41に複数の溝43と、X線透過部32bが形成される。溝32は後にX線吸収部32aとなるので、幅数μm、深さ100μm程度の高いアスペクト比で形成される。このため、溝43及びX線透過部32bを形成するドライエッチングには、ボッシュプロセス、クライオプロセス等の深堀用のドライエッチングが用いられる。なお、シリコンの代わりに感光性レジストを用いてX線透過性基板41を形成し、シンクロトロン放射光で露光することにより溝を形成しても良い。 When the etching mask 42 is formed, as shown in FIG. 7, by performing dry etching until the seeds layer 33 is exposed using the etching mask 42 as a mask, a plurality of grooves 43 and X-rays are formed in the X-ray transparent substrate 41. A transmission part 32b is formed. Since the groove 32 will later become the X-ray absorbing portion 32a, it is formed with a high aspect ratio of several μm in width and about 100 μm in depth. For this reason, deep etching dry etching such as a Bosch process or a cryo process is used for the dry etching for forming the groove 43 and the X-ray transmission part 32b. Alternatively, the groove may be formed by forming the X-ray transparent substrate 41 using a photosensitive resist instead of silicon and exposing it with synchrotron radiation.
 溝43及びX線透過部32bが形成されると、図8に示すように、電解メッキにより溝43内に金等のX線吸収材が充填される。これにより、溝43にX線吸収部32aが形成される。具体的には、シーズ層33に電流端子が接続され、X線透過性基板41は下地基板31に接合された状態でメッキ液中に浸漬される。そして、X線透過性基板41と対向させた位置には、もう一方の電極(陽極)が用意され、電流端子と陽極との間に電流が流される。これにより、メッキ液中の金属イオンがパターン加工されたX線透過性基板41に析出し、溝43内に金が埋め込まれる。 When the groove 43 and the X-ray transmission part 32b are formed, as shown in FIG. 8, the groove 43 is filled with an X-ray absorber such as gold by electrolytic plating. Thereby, the X-ray absorption part 32 a is formed in the groove 43. Specifically, the current terminal is connected to the sheath layer 33, and the X-ray transparent substrate 41 is immersed in the plating solution while being bonded to the base substrate 31. Then, another electrode (anode) is prepared at a position facing the X-ray transmissive substrate 41, and a current flows between the current terminal and the anode. As a result, metal ions in the plating solution are deposited on the patterned X-ray transparent substrate 41, and gold is embedded in the grooves 43.
 こうして、X線吸収部32aが形成されると、エッチングマスク42はアッシング法等により、除去される。これにより、小グリッド17~21が形成される。 Thus, when the X-ray absorbing portion 32a is formed, the etching mask 42 is removed by an ashing method or the like. Thereby, small grids 17 to 21 are formed.
 なお、溝43へのX線吸収材の充填方法は、上述の電解メッキ法に限らず、例えば、X線吸収材をペースト状やコロイド状にして充填しても良い。この場合にはシーズ層33は不要なので、下地基板31とX線透過性基板41は直接接合して良い。 In addition, the filling method of the X-ray absorber in the groove 43 is not limited to the above-described electrolytic plating method, and for example, the X-ray absorber may be filled in a paste form or a colloid form. In this case, since the seed layer 33 is unnecessary, the base substrate 31 and the X-ray transmissive substrate 41 may be directly bonded.
 上述のように、小グリッド17~21が形成されるのとは別に、以下に説明するように支持基板23が形成される。図9に示すように、まず、接着剤37を用いて、フレキシブル基板26の表面にガラス基板27が貼り合わせられる。このとき、フレキシブル基板26及びガラス基板27はどちらも平行平板状である。したがって、この段階で支持基板23は平行平板状である。 As described above, apart from the formation of the small grids 17 to 21, the support substrate 23 is formed as described below. As shown in FIG. 9, first, a glass substrate 27 is bonded to the surface of the flexible substrate 26 using an adhesive 37. At this time, both the flexible substrate 26 and the glass substrate 27 have a parallel plate shape. Accordingly, at this stage, the support substrate 23 has a parallel plate shape.
 フレキシブル基板26にガラス基板27を貼り合わせると、図10(A)に示すように、ガラス基板27には所定間隔でX方向に延伸された直線状の溝51が形成される。溝51は、後の工程で支持基板23を湾曲させる時に、自然に支持基板23が折れ曲がる位置になる、折れ曲がりのガイドの役割を果たす。 When the glass substrate 27 is bonded to the flexible substrate 26, as shown in FIG. 10A, linear grooves 51 extending in the X direction at predetermined intervals are formed in the glass substrate 27. The groove 51 serves as a guide for bending, which is a position where the support substrate 23 is naturally bent when the support substrate 23 is bent in a later step.
 溝51は、ガラス基板27を深さ方向に部分的に切削して形成されるものであり、溝51の底にはガラス基板27が残されている。このため、溝51を形成しても、溝51からフレキシブル基板26は露呈されず、ガラス基板27は一体である。溝51の深さは、ガラス基板27の剛性によって、後の工程において支持基板23の平行平板形状を維持できる程度の深さに設けられる。このため、温度変化等によるフレキシブル基板26が膨張(収縮)したり、小グリッド17~21の貼り付け時に多少の圧力がかかったりしても、意図せず溝51でガラス基板27が分断されて、溝51間に残るガラス基板27の間隔が拡縮したり、支持基板23が折れ曲がってしまったりすることはないようになっている。前述のように、支持基板27を湾曲させる時に、折り曲がりのガイドとなる深さであれば、溝51は極浅いものでも良い。 The groove 51 is formed by partially cutting the glass substrate 27 in the depth direction, and the glass substrate 27 is left at the bottom of the groove 51. For this reason, even if the groove 51 is formed, the flexible substrate 26 is not exposed from the groove 51 and the glass substrate 27 is integrated. The depth of the groove 51 is set to such a depth that the parallel plate shape of the support substrate 23 can be maintained in a later process due to the rigidity of the glass substrate 27. For this reason, even if the flexible substrate 26 expands (shrinks) due to a temperature change or a slight pressure is applied when the small grids 17 to 21 are attached, the glass substrate 27 is unintentionally divided by the grooves 51. The space between the glass substrates 27 remaining between the grooves 51 does not expand or contract, and the support substrate 23 is not bent. As described above, when the support substrate 27 is curved, the groove 51 may be extremely shallow as long as the depth becomes a guide for bending.
 また、図10(B)に示すように、溝51は、支持基板23の端までX方向に延伸された直線状である。また、各々の溝51は平行である。 Further, as shown in FIG. 10B, the groove 51 has a linear shape extending to the end of the support substrate 23 in the X direction. Each groove 51 is parallel.
 溝51は、ウェットエッチングやサンドブラスト、レーザー照射等により形成される。例えば、ウェットエッチング等により溝51を形成するときには、ガラス基板27の表面に、形成する溝51を露呈するレジストパターンを形成し、これをマスクとしてガラス基板27をエッチングする。 The groove 51 is formed by wet etching, sand blasting, laser irradiation or the like. For example, when the grooves 51 are formed by wet etching or the like, a resist pattern that exposes the grooves 51 to be formed is formed on the surface of the glass substrate 27, and the glass substrate 27 is etched using the resist pattern as a mask.
 また、図10(B)に示すように、ガラス基板27の表面にはアライメントマーク52が形成される。アライメントマーク52は、小グリッド17~21を溝51に沿って平行に、かつ、各小グリッド17~21の間隔が一定になるように位置合わせをするための基準である。したがって、溝51とアライメントマーク52は高精度に位置あわせされていることが必要である。アライメントマーク52は、溝51と同時に、溝51を形成する方法と同じ方法で溝51と同時に形成しても良いし、溝51の形成とは別工程で形成しても良い。溝51と別工程でアライメントマーク52を形成するときには、溝51の形成方法とアライメントマーク52の形成方法は異なっていても良い。また、アライメントマーク52を先に形成して、アライメントマーク52に合わせて溝51を形成するようにしても良い。 Further, as shown in FIG. 10B, an alignment mark 52 is formed on the surface of the glass substrate 27. The alignment mark 52 is a reference for aligning the small grids 17 to 21 in parallel along the groove 51 so that the intervals between the small grids 17 to 21 are constant. Therefore, the groove 51 and the alignment mark 52 need to be aligned with high accuracy. The alignment mark 52 may be formed at the same time as the groove 51 at the same time as the groove 51, or may be formed at a different process from the formation of the groove 51. When forming the alignment mark 52 in a separate process from the groove 51, the method for forming the groove 51 and the method for forming the alignment mark 52 may be different. Alternatively, the alignment mark 52 may be formed first, and the groove 51 may be formed according to the alignment mark 52.
 アライメントマーク52を設ける位置は、小グリッド17~21の配置時に位置合わせを行うことができる箇所であれば任意である。図10(B)では、アライメントマーク52は溝51の横に、かつ、小グリッド17~21を配置したときに小グリッド17~21によって隠れない位置に所定の間隔で複数設けた例を示している(図11も参照)。小グリッド17~21を溝51に対して平行に、かつ、各小グリッド17~21の間隔を一定に設けることができれば、アライメントマーク52は小グリッド17~21によって一部あるいは全部が隠れる位置に設けても良い。 The position where the alignment mark 52 is provided is arbitrary as long as it can be aligned when the small grids 17 to 21 are arranged. FIG. 10B shows an example in which a plurality of alignment marks 52 are provided at predetermined intervals on the side of the groove 51 and not hidden by the small grids 17 to 21 when the small grids 17 to 21 are arranged. (See also FIG. 11). If the small grids 17 to 21 are parallel to the groove 51 and the intervals between the small grids 17 to 21 can be set constant, the alignment mark 52 is located at a position where part or all of the alignment marks 52 are hidden by the small grids 17 to 21. It may be provided.
 上述のように、ガラス基板27の表面に、溝51及びアライメントマーク52を設けると、図11に示すように、先に作製した小グリッド17~21は下地基板31をガラス基板27に向けて、接着剤36を用いて貼り付けられる。このとき、小グリッド17~21は、アライメントマーク52を参照することにより、溝51間の中央に、溝51に対して平行に位置を調節してガラス基板27上に配置される。 As described above, when the grooves 51 and the alignment marks 52 are provided on the surface of the glass substrate 27, the small grids 17 to 21 previously produced have the base substrate 31 facing the glass substrate 27 as shown in FIG. Affixed using an adhesive 36. At this time, the small grids 17 to 21 are arranged on the glass substrate 27 with reference to the alignment mark 52 so that the positions of the small grids 17 to 21 are adjusted in parallel to the groove 51 in the center.
 こうして平行平板状の支持基板23の上に小グリッド17~21が貼り付けられると、図12に示すように、支持基板23が湾曲される。支持基板23が湾曲されると、折り曲げによる応力は溝51に集中し、ガイドである溝51に亀裂53が生じ、ガラス基板27は亀裂53によって分断される。これにより、支持基板23は、亀裂53を支点に自在に折り曲げ可能となる。このため、支持基板23を、概ね小グリッド17~21の向きがコーンビーム状のX線の広がりに合致するように湾曲させることで第2グリッド14が形成される。 Thus, when the small grids 17 to 21 are affixed on the parallel flat plate-like support substrate 23, the support substrate 23 is curved as shown in FIG. When the support substrate 23 is curved, the stress due to the bending is concentrated in the groove 51, a crack 53 is generated in the groove 51 as a guide, and the glass substrate 27 is divided by the crack 53. Thereby, the support substrate 23 can be freely bent with the crack 53 as a fulcrum. For this reason, the second grid 14 is formed by curving the support substrate 23 so that the directions of the small grids 17 to 21 substantially coincide with the spread of cone-beam X-rays.
 上述のように、フレキシブル基板26とガラス基板27を貼り合わせた平行平板状の支持基板23上に、小グリッド17~21を配置した後に、支持基板23を湾曲させて第2グリッド14を形成すると、各小グリッド17~21を高精度に位置決めすることができる。すなわち、小グリッド17~21間の相対的な位置精度が良い。例えば、予め円筒面状に湾曲した面上に小グリッド17~21を配置しようとすると、各小グリッドの位置や向きを3次元的に位置合わせしなければならない。一方、上述の第1実施形態のように、平行平板状の支持基板23に、平面上で2次元的な位置合わせをして小グリッドを配置した後、支持基板23を湾曲させると、平面上で行った位置合わせ精度を保ったまま湾曲したグリッドを形成することができる。このため、上述の第1実施形態によれば、小グリッド17~21間の位置合わせが容易である。 As described above, after the small grids 17 to 21 are arranged on the parallel plate-like support substrate 23 in which the flexible substrate 26 and the glass substrate 27 are bonded together, the support substrate 23 is curved to form the second grid 14. The small grids 17 to 21 can be positioned with high accuracy. That is, the relative positional accuracy between the small grids 17 to 21 is good. For example, if the small grids 17 to 21 are to be arranged on a surface curved in a cylindrical shape in advance, the position and orientation of each small grid must be aligned three-dimensionally. On the other hand, when the support substrate 23 is curved after the two-dimensional alignment on the plane and the small grid are arranged on the parallel plate-like support substrate 23 as in the first embodiment described above, A curved grid can be formed while maintaining the alignment accuracy performed in. For this reason, according to the first embodiment described above, alignment between the small grids 17 to 21 is easy.
 また、ガラス基板27を用いず、平行平板状のフレキシブル基板26上に直接小グリッド17~21を配置する場合、フレキシブル基板26上に小グリッド17~21の配置を決定するためのアライメントマーク52を設けることになる。しかし、ガラス基板27よりもフレキシブル基板26が拡縮しやすいので、フレキシブル基板26上にアライメントマーク52を設ける場合、アライメントマーク52の間隔等が変化しやすい。このため、フレキシブル基板26上に設けたアライメントマークにしたがって小グリッドを位置合せするとしても、高精度な位置合わせは困難である。一方、上述の実施形態のように、フレキシブル基板26とガラス基板27を貼り合わせた支持基板23上に、小グリッド17~21を配置し、かつ、小グリッド17~21を位置合わせするためのアライメントマーク52をガラス基板27上に設けると、ガラス基板27はフレキシブル基板26よりも熱膨張係数が小さく、拡縮し難いので、ガラス基板27上に設けたアライメントマーク52にしたがって小グリッド17~21を配置すれば、小グリッド17~21を容易に高精度に位置合わせすることができる。 When the small grids 17 to 21 are arranged directly on the parallel flat plate-like flexible substrate 26 without using the glass substrate 27, an alignment mark 52 for determining the arrangement of the small grids 17 to 21 is provided on the flexible substrate 26. Will be provided. However, since the flexible substrate 26 is more easily expanded and contracted than the glass substrate 27, when the alignment marks 52 are provided on the flexible substrate 26, the interval between the alignment marks 52 is likely to change. For this reason, even if the small grid is aligned according to the alignment mark provided on the flexible substrate 26, it is difficult to perform highly accurate alignment. On the other hand, as in the above-described embodiment, the small grids 17 to 21 are arranged on the support substrate 23 to which the flexible substrate 26 and the glass substrate 27 are bonded, and the alignment for aligning the small grids 17 to 21 is performed. When the mark 52 is provided on the glass substrate 27, the glass substrate 27 has a smaller thermal expansion coefficient than the flexible substrate 26 and is difficult to expand or contract. Therefore, the small grids 17 to 21 are arranged according to the alignment mark 52 provided on the glass substrate 27. Thus, the small grids 17 to 21 can be easily aligned with high accuracy.
 さらに、フレキシブル基板26の表面に、小グリッド17~21を直接配置すると、フレキシブル基板26が折れ曲がる位置は、小グリッド17~21間で不定である。したがって、フレキシブル基板26の表面に小グリッド17~21を直接配置してフレキシブル基板26を湾曲させると、折れ曲がりの位置が小グリッド17~21間で不定であることに応じた小グリッド17~21間の配置(角度)の誤差が生じる。しかし、上述の実施形態のように、フレキシブル基板26とガラス基板27を貼り合わせた支持基板23を用い、ガラス基板27にフレキシブル基板26の折曲のガイドとなる溝51を設けると、フレキシブル基板26の折れ曲がりは、溝51(亀裂53)に沿って生じる。このため、支持基板23を湾曲させた時の小グリッド17~21の配置(角度)の誤差は殆ど生じず、上述の実施形態のようにして製造したグリッドは高精度である。 Furthermore, when the small grids 17 to 21 are directly arranged on the surface of the flexible substrate 26, the position where the flexible substrate 26 is bent is indefinite between the small grids 17 to 21. Therefore, when the small grids 17 to 21 are directly arranged on the surface of the flexible substrate 26 and the flexible substrate 26 is curved, the bending positions are indeterminate between the small grids 17 to 21 according to the indefinite position between the small grids 17 to 21. An error in the arrangement (angle) of. However, when the support substrate 23 in which the flexible substrate 26 and the glass substrate 27 are bonded together as in the above-described embodiment and the groove 51 serving as a guide for bending the flexible substrate 26 is provided in the glass substrate 27, the flexible substrate 26. Is bent along the groove 51 (crack 53). For this reason, errors in the arrangement (angle) of the small grids 17 to 21 when the support substrate 23 is curved hardly occur, and the grid manufactured as in the above embodiment has high accuracy.
 なお、フレキシブル基板26上に大サイズのグリッド部を直接形成する場合は、フレキシブル基板26の拡縮により、X線透過部32bの幅W2やピッチP2が変化しやすいが、小グリッド17~21を用いてグリッドを形成すると、X線透過部32bの幅W2やピッチP2の精度はフレキシブル基板26の拡縮に殆ど影響されず、一定である。このため、上述の実施形態のようにして形成されたグリッドは安定した性能を発揮することができる。 When a large-size grid portion is directly formed on the flexible substrate 26, the width W2 and the pitch P2 of the X-ray transmission portion 32b are likely to change due to the expansion / contraction of the flexible substrate 26, but the small grids 17 to 21 are used. When the grid is formed, the accuracy of the width W2 and the pitch P2 of the X-ray transmission part 32b is almost unaffected by the expansion / contraction of the flexible substrate 26 and is constant. For this reason, the grid formed like the above-mentioned embodiment can exhibit the stable performance.
 なお、上述の第1実施形態では、フレキシブル基板26にガラス基板27を貼り合わせ、支持基板23を形成した後に、ガラス基板27上に溝51やアライメントマーク52を形成している。この代わりに、ガラス基板27上に溝51やアライメントマーク52を予め形成しておき、溝51やアライメントマーク52が既に形成されたガラス基板27をフレキシブル基板26に貼り合わせて支持基板23を形成しても良い。後述する第2,第3実施形態でも同様である。 In the first embodiment described above, the groove 51 and the alignment mark 52 are formed on the glass substrate 27 after the glass substrate 27 is bonded to the flexible substrate 26 to form the support substrate 23. Instead, grooves 51 and alignment marks 52 are formed in advance on the glass substrate 27, and the glass substrate 27 on which the grooves 51 and the alignment marks 52 are already formed is bonded to the flexible substrate 26 to form the support substrate 23. May be. The same applies to the second and third embodiments described later.
[第2実施形態]
 なお、上述の第1実施形態では、ガラス基板27にフレキシブル基板26の折れ曲がり位置を特定するための溝51を形成する例を説明しているが、さらにフレキシブル基板26に折れ曲がりの位置を特定する処置を施しても良い。
[Second Embodiment]
In the first embodiment described above, an example is described in which the groove 51 for specifying the bending position of the flexible substrate 26 is formed in the glass substrate 27. However, the treatment for specifying the bending position in the flexible substrate 26 is further described. May be applied.
 例えば、図13に示すように、フレキシブル基板26の露呈表面(支持基板23の裏面)に、ガラス基板27に設けた溝51に合わせて、低剛性部61を形成する。低剛性部61は、フレキシブル基板26の中でも剛性が低く、支持基板23を湾曲させる時に応力が集中して特に折れ曲がりやすいようにした箇所である。低剛性部61は、例えば、エッチングによって溝を形成したり、レーザーの照射等の局所的な熱処理をしたりすることによって形成される。また、低剛性部61は、ガラス基板27に設けたアライメントマーク52を指標として観察することで、ガラス基板27の溝51に対して位置合わせをすることができる。 For example, as shown in FIG. 13, a low-rigidity portion 61 is formed on the exposed surface of the flexible substrate 26 (the back surface of the support substrate 23) in accordance with the grooves 51 provided in the glass substrate 27. The low-rigidity portion 61 is a portion that is low in rigidity among the flexible substrates 26 and is particularly easy to bend due to stress concentration when the support substrate 23 is bent. The low-rigidity portion 61 is formed, for example, by forming a groove by etching or performing a local heat treatment such as laser irradiation. In addition, the low rigidity portion 61 can be aligned with the groove 51 of the glass substrate 27 by observing the alignment mark 52 provided on the glass substrate 27 as an index.
 このように、ガラス基板27の溝51に合わせて、フレキシブル基板26にも低剛性部61を設けておくと、支持基板23を湾曲させたときに、より確実に溝51及び低剛性部61に沿って支持基板23が湾曲する。このため、支持基板23を湾曲後のグリッドにおける小グリッド17~21の配置精度がより高精度になる。 As described above, if the flexible substrate 26 is also provided with the low-rigidity portion 61 in accordance with the groove 51 of the glass substrate 27, the groove 51 and the low-rigidity portion 61 can be more reliably formed when the support substrate 23 is curved. The support substrate 23 is curved along the surface. For this reason, the placement accuracy of the small grids 17 to 21 in the grid after bending the support substrate 23 becomes higher.
 また、図13では、フレキシブル基板26の露呈表面(支持基板23の裏面)に低剛性部61を形成しているが、図14に示すように、低剛性部61は、ガラス基板27との接合面側に設けても良い。この場合、レーザー照射による局所的な熱処理によって低剛性部61を形成することが好ましい。 In FIG. 13, the low rigidity portion 61 is formed on the exposed surface of the flexible substrate 26 (the back surface of the support substrate 23). However, as shown in FIG. 14, the low rigidity portion 61 is bonded to the glass substrate 27. You may provide in the surface side. In this case, it is preferable to form the low rigidity portion 61 by local heat treatment by laser irradiation.
 なお、上述の第2実施形態では、ガラス基板27に設けた溝51(及びアライメントマーク52)に合わせて、フレキシブル基板26に低剛性部61を設けているが、フレキシブル基板26に予め低剛性部61を設けておいても良い。 In the second embodiment described above, the low rigidity portion 61 is provided in the flexible substrate 26 in accordance with the groove 51 (and the alignment mark 52) provided in the glass substrate 27. However, the low rigidity portion 61 is provided in the flexible substrate 26 in advance. 61 may be provided.
 但し、フレキシブル基板26に予め低剛性部61を設ける場合に、ガラス基板27に設ける溝51と同等かそれ以下の幅で低剛性部61を形成すると、前述の通りフレキシブル基板26の拡縮により、溝51と低剛性部61の位置合わせを高精度に行うことは難しい。また、溝51と低剛性部61の位置がずれていると、支持基板23の折れ曲がりのガイドにはなり得ない。このため、上述のようにフレキシブル基板26に予め低剛性部61を設ける場合には、フレキシブル基板26の拡縮によって低剛性部61の位置がズレたとしても、溝51の直下が低剛性部61であるように、溝51よりも幅広に低剛性部61を設けておくことが好ましい。 However, when the low-rigidity portion 61 is provided in the flexible substrate 26 in advance, if the low-rigidity portion 61 is formed with a width equal to or less than the groove 51 provided in the glass substrate 27, the groove is caused by expansion / contraction of the flexible substrate 26 as described above. It is difficult to align 51 and the low rigidity portion 61 with high accuracy. Further, if the positions of the groove 51 and the low-rigidity portion 61 are deviated, the support substrate 23 cannot be a guide for bending. For this reason, when the low-rigidity portion 61 is provided in advance on the flexible substrate 26 as described above, even if the position of the low-rigidity portion 61 is displaced due to the expansion / contraction of the flexible substrate 26, the low-rigidity portion 61 is directly below the groove 51. As shown, it is preferable to provide the low rigidity portion 61 wider than the groove 51.
 また、上述の第2実施形態では、低剛性部61がフレキシブル基板26の厚さ方向に部分的に設けられているが、溝51に対応する厚さ方向の全体を低剛性部61にしても良い。但し、フレキシブル基板26の表面近傍に低剛性部61を設けるほうが、処理が容易である。 In the second embodiment described above, the low-rigidity portion 61 is partially provided in the thickness direction of the flexible substrate 26, but the entire thickness direction corresponding to the groove 51 is the low-rigidity portion 61. good. However, processing is easier when the low-rigidity portion 61 is provided near the surface of the flexible substrate 26.
[第3実施形態]
 上述の第1,第2実施形態では、ガラス基板27に設ける溝51が支持基板23の端まで直線的に設けられているが、この他に、第1,第2実施形態におけるガラス基板27の溝51を、図15に示すように、ガラス基板27を切削した溝62とガラス基板27を切削していない結合部63とでミシン目状に形成しても良い。
[Third Embodiment]
In the first and second embodiments described above, the groove 51 provided in the glass substrate 27 is linearly provided to the end of the support substrate 23. In addition to this, the glass substrate 27 of the first and second embodiments is not provided. As shown in FIG. 15, the groove 51 may be formed in a perforated shape by a groove 62 in which the glass substrate 27 is cut and a joint portion 63 in which the glass substrate 27 is not cut.
 この場合、図16に示す溝62を含むY方向断面(XVI断面)のように、溝62は、ガラス基板27を貫通して、フレキシブル基板26に達するように設けても良い。これは、図17に示す結合部63を含むY方向断面(XVII断面)のように、ガラス基板27が結合部63で切削されていないので、ガラス基板27を貫通するように溝62を設けても、結合部63によってガラス基板27は一体の形状を保つことができる。これにより、後の工程で意図せずフレキシブル基板26が折れ曲がってしまう等の不具合が生じない程度に、支持基板23が一定の剛性を確保することができる。 In this case, as in the Y-direction cross section (XVI cross section) including the groove 62 shown in FIG. 16, the groove 62 may be provided so as to penetrate the glass substrate 27 and reach the flexible substrate 26. This is because the glass substrate 27 is not cut by the coupling portion 63 as in the Y-direction cross section (XVII cross section) including the coupling portion 63 shown in FIG. 17, so that a groove 62 is provided so as to penetrate the glass substrate 27. In addition, the glass substrate 27 can maintain an integral shape by the coupling portion 63. As a result, the support substrate 23 can ensure a certain degree of rigidity to such an extent that the flexible substrate 26 is not bent unintentionally in a later step.
 なお、ガラス基板27に形成する溝を、溝62と結合部63によってミシン目状に設ける場合に、溝62のX方向に沿った長さxaと、結合部63のX方向に沿った長さxbの比は、概ね7:3(=xa:xb)程度であることが好ましい。これは、ガラス基板27の厚さや溝62の深さ、結合部63の厚さ等にもよるが、前述のようにガラス基板27が0.1~0.7mm程度の厚さであり、溝62をフレキシブル基板26が露呈するまで切削し、結合部63を全く切削しない場合、上述の比率よりも溝62が長いと、溝62に沿ってガラス基板27が割れやす過ぎる。一方、結合部63が長いと、小グリッド17~21の配置後、支持基板23を湾曲するときに、結合部63が溝62に沿って割れ難く、溝62及び結合部63が折れ曲がりのガイドの役割を十分に果たさなくなることがある。 In addition, when the groove | channel formed in the glass substrate 27 is provided in the perforated form by the groove | channel 62 and the coupling | bond part 63, the length xa along the X direction of the groove | channel 62 and the length along the X direction of the coupling | bond part 63 are shown. The ratio of xb is preferably about 7: 3 (= xa: xb). This depends on the thickness of the glass substrate 27, the depth of the groove 62, the thickness of the coupling portion 63, etc., but the glass substrate 27 has a thickness of about 0.1 to 0.7 mm as described above. If the flexible substrate 26 is cut out until the flexible substrate 26 is exposed, and the coupling portion 63 is not cut at all, if the groove 62 is longer than the above-described ratio, the glass substrate 27 is easily broken along the groove 62. On the other hand, if the coupling portion 63 is long, the coupling portion 63 is difficult to break along the groove 62 when the support substrate 23 is curved after the small grids 17 to 21 are arranged, and the groove 62 and the coupling portion 63 are bent guides. The role may not be fulfilled enough.
 なお、上述の第3実施形態では、溝62をフレキシブル基板26が露呈するまで切削し、結合部63を全く切削しない例であるが、溝62の底にガラス基板27を一部残るように、ガラス基板27の一部分を切削してもよい。さらには、結合部63に相当するガラス基板27の表面を一部切削しても良い。すなわち、支持基板23を湾曲したときに、溝62が結合部63よりも割れやすいこと、後の工程で不具合がない程度に一定の剛性を有すること、支持基板23の湾曲時に溝62及び結合部63で形成されるラインが適切にフレキシブル基板26の折れ曲がりの位置になることができれば、溝62の深さや結合部63におけるガラス基板27の厚さは任意である。 In the third embodiment described above, the groove 62 is cut until the flexible substrate 26 is exposed, and the coupling portion 63 is not cut at all. However, the glass substrate 27 is partially left at the bottom of the groove 62. A part of the glass substrate 27 may be cut. Furthermore, a part of the surface of the glass substrate 27 corresponding to the coupling portion 63 may be cut. That is, when the support substrate 23 is curved, the groove 62 is more easily cracked than the coupling portion 63, has a certain rigidity so that there is no problem in a later process, and the groove 62 and the coupling portion are curved when the support substrate 23 is curved. As long as the line formed by 63 can be appropriately bent by the flexible substrate 26, the depth of the groove 62 and the thickness of the glass substrate 27 at the coupling portion 63 are arbitrary.
 また、上述の第3実施形態では、支持基板23上に形成する4本の溝62及び結合部63によるガイドラインにおいて、Y方向に溝62及び結合部63の位置を比較したときに、全てのライン上で溝62及び結合部63の位置が揃っている例であるが、各ライン上で溝62及び結合部63の位置がずれていても良い。例えば、図18に示すように、隣接するライン間で溝62と結合部63の配列周期を半周期ずらし、あるライン上の溝62に対応する位置に、隣接するライン上の結合部63を形成しても良い。 Further, in the above-described third embodiment, when the positions of the grooves 62 and the coupling portions 63 are compared in the Y direction in the guideline by the four grooves 62 and the coupling portions 63 formed on the support substrate 23, all the lines are displayed. In this example, the positions of the groove 62 and the coupling portion 63 are aligned, but the positions of the groove 62 and the coupling portion 63 may be shifted on each line. For example, as shown in FIG. 18, the arrangement period of the groove 62 and the coupling portion 63 is shifted by a half cycle between adjacent lines, and the coupling portion 63 on the adjacent line is formed at a position corresponding to the groove 62 on a certain line. You may do it.
 なお、上述の第3実施形態では、フレキシブル基板26の折れ曲がり位置のガイドとしてガラス基板27に溝(及び結合部)を用いているが、溝の他にフレキシブル基板26に低剛性部61を設けてもよい。この場合には、図19に示すように、ガラス基板27の溝62及び結合部63の別に関わらず、溝62及び結合部63に対応する位置に、直線上の低剛性部61が設けられる。 In the third embodiment described above, a groove (and a connecting portion) is used in the glass substrate 27 as a guide for the bending position of the flexible substrate 26. However, in addition to the groove, a low-rigidity portion 61 is provided in the flexible substrate 26. Also good. In this case, as shown in FIG. 19, a linear low-rigidity portion 61 is provided at a position corresponding to the groove 62 and the coupling portion 63 regardless of the groove 62 and the coupling portion 63 of the glass substrate 27.
 また、図20に示すように、フレキシブル基板26は、ガラス基板27の溝62に対応する部分にだけミシン目状に低剛性部66を設けても良い。この場合、直上の溝62による支持基板23の湾曲促進効果と、低剛性部66による湾曲促進効果が相乗する。このため、支持基板23を湾曲させたときに、一つの直線上に並んだガラス基板27の溝62とフレキシブル基板26の低剛性部66に沿って、結合部63に湾曲のための応力が伝わりやすくなり、溝62等をミシン目状にしても、フレキシブル基板26の折り曲げラインをより確実に直線状にすることができる。 Further, as shown in FIG. 20, the flexible substrate 26 may be provided with a low-rigidity portion 66 in a perforated shape only in a portion corresponding to the groove 62 of the glass substrate 27. In this case, the bending promotion effect of the support substrate 23 by the groove 62 directly above and the bending promotion effect by the low-rigidity portion 66 are synergistic. For this reason, when the support substrate 23 is curved, stress for bending is transmitted to the coupling portion 63 along the groove 62 of the glass substrate 27 and the low-rigidity portion 66 of the flexible substrate 26 that are aligned on one straight line. It becomes easy, and even if the groove | channel 62 grade | etc., Is perforated, the bending line of the flexible substrate 26 can be made into a linear form more reliably.
 図21に示すように、ガラス基板27の溝62下には低剛性部を設けず、結合部63に対応する位置に低剛性部67を設けることにより、ミシン目状に低剛性部を設けても良い。この場合、フレキシブル基板26の低剛性処理が少なくて済むと同時に、フレキシブル基板26の湾曲方向をより確実に直線状にすることができる。 As shown in FIG. 21, by providing a low rigidity portion 67 at a position corresponding to the coupling portion 63 without providing a low rigidity portion below the groove 62 of the glass substrate 27, the low rigidity portion is provided in a perforated shape. Also good. In this case, the low rigidity processing of the flexible substrate 26 can be reduced, and at the same time, the bending direction of the flexible substrate 26 can be made more surely linear.
 また、図22に示すように、ガラス基板27の溝62及び結合部63の周期に対して、半周期ずらして低剛性部68を設けても良い。 Further, as shown in FIG. 22, the low-rigidity portion 68 may be provided with a half-cycle shift with respect to the cycle of the groove 62 and the coupling portion 63 of the glass substrate 27.
 なお、上述の第1~第3実施形態では、Y方向に円筒面状に湾曲した線源グリッド12,第1グリッド13,第2グリッド14を例に説明しているが、これらのグリッド12~14は球面状に湾曲したものであっても良い。このように、グリッド12~14を球面状に湾曲させる場合、図23に示すように、上述の第1~第3実施形態でX方向に延伸し、Y方向に並べて設けていた小グリッド17~21をさらにX方向に分断し、X方向にもグリッド12~14を湾曲させれば良い。この場合、フレキシブル基板26の折れ曲がりのガイドとなるようにガラス基板27に設ける溝は、上述の第1~第3実施形態と同様にしてY方向に沿って設けておけば良い。 In the first to third embodiments described above, the radiation source grid 12, the first grid 13, and the second grid 14 that are curved in a cylindrical shape in the Y direction are described as an example. 14 may be spherically curved. As described above, when the grids 12 to 14 are curved into a spherical shape, as shown in FIG. 23, the small grids 17 to 17 that are extended in the X direction and arranged in the Y direction in the first to third embodiments described above. 21 may be further divided in the X direction, and the grids 12 to 14 may be curved in the X direction. In this case, the groove provided in the glass substrate 27 so as to serve as a guide for bending the flexible substrate 26 may be provided along the Y direction as in the first to third embodiments.
 なお、上述の第1~第3実施形態では、支持基板23に小グリッド17~21を配置するときに、下地基板31をガラス基板27の表面に貼り付け、グリッド部32が露呈されるように配置しているが、図24に示すように、グリッド部32をガラス基板27の表面に貼り付け、下地基板31が露呈されるようにしても良い。 In the first to third embodiments described above, when the small grids 17 to 21 are arranged on the support substrate 23, the base substrate 31 is attached to the surface of the glass substrate 27 so that the grid portion 32 is exposed. However, as shown in FIG. 24, the grid portion 32 may be attached to the surface of the glass substrate 27 so that the base substrate 31 is exposed.
 なお、上述の第1~第3実施形態では、支持基板23を湾曲させてグリッドを製造する例であるが、次に説明するように、支持基板23を湾曲した形状で維持しやすくすることが好ましい。 In the first to third embodiments described above, the grid is manufactured by bending the support substrate 23. However, as described below, the support substrate 23 can be easily maintained in a curved shape. preferable.
 例えば、図25に示すように、支持基板23を湾曲させて形成した第2グリッド14を、同じ湾曲形状の台座71に接着剤で貼り付けること等により固定する。こうすると、より確実に支持基板23の湾曲形状を維持しやすい。また、支持基板23を湾曲させる時に、台座71に沿って湾曲させるようにすることで、台座71への第2グリッド14の貼り付けと、湾曲形状の確実な固定化を同時に行なっても良い。台座71は、X線透過性であれば材料は任意であるが、少なくともフレキシブル基板26よりも熱膨張係数が小さい材料で形成されていることが好ましい。 For example, as shown in FIG. 25, the second grid 14 formed by curving the support substrate 23 is fixed by adhering to the same curved base 71 with an adhesive or the like. This makes it easier to maintain the curved shape of the support substrate 23 more reliably. In addition, when the support substrate 23 is curved, the second grid 14 may be attached to the pedestal 71 and the curved shape may be reliably fixed simultaneously by bending the support substrate 23 along the pedestal 71. The base 71 may be made of any material as long as it is X-ray transparent, but is preferably formed of a material having a coefficient of thermal expansion smaller than that of the flexible substrate 26 at least.
 また、図26に示すように、支持基板23を湾曲させて第2グリッド14を形成した後、支持基板23の湾曲にともなって小グリッド17~21間に生じる隙間に、充填剤72を入れ、固化しても良い。充填剤72は、エポキシ接着剤や、銀ペースト、金ペースト等、任意の材料からなるものを用いることができる。但し、銀ペーストや金ペースト等、X線吸収性の材料からなる充填剤を用いることが好ましい。X線吸収性の充填剤を用いると、小グリッド17~21間を透過したX線によるアーチファクト等のノイズ成分を低減することができる。 Further, as shown in FIG. 26, after the support substrate 23 is curved to form the second grid 14, a filler 72 is put into a gap generated between the small grids 17 to 21 as the support substrate 23 is curved, It may solidify. The filler 72 may be made of an arbitrary material such as an epoxy adhesive, a silver paste, or a gold paste. However, it is preferable to use a filler made of an X-ray absorbing material such as silver paste or gold paste. When an X-ray absorbing filler is used, noise components such as artifacts caused by X-rays transmitted through the small grids 17 to 21 can be reduced.
 さらに、図27に示すように、フレキシブル基板26の代わりに形状記憶基板73を用いても良い。形状記憶基板73を用いる場合、記憶する形状を支持基板23の湾曲形状とし、第2グリッド14の作製時には平行平板状にしておく。そして、上述の第1~第3実施形態と同様に、小グリッド17~21を配置した後、形状記憶基板73を記憶形状に戻すための処理(例えば熱処理)を施すことで、支持基板23を所定形状に湾曲させる。こうして形状記憶基板73を用いると、形状記憶基板73の形状記憶作用により、第2グリッド14の適切な湾曲状態を容易に維持することができる。形状記憶基板73は、形状記憶ポリマーや形状記憶合金から形成されたものを用いることができる。形状記憶ポリマーは、例えば、ポリノルボルネン、トランスポリイソプレン、ポリウレタン等である。形状記憶合金は、例えば、NiTi、NiTiCo、NiTiCu等である。 Furthermore, as shown in FIG. 27, a shape memory substrate 73 may be used instead of the flexible substrate 26. When the shape memory substrate 73 is used, the shape to be memorized is the curved shape of the support substrate 23, and is formed in a parallel plate shape when the second grid 14 is manufactured. Then, as in the first to third embodiments described above, after the small grids 17 to 21 are arranged, a process (for example, a heat treatment) for returning the shape memory substrate 73 to the memory shape is performed, whereby the support substrate 23 is changed. Curve to a predetermined shape. When the shape memory substrate 73 is used in this manner, an appropriate curved state of the second grid 14 can be easily maintained by the shape memory action of the shape memory substrate 73. The shape memory substrate 73 can be formed of a shape memory polymer or a shape memory alloy. The shape memory polymer is, for example, polynorbornene, trans polyisoprene, polyurethane or the like. The shape memory alloy is, for example, NiTi, NiTiCo, NiTiCu or the like.
 同様に、図28に示すように、繊維状にした形状記憶ポリマーや形状記憶合金からなる形状記憶層74を可撓性樹脂(ポリイミド等)75に編み込んだ複合基板76を、フレキシブル基板26の代わりに用いても良い。複合基板76も形状記憶基板73とほぼ同様の作用効果を示す。 Similarly, as shown in FIG. 28, instead of the flexible substrate 26, a composite substrate 76 in which a shape memory layer 74 made of a fiber-shaped shape memory polymer or shape memory alloy is knitted into a flexible resin (polyimide or the like) 75 is used. You may use for. The composite substrate 76 also exhibits substantially the same function and effect as the shape memory substrate 73.
 なお、上述のように、形状記憶基板73や複合基板76を用いる場合には、ガラス基板27を貼り合わせず、形状記憶基板73や複合基板76上に小グリッド17~21を直接貼り付けても良い。これは、形状記憶基板73や複合基板76の場合、フレキシブル基板26のように熱膨張係数が大きくないからである。 As described above, when the shape memory substrate 73 or the composite substrate 76 is used, the small grids 17 to 21 may be directly attached on the shape memory substrate 73 or the composite substrate 76 without attaching the glass substrate 27. good. This is because, in the case of the shape memory substrate 73 and the composite substrate 76, the thermal expansion coefficient is not as large as that of the flexible substrate 26.
 なお、上述の第1~第3実施形態では、5枚の小グリッド17~21を用いて第2グリッド14を形成しているが、使用する小グリッドの枚数は5枚に限らない。小グリッドを円筒面状(あるいは球面状)に配置するためには少なくとも2枚の小グリッドが必要であるが、円筒面状(球面状)により近くするためには、小グリッドの枚数はできるだけ多いほうが良い。 In the first to third embodiments described above, the second grid 14 is formed using the five small grids 17 to 21, but the number of small grids used is not limited to five. At least two small grids are required to arrange the small grid in a cylindrical surface (or spherical shape), but in order to be closer to the cylindrical surface (spherical shape), the number of small grids is as large as possible. Better.
 なお、上述の第1~第3実施形態では、線源グリッド12,第1グリッド13,第2グリッド14が全て吸収型グリッドであり、グリッド部32がX線吸収部32aとX線透過部32bとが交互に形成されている。この他に、第1グリッド13にはいわゆる位相型グリッドを用いても良い。位相型グリッドは、X線透過性を有する二種類の部材を表面に対して垂直に交互に配列したグリッドであり、例えば、吸収型グリッドのグリッド部32において、X線吸収部32aを空気からなる層(X線吸収材を埋めていない状態)にしたものである。本発明は、位相型の小グリッドを用いる場合にも好適である。 In the first to third embodiments described above, the source grid 12, the first grid 13, and the second grid 14 are all absorption grids, and the grid portion 32 includes the X-ray absorption portion 32a and the X-ray transmission portion 32b. And are formed alternately. In addition, a so-called phase type grid may be used for the first grid 13. The phase-type grid is a grid in which two types of members having X-ray transparency are alternately arranged perpendicular to the surface. For example, in the grid portion 32 of the absorption-type grid, the X-ray absorption portion 32a is made of air. It is a layer (a state in which the X-ray absorber is not buried). The present invention is also suitable when using a phase-type small grid.
 なお、上述の第1~第3実施形態では、線源グリッド12、第1グリッド13、第2グリッド14が全て円筒面状に湾曲しているが、少なくとも第1グリッド13または第2グリッド14の一方が円筒面状(あるいは球面状)に湾曲していれば良い。 In the first to third embodiments described above, the radiation source grid 12, the first grid 13, and the second grid 14 are all curved in a cylindrical shape, but at least the first grid 13 or the second grid 14 One side should just be curving in the shape of a cylindrical surface (or spherical shape).
 なお、上記各実施形態は、第1及び第2グリッドを、そのX線透過部を通過したX線を線形的(幾何光学的)に投影するように構成しているが、国際公開WO2004/058070号公報(米国特許7180979号明細書)等に記載のように、X線透過部でX線を回折することによりタルボ干渉効果が生じる構成としてもよい。この場合には、第1及び第2グリッド間の距離をタルボ距離に設定する必要がある。また、この場合には、第1グリッドを、吸収型グリッドに代えて、位相型グリッドとすることが可能である。位相型グリッドは、タルボ干渉効果により生じる縞画像(自己像)を、第2のグリッドの位置に形成する。 In each of the above embodiments, the first and second grids are configured to linearly (geometrically optically) project the X-rays that have passed through the X-ray transmission part, but International Publication WO 2004/058070. As described in Japanese Patent Publication (U.S. Pat. No. 7,180,796) and the like, the Talbot interference effect may be generated by diffracting the X-rays at the X-ray transmission part. In this case, it is necessary to set the distance between the first and second grids to the Talbot distance. In this case, the first grid can be a phase grid instead of the absorption grid. The phase type grid forms a fringe image (self-image) generated by the Talbot interference effect at the position of the second grid.
 また、上記実施形態では、被検体HをX線源と第1グリッドとの間に配置しているが、被検体Hを第1グリッドと第2グリッドとの間に配置してもよい。この場合にも同様に位相コントラスト画像が生成される。また、上記実施形態では、線源グリッド12を設けているが、線源グリッド12を省略してもよい。 In the above embodiment, the subject H is disposed between the X-ray source and the first grid, but the subject H may be disposed between the first grid and the second grid. In this case as well, a phase contrast image is similarly generated. In the above embodiment, the source grid 12 is provided, but the source grid 12 may be omitted.
 また、上記各実施形態では、一方向に延伸されかつ延伸方向に直交する配列方向に沿って交互に配置されたX線吸収部及びX線透過部を有する縞状の一次元グリッドを例に説明しているが、本発明は、X線吸収部及びX線透過部が直交する2方向に配列された二次元グリッドにも適用が可能である。この場合、複数回の撮影を行う縞走査法により位相コントラスト画像を生成してもよいし、1回の撮影によって位相コントラスト画像を生成してもよい。1回の撮影で位相コントラスト画像を生成するには、例えば、WO2010/050483号公報に記載のように、第1グリッドに市松模様の位相型グリッドを使用し、第2グリッドに網目模様の振幅型グリッドを使用して、撮影を行う。この1枚の撮影画像にフーリエ変換を行い、縦横方向の1次スペクトルをそれぞれ抽出する。これらの1次スペクトルをフーリエ逆変換することで、2方向の位相微分画像が得られる。 Further, in each of the above embodiments, a striped one-dimensional grid having X-ray absorbing portions and X-ray transmitting portions that are extended in one direction and alternately arranged along the arrangement direction orthogonal to the extending direction will be described as an example. However, the present invention can also be applied to a two-dimensional grid in which an X-ray absorption part and an X-ray transmission part are arranged in two orthogonal directions. In this case, the phase contrast image may be generated by a fringe scanning method in which a plurality of shootings are performed, or the phase contrast image may be generated by a single shooting. In order to generate a phase contrast image by one imaging, for example, a checkered phase type grid is used for the first grid and a mesh pattern amplitude type is used for the second grid, as described in WO2010 / 050484. Take a picture using the grid. This single photographed image is subjected to Fourier transform, and the primary spectra in the vertical and horizontal directions are respectively extracted. By performing inverse Fourier transform on these primary spectra, a phase differential image in two directions is obtained.
 なお、上述の第1~第3実施形態で説明した本発明によれば、特に温度変化(及び温度変化による熱膨張)を考慮した高品質な位相イメージング用グリッドを提供することができる。例えば、撮影時において、環境温度変化が生じるとグリッドの湾曲度が僅かに変化することがある。このとき、小グリッド17~21の相対的な配置精度が悪いと、小グリッド17~21間の相対的な配置のばらつきに応じて縞画像のコントラストが悪化してしまうことがある。しかし、本発明によれば、小グリッド17~21の相対的配置が正確であるため、環境温度に変化が生じても縞画像のコントラストの悪化を抑えることができる。また、グリッドの製造時には、接着剤を硬化させる等のために加熱することがあり、その熱によってフレキシブル基板26等が熱変形することがあるが、本発明によれば、上述のような熱変形があっても小グリッド17~21を相対的に高精度に配置可能である。 Note that according to the present invention described in the first to third embodiments, it is possible to provide a high-quality phase imaging grid particularly considering temperature change (and thermal expansion due to temperature change). For example, at the time of photographing, the degree of curvature of the grid may slightly change when an environmental temperature change occurs. At this time, if the relative arrangement accuracy of the small grids 17 to 21 is poor, the contrast of the fringe image may deteriorate depending on the relative arrangement variation between the small grids 17 to 21. However, according to the present invention, since the relative arrangement of the small grids 17 to 21 is accurate, deterioration of the contrast of the fringe image can be suppressed even if the environmental temperature changes. Further, when the grid is manufactured, the adhesive may be heated to harden the adhesive, and the flexible substrate 26 may be thermally deformed by the heat. According to the present invention, the above-described heat deformation is performed. Even if there is, the small grids 17 to 21 can be arranged with relatively high accuracy.
 上記各実施形態は、矛盾しない範囲で相互に組み合わせてもよい。本発明は、医療診断用の放射線画像撮影システムのほか、工業用や、非破壊検査等のその他の放射線撮影システムに適用可能である。また、本発明のグリッドは、X線撮影において散乱線を除去する散乱線除去用グリッドにも適用可能である。更に、本発明は、放射線として、X線以外にガンマ線等を用いる放射線画像撮影システムにも適用可能である。 The above embodiments may be combined with each other within a consistent range. The present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection. The grid of the present invention can also be applied to a scattered radiation removal grid that removes scattered radiation in X-ray imaging. Furthermore, the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.

Claims (16)

  1.  平板状の下地基板と、前記下地基板上に形成され、放射線源の焦点から照射される放射線を部分的に透過して縞画像を生成するグリッド部とを有する複数の小グリッドと、
     可撓性を有する第1基板と前記第1基板よりも熱膨張係数が小さい第2基板とを貼り合わせて形成され、さらに前記第2基板上に設けられたアライメントマークにしたがって前記第2基板上に所定の配置で前記小グリッドを配列した後に、各々の前記小グリッドの前記グリッド部が前記放射線源の焦点を向くように湾曲された支持基板と、
    を備えることを特徴とする放射線画像撮影用グリッド。
    A plurality of small grids having a flat base substrate and a grid portion that is formed on the base substrate and that partially transmits the radiation irradiated from the focal point of the radiation source and generates a fringe image;
    A flexible first substrate and a second substrate having a thermal expansion coefficient smaller than that of the first substrate are bonded together, and further on the second substrate according to an alignment mark provided on the second substrate. A support substrate curved so that the grid portion of each small grid faces the focal point of the radiation source after arranging the small grids in a predetermined arrangement
    A grid for radiographic imaging, comprising:
  2.  前記第2基板はガラス基板であり、前記支持基板の湾曲にともなって前記小グリッドの配列に応じて分断され、分断後の前記第2基板の切片と各小グリッドの積層体が、湾曲した前記第1基板によって一体に保持されていることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。 The second substrate is a glass substrate, and is divided according to the arrangement of the small grids along with the curvature of the support substrate, and the slice of the second substrate after the division and the laminated body of the small grids are curved. The grid for radiographic imaging according to claim 1, wherein the grid is integrally held by a first substrate.
  3.  前記第2基板の表面には、前記支持基板の折れ曲がり位置を特定するための溝が設けられていることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。 The radiographic imaging grid according to claim 1, wherein a groove for specifying a bending position of the support substrate is provided on a surface of the second substrate.
  4.  前記溝は、前記第2基板の表面に沿ってミシン目状に設けられていることを特徴とする請求の範囲第3項記載の放射線画像撮影用グリッド。 The radiographic imaging grid according to claim 3, wherein the groove is provided in a perforation along the surface of the second substrate.
  5.  前記溝は、前記第2基板を厚さ方向に部分的に切削したものであることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。 The radiographic imaging grid according to claim 1, wherein the groove is formed by partially cutting the second substrate in a thickness direction.
  6.  前記溝は、前記第2基板を厚さ方向に全て切削したものであることを特徴とする請求の範囲第4項記載の放射線画像撮影用グリッド。 The radiographic imaging grid according to claim 4, wherein the groove is formed by cutting the second substrate in the thickness direction.
  7.  前記第1基板は、前記第2基板に形成される前記溝に対応した直線上に、剛性を低下させた低剛性部を有することを特徴とする請求の範囲第3項記載の放射線画像撮影用グリッド。 4. The radiographic imaging according to claim 3, wherein the first substrate has a low-rigidity portion with reduced rigidity on a straight line corresponding to the groove formed in the second substrate. grid.
  8.  前記第1基板は、形状記憶材料を用いた基板であることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。 The radiographic imaging grid according to claim 1, wherein the first substrate is a substrate using a shape memory material.
  9.  前記小グリッドは、放射線吸収部と放射線透過部を交互に配列して形成された前記グリッド部を有する吸収型グリッドであることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。 The radiographic imaging grid according to claim 1, wherein the small grid is an absorption grid having the grid portion formed by alternately arranging a radiation absorbing portion and a radiation transmitting portion.
  10.  前記小グリッドは、放射線透過性を有する二種類の部材を交互に配列して形成された前記グリッド部を有する位相型グリッドであることを特徴とする請求の範囲第1項記載の放射線画像撮影用グリッド。 2. The radiographic imaging according to claim 1, wherein the small grid is a phase type grid having the grid portion formed by alternately arranging two kinds of members having radiolucency. grid.
  11.  平板状の下地基板と、前記下地基板上に形成され、放射線源の焦点から照射される放射線を部分的に透過して縞画像を生成するグリッド部とを有する複数の小グリッドを形成する小グリッド形成工程と、
     可撓性を有し、平行平板状の第1基板と、前記第1基板よりも熱膨張係数が小さい平行平板状の第2基板とを貼り合わせて支持基板を形成する支持基板形成工程と、
     前記第2基板上に設けられたアライメントマークにしたがって、前記小グリッドを前記第2基板上に所定配列で貼り付ける小グリッド貼付工程と、
     前記小グリッドが貼り付けられた前記支持基板を、各々の前記小グリッドの前記グリッド部が放射線源の焦点を向くように湾曲させる湾曲工程と、を備えることを特徴とする放射線画像撮影用グリッド製造方法。
    A small grid that forms a plurality of small grids having a flat base substrate and a grid portion that is formed on the base substrate and that partially transmits the radiation irradiated from the focal point of the radiation source and generates a fringe image. Forming process;
    A support substrate forming step of forming a support substrate by bonding a flexible parallel plate-shaped first substrate and a parallel plate-shaped second substrate having a thermal expansion coefficient smaller than that of the first substrate;
    In accordance with the alignment mark provided on the second substrate, a small grid attaching step of attaching the small grid on the second substrate in a predetermined arrangement;
    A step of bending the support substrate to which the small grid is attached so that the grid portion of each of the small grids faces the focal point of the radiation source. Method.
  12.  前記第2基板上に、前記支持基板の折れ曲がり位置を特定するための溝を設ける溝形成工程を備えることを特徴とする請求の範囲第11項記載の放射線画像撮影用グリッド製造方法。 12. The method for manufacturing a grid for radiographic imaging according to claim 11, further comprising a groove forming step of providing a groove for specifying a bent position of the support substrate on the second substrate.
  13.  前記第1基板に剛性の低い低剛性部を形成する低剛性処理工程を備えることを特徴とする請求の範囲第12項記載の放射線画像撮影用グリッド製造方法。 The method for manufacturing a grid for radiographic imaging according to claim 12, further comprising a low-rigidity processing step of forming a low-rigidity portion having low rigidity on the first substrate.
  14.  放射線源から放射された放射線を透過させて縞画像を生成する第1グリッドと、前記縞画像に強度変調を与える第2グリッドと、前記第2グリッドにより強度変調された縞画像を検出する放射線画像検出器とを有し、前記放射線画像検出器により検出された縞画像から位相コントラスト画像を生成する放射線画像撮影システムにおいて、前記第1グリッドまたは前記第2グリッドの少なくとも一方は、
     平板状の下地基板と、前記下地基板上に形成され、放射線源の焦点から照射される放射線を部分的に透過して縞画像を生成するグリッド部とを有する複数の小グリッドと、可撓性を有する第1基板と前記第1基板よりも熱膨張係数が小さい第2基板とを貼り合わせて形成され、前記第2基板上に設けられたアライメントマークにしたがって前記第2基板上に所定の配置で前記小グリッドが配列した後、各々の前記小グリッドの前記グリッド部が放射線源の焦点を向くように湾曲された支持基板と、を備えることを特徴とする放射線画像撮影システム。
    A first grid for transmitting a radiation emitted from a radiation source to generate a fringe image; a second grid for applying intensity modulation to the fringe image; and a radiation image for detecting a fringe image intensity-modulated by the second grid. And a radiographic imaging system that generates a phase contrast image from a fringe image detected by the radiological image detector, wherein at least one of the first grid or the second grid is:
    A plurality of small grids each having a flat base substrate and a grid portion that is formed on the base substrate and that partially transmits the radiation irradiated from the focal point of the radiation source to generate a fringe image; and flexibility And a predetermined arrangement on the second substrate according to an alignment mark provided on the second substrate, and a second substrate having a thermal expansion coefficient smaller than that of the first substrate. And a support substrate that is curved so that the grid portion of each of the small grids faces the focal point of the radiation source after the small grids are arranged in the radiographic imaging system.
  15.  前記放射線源と前記第1グリッドとの間に配置され、前記放射線源から照射された放射線を領域選択的に遮蔽して多数のライン上の放射線を形成する線源グリッドをさらに備えることを特徴とする放射線画像撮影システム。 And a radiation source grid disposed between the radiation source and the first grid and configured to selectively shield the radiation irradiated from the radiation source to form radiation on a plurality of lines. Radiation imaging system.
  16.  前記線源グリッドは、平板状の下地基板と、前記下地基板上に形成され、放射線源の焦点から照射される放射線を部分的に透過して縞画像を生成するグリッド部とを有する複数の小グリッドと、可撓性を有する第1基板と前記第1基板よりも熱膨張係数が小さい第2基板とを貼り合わせて形成され、前記第2基板上に設けられたアライメントマークにしたがって前記第2基板上に所定の配置で前記小グリッドを配列した後、各々の前記小グリッドの前記グリッド部が放射線源の焦点を向くように湾曲された支持基板と、を備えることを特徴とする請求の範囲第14項記載の放射線画像撮影システム。 The radiation source grid includes a plurality of small base plates having a flat base substrate and a grid portion that is formed on the base substrate and generates a fringe image by partially transmitting the radiation irradiated from the focal point of the radiation source. A grid, a flexible first substrate, and a second substrate having a smaller coefficient of thermal expansion than the first substrate are bonded together, and the second substrate is formed according to an alignment mark provided on the second substrate. And a support substrate that is curved so that the grid portion of each of the small grids faces a focal point of a radiation source after the small grids are arranged in a predetermined arrangement on the substrate. 15. A radiographic imaging system according to item 14.
PCT/JP2012/082463 2011-12-27 2012-12-14 Radiography grid, method for producing same, and radiography system WO2013099652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011285899A JP2013134196A (en) 2011-12-27 2011-12-27 Radiation image photographing grid, manufacturing method of the same, and radiation image photographing system
JP2011-285899 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099652A1 true WO2013099652A1 (en) 2013-07-04

Family

ID=48697144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082463 WO2013099652A1 (en) 2011-12-27 2012-12-14 Radiography grid, method for producing same, and radiography system

Country Status (2)

Country Link
JP (1) JP2013134196A (en)
WO (1) WO2013099652A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129148A1 (en) * 2017-01-06 2018-07-12 Carestream Health, Inc. Detach and reattach of a flexible polyimide based x-ray detector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436089B2 (en) * 2013-10-25 2018-12-12 コニカミノルタ株式会社 Method for manufacturing curved grating
JP2018189933A (en) * 2017-05-12 2018-11-29 コニカミノルタ株式会社 Grating, x-ray talbot imaging device, and grating manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133823A (en) * 2007-10-31 2009-06-18 Fujifilm Corp Radiation image detector and phase contrast radiation imaging apparatus
JP2012045099A (en) * 2010-08-25 2012-03-08 Fujifilm Corp Grid for capturing radiation image, method for manufacturing the same, and radiation image capturing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133823A (en) * 2007-10-31 2009-06-18 Fujifilm Corp Radiation image detector and phase contrast radiation imaging apparatus
JP2012045099A (en) * 2010-08-25 2012-03-08 Fujifilm Corp Grid for capturing radiation image, method for manufacturing the same, and radiation image capturing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129148A1 (en) * 2017-01-06 2018-07-12 Carestream Health, Inc. Detach and reattach of a flexible polyimide based x-ray detector
US11195874B2 (en) 2017-01-06 2021-12-07 Carestream Health, Inc. Detach and reattach of a flexible polyimide based X-ray detector

Also Published As

Publication number Publication date
JP2013134196A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
KR100841123B1 (en) Method for producting and applying an antiscatter grid or collimator to an x-ray or gamma detector
JP6224352B2 (en) Collimator plate, collimator module, radiation detection apparatus, radiation imaging apparatus, and collimator module assembly method
JP2012013530A (en) Diffraction grating, method for manufacturing the same, and radiographic device
JP5451150B2 (en) X-ray source grating and X-ray phase contrast image imaging apparatus
WO2012026223A1 (en) Grid for capturing radiation image, method for manufacturing same, and radiation image capturing system
US20120201349A1 (en) Grid for use in radiation imaging and grid producing method, and radiation imaging system
JP2006500097A (en) Method and apparatus for aligning a scattered x-ray rejection grid of a computed tomography detector array
JP2009240378A (en) X-ray imaging apparatus and method of manufacturing slit member used for the same
JPWO2016163177A1 (en) X-ray equipment
US8290121B2 (en) Method for producing a comb-like collimator element for a collimator arrangement and collimator element
WO2013099652A1 (en) Radiography grid, method for producing same, and radiography system
JP2013541397A (en) Grids for phase contrast imaging
JP2012022239A (en) Diffraction grating, manufacturing method thereof, and radiographic apparatus
JP6365299B2 (en) Diffraction grating, diffraction grating manufacturing method, grating unit, and X-ray imaging apparatus
JP5204880B2 (en) Radiation imaging grid, manufacturing method thereof, and radiation imaging system
JP2012127734A (en) Grid for imaging radiation image, method for manufacturing the grid, and radiation image imaging system
JP2012149982A (en) Lattice unit for radiological imaging, radiological imaging system and manufacturing method for lattice body
JP2011145104A (en) Radiation grid, radiographic apparatus mounting the same, and method of manufacturing the radiation grid
WO2012081376A1 (en) Grids for radiography and radiography system
WO2012053342A1 (en) Grid for radiation imaging, method for manufacturing same, and radiation imaging system
WO2013129309A1 (en) Absorption grid for radiographic-image capturing, method for producing same, and radiographic-image capturing system
WO2012053368A1 (en) Grid for radiation imaging, method for manufacturing same, and radiation imaging system
US11000249B2 (en) X-ray detector for grating-based phase-contrast imaging
WO2013099653A1 (en) Radiography grid, method for producing same, and radiography system
JP2012249847A (en) Grid for photographing radiation image, method for manufacturing the same, and system for photographing radiation image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861970

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12861970

Country of ref document: EP

Kind code of ref document: A1