WO2014028318A1 - Inhibiteurs de la thrombine - Google Patents

Inhibiteurs de la thrombine Download PDF

Info

Publication number
WO2014028318A1
WO2014028318A1 PCT/US2013/054293 US2013054293W WO2014028318A1 WO 2014028318 A1 WO2014028318 A1 WO 2014028318A1 US 2013054293 W US2013054293 W US 2013054293W WO 2014028318 A1 WO2014028318 A1 WO 2014028318A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutically acceptable
compound
mmol
blood
acceptable salt
Prior art date
Application number
PCT/US2013/054293
Other languages
English (en)
Inventor
Christopher W. Plummer
Tesfaye Biftu
Harry Chobanian
Original Assignee
Merck Sharp & Dohme Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Sharp & Dohme Corp. filed Critical Merck Sharp & Dohme Corp.
Publication of WO2014028318A1 publication Critical patent/WO2014028318A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • Thrombin is a serine protease present in blood plasma in the form of a precursor, prothrombin. Thrombin plays a central role in the mechanism of blood coagulation by converting the solution plasma protein, fibrinogen, into insoluble fibrin.
  • the invention includes compounds for inhibiting loss of blood platelets, inhibiting formation of blood platelet aggregates, inhibiting fonnation of fibrin, inhibiting thrombus fonnation, and inhibiting embolus fonnation in a mammal, comprising a compound of the invention in a pharmaceutically acceptable canier.
  • These compounds may optionally include anticoagulants, antiplatelet agents, and thrombolytic agents.
  • the compounds can be added to blood, blood products, or mammalian organs in order to effect the desired inhibitions.
  • the invention also includes a compound that may be useful for preventing or treating unstable angina, refractory angina, myocardial infarction, transient ischemic attacks, atrial fibrillation, thrombotic stroke, embolic stroke, deep vein thrombosis, disseminated intravascular coagulation, ocular build up of fibrin, and reocclusion or restenosis of recanalized vessels, in a mammal, comprising a compound of the invention in a pharmaceutically acceptable carrier.
  • These compounds may optionally include anticoagulants, antiplatelet agents, and
  • the invention also includes a method for reducing the thrombogenicity of a surface in a mammal by attaching to the surface, either covalently or
  • Compounds of the invention are thrombin inhibitors and may have therapeutic value in, for example, preventing coronary artery disease.
  • the invention includes compounds of formula I:
  • R is a heterocycle or -(CR R )i -2NH2, wherein R and R , each time in which they occur, are independently H, Ci_g alkyl, -CH2F, -CHF2, CF3 or -CH20H; R 1 is Ci _6 alkyl;
  • R is hydrogen, halogen, CF3, C ⁇ . ⁇ alkyl, or together with R , forms C3.8
  • R is hydrogen, halogen, OH, C ⁇ personally6 alkyl, or together with R , forms C3.8 carbocycle.
  • R is -CH2NH2 or tetrazole.
  • R is CH3.
  • R is hydrogen, fluoro, or 3
  • R is hydrogen, fluoro, or 2
  • the compound is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • Table 1 shows structures and names of compounds of the invention: Table 1
  • the present invention encompasses all stereoisomeric forms of the compounds of Formula I. Centers of asymmetry that are present in the compounds of Formula I can all independently of one another have (R) configuration or (S) configuration. When bonds to the chiral carbon are depicted as straight lines in the structural Formulas of the invention, it is understood that both the (R) and (S) configurations of the chiral carbon, and hence both enantiomers and mixtures thereof, are embraced within the Formula. Similarly, when a compound name is recited without a chiral designation for a chiral carbon, it is understood that both the (R) and (S) configurations of the chiral carbon, and hence individual enantiomers and mixtures thereof, are embraced by the name. The production of specific stereoisomers or mixtures thereof may be identified in the Examples where such stereoisomers or mixtures were obtained, but this in no way limits the inclusion of all stereoisomers and mixtures thereof from being within the scope of this invention.
  • the invention includes all possible enantiomers and diastereomers and mixtures of two or more stereoisomers, for example mixtures of enantiomers and/or diastereomers, in all ratios.
  • enantiomers are a subject of the invention in enantiomerically pure form, both as levorotatory and as dextrorotatory antipodes, in the form of racemates and in the form of mixtures of the two enantiomers in all ratios.
  • the invention includes both the cis form and the trans form as well as mixtures of these forms in all ratios.
  • the preparation of individual stereoisomers can be carried out, if desired, by separation of a mixture by customary methods, for example by chromatography or crystallization, by the use of stereochemically uniform starting materials for the synthesis or by stereoselective synthesis.
  • a derivatization can be carried out before a separation of stereoisomers.
  • the separation of a mixture of stereoisomers can be carried out at an intermediate step during the synthesis of a compound of Formula I or it can be done on a final racemic product.
  • Absolute stereochemistry may be determined by X-ray crystallography of crystalline products or crystalline intermediates which are derivatized, if necessary, with a reagent containing a stereogenic center of known configuration.
  • compounds of the present invention may exist in amorphous form and/or one or more crystalline forms, and as such all amorphous and crystalline forms and mixtures thereof of the compounds of Formula I are intended to be included within the scope of the present invention.
  • some of the compounds of the instant invention may form solvates with water (i.e., a hydrate) or common organic solvents. Such solvates and hydrates, particularly the
  • the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
  • the present invention is meant to include all suitable isotopic variations of the compounds of Formula I.
  • different isotopic forms of hydrogen (H) include protium (lH) and deuterium (2H).
  • Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
  • Isotopically-enriched compounds within Formula I can be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
  • references to the compounds of structural Formula I are meant to also include the pharmaceutically acceptable salts, and also salts that are not pharmaceutically acceptable when they are used as precursors to the free compounds or their pharmaceutically acceptable salts or in other synthetic manipulations.
  • the compounds of the present invention may be administered in the form of a pharmaceutically acceptable salt.
  • pharmaceutically acceptable salt refers to salts prepared from pharmaceutically acceptable non-toxic bases or acids including inorganic or organic bases and inorganic or organic acids. Salts of basic compounds encompassed within the term “pharmaceutically acceptable salt” refer to non-toxic salts of the compounds of this invention which are generally prepared by reacting the free base with a suitable organic or inorganic acid.
  • Representative salts of basic compounds of the present invention include, but are not limited to, the following: acetate, ascorbate, adipate, alginate, aspirate,
  • benzenesulfonate benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, butyrate, camphorate, camphorsulfonate, camsylate, carbonate, chloride, clavulanate, citrate, cyclopentane propionate, diethylacetic, digluconate, dihydrochloride, dodecylsulfanate, edetate, edisylate, estolate, esylate, ethanesulfonate, formic, fumarate, gluceptate, glucoheptanoate, gluconate, glutamate, glycerophosphate, glycollylarsanilate, hemisulfate, heptanoate, hexanoate, hexylresorcinate,
  • suitable pharmaceutically acceptable salts thereof include, but are not limited to, salts derived from inorganic bases including aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, mangamous, potassium, sodium, zinc, and the like. Particularly preferred are the ammonium, calcium, magnesium, potassium, and sodium salts.
  • Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, cyclic amines, dicyclohexyl amines and basic ion- exchange resins, such as arginine, betaine, caffeine, choline, N,N- dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2- dimethylaminoethanol, ethanolamine, ethylamine, ethylenediamine, N- ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methyl glucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine, and the like.
  • the basic nitrogen- containing groups may be quatemized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl; and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides and others.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl
  • diamyl sulfates long chain halides
  • esters of carboxylic acid derivatives such as methyl, ethyl, or pivaloyloxymethyl
  • acyl derivatives of alcohols such as O-acetyl, O-pivaloyl, O-benzoyl, and ( -aminoacyl
  • esters and acyl groups known in the art for modifying the solubility or hydrolysis characteristics for use as sustained-release or prodrug formulations.
  • the invention also includes, in addition to the salt forms mentioned, inner salts or betaines (zwitterions). Salts can be obtained from the compounds of Formula I by customary methods which are known to the person skilled in the art, for example by combination with an organic or inorganic acid or base in a solvent or dispersant, or by anion exchange or cation exchange from other salts.
  • the present invention also includes all salts of the compounds of Formula I which, owing to low physiological compatibility, are not directly suitable for use in pharmaceuticals but which can be used, for example, as intermediates for chemical reactions or for the preparation of physiologically acceptable salts.
  • esters can optionally be made by esterification of an available carboxylic acid group or by formation of an ester on an available hydroxy group in a compound.
  • labile amides can be made.
  • Pharmaceutically acceptable esters or amides of the compounds of this invention may be prepared to act as pro-drugs which can be hydrolyzed back to an acid (or -COO" depending on the pH of the fluid or tissue where conversion takes place) or hydroxy form particularly in vivo and as such are encompassed within the scope of this invention.
  • Examples of pharmaceutically acceptable pro-drug modifications include, but are not limited to, -C,_ 6 alkyl esters and -C j _ 6 alkyl substituted with phenyl esters.
  • the compounds within the generic structural formulas, embodiments and specific compounds described and claimed herein encompass salts, all possible stereoisomers and tautomers, physical forms (e.g., amorphous and crystalline forms), solvate and hydrate forms thereof and any combination of these forms, as well as the salts thereof, pro-drug forms thereof, and salts of pro-drug forms thereof, where such forms are possible unless specified otherwise.
  • alkyl refers to both branched- and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms (Me is methyl, Et is ethyl, Pr is propyl, Bu is butyl), unsubstituted or substituted with Ci .4 alkyl or halogen.
  • halogen means fluorine, chlorine, bromine or iodine.
  • C3-8 cycloalkyl refers to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl, and the like, unsubstituted or substituted with C] .4 alkyl or halogen.
  • carbocycle (and variations thereof such as “carbocyclic” or “carbocyclyl”) as used herein, unless otherwise indicated, refers to a C 3 to C 8 monocyclic saturated ring. Saturated carbocyclic rings are also referred to as cycloalkyl rings, e.g., cyclopropyl, cyclobutyl, etc.
  • aryl refers to a stable 6- to 10- membered mono- or bicyclic ring system such as phenyl, or naphthyl.
  • the aryl ring can be unsubstituted or substituted with one or more of C 1.4 alkyl, hydroxyl, alkoxy, halogen, or amino.
  • heterocycle refers to a stable 5- to 7-membered mono- or bicyclic or stable 7- to 10-membered bicyclic heterocyclic ring system unsubstituted or substituted with Ci_4 alkyl or halogen, any ring of which may be saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group consisting of N, O and S, and wherein the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized, and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring.
  • heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure.
  • heterocyclic groups include piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolodinyl, 2- oxoazepinyl, azepinyl, pyrrolyl, 4-piperidonyl, pyrrolidinyl, pyrazolyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, pyridyl N-oxide, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isoxazolyl, isoxazolyl, isoxazolyl, isoxazolyl, isoxazolyl, isoxazolyl, isoxazo
  • Thrombin Inhibitors Therapeutic Uses- Method of Using
  • Anticoagulant therapy is indicated for the treatment and prevention of a variety of thrombotic conditions, particularly coronary artery and cerebrovascular disease. Those experienced in this field are readily aware of the circumstances requiring anticoagulant therapy.
  • patient used herein is taken to mean mammals such as primates, including humans, sheep, horses, cattle, pigs, dogs, cats, rats, and mice.
  • Thrombin inhibition is useful not only in the anticoagulant therapy of individuals having thrombotic conditions, but is useful whenever inhibition of blood coagulation is required such as to prevent coagulation of stored whole blood and to prevent coagulation in other biological samples for testing or storage.
  • the thrombin inhibitors can be added to or contacted with any medium containing or suspected of containing thrombin and in which it is desired that blood coagulation be inhibited, e.g., when contacting the mammal's blood with material selected from the group consisting of vascular grafts, stents, orthopedic prosthesis, cardiac prosthesis, and extracorporeal circulation systems.
  • Compounds of the invention may be useful for treating or preventing venous thromboembolism (e.g. obstruction or occlusion of a vein by a detached thrombus; obstruction or occlusion of a lung artery by a detached thrombus), cardiogenic thromboembolism (e.g. obstruction or occlusion of the heart by a detached thrombus), arterial thrombosis (e.g. formation of a thrombus within an artery that may cause infarction of tissue supplied by the artery), atherosclerosis (e.g.
  • arteriosclerosis characterized by irregularly distributed lipid deposits
  • arteriosclerosis characterized by irregularly distributed lipid deposits
  • venous thromboembolism examples include obstruction of a vein, obstruction of a lung artery (pulmonary embolism), deep vein thrombosis, thrombosis associated with cancer and cancer chemotherapy, thrombosis inherited with thrombophilic diseases such as Protein C deficiency, Protein S deficiency, antithrombin III deficiency, and Factor V Leiden, and thrombosis resulting from acquired
  • thrombophilic disorders such as systemic lupus erythematosus (inflammatory connective tissue disease).
  • compounds of the invention may be useful for maintaining patency of indwelling catheters.
  • cardiogenic thromboembolism examples include thromboembolic stroke (detached thrombus causing neurological affliction related to impaired cerebral blood supply), cardiogenic thromboembolism associated with atrial fibrillation (rapid, irregular twitching of upper heart chamber muscular fibrils), cardiogenic thromboembolism associated with prosthetic heart valves such as mechanical heart valves, and cardiogenic thromboembolism associated with heart disease.
  • arterial thrombosis examples include unstable angina (severe constrictive pain in chest of coronary origin), myocardial infarction (heart muscle cell death resulting from insufficient blood supply), ischemic heart disease (local anemia due to obstruction (such as by arterial narrowing) of blood supply), reocclusion during or after percutaneous transluminal coronary angioplasty, restenosis after percutaneous transluminal coronary angioplasty, occlusion of coronary artery bypass grafts, and occlusive cerebrovascular disease.
  • compounds of the invention may be useful for maintaining patency in arteriovenous cannulas.
  • Atherosclerosis examples include arteriosclerosis.
  • Examples of devices that come into contact with blood include vascular grafts, stents, orthopedic prosthesis, cardiac prosthesis, and extracorporeal circulation systems
  • the thrombin inhibitors of the invention can be administered in such oral forms as tablets, capsules (each of which includes sustained release or timed release formulations), pills, powders, granules, elixers, tinctures, suspensions, syrups, and emulsions. Likewise, they may be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts. An effective but nontoxic amount of the compound desired may be employed as an anti-aggregation agent. For treating ocular build up of fibrin, the compounds may be administered
  • the thrombin inhibitors can be administered in the form of a depot injection or implant preparation which may be formulated in such a manner as to permit a sustained release of the active ingredient.
  • the active ingredient can be compressed into pellets or small cylinders and implanted subcutaneously or intramuscularly as depot injections or implants.
  • Implants may employ inert materials such as biodegradable polymers or synthetic silicones, for example, Silastic, silicone rubber or other polymers manufactured by the Dow-Corning Corporation.
  • the thrombin inhibitors can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles.
  • Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.
  • the thrombin inhibitors may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled.
  • the thrombin inhibitors may also be coupled with soluble polymers as targetable drug carriers.
  • Such polymers can include polyvinlypyrrolidone, pyran copolymer, polyhydroxy-propyl-methacrylamide-phenol, polyhydroxyethyl- aspartamide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues.
  • the thrombin inhibitors may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels.
  • biodegradable polymers useful in achieving controlled release of a drug
  • a drug for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and cross linked or amphipathic block copolymers of hydrogels.
  • the dosage regimen utilizing the thrombin inhibitors is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration; the renal and hepatic function of the patient; and the particular compound or salt thereof employed.
  • An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.
  • Oral dosages of the thrombin inhibitors when used for the indicated effects, will range between about 0.01 mg per kg of body weight per day (mg/kg/day) to about 30 mg/kg/day, preferably 0.025-7.5 mg/kg/day, more preferably 0.1-2.5 mg/kg/day, and most preferably 0.1-0.5 mg/kg/day (unless specificed otherwise, amounts of active ingredients are on free base basis).
  • an 80 kg patient would receive between about 0.8 mg/day and 2.4 g/day, preferably 2-600 mg/day, more preferably 8-200 mg/day, and most preferably 8-40 mg/kg/day.
  • a suitably prepared medicament for once a day administration would thus contain between 0.8 mg and 2.4 g, preferably between 2 mg and 600 mg, more preferably between 8 mg and 200 mg, and most preferably 8 mg and 40 mg, e.g., 8 mg, 10 mg, 20 mg and 40 mg.
  • the thrombin inhibitors may be administered in divided doses of two, three, or four times daily.
  • a suitably prepared medicament would contain between 0.4 mg and 4 g, preferably between 1 mg and 300 mg, more preferably between 4 mg and 100 mg, and most preferably 4 mg and 20 mg, e.g., 4 mg, 5 mg, 10 mg and 20 mg.
  • the patient would receive the active ingredient in quantities sufficient to deliver between 0.025-7.5 mg/kg/day, preferably 0.1-2.5 mg/kg/day, and more preferably 0.1-0.5 mg/kg/day.
  • Such quantities may be administered in a number of suitable ways, e.g. large volumes of low concentrations of active ingredient during one extended period of time or several times a day, low volumes of high concentrations of active ingredient during a short period of time, e.g. once a day.
  • a conventional intravenous formulation may be prepared which contains a concentration of active ingredient of between about 0.01-1.0 mg/ml, e.g.
  • 0.1 mg/ml, 0.3 mg/ml, and 0.6 mg/ml and administered in amounts per day of between 0.01 ml/kg patient weight and 10.0 ml/kg patient weight, e.g. 0.1 ml/kg, 0.2 ml/kg, 0.5 ml/kg.
  • an 80 kg patient receiving 8 ml twice a day of an intravenous formulation having a concentration of active ingredient of 0.5 mg/ml, receives 8 mg of active ingredient per day.
  • Glucuronic acid, L-lactic acid, acetic acid, citric acid or any pharmaceutically acceptable acid/conjugate base with reasonable buffering capacity in the pH range acceptable for intravenous administration may be used as buffers.
  • the choice of appropriate buffer and pH of a formulation, depending on solubility of the drug to be administered, is readily made by a person having ordinary skill in the art.
  • the compounds can also be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches well known to those of ordinary skill in that art.
  • the dosage administration will, or course, be continuous rather than intermittent throughout the dosage regime.
  • thrombin inhibitors are typically administered as active ingredients in admixture with suitable pharmaceutical diluents, excipients or carriers (collectively referred to herein as "carrier” materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixers, syrups and the like, and consistent with convention pharmaceutical practices.
  • carrier suitable pharmaceutical diluents, excipients or carriers
  • the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert earner such as ethanol, glycerol, water and the like.
  • suitable binders, lubricants, disintegrating agents and coloring agents can also be incorporated into the mixture.
  • Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn-sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes and the like.
  • Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.
  • Disintegrators include, without limitation, starch methyl cellulose, agar, bentonite, xanthan gum and the like.
  • the thrombin inhibitors can also be co-administered with suitable anticoagulants, including, but not limited to, other thrombin inhibitors, thrombin receptor antagonists, factor Vila inhibitors, factor IXa inhibitors, factor Xa inhibitors, factor XIa inhibitors, adenosine diphosphate antiplatelet agents (e.g., P2Y12 antagonists), fibrinogen receptor antagonists (e.g. to treat or prevent unstable angina or to prevent reocclusion after angioplasty and restenosis), other anticoagulants such as aspirin, and thrombolytic agents such as plasminogen activators or streptokinase to achieve synergistic effects in the treatment of various vascular pathologies.
  • suitable anticoagulants including, but not limited to, other thrombin inhibitors, thrombin receptor antagonists, factor Vila inhibitors, factor IXa inhibitors, factor Xa inhibitors, factor XIa inhibitors, adenosine diphosphate antiplate
  • Such anticoagulants include, for example, apixaban, dabigatran, cangrelor, ticagrelor, vorapaxar, clopidogrel, edoxaban, mipomersen, prasugrel, rivaroxaban, and semuloparin.
  • apixaban dabigatran
  • cangrelor cangrelor
  • ticagrelor vorapaxar
  • clopidogrel clopidogrel
  • edoxaban mipomersen
  • prasugrel rivaroxaban
  • semuloparin semuloparin.
  • thrombin inhibitors enhance the efficiency of tissue plasminogen activator-mediated thrombolytic reperfusion.
  • Thrombin inhibitors may be administered first following thrombus formation, and tissue plasminogen activator or other plasminogen activator is administered thereafter.
  • one or more additional pharmacologically active agents may be administered in combination with a compound of Formula I.
  • the additional active agent (or agents) is intended to mean a pharmaceutically active agent (or agents) that is active in the body, including pro-drugs that convert to pharmaceutically active form after administration, which is different from the compound of Formula I, and also includes free-acid, free-base and pharmaceutically acceptable salts of said additional active agents when such forms are sold
  • any suitable additional active agent or agents including but not limited to anti-hypertensive agents, additional diuretics, anti-atherosclerotic agents such as a lipid modifying compound, anti- diabetic agents and/or anti-obesity agents may be used in any combination with the compound of Formula I in a single dosage formulation (a fixed dose drug
  • angiotensin converting enzyme inhibitors e.g, alacepril, benazepril, captopril, ceronapril, cilazapril, delapril, enalapril, enalaprilat, fosinopril, imidapril, lisinopril, moveltipril, perindopril, quinapril, ramipril, spirapril, temocapril, or trandolapril); angiotensin II receptor antagonists also known as angiotensin receptor blockers or ARBs (e.g., losartan i.e., COZAAR®, valsartan, candesartan, olmesartan, telmesartan
  • hydrochlorothiazide HCTZ
  • potassium sparing diuretics such as amiloride HCl, spironolactone, epleranone, triamterene, each with or without HCTZ
  • neutral endopeptidase inhibitors e.g., thiorphan and
  • aldosterone antagonists aldosterone synthase inhibitors
  • renin inhibitors enalkrein; RO 42-5892; A 65317; CP 80794; ES 1005; ES 8891 ; SQ 34017; aliskiren (2(S),4(S),5(S),7(S)-N-(2-carbamoyl-2-methylpropyl)-5-amino-4- hydroxy-2,7-diisopropyl-8-[4-methoxy-3-(3-methoxypropoxy)-phenyl]-octanamid hemifumarate) SPP600, SPP630 and SPP635); endothelin receptor antagonists;
  • vasodilators e.g. nitroprusside
  • calcium channel blockers e.g., amlodipine, nifedipine, verapamil, diltiazem, , felodipine, gallopamil, niludipine, nimodipine, nicardipine
  • potassium channel activators e.g., nicorandil, pinacidil, cromakalim, minoxidil, aprilkalim, loprazolam
  • sympatholitics e.g., beta-adrenergic blocking drugs (e.g., acebutolol, atenolol, betaxolol, bisoprolol, carvedilol, metoprolol, metoprolol tartate, nadolol, propranolol, sotalol, timolol); alpha adrenergic blocking drugs (e.g., doxazocin,
  • peripheral vasodilators e.g. hydralazine
  • lipid lowering agents e.g., HMG-CoA reductase inhibitors such as simvastatin and lovastatin which are marketed as ZOCOR® and MEVACOR® in lactone pro-drug form and function as inhibitors after administration, and pharmaceutically acceptable salts of dihydroxy open ring acid
  • HMG-CoA reductase inhibitors such as atorvastatin (particularly the calcium salt sold in LIPITOR®), rosuvastatin (particularly the calcium salt sold in CRESTOR®), pravastatin (particularly the sodium salt sold in PRAVACHOL®), and fiuvastatin (particularly the sodium salt sold in LESCOL®); a cholesterol absorption inhibitor such as ezetimibe (ZETIA®), and ezetimibe in combination with any other lipid lowering agents such as the HMG-CoA reductase inhibitors noted above and particularly with simvastatin (VYTORIN®) or with atorvastatin calcium; niacin in immediate-release or controlled release forms, and particularly niacin in combination with a DP antagonist such as laropiprant (TREDAPTIVE®) and/or with an HMG- CoA reductase inhibitor; niacin in immediate-release or controlled release forms, and particularly niacin in combination with a DP antagonist such as larop
  • niacin receptor agonists such as acipimox and acifran, as well as niacin receptor partial agonists
  • metabolic altering agents including insulin sensitizing agents and related compounds for the treatment of diabetes such as biguanides (e.g., metformin), meglitinides (e.g., repaglinide, nateglinide), sulfonylureas (e.g., chlorpropamide, glimepiride, glipizide, glyburide, tolazamide, tolbutamide), thiazolidinediones also referred to as glitazones (e.g., pioglitazone, rosiglitazone), alpha glucosidase inhibitors (e.g., acarbose, miglitol), dipeptidyl peptidase inhibitors, (e.g.,
  • Typical doses of thrombin inhibitors of the invention in combination with other suitable anti-platelet agents, anticoagulation agents, or thrombolytic agents may be the same as those doses of thrombin inhibitors administered without coadministration of additional anti-platelet agents, anticoagulation agents, or thrombolytic agents, or may be substantially less that those doses of thrombin inhibitors administered without coadministration of additional anti-platelet agents, anticoagulation agents, or thrombolytic agents, depending on a patient's therapeutic needs.
  • 2-Bromo-3-chloroanalineI underwent tetrazole formation in hot acetic acid in the presence of sodium azide and triethyl orthoformate to give 2. Stille cross- coupling with tributyl(l -ethoxyvinyl)tin and subsequent hydrolysis delivered the methyl ketone 4. Reductive animation under microwave conditions gave the key alpha-methyl benzyl amine coupling partner 5 as a racemate.
  • 2-Bromo-3-chlorobenzonitrile 7 underwent Stille coupling with tributyl(l-ethoxyvinyl)tin to give vinyl ether 8. Acidic hydrolysis and exhaustive LAH reduction of the intermediary ketonitrile delivered amino alcohol 9. Selective Boc protection of the benzyl amine was then followed by azide displacement of the secondary benzylic alcohol using triphenylphosphine, Zn(N 3 ) 2 , and DIAD to give K ) . The azide was then reduced to the amine using trimethylphosphine in wet ethyl acetate. EDC coupling of H with N-Fmoc-Proline was followed by deprotection of the Fmoc group with piperidine. The intermediary amine was coupled to chiral hydroxyl acid 6 and the Boc group removed from the benzyl amine to give amino alcohol 13.
  • reactions sensitive to moisture or air were performed under nitrogen or argon using anhydrous solvents and reagents.
  • the progress of reactions was determined by either analytical thin layer chromatography (TLC) usually performed with E. Merck precoated TLC plates, silica gel 60F-254, layer thickness 0.25 mm or liquid chromatography-mass spectrometry (LC-MS).
  • TLC analytical thin layer chromatography
  • LC-MS liquid chromatography-mass spectrometry
  • the analytical LC-MS system used consisted of a Waters ZQ platform with electrospray ionization in positive ion detection mode with an Agilent 1 100 series HPLC with autosampler.
  • the column was usually a Water Xterra MS CI 8, 3.0 x 50 mm, 5 ⁇ .
  • the flow rate was 1 mL/min, and the injection volume was 10 ⁇ L.
  • UV detection was in the range 210-400 nm.
  • the mobile phase consisted of solvent A (water plus 0.06% TFA) and solvent B (acetonitrile plus 0.05% TFA) with a gradient of 100% solvent A for 0.7 min changing to 100%» solvent B over 3.75 min, maintained for 1.1 min, then reverting to 100% solvent A over 0.2 min.
  • Preparative HPLC purifications were usually performed using a mass spectrometry directed system. Usually they were performed on a Waters
  • Chromatography Workstation configured with LC-MS System Consisting of: Waters ZQ single quad MS system with Electrospray Ionization, Waters 2525 Gradient Pump, Waters 2767 Injector / Collector, Waters 996 PDA Detetor, the MS Conditions of: 150-750 amu, Positive Electrospray, Collection Triggered by MS, and a Waters Sunfire C-18 5 micron, 30 mm (id) x 100 mm column.
  • the mobile phases consisted of mixtures of acetonitrile (10-100%) in water containing 0.1 %TFA. Flow rates were maintained at 50 mL/min, the injection volume was 1800 ⁇ , and the UV detection range was 210-400 nm. Mobile phase gradients were optimized for the individual compounds.
  • Tetramethylsilane (TMS) was used as internal reference in CD 3 C1 solutions, and residual CH 3 OH peak or TMS was used as internal reference in CD 3 OD solutions. Coupling constants (J) were reported in hertz (Hz). Chiral analytical chromatography was performed on one of Chiralpak AS, Chiralpak AD, Chiralcel OD, Chiralcel IA, or Chiralcel OJ columns (250x4.6 mm) (Daicel Chemical Industries, Ltd.) with noted percentage of either ethanol in hexane
  • the layers of the filtrate were separated and the organic phase was dried over MgS04, filtered and concentrated.
  • the oil 4 ⁇ 3 was purified via HPLC using a Biotage on a 100 g SNAP column with a 0 to 50% gradient EA/Hex).
  • Trypsin assays also contained 1 mM CaCl2- In assays wherein rates of hydrolysis of a p-nitroanilide (pna) substrate were determined, a Thermomax 96-well plate reader was used was used to measure (at 405 nm) the time dependent appearance of p-nitroaniline.
  • p- Nitroanilide substrate concentration was determined from measurements of absorbance at 342 nm using an extinction coefficient of 8270 cm ⁇ lM ⁇ l .
  • Concentrations of stock solutions of Z-GPR-afc were determined from measurements of absorbance at 380 nm of the 7-amino-4-trifluoromethyl coumarin produced upon complete hydrolysis of an aliquot of the stock solution by thrombin.
  • Activity assays were performed by diluting a stock solution of substrate at least tenfold to a final concentration ⁇ 0.1 K m into a solution containing enzyme or enzyme equilibrated with inhibitor. Times required to achieve
  • V 0 /Vi 1 + [I]/3 ⁇ 4
  • the activities shown by this assay indicate that the compounds of the invention may be therapeutically useful for treating various conditions in patients suffering from unstable angina, refractory angina, myocardial infarction, transient ischemic attacks, atrial fibrillation, thrombotic stroke, embolic stroke, deep vein thrombosis, disseminated intravascular coagulation, and reocclusion or restenosis of recanalized vessels.
  • Active I is (2S)-N-(l-(5-chloro-2-(lH-tetrazol-l-yl)phenyl)ethyl)-l-((R)-2-hydroxy-3,3- dimethylbutanoyl)pyrrolidine-2-carboxamide,
  • All of the active compound, cellulose, and a portion of the corn starch are mixed and granulated to 10% corn starch paste.
  • the resulting granulation is sieved, dried and blended with the remainder of the corn starch and the magnesium stearate.
  • the resulting granulation is then compressed into tablets containing 25, 50, and 100 mg, respectively, of active ingredient per tablet.
  • compositions of (2S)-N-(l-(5-chloro-2-(lH-tetrazol-l-yl)phenyl)ethyl)-l- ((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide (Active I) tablets are shown below:
  • 0.25, 2, 10 and 50 mg tablets are film-coated with an aqueous dispersion of hydroxypropyl cellulose, hydroxypropyl methyl cellulose and titanium dioxide, providing a nominal weight gain of 2.4%.
  • Active I, mannitol and microcrystalline cellulose are sieved through mesh screens of specified size (generally 250 to 750 ⁇ ) and combined in a suitable blender. The mixture is subsequently blended (typically 15 to 30 min) until the drug was uniformly distributed in the resulting dry powder blend. Magnesium stearate was screened and added to the blender, after which a precompression tablet blend was achieved upon additional mixing (typically 2 to 10 min). The precompression tablet blend is then compacted under an applied force, typically ranging from 0.5 to 2.5 metric tons, sufficient to yield tablets of suitable physical strength with acceptable disintegration times (specifications will vary with the size and potency of the compressed tablet). In the case of the 2, 10 and 50 mg potencies, the tablets are dedusted and film-coated with an aqueous dispersion of water-soluble polymers and pigment.
  • a dry powder blend is compacted under modest forces and remilled to afford granules of specified particle size.
  • the granules are then mixed with magnesium stearate and tabletted as stated above.
  • Intravenous formulations (2S)-N-(l-(5-chloro-2-(lH-tetrazol-l- yl)phenyl)ethyl)-l-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide (Active I) are prepared according to general intravenous formulation procedures.
  • buffer acids such as L-lactic acid, acetic acid, citric acid or any pharmaceutically acceptable acid/conjugate base with reasonable buffering capacity in the pH range acceptable for intravenous administration may be substituted for glucuronic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Les composés de l'invention peuvent être utiles pour inhiber la thrombine et les occlusions thrombotiques associées.
PCT/US2013/054293 2012-08-14 2013-08-09 Inhibiteurs de la thrombine WO2014028318A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261682873P 2012-08-14 2012-08-14
US61/682,873 2012-08-14

Publications (1)

Publication Number Publication Date
WO2014028318A1 true WO2014028318A1 (fr) 2014-02-20

Family

ID=50101422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/054293 WO2014028318A1 (fr) 2012-08-14 2013-08-09 Inhibiteurs de la thrombine

Country Status (1)

Country Link
WO (1) WO2014028318A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108210A1 (de) 2014-06-11 2015-12-17 Dietrich Gulba Rodentizid
EP4070658A1 (fr) 2021-04-06 2022-10-12 BIORoxx GmbH Utilisation de composés anticoagulants comme rodenticides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015190A1 (fr) * 1995-10-24 1997-05-01 Merck & Co., Inc. Inhibiteurs de thrombine
US20030013700A1 (en) * 2000-12-18 2003-01-16 Williams Peter D. Thrombin inhibitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015190A1 (fr) * 1995-10-24 1997-05-01 Merck & Co., Inc. Inhibiteurs de thrombine
US20030013700A1 (en) * 2000-12-18 2003-01-16 Williams Peter D. Thrombin inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIESTER, D ET AL.: "Thrombin inhibitors identified by computer-assisted multiparameter design.", PNAS, vol. 102, no. 24, 14 June 2005 (2005-06-14), pages 8597 - 8602, Retrieved from the Internet <URL:http:/lwww.ncbi.nlm.nih.govlpmdarticles/PMC1150832/pdf/pnas-0501983102.pdf> [retrieved on 20131204] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108210A1 (de) 2014-06-11 2015-12-17 Dietrich Gulba Rodentizid
US11678659B2 (en) 2014-06-11 2023-06-20 Dietrich Gulba Use as rodenticides of compounds that inhibit blood coagulation
EP4070658A1 (fr) 2021-04-06 2022-10-12 BIORoxx GmbH Utilisation de composés anticoagulants comme rodenticides
WO2022214485A1 (fr) 2021-04-06 2022-10-13 Bioroxx Gmbh Utilisation de composés inhibiteurs de coagulation sanguine comme rodenticides

Similar Documents

Publication Publication Date Title
US10239863B2 (en) Factor XIa inhibitors
EP3541375B1 (fr) Inhibiteurs du facteur xiia
EP3104702B1 (fr) Inhibiteurs du facteur xia
EP3104701B1 (fr) Inhibiteurs du factor xia
EP3104703B1 (fr) Inhibiteurs du facteur xia
EP3541381B1 (fr) Inhibiteurs de facteur xiia
US9469608B2 (en) Thrombin inhibitors
WO2015047973A1 (fr) Inhibiteurs du facteur xia
EP3383847B1 (fr) Inhibiteurs du facteur xia
EP3247354B1 (fr) Inhibiteurs du factor xia
KR20230110544A (ko) 혈장 칼리크레인 억제제
WO2014058538A1 (fr) Inhibiteurs de thrombine pyrrolidine substituée
WO2014028318A1 (fr) Inhibiteurs de la thrombine
EP3870171A1 (fr) Inhibiteurs du facteurs xia
US9133147B2 (en) Thrombin inhibitors
US20240101567A1 (en) Factor xia inhibitors
WO2014025658A1 (fr) Inhibiteurs de thrombine à base de pyrrolidine
WO2022197761A1 (fr) Inhibiteurs de kallicréine plasmatique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13829633

Country of ref document: EP

Kind code of ref document: A1