WO2014027854A1 - Method for forming dielectric layer using icvd - Google Patents

Method for forming dielectric layer using icvd Download PDF

Info

Publication number
WO2014027854A1
WO2014027854A1 PCT/KR2013/007375 KR2013007375W WO2014027854A1 WO 2014027854 A1 WO2014027854 A1 WO 2014027854A1 KR 2013007375 W KR2013007375 W KR 2013007375W WO 2014027854 A1 WO2014027854 A1 WO 2014027854A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
poly
insulating film
icvd
initiator
Prior art date
Application number
PCT/KR2013/007375
Other languages
French (fr)
Korean (ko)
Inventor
임성갑
유승협
성혜정
문한얼
김민철
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2014027854A1 publication Critical patent/WO2014027854A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier

Definitions

  • the present invention relates to a method for forming an insulating film using an iCVD process, and more particularly, to an insulating film forming method using an iCVD process for forming an insulating film by using an initiated chemical vapor deposition method.
  • a method of manufacturing an insulating film used for an organic thin film transistor is largely divided into a liquid phase process and a gas phase process.
  • Liquid phase processes include spin coating, dip coating, and self-assembled monolayer (SAM). These methods require solvents to make insulating films.
  • SAM self-assembled monolayer
  • the metal electrode or organic material of the organic thin film transistor is damaged when the solvent occurs.
  • annealing the device is required to remove the solvent, which is not only time-consuming but also results in decomposition of organic matter during annealing.
  • a thin film transistor is a switching element for controlling the operation of each pixel and each pixel in a flat panel display device such as a liquid crystal display (LCD) or an electroluminescence display device (ELD). It is used as a driving element of.
  • thin film transistors are expected to be used in plastic chips for smart cards or inventory tags.
  • the thin film transistor has a semiconductor layer having a source region and a drain region doped with a high concentration of impurities and a channel region formed between the two regions, the gate electrode being insulated from the semiconductor layer and located in a region corresponding to the channel region. And a source electrode and a drain electrode in contact with the source region and the drain region, respectively.
  • Inorganic semiconductor materials such as silicon (Si) have been generally used as channel layers of thin film transistors, but organic semiconductors are used in inorganic materials requiring high price and high temperature vacuum processes due to the large size, low cost, and flexibility of displays. It's turning to matter. Therefore, research on organic thin film transistors (OTFTs) using an organic film as a semiconductor layer has been actively conducted.
  • OTFTs organic thin film transistors
  • Korean Laid-Open Patent Publication No. 2006-0019868 discloses a technique related to a method of manufacturing an insulating film using a double organosiloxane precursor.
  • a mixture of a double organosiloxane precursor compound and a film property modifier may be prepared by depositing on a wafer using chemical vapor deposition, in particular PECVD.
  • a compound having a specific structure, in particular, a double organosiloxane compound in which two silicon forms are contained in one molecule, and deposited on a wafer by PECVD method has excellent mechanical properties such as elastic modulus and hardness.
  • the present invention has been found to provide an insulating film including a semiconductor interlayer insulating film for dual damascene copper interconnects and a protective film for semiconductor and display devices with excellent thermal stability and crack resistance.
  • the insulating film is manufactured by the PECVD method, organic materials are frequently damaged as in the liquid phase process because the process temperature of PECVD or CVD is very high, around 300-600 ° C.
  • the gas phase process requires high temperature and low vacuum, and thus has a problem of being evaluated as a poor process in terms of energy.
  • the thickness of the polymer insulator made of spin coating is usually about 450 ⁇ 600nm, reducing the thickness to 100nm or less causes a problem that the yield of the device is significantly lowered during device fabrication.
  • An object of the present invention is to solve the shortcomings of the insulating film manufactured in the PECVD process or CVD process through the iCVD process, uniform deposition is possible than the existing process, and shows a very low leakage current even at various thicknesses
  • An object of the present invention is to provide a method of forming an insulating film using an iCVD process, which has excellent electrical characteristics of the device and high yield of device manufacturing.
  • an insulating film forming method using an iCVD process includes a method of manufacturing an insulating film on an organic thin film transistor, wherein the initiator is thermally decomposed by heat injected onto the organic thin film transistor to free radicals. forming radicals; Chain polymerizing the monomer by activating the monomer using the free radicals to form a polymer polymer; And forming the polymer insulating layer by depositing the polymer polymer on the organic thin film transistor.
  • the polymer is any one of poly (cyclosiloxane), poly (perfluorodecylacrylate), poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer) Can be applied.
  • the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 2.0 ⁇ 3.0: 0.5 ⁇ 1.5, the process pressure is 250 ⁇ 350mTorr, filament heating temperature is 200 ⁇ 300 It is degrees C, the glass substrate cooling temperature is 100 degrees C or less, and a process time may be 1-3 nm / min.
  • the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 0.5 ⁇ 1.5: 0.5 ⁇ 1.5, the process pressure is 50 ⁇ 150mTorr, filament heating temperature is 150 ⁇ 250 °C, the glass substrate cooling temperature is 100 °C or less, the process time may be 50 ⁇ 150nm / min.
  • the narrow manufacturing width of the insulating film manufactured in the PECVD process or the CVD process can be eliminated through the iCVD process, and the deposition is more uniform than that of the existing process, and the insulation current is very high due to the very low leakage current even at various thicknesses.
  • the rate is excellent in the electrical characteristics of the device, and the production yield of the device is effective.
  • the present invention can deposit the desired polymer insulating film with the monomer and the initiator in a gaseous condition without using a solvent, especially an organic solvent, there is an effect that can prevent damage to the deposition medium due to the solvent.
  • FIG. 1 is a schematic diagram of an apparatus for manufacturing an insulating film using a double organosiloxane precursor compound according to the prior art.
  • FIG. 2 is a process diagram of an insulating film forming method using an iCVD process according to an embodiment of the present invention.
  • FIG. 3 is a graph showing a correlation between a thickness of a polymer material poly (perfluorodecylacrylate) and a poly (cyclotrisiloxane) and a leakage current in an insulating film formed by an insulating film forming method using an iCVD process according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the correlation between the capacitance of the polymer materials poly (perfluorodecylacrylate) and poly (cyclotrisiloxane) and the frequency domain in the insulating film formed by the insulating film formation method using the iCVD process according to an embodiment of the present invention.
  • FIG. 5 is a process diagram of manufacturing a fullerene thin film transistor using an insulating film formed by an insulating film forming method using an iCVD process according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the performance of the transistor through the transfer curve and the output curve in the fullerene (fullerene) thin film transistor manufactured by the insulating film manufactured by the insulating film forming method using an iCVD process according to an embodiment of the present invention.
  • an insulating film forming method using an iCVD process includes a method of manufacturing an insulating film on an organic thin film transistor, wherein the initiator is thermally decomposed by heat injected onto the organic thin film transistor to free radicals. forming radicals; Chain polymerizing the monomer by activating the monomer using the free radicals to form a polymer polymer; And forming the polymer insulating layer by depositing the polymer polymer on the organic thin film transistor.
  • the polymer is any one of poly (cyclosiloxane), poly (perfluorodecylacrylate), poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer) Can be applied.
  • the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 2.0 ⁇ 3.0: 0.5 ⁇ 1.5, the process pressure is 250 ⁇ 350mTorr, filament heating temperature is 200 ⁇ 300 It is degrees C, the glass substrate cooling temperature is 100 degrees C or less, and a process time may be 1-3 nm / min.
  • the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 0.5 ⁇ 1.5: 0.5 ⁇ 1.5, the process pressure is 50 ⁇ 150mTorr, filament heating temperature is 150 ⁇ 250 °C, the glass substrate cooling temperature is 100 °C or less, the process time may be 50 ⁇ 150nm / min.
  • the chemical vapor deposition method using an initiator for forming an insulating film to which the insulating film forming method using the iCVD process of the present invention is applied is referred to as an iCVD process.
  • No solvent is used at all. This feature eliminates the need for conventional annealing steps and avoids damage to the device due to solvents.
  • the iCVD process has a relatively low process temperature (about 10 to 50 degrees of substrate temperature and about 150 to 250 degrees of filament temperature).
  • the process pressure is about 0.1 to 0.5 Torr, which is higher than that of the conventional CVD process, and does not require the use of a high vacuum pump.
  • the temperature for heating the monomer is also lower than 100 ° C., it does not require much energy consumption in the whole process. Since the iCVD process itself can be processed at a very low temperature and is not affected by the substrate at all, there is no precaution in the process.
  • iCVD is a process of depositing a polymer using a vinyl polymerization reaction, basically all monomers having vinyl groups can be polymerized.
  • the types of polymers that can be deposited by iCVD are as follows.
  • Table 1 is an organosilicon polymer
  • Table 2 is a superhydrophobic polymer
  • Table 3 is a hydrophilic polymer
  • Table 4 is a hydrophobic polymer.
  • FIG. 2 is a process diagram of an insulating film forming method using an iCVD process according to an embodiment of the present invention.
  • the insulating film forming method using an iCVD process is a monomer and initiator providing step (S200), heat injection step (S210), free radical forming step (S220), polymer forming step (S230) and the polymer insulating film forming step (S240).
  • Providing the monomer and the initiator (S200) is a step of providing the monomer and the initiator on the surface of the organic thin film transistors (oTFTs), the 'monomer' is used in the embodiments of the present invention It means a unit that can be used for forming a polymer thin film (insulating film), and as an constituent of the encapsulation film, any organic material having a property of blocking external moisture and oxygen permeation is not limited thereto.
  • the 'monomer' is a substance which is volatile in chemical vapor deposition and can be activated by an initiator, and can be vaporized under reduced pressure and elevated temperature, and has one or more vinyl groups, ethyl, ethynyl, propyl, allyl, It is characterized by having a substituent of a butyl group and a phenyl group.
  • the 'Initiator' used in the embodiments of the present invention is a substance that induces activation of the first reaction so that the monomers can form a polymer in the process of the present invention.
  • the initiator is preferably a substance capable of pyrolyzing at a temperature lower than the temperature at which the monomer is pyrolyzed to form free radicals.
  • the "initiator” is not particularly limited as long as it is a substance capable of activating the monomer as a substance that is decomposed by the supply of heat in the reactor to form free radicals.
  • the initiator that can be used in the embodiments of the present invention may be applied to a thermal initiator (thermal initiator) or UV initiator, and the like, in particular, a thermal initiator of a peroxide radical (peroxide radical) group is used.
  • the organic thin film transistor used in the present invention is a thin film transistor using an organic semiconductor layer instead of an inorganic (silicon) layer as a channel layer, and the overall structure is not significantly different from a transistor based on silicon.
  • a voltage is applied to the gate, no current flows due to the insulating film, and an electric field is applied to the semiconductor, thereby acting as a field effect transistor.
  • the operation principle of the device is that the insulating film portion becomes a depletion layer without charge or an accumulation layer with charge depending on the voltage applied to the gate, thereby controlling the amount of current flowing between the source and drain electrodes. This ratio of currents is called the flashing ratio and plays an important role in displays such as computer monitors.
  • the heat injection step S210 is a step of providing heat to pyrolyze the initiator to form free radicals.
  • the heat provided in the heat injection step (S210) is not limited if the heat provided by a conventional method that can be provided by those of ordinary skill in the art to which the present invention belongs (hereinafter referred to as "an expert") in weather conditions. Do not.
  • the heat providing of the present invention may be made through a filament, the range of heat provided may be 200 °C to 300 °C.
  • heat is provided by a tungsten filament heated to a set temperature in a vacuum chamber environment in which a vaporized or sublimated monomer and an initiator are present to form an organic polymer insulating film on an organic thin film transistor.
  • the free radical forming step (S220) is a step of pyrolyzing the initiator through the heat injection step (S210) to form free radicals.
  • the polymer insulating film forming step (S240) is a step of forming a polymer insulating film by depositing a polymer polymer by providing heat to the organic thin film transistor by tungsten filament. That is, in the polymer insulating film forming step (S240), when free radicals are formed by thermal decomposition of an initiator, the free radicals activate monomers to induce polymerization of surrounding monomers, and the reaction is continued to form an organic polymer insulating film. .
  • polymers that can be deposited by iCVD can be applied to the kinds described in Tables 1 to 4 above.
  • the polymer material in this embodiment is exemplified as poly (cyclosiloxane: cyclosiloxane) or poly (perfluorodecylacrylate (perfluorooctyl methacrylate)), and the like.
  • poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer) may be applied.
  • the insulating film is preferably coated with a thickness of 10nm or less, and is not limited to this, the thickness may be thicker than 1um or thinner than 10nm.
  • the insulator properties of the insulating film are determined by the thickness of the polymer, the dielectric constant of the insulator, etc.
  • C kA / d
  • C (Capacitance) is the capacitance
  • A is the area of the insulator
  • d is the thickness of the insulator
  • k is the insulator.
  • the larger the capacitance the more efficient the capacitor C is, and when it is difficult to limit the characteristics of the insulator, it is difficult to manufacture a thin polymer in a general manner. It is to make electric capacity superior.
  • Process conditions of the insulating film formed by the insulating film forming method using the iCVD process according to the present invention is carried out differently when the polymer material is poly (cyclosiloxane) or poly (perfluorodecylacrylate).
  • the insulating film process conditions include a vapor flow rate (monomer: initiator) of 2.0 to 3.0: 0.5 to 1.5, a process pressure of 250 to 350 mTorr, and a filament heating temperature of 200 to 300 degreeC, glass substrate cooling temperature is 100 degrees C or less, process time is 1-3 nm / min,
  • the flow rate of a vapor (monomer: initiator) is 2.5: 1, the process pressure is 300 mTorr, filament Heating temperature is 250 degreeC, glass substrate cooling temperature is 50 degreeC, process time is 2 nm / min.
  • the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 0.5 ⁇ 1.5: 0.5 ⁇ 1.5, the process pressure is 50 ⁇ 150mTorr, filament heating temperature is 150 ⁇ 250 ° C., glass substrate cooling temperature is 100 ° C. or less, process time is 50-150 nm / min, preferably steam flow rate (monomer: initiator) is 1: 1, process pressure is 100 mTorr, filament Heating temperature is 200 degreeC, glass substrate cooling temperature is 40 degreeC, and process time is 100 nm / min.
  • poly (perfluorodecylacrylate) and poly (cyclotrisiloxane) even at various thicknesses, a very low leakage current of 10 ⁇ 8 A / cm 2 or less is observed at 1 MV / cm. .
  • poly (perfluorodecylacrylate) has the same leakage current value as the leakage current at 100nm even at a thin film thickness of 25nm.
  • poly (perfluorodecylacrylate) has a dielectric constant of 3.95 and poly (cyclotrisiloxane) has a dielectric constant of 5.
  • poly (methyl methacrylate) and polystyrene which are widely used as polymer insulating films, have a dielectric constant of about 3 or less, it can be seen that the polymer insulating films deposited by iCVD are relatively better.
  • the polymer when iCVD is used as in the present invention, the polymer can be deposited without damage to various substrates, thereby being not limited by the substrate material. In addition, it is much easier to fabricate a device having a top gate structure in which a polymer insulating film must be stacked on a semiconductor.
  • a top gate structure when dividing the transistor into a structure, it is divided into a top gate structure and a bottom gate structure according to the position of the gate electrode. In general, a bottom gate structure that is easy to manufacture is commonly used.
  • the polymer insulating film is formed by using iCVD, the gate current leakage problem can be solved in the initial bottom emission semiconductor, thereby increasing the utilization of the top gate structure.
  • polymers applicable in the present invention are described as poly (perfluorodecylacrylate) and poly (cyclotrisiloxane), but in addition to poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and Any one of poly (V3D3-PFDA copolymer) may be substituted.
  • Table 6 and Table 7 show the electric field strengths for the polymers applicable in the present invention: poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer).
  • RMS root mean square roughness represents a square root square roughness.
  • FIG. 5 is a process diagram of manufacturing a fullerene thin film transistor using an insulating film formed by an insulating film forming method using an iCVD process according to an embodiment of the present invention
  • Figure 6 is an embodiment of the present invention
  • a graph showing the performance of a transistor through a transfer curve and an output curve is shown in a fullerene thin film transistor to which an insulating film manufactured by an insulating film forming method using the iCVD process is applied.
  • the film transistor: 100 through the insulating film forming method using the iCVD process of the present invention is a glass substrate 110, Al (aluminum) electrode 120, insulating film 130, fullerene layer 140 and Al A source 150 and a drain electrode 152.
  • the Al gate electrode 120 is formed on the surface of the glass substrate 110 by thermal vapor deposition.
  • the insulating film 130 is formed by coating the surface on which the Al gate electrode 120 is thermally deposited using iCVD, and the forming method is a monomer and initiator providing step, a heat injection step, a free radical forming step, and a polymer formation as described above. It includes the step and the polymer insulating film forming step, and the same description as the previous method will be omitted.
  • the fullerene layer 140 is a layer deposited on the insulating layer 130, and the Al source 150 and the drain electrode 152 are thermally deposited on the fullerene layer 140.
  • a method of measuring the current-voltage characteristic is to fix the gate voltage constant and change the voltage across the drain, and then measure the current between the source and drain (Output Curve), and to fix the drain voltage and There are two ways to measure the current between source and drain after changing the voltage (Transfer Curve).
  • the polymer material in the insulating film 130 is poly (cyclosiloxane) and the thickness of the insulating film is 10 nm or less, that is, 7.1 nm will be described.
  • the typical performance of the fuller thin film transistor 100 using the insulating film is the on-off ratio, the electron mobility, and the threshold voltage of the device.
  • the rectification ratio is 106
  • the charge mobility is 1.22cm2 / Vs
  • the threshold voltage is 0.3V.
  • the output curve shows how well the device is driven as the voltage input to the device changes.
  • the current flow in the device increases in proportion to the voltage. . That is, it can be confirmed that the insulating film 130 made by using iCVD plays a role well in the device, and thus the device manufacturing yield is high while the electrical characteristics of the device are excellent.
  • the polymer material of the insulating film 130 is poly (cyclosiloxane) and the thickness of the insulating film is 10 nm or less
  • 10 nm using iCVD is performed as the polymer poly (cyclotrisiloxane) on the glass substrate 110.
  • the insulating film 130 is coated below.
  • a fullerene, a semiconductor, is deposited thereon, and the Al source 150 and the drain electrode 152 are placed thereon to complete the thin film transistor.
  • the present invention relates to a method for forming an insulating film using an iCVD process, the method for forming an insulating film using an iCVD process according to the present invention, in the method for producing an insulating film on an organic thin film transistor, by the heat injected on the organic thin film transistor Pyrolyzing the initiator to form free radicals; Chain polymerizing the monomer by activating the monomer using the free radicals to form a polymer polymer; And depositing the polymer polymer on the organic thin film transistor to form a polymer insulating film.
  • the narrow manufacturing width of the insulating film manufactured in the PECVD process or the CVD process can be eliminated through the iCVD process, and the deposition is more uniform than that of the existing process, and the insulation current is very high due to the very low leakage current even at various thicknesses.
  • the rate is excellent in the electrical characteristics of the device, and the production yield of the device is effective.

Abstract

The present invention relates to a method for forming a dielectric layer using iCVD. According to the present invention, the method for forming a dielectric layer on an organic thin film transistor using iCVD comprises the steps of: thermally decomposing an initiator by the heat injected on the organic thin film transistor to form free radicals; activating monomers by using the free radicals to form a polymer by chain polymerizing the monomers; and depositing the polymer on the organic thin film transistor to form a polymer dielectric layer. According to the present invention, it is possible to solve, through iCVD, a shortcoming of a narrow width of a dielectric layer prepared by PECVD or CVD, and carry out uniform deposition compared with a conventional process, and a very low leakage current is shown in various thickness, thereby having remarkable electrical properties through a high dielectric constant, and the manufacturing yield of a device is high. In addition, it is possible to prevent damage to a deposition medium due to a solvent since a desired polymer dielectric layer can be deposited with monomers and an initiator in a vapor phase condition without a solvent, particularly, an organic solvent.

Description

iCVD 공정을 이용한 절연막 형성 방법Insulating film formation method using iCDW process
본 발명은 iCVD 공정을 이용한 절연막 형성 방법에 관한 것으로, 더욱 상세하게는 화학 기상 증착(initiated chemical vapor deposition) 방법을 활용하여 절연막을 형성하는 iCVD 공정을 이용한 절연막 형성 방법에 관한 것이다.The present invention relates to a method for forming an insulating film using an iCVD process, and more particularly, to an insulating film forming method using an iCVD process for forming an insulating film by using an initiated chemical vapor deposition method.
통상적으로 유기박막트랜지스터에 이용되는 절연막을 제작하는 방법은 크게 액상 공정과 기상 공정으로 나뉜다. 액상 공정에는 스핀 코팅(spin coating), 딥 코팅(dip coating), 자기조립분자막법(self-assembled monolayer, SAM) 등이 있는데 이 방법들은 절연막 제작을 위해 용매를 꼭 필요로 한다. 하지만 용매를 이용하는 과정에서 용매로 인해 유기박막트랜지스터의 금속 전극이나 유기물이 손상이 되는 경우가 발생한다. 뿐만 아니라 용매를 제거하기 위해서 소자를 어닐링(annealing) 하는 단계를 요하는데, 이 과정은 시간이 오래 걸릴 뿐만 아니라 어닐링 도중 유기물이 분해되는 결과를 초래하기도 한다. In general, a method of manufacturing an insulating film used for an organic thin film transistor is largely divided into a liquid phase process and a gas phase process. Liquid phase processes include spin coating, dip coating, and self-assembled monolayer (SAM). These methods require solvents to make insulating films. However, in the process of using the solvent, the metal electrode or organic material of the organic thin film transistor is damaged when the solvent occurs. In addition, annealing the device is required to remove the solvent, which is not only time-consuming but also results in decomposition of organic matter during annealing.
여기서, 박막트랜지스터(thin film transistor: TFT)라 함은 액정 디스플레이 장치(LCD)나 전계발광 디스플레이 장치(ELD: electroluminescence display device) 등의 평판 디스플레이 장치에서 각 화소의 동작을 제어하는 스위칭 소자 및 각 화소의 구동 소자로 사용되고 있다. 이 밖에도 박막 트랜지스터는 스마트 카드(smart card) 또는 인벤토리 태그(inventory tag)용 플라스틱 칩에 그 활용이 예상되고 있다.Here, a thin film transistor (TFT) is a switching element for controlling the operation of each pixel and each pixel in a flat panel display device such as a liquid crystal display (LCD) or an electroluminescence display device (ELD). It is used as a driving element of. In addition, thin film transistors are expected to be used in plastic chips for smart cards or inventory tags.
이러한 박막 트랜지스터는 고농도의 불순물로 도핑된 소스 영역 및 드레인 영역과 상기 두 영역의 사이에 형성된 채널 영역을 갖는 반도체층을 가지며, 상기 반도체층과 절연되어 상기 채널 영역에 대응되는 영역에 위치하는 게이트 전극과, 상기 소스 영역 및 드레인 영역에 각각 접촉되는 소스 전극 및 드레인 전극을 포함한다.The thin film transistor has a semiconductor layer having a source region and a drain region doped with a high concentration of impurities and a channel region formed between the two regions, the gate electrode being insulated from the semiconductor layer and located in a region corresponding to the channel region. And a source electrode and a drain electrode in contact with the source region and the drain region, respectively.
박막 트랜지스터의 채널층으로 종래에는 실리콘(Si)과 같은 무기반도체 물질이 일반적으로 사용되어 왔으나, 최근 디스플레이의 대면적화, 저가격화 및 유연화로 인해서 고가격, 고온진공프로세스를 필요로 하는 무기계 물질에서 유기계 반도체 물질로 바뀌어 가고 있다. 따라서 최근 유기막을 반도체층으로 사용하는 유기 박막 트랜지스터(organic thin film transistor: OTFT)에 대한 연구가 활발히 진행되고 있다.Inorganic semiconductor materials such as silicon (Si) have been generally used as channel layers of thin film transistors, but organic semiconductors are used in inorganic materials requiring high price and high temperature vacuum processes due to the large size, low cost, and flexibility of displays. It's turning to matter. Therefore, research on organic thin film transistors (OTFTs) using an organic film as a semiconductor layer has been actively conducted.
한편, 한국 공개특허 제2006-0019868호에는 이중 유기 실록산 전구체를 이용한 절연막의 제조방법에 관한 기술이 기재되어 있다. 도 1을 참조하면, 이중 유기 실록산 전구체 화합물과 박막 물성 개량제(film property modifier)의 혼합물을 화학적 기상 증착법, 특히 PECVD 방법을 사용하여 웨이퍼에 증착함으로써 제조될 수 있다. 더욱이, 특정 구조를 가지는 화합물, 특히, 두 가지의 실리콘 형태가 한 분자내에 포함된 이중 유기 실록산 화합물을 착안하여 이를 PECVD 방법으로 웨이퍼에 증착한 결과 탄성계수, 경도 등의 기계적 물성이 우수할 뿐 아니라, 열안정성 및 균열 저항성 등도 뛰어나 이중 다마센(dual damascene) 구리 인터커넥트들을 위한 반도체 층간 절연막과 반도체 및 디스플레이 소자의 보호막을 포함하는 절연막을 제공할 수 있음을 발견하고 본 발명을 완성하게 되었다.Meanwhile, Korean Laid-Open Patent Publication No. 2006-0019868 discloses a technique related to a method of manufacturing an insulating film using a double organosiloxane precursor. Referring to FIG. 1, a mixture of a double organosiloxane precursor compound and a film property modifier may be prepared by depositing on a wafer using chemical vapor deposition, in particular PECVD. Furthermore, a compound having a specific structure, in particular, a double organosiloxane compound in which two silicon forms are contained in one molecule, and deposited on a wafer by PECVD method, has excellent mechanical properties such as elastic modulus and hardness. The present invention has been found to provide an insulating film including a semiconductor interlayer insulating film for dual damascene copper interconnects and a protective film for semiconductor and display devices with excellent thermal stability and crack resistance.
하지만, 종래기술은 PECVD 방법을 통해 절연막을 제조함으로써, PECVD나 CVD와 같은 기상 공정도 공정 온도가 300~600℃ 안팎으로 매우 높기 때문에 액상 공정에서와 마찬가지로 유기물이 손상되는 경우가 자주 발생한다. 더욱이, 기상 공정은 주로 고온과 저진공을 요하기 때문에 에너지 측면 상 좋지 못한 공정으로 평가되는 문제점이 있었다. However, in the prior art, since the insulating film is manufactured by the PECVD method, organic materials are frequently damaged as in the liquid phase process because the process temperature of PECVD or CVD is very high, around 300-600 ° C. Moreover, the gas phase process requires high temperature and low vacuum, and thus has a problem of being evaluated as a poor process in terms of energy.
더욱이, 도면에는 도시하지 않았지만, 스핀코팅이나 PECVD 등에 의한 기존 방법으로는 균일(uniform)하면서도 얇은 두께의 절연막으로 소자를 개발하는 것이 매우 난해한 문제점이 있었다. 이는, 스핀 코팅으로 만든 폴리머 절연체의 두께가 보통 450~600㎚ 정도인데, 상기 두께를 100㎚ 이하로 줄이면 소자 제작 시 소자의 수율이 상당히 낮아지는 문제를 초래하게 된다.In addition, although not shown in the drawings, it is very difficult to develop a device using an insulating film having a uniform and thin thickness by an existing method by spin coating or PECVD. This is because the thickness of the polymer insulator made of spin coating is usually about 450 ~ 600nm, reducing the thickness to 100nm or less causes a problem that the yield of the device is significantly lowered during device fabrication.
본 발명의 목적은 PECVD 공정 또는 CVD 공정에서 제조되는 절연막의 제조 폭이 좁은 단점을 iCVD 공정을 통해 해소할 수 있으면서, 기존 공정보다 균일한 증착이 가능하고, 다양한 두께에서도 매우 낮은 누설 전류를 보여 높은 절연율에 통해 소자의 전기적 특성이 우수하면서 소자의 제작 수율이 높은 iCVD 공정을 이용한 절연막 형성 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to solve the shortcomings of the insulating film manufactured in the PECVD process or CVD process through the iCVD process, uniform deposition is possible than the existing process, and shows a very low leakage current even at various thicknesses An object of the present invention is to provide a method of forming an insulating film using an iCVD process, which has excellent electrical characteristics of the device and high yield of device manufacturing.
상기 목적을 달성하기 위하여 본 발명에 따른 iCVD 공정을 이용한 절연막 형성 방법은, 유기박막트랜지스터 상에 절연막을 제조하는 방법에 있어서, 상기 유기박막트랜지스터 상에 주입한 열에 의해 개시제를 열분해하여 유리 라디칼(free radical)을 형성하는 단계; 상기 유리 라디칼을 이용하여 단량체를 활성화시킴으로써 상기 단량체를 연쇄 중합 반응시켜 고분자 폴리머를 형성하는 단계; 및 상기 유기박막트랜지스터 상에 상기 고분자 폴리머가 증착되어 고분자 절연막을 형성하는 단계를 포함하는 iCVD 공정을 이용한 절연막 형성 방법을 통해 달성된다.In order to achieve the above object, an insulating film forming method using an iCVD process according to the present invention includes a method of manufacturing an insulating film on an organic thin film transistor, wherein the initiator is thermally decomposed by heat injected onto the organic thin film transistor to free radicals. forming radicals; Chain polymerizing the monomer by activating the monomer using the free radicals to form a polymer polymer; And forming the polymer insulating layer by depositing the polymer polymer on the organic thin film transistor.
또한, 상기 폴리머는 poly(cyclosiloxane), poly(perfluorodecylacrylate), poly(FMA), poly(IBA), poly(EGDMA), poly(V3D3), poly(PFDA) 및 poly(V3D3-PFDA copolymer) 중 어느 하나가 적용될 수 있다.In addition, the polymer is any one of poly (cyclosiloxane), poly (perfluorodecylacrylate), poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer) Can be applied.
또한, 상기 폴리머가 poly(cyclosiloxane)인 경우, 절연막 공정 조건은 증기의 흐름 비율(단량체: 개시제)이 2.0~3.0:0.5~1.5 이고, 공정 압력은 250~350mTorr 이고, 필라멘트 히팅 온도는 200~300℃ 이고, 유리 기판 냉각 온도는 100℃ 이하이며, 공정 시간은 1~3㎚/min 일 수 있다.In addition, when the polymer is poly (cyclosiloxane), the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 2.0 ~ 3.0: 0.5 ~ 1.5, the process pressure is 250 ~ 350mTorr, filament heating temperature is 200 ~ 300 It is degrees C, the glass substrate cooling temperature is 100 degrees C or less, and a process time may be 1-3 nm / min.
또한, 상기 폴리머가 poly(perfluorodecylacrylate)인 경우, 절연막 공정 조건은 증기의 흐름 비율(단량체: 개시제)이 0.5~1.5:0.5~1.5 이고, 공정 압력은 50~150mTorr 이고, 필라멘트 히팅 온도는 150~250℃ 이고, 유리 기판 냉각 온도는 100℃ 이하이며, 공정 시간은 50~150㎚/min 일 수 있다.In addition, when the polymer is poly (perfluorodecylacrylate), the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 0.5 ~ 1.5: 0.5 ~ 1.5, the process pressure is 50 ~ 150mTorr, filament heating temperature is 150 ~ 250 ℃, the glass substrate cooling temperature is 100 ℃ or less, the process time may be 50 ~ 150nm / min.
본 발명에 의하면 PECVD 공정 또는 CVD 공정에서 제조되는 절연막의 제조 폭이 좁은 단점을 iCVD 공정을 통해 해소할 수 있으면서, 기존 공정보다 균일한 증착이 가능하고, 다양한 두께에서도 매우 낮은 누설 전류를 보여 높은 절연율에 통해 소자의 전기적 특성이 우수하면서 소자의 제작 수율이 높은 효과가 있다.According to the present invention, the narrow manufacturing width of the insulating film manufactured in the PECVD process or the CVD process can be eliminated through the iCVD process, and the deposition is more uniform than that of the existing process, and the insulation current is very high due to the very low leakage current even at various thicknesses. The rate is excellent in the electrical characteristics of the device, and the production yield of the device is effective.
또한, 본 발명은, 용매, 특히 유기 용매를 사용하지 않고 기상 조건에서 단량체와 개시제로 목적하는 고분자 절연막을 증착시킬 수 있어, 용매로 인한 증착 매체의 손상을 방지할 수 있는 효과가 있다.In addition, the present invention can deposit the desired polymer insulating film with the monomer and the initiator in a gaseous condition without using a solvent, especially an organic solvent, there is an effect that can prevent damage to the deposition medium due to the solvent.
도 1은 종래기술에 따른 이중 유기 실록산 전구체 화합물을 이용하여 절연막을 제조하는 장치의 개략도이다.1 is a schematic diagram of an apparatus for manufacturing an insulating film using a double organosiloxane precursor compound according to the prior art.
도 2는 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법의 공정도이다.2 is a process diagram of an insulating film forming method using an iCVD process according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법을 통해 형성된 절연막에서 폴리머 물질인 poly(perfluorodecylacrylate), poly(cyclotrisiloxane)의 두께와 누설 전류와의 상관 관계를 나타낸 그래프이다.FIG. 3 is a graph showing a correlation between a thickness of a polymer material poly (perfluorodecylacrylate) and a poly (cyclotrisiloxane) and a leakage current in an insulating film formed by an insulating film forming method using an iCVD process according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법을 통해 형성된 절연막에서 폴리머 물질인 poly(perfluorodecylacrylate), poly(cyclotrisiloxane)의 전기 용량과 주파수 영역과의 상관 관계를 나타낸 그래프이다.4 is a graph showing the correlation between the capacitance of the polymer materials poly (perfluorodecylacrylate) and poly (cyclotrisiloxane) and the frequency domain in the insulating film formed by the insulating film formation method using the iCVD process according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법에 의해 형성된 절연막을 이용하여 풀러린(fullerene) 박막 트랜지스터를 제조하는 공정도이다.5 is a process diagram of manufacturing a fullerene thin film transistor using an insulating film formed by an insulating film forming method using an iCVD process according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법을 통해 제조된 절연막을 통해 제조되는 풀러린(fullerene) 박막 트랜지스터에서 Transfer curve와 Output curve를 통한 트랜지스터의 성능을 나타내는 그래프이다.6 is a graph showing the performance of the transistor through the transfer curve and the output curve in the fullerene (fullerene) thin film transistor manufactured by the insulating film manufactured by the insulating film forming method using an iCVD process according to an embodiment of the present invention.
상기 목적을 달성하기 위하여 본 발명에 따른 iCVD 공정을 이용한 절연막 형성 방법은, 유기박막트랜지스터 상에 절연막을 제조하는 방법에 있어서, 상기 유기박막트랜지스터 상에 주입한 열에 의해 개시제를 열분해하여 유리 라디칼(free radical)을 형성하는 단계; 상기 유리 라디칼을 이용하여 단량체를 활성화시킴으로써 상기 단량체를 연쇄 중합 반응시켜 고분자 폴리머를 형성하는 단계; 및 상기 유기박막트랜지스터 상에 상기 고분자 폴리머가 증착되어 고분자 절연막을 형성하는 단계를 포함하는 iCVD 공정을 이용한 절연막 형성 방법을 통해 달성된다.In order to achieve the above object, an insulating film forming method using an iCVD process according to the present invention includes a method of manufacturing an insulating film on an organic thin film transistor, wherein the initiator is thermally decomposed by heat injected onto the organic thin film transistor to free radicals. forming radicals; Chain polymerizing the monomer by activating the monomer using the free radicals to form a polymer polymer; And forming the polymer insulating layer by depositing the polymer polymer on the organic thin film transistor.
또한, 상기 폴리머는 poly(cyclosiloxane), poly(perfluorodecylacrylate), poly(FMA), poly(IBA), poly(EGDMA), poly(V3D3), poly(PFDA) 및 poly(V3D3-PFDA copolymer) 중 어느 하나가 적용될 수 있다.In addition, the polymer is any one of poly (cyclosiloxane), poly (perfluorodecylacrylate), poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer) Can be applied.
또한, 상기 폴리머가 poly(cyclosiloxane)인 경우, 절연막 공정 조건은 증기의 흐름 비율(단량체: 개시제)이 2.0~3.0:0.5~1.5 이고, 공정 압력은 250~350mTorr 이고, 필라멘트 히팅 온도는 200~300℃ 이고, 유리 기판 냉각 온도는 100℃ 이하이며, 공정 시간은 1~3㎚/min 일 수 있다.In addition, when the polymer is poly (cyclosiloxane), the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 2.0 ~ 3.0: 0.5 ~ 1.5, the process pressure is 250 ~ 350mTorr, filament heating temperature is 200 ~ 300 It is degrees C, the glass substrate cooling temperature is 100 degrees C or less, and a process time may be 1-3 nm / min.
또한, 상기 폴리머가 poly(perfluorodecylacrylate)인 경우, 절연막 공정 조건은 증기의 흐름 비율(단량체: 개시제)이 0.5~1.5:0.5~1.5 이고, 공정 압력은 50~150mTorr 이고, 필라멘트 히팅 온도는 150~250℃ 이고, 유리 기판 냉각 온도는 100℃ 이하이며, 공정 시간은 50~150㎚/min 일 수 있다.In addition, when the polymer is poly (perfluorodecylacrylate), the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 0.5 ~ 1.5: 0.5 ~ 1.5, the process pressure is 50 ~ 150mTorr, filament heating temperature is 150 ~ 250 ℃, the glass substrate cooling temperature is 100 ℃ or less, the process time may be 50 ~ 150nm / min.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims are meant to be consistent with the technical spirit of the present invention on the basis of the principle that the inventor can appropriately define the concept of the term in order to best explain his invention. It must be interpreted as and concepts.
이하, 첨부된 도면을 참조하여 본 발명의 일실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 일실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 일실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention; However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only one embodiment of the present invention is to complete the disclosure of the present invention, and to those skilled in the art It is provided to fully inform the category.
우선, 본 발명의 iCVD 공정을 이용한 절연막 형성 방법이 적용되는 절연막 형성을 위해 개시제를 이용하는 화학 기상 증착법(initiated chemical vapor deposition, iCVD, 이하 'iCVD' 라 함)은 액상 공정과는 달리, iCVD 공정에서는 용매가 전혀 사용되지 않는다. 이와 같은 특징으로 인해 기존의 어닐링 단계가 필요하지 않으며, 용매로 인한 소자의 손상도 피할 수 있다.First, unlike the liquid phase process, the chemical vapor deposition method using an initiator for forming an insulating film to which the insulating film forming method using the iCVD process of the present invention is applied is referred to as an iCVD process. No solvent is used at all. This feature eliminates the need for conventional annealing steps and avoids damage to the device due to solvents.
또한, iCVD 공정은 기상 공정과는 달리, iCVD 공정은 공정 온도가 상대적으로 매우 낮다 (기판 온도 10~50도 안팎, 필라멘트 온도 150~250도 안팎). 또한, 공정 압력도 0.1~0.5Torr 안팎으로 기존의 CVD 공정에 비해 높은 편이라 고진공 펌프의 사용을 필요로 하지 않는다. 뿐만 아니라 단량체(monomer)를 가열하는 온도도 100℃ 이하로 낮기 때문에, 전체적인 공정에서 많은 에너지 소모를 요하지 않는다. 이렇게 iCVD 공정 자체가 매우 낮은 온도에서 공정이 가능하고, 기판에 전혀 영향을 받지 않는 공정이기 때문에 공정 진행시 주의 사항은 없다고 할 수 있다.In addition, unlike the vapor phase process, the iCVD process has a relatively low process temperature (about 10 to 50 degrees of substrate temperature and about 150 to 250 degrees of filament temperature). In addition, the process pressure is about 0.1 to 0.5 Torr, which is higher than that of the conventional CVD process, and does not require the use of a high vacuum pump. In addition, since the temperature for heating the monomer is also lower than 100 ° C., it does not require much energy consumption in the whole process. Since the iCVD process itself can be processed at a very low temperature and is not affected by the substrate at all, there is no precaution in the process.
더욱이, iCVD는 비닐 중합 반응을 이용하여 폴리머(Polymer)를 증착하는 공정이기 때문에 기본적으로 비닐 기를 가진 단량체는 모두 중합이 가능하다. iCVD로 증착 가능한 폴리머 종류는 크게 다음과 같다. 여기서, 표1은 유기규소 폴리머(Organosilicon polymer)이고, 표2는 초소수 폴리머(Superhydrophobic polymer)이고, 표3은 친수성 폴리머(Hydrophilic polymer)이며, 표4는 소수 폴리머(Hydrophobic polymer)이다.Furthermore, since iCVD is a process of depositing a polymer using a vinyl polymerization reaction, basically all monomers having vinyl groups can be polymerized. The types of polymers that can be deposited by iCVD are as follows. Here, Table 1 is an organosilicon polymer, Table 2 is a superhydrophobic polymer, Table 3 is a hydrophilic polymer, Table 4 is a hydrophobic polymer.
표 1
Figure PCTKR2013007375-appb-T000001
Table 1
Figure PCTKR2013007375-appb-T000001
표 2
Figure PCTKR2013007375-appb-T000002
TABLE 2
Figure PCTKR2013007375-appb-T000002
표 3
Figure PCTKR2013007375-appb-T000003
TABLE 3
Figure PCTKR2013007375-appb-T000003
표 4
Figure PCTKR2013007375-appb-T000004
Table 4
Figure PCTKR2013007375-appb-T000004
도 2는 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법의 공정도이다.2 is a process diagram of an insulating film forming method using an iCVD process according to an embodiment of the present invention.
도 2에서 볼 수 있듯이, 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법은 단량체 및 개시제 제공 단계(S200), 열 주입 단계(S210), 유리 라디칼 형성 단계(S220), 고분자 형성 단계(S230) 및 고분자 절연막 형성 단계(S240)를 포함한다.As can be seen in Figure 2, the insulating film forming method using an iCVD process according to an embodiment of the present invention is a monomer and initiator providing step (S200), heat injection step (S210), free radical forming step (S220), polymer forming step (S230) and the polymer insulating film forming step (S240).
단량체 및 개시제 제공 단계(S200)는 유기박막트랜지스터(Organic Thin Film Transistors: oTFTs)의 표면상에 단량체 및 개시제를 제공하는 단계로, 본 발명의 실시예들에서 사용되는‘단량체(monomer)’란 유기 고분자 박막(절연막) 형성을 위해 사용될 수 있는 단위체를 의미하고, 봉지막의 구성 성분으로서 외부 수분, 산소 투과를 차단할 수 있는 성질을 가진 유기물이면, 이에 제한되지 않는다. 더욱이,‘단량체’는 화학 기상 증착법에서 휘발성을 가지며, 개시제에 의해 활성화될 수 있는 물질로, 감압 및 승온 상태에서 기화될 수 있으며, 하나 이상의 비닐기를 가지고 에틸기, 에티닐기, 프로필기, 알릴기, 부틸기 및 페닐기의 치환기를 가지는 것을 특징으로 한다.Providing the monomer and the initiator (S200) is a step of providing the monomer and the initiator on the surface of the organic thin film transistors (oTFTs), the 'monomer' is used in the embodiments of the present invention It means a unit that can be used for forming a polymer thin film (insulating film), and as an constituent of the encapsulation film, any organic material having a property of blocking external moisture and oxygen permeation is not limited thereto. Moreover, the 'monomer' is a substance which is volatile in chemical vapor deposition and can be activated by an initiator, and can be vaporized under reduced pressure and elevated temperature, and has one or more vinyl groups, ethyl, ethynyl, propyl, allyl, It is characterized by having a substituent of a butyl group and a phenyl group.
본 발명의 실시예들에서 사용되는‘개시제(initiator)'란 본 발명의 공정에서 단량체들이 고분자를 형성할 수 있도록 첫 반응의 활성화를 유도하는 물질이다. 개시제는 단량체가 열분해되는 온도보다 낮은 온도에서 열분해 되어 유리 라디칼(free radical)을 형성할 수 있는 물질이 바람직하다. 특히,‘개시제’는 반응기에서 열의 공급에 의해 분해되어 유리 라디칼(free radical)을 형성하는 물질로서 단량체를 활성화시킬 수 있는 물질이면 특별히 한정되지 않는다. 이때, 본 발명의 실시예들에서 사용할 수 있는 개시제는 열 개시제(thermal initiator) 또는 UV 개시제 등이 적용될 수 있으며, 특히, 페록사이드(peroxide radical)기의 열 개시제가 사용된다.'Initiator' used in the embodiments of the present invention is a substance that induces activation of the first reaction so that the monomers can form a polymer in the process of the present invention. The initiator is preferably a substance capable of pyrolyzing at a temperature lower than the temperature at which the monomer is pyrolyzed to form free radicals. In particular, the "initiator" is not particularly limited as long as it is a substance capable of activating the monomer as a substance that is decomposed by the supply of heat in the reactor to form free radicals. At this time, the initiator that can be used in the embodiments of the present invention may be applied to a thermal initiator (thermal initiator) or UV initiator, and the like, in particular, a thermal initiator of a peroxide radical (peroxide radical) group is used.
여기서, 본 발명에서 사용되는 유기박막트랜지스터는 채널층으로 무기질(실리콘)층 대신 유기 반도체층을 사용한 박막 트랜지스터로, 전체 구조는 실리콘을 기반으로 한 트랜지스터와 큰 차이가 없다. 게이트에 전압을 가하게 되면 절연막 때문에 전류가 흐르지 않고, 반도체에 전기장(전계)이 걸리므로 전계 효과 트랜지스터 역할을 하게 된다. 소자의 동작 원리는 게이트에 가해진 전압에 따라 절연막 부분이 전하가 없는 공핍층(depletion layer) 또는 전하가 모인 축적층(accumulation layer)이 되어 소스와 드레인 전극 사이에 흐르는 전류의 양이 제어된다. 이 전류량의 비를 점멸 비라고 하며, 컴퓨터 모니터와 같은 디스플레이에서 중요한 역할을 한다.Here, the organic thin film transistor used in the present invention is a thin film transistor using an organic semiconductor layer instead of an inorganic (silicon) layer as a channel layer, and the overall structure is not significantly different from a transistor based on silicon. When a voltage is applied to the gate, no current flows due to the insulating film, and an electric field is applied to the semiconductor, thereby acting as a field effect transistor. The operation principle of the device is that the insulating film portion becomes a depletion layer without charge or an accumulation layer with charge depending on the voltage applied to the gate, thereby controlling the amount of current flowing between the source and drain electrodes. This ratio of currents is called the flashing ratio and plays an important role in displays such as computer monitors.
열 주입 단계(S210)는 유리 라디칼(free radical)을 형성하기 위해 개시제를 열분해하도록 열을 제공하는 단계이다. 여기서, 상기 열 주입 단계(S210)에서 제공하는 열은 본 발명이 속하는 분야에 통상의 지식을 가진 자(이하 '당업자')가 기상 조건에서 제공할 수 있는 통상의 방법으로 제공되는 열이면 제한되지 않는다. 바람직하게 본 발명의 열 제공은 필라멘트를 통해 이루어질 수 있으며, 제공되는 열의 범위는 200℃ 내지 300℃일 수 있다. 본 발명의 실시예에서는 기화 또는 승화된 단량체 및 개시제가 존재하는 진공 챔버 환경에서 설정온도로 가열된 텅스텐 필라멘트에 의해 열이 제공됨으로써 유기박막트랜지스터 상에 유기 고분자 절연막을 형성시켰다.The heat injection step S210 is a step of providing heat to pyrolyze the initiator to form free radicals. Here, the heat provided in the heat injection step (S210) is not limited if the heat provided by a conventional method that can be provided by those of ordinary skill in the art to which the present invention belongs (hereinafter referred to as "an expert") in weather conditions. Do not. Preferably the heat providing of the present invention may be made through a filament, the range of heat provided may be 200 ℃ to 300 ℃. In an embodiment of the present invention, heat is provided by a tungsten filament heated to a set temperature in a vacuum chamber environment in which a vaporized or sublimated monomer and an initiator are present to form an organic polymer insulating film on an organic thin film transistor.
유리 라디칼 형성 단계(S220)는 상기 열 주입 단계(S210)를 통해 개시제를 열분해하여 유리 라디칼(free radical)을 형성하는 단계이다.The free radical forming step (S220) is a step of pyrolyzing the initiator through the heat injection step (S210) to form free radicals.
고분자 형성 단계(S230)는 유리 라디칼 형성 단계(S220) 수행 후에 개시제의 열분해에 의해 유리 라디칼이 형성되면, 상기 유리 라디칼을 이용하여 단량체를 활성화시킴으로써 상기 단량체를 연쇄 중합 반응시켜 고분자 폴리머를 형성하는 단계이다.In the polymer forming step (S230), when free radicals are formed by pyrolysis of an initiator after performing the free radical forming step (S220), forming a polymer polymer by chain polymerization of the monomers by activating the monomers using the free radicals. to be.
고분자 절연막 형성 단계(S240)는 유기박막트랜지스터 상에 텅스텐 필라멘트에 의해 열이 제공됨으로써 고분자 폴리머가 증착되어 고분자 절연막을 형성하는 단계이다. 즉, 상기 고분자 절연막 형성 단계(S240)는 개시제의 열분해에 의해 유리 라디칼이 형성되면 유리 라디칼이 단량체를 활성화시켜 이후 주변 단량체들의 중합을 유도하게 되고, 이 반응이 계속되어 유기 고분자 절연막을 형성하게 된다.The polymer insulating film forming step (S240) is a step of forming a polymer insulating film by depositing a polymer polymer by providing heat to the organic thin film transistor by tungsten filament. That is, in the polymer insulating film forming step (S240), when free radicals are formed by thermal decomposition of an initiator, the free radicals activate monomers to induce polymerization of surrounding monomers, and the reaction is continued to form an organic polymer insulating film. .
iCVD로 증착 가능한 폴리머의 종류는 상술한 표1 내지 표4에 기재된 종류에 모두 적용이 가능하다. 한편, 본 실시예에서의 폴리머 물질은 poly(cyclosiloxane: 사이클로실록산) 또는 poly(perfluorodecylacrylate: 퍼플루오르옥틸 메타크릴레이트) 등이 적용되는 것으로 예시하며, 이 밖에도 poly(FMA), poly(IBA), poly(EGDMA), poly(V3D3), poly(PFDA) 및 poly(V3D3-PFDA copolymer) 중 어느 하나가 적용될 수도 있다.All kinds of polymers that can be deposited by iCVD can be applied to the kinds described in Tables 1 to 4 above. Meanwhile, the polymer material in this embodiment is exemplified as poly (cyclosiloxane: cyclosiloxane) or poly (perfluorodecylacrylate (perfluorooctyl methacrylate)), and the like. In addition, poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer) may be applied.
이때, 상기 절연막은 10㎚ 이하의 두께로 코팅되는 것이 바람직하며, 이에 한정하지 않고 두께를 1um 이상 두껍게 하거나, 10㎚ 이하로 얇게 형성할 수 있다.In this case, the insulating film is preferably coated with a thickness of 10nm or less, and is not limited to this, the thickness may be thicker than 1um or thinner than 10nm.
한편, 절연막의 절연체 특성은 폴리머의 두께, 절연체의 유전율 등으로 결정이 된다.(C=kA/d, C(Capacitance)는 전기 용량, A는 절연체의 면적, d는 절연체의 두께, k는 절연체의 유전율) 이때, 전기 용량 C는 값이 클수록 효율이 우수한 것으로, 절연체의 특성을 한정하기가 난해한 상황을 봤을 때, 일반적인 방법으로는 얇은 두께의 폴리머를 제조하기 난해하기 때문에 iCVD로 두께를 얇게 만들어주어 전기 용량을 우수하게 하는 것이다.On the other hand, the insulator properties of the insulating film are determined by the thickness of the polymer, the dielectric constant of the insulator, etc. (C = kA / d, C (Capacitance) is the capacitance, A is the area of the insulator, d is the thickness of the insulator, k is the insulator). In this case, the larger the capacitance, the more efficient the capacitor C is, and when it is difficult to limit the characteristics of the insulator, it is difficult to manufacture a thin polymer in a general manner. It is to make electric capacity superior.
즉, 전기 용량에서 k값이 크다고 해도 d값이 크다면 C의 값이 작아지게 되니 우수한 절연체라 하기 힘들지만, k값이 작아도 d값이 작다면 C의 값이 유지가 되기 때문에 우수한 절연체라고 할 수 있다. 이런 결과를 감안하여 iCVD로 두께가 얇은 절연막을 형성한다면, 보통 폴리머의 k값이 2.5~3.5 사이인 점을 감안하였을 때 전기 용량 값 C 가 대폭 증가하게 한다.That is, even if the value of k is large in capacitance, if the value of d is large, the value of C becomes small. Therefore, it is difficult to be an excellent insulator. However, if the value of d is small, the value of C is maintained. have. In view of these results, if an insulating film with a thin thickness is formed by iCVD, the capacitance value C is greatly increased when the k value of the polymer is usually between 2.5 and 3.5.
한편, 상기 절연막의 구조와 주요 특성으로는 하기 표5와 같다.On the other hand, the structure and the main characteristics of the insulating film are shown in Table 5.
표 5
Figure PCTKR2013007375-appb-T000005
Table 5
Figure PCTKR2013007375-appb-T000005
본 발명에 의한 iCVD 공정을 이용한 절연막 형성 방법에 의해 형성되는 절연막의 공정 조건은 폴리머 물질이 poly(cyclosiloxane) 또는 poly(perfluorodecylacrylate)인 경우 다르게 실시한다.Process conditions of the insulating film formed by the insulating film forming method using the iCVD process according to the present invention is carried out differently when the polymer material is poly (cyclosiloxane) or poly (perfluorodecylacrylate).
우선, 상기 폴리머 물질이 poly(cyclosiloxane)인 경우, 절연막 공정 조건은 증기의 흐름 비율(단량체: 개시제)이 2.0~3.0:0.5~1.5이고, 공정 압력은 250~350mTorr 이고, 필라멘트 히팅 온도는 200~300℃이고, 유리 기판 냉각 온도는 100℃ 이하이고, 공정 시간은 1~3㎚/min 이며, 바람직하게는 증기의 흐름 비율(단량체: 개시제)이 2.5:1이고, 공정 압력은 300mTorr 이고, 필라멘트 히팅 온도는 250℃이고, 유리 기판 냉각 온도는 50℃ 이며, 공정 시간은 2㎚/min이다.First, when the polymer material is poly (cyclosiloxane), the insulating film process conditions include a vapor flow rate (monomer: initiator) of 2.0 to 3.0: 0.5 to 1.5, a process pressure of 250 to 350 mTorr, and a filament heating temperature of 200 to 300 degreeC, glass substrate cooling temperature is 100 degrees C or less, process time is 1-3 nm / min, Preferably the flow rate of a vapor (monomer: initiator) is 2.5: 1, the process pressure is 300 mTorr, filament Heating temperature is 250 degreeC, glass substrate cooling temperature is 50 degreeC, process time is 2 nm / min.
또한, 상기 폴리머 물질이 poly(perfluorodecylacrylate)인 경우, 절연막 공정 조건은 증기의 흐름 비율(단량체: 개시제)이 0.5~1.5:0.5~1.5이고, 공정 압력은 50~150mTorr 이고, 필라멘트 히팅 온도는 150~250℃이고, 유리 기판 냉각 온도는 100℃ 이하이고, 공정 시간은 50~150㎚/min 이며, 바람직하게는 증기의 흐름 비율(단량체: 개시제)이 1:1이고, 공정 압력은 100mTorr 이고, 필라멘트 히팅 온도는 200℃이고, 유리 기판 냉각 온도는 40℃ 이며, 공정 시간은 100㎚/min이다.In addition, when the polymer material is poly (perfluorodecylacrylate), the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 0.5 ~ 1.5: 0.5 ~ 1.5, the process pressure is 50 ~ 150mTorr, filament heating temperature is 150 ~ 250 ° C., glass substrate cooling temperature is 100 ° C. or less, process time is 50-150 nm / min, preferably steam flow rate (monomer: initiator) is 1: 1, process pressure is 100 mTorr, filament Heating temperature is 200 degreeC, glass substrate cooling temperature is 40 degreeC, and process time is 100 nm / min.
더욱이, 도 3에 도시된 그래프를 보면, 절연막의 폴리머 물질이 poly(perfluorodecylacrylate)와 poly(cyclotrisiloxane)인 경우, 다양한 두께에서도 1MV/cm에서 10-8A/cm2이하의 매우 낮은 누설 전류를 보인다. 특히, poly(perfluorodecylacrylate)의 경우 25㎚의 얇은 박막 두께에서도 100㎚에서의 누설 전류와 같은 수준의 누설 전류값을 가진다.Furthermore, in the graph shown in FIG. 3, when the polymer materials of the insulating film are poly (perfluorodecylacrylate) and poly (cyclotrisiloxane), even at various thicknesses, a very low leakage current of 10 −8 A / cm 2 or less is observed at 1 MV / cm. . In particular, poly (perfluorodecylacrylate) has the same leakage current value as the leakage current at 100nm even at a thin film thickness of 25nm.
그리고 도 4에 도시된 그래프를 보면, 낮은 누설 전류를 보인 poly(perfluorodecylacrylate)와 poly(cyclotrisiloxane)의 전기 용량을 측정해 보면, 두 폴리머 물질 모두 1MHz의 높은 주파수 영역에서도 매우 안정한 전기 특성을 보였고, poly(perfluorodecylacrylate)는 100kHz에서 35nF/cm2의 전기 용량을 기록하였고, poly(cyclotrisiloxane)은 100kHz에서 45nF/cm2의 전기 용량을 기록함을 알 수 있다. In the graph shown in FIG. 4, when measuring the capacitance of poly (perfluorodecylacrylate) and poly (cyclotrisiloxane) showing low leakage current, both polymer materials showed very stable electrical characteristics even in the high frequency region of 1 MHz. (perfluorodecylacrylate) recorded a capacitance of 35 nF / cm 2 at 100 kHz, and poly (cyclotrisiloxane) recorded a capacitance of 45 nF / cm 2 at 100 kHz.
이를 이용하여 유전율 상수 k를 계산하면 poly(perfluorodecylacrylate)는 3.95, poly(cyclotrisiloxane)은 5의 유전율 상수를 가집니다. 폴리머 절연막으로 많이 쓰이는 poly(methyl methacrylate)와 polystyrene이 유전율 상수가 3 안팎인 것을 고려했을 때, iCVD로 증착한 폴리머 절연막이 상대적으로 더 우수함을 알 수 있다.Using this to calculate the dielectric constant k, poly (perfluorodecylacrylate) has a dielectric constant of 3.95 and poly (cyclotrisiloxane) has a dielectric constant of 5. Considering that poly (methyl methacrylate) and polystyrene, which are widely used as polymer insulating films, have a dielectric constant of about 3 or less, it can be seen that the polymer insulating films deposited by iCVD are relatively better.
이렇게, 본 발명에서와 같이 iCVD를 이용하면 다양한 기판에 손상 없이 폴리머를 증착할 수 있기 때문에 기판 재질에 의한 제약을 받지 않게 된다. 또한, 반도체(semiconductor) 위에 폴리머 절연막을 적층시켜야 하는 탑 게이트(top gate) 구조의 소자를 제작하기에 훨씬 용이하다. 여기서, 트랜지스터를 구조로 구분할 때 게이트 전극의 위치에 따른 탑 게이트 구조와 바텀 게이트(bottom gate) 구조 두 가지로 구분하는데, 일반적으로 제조가 용이한 바텀 게이트 구조가 많이 사용된다. 다시 말해, iCVD를 이용하여 폴리머 절연막을 형성하는 경우, 초기 배면발광(Bottom emission) 반도체에서 게이트 전류 누설 문제를 해결할 수 있으므로 탑 게이트 구조의 활용도를 높이는 이점이 있다.As such, when iCVD is used as in the present invention, the polymer can be deposited without damage to various substrates, thereby being not limited by the substrate material. In addition, it is much easier to fabricate a device having a top gate structure in which a polymer insulating film must be stacked on a semiconductor. Here, when dividing the transistor into a structure, it is divided into a top gate structure and a bottom gate structure according to the position of the gate electrode. In general, a bottom gate structure that is easy to manufacture is commonly used. In other words, when the polymer insulating film is formed by using iCVD, the gate current leakage problem can be solved in the initial bottom emission semiconductor, thereby increasing the utilization of the top gate structure.
한편, 본 발명에서 적용 가능한 폴리머는 poly(perfluorodecylacrylate)와 poly(cyclotrisiloxane)인 것으로 설명하였으나, 이 이외에 poly(FMA), poly(IBA), poly(EGDMA), poly(V3D3), poly(PFDA) 및 poly(V3D3-PFDA copolymer) 중 어느 하나가 대체 적용될 수 있다.Meanwhile, the polymers applicable in the present invention are described as poly (perfluorodecylacrylate) and poly (cyclotrisiloxane), but in addition to poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and Any one of poly (V3D3-PFDA copolymer) may be substituted.
표6 및 표7은 본 발명에서 적용 가능한 폴리머인 poly(FMA), poly(IBA), poly(EGDMA), poly(V3D3), poly(PFDA) 및 poly(V3D3-PFDA copolymer)에 대해 전기장 세기에 따른 전하 이동 특성(J-E) 및 iCVD 고분자 필름의 표면 형태들에 대해 설명한다. 이때, RMS(Root Mean Square) roughness는 평방근 자승 거칠기를 나타낸다.Table 6 and Table 7 show the electric field strengths for the polymers applicable in the present invention: poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer). According to the charge transfer characteristics (JE) and the surface morphology of the iCVD polymer film. At this time, root mean square (RMS) roughness represents a square root square roughness.
표 6
Figure PCTKR2013007375-appb-T000006
Table 6
Figure PCTKR2013007375-appb-T000006
표 7
Figure PCTKR2013007375-appb-T000007
TABLE 7
Figure PCTKR2013007375-appb-T000007
<실시예 1><Example 1>
도 5에는 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법에 의해 형성된 절연막을 이용하여 풀러린(fullerene) 박막 트랜지스터를 제조하는 공정도가 도시되어 있으며, 도 6에는 본 발명의 일실시예에 따른 iCVD 공정을 이용한 절연막 형성 방법을 통해 제조된 절연막이 적용되는 풀러린(fullerene) 박막 트랜지스터에서 Transfer curve와 Output curve를 통한 트랜지스터의 성능을 나타내는 그래프가 도시되어 있다.5 is a process diagram of manufacturing a fullerene thin film transistor using an insulating film formed by an insulating film forming method using an iCVD process according to an embodiment of the present invention, Figure 6 is an embodiment of the present invention A graph showing the performance of a transistor through a transfer curve and an output curve is shown in a fullerene thin film transistor to which an insulating film manufactured by an insulating film forming method using the iCVD process is applied.
이들 도면에 의하면, 본 발명의 iCVD 공정을 이용한 절연막 형성 방법을 통 film transistor: 100)는 유리 기판(110), Al(알루미늄) 전극(120), 절연막(130), 풀러린층(140) 및 Al 소스(150)와 드레인 전극(152)을 포함한다.According to these drawings, the film transistor: 100 through the insulating film forming method using the iCVD process of the present invention is a glass substrate 110, Al (aluminum) electrode 120, insulating film 130, fullerene layer 140 and Al A source 150 and a drain electrode 152.
유리 기판(110)은 그 표면에 Al 게이트 전극(120)이 열 증착에 의해 형성된다.The Al gate electrode 120 is formed on the surface of the glass substrate 110 by thermal vapor deposition.
절연막(130)은 Al 게이트 전극(120)이 열 증착된 표면을 iCVD를 이용하여 코팅되어 형성되며, 형성 방법은 앞선 설명과 같이 단량체 및 개시제 제공 단계, 열 주입 단계, 유리 라디칼 형성 단계, 고분자 형성 단계 및 고분자 절연막 형성 단계를 포함하며, 앞선 방법과 동일하므로 상세한 설명은 생략한다.The insulating film 130 is formed by coating the surface on which the Al gate electrode 120 is thermally deposited using iCVD, and the forming method is a monomer and initiator providing step, a heat injection step, a free radical forming step, and a polymer formation as described above. It includes the step and the polymer insulating film forming step, and the same description as the previous method will be omitted.
풀러린층(fullerene layer: 140)은 절연막(130) 상에 증착된 층이고, Al 소스(150)와 드레인 전극(152)은 상기 풀러린층(140) 상에 열 증착된다.The fullerene layer 140 is a layer deposited on the insulating layer 130, and the Al source 150 and the drain electrode 152 are thermally deposited on the fullerene layer 140.
여기서, 전류-전압특성을 알아보는 방법으로 게이트의 전압을 일정하게 고정시키고 드레인에 걸리는 전압을 변화시킨 후 소스-드레인 사이의 전류를 측정하는 방법(Output Curve)과, 드레인 전압은 고정시키고 게이트의 전압을 변화시킨 후 소스-드레인 사이의 전류를 측정하는 방법(Transfer Curve) 두 가지가 있다.Here, a method of measuring the current-voltage characteristic is to fix the gate voltage constant and change the voltage across the drain, and then measure the current between the source and drain (Output Curve), and to fix the drain voltage and There are two ways to measure the current between source and drain after changing the voltage (Transfer Curve).
예컨대, 상기 절연막(130)에서 폴리머 물질이 poly(cyclosiloxane)이면서, 절연막 두께가 10㎚ 이하, 즉, 7.1㎚인 경우를 예를 들어 설명하면, 도 6(a)에 도시된 바와 같이 iCVD 공정에서의 절연막을 이용한 풀러린 박막 트랜지스터(100)는 Transfer curve에서 알 수 있는 대표적인 성능이 소자의 정류비(on-off ratio), 전하 이동도(electron mobility), 문턱전압(threshold voltage) 등이 있는데 소자의 정류비는 106, 전하 이동도는 1.22cm2/Vs, 문턱전압은 0.3V 이다.For example, a case in which the polymer material in the insulating film 130 is poly (cyclosiloxane) and the thickness of the insulating film is 10 nm or less, that is, 7.1 nm will be described. For example, as shown in FIG. The typical performance of the fuller thin film transistor 100 using the insulating film is the on-off ratio, the electron mobility, and the threshold voltage of the device. The rectification ratio is 106, the charge mobility is 1.22cm2 / Vs, and the threshold voltage is 0.3V.
도 6(b)에서와 같이 Output curve에서는 소자에 입력되는 전압이 바뀌는 것에 따라 소자 구동이 얼마나 잘 이루어지는지를 알 수 있는데, 전압이 0.3V씩 변함에 따라 소자 내 전류의 흐름이 그에 비례하여 증가한다. 즉, iCVD를 이용하여 만든 절연막(130)이 소자 내에서 그 역할을 잘하고 있음을 확인할 수 있으며, 이를 통해 소자의 전기적 특성이 우수하면서 소자 제작 수율이 높은 결과를 도출할 수 있다.As shown in FIG. 6 (b), the output curve shows how well the device is driven as the voltage input to the device changes. As the voltage changes by 0.3V, the current flow in the device increases in proportion to the voltage. . That is, it can be confirmed that the insulating film 130 made by using iCVD plays a role well in the device, and thus the device manufacturing yield is high while the electrical characteristics of the device are excellent.
더욱이, 상기 풀러린 박막 트랜지스터의 제조 방법은 절연막(130)의 폴리머 물질이 poly(cyclosiloxane)이면서, 절연막 두께가 10㎚ 이하인 경우, 유리 기판(110) 상에 폴리머 poly(cyclotrisiloxane)으로 iCVD를 이용하여 10nm 이하로 절연막(130)을 코팅한다 그 위에 반도체인 풀러린(fullerene)을 증착하고, 다시 그 위에 Al 소스(150)와 드레인 전극(152)을 올려 박막 트랜지스터를 완성한다.Furthermore, in the method of manufacturing the fuller thin film transistor, when the polymer material of the insulating film 130 is poly (cyclosiloxane) and the thickness of the insulating film is 10 nm or less, 10 nm using iCVD is performed as the polymer poly (cyclotrisiloxane) on the glass substrate 110. The insulating film 130 is coated below. A fullerene, a semiconductor, is deposited thereon, and the Al source 150 and the drain electrode 152 are placed thereon to complete the thin film transistor.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.
본 발명은 iCVD 공정을 이용한 절연막 형성 방법에 관한 것으로, 본 발명에 따른 iCVD 공정을 이용한 절연막 형성 방법은, 유기박막트랜지스터 상에 절연막을 제조하는 방법에 있어서, 상기 유기박막트랜지스터 상에 주입한 열에 의해 개시제를 열분해하여 유리 라디칼(free radical)을 형성하는 단계; 상기 유리 라디칼을 이용하여 단량체를 활성화시킴으로써 상기 단량체를 연쇄 중합 반응시켜 고분자 폴리머를 형성하는 단계; 및 상기 유기박막트랜지스터 상에 상기 고분자 폴리머가 증착되어 고분자 절연막을 형성하는 단계를 포함한다.The present invention relates to a method for forming an insulating film using an iCVD process, the method for forming an insulating film using an iCVD process according to the present invention, in the method for producing an insulating film on an organic thin film transistor, by the heat injected on the organic thin film transistor Pyrolyzing the initiator to form free radicals; Chain polymerizing the monomer by activating the monomer using the free radicals to form a polymer polymer; And depositing the polymer polymer on the organic thin film transistor to form a polymer insulating film.
본 발명에 의하면 PECVD 공정 또는 CVD 공정에서 제조되는 절연막의 제조 폭이 좁은 단점을 iCVD 공정을 통해 해소할 수 있으면서, 기존 공정보다 균일한 증착이 가능하고, 다양한 두께에서도 매우 낮은 누설 전류를 보여 높은 절연율에 통해 소자의 전기적 특성이 우수하면서 소자의 제작 수율이 높은 효과가 있다. 또한, 용매, 특히 유기 용매를 사용하지 않고 기상 조건에서 단량체와 개시제로 목적하는 고분자 절연막을 증착시킬 수 있어, 용매로 인한 증착 매체의 손상을 방지할 수 있는 효과가 있다.According to the present invention, the narrow manufacturing width of the insulating film manufactured in the PECVD process or the CVD process can be eliminated through the iCVD process, and the deposition is more uniform than that of the existing process, and the insulation current is very high due to the very low leakage current even at various thicknesses. The rate is excellent in the electrical characteristics of the device, and the production yield of the device is effective. In addition, it is possible to deposit the desired polymer insulating film with the monomer and the initiator in a gaseous condition without using a solvent, especially an organic solvent, there is an effect that can prevent damage to the deposition medium due to the solvent.

Claims (4)

  1. 유기박막트랜지스터 상에 절연막을 제조하는 방법에 있어서,In the method for producing an insulating film on an organic thin film transistor,
    상기 유기박막트랜지스터 상에 주입한 열에 의해 개시제를 열분해하여 유리 라디칼(free radical)을 형성하는 단계;Pyrolyzing the initiator by heat injected onto the organic thin film transistor to form free radicals;
    상기 유리 라디칼을 이용하여 단량체를 활성화시킴으로써 상기 단량체를 연쇄 중합 반응시켜 고분자 폴리머를 형성하는 단계; 및Chain polymerizing the monomer by activating the monomer using the free radicals to form a polymer polymer; And
    상기 유기박막트랜지스터 상에 상기 고분자 폴리머가 증착되어 고분자 절연막을 형성하는 단계를 포함하는 iCVD 공정을 이용한 절연막 형성 방법.And depositing the polymer polymer on the organic thin film transistor to form a polymer insulating film.
  2. 제1항에 있어서,The method of claim 1,
    상기 폴리머는 poly(cyclosiloxane), poly(perfluorodecylacrylate), poly(FMA), poly(IBA), poly(EGDMA), poly(V3D3), poly(PFDA) 및 poly(V3D3-PFDA copolymer) 중 어느 하나인 iCVD 공정을 이용한 절연막 형성 방법.The polymer is iCVD which is one of poly (cyclosiloxane), poly (perfluorodecylacrylate), poly (FMA), poly (IBA), poly (EGDMA), poly (V3D3), poly (PFDA) and poly (V3D3-PFDA copolymer) An insulating film formation method using the process.
  3. 제2항에 있어서,The method of claim 2,
    상기 폴리머가 poly(cyclosiloxane)인 경우, 절연막 공정 조건은 증기의 흐름 비율(단량체: 개시제)이 2.0~3.0:0.5~1.5 이고, 공정 압력은 250~350mTorr 이고, 필라멘트 히팅 온도는 200~300℃ 이고, 유리 기판 냉각 온도는 100℃ 이하이며, 공정 시간은 1~3㎚/min 인 iCVD 공정을 이용한 절연막 형성 방법.When the polymer is poly (cyclosiloxane), the insulating film process conditions are the flow rate of the vapor (monomer: initiator) is 2.0 to 3.0: 0.5 to 1.5, the process pressure is 250 to 350mTorr, filament heating temperature is 200 ~ 300 ℃ The glass substrate cooling temperature is 100 degrees C or less, and the process time is the insulating film formation method using the iCVD process of 1-3 nm / min.
  4. 제2항에 있어서,The method of claim 2,
    상기 폴리머가 poly(perfluorodecylacrylate)인 경우, 절연막 공정 조건은 증기의 흐름 비율(단량체: 개시제)이 0.5~1.5:0.5~1.5 이고, 공정 압력은 50~150mTorr 이고, 필라멘트 히팅 온도는 150~250℃ 이고, 유리 기판 냉각 온도는 100℃ 이하이며, 공정 시간은 50~150㎚/min 인 iCVD 공정을 이용한 절연막 형성 방법.When the polymer is poly (perfluorodecylacrylate), the insulating film process conditions include a vapor flow rate (monomer: initiator) of 0.5 to 1.5: 0.5 to 1.5, a process pressure of 50 to 150 mTorr, and a filament heating temperature of 150 to 250 ° C. The glass substrate cooling temperature is 100 degrees C or less, and the process time is 50-150 nm / min, The insulating film formation method using the iCVD process.
PCT/KR2013/007375 2012-08-17 2013-08-16 Method for forming dielectric layer using icvd WO2014027854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120089899A KR101401601B1 (en) 2012-08-17 2012-08-17 INSULATING LAYER FORMING METHOD USING iCVD PROCESS
KR10-2012-0089899 2012-08-17

Publications (1)

Publication Number Publication Date
WO2014027854A1 true WO2014027854A1 (en) 2014-02-20

Family

ID=50268734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007375 WO2014027854A1 (en) 2012-08-17 2013-08-16 Method for forming dielectric layer using icvd

Country Status (2)

Country Link
KR (1) KR101401601B1 (en)
WO (1) WO2014027854A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130195A1 (en) * 2014-06-10 2017-05-11 Korea Advanced Institute Of Science And Technology Cell culture substrate, manufacturing method therefor, and use thereof
KR101760699B1 (en) 2015-10-22 2017-07-25 한국과학기술원 Platform Coated with Functional Polymer Film for Culturing Neuronal Cells and Use Thereof
CN110515197A (en) * 2018-05-22 2019-11-29 康宁公司 For constructing the Polymeric dielectric coating of liquid lens
US11594374B2 (en) 2020-12-31 2023-02-28 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US11705283B2 (en) 2020-12-31 2023-07-18 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US11901131B2 (en) 2020-12-31 2024-02-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component including external electrodes having improved reliability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094681B1 (en) * 2018-12-13 2020-04-01 한국과학기술원 DOPING METHOD OF SEMICONDUCTOR STRUCTURE USING iCVD PROCESS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060130A (en) * 1997-11-03 2000-05-09 Lg Electronics Inc. Method of forming insulation films for liquid crystal display
JP2006028497A (en) * 2004-06-21 2006-02-02 Samsung Electronics Co Ltd Composition for forming organic insulating film and method for forming pattern of organic insulating film using the same and organic thin film transistor and display device using the same
JP2012068417A (en) * 2010-09-22 2012-04-05 Jsr Corp Siloxane polymer composition, cured film and method for forming cured film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060130A (en) * 1997-11-03 2000-05-09 Lg Electronics Inc. Method of forming insulation films for liquid crystal display
JP2006028497A (en) * 2004-06-21 2006-02-02 Samsung Electronics Co Ltd Composition for forming organic insulating film and method for forming pattern of organic insulating film using the same and organic thin film transistor and display device using the same
JP2012068417A (en) * 2010-09-22 2012-04-05 Jsr Corp Siloxane polymer composition, cured film and method for forming cured film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOZDE ET AL.: "CVD OF POLYMERIC THIN FILMS: APPLICATIONS IN SENSORS, BIOTECHNOLOGY, MICROELECTRONICS, ORGANIC ELECTRONICS, MICROFLUIDICS", REP.PROG.PHYS, vol. 75, 16 December 2011 (2011-12-16), pages 016501 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130195A1 (en) * 2014-06-10 2017-05-11 Korea Advanced Institute Of Science And Technology Cell culture substrate, manufacturing method therefor, and use thereof
KR101760699B1 (en) 2015-10-22 2017-07-25 한국과학기술원 Platform Coated with Functional Polymer Film for Culturing Neuronal Cells and Use Thereof
CN110515197A (en) * 2018-05-22 2019-11-29 康宁公司 For constructing the Polymeric dielectric coating of liquid lens
US11594374B2 (en) 2020-12-31 2023-02-28 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US11705283B2 (en) 2020-12-31 2023-07-18 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
US11901131B2 (en) 2020-12-31 2024-02-13 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component including external electrodes having improved reliability

Also Published As

Publication number Publication date
KR101401601B1 (en) 2014-06-02
KR20140023114A (en) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2014027854A1 (en) Method for forming dielectric layer using icvd
JP5054885B2 (en) Organic thin-film transistor including multi-layer gate insulating film
KR101001441B1 (en) Organic-Inorganic Metal Hybrid Material and Organic Insulator Composition Comprising the Same
US8274075B2 (en) Crosslinked polymeric dielectric materials and electronic devices incorporating same
US7553706B2 (en) TFT fabrication process
JP4562027B2 (en) Composition for forming organic insulator and organic insulator produced therefrom
EP1442487B1 (en) Organic thin film transistor with siloxane polymer interface
CN102113120B (en) Hybrid dielectric material for thin film transistors
KR101207209B1 (en) Method for forming thin film encapsulation multilayer and method for fabricating flexible organic semiconductor device
US20060231829A1 (en) TFT gate dielectric with crosslinked polymer
US9929345B1 (en) Curable polymeric materials and their use for fabricating electronic devices
CN107408510B (en) Thin film transistor, method for manufacturing thin film transistor, and image display device using thin film transistor
JP2015029020A (en) Liquid solution for organic semiconductor layer formation, organic semiconductor layer, and organic thin film transistor
US20110001221A1 (en) Dielectric layer
KR101249090B1 (en) Composition for Preparing Organic Insulator and the Organic Insulator prepared by using the same
WO2018194220A1 (en) Method for preparing polymer dielectric layer for thin-film transistor
US10020327B2 (en) Method for selective thin film deposition
KR20140035986A (en) Insulating layer forming method using icvd process
WO2013115509A1 (en) Vapor deposition method of organic polymer thin film, and preparation method of encapsulation film using same
Jung et al. Flexible organic thin-film transistors fabricated on polydimethylsiloxane elastomer substrates
WO2020055099A1 (en) Organic-inorganic insulation film and manufacturing method therefor
EP3920238B1 (en) Organic thin-film transistor and method for producing organic thin-film transistor
Zhu et al. The Effect of Intermolecular Interactions between Aromatic Ring‐Containing Insulators and Semiconductors in Pentacene Thin‐Film Transistors
KR101386908B1 (en) A composition for organic thin-film transistor gate insulators and a method for making the same
CN101656296A (en) Electronic device comprising semiconducting polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879429

Country of ref document: EP

Kind code of ref document: A1