WO2014029240A1 - 多模功率放大器、多模切换方法及其移动终端 - Google Patents

多模功率放大器、多模切换方法及其移动终端 Download PDF

Info

Publication number
WO2014029240A1
WO2014029240A1 PCT/CN2013/078707 CN2013078707W WO2014029240A1 WO 2014029240 A1 WO2014029240 A1 WO 2014029240A1 CN 2013078707 W CN2013078707 W CN 2013078707W WO 2014029240 A1 WO2014029240 A1 WO 2014029240A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifying
basic
power amplifier
multimode
multimode power
Prior art date
Application number
PCT/CN2013/078707
Other languages
English (en)
French (fr)
Inventor
白云芳
Original Assignee
唯捷创芯(天津)电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唯捷创芯(天津)电子技术有限公司 filed Critical 唯捷创芯(天津)电子技术有限公司
Priority to US14/422,383 priority Critical patent/US9667205B2/en
Priority to EP13831423.2A priority patent/EP2890005B1/en
Publication of WO2014029240A1 publication Critical patent/WO2014029240A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/432Two or more amplifiers of different type are coupled in parallel at the input or output, e.g. a class D and a linear amplifier, a class B and a class A amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/54Two or more capacitor coupled amplifier stages in cascade
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21106An input signal being distributed in parallel over the inputs of a plurality of power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21127Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers the input bias current of a power amplifier being controlled, e.g. by an active current source or a current mirror
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers

Definitions

  • Multimode power amplifier Multimode switching method and mobile terminal thereof
  • the present invention relates to a power amplifier, and more particularly to a multimode power amplifier that can be compatible with a saturation mode and a linear mode to adapt to various communication modes, and also relates to a method for implementing different mode switching of the multimode power amplifier and using the same
  • the mobile terminal of the multimode power amplifier belongs to the technical field of power amplifiers.
  • 3G third-generation mobile communication technologies
  • 2G and 3G systems will coexist for a long time.
  • the communication carrier can ensure that the resources invested in 2G are not wasted, and at the same time, it can smoothly transition to 3G and reduce costs.
  • 3G technologies of TD-SCDMA, CDMA2000 and WCDMA are coexisting.
  • Wi-Fi and WiMax as complementary technologies to 3G-LTE, also have a piece of soil suitable for growth. Therefore, the market environment in which multiple communication systems coexist has put forward new requirements for the multi-mode capability of mobile terminals.
  • Multi-mode technology includes multi-mode communication base stations and multi-mode of mobile terminals, where multi-mode of mobile terminals is inseparable from multi-mode power amplifiers.
  • Multimode power amplifiers typically include two types of power amplifiers: a saturated mode power amplifier and a linear mode power amplifier.
  • a saturated mode power amplifier is required. It uses GMSK modulation, and the amplitude of the RF signal does not contain modulation information, thus allowing amplitude compression.
  • 3G systems based on code division multiple access, such as EDGE, TD-SCDMA, TD-LTE and CDMA2000 linear mode power amplifiers are required.
  • the saturation mode is characterized by the fact that the output power of the power amplifier is independent of the input power over a range of input powers, but is determined by the power supply and load impedance of the output stage of the power amplifier.
  • linear mode the output power of the power amplifier is proportional to the input power.
  • a power amplification module a multimode RF transceiver, a radio frequency front end module, a multimode terminal module, and a multimode terminal transmit a signal are disclosed.
  • the first mode signal is a GSM signal
  • the second mode signal is a TD-SCDMA signal.
  • the control signal is the first mode low frequency signal
  • the controller sends a saturated mode signal to the low frequency amplifier.
  • the power amplifier of the mobile terminal includes a first amplifying unit and a second amplifying unit.
  • the first amplifying unit defines the frequency of the GSM quad band as the low band and the high band, and then amplifies the signal of the low band of the GSM quad band.
  • the second amplifying unit amplifies the signal of the high frequency band of the GSM four-band and the signal of the TD-SCDMA frequency band.
  • the selection of signals for the GSM high-band and TD-SCDMA bands is implemented by the TD-SCDMA control conversion unit.
  • US Patent No. 09/455,813 describes a power amplifier for a multimode mobile communication device comprising a carrier amplifier and a peaking amplifier.
  • the peaking amplifier has an adjustable bias level and is adjusted by the regulator to a predetermined level depending on the selected communication mode. As long as the communication mode is the same, the bias level on the peak amplifier remains the same. Modulation efficiency and linearity for a particular communication mode can be optimized by adjusting the bias point of the peaking amplifier associated with the communication mode selection.
  • the primary technical problem to be solved by the present invention is to provide a multimode power amplifier.
  • the multimode power amplifier is compatible with both saturation and linear modes to accommodate a wide range of communication formats.
  • Another technical problem to be solved by the present invention is to provide a method for implementing different mode switching of the above multimode power amplifier.
  • Another technical problem to be solved by the present invention is to provide a mobile terminal using the above multimode power amplifier.
  • the present invention adopts the following technical solutions:
  • a multimode power amplifier comprising at least two stages of amplifying circuits, used between each stage of amplifying circuits Cascading connection;
  • Each of the primary amplification circuits has at least one basic amplification unit array, and the basic amplification unit array is composed of a plurality of basic amplification units connected in parallel;
  • Each of the basic amplifying units includes a capacitor, an amplifying transistor and a resistor, wherein the capacitor is connected to the RF signal input terminal on the one hand and the base of the amplifying transistor on the other hand; the resistor is connected to the bias voltage port on the one hand, On one hand, the base of the amplifying transistor is connected, and the collector of the amplifying transistor is connected to the supply voltage port.
  • the power supply voltage port of the previous stage amplifying circuit couples the radio frequency signal to the radio frequency signal input end of the next stage amplifying circuit.
  • an inductance is provided between the supply voltage port of the amplifier circuit of the previous stage and the RF signal input terminal of the amplifier circuit of the next stage.
  • the emitter of the amplifying transistor is connected to the reference voltage.
  • the bias voltages of the basic amplifying unit arrays are independently controlled.
  • a multi-mode switching method based on the implementation of the multi-mode power amplifier described above, includes the following steps: In each stage of the multi-mode power amplifier, the bias voltages of the basic amplifying unit arrays are independently controlled;
  • the bias voltages of the basic amplifying unit arrays are adjusted to make all the amplifying transistors in an on state
  • the bias voltage of each of the basic amplifying cell arrays is adjusted to make the partial amplifying transistors in a conducting state.
  • the predetermined basic amplifying unit is controlled by configuring the bias voltage, and the performance index optimization in different linear modes is realized by adjusting the bias voltage.
  • the number of basic amplifying units in the off state and the on state is adjusted and the adjustment is in conduction.
  • the bias voltage of the basic amplifying unit of the state is implemented; or, the predetermined basic amplifying cell array is decomposed into a smaller basic amplifying cell array, and the bias voltages of the respective smaller basic amplifying cell arrays are respectively adjusted.
  • the present invention also includes a mobile terminal having the above multimode power amplifier Big device.
  • the multi-mode power amplifier provided by the invention can flexibly configure the bias voltage to realize a combination of various saturation modes and linear modes, thereby satisfying various communications such as EDGE, TD-SCDMA, TD-LTE and CDMA2000.
  • various communications such as EDGE, TD-SCDMA, TD-LTE and CDMA2000.
  • the multimode power amplifier has the advantages of low cost, simple and flexible circuit, and easy implementation.
  • Figure 1 is a circuit schematic diagram of a basic amplifying unit in a multimode power amplifier
  • FIG. 2 is a schematic diagram of a basic amplifying unit array composed of a plurality of basic amplifying units in parallel;
  • FIG. 3 is a simplified schematic diagram of the basic amplifying unit array shown in FIG. 2;
  • FIG. 4 is a circuit schematic diagram of a multimode power amplifier having a two-stage amplifying circuit
  • FIG. 5 is a circuit schematic diagram of a multimode power amplifier having a three-stage amplifying circuit
  • Figure 6 is a circuit schematic of a multimode power amplifier with a four-stage amplifier circuit.
  • multimode power amplifiers typically include two basic types of power amplifiers: a saturated mode power amplifier and a linear mode power amplifier.
  • Power amplifiers operating in linear mode often need to cover different communication formats, such as EDGE, TD-SCDMA, WCDMA, TD-LTE, etc.; linear mode power amplifiers operating under a communication system (such as WCDMA) often need to have Modes of different power (also known as different gains), such as high power (high gain) mode, medium power (medium gain) mode, low power (low gain) mode.
  • the multimode power amplifier provided by the present invention is composed of a combination of X (X is a positive integer) basic amplifying units in parallel and cascade. These basic amplifying units can be turned on and off using the bias voltage and select different power modes, so the strobe switch is no longer needed. They can be reused in different communication modes. Optimize current and circuit performance by adjusting and optimizing the bias voltage in different communication modes. This is explained in detail below.
  • Figure 1 is a circuit schematic of a basic amplifying unit in a multimode power amplifier.
  • the basic amplifying unit is configured to perform a basic amplifying function of the multi-mode power amplifier, and includes a capacitor 105, an amplifying transistor 106 and a resistor 107, wherein the capacitor 105 is connected to the RF signal input terminal to receive the input RF signal 101, and the connection is amplified on the other hand.
  • the base of transistor 106 thereby passing radio frequency signal 101
  • the capacitor 105 is coupled to the base of the amplifying transistor 106; the resistor 107 is connected to the bias voltage port to receive the bias voltage 102, and is also connected to the base of the amplifying transistor 106, thereby causing the bias voltage 102 to be amplified by the resistor 107.
  • Transistor 106 provides a DC power source.
  • the collector of the amplifying transistor 106 is connected to the supply voltage port 103, and the supply voltage is coupled to the collector of the amplifying transistor 106 by an inductor.
  • the emitter of the amplifying transistor 106 is connected to the reference voltage 104.
  • the above adjustment of the bias voltage can be implemented by a CMOS circuit. This is a conventional design that can be grasped by those of ordinary skill in the art and will not be described in detail herein.
  • FIG. 2 is a schematic diagram of a basic amplifying unit array composed of X basic amplifying units connected in parallel.
  • the basic amplifying unit array shown in Fig. 2 three basic amplifying units are shown, and other basic amplifying units are omitted.
  • the RF signal input port 201 is respectively connected to the RF signal input ports of the X basic amplifying units (such as 205, 209, 213 in FIG. 2); the bias voltage ports 202 are respectively connected to the X basic amplifying units.
  • the bias voltage port (such as 206, 210, 214 in Figure 2); the supply voltage port 203 is respectively connected to the supply voltage port of the X basic amplifying units (such as 207, 211, 215 in Figure 2); reference voltage port 204 are respectively connected to reference voltage ports of X basic amplifying units (such as 208, 212, 216 in FIG. 2).
  • Figure 3 is a simplified schematic diagram of the basic amplifying unit array shown in Figure 2, which will be used in Figure 4.
  • M X, indicating that the basic amplification unit array consists of X basic amplification units in parallel.
  • the first stage amplifying circuit 404 is composed of a basic amplifying unit array 405 and a basic amplifying unit array 407, wherein the basic amplifying unit array 405 is composed of A (A is a positive integer) basic amplifying units connected in parallel, and the basic amplifying unit array 407 is composed of B. (B is a positive integer)
  • the basic amplifying units are composed in parallel.
  • Bias voltage 406 provides a DC bias for basic amplifying cell array 405, and bias voltage 408 provides a DC bias for basic amplifying cell array 407. Accordingly, reference voltage 409 provides a reference potential for basic amplification unit array 404, and reference voltage 418 provides a reference potential for basic amplification unit array 413.
  • the supply voltage port 402 of the first stage amplification circuit 404 couples the radio frequency signal to the RF signal input terminal 410 of the second stage amplification circuit 413 via the inductor 403.
  • the second stage amplifying circuit 413 is composed of a basic amplifying unit array 414 and a basic amplifying unit array 416 in parallel, wherein the basic amplifying unit array 414 is composed of C (C is a positive integer The number of basic amplifying units are composed in parallel, and the basic amplifying unit array 416 is composed of D (D is a positive integer) basic amplifying units connected in parallel.
  • Bias voltage 415 provides a DC bias for basic amplifying cell array 414
  • bias voltage 417 provides a DC bias for basic amplifying cell array 416.
  • the second stage amplifying circuit 413 is coupled to the supply voltage port 411 via an inductor 412 while coupling the radio frequency signal to the output matching network 420 at node 419 where the signal output is completed.
  • the remarkable feature of the multimode power amplifier shown in Figure 4 is that by setting the bias voltage flexibly, the predetermined basic amplifying unit is turned on or off, that is, some basic amplifying units are in normal operation (amplified or saturated) or off state, participating or Do not participate in the zoom function.
  • the emitter junction and the collector junction are both reverse biased by the adjustment of the bias voltage, and the transistor is in an off state; the emitter junction is forward biased by the adjustment of the bias voltage.
  • the collector junction is reverse biased, the transistor is in an amplified state; the emitter junction and the collector junction are both forward biased by the adjustment of the bias voltage, and the transistor is in a saturated state.
  • the basic amplifying unit can be used in both saturation mode and linear mode, and a combination of multiple different saturation modes and multiple different linear modes can be realized in one multimode power amplifier.
  • the multimode power amplifier does not need to introduce a gating switch or add an additional amplifier circuit.
  • each basic amplifying unit can have different operating currents to further optimize performance metrics in different operating modes.
  • the multimode power amplifier when the multimode power amplifier is in saturation mode, the general output power is relatively large. At this time, the total number of basic amplifying units in the normal working state is the largest, and the operating current of the circuit is the largest. For example, when the multimode power amplifier shown in Figure 4 operates in saturation mode, all of the basic amplifying cell arrays 405, 407, 414, 416 will be in an on state. By adjusting the size of each of the basic amplifying units in the basic amplifying unit arrays A, B, C, D and the bias voltages 406, 408, 415, 417, the index requirements in the saturation mode can be achieved.
  • the total number of basic amplifying units in the normal operating state should be reduced compared to the saturation mode, and the operating current is much less than the saturation mode.
  • some basic amplification units can be turned off by controlling the bias voltage.
  • the basic amplifying units in the basic amplifying cell arrays 405 and 414 are in an off state by controlling the bias voltages 406, 415; by controlling the bias voltages 408 and 417, the basic Zoom in The basic amplifying units in the cell arrays 407 and 416 are in an on state.
  • the number of basic amplifying units B and D in the basic amplifying unit arrays 407 and 416 that is, the values of B and D and the bias voltages 408, 417 can be optimized to achieve the corresponding technical specifications, wherein the number A Should be greater than or equal to zero and less than A + B, the number C should be greater than or equal to zero and less than C + D.
  • the predetermined basic amplifying unit can be controlled by configuring the bias voltage, and the performance index optimization in different linear modes can be realized by optimizing the bias voltage.
  • the performance index optimization in different linear modes can be realized by optimizing the bias voltage.
  • a multimode power amplifier when a multimode power amplifier is operating in a linear mode, it needs to cover different communication systems (such as EDGE, WCDMA, TD-SC-A, TD-LTE, etc.) or need to meet different power (gain) in a certain communication system.
  • the mode can be adjusted by further decomposing the basic amplifying cell arrays 407 and 416 (or other basic amplifying cell arrays) into smaller basic amplifying cell arrays, respectively adjusting the bias voltages of these smaller basic amplifying cell arrays, or by adjusting and optimizing
  • the number of basic amplifying units in the off state and the on state is adjusted by adjusting the bias voltage of the basic amplifying unit that is optimized in the on state.
  • FIG. 5 is a circuit schematic diagram of a multimode power amplifier having a three-stage amplifying circuit.
  • the three-stage amplifying circuit is a first-stage amplifying circuit 505, a second-stage amplifying circuit 510, and a third-stage amplifying circuit 519, respectively, which are connected in a cascade manner.
  • the first stage amplifying circuit is a basic amplifying unit array 505, and the basic amplifying unit array 505 is composed of E (E is a positive integer) basic amplifying units in parallel.
  • E is a positive integer
  • the radio frequency signal input port 501 is connected to the basic amplifying unit array 505.
  • the supply voltage port 502 couples the radio frequency signal to the radio frequency signal input 504 of the second stage amplifying circuit 510 via the inductor 503.
  • Bias voltage 506 provides a DC bias to basic amplification unit array 505.
  • Reference voltage 507 provides a reference potential for basic amplification unit array 505.
  • the second stage amplifying circuit 510 is composed of a basic amplifying unit array 511 and a basic amplifying unit array 513 in parallel, wherein the basic amplifying unit array 51 1 is composed of F (F is a positive integer) basic amplifying units in parallel, and the basic amplifying unit array 513 is composed of G (G is a positive integer) The basic amplifying units are connected in parallel.
  • Bias voltage 512 provides a DC bias for basic amplifying cell array 511, and bias voltage 514 provides a DC bias for basic amplifying cell array 513.
  • the reference voltage 515 provides a reference potential for the basic amplifying cell array 511 and the basic amplifying cell array 513, respectively.
  • the supply voltage port 508 of the second stage amplifying circuit 510 couples the radio frequency signal to the radio frequency signal input of the third stage amplifying circuit 519 via the inductor 509.
  • the third stage amplifying circuit 519 is composed of a basic amplifying unit array 520 and a basic amplifying unit array 522 in parallel, wherein the basic amplifying unit array 520 is
  • the basic amplifying unit array 522 is composed of H (H is a positive integer) basic amplifying units connected in parallel, and the basic amplifying unit array 522 is composed of I (I is a positive integer) basic amplifying units in parallel.
  • Bias voltage 521 provides a DC bias for basic amplifying cell array 520
  • bias voltage 523 provides a DC bias for basic amplifying cell array 522
  • the reference voltage 524 provides a reference potential for the basic amplifying cell array 520 and the basic amplifying cell array 522, respectively.
  • third stage amplifying circuit 519 is coupled to supply voltage port 517 via inductor 518, while coupling the radio frequency signal to output matching network 526, where the signal output is accomplished at radio frequency signal output port 527.
  • the basic amplifying units in each of the basic amplifying cell arrays 505, 511, 513, 520, and 522 are in an on state.
  • the values of the basic amplifying units E, F, G, H, and I in the basic amplifying unit arrays and the corresponding bias voltages 506, 512, 514, 521, and 523 can be optimized to achieve specific index requirements. .
  • all of the basic amplifying units 505, the second stage amplifying circuit 510, and the third stage amplifying circuit 519 will operate normally.
  • the bias voltages 506, 512, 514, 521, and 523 of the basic amplifying cell array 505, the basic amplifying cell array 511 + the basic amplifying cell array 513, the basic amplifying cell array 520 + the basic amplifying cell array 522 may be in accordance with the specification requirements of the amplifying transistor Be determined.
  • the basic amplifying units in the basic amplifying cell arrays 511 and 520 are turned off by controlling the bias voltages 512 and 521; by controlling the bias voltages 506, 514 And 523, the basic amplifying units in the basic amplifying unit arrays 505, 513, and 522 are in an on state, and the number of basic amplifying units in the basic amplifying unit arrays 513 and 522, that is, the values of G and I and the offset can be optimized by adjustment. Voltages 506, 514, and 523 are used to meet the corresponding specifications.
  • the number G is greater than or equal to zero and less than F + G
  • the number I is greater than or equal to zero and less than H + I. If you work in linear mode, you need to cover different communication systems (such as EDGE, WCDMA, TD-SCDMA, TD-LTE, etc.) or you need different power (gain) modes in a certain communication system, you can further
  • the basic amplifying cell arrays 513 and 522 are decomposed into smaller basic amplifying cell arrays, and the bias voltages of these smaller basic amplifying cell arrays are respectively adjusted, and are turned off and turned on by adjustment optimization.
  • the number of basic amplifying units of the state is adjusted by adjusting the bias voltage of the basic amplifying unit that is optimized in the on state.
  • the first-stage amplifying circuit generally does not change, because the influence of the input impedance needs to be considered, but the performance can be optimized by appropriately adjusting the bias voltage 506, for example, the bias voltages 512, 521 are zero.
  • the basic amplifying cell array 511 in the second-stage amplifying circuit 510 and the basic amplifying cell array 520 in the third-stage amplifying circuit 519 can be turned off.
  • the value of the parameter G in the basic amplifying cell array 513 and the parameter I in the basic amplifying cell array 522 and the magnitude of the bias voltages 514, 523 can be determined according to specific index requirements in the linear mode.
  • Figure 6 is a circuit schematic of a multimode power amplifier with a four-stage amplifier circuit.
  • the internal structure and operation principle of the first stage amplifying circuit 605, the second stage amplifying circuit 610, and the third stage amplifying circuit 619 are substantially the same as those of the multimode power amplifier shown in FIG. To be said.
  • the fourth stage amplifying circuit 628 is connected to the third stage amplifying circuit 619 in a cascading manner, and its internal structure and working principle are also identical to the third stage amplifying circuit 619.
  • the basic amplifying units in all of the basic amplifying unit arrays 605, 61 1 , 613 , 620 , 622 , 629 , and 631 will be in an on state and can be adjusted.
  • Optimize the specific values of the number of basic amplifying units J, K, L, M, N, 0, P (both positive integers) and the specific sizes of the bias voltages 606, 612, 614, 621, 623, 630, and 632 Meet the corresponding indicator requirements.
  • the basic amplifying units in the basic amplifying unit arrays 61 1 , 620 and 629 can be turned off by controlling the bias voltages 612, 621, 630;
  • the voltages 606, 614, 623, 632 are placed such that the basic amplifying units in the basic amplifying cell arrays 605, 613, 622, and 631 are in an on state.
  • the number of basic amplifying units in the basic amplifying unit arrays 613, 622, and 631 that is, the values of L, N, and P and the bias voltages 606, 614, 623, and 632 can be optimized to be adjusted accordingly.
  • L is greater than or equal to zero and less than F + L
  • N is greater than or equal to zero and less than M + N
  • P is greater than or equal to zero and less than 0 + P.
  • the basic amplifying cell arrays 613, 622, and 631 are further decomposed into smaller basic amplifying cell arrays, and the number of basic amplifying units that are optimized to be in an off state and a conducting state is adjusted and the basic operation is normal.
  • the bias voltage of the amplifying unit is realized.
  • FIG. 2 shows multimode power amplification with two, three and four stage amplifier circuits, respectively.
  • the multimode power amplifier is not limited to the above-described amplification stages.
  • each stage of the amplifying circuit is composed of at least one basic amplifying unit array as shown in FIG. 2, and each stage of the amplifying circuits is connected in a cascade manner to form a multi-mode power amplifier of any amplification stage, thereby adapting to different Communication system and requirements for different power (gain) modes.
  • the above multimode power amplifier can be used in a mobile terminal as an important component of a radio frequency circuit.
  • the mobile terminal referred to herein refers to a computer device that can be used in a mobile environment and supports various communication systems such as EDGE, WCDMA, TD-SCDMA, TD-LTE, and the like, including a mobile phone, a notebook computer, a tablet computer, a car computer, and the like.
  • the multi-mode power amplifier is also suitable for other multi-mode technology applications, such as communication base stations compatible with various communication systems, and will not be detailed here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种多模功率放大器,同时也公开了该多模功率放大器实现不同工作模式切换的方法以及使用该多模功率放大器的移动终端。该多模功率放大器包括至少两级放大电路,各级放大电路之间采用级联方式连接;每一级放大电路中具有至少一个基本放大单元阵列,该基本放大单元阵列由多个基本放大单元并联组成。各基本放大单元阵列的偏置电压分别独立进行控制。通过灵活配置偏置电压,该多模功率放大器可以实现饱和模式和线性模式的切换,从而满足多种通信制式的实际需求。另外,该多模功率放大器还具有成本较低、电路简单灵活、易于实现等优点。

Description

多模功率放大器、 多模切换方法及其移动终端 技术领域
本发明涉及一种功率放大器, 尤其涉及一种可以兼容饱和模式和线性模 式, 从而适应多种通信制式的多模功率放大器, 同时也涉及该多模功率放大 器实现不同工作模式切换的方法以及使用该多模功率放大器的移动终端, 属 于功率放大器技术领域。
背景技术
随着第三代移动通信技术(3G ) 的大规模部署, 2G、 3G制式将在很长一 段时间内共存。 这样, 通信运营商既可以保证投入到 2G的资源不被浪费, 同 时也可以做到向 3G 平滑过渡并降低成本。 目前在中国市场上, 同时有 TD-SCDMA, CDMA2000 , WCDMA 3种制式的 3G技术共存。 另外, Wi - Fi和 WiMax 作为 3G-LTE的补充技术, 也有其适宜生长的一片土壤。 因此, 多通信制式共 存的市场环境对移动终端的多模化能力提出了新的要求。
多模技术包括通信基站的多模化和移动终端的多模化, 其中移动终端的 多模化又离不开多模功率放大器。 多模功率放大器一般包括两种类型的功率 放大器: 饱和模式功率放大器和线性模式功率放大器。 在 GSM通信系统中, 需要使用饱和模式功率放大器。 它采用 GMSK调制方式, 其射频信号的幅度中 不包含调制信息, 因此允许幅度压缩。 而在基于码分多址的 3G 系统, 例如 EDGE, TD- SCDMA、 TD-LTE和 CDMA2000等, 则要求采用线性模式功率放大器。
饱和模式的特点是在一定范围的输入功率内, 功率放大器的输出功率与 输入功率无关,而由功率放大器输出级的供电和负载阻抗决定。线性模式下, 功率放大器的输出功率与输入功率成一定的比例关系。 即使在需要使用线性 模式功率放大器的不同通信制式中, 例如 EDGE、 TD-SCDMA, TD-LTE, WCDMA 等, 也会因为网络标准不同而对线性模式功率放大器有不同的要求, 如输出 功率、 增益、 电流等。 从以上分析可以看出, 饱和模式功率放大器和线性模 式功率放大器需要采用完全不同的设计方法, 满足电路要求的晶体管参数和 工作电流也将存在很多差异。
在现有技术中, 为了满足不同通信制式下的功率放大器要求, 通常采用 几个单模功率放大器加上选通开关来实现多模功率放大器, 但这样大大提高 了成本。 例如在申请号为 201 110346135. X的中国专利申请中, 公开了一种功 率放大模块、 多模射频收发器、 射频前端模块、 多模终端模块和多模终端发 送信号的方法。 其中包括两种工作模式: 第一模式信号为 GSM信号, 第二模 式信号为 TD-SCDMA信号。 当控制信号为第一模式低频信号时, 控制器向低频 放大器发送饱和模式信号。 控制信号为第一模式高频信号时, 向高频放大器 发送饱和模式信号。 控制信号为第二模式时, 向高频放大器发送线性模式信 号。 在韩国专利申请 KR 10-2010-0051808中, 公开了一种通过在支持多模式 的移动终端中将功率放大单元集成到一个模块中来节省移动终端的空间并减 少制造成本的装置和方法。 该移动终端的功率放大器包括第一放大单元和第 二放大单元。 第一放大单元将 GSM四频段的频率定义为低频段和高频段, 然 后放大 GSM四频段的低频段的信号。 第二放大单元放大 GSM四频段的高频段 的信号和 TD-SCDMA频段的信号。 对于 GSM高频段和 TD-SCDMA频段信号的选 择是由 TD-SCDMA控制转换单元实现的。 另外, 美国专利 US 09/455 , 813介 绍了一种用于多模式移动通信设备的功率放大器, 包括一个载波放大器和一 个峰值放大器。 峰值放大器具有一个可调节的偏压电平, 并且根据所选择的 通信模式, 由调节器调节到预定电平。 只要通信模式相同, 峰值放大器上的 偏压电平就保持不变。通过调节与通信模式选择相关的峰值放大器的偏压点, 可以优化对于特定通信模式的调制效率和线性。
发明内容
针对现有技术所存在的不足, 本发明所要解决的首要技术问题在于提供 一种多模功率放大器。 该多模功率放大器可以兼容饱和模式和线性模式, 从 而适应多种通信制式的要求。
本发明所要解决的另一技术问题在于提供上述多模功率放大器实现不 同工作模式切换的方法。
本发明所要解决的又一技术问题在于提供使用上述多模功率放大器的 移动终端。
为解决上述的问题, 本发明采用下述的技术方案:
一种多模功率放大器, 包括至少两级放大电路, 各级放大电路之间采用 级联方式连接;
每一级放大电路中具有至少一个基本放大单元阵列, 该基本放大单元阵 列由多个基本放大单元并联组成;
每个基本放大单元分别包括电容、 放大晶体管和电阻, 其中所述电容一 方面连接射频信号输入端, 另一方面连接所述放大晶体管的基极; 所述电阻 一方面连接偏置电压端口, 另一方面连接所述放大晶体管的基极, 所述放大 晶体管的集电极连接供电电压端口。
其中较优地, 前一级放大电路的供电电压端口将射频信号耦合到下一级 放大电路的射频信号输入端。
其中较优地, 在前一级放大电路的供电电压端口与下一级放大电路的射 频信号输入端之间设置有电感。
其中较优地,在基本放大单元中,所述放大晶体管的射极连接参考电压。 其中较优地, 各基本放大单元阵列的偏置电压分别独立进行控制。
一种多模切换方法, 基于上述的多模功率放大器实现, 包括如下步骤: 在多模功率放大器的各级放大电路中, 各基本放大单元阵列的偏置电压 分别独立进行控制;
当多模功率放大器需要处于饱和模式时, 调整各基本放大单元阵列的偏 置电压, 使全部放大晶体管处于导通状态;
当多模功率放大器需要处于线性模式时, 调整各基本放大单元阵列的偏 置电压, 使部分放大晶体管处于导通状态。
其中较优地, 在不同线性模式下, 通过配置偏置电压来控制开启预定的 基本放大单元, 同时通过对偏置电压的调整实现不同线性模式下的性能指标 优化。
其中较优地, 当多模功率放大器需要覆盖不同的通信制式或是在某一通 信制式下满足不同功率模式时, 通过调整处于截止状态和导通状态的基本放 大单元的数目以及调整处于导通状态的基本放大单元的偏置电压来实现; 或 者, 将预定的基本放大单元阵列分解成更小的基本放大单元阵列, 分别调整 各更小的基本放大单元阵列的偏置电压。
另外, 本发明还包括一种移动终端, 该移动终端具有上述的多模功率放 大器。
利用上述的技术方案, 本发明所提供的多模功率放大器可以灵活配置偏 置电压, 实现各种饱和模式和线性模式的组合, 从而满足 EDGE、 TD-SCDMA, TD-LTE和 CDMA2000等多种通信制式的实际需求。 另外, 该多模功率放大器 还具有成本较低、 电路简单灵活、 易于实现等优点。
附图说明
图 1为多模功率放大器中一个基本放大单元的电路原理图;
图 2为由多个基本放大单元并联组成的基本放大单元阵列的示意图; 图 3为图 2所示的基本放大单元阵列的简化示意图;
图 4为具有两级放大电路的多模功率放大器的电路原理图;
图 5为具有三级放大电路的多模功率放大器的电路原理图;
图 6为具有四级放大电路的多模功率放大器的电路原理图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的详细说明。
前已述及, 多模功率放大器一般包括两种基本类型的功率放大器: 饱和 模式功率放大器和线性模式功率放大器。 在线性模式下工作的功率放大器常 常需要覆盖不同通信制式, 例如 EDGE、 TD— SCDMA、 WCDMA, TD— LTE等; 而在 某一通信制式 (例如 WCDMA ) 下工作的线性模式功率放大器也常常需要拥有 不同功率 (也可以称为不同增益) 的模式, 例如高功率 (高增益) 模式、 中 等功率 (中等增益) 模式、 低功率 (低增益) 模式。
为了满足上述需求, 本发明所提供的多模功率放大器由 X ( X是正整数) 个基本放大单元以并联与级联相结合的方式组成。 这些基本放大单元可以利 用偏置电压来开启和关闭, 并进行不同功率模式的选择, 因此不再需要选通 开关。 它们可以在不同通信模式下重复利用。 通过调整优化不同通信模式下 的偏置电压, 达到优化电流和电路性能的目的。 下面对此展开详细的说明。
图 1为多模功率放大器中一个基本放大单元的电路原理图。 该基本放大 单元用于完成多模功率放大器的基本放大功能, 包括电容 105、 放大晶体管 106和电阻 107,其中电容 105—方面连接射频信号输入端以接收输入的射频 信号 101, 另一方面连接放大晶体管 106的基极, 从而将射频信号 101通过 电容 105耦合到放大晶体管 106的基极; 电阻 107—方面连接偏置电压端口 以接收偏置电压 102, 另一方面也连接放大晶体管 106 的基极, 从而使偏置 电压 102通过电阻 107为放大晶体管 106提供直流电源。 放大晶体管 106的 集电极连接供电电压端口 103, 通过电感将供电电压耦合到放大晶体管 106 的集电极上。 放大晶体管 106 的射极连接参考电压 104。 上述偏置电压的调 整都可以由 CMOS 电路实现。 这是本领域普通技术人员都能掌握的常规设计, 在此就不详细说明了。
图 2为由 X个基本放大单元并联组成的基本放大单元阵列的示意图。 在 图 2所示的基本放大单元阵列中, 示出了其中的三个基本放大单元, 其他基 本放大单元省略了。 如图 2所示, 射频信号输入端口 201分别连接到 X个基 本放大单元的射频信号输入端口 (如图 2中的 205、 209、 213 ); 偏置电压端 口 202分别连接到 X个基本放大单元的偏置电压端口(如图 2中的 206、210、 214); 供电电压端口 203分别连接到 X个基本放大单元的供电电压端口 (如 图 2 中的 207、 211、 215 ); 参考电压端口 204分别连接到 X个基本放大单元 的参考电压端口 (如图 2中的 208、 212、 216 )。 图 3为图 2所示的基本放大 单元阵列的简化示意图, 将在图 4中使用。 在图 3中, M = X, 表示基本放大 单元阵列由 X个基本放大单元并联组成。
图 4为具有两级放大电路的多模功率放大器的电路原理图。 在该多模功 率放大器中, 射频信号输入端口 401 连接第一级放大电路 404, 第一级放大 电路 404和第二级放大电路 413采用级联方式进行连接。第一级放大电路 404 由基本放大单元阵列 405和基本放大单元阵列 407并联组成, 其中基本放大 单元阵列 405是由 A ( A是正整数)个基本放大单元并联组成, 基本放大单元 阵列 407是由 B ( B是正整数)个基本放大单元并联组成。 偏置电压 406为基 本放大单元阵列 405提供直流偏置, 偏置电压 408为基本放大单元阵列 407 提供直流偏置。 相应地, 参考电压 409为基本放大单元阵列 404提供参考电 位, 参考电压 418为基本放大单元阵列 413提供参考电位。 第一级放大电路 404的供电电压端口 402通过电感 403将射频信号耦合到第二级放大电路 413 的射频信号输入端 410。 第二级放大电路 413 由基本放大单元阵列 414和基 本放大单元阵列 416并联组成, 其中基本放大单元阵列 414是由 C ( C是正整 数) 个基本放大单元并联组成, 基本放大单元阵列 416是由 D ( D是正整数) 个基本放大单元并联组成。 偏置电压 415为基本放大单元阵列 414提供直流 偏置, 偏置电压 417为基本放大单元阵列 416提供直流偏置。 第二级放大电 路 413通过电感 412连接到供电电压端口 411, 同时在节点 419处将射频信 号耦合到输出匹配网络 420, 在射频信号输出端口 421处完成信号输出。
图 4所示多模功率放大器的显著特点在于通过灵活配置偏置电压, 开启 或关闭预定的基本放大单元,也就是说使一些基本放大单元处于正常工作(放 大或饱和) 或截止状态, 参与或不参与放大功能。 例如对于双极性晶体管而 言, 通过偏置电压的调整使发射结和集电结均处于反向偏置, 则该晶体管处 于截止状态; 通过偏置电压的调整使发射结正向偏置而集电结反向偏置, 则 该晶体管处于放大状态; 通过偏置电压的调整使发射结和集电结均处于正向 偏置, 则该晶体管处于饱和状态。 对于场效应晶体管而言, 偏置电压与工作 状态的调整也是类似的, 具体参数可以查阅相应的产品手册, 在此就不详述 了。 这样, 无论是在饱和模式还是线性模式下, 基本放大单元都可以实现共 用, 并可以在一个多模功率放大器中实现多个不同饱和模式和多个不同线性 模式的组合。 在不同模式转换时, 多模功率放大器不需要引入选通开关, 也 不需要增加额外的放大电路。 并且, 在各种不同的模式下, 各基本放大单元 可以拥有不同的工作电流, 以便进一步优化不同工作模式下的性能指标。
举例来说, 当多模功率放大器处于饱和模式时, 一般输出功率比较大, 这时处于正常工作状态的基本放大单元总数量最大, 电路的工作电流最大。 例如在图 4所示的多模功率放大器工作于饱和模式时, 所有的基本放大单元 阵列 405、 407、 414、 416都将处于导通状态。 通过调整优化这些基本放大单 元阵列中各基本放大单元的数目 A、 B、 C、 D和偏置电压 406、 408、 415、 417 的大小, 可以达到饱和模式下的指标要求。
当多模功率放大器处于线性模式时, 相应处于正常工作状态的基本放大 单元总数应较饱和模式减少, 工作电流也远少于饱和模式。 在此情况下, 可 以通过控制偏置电压来关掉一些基本放大单元。 例如在图 4所示的多模功率 放大器中, 通过控制偏置电压 406、 415, 使基本放大单元阵列 405和 414中 的基本放大单元处于截止状态; 通过控制偏置电压 408和 417, 使基本放大 单元阵列 407和 416中的基本放大单元处于导通状态。 在此情况下, 可以通 过调整优化基本放大单元阵列 407和 416中基本放大单元的数目 B和 D ,即 B 和 D的数值以及偏置电压 408、 417以达到相应的技术指标要求, 其中数目 A 应该大于等于零且小于 A + B , 数目 C应该大于等于零且小于 C + D。
进一步地, 如果存在多个不同的线性模式, 仍然可以通过配置偏置电压 来控制开启预定的基本放大单元, 同时通过对偏置电压的调整优化实现不同 线性模式下的性能指标优化。 例如多模功率放大器在线性模式下工作时, 需 要覆盖不同的通信制式 (例如 EDGE、 WCDMA, TD— SC丽 A、 TD— LTE等) 或是在 某一通信制式下需要满足不同功率 (增益) 模式, 可以通过进一步把基本放 大单元阵列 407和 416 (或其它基本放大单元阵列) 分解成更小的基本放大 单元阵列, 分别调整这些更小的基本放大单元阵列的偏置电压, 或者通过调 整优化处于截止状态和导通状态的基本放大单元的数目以及调整优化处于导 通状态的基本放大单元的偏置电压来实现。
图 5为具有三级放大电路的多模功率放大器的电路原理图。 这三级放大 电路分别是第一级放大电路 505、第二级放大电路 510和第三级放大电路 519, 它们之间采用级联方式进行连接。 其中第一级放大电路为基本放大单元阵列 505,该基本放大单元阵列 505由 E ( E是正整数)个基本放大单元并联组成。 射频信号输入端口 501连接基本放大单元阵列 505。 供电电压端口 502通过 电感 503将射频信号耦合到第二级放大电路 510 的射频信号输入端 504。 偏 置电压 506为基本放大单元阵列 505提供直流偏置。 参考电压 507为基本放 大单元阵列 505提供参考电位。第二级放大电路 510由基本放大单元阵列 511 和基本放大单元阵列 513并联组成, 其中基本放大单元阵列 51 1是由 F ( F是 正整数)个基本放大单元并联组成, 基本放大单元阵列 513是由 G ( G是正整 数) 个基本放大单元并联组成。 偏置电压 512为基本放大单元阵列 511提供 直流偏置, 偏置电压 514为基本放大单元阵列 513提供直流偏置。 参考电压 515分别为基本放大单元阵列 511和基本放大单元阵列 513提供参考电位。 第二级放大电路 510的供电电压端口 508通过电感 509将射频信号耦合到第 三级放大电路 519的射频信号输入端。 第三级放大电路 519由基本放大单元 阵列 520和基本放大单元阵列 522并联组成, 其中基本放大单元阵列 520是 由 H ( H是正整数) 个基本放大单元并联组成, 基本放大单元阵列 522是由 I ( I 是正整数) 个基本放大单元并联组成。 偏置电压 521 为基本放大单元阵 列 520提供直流偏置,偏置电压 523为基本放大单元阵列 522提供直流偏置。 参考电压 524分别为基本放大单元阵列 520和基本放大单元阵列 522提供参 考电位。 在节点 525上, 第三级放大电路 519通过电感 518连接到供电电压 端口 517, 同时将射频信号耦合到输出匹配网络 526, 在射频信号输出端口 527处完成信号输出。
当图 5所示的多模功率放大器工作在饱和模式时, 各基本放大单元阵列 505、 511、 513、 520和 522中的基本放大单元都处于导通状态。 此时, 可以 通过调整优化各基本放大单元阵列中基本放大单元的数目 E、 F、 G、 H和 I的 数值和相应的偏置电压 506、 512、 514、 521和 523以达到具体的指标要求。 在这种情况下, 第一级放大电路 505、 第二级放大电路 510和第三级放大电 路 519 中的所有基本放大单元都将正常工作。 基本放大单元阵列 505、 基本 放大单元阵列 511 +基本放大单元阵列 513、 基本放大单元阵列 520 +基本放 大单元阵列 522的偏置电压 506、 512、 514、 521和 523可以根据放大晶体管 的技术指标要求予以确定。
当图 5所示的多模功率放大器工作在线性模式时,通过控制偏置电压 512 和 521, 使基本放大单元阵列 511和 520 中的基本放大单元处于截止状态; 通过控制偏置电压 506、 514和 523, 使基本放大单元阵列 505、 513和 522 中的基本放大单元处于导通状态, 可以通过调整优化基本放大单元阵列 513 和 522中基本放大单元的数目, 即 G和 I 的数值以及偏置电压 506、 514和 523以达到相应的技术指标要求。 其中数目 G大于等于零且小于 F + G, 数目 I大于等于零且小于 H+ I。 如果在线性模式下工作时, 需要覆盖不同的通信 制式 (例如 EDGE, WCDMA、 TD— SCDMA、 TD— LTE等) 或是在某一通信制式下需 要不同的功率(增益)模式, 可以通过进一步把基本放大单元阵列 513和 522 (或其它基本放大单元阵列) 分解为更小的基本放大单元阵列, 分别调整这 些更小的基本放大单元阵列的偏置电压, 并通过调整优化处于截止状态和导 通状态的基本放大单元的数目以及调整优化处于导通状态的基本放大单元的 偏置电压来实现。 通常情况下, 第一级放大电路一般不去改变, 因为需要考虑到输入阻抗 的影响, 但还是可以通过适当地调整偏置电压 506来实现性能的优化, 例如 让偏置电压 512、 521为零电平, 则可以关掉第二级放大电路 510中的基本放 大单元阵列 511和第三级放大电路 519中的基本放大单元阵列 520。 另外, 基本放大单元阵列 513中的参数 G和基本放大单元阵列 522中的参数 I的数 值和偏置电压 514、 523的大小可以根据线性模式下的具体指标要求予以确定。
图 6为具有四级放大电路的多模功率放大器的电路原理图。 在该多模功 率放大器中, 第一级放大电路 605、 第二级放大电路 610和第三级放大电路 619 的内部结构和工作原理与图 5所示的多模功率放大器基本相同, 在此不 予累述。 第四级放大电路 628采用级联方式与第三级放大电路 619连接, 其 内部结构和工作原理也与第三级放大电路 619是一致的。 当图 6所示的多模 功率放大器工作在饱和模式时,所有基本放大单元阵列 605、 61 1、 613、 620、 622、 629和 631中的基本放大单元都将处于导通状态, 可以通过调整优化其 中基本放大单元的数目 J、 K、 L、 M、 N、 0、 P (均为正整数) 的具体数值和 偏置电压 606、 612、 614、 621、 623、 630和 632的具体大小来达到相应的指 标要求。 当图 6所示的多模功率放大器处于线性模式下, 可以通过控制偏置 电压 612、 621、 630 , 使基本放大单元阵列 61 1、 620和 629中的基本放大单 元处于截止状态; 通过控制偏置电压 606、 614、 623、 632 , 使基本放大单元 阵列 605、 613、 622和 631中的基本放大单元处于导通状态。 在此情况下, 可以通过调整优化基本放大单元阵列 613、 622和 631中的基本放大单元的数 目, 即 L、 N、 P的数值以及偏置电压 606、 614、 623和 632使其达到相应的 技术指标要求,其中 L大于等于零且小于 F + L, N大于等于零且小于 M + N, P大于等于零且小于 0 + P。 另外, 如果在线性模式下工作, 需要覆盖不同的 通信制式 (例如 EDGE, WCDMA , TD— SCDMA、 TD— LTE等) 或是在某一通信制式 下需要不同的功率 (增益) 模式, 也可以通过将基本放大单元阵列 613、 622 和 631 (或其它基本放大单元阵列)进一步分解成更小的基本放大单元阵列, 调整优化处于截止状态和导通状态的基本放大单元的数目和处于正常工作的 基本放大单元的偏置电压来实现。
图 4〜图 6分别显示了具有两级、 三级和四级放大电路的多模功率放大 器的不同实施例, 但该多模功率放大器并不限于上述的放大级数。 事实上, 每一级放大电路由至少一个图 2所示的基本放大单元阵列组成, 各级放大电 路之间采用级联方式连接, 就可以组成任意放大级数的多模功率放大器, 从 而适应不同通信制式和不同功率 (增益) 模式的要求。
上述多模功率放大器可以用在移动终端中, 作为射频电路的重要组成部 分。 这里所说的移动终端指可以在移动环境中使用、 支持 EDGE、 WCDMA , TD— SCDMA、 TD— LTE等多种通信制式的计算机设备, 包括移动电话、 笔记本电 脑、 平板电脑、 车载电脑等。 此外, 该多模功率放大器也适用于其他多模技 术应用的场合,例如兼容多种通信制式的通信基站等,在此就不一一详述了。
上面对本发明所提供的多模功率放大器、 多模切换方法及其移动终端进 行了详细的说明。 对本领域的一般技术人员而言, 在不背离本发明实质精神 的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯, 将承担相应的法律责任。

Claims

权 利 要 求
1. 一种多模功率放大器, 包括至少两级放大电路, 各级放大电路之间采 用级联方式连接; 其特征在于:
每一级放大电路中具有至少一个基本放大单元阵列, 该基本放大单元阵 列由多个基本放大单元并联组成;
每个基本放大单元分别包括电容、 放大晶体管和电阻, 其中所述电容一 方面连接射频信号输入端, 另一方面连接所述放大晶体管的基极; 所述电阻 一方面连接偏置电压端口, 另一方面连接所述放大晶体管的基极, 所述放大 晶体管的集电极连接供电电压端口;
在各基本放大单元中, 所述放大晶体管的射极连接参考电压; 各基本放大单元阵列的偏置电压分别独立进行控制;
在前一级放大电路的供电电压端口与下一级放大电路的射频信号输入端 之间设置有电感; 前一级放大电路的供电电压端口将射频信号耦合到下一级 放大电路的射频信号输入端。
2. 一种多模功率放大器, 其特征在于:
所述多模功率放大器包括至少两级放大电路, 各级放大电路之间采用级 联方式连接;
每一级放大电路中具有至少一个基本放大单元阵列, 该基本放大单元阵 列由多个基本放大单元并联组成;
每个基本放大单元分别包括电容、 放大晶体管和电阻, 其中所述电容一 方面连接射频信号输入端, 另一方面连接所述放大晶体管的基极; 所述电阻 一方面连接偏置电压端口, 另一方面连接所述放大晶体管的基极, 所述放大 晶体管的集电极连接供电电压端口。
3. 如权利要求 2所述的多模功率放大器, 其特征在于:
前一级放大电路的供电电压端口将射频信号耦合到下一级放大电路的射 频信号输入端。
4. 如权利要求 3所述的多模功率放大器, 其特征在于:
在前一级放大电路的供电电压端口与下一级放大电路的射频信号输入端 之间设置有电感。
5. 如权利要求 2所述的多模功率放大器, 其特征在于:
在基本放大单元中, 所述放大晶体管的射极连接参考电压。
6. 如权利要求 2所述的多模功率放大器, 其特征在于:
各基本放大单元阵列的偏置电压分别独立进行控制。
7. 一种多模切换方法,基于权利要求 1或 2所述的多模功率放大器实现, 其特征在于:
在多模功率放大器的各级放大电路中, 各基本放大单元阵列的偏置电压 分别独立进行控制;
当多模功率放大器需要处于饱和模式时, 调整各基本放大单元阵列的偏 置电压, 使全部放大晶体管处于导通状态;
当多模功率放大器需要处于线性模式时, 调整各基本放大单元阵列的偏 置电压, 使部分放大晶体管处于导通状态。
8. 如权利要求 7所述的多模切换方法, 其特征在于:
在不同线性模式下,通过配置偏置电压来控制开启预定的基本放大单元, 同时通过对偏置电压的调整实现不同线性模式下的性能指标优化。
9. 如权利要求 7所述的多模切换方法, 其特征在于:
当多模功率放大器需要覆盖不同的通信制式或是在某一通信制式下满足 不同功率模式时, 通过调整处于截止状态和导通状态的基本放大单元的数目 以及调整处于导通状态的基本放大单元的偏置电压来实现。
10. 如权利要求 7所述的多模切换方法, 其特征在于:
当多模功率放大器需要覆盖不同的通信制式或是在某一通信制式下满足 不同功率模式时, 将预定的基本放大单元阵列分解成更小的基本放大单元阵 列, 分别调整各更小的基本放大单元阵列的偏置电压。
11. 一种移动终端,其特征在于所述移动终端具有如权利要求 1〜6中任 意一项所述的多模功率放大器。
12. 如权利要求 11所述的移动终端,其特征在于所述移动终端中的多模 功率放大器采用权利要求 7〜10中任意一项所述的方法进行多模切换。
PCT/CN2013/078707 2012-08-21 2013-07-02 多模功率放大器、多模切换方法及其移动终端 WO2014029240A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/422,383 US9667205B2 (en) 2012-08-21 2013-07-02 Multimode power amplifier and method of switching among multiple modes thereof, and mobile terminal
EP13831423.2A EP2890005B1 (en) 2012-08-21 2013-07-02 Multimode power amplifier, multimode switching method and mobile terminal thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210298572.3A CN103633949B (zh) 2012-08-21 2012-08-21 多模功率放大器、多模切换方法及其移动终端
CN201210298572.3 2012-08-21

Publications (1)

Publication Number Publication Date
WO2014029240A1 true WO2014029240A1 (zh) 2014-02-27

Family

ID=50149397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078707 WO2014029240A1 (zh) 2012-08-21 2013-07-02 多模功率放大器、多模切换方法及其移动终端

Country Status (4)

Country Link
US (1) US9667205B2 (zh)
EP (1) EP2890005B1 (zh)
CN (1) CN103633949B (zh)
WO (1) WO2014029240A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872885B (zh) * 2014-03-18 2016-04-06 深圳市华星光电技术有限公司 一种待机功耗控制电路及方法
US9356560B2 (en) * 2014-08-01 2016-05-31 Qualcomm Incorporated Multi-mode integrated power amplifier
CN104507147B (zh) * 2014-12-02 2018-05-29 上海华为技术有限公司 一种功率放大器控制装置及方法
FR3030153B1 (fr) * 2014-12-16 2018-03-30 Stmicroelectronics Sa Amplificateur rf a plages multiples
CN104486845A (zh) * 2014-12-19 2015-04-01 北京中科汉天下电子技术有限公司 一种多模多频通信系统
CN106208983B (zh) * 2016-06-30 2021-07-16 唯捷创芯(天津)电子技术股份有限公司 面向时分复用的多模功率放大器模组、芯片及通信终端
CN105680801B (zh) * 2016-01-08 2018-06-15 合肥雷诚微电子有限责任公司 一种平衡散热的多模功率放大器及其移动终端
CN105490648B (zh) * 2016-01-08 2018-06-29 合肥雷诚微电子有限责任公司 一种多模功率放大器及其移动终端
CN105978494B (zh) * 2016-05-04 2018-09-11 苏州雷诚芯微电子有限公司 一种高良率的倒装芯片功率放大器及其应用
CN105897178B (zh) * 2016-05-04 2018-09-11 苏州雷诚芯微电子有限公司 一种高良率的倒装芯片线性功率放大器及其应用
CN105897180B (zh) * 2016-05-04 2018-10-30 苏州雷诚芯微电子有限公司 一种高良率的平衡散热的倒装芯片线性功率放大器及其应用
CN106100591B (zh) * 2016-08-08 2022-10-25 安徽佳视通电子科技有限公司 一种高效率低谐波的功率放大器及其移动终端
CN106559048B (zh) * 2016-10-25 2020-08-14 锐迪科微电子(上海)有限公司 一种多模射频功率放大器
CN107769739A (zh) * 2017-10-16 2018-03-06 广州慧智微电子有限公司 射频功率放大电路
WO2021062685A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种包络跟踪调制器及发射装置
CN113541616A (zh) * 2020-04-16 2021-10-22 烽火通信科技股份有限公司 一种具有保护功能的驱动放大器射频端口启动方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656514A (zh) * 2009-09-07 2010-02-24 东南大学 一种基于匹配共享增益可控的并联型射频功率放大器
KR20100051808A (ko) 2007-07-31 2010-05-18 앤드로사이언스 코포레이션 안드로겐 수용체 분해 강화제를 포함한 조성물 및 탈모와 피부질환의 예방 또는 치료 방법
CN102427339A (zh) * 2011-11-27 2012-04-25 中国科学技术大学 一种输出功率可调的功率放大器
WO2012085768A1 (fr) * 2010-12-23 2012-06-28 Universite De Poitiers Circuit formateur de faisceau et système d'antenne comprenant un tel circuit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608353A (en) * 1995-03-29 1997-03-04 Rf Micro Devices, Inc. HBT power amplifier
JPH08307159A (ja) * 1995-04-27 1996-11-22 Sony Corp 高周波増幅回路、送信装置、及び受信装置
US6782244B2 (en) * 2001-03-16 2004-08-24 Rf Micro Devices, Inc. Segmented power amplifier and method of control
US6724252B2 (en) * 2002-02-21 2004-04-20 Rf Micro Devices, Inc. Switched gain amplifier circuit
US7170341B2 (en) * 2003-08-05 2007-01-30 Motorola, Inc. Low power consumption adaptive power amplifier
US6970040B1 (en) * 2003-11-13 2005-11-29 Rf Micro Devices, Inc. Multi-mode/multi-band power amplifier
JP2006074074A (ja) * 2004-08-31 2006-03-16 Matsushita Electric Ind Co Ltd 高周波電力増幅器
EP1696558A1 (en) * 2005-02-25 2006-08-30 STMicroelectronics S.r.l. Protection of output stage transistor of an RF power amplifier
JP2007027269A (ja) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd バイポーラトランジスタ及び電力増幅器
US7619468B1 (en) * 2008-09-30 2009-11-17 Nortel Networks Limited Doherty amplifier with drain bias supply modulation
KR101675342B1 (ko) * 2010-06-01 2016-11-11 삼성전자주식회사 휴대용 단말기의 전력 증폭 장치 및 방법
CN102404020A (zh) * 2011-11-04 2012-04-04 中兴通讯股份有限公司 功率放大模块、多模射频收发器和多模终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100051808A (ko) 2007-07-31 2010-05-18 앤드로사이언스 코포레이션 안드로겐 수용체 분해 강화제를 포함한 조성물 및 탈모와 피부질환의 예방 또는 치료 방법
CN101656514A (zh) * 2009-09-07 2010-02-24 东南大学 一种基于匹配共享增益可控的并联型射频功率放大器
WO2012085768A1 (fr) * 2010-12-23 2012-06-28 Universite De Poitiers Circuit formateur de faisceau et système d'antenne comprenant un tel circuit
CN102427339A (zh) * 2011-11-27 2012-04-25 中国科学技术大学 一种输出功率可调的功率放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2890005A4

Also Published As

Publication number Publication date
EP2890005B1 (en) 2019-05-08
CN103633949A (zh) 2014-03-12
US20150236659A1 (en) 2015-08-20
EP2890005A1 (en) 2015-07-01
US9667205B2 (en) 2017-05-30
EP2890005A4 (en) 2016-03-23
CN103633949B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2014029240A1 (zh) 多模功率放大器、多模切换方法及其移动终端
WO2018001380A1 (zh) 多增益模式功率放大器、芯片及通信终端
US7944291B2 (en) Power amplifier having parallel amplification stages and associated impedance matching networks
KR101354222B1 (ko) 부하에 둔감한 고효율 전력 증폭기 회로 및 부하에 둔감한 고효율 전력 증폭기 회로 상에서 동작하는 방법
US10637407B2 (en) Multimode power amplifier module, chip and communication terminal
US9698731B2 (en) Power amplifier, transceiver, and base station
WO2012146001A1 (zh) 一种doherty功放装置
WO2012146007A1 (zh) 一种多合体功率放大器及其实现方法
CN102299689A (zh) 基于包络跟踪技术的高效率双频功率放大器的设计方法
WO2012146013A1 (zh) 一种多合体功率放大器及其实现方法
WO2012146002A1 (zh) 一种多合体功率放大器及其实现方法
WO2019179488A1 (zh) 一种多模多频无线射频前端模块、芯片及通信终端
WO2021120243A1 (zh) 一种支持非独立组网的5g功率放大器架构
EP2541766A1 (en) Power amplification tube and power amplification method
CN114465584A (zh) 一种双模式超宽带高效率功率放大电路
WO2015090050A1 (zh) 一种放大器系统及设备
US20230155619A1 (en) Power mixer, radio frequency circuit, device and equipment
CN106100591B (zh) 一种高效率低谐波的功率放大器及其移动终端
CN210780688U (zh) 并联输出型类多电平d类功率放大器
Yin et al. An efficiency-enhanced 2.4 GHz stacked CMOS power amplifier with mode switching scheme for WLAN applications
WO2017005034A1 (zh) 功率放大系统、方法及装置
CN203608161U (zh) 一种td-lte射频功率放大器
CN111293994B (zh) 单元复用变压器合成功率放大器
CN106788291A (zh) 大功率功放集成电路
CN115701684A (zh) 功率放大器控制方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14422383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013831423

Country of ref document: EP