WO2014029183A1 - 薄膜感应器、包含该感应器的电容触摸屏及其制作方法和终端产品 - Google Patents

薄膜感应器、包含该感应器的电容触摸屏及其制作方法和终端产品 Download PDF

Info

Publication number
WO2014029183A1
WO2014029183A1 PCT/CN2012/087083 CN2012087083W WO2014029183A1 WO 2014029183 A1 WO2014029183 A1 WO 2014029183A1 CN 2012087083 W CN2012087083 W CN 2012087083W WO 2014029183 A1 WO2014029183 A1 WO 2014029183A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode layer
sensing electrode
thin film
sensor
Prior art date
Application number
PCT/CN2012/087083
Other languages
English (en)
French (fr)
Inventor
程志政
孟锴
唐根初
Original Assignee
深圳欧菲光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欧菲光科技股份有限公司 filed Critical 深圳欧菲光科技股份有限公司
Priority to KR1020147008156A priority Critical patent/KR20140066742A/ko
Priority to US14/000,174 priority patent/US20140070821A1/en
Publication of WO2014029183A1 publication Critical patent/WO2014029183A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • H01G5/18Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes due to change in inclination, e.g. by flexing, by spiral wrapping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a thin film inductor, a capacitive touch screen including the same, a method of fabricating the same, and a terminal product. Background technique
  • the capacitive touch screen can be roughly divided into a glass capacitive screen and a thin film capacitive screen according to the material of the sensor.
  • the thin film capacitive touch screen is lighter than the sensor of the glass capacitive screen, and the film material can be rolled to roll, which is advantageous for mass production and reduces production cost. Therefore, the thin film capacitive touch screen It is widely used in mobile phones, tablets and super-notebooks, and its market size is comparable to that of glass capacitive touch screens.
  • the sensor is formed by bonding two transparent conductive films through an optical adhesive. Specifically, a conductive film is first formed, that is, electrode layers are respectively formed on the upper surfaces of two transparent film substrates. Then, the two conductive films are attached to each other by optical glue, and the distance between the upper and lower electrode layers (the upper layer is the sensing electrode layer and the lower layer is the driving electrode layer) is a film substrate layer plus a layer of optical glue thickness. And a thickness of the film substrate under the driving electrode layer.
  • the thickness of the traditional thin film sensor is thicker, which increases the thickness of the touch screen, which is not conducive to the touch screen and Hand touch electronic products are developing in the direction of lightness and thinness; and there are many consumables, high cost, and the production process is troublesome.
  • One aspect of the present invention provides a thin film inductor for a capacitive touch screen, the thin film inductor including a sensing electrode layer and a driving electrode layer, the thin film inductor further comprising an optically transparent substrate, the substrate having Two surfaces, the two surfaces are respectively plated with the sensing electrode layer and the driving electrode layer; the substrate comprises a first film plated with the sensing electrode layer, and the plate is plated with the a second film of the driving electrode layer, an optically transparent bonding member between the first film and the second film, the first film and the second film being bonded by the bonding member.
  • the optically transparent adhesive member may be an optical adhesive or an integrally optically transparent member coated with optical glue on both sides.
  • a thin film inductor for a capacitive touch screen using the above technical solution which has only one optically conductive substrate, specifically, has only one optically transparent substrate, and the two surfaces of the substrate are respectively plated with a sensing electrode layer and
  • the driving electrode layer is beneficial to reduce the thickness of the thin film inductor on the one hand, thereby facilitating the development of the touch screen and the hand touch electronic product in the direction of thinning.
  • the first film and the second film are both made of PET, and the first film and the second film are bonded by optical glue.
  • the substrate has a thickness of 0.05 to 0.2 mm.
  • the sensing electrode layer and the driving electrode layer both use an optically transparent conductive material ITO.
  • the sensing electrode layer and the driving electrode layer are both formed by plating a layer of germanium conductive film on the surface of the film, and forming respective corresponding desired germanium patterns by etching.
  • the sensing electrode layer and the driving electrode layer are away from each other
  • One side surface of the substrate is provided with metal electrode leads.
  • the sensing electrode layer and the driving electrode layer are plated on the film, and the surface of each of the surfaces on which the film is not bonded is plated with a metal film and etched to form respective metal electrode leads.
  • the metal film may be a copper film, an aluminum film, a silver film or other metal film known to those skilled in the art and may be used for a capacitive touch screen sensor electrode layer.
  • the metal electrode lead may be a copper lead. Aluminum leads, silver leads, etc.
  • the sensing electrode layer and the driving electrode layer are electrically connected to each other by a flexible printed circuit board.
  • the sensing electrode layer is an X-axis conduction circuit
  • the driving electrode layer is a Y-conducting circuit
  • the flexible printed circuit board includes a first portion connecting the X-axis conduction circuit and a connection Y-axis guide. The second part of the circuit, wherein the first portion is electrically connected to the sensing electrode layer through the anisotropic conductive paste, and the second portion is electrically connected to the driving electrode layer through the anisotropic conductive paste.
  • Another aspect of the present invention provides a capacitive touch screen including a cover plate and the above-described thin film inductor, wherein the sensing electrode layer is relatively close to the cover plate as compared with the driving electrode layer.
  • the sensing electrode layer of the thin film inductor is bonded to the cover by optical glue.
  • the optical adhesive is an OCA optical adhesive having a thickness of from 50 microns to 100 microns. In a preferred embodiment, the optical adhesive has a light transmittance of 95% or more. This ensures the durability of the bond and ensures color and sufficient display brightness.
  • the cover plate is made of a shaped tempered glass.
  • Other glass cover sheets that are well known in the art that can be used for touch screens can also be used.
  • a side surface of the cover plate is provided with a window frame, and a side surface of the window frame is bonded to the sensing electrode layer by optical glue.
  • a touch screen terminal product comprising the above capacitive touch screen.
  • Still another aspect of the present invention provides a method of fabricating the above capacitive touch screen, the method comprising the steps of fabricating a thin film inductor,
  • the steps for fabricating the thin film sensor are as follows:
  • An optically transparent electrode material is plated on one surface of the first film and the second film; the electrode material on one side surface of the first film is etched to form a sensing electrode pattern, and a sensing electrode layer is formed to obtain a first conductive layer. a thin film; an electrode material etching one surface of the second film to form a driving electrode pattern, forming a driving electrode layer, and obtaining a second conductive film;
  • a side surface of the first conductive film on which the sensing electrode layer is not plated and a side surface of the second conductive film on which the driving electrode layer is not plated are bonded by an optically transparent bonding member.
  • one side surface of the first conductive film on which the sensing electrode layer is not plated and one side surface of the second conductive film that is not plated with the driving electrode layer are bonded by optical glue.
  • an optically transparent electrode material is plated on both side surfaces of the film substrate by vacuum evaporation or magnetron sputtering.
  • an ITO conductive film is formed on one surface of the first film and the second film, and a metal film is plated on the surfaces of the two ITO conductive films respectively; The surface is exposed and developed to form an ITO pattern of the sensing electrode layer and an ITO pattern of the driving electrode layer, and a metal electrode wiring 24 forming the surface of the sensing electrode layer 21 and a metal electrode wiring 25 on the surface of the driving electrode layer 22, respectively. Etching and etching away a portion of the metal by a second single-sided exposure.
  • an anisotropic conductive paste also called an anisotropic conductive film.
  • a sensing electrode layer and a driving electrode layer is an X-axis conduction circuit
  • the driving electrode layer is a Y-conducting circuit
  • the flexible printed circuit board includes a first portion connecting the X-axis conducting circuit and a second portion connecting the Y-axis conducting circuit The first portion is electrically connected to the metal electrode lead on the sensing electrode layer through the anisotropic conductive paste, and the second portion is electrically connected to the metal electrode lead on the driving electrode layer through the anisotropic conductive paste.
  • a window frame is formed on a side surface of the cover by a screen printing process, and the cover plate is provided with a side surface of the window frame and a sensing electrode layer of the film sensor. Bonded by optical glue.
  • FIG. 1 is a cross-sectional structural view showing a first method of manufacturing a capacitive touch panel according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional structural view showing a second method of manufacturing a capacitive touch panel according to Embodiment 1 of the present invention
  • FIG. 3 is a cross-sectional structural view showing a third method of manufacturing a capacitive touch panel according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a fourth embodiment of a method for fabricating a capacitive touch panel according to Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional structural view showing a fifth embodiment of a method for fabricating a capacitive touch panel according to Embodiment 1 of the present invention.
  • FIG. 6 is a cross-sectional structural diagram of a capacitive touch screen according to Embodiment 1 of the present invention. detailed description
  • a schematic cross-sectional view of a capacitive touch screen according to Embodiment 1 of the present invention includes a cover 10 and a thin film inductor 20.
  • the cover plate 10 is a special-shaped tempered glass material cover plate.
  • the lower surface of the cover 10 (i.e., the side bonded to the film sensor) is provided with a window frame 11.
  • the window frame 11 is formed on the cover 10 by ink using a screen printing process.
  • the thin film inductor 20 includes a sensing electrode layer 21, a driving electrode layer 22, and a substrate 23.
  • the substrate 23 is formed by bonding two layers of PET film (the first PET film 231 and the second PET film 232) through an optical adhesive 233, and the substrate 23 is entirely optically transparent.
  • the upper surface of the first PET film 231 is plated with the sensing electrode layer 21, and the lower surface of the second PET film 232 is plated with the driving electrode layer 22.
  • the sensing electrode layer 21 is separated from the driving electrode layer 22 by the sensing electrode layer 21
  • the board 10 is relatively close.
  • Both the sensing electrode layer 21 and the driving electrode layer 22 are made of an optically transparent conductive material ITO.
  • a metal electrode lead 24 is provided on one surface of the sensing electrode layer 21 away from the substrate 23.
  • a metal electrode lead 25 is provided on a side surface of the driving electrode layer 22 away from the substrate 23.
  • the cover 10 is provided with a side surface of the window frame 11 bonded to the film sensor 20 (sensing electrode layer 21 - side) by an OCA optical adhesive 30.
  • the flexible printed circuit board is pressed against the end of the film inductor 20.
  • the metal electrode lead 24 of the sensing electrode layer 21 and the metal electrode lead 25 of the driving electrode layer 22 are electrically connected to each other through the flexible printed circuit board 40.
  • the manufacturing process of the capacitive touch screen of Embodiment 1 of the present invention is as follows:
  • a first PET film 231 and a second PET film 232 are selected.
  • a top surface of the first PET film is plated with an IOT conductive film 231A, and then a metal film 24A is plated on the surface of the IOT conductive film 231 A; an IOT conductive film 232A is plated on the lower surface of the second PET film, and then at the IT0 Conductive film 232A - side surface metallized film 25A;
  • a sensing electrode layer 21 (a sensing electrode layer IT0 pattern) is formed on the upper surface of the first PET film 231 and the lower surface of the second PET film 232 by a first single-sided exposure and development etching, respectively.
  • a driving electrode layer 22 (a driving electrode layer IT0 pattern) and a metal electrode wiring 24 forming a surface of the sensing electrode layer 21 and a metal electrode wiring 25 on the surface of the driving electrode layer 22;
  • a second single-sided exposure and development etching is performed to etch away part of the metal film to open the window; and then the side surface of the first PET film 231 on which the sensing electrode layer is not plated is second.
  • the side surface of the PET film 232 which is not plated with the driving electrode layer is bonded by the OCA optical adhesive 233; the above three turns to produce the film sensor 20;
  • the flexible printed circuit board 40 and one end of the film inductor 20 are pressed together by an anisotropic conductive adhesive.
  • the sensing electrode layer 21 is an X-axis conduction circuit
  • the driving electrode layer 22 is a Y-conducting circuit
  • the flexible printed circuit board 40 includes a first portion 41 connecting the X-axis conduction circuit and a first connecting Y-axis conducting circuit
  • the second portion 42 is electrically connected to the metal electrode connection 24 of the sensing electrode layer 21 through the anisotropic conductive paste, and the second portion 42 is connected to the metal electrode of the driving electrode layer 22 through the anisotropic conductive paste. Electrical connection.
  • the cover 10 is selected, and a window frame 11 is formed on one side surface of the cover 10 by using a screen printing process;
  • one side surface of the cover 10 on which the window frame 11 is formed is bonded to the film sensor 20 (sensing electrode layer 21 side) by the OCA optical glue 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明涉及一种薄膜感应器、包含该感应器的电容触摸屏及其制作方法和终端产品。本发明的薄膜感应器,仅具有一个光学透明的基材,该基材的两个表面分别镀设感应电极层和驱动电极层,有利于减少薄膜感应器的厚度,从而有利于触摸屏和手触电子产品向轻薄化方向发展。

Description

说明书
发明名称
薄膜感应器、 包含该感应器的电容触摸屏及其制作方法和终端产品 技术领域
本发明涉及薄膜感应器、 包含该感应器的电容触摸屏及其制作方法和终 端广品。 背景技术
目前, 手触式智能电子产品风靡市场, 电容式触摸屏的良好的人机互动 性能已经获得广泛认可, 电容屏市场的迅速扩张也促进了该领域技术的发展。
电容式触摸屏,按感应器的材质大致可以分为玻璃电容屏和薄膜电容屏。 薄膜电容式触摸屏因其感应器重量比玻璃电容屏的感应器轻, 且薄膜材料可 以采用卷对卷 (Roll to Roll) 的生产方式, 有利于大规模生产, 降低生产成 本, 所以薄膜电容式触摸屏被广泛的应用于手机, 平板电脑及超级笔记本电 脑上, 其市场规模同玻璃电容式触摸屏相当。
传统的薄膜电容式触摸屏, 其感应器是由两层透明导电薄膜通过光学胶 粘合而成, 具体来说, 首先制作导电薄膜, 即分别在两个透明的薄膜基材的 上表面制作电极层, 然后再通过光学胶将两层导电薄膜上下贴合, 上下两层 电极层 (上层为感应电极层, 下层为驱动电极层) 之间的间距为一层薄膜基 材加一层光学胶的厚度, 并且驱动电极层的下方还有一层薄膜基材的厚度。
传统的薄膜感应器的厚度较厚, 会增加触摸屏的厚度, 不利于触摸屏和 手触电子产品向轻薄化方向发展; 并且耗材多, 成本高, 制作工序较为麻烦。 发明内容
基于此, 急需一种更薄的薄膜感应器和更薄的薄膜电容式触摸屏。
本发明一方面提供了一种用于电容触摸屏的薄膜感应器, 所述薄膜感应 器包含感应电极层和驱动电极层,所述薄膜感应器还包含一光学透明的基材, 所述基材具有两个表面, 所述两个表面分别镀设有所述的感应电极层和所述 的驱动电极层; 所述基材包含镀设有所述感应电极层的第一薄膜、 镀设有所 述驱动电极层的第二薄膜、 位于所述第一薄膜与第二薄膜之间的光学透明的 粘合部件, 所述第一薄膜和第二薄膜通过粘合部件粘合。
所述的光学透明的粘合部件可以为光学胶, 或者两侧表面分别涂有光学 胶的整体光学透明的部件。
采用上述技术方案的用于电容触摸屏的薄膜感应器, 其仅具有一个光学 导电基材, 具体来说, 仅具有一个光学透明的基材, 该基材的两个表面分别 镀设感应电极层和驱动电极层, 一方面有利于减少薄膜感应器的厚度, 从而 有利于触摸屏和手触电子产品向轻薄化方向发展。
在其中一个实施例中, 所述第一薄膜和第二薄膜都采用 PET材质, 所述 第一薄膜和第二薄膜通过光学胶粘合。
在其中一个实施例中, 所述的基材的厚度为 0.05~0.2mm。
在其中一个实施例中, 所述的感应电极层和所述的驱动电极层都采用光 学透明的导电材料 ITO。 所述的感应电极层和驱动电极层的制作都是在薄膜 表面镀设一层 ΙΤΟ导电膜, 并通过刻蚀形成各自相应的所需要的 ΙΤΟ图案。
在其中一个实施例中, 所述的感应电极层和所述的驱动电极层的远离所 述基材的一侧表面都设有金属电极引线。 具体来说, 感应电极层和驱动电极 层镀设在薄膜上, 而在各自的没有贴合薄膜的一侧表面镀设金属膜, 并刻蚀 形成各自相应的金属电极引线。 所述的金属膜可以是铜膜、 铝膜、 银膜或者 其他本领域人员所熟知的可以用于电容触摸屏感应器电极层的金属膜, 同样 的, 所述的金属电极引线可以是铜引线、 铝引线、 银引线等。
在其中一个实施例中, 所述的感应电极层与所述的驱动电极层通过柔性 印刷电路板相互电连接。 在其中一个优选的实施例中, 感应电极层为 X轴向 导通电路, 驱动电极层为 Y向导通电路, 柔性印刷电路板包括连接 X轴向导 通电路的第一部分和连接 Y轴向导通电路的第二部分, 其中第一部分通过异 方性导电胶与感应电极层电连接, 第二部分通过异方性导电胶与驱动电极层 电连接。
本发明另一方面提供了一种电容触摸屏, 其包括盖板和上述的薄膜感应 器, 所述感应电极层与驱动电极层相比, 所述感应电极层离所述盖板相对较 近。
在其中一个实施例中, 所述薄膜感应器的感应电极层与所述盖板通过光 学胶粘合。
在其中一个实施例中,所述的光学胶为 OCA光学胶,厚度为 50微米 -100 微米。 在其中一个优选的实施例中, 光学胶的透光率达到 95%以上。 从而保 证粘接的耐久性并确保色彩和充分的显示亮度。
在其中一个实施例中, 所述盖板为异形钢化玻璃材质。 也可以采用其他 本领域所熟知的可以用于触摸屏的玻璃材质盖板。
在其中一个实施例中, 所述盖板的一侧表面设有视窗外框, 该设有视窗 外框的一侧表面与所述感应电极层通过光学胶粘合。 本发明再一方面提供了一种触摸屏终端产品, 其包含了上述的电容触摸 屏。
本发明还一方面还提供了一种制作上述的电容触摸屏的方法, 该方法包 含制作薄膜感应器的歩骤,
所述制作薄膜感应器的歩骤如下:
选择第一薄膜、 第二薄膜;
分别在第一薄膜、 第二薄膜的一侧表面镀设光学透明的电极材料; 刻蚀其中第一薄膜的一侧表面的电极材料形成感应电极图案, 制作形成 感应电极层, 获得了第一导电薄膜; 刻蚀第二薄膜的一侧表面的电极材料形 成驱动电极图案, 制作形成驱动电极层, 获得了第二导电薄膜;
再将所述第一导电薄膜上的未镀设感应电极层的一侧表面与所述第二导 电薄膜上的未镀设驱动电极层的一侧表面通过光学透明的粘合部件粘合。
在其中一个优选实施例中, 所述第一导电薄膜上的未镀设感应电极层的 一侧表面与所述第二导电薄膜上的未镀设驱动电极层的一侧表面通过光学胶 粘合。
在其中一个实施例中, 采用真空蒸镀或磁控溅射的方式将光学透明的电 极材料镀制在所述薄膜基材的两侧表面。
在其中一个实施例中, 分别在第一薄膜、 第二薄膜的一侧表面镀设 ιτο 电极材料形成 ITO导电膜, 再分别在两个 ITO导电膜的表面镀设金属膜; 进 行第一次单面曝光显影蚀刻, 分别形成感应电极层的 ITO图案和驱动电极层 的 ITO图案以及形成感应电极层 21表面的金属电极连线 24和驱动电极层 22 表面的金属电极连线 25。 再通过第二次单面曝光显影蚀刻, 刻蚀掉部分金属 在其中一个实施例中, 制成所述薄膜感应器后, 采用异方性导电胶 (也 称异方性导电膜) 将柔性印刷电路板的两个功能部分压合在所述薄膜感应器 的感应电极层和驱动电极层。 具体的, 感应电极层为 X轴向导通电路, 驱动 电极层为 Y向导通电路,柔性印刷电路板包括连接 X轴向导通电路的第一部 分和连接 Y轴向导通电路的第二部分, 其中第一部分通过异方性导电胶与感 应电极层上的金属电极引线电连接, 第二部分通过异方性导电胶与驱动电极 层上的金属电极引线电连接。
在其中一个实施例中, 在所述的盖板一侧表面通过丝网印刷工艺制作视 窗外框, 将所述盖板设有视窗外框的一侧表面与所述薄膜感应器的感应电极 层通过光学胶粘合。 附图说明
图 1为本发明实施例 1的电容触摸屏的制作方法第一歩的剖面结构示意 图;
图 2为本发明实施例 1的电容触摸屏的制作方法第二歩的剖面结构示意 图;
图 3为本发明实施例 1的电容触摸屏的制作方法第三歩的剖面结构示意 图;
图 4为本发明实施例 1的电容触摸屏的制作方法第四歩的剖面结构示意 图;
图 5为本发明实施例 1的电容触摸屏的制作方法第五歩的剖面结构示意 图;
图 6为本发明实施例 1的电容触摸屏的剖面结构示意图。 具体实施方式
如图 6所示, 本发明实施例 1的电容触摸屏的剖视示意图, 其包含盖板 10和薄膜感应器 20。
所述盖板 10为异形钢化玻璃材质盖板。
盖板 10下表面(即与薄膜感应器粘合的一侧)设有视窗外框 11, 一般来 说, 视窗外框 11是通过丝网印刷工艺利用油墨制作于盖板 10上。
薄膜感应器 20包括感应电极层 21、 驱动电极层 22、 基材 23。
基材 23为由两层 PET材质的薄膜(第一 PET薄膜 231和第二 PET薄膜 232) 通过光学胶 233粘合而成, 基材 23整体光学透明。
第一 PET薄膜 231的上表面镀设有感应电极层 21, 第二 PET薄膜 232 的下表面镀设有驱动电极层 22, 感应电极层 21与驱动电极层 22相比, 感应 电极层 21离盖板 10相对较近。
感应电极层 21和驱动电极层 22都采用光学透明的导电材料 ITO。
感应电极层 21的远离基材 23的一侧表面都设有金属电极引线 24。 驱动 电极层 22的远离基材 23的一侧表面都设有金属电极引线 25。
盖板 10设有视窗外框 11的一侧表面通过 OCA光学胶 30与薄膜感应器 20 (感应电极层 21—侧) 粘合。
柔性印刷电路板压合在薄膜感应器 20—端部。 感应电极层 21的金属电 极引线 24与驱动电极层 22的金属电极引线 25通过柔性印刷电路板 40相互 电连接。 本发明实施例 1的电容触摸屏的制作歩骤如下:
第一歩, 参见图 1, 首先选择第一 PET薄膜 231和第二 PET薄膜 232, 在第一 PET薄膜的上表面镀一层 IT0导电膜 231A, 再在 IT0导电膜 231 A 一侧表面镀金属膜 24A; 在第二 PET薄膜的下表面镀一层 IT0导电膜 232A, 再在 IT0导电膜 232A—侧表面镀金属膜 25A;
第二歩, 参见图 2, 通过第一次单面曝光显影蚀刻, 在第一 PET薄膜 231 的上表面和第二 PET薄膜 232的下表面分别形成感应电极层 21 (感应电极层 IT0图案)和驱动电极层 22 (驱动电极层 IT0图案) 以及形成感应电极层 21 表面的金属电极连线 24和驱动电极层 22表面的金属电极连线 25;
第三歩, 参见图 3, 通过第二次单面曝光显影蚀刻, 刻蚀掉部分金属膜, 打开视窗; 再将第一 PET薄膜 231上的未镀设感应电极层的一侧表面与第二 PET薄膜 232上的未镀设驱动电极层的一侧表面通过 OCA光学胶 233粘合; 上述三歩制得薄膜感应器 20;
第四歩,参见图 4,再将柔性印刷电路板 40与薄膜感应器 20的一端部通 过异方性导电胶压合,
假定感应电极层 21为 X轴向导通电路,驱动电极层 22为 Y向导通电路; 柔性印刷电路板 40包括连接 X轴向导通电路的第一部分 41和连接 Y轴向导 通电路的第二部分 42, 所述第一部分 41通过异方性导电胶与感应电极层 21 的金属电极连线 24电连接, 第二部分 42通过异方性导电胶与驱动电极层 22 的金属电极连线 25电连接。
第五歩, 参见图 5, 选择盖板 10, 通过丝网印刷工艺利用油墨在盖板 10 的一侧表面制作视窗外框 11 ;
第六歩,参见图 6,将盖板 10的制作有视窗外框 11的一侧表面与薄膜感 应器 20 (感应电极层 21—侧) 通过 OCA光学胶 30粘合。 以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详 细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于 本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若 干变形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范 围应以所附权利要求为准。

Claims

权利要求书
1、 一种用于电容触摸屏的薄膜感应器, 所述薄膜感应器包含感应电极层 和驱动电极层, 其特征在于: 所述薄膜感应器还包含一光学透明的基材, 所述基材具有两个表面, 所述两个表面分别镀设有所述的感应电极层和 所述的驱动电极层;
所述基材包含镀设有所述感应电极层的第一薄膜、 镀设有所述驱动电极 层的第二薄膜、 位于所述第一薄膜与第二薄膜之间的光学透明的粘合部件, 所述第一薄膜和第二薄膜通过粘合部件粘合。
2、 如权利要求 1所述的薄膜感应器, 其特征在于: 所述第一薄膜和第二 薄膜都采用 PET材质, 所述第一薄膜和第二薄膜通过光学胶粘合。
3、 如权利要求 1所述的薄膜感应器, 其特征在于: 所述的基材的厚度为 0.05-0.2 mm。
4、 如权利要求 1所述的薄膜感应器, 其特征在于: 所述的感应电极层和 所述的驱动电极层的远离所述基材的一侧表面都设有金属电极引线。
5、 一种电容触摸屏, 其包括盖板和如权利要求 1-4中任意一项所述的薄 膜感应器, 所述感应电极层与驱动电极层相比, 所述感应电极层离所述盖板 相对较近。
6、 如权利要求 5所述的电容触摸屏, 其特征在于, 所述盖板的一侧表面 设有视窗外框, 该设有视窗外框的一侧表面与所述感应电极层通过光学胶粘
7、 一种触摸屏终端产品, 其包含如权利要求 5所述的电容触摸屏。
8、 一种制作如权利要求 5所述的电容触摸屏的方法, 该方法包含制作薄 膜感应器的歩骤, 其特征在于:
所述制作薄膜感应器的歩骤如下:
选择第一薄膜、 第二薄膜;
分别在第一薄膜、 第二薄膜的一侧表面镀设光学透明的电极材料; 刻蚀其中第一薄膜的一侧表面的电极材料形成感应电极图案, 制作形成 感应电极层, 获得了第一导电薄膜; 刻蚀第二薄膜的一侧表面的电极材料形 成驱动电极图案, 制作形成驱动电极层, 获得了第二导电薄膜;
再将所述第一导电薄膜上的未镀设感应电极层的一侧表面与所述第二导 电薄膜上的未镀设驱动电极层的一侧表面通过光学透明的粘合部件粘合。
9、 如权利要求 8所述的方法, 其特征在于: 采用真空蒸镀或磁控溅射的 方式将光学透明的电极材料镀制在所述薄膜基材的两侧表面。
10、 如权利要求 8所述的方法, 其特征在于: 在所述的盖板一侧表面通 过丝网印刷工艺制作视窗外框, 将所述盖板设有视窗外框的一侧表面与所述 薄膜感应器的感应电极层通过光学胶粘合。
PCT/CN2012/087083 2012-08-24 2012-12-20 薄膜感应器、包含该感应器的电容触摸屏及其制作方法和终端产品 WO2014029183A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147008156A KR20140066742A (ko) 2012-08-24 2012-12-20 박막 센서, 이를 갖는 용량형 터치 스크린 및 이의 준비 방법과 최종 제품
US14/000,174 US20140070821A1 (en) 2012-08-24 2012-12-20 Thin film sensor, capacitive touch panel having the same and preparation method thereof and terminal product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210305726.7 2012-08-24
CN201210305726.7A CN103631455A (zh) 2012-08-24 2012-08-24 薄膜感应器、包含该感应器的电容触摸屏及其制作方法和终端产品

Publications (1)

Publication Number Publication Date
WO2014029183A1 true WO2014029183A1 (zh) 2014-02-27

Family

ID=50149380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087083 WO2014029183A1 (zh) 2012-08-24 2012-12-20 薄膜感应器、包含该感应器的电容触摸屏及其制作方法和终端产品

Country Status (6)

Country Link
US (1) US20140070821A1 (zh)
JP (1) JP2014529375A (zh)
KR (1) KR20140066742A (zh)
CN (1) CN103631455A (zh)
TW (1) TWI511013B (zh)
WO (1) WO2014029183A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103631456B (zh) * 2012-08-24 2017-07-04 深圳欧菲光科技股份有限公司 薄膜感应器、包含该感应器的电容触摸屏及其制作方法和终端产品
US9510456B2 (en) 2012-11-09 2016-11-29 Shenzhen O-Film Tech Co., Ltd. Transparent conductor and preparation method thereof
CN105389068A (zh) * 2015-11-27 2016-03-09 深圳市骏达光电股份有限公司 Gff结构的电容触摸屏及其制作方法
CN205608687U (zh) * 2016-02-26 2016-09-28 意力(广州)电子科技有限公司 触控屏
CN106449712B (zh) * 2016-11-07 2019-03-29 上海天马微电子有限公司 一种有机发光显示面板以及有机发光显示装置
CN107329396A (zh) * 2017-07-10 2017-11-07 深圳市志凌伟业技术股份有限公司 一种触摸屏手表
CN108255345A (zh) * 2018-01-25 2018-07-06 深圳达沃斯光电有限公司 一种柔性电容式触摸传感器及其制备方法
CN108803954A (zh) * 2018-06-14 2018-11-13 珠海纳金科技有限公司 电容式触摸屏功能片、其制备方法以及电容式触摸屏和电子装置
CN113447172B (zh) * 2021-06-11 2023-08-18 北京纳米能源与系统研究所 一种基于天然叶脉的穿戴式压力传感器及制作方法
CN114020171B (zh) * 2021-11-05 2022-07-12 深圳市志凌伟业光电有限公司 金属感测电极结构的制作方法、触控显示设备及移动终端

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124427A (zh) * 2009-02-23 2011-07-13 E和H有限公司 电容式触摸屏面板
CN102279682A (zh) * 2011-08-30 2011-12-14 深圳市豪威薄膜技术有限公司 新型电容式触摸屏及其制造方法和触摸屏终端

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761724B1 (fr) * 1997-04-03 2000-02-04 Ferco Int Usine Ferrures Ferrure de verrouillage pour ouvrant coulissant de porte, fenetre ou analogue
KR100894710B1 (ko) * 2008-06-27 2009-04-24 (주) 월드비젼 윈도우 일체형 터치스크린 및 이의 제조방법
JP5361671B2 (ja) * 2009-11-06 2013-12-04 日本写真印刷株式会社 タッチ入力シートとその製造方法
TW201120712A (en) * 2009-12-09 2011-06-16 J Touch Corp Capacitive touch device structure.
US9213451B2 (en) * 2010-06-04 2015-12-15 Apple Inc. Thin glass for touch panel sensors and methods therefor
KR20120032734A (ko) * 2010-09-29 2012-04-06 삼성모바일디스플레이주식회사 터치스크린패널 및 그 제조방법
JP2012093985A (ja) * 2010-10-27 2012-05-17 Nitto Denko Corp タッチ入力機能を有する表示パネル装置と該表示パネル装置のための光学ユニット、並びにその製造方法
JP5739742B2 (ja) * 2010-11-04 2015-06-24 日東電工株式会社 透明導電性フィルムおよびタッチパネル
TWM405011U (en) * 2010-12-03 2011-06-01 Li Invest Co Ltd De Projected capacitive touch panel
TW201234243A (en) * 2011-02-01 2012-08-16 Ind Tech Res Inst Projective capacitive touch sensor structure and fabricating method thereof
US8398873B2 (en) * 2011-02-01 2013-03-19 Micro Technology Co., Ltd. Thin-sheet glass substrate laminate and method of manufacturing the same
TWM408745U (en) * 2011-02-22 2011-08-01 Mildex Optical Inc Projected capacitive touch panel
CN102541368A (zh) * 2011-03-14 2012-07-04 烟台正海电子网板股份有限公司 一种电容式触控面板及其制造方法
KR101293179B1 (ko) * 2011-06-13 2013-08-16 엘지이노텍 주식회사 일체형 터치스크린
EP2538313B1 (en) * 2011-06-20 2015-05-20 Melfas, Inc. Touch sensor panel
US9400576B2 (en) * 2011-07-19 2016-07-26 Apple Inc. Touch sensor arrangements for organic light-emitting diode displays
US20130194198A1 (en) * 2012-02-01 2013-08-01 David Brent GUARD Thin Dielectric Layer For Touch Sensor Stack
CN103631456B (zh) * 2012-08-24 2017-07-04 深圳欧菲光科技股份有限公司 薄膜感应器、包含该感应器的电容触摸屏及其制作方法和终端产品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124427A (zh) * 2009-02-23 2011-07-13 E和H有限公司 电容式触摸屏面板
CN102279682A (zh) * 2011-08-30 2011-12-14 深圳市豪威薄膜技术有限公司 新型电容式触摸屏及其制造方法和触摸屏终端

Also Published As

Publication number Publication date
KR20140066742A (ko) 2014-06-02
TW201409335A (zh) 2014-03-01
US20140070821A1 (en) 2014-03-13
JP2014529375A (ja) 2014-11-06
CN103631455A (zh) 2014-03-12
TWI511013B (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
TWI511013B (zh) 薄膜感應器、包含該感應器之電容觸控式螢幕及其製作方法與終端產品
TWI610209B (zh) 薄膜感應器、包含該感應器之電容觸控式螢幕及其製作方法與終端產品
US8633897B2 (en) Touch panel having curved surface and manufacturing process
TW200523804A (en) A capacitor type touch pad using thin film and the process thereof
CN105426008B (zh) 压力感应触控显示屏及便携式电子产品
CN105653106B (zh) 一种gf2结构的电容触摸屏及其制造方法
CN106095176B (zh) 一种镀铜纳米银线触摸屏及其制造方法
CN102200654A (zh) 一体化触摸显示装置及其制作方法
CN102279683A (zh) 集成式电容触摸屏及其制造方法和触摸屏终端
CN103257748A (zh) 触控面板及制造方法
JP5894568B2 (ja) タッチパネル及びその製造方法
KR20140052510A (ko) 터치스크린 패널의 제조 방법
CN102122223A (zh) 电容式触控面板及其制造方法
CN111475064B (zh) 透明线圈板及其制作方法、透明电磁感应板及显示设备
CN102207792B (zh) 基于电荷转移的触控传感器结构的制作方法
CN106445229A (zh) 一种超窄边框石墨烯触控传感器及其制备方法
CN202838280U (zh) 薄膜感应器、包含该感应器的电容触摸屏及其终端产品
CN107300999B (zh) 压力感应触摸显示屏、压力感应触摸屏及其制作方法
TWM397556U (en) Single-layer projected capacitive touch panel
KR20090090098A (ko) 터치윈도우 및 그 제조방법
KR20140078455A (ko) 터치 패널 및 이의 제조방법
CN103838442A (zh) 一种电容屏及其制作方法
CN203276218U (zh) 触控面板
CN106886321A (zh) 触控结构与制作方法及其应用装置
TW201716956A (zh) 觸控面板及其邊框線路的製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14000174

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014531098

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147008156

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883400

Country of ref document: EP

Kind code of ref document: A1