WO2014029349A1 - Lens unit array condenser - Google Patents

Lens unit array condenser Download PDF

Info

Publication number
WO2014029349A1
WO2014029349A1 PCT/CN2013/082069 CN2013082069W WO2014029349A1 WO 2014029349 A1 WO2014029349 A1 WO 2014029349A1 CN 2013082069 W CN2013082069 W CN 2013082069W WO 2014029349 A1 WO2014029349 A1 WO 2014029349A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens unit
substrate
array
support
condenser
Prior art date
Application number
PCT/CN2013/082069
Other languages
French (fr)
Chinese (zh)
Inventor
杨永顺
Original Assignee
Yang Yongshun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Yongshun filed Critical Yang Yongshun
Publication of WO2014029349A1 publication Critical patent/WO2014029349A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A lens unit array condenser, comprising: a substrate (3) having a planar bottom surface and a condensing focal point (O) thereabove; a support piece array disposed on the upper surface of the substrate; and a lens unit (1) connected with the support surface of each support piece (2) forming the support piece array. The lens unit is a rectangular plane, and is disposed facing the condensing focal point; the incident light perpendicular to the substrate is reflected from the geometrical center of each lens unit, and the reflected light is condensed at the condensing focal point. The lens unit array condenser has simple manufacturing process, low cost and good condensing effect.

Description

镜片单元阵列聚光镜 技术领域  Lens unit array concentrating mirror
本公开涉及太阳能利用技术领域, 尤其涉及一种镜片单元阵列聚光镜。 背景技术  The present disclosure relates to the field of solar energy utilization technologies, and in particular, to a lens unit array concentrating mirror. Background technique
太阳能是一种清洁的可再生能源, 因此人们逐渐重视对太阳能的利用, 利用太阳能的 各种设备被逐渐研发出来, 其中, 需要利用太阳能进行加热的热备, 例如太阳能热水器、 热气机等的研发也取得较大的进展。  Solar energy is a clean and renewable energy source. Therefore, people are paying more and more attention to the use of solar energy. Various devices using solar energy have been gradually developed. Among them, heat preparation using solar energy for heating, such as solar water heaters, hot air machines, etc. Great progress has also been made.
热气机,又称斯特林发动机或外燃机,是一种外燃的闭式循环往复活塞式热力发动机。 热气机中传递能量的媒介物质 (通常是高压气体) 叫工质, 在一个、 两个、 四个或多个封 闭的气缸内充有一定容积的工质。 气缸一端为热腔, 另一端为冷腔。 工质在低温冷腔中压 缩, 然后流到高温热腔中迅速加热, 膨胀做功。  A hot air machine, also known as a Stirling engine or an external combustion engine, is an externally fired closed-loop reciprocating piston type heat engine. The medium that transfers energy in a hot air machine (usually a high-pressure gas) is called a working medium, and is filled with a certain volume of working fluid in one, two, four or more closed cylinders. One end of the cylinder is a hot chamber and the other end is a cold chamber. The working fluid is compressed in a low temperature cold chamber, and then flows into a high temperature hot chamber to rapidly heat and expand to perform work.
热气机的优点是功率和效率不受海拔高度影响, 非常适合于高海拔地区使用。 由于热 气机避免了传统内燃机的震爆做功问题, 从而实现了低噪音、 低污染和低运行成本。 只要 热气机的热腔与冷腔之间达到一定的温差, 热气机即可做功运行。 热气机可以燃烧各种可 燃气体或液体燃料对热腔进行加热, 但利用太阳能进行加热, 在高海拔阳光充足的地方, 则具有更明显的优势。  The advantage of the hot air machine is that the power and efficiency are not affected by the altitude, which is very suitable for high altitude use. Since the heat engine avoids the problem of the shocking work of the conventional internal combustion engine, low noise, low pollution, and low running cost are achieved. As long as a certain temperature difference is reached between the hot chamber and the cold chamber of the hot air machine, the hot air machine can perform the work. The hot air machine can burn various flammable gases or liquid fuels to heat the hot chamber, but it is more efficient to use solar energy for heating at high altitude and sunny places.
利用太阳能对热腔进行加热, 较好的办法是将热气机的热腔放在聚光镜的焦点处, 将 太阳光汇聚到焦点以对热腔进行加热。对于聚光镜而言, 抛物型聚光镜可以有良好的聚光 效果, 可以将平行光线汇聚于一点。 但是热气机达到一定功率时, 其所需要的抛物型聚光 镜的旋转抛物面(由抛物线沿其对称轴旋转所得的曲面, 其横截面是圆) 的面积也相对较 大。 这种大面积的抛物型聚光镜一来制造工艺复杂, 成本高, 大致每平米至少要五百元以 上, 做工精良的甚至要在万元左右; 二来是在热胀冷缩时焦点会偏离原来的焦点, 从而影 响聚光效果。  The use of solar energy to heat the hot chamber is preferably by placing the hot chamber of the hot air machine at the focus of the concentrating mirror and concentrating the sunlight to the focus to heat the hot chamber. For concentrating mirrors, parabolic concentrators have a good concentrating effect that converge parallel rays at one point. However, when the heat engine reaches a certain power, the rotating paraboloid of the parabolic concentrator (the surface obtained by rotating the parabola along its axis of symmetry, the cross section of which is a circle) is relatively large. This large-area parabolic concentrating mirror has a complicated manufacturing process and high cost. It costs at least 500 yuan per square meter, and even has a good workmanship of about 10,000 yuan. Second, the focus will deviate from the original when it is inflated and contracted. The focus, which affects the concentrating effect.
面临大面积的抛物型聚光镜的上述问题时,人们开始探索用小面积的镜片单元来组成 近似大面积的抛物型聚光镜的旋转抛物面, 例如在大体上是旋转抛物面形状的基板上, 粘 贴许许多多等腰梯形的小面积的平面镜片, 来近似的代替大面积的旋转抛物面, 之所以选 择梯形, 是为了适应旋转抛物面的横截面面积或横截面圆半径的变化, 增大聚光镜的有效 反光面积。 但是这种形式的聚光镜也存在着镜片单元加工成本高、 粘贴工艺复杂、 聚光精 度差以及旋转抛物面形状的基板加工难度大的问题。 Faced with the above-mentioned problems of large-area parabolic concentrating mirrors, people began to explore the use of small-area lens units to form a paraboloid of a large-area parabolic concentrating mirror, for example, on a substrate that is generally a paraboloid of revolution. The small-area plane lens of the isosceles trapezoid is similar to the large-area rotating paraboloid. The trapezoid is chosen to adapt to the cross-sectional area of the paraboloid of revolution or the radius of the cross-section circle, and to increase the efficiency of the concentrating mirror. Reflective area. However, this type of concentrating mirror also has a problem that the processing cost of the lens unit is high, the pasting process is complicated, the condensing precision is poor, and the rotating paraboloid shape is difficult to process.
除热气机以外,其他的需要利用太阳能加热的太阳能利用设备也需要一种包括平面镜 片单元的聚光镜。 发明内容  In addition to the heat engine, other solar energy utilization equipment that requires solar heating also requires a concentrating mirror including a flat lens unit. Summary of the invention
针对现有技术中存在的问题, 本公开的目的为提供一种能够制造工艺简单、 成本低且 聚光效果好的聚光镜, 以解决现有技术的聚光镜性价比不高的技术问题。  In view of the problems existing in the prior art, an object of the present disclosure is to provide a concentrating mirror capable of manufacturing a simple process, low cost, and good concentrating effect, so as to solve the technical problem that the concentrating mirror of the prior art is not cost-effective.
为实现上述目的, 本公开的技术方案如下:  To achieve the above object, the technical solution of the present disclosure is as follows:
一种镜片单元阵列聚光镜, 包括: 底面为平面的基板, 所述基板的上方具有一聚光焦 点; 设置于所述基板上表面的支撑件阵列; 构成所述支撑件阵列的每一支撑件的支撑面所 连接的镜片单元, 所述镜片单元面向所述聚光焦点设置, 所述镜片单元为矩形平面, 垂直 于所述基板的入射光在各所述镜片单元的几何中心点的反射光聚光于所述聚光焦点。  A lens unit array concentrating mirror comprising: a substrate having a flat bottom surface, a concentrating focus above the substrate; an array of support members disposed on an upper surface of the substrate; and each support member constituting the array of support members a lens unit to which the support surface is connected, the lens unit is disposed facing the concentrating focus, the lens unit is a rectangular plane, and the reflected light of the incident light perpendicular to the substrate is at a geometric center point of each of the lens units Light is concentrated on the focus of the light.
本公开的有益效果在于, 本公开的镜片单元阵列聚光镜, 具有制造成本低、 工艺简单 和聚光性能好的优点。 本公开的镜片单元阵列聚光镜, 可以将制造成本降低到每平米 300 元以下, 较现有技术的成本, 有较大的降低; 另外, 由于本公开镜片单元阵列聚光镜的基 板为平面基板, 因此便于加工, 也便于在基板上设置或一体成型支撑件阵列; 本公开的镜 片单元阵列聚光镜, 每一镜片单元的几何中心点, 均聚光于聚光焦点, 由于镜片单元面积 较小, 因此镜片单元上各点均有近似的聚光性, 因此整个镜片单元阵列聚光镜的聚光性能 良好。 附图说明  The beneficial effects of the present disclosure are that the lens unit array concentrating mirror of the present disclosure has the advantages of low manufacturing cost, simple process, and good condensing performance. The lens unit array concentrating mirror of the present disclosure can reduce the manufacturing cost to less than 300 yuan per square meter, which is much lower than the cost of the prior art; in addition, since the substrate of the lens unit array concentrating mirror of the present disclosure is a planar substrate, it is convenient Processing, also facilitates setting or integrally forming a support array on the substrate; the lens unit array concentrating mirror of the present disclosure, the geometric center point of each lens unit is concentrated on the concentrating focus, and the lens unit is small due to the small lens unit area The upper points have similar concentrating properties, so the concentrating performance of the entire lens unit array concentrating mirror is good. DRAWINGS
图 1为本公开第一实施例的镜片单元阵列聚光镜的示意图。  1 is a schematic view of a lens unit array concentrating mirror of a first embodiment of the present disclosure.
图 2为本公开第一实施例的镜片单元阵列聚光镜的对角线位置的截面示意图。  2 is a schematic cross-sectional view showing a diagonal position of a lens unit array condensing mirror according to a first embodiment of the present disclosure.
图 3为镜片单元的聚光原理图。  Figure 3 is a schematic diagram of the concentrating of the lens unit.
图 4 为本公开第一实施例的镜片单元阵列聚光镜的镜片单元连接在支撑件上的示意 图。  Fig. 4 is a schematic view showing the lens unit of the lens unit array condensing mirror of the first embodiment of the present invention attached to the support member.
图 5为本公开第一实施例的镜片单元阵列聚光镜的支撑件的示意图。  FIG. 5 is a schematic view of a support member of a lens unit array concentrating mirror according to a first embodiment of the present disclosure.
图 6为本公开第二实施例的镜片单元阵列聚光镜的示意图。  6 is a schematic view of a lens unit array concentrating mirror of a second embodiment of the present disclosure.
图 7 为本公开第二实施例的镜片单元阵列聚光镜的镜片单元连接在支撑件上的示意 图。 7 is a schematic diagram of a lens unit of a lens unit array concentrating mirror attached to a support member according to a second embodiment of the present disclosure; Figure.
图 8为本公开第二实施例的镜片单元阵列聚光镜的支撑件的示意图。 具体实施方式  8 is a schematic view of a support member of a lens unit array concentrating mirror of a second embodiment of the present disclosure. detailed description
体现本公开特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本公开 能够在不同的实施例上具有各种的变化, 其皆不脱离本公开的范围, 且其中的说明及附图 在本质上是当作说明之用, 而非用以限制本公开。  Exemplary embodiments embodying the features and advantages of the present disclosure will be described in detail in the following description. It should be understood that the present disclosure is capable of various modifications in the various embodiments, and This disclosure.
下面具体介绍本公开优选实施例的镜片单元阵列聚光镜。  The lens unit array concentrating mirror of the preferred embodiment of the present disclosure will be specifically described below.
本公开的镜片单元阵列聚光镜, 可以用于热气机, 也可以用于需要利用太阳能加热的 其他太阳能利用设备, 例如大功率的太阳能热水器。  The lens unit array concentrating mirror of the present disclosure can be used for a hot air machine or for other solar energy utilization equipment that requires solar energy heating, such as a high power solar water heater.
如图 1所示, 本公开实施例的镜片单元阵列聚光镜, 包括镜片单元 1、 支撑件 2和基 板 3。 本实施例中, 镜片单元 1的行数和列数均为 16, 但不以此为限。  As shown in FIG. 1, a lens unit array concentrating mirror of an embodiment of the present disclosure includes a lens unit 1, a support member 2, and a substrate 3. In this embodiment, the number of rows and the number of columns of the lens unit 1 are 16, but not limited thereto.
如图 2所示, 基板 3的底面 30是一个平面, 因此基板 3为平面型基板, 如图 2所示, 基板的几何中心点 Q的正上方有聚光焦点 0, 聚光焦点 0与基板中心点 Q之间的距离可 由实际所需的聚光镜的面积来确定,聚光镜的面积越大,则聚光焦点 0与基板几何中心点 Q之间的距离则越大。 以相对靠近基板几何中心点 Q的支撑件 2或镜片单元 1为内层, 以 相对远离基板几何中心点 Q的支撑件 2或镜片单元 1为外层, 例如最内层的镜片单元 1 为四个, 而本实施例中最外层的镜片单元为 4个 (四个角位置的镜片单元 1 ) 。  As shown in FIG. 2, the bottom surface 30 of the substrate 3 is a flat surface, so the substrate 3 is a planar substrate. As shown in FIG. 2, there is a concentrating focus 0, a concentrating focus 0 and a substrate directly above the geometric center point Q of the substrate. The distance between the center points Q can be determined by the area of the concentrator that is actually required. The larger the area of the concentrating mirror, the larger the distance between the concentrating focus 0 and the geometric center point Q of the substrate. The support member 2 or the lens unit 1 which is relatively close to the geometric center point Q of the substrate is an inner layer, and the support member 2 or the lens unit 1 which is relatively far from the geometric center point Q of the substrate is an outer layer, for example, the innermost lens unit 1 is four. However, in the present embodiment, the outermost lens unit is four (lens unit 1 in four angular positions).
如图 2所示, 基板 3的上表面形成有支撑件阵列, 支撑件阵列包括多行多列的支撑件 2, 例如支撑件阵列的行数和列数相同, 但并不以此为限, 也可以行数和列数不同, 每一 支撑件 2上表面支撑一个镜片单元 1 ; 本说明书中, 将支撑件 2连接镜片单元 1的表面称 为支撑面, 由于支撑面例如为平面, 因此也可称为支撑平面, 各支撑件 2的支撑平面的几 何中心点 P例如在同一高度, 或者说是在同一垂直于基板几何中心点 Q与聚光焦点 0的 连线的平面上,且同一行上的各支撑件 2的支撑平面的几何中心点 P共线且相邻两个几何 中心点 P的距离(行间距)相等, 同一列上的各支撑件 2的支撑平面的几何中心点 P也都 共线且相邻两个几何中心点 P的距离 (列间距) 相等, 行间距等于列间距。  As shown in FIG. 2, the upper surface of the substrate 3 is formed with an array of supports. The array of supports includes a plurality of rows and columns of support members 2. For example, the number of rows and the number of columns of the support array are the same, but not limited thereto. The number of rows and the number of columns may be different. The upper surface of each support member 2 supports a lens unit 1; in the present specification, the surface of the support member 2 connected to the lens unit 1 is referred to as a support surface, and since the support surface is, for example, a flat surface, It may be referred to as a support plane, and the geometric center point P of the support plane of each support member 2 is, for example, at the same height, or on the same plane perpendicular to the line connecting the geometric center point Q of the substrate and the focus point 0, and the same line. The geometric center point P of the support plane of each support member 2 is collinear and the distance (row spacing) of two adjacent geometric center points P is equal, and the geometric center point P of the support plane of each support member 2 on the same column is also The distances (column spacing) of the two collinear lines and adjacent geometric center points P are equal, and the line spacing is equal to the column spacing.
各支撑件 2的几何中心点例如在同一高度, 这样, 安装好的镜片单元 1的最低点不高 于与该镜片单元 1相邻的内层的镜片单元 1的最高点。这样,支撑件 2的高度都不会太高, 有利于模具的制作, 降低了聚光镜的成本。 安装好的镜片单元 1的最低点不高于相邻的内 层的镜片单元 1的最高点的好处还在于, 相邻的镜片单元 1之间具有高度差, 可以给在支 撑件 2上固定镜片单元留出适宜的操作空间。 相邻两镜片单元 1 的距离最近处也要保持 2-5mm的距离。 The geometric center points of the respective support members 2 are, for example, at the same height, such that the lowest point of the mounted lens unit 1 is not higher than the highest point of the lens unit 1 of the inner layer adjacent to the lens unit 1. Thus, the height of the support member 2 is not too high, which is advantageous for the production of the mold and reduces the cost of the condensing mirror. The advantage that the lowest point of the mounted lens unit 1 is not higher than the highest point of the lens unit 1 of the adjacent inner layer is that the height difference between adjacent lens units 1 can be given Fixing the lens unit on the struts 2 leaves a suitable operating space. The distance between the adjacent two lens units 1 is also kept at a distance of 2-5 mm.
当然,也可以是相对外层的支撑件 2的几何中心点高度高于相对内层的支撑件 2的几 何中心点高度。  Of course, it is also possible that the height of the geometric center point of the support member 2 of the opposite outer layer is higher than the height of the geometric center point of the support member 2 of the inner layer.
镜片单元 1面向聚光焦点 0设置, 镜片单元 1为矩形平面, 例如为正方形平面, 镜片 单元 1的正方形边长可介于 100mm-500mm之间,例如为 100mm、 15 Omm、 200mm、 300mm 或 500mm。  The lens unit 1 is disposed facing the concentrating focus 0, and the lens unit 1 is a rectangular plane, for example, a square plane, and the square length of the lens unit 1 may be between 100 mm and 500 mm, for example, 100 mm, 15 Omm, 200 mm, 300 mm or 500 mm. .
如图 3所示, 镜片单元 1的平行于基板几何中心点 Q与聚光焦点 0的连线 d的入射 光 a在各镜片单元 1的几何中心点 P的反射光 b经过镜片单元 1反射后聚光于聚光焦点 0, 图 3也可以视为由 0、 P、 Q三点所确定的平面截镜片单元 1所得的图, 实线 N为镜片单 元 1的法线, 虚线 e平行于法线 N, 虚线 d在基板几何中心点 Q与聚光焦点 0的连线上, 虚线 c垂直于连线 d。  As shown in FIG. 3, the incident light a of the lens unit 1 parallel to the line d of the geometric center point Q of the substrate and the line d of the concentrating focus 0 is reflected by the lens unit 1 after the reflected light b at the geometric center point P of each lens unit 1 is reflected. Converging at the concentrating focus 0, FIG. 3 can also be regarded as a graph obtained by the plane lens unit 1 determined by three points of 0, P, and Q. The solid line N is the normal of the lens unit 1, and the broken line e is parallel to the method. Line N, dashed line d is on the line connecting the geometric center point Q of the substrate and the focus point 0, and the broken line c is perpendicular to the line d.
同样, 图 3也给出了如何确定每一镜片单元 1的设置角度的方法。镜片单元 1作为平 面, 必然垂直于镜片单元 1上各位置的法线, 也必然垂直于镜片单元 1在其几何中心点 P 处的法线 (或称法向量) N, 那么, 确定了法线 N, 就可以确定镜片单元 1的设置角度。 入射光 a相当于是源点为镜片单元 1的几何中心点 P且向正上方(也即与基板几何中心点 Q与聚光焦点 0的连线平行的方向)延伸的一射线, 反射光 b相当于是源点为镜片单元 1 的几何中心点 P且延伸经过聚光焦点 0的另一射线, 这两射线与镜片单元 1 的几何中心 点 P处的法线 N共面, 且法线 N平分这两射线的夹角。 因此, 通过确定上述两射线, 再 通过求夹角平分线的方法即可以确定镜片单元 1的几何中心点 P处的法线 N,进而确定各 镜片单元 1的设置角度。  Similarly, Figure 3 also shows how to determine the set angle of each lens unit 1. The lens unit 1 as a plane is necessarily perpendicular to the normal of each position on the lens unit 1, and must also be perpendicular to the normal (or normal vector) N of the lens unit 1 at its geometric center point P, then the normal is determined. N, the setting angle of the lens unit 1 can be determined. The incident light a corresponds to a ray whose source point is the geometric center point P of the lens unit 1 and extends directly upward (that is, a direction parallel to the line connecting the geometric center point Q of the substrate and the focus point of the concentrating focus 0), and the reflected light b is equivalent. The source point is then the geometric center point P of the lens unit 1 and extends through another concentrating focus 0, which is coplanar with the normal N at the geometric center point P of the lens unit 1, and the normal N bisects this The angle between the two rays. Therefore, by determining the above two rays, the normal line N at the geometric center point P of the lens unit 1 can be determined by the method of finding the angle bisector, thereby determining the setting angle of each lens unit 1.
同时, 也可以通过确定镜片单元 1与基板 3的底面 30的所夹锐角的方式来确定镜片 单元 1的设置角度, 首先, 镜片单元 1需要垂直于由镜片单元 1的几何中心点 P、 聚光焦 点 0及基板的几何中心点 (也即聚光焦点 0在基板 3的底面 30上的投影点 Q)所确定的 平面, 以镜片单元 1的几何中心点 P距基板 3的底面 30的距离为 h, 聚光焦点 0距基板 3的底面 30的距离为 m, 镜片单元 1的几何中心点 P距虚线 d的距离(也即 P、 R两点间 的距离) 为 n, 由于法线 N与实线 b所夹锐角相等, 镜片单元 1与基板 3的底面 30的所 夹锐角为 ct, 则实线 b与虚线 c所夹的锐角等于 90度减去两倍的 ct, 经反三角函数运算可 得:
Figure imgf000006_0001
本公开的镜片单元阵列聚光镜,聚光焦点 O也可以不在基板 3的几何中心点的正上方, 这时, 入射光仍然垂直于基板 3, 但并不平行于基板几何中心点 Q与聚光焦点 0的连线, 这时,仍然是垂直于基板 3的入射光在各镜片单元 1的几何中心点 P的反射光聚光于聚光 焦点 0,仍然是用通过求入射光与反射光的夹角平分线的方法来确定镜片单元 1的几何中 心点 P处的法线 N, 进而确定各镜片单元 1的设置角度。 镜片单元 1与基板 3的底面 30 的 :
Figure imgf000006_0002
这里, h仍为镜片单元 1的几何中心点 P距基板 3的底面 30的距离, m仍为聚光焦 点 0距基板 3的底面 30的距离, n仍为镜片单元 1的几何中心点 P距聚光焦点 0与聚光 焦点 0在底面 30上的投影点间的连线的距离, 这里镜片单元 1仍然垂直于由镜片单元 1 的几何中心点 P、聚光焦点 0及聚光焦点 1在基板 3的底面 30上的投影点所确定的平面。 如果聚光焦点 0不在基板 3上的任一点的正上方, 而是在基板 3之外的基板 3的底面 30 所在平面的某一点的正上方, 也即聚光焦点 0在基板 3上的投影点不在底面 30内, 而是 在底面 30所在的平面内,则以聚光焦点 0在底面 30所在的平面内的投影点为聚光焦点 0 在底面 30的投影点来计算上述角度。
At the same time, the setting angle of the lens unit 1 can also be determined by determining the acute angle between the lens unit 1 and the bottom surface 30 of the substrate 3. First, the lens unit 1 needs to be perpendicular to the geometric center point P of the lens unit 1 to collect light. The focal plane 0 and the geometric center point of the substrate (that is, the projection point Q of the focused focal point 0 on the bottom surface 30 of the substrate 3) are determined by the distance from the geometric center point P of the lens unit 1 to the bottom surface 30 of the substrate 3. h, the distance of the concentrating focus 0 from the bottom surface 30 of the substrate 3 is m, and the distance from the geometric center point P of the lens unit 1 to the broken line d (that is, the distance between the two points P and R) is n, due to the normal N and The acute angle b is equal to the acute angle, and the acute angle between the lens unit 1 and the bottom surface 30 of the substrate 3 is ct, and the acute angle between the solid line b and the broken line c is equal to 90 degrees minus twice the ct, and the inverse trigonometric function is operated. Available:
Figure imgf000006_0001
In the lens unit array concentrating mirror of the present disclosure, the concentrating focus O may not be directly above the geometric center point of the substrate 3. At this time, the incident light is still perpendicular to the substrate 3, but is not parallel to the geometric center point Q and the concentrating focus of the substrate. 0, at this time, the incident light perpendicular to the substrate 3 is concentrated at the geometric center point P of each lens unit 1 at the focus point 0 of the lens unit 1, and is still used to find the incident light and the reflected light. The angle bisector method determines the normal N at the geometric center point P of the lens unit 1, and thereby determines the set angle of each lens unit 1. The lens unit 1 and the bottom surface 30 of the substrate 3 are:
Figure imgf000006_0002
Here, h is still the distance from the geometric center point P of the lens unit 1 from the bottom surface 30 of the substrate 3, m is still the distance of the concentrating focus 0 from the bottom surface 30 of the substrate 3, and n is still the geometric center point P of the lens unit 1 The distance between the focus of the concentrating focus 0 and the projection point of the concentrating focus 0 on the bottom surface 30, where the lens unit 1 is still perpendicular to the geometric center point P, the concentrating focus 0 and the concentrating focus 1 of the lens unit 1 The plane defined by the projection point on the bottom surface 30 of the substrate 3. If the concentrating focus 0 is not directly above any point on the substrate 3, but directly above a certain point on the plane of the bottom surface 30 of the substrate 3 outside the substrate 3, that is, the projection of the concentrating focus 0 on the substrate 3. The point is not in the bottom surface 30, but in the plane in which the bottom surface 30 is located, the projection point of the concentrating focus 0 in the plane of the bottom surface 30 is the projection point of the concentrating focus 0 at the bottom surface 30 to calculate the above angle.
本公开的镜片单元阵列聚光镜, 支撑件阵列的支撑件 2的行数或列数(行数和列数通 常相等或差距不大) 的范围介于 16-160之间, 由于支撑件 2与镜片单元 1是一一对应的, 因此镜片单元 1的行数或列数也处于同样的范围, 上述行数或列数例如能够被四整除, 例 如为 16、 32、 64、 128或 160等, 上述行数或列数能够被四整除的优点是, 例如 16行 16 列的镜片单元 1阵列聚光镜, 只需要将同样的模具做四套, 就是做好了四个基板单元 31、 32、 33、 34, 而每一基板单元 31、 32、 33、 34可一体成型有 8行 8列的支撑件阵列, 而 基板 3则包括四个基板单元 31、 32、 33、 34。 这时, 镜片单元阵列聚光镜还可包括框架支 架, 例如"田"字形的框架支架, 每一基板单元 31、 32、 33、 34支撑在框架支架的其中一 个"口"字型的框架单元中。  In the lens unit array concentrating mirror of the present disclosure, the number of rows or columns of the support member 2 of the support array (the number of rows and the number of columns are usually equal or not large) ranges from 16 to 160, due to the support member 2 and the lens The units 1 are in one-to-one correspondence, so the number of rows or columns of the lens unit 1 is also in the same range, and the number of rows or columns can be divisible by, for example, 16, 32, 64, 128 or 160, etc. The advantage that the number of rows or columns can be divisible by four is that, for example, a 16-row 16-column lens unit 1 array concentrating mirror requires only four sets of the same mold, that is, four substrate units 31, 32, 33, 34 are prepared. And each of the substrate units 31, 32, 33, 34 may be integrally formed with an array of 8 rows and 8 columns of supports, and the substrate 3 includes four substrate units 31, 32, 33, 34. At this time, the lens unit array concentrating mirror may further include a frame holder such as a "field" shaped frame holder, and each of the substrate units 31, 32, 33, 34 is supported in one of the "mouth" shaped frame units of the frame holder.
本公开实施例的镜片单元阵列聚光镜, 基板单元 31、 32、 33、 34与其上的支撑件阵 列既可以一体成型, 例如一体注模成型、 注塑成型, 也可以是先制成基板 3, 再在基板 3 上设置支撑件阵列, 支撑件 2可以通过螺钉固定在基板上, 基板 3可以为金属或者高分子 材料。 In the lens unit array concentrating mirror of the embodiment of the present disclosure, the substrate unit 31, 32, 33, 34 and the support member array thereon may be integrally formed, for example, integrally injection molding, injection molding, or may be first formed into the substrate 3, and then A support member array is disposed on the substrate 3, and the support member 2 can be fixed on the substrate by screws, and the substrate 3 can be metal or polymer. Material.
本公开实施例的镜片单元阵列聚光镜, 支撑件的形状可为圆柱状或正四棱柱状等。 如图 1、 图 4和图 5所示的本公开第一实施例的镜片单元阵列聚光镜, 其支撑件 2为 正四棱柱形, 支撑件 2包括支撑平面 26、 倒角 27和支撑件本体 28, 倒角 27是支撑平面 26与支撑本体 28之间的倒角。 镜片单元 1可以通过胶粘的方式粘贴于支撑面, 也可以通 过螺钉、 卡扣或卡簧等连接支撑面。  In the lens unit array concentrating mirror of the embodiment of the present disclosure, the shape of the support member may be a cylindrical shape or a regular square prism shape or the like. As shown in FIG. 1, FIG. 4 and FIG. 5, the lens unit array concentrating mirror of the first embodiment of the present disclosure has a support member 2 having a square prism shape, and the support member 2 includes a support plane 26, a chamfer 27 and a support body 28. The chamfer 27 is a chamfer between the support plane 26 and the support body 28. The lens unit 1 can be attached to the support surface by gluing, or it can be connected to the support surface by screws, snaps or snaps.
如图 2、 图 7和图 8所示的本公开第二实施例的镜片单元阵列聚光镜, 其支撑件 2为 圆柱形, 支撑件 2包括支撑平面 21、 倒角 22和支撑件本体 23, 倒角 22是支撑平面 26与 支撑本体 28的圆柱面之间的倒角。镜片单元 1的面积大于支撑平面 21的面积, 可便于粘 贴或连接镜片单元 1。  As shown in FIG. 2, FIG. 7 and FIG. 8, the lens unit array concentrating mirror of the second embodiment of the present disclosure has a support member 2 having a cylindrical shape, and the support member 2 includes a support plane 21, a chamfer 22 and a support body 23, The corner 22 is a chamfer between the support plane 26 and the cylindrical surface of the support body 28. The area of the lens unit 1 is larger than the area of the support plane 21, which facilitates the attachment or attachment of the lens unit 1.
本公开实施例的镜片单元阵列聚光镜, 具有制造成本低、 工艺简单和聚光性能好的优 点。 本公开的镜片单元阵列聚光镜, 可以将总制造成本降低到每平米 300元以下, 较现有 技术的成本,有较大的降低;另外, 由于本公开镜片单元阵列聚光镜的基板 3为平面基板, 因此便于加工, 也便于在基板 3上设置或一体成型支撑件阵列; 本公开的镜片单元阵列聚 光镜, 每一镜片单元 1的几何中心点 P, 均聚光于聚光焦点 0, 由于镜片单元 1面积较小, 因此镜片单元 1 上各点均有近似的聚光性, 因此整个镜片单元阵列聚光镜的聚光性能良 好。  The lens unit array concentrating mirror of the embodiment of the present disclosure has the advantages of low manufacturing cost, simple process, and good condensing performance. The lens unit array concentrating mirror of the present disclosure can reduce the total manufacturing cost to less than 300 yuan per square meter, which is greatly reduced compared with the cost of the prior art; in addition, since the substrate 3 of the lens unit array concentrating mirror of the present disclosure is a planar substrate, Therefore, it is convenient to process, and it is also convenient to arrange or integrally form the support array on the substrate 3; the lens unit array concentrating mirror of the present disclosure, the geometric center point P of each lens unit 1 is concentrated on the concentrating focus 0, due to the lens unit 1 The area is small, so that each point on the lens unit 1 has an approximate condensing property, so that the concentrating performance of the concentrating mirror of the entire lens unit array is good.
本领域技术人员应当意识到在不脱离本公开所附的权利要求所揭示的本公开的范围 和精神的情况下所作的更动与润饰, 均属本公开的权利要求的保护范围之内。  It will be appreciated by those skilled in the art that the changes and modifications made within the scope and spirit of the disclosure disclosed in the appended claims are within the scope of the appended claims.

Claims

权利要求 Rights request
1.一种镜片单元阵列聚光镜, 其中, 所述镜片单元阵列聚光镜包括: 1. A lens unit array condenser, wherein the lens unit array condenser includes:
底面为平面的基板, 所述基板的上方具有一聚光焦点; The bottom surface is a flat substrate, and there is a focusing focus above the substrate;
设置于所述基板上表面的支撑件阵列; An array of supports provided on the upper surface of the substrate;
构成所述支撑件阵列的每一支撑件的支撑面所连接的镜片单元,所述镜片单元面向所 述聚光焦点设置,所述镜片单元为矩形平面,垂直于所述基板的入射光在各所述镜片单元 的几何中心点的反射光聚光于所述聚光焦点。 A lens unit connected to the support surface of each support member constituting the support member array. The lens unit is arranged facing the focusing focus. The lens unit is a rectangular plane. Incident light perpendicular to the substrate is reflected on each The reflected light from the geometric center point of the lens unit is focused on the focusing focus.
2.如权利要求 1所述的镜片单元阵列聚光镜, 其中, 各所述镜片单元的几何中心点在 同一平行于所述底面的平面上,所述支撑件阵列的行数和列数相等,所述聚光焦点位于所 述基板的几何中心点的正上方。 2. The lens unit array condenser of claim 1, wherein the geometric center point of each lens unit is on the same plane parallel to the bottom surface, and the number of rows and columns of the support array are equal, so The focusing focus is located directly above the geometric center point of the substrate.
3.如权利要求 1所述的镜片单元阵列聚光镜, 其中, 所述镜片单元为正方形, 所述支 撑件阵列的行数和列数能被二整除, 所述支撑件的所述支撑面为平面。 3. The lens unit array condenser of claim 1, wherein the lens unit is a square, the number of rows and columns of the support array is divisible by two, and the support surface of the support is a plane. .
4.如权利要求 1所述的镜片单元阵列聚光镜, 其中, 所述支撑件的形状为圆柱状。 4. The lens unit array condenser lens according to claim 1, wherein the shape of the support member is cylindrical.
5.如权利要求 1所述的镜片单元阵列聚光镜,其中,所述支撑件的形状为正四棱柱状。 5. The lens unit array condenser lens according to claim 1, wherein the shape of the support member is a regular square prism.
6.如权利要求 5所述的镜片单元阵列聚光镜,其中,每一所述支撑件包括四棱柱本体、 倒角和所述支撑面, 所述镜片单元的面积大于所述支撑面的面积。 6. The lens unit array condenser of claim 5, wherein each support member includes a quadrangular prism body, a chamfer and the support surface, and the area of the lens unit is larger than the area of the support surface.
7.如权利要求 3 所述的镜片单元阵列聚光镜, 其中, 所述镜片单元的正方形边长为 100mm-500mm, 所述行数为 16-160。 7. The lens unit array condenser of claim 3, wherein the square side length of the lens unit is 100mm-500mm, and the number of rows is 16-160.
8.如权利要求 7 所述的镜片单元阵列聚光镜, 其中, 所述镜片单元的正方形边长为 100mm、 150mm、 200mm 300mm或 500mm, 所述行数为 16、 32、 64、 128或 160。 8. The lens unit array condenser of claim 7, wherein the square side length of the lens unit is 100mm, 150mm, 200mm, 300mm or 500mm, and the number of rows is 16, 32, 64, 128 or 160.
9.如权利要求 3所述的镜片单元阵列聚光镜, 其中, 所述镜片单元阵列聚光镜还包括 框架支架, 所述基板包括多个基板单元, 每一所述基板单元上表面具有行数和列数为 8 的支撑件阵列, 每一所述基板单元支撑在所述框架支架的其中一个框架单元中。 9. The lens unit array condenser of claim 3, wherein the lens unit array condenser further includes a frame bracket, the substrate includes a plurality of substrate units, and the upper surface of each substrate unit has a number of rows and a number of columns. There is an array of 8 supports, and each substrate unit is supported in one of the frame units of the frame bracket.
10.如权利要求 9所述的镜片单元阵列聚光镜, 其中, 所述基板单元与所述基板单元 之上的支撑件阵列一体成型。 10. The lens unit array condenser lens according to claim 9, wherein the substrate unit and the support array on the substrate unit are integrally formed.
PCT/CN2013/082069 2012-08-24 2013-08-22 Lens unit array condenser WO2014029349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210306096.5 2012-08-24
CN2012103060965A CN102798969A (en) 2012-08-24 2012-08-24 Lens unit array condenser

Publications (1)

Publication Number Publication Date
WO2014029349A1 true WO2014029349A1 (en) 2014-02-27

Family

ID=47198116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082069 WO2014029349A1 (en) 2012-08-24 2013-08-22 Lens unit array condenser

Country Status (2)

Country Link
CN (1) CN102798969A (en)
WO (1) WO2014029349A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798969A (en) * 2012-08-24 2012-11-28 杨永顺 Lens unit array condenser
CN104006543B (en) * 2014-05-12 2016-01-20 上海萃智工业技术有限公司 A kind of separate type plane solar cooker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789858A (en) * 2004-12-15 2006-06-21 周继人 Multi-mirror reflecting and gathering solar heat collector
CN101344020A (en) * 2007-07-11 2009-01-14 卢剑超 Solar tower type focusing high temperature heat collection steam boiler-turbine electric generating apparatus
US20090174957A1 (en) * 2008-01-05 2009-07-09 Mario Rabinowitz Polarization Linkage of High Dielectric Constant Pivoted Planar Solar Concentrator Mirrors
CN102798969A (en) * 2012-08-24 2012-11-28 杨永顺 Lens unit array condenser

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572160A (en) * 1984-12-24 1986-02-25 Blikken Wendell A Heliotropic solar heat collector system
DE102004013590B4 (en) * 2004-03-19 2010-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar concentrator with several mirrors
US7677241B2 (en) * 2004-09-22 2010-03-16 Energy Innovations, Inc. Apparatus for redirecting parallel rays using rigid translation
CN200969562Y (en) * 2006-10-17 2007-10-31 陈晓东 Plane reflection light collecting solar energy photovoltaic generation equipment
CN101387746A (en) * 2007-09-10 2009-03-18 上海华达运新能源科技有限公司 Combination concentration module of plane reflecting mirror
CN101388625A (en) * 2007-09-10 2009-03-18 上海华达运新能源科技有限公司 Solar concentration electricity generating apparatus
CN101419333A (en) * 2007-10-22 2009-04-29 上海华达运新能源科技有限公司 Combination concentration and power generation unit of concave reflecting mirror
US7923624B2 (en) * 2008-06-19 2011-04-12 Solar Age Technologies Solar concentrator system
WO2010067209A2 (en) * 2008-12-08 2010-06-17 Kyoto Energy Ltd. Mosaic solar collector
CN201828705U (en) * 2010-10-26 2011-05-11 益科博能源科技(上海)有限公司 Solar collector and light condensing units thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1789858A (en) * 2004-12-15 2006-06-21 周继人 Multi-mirror reflecting and gathering solar heat collector
CN101344020A (en) * 2007-07-11 2009-01-14 卢剑超 Solar tower type focusing high temperature heat collection steam boiler-turbine electric generating apparatus
US20090174957A1 (en) * 2008-01-05 2009-07-09 Mario Rabinowitz Polarization Linkage of High Dielectric Constant Pivoted Planar Solar Concentrator Mirrors
CN102798969A (en) * 2012-08-24 2012-11-28 杨永顺 Lens unit array condenser

Also Published As

Publication number Publication date
CN102798969A (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US8490618B2 (en) Solar receiver
US9989278B1 (en) Solar energy collector and/or concentrator, and thermal energy storage and retrieval system including the same
AU2009292906A1 (en) Configuration and tracking of 2-D modular heliostat
CN102954601A (en) Pantile solar concentration heat collector
CN102252441A (en) Heat collecting system for high-order focusing integrated light
CN102062016A (en) High-temperature sodium heat pipe heat collector for solar disc type thermal power generation system
WO2014029349A1 (en) Lens unit array condenser
CN201934202U (en) High-temperature sodium thermotube thermal collector for solar disk-type thermal power generation system
WO2017121178A1 (en) 2d-tracking solar concentrator
CN103673320A (en) Solar heat collection device
WO2007079657A1 (en) High efficient apparatus using solar energy
CN201152637Y (en) Seasonal highly efficient solar concentrating heat collector
CN110044080B (en) Tower type solar thermal power generation system based on cavity column type heat collector
CN107024007A (en) Based on the multifocal Fresnel photo-thermal concentration structure of nonimaging optics subregion and method
CN206176773U (en) Solar energy utilization system
JP2012063086A (en) Cavity-type receiver of beam-down light condensing system for sunlight
CN102042578A (en) Concentrating solar steam boiler
CN101118097A (en) Solar concentrating collector
KR100420867B1 (en) Solar asymmetric compound parabolic concentrator with a tubular absorber or flat plate absorber
CN209844900U (en) Non-tracking composite planar bilateral concentrating photovoltaic photo-thermal assembly for building
Senthil et al. Optical and thermal analysis of concentrated solar thermal collectors: A review
TWI321639B (en) A compound arc light-concentrating and heat-collecting device
CN202837666U (en) Lens unit array condenser
CN202092347U (en) High-order focusing integration photothermal collection system
CN108413617B (en) High-temperature vacuum tube bundle heat absorber of small tower system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830911

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (29.09.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13830911

Country of ref document: EP

Kind code of ref document: A1