WO2014027726A1 - Thermosetting foam with improved thermal insulation and flame retardancy, and preparation method therefor - Google Patents
Thermosetting foam with improved thermal insulation and flame retardancy, and preparation method therefor Download PDFInfo
- Publication number
- WO2014027726A1 WO2014027726A1 PCT/KR2012/011229 KR2012011229W WO2014027726A1 WO 2014027726 A1 WO2014027726 A1 WO 2014027726A1 KR 2012011229 W KR2012011229 W KR 2012011229W WO 2014027726 A1 WO2014027726 A1 WO 2014027726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flame retardant
- foam
- thermosetting foam
- thermosetting
- nucleating agent
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/09—Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
- C08G18/092—Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2115/00—Oligomerisation
- C08G2115/02—Oligomerisation to isocyanurate groups
Definitions
- the present invention relates to a thermosetting foam and a method for manufacturing the same, and more particularly, to a thermosetting foam and a method for manufacturing the same having improved thermal insulation and flame retardancy.
- thermosetting foams are widely used because they have excellent thermal insulation performance, processability, and small physical property change according to temperature variation, compared to other synthetic resins. Research has been made to add and use.
- thermoplastic resin-based flame retardant foam comprising the step of kneading the thermoplastic resin and the flame retardant in Korea Patent No. 10-0610392, thereafter continuously dissolution of the fluidized blowing agent in the thermoplastic resin to grow a foam cell
- the physical and thermal insulation performance of the thermosetting foam can be reduced, compared to the increase in flame retardancy by adding a flame retardant.
- a polyisocyanurate foam is used while simultaneously introducing a nucleating agent and a flame retardant to provide a thermosetting foam having a small and uniform foam cell.
- thermosetting foam having improved thermal insulation and flame retardancy
- One embodiment of the present invention includes a polyisocyanurate foam, a nucleating agent, and a flame retardant formed by polymerizing a polyol-based compound and an isocyanate-based compound, and provides a thermosetting foam having a pyrolysis start temperature of about 310 ° C. or higher. do.
- the flame retardant may be in liquid form or in powder form.
- the flame retardant may be at least one selected from the group consisting of a phosphorus flame retardant, a metal hydrate flame retardant, a halogen flame retardant, a flame retardant aid and a mixture thereof.
- the phosphorus flame retardant may be at least one selected from the group consisting of triphenyl phosphate, cresyl diphenyl phosphate, isopropylphenyl diphenyl phosphate, and mixtures thereof.
- the halogenated flame retardant may be decabromodiphenyl oxide or octabromodiphenyl oxide.
- the flame retardant aid may be antimony trioxide.
- the nucleating agent may include a silane compound or a siloxane compound.
- An average diameter of the foam cells formed on the polyisocyanurate foam may be about 50 ⁇ m to about 200 ⁇ m.
- the content of the flame retardant may be about 1 part by weight to about 20 parts by weight based on 100 parts by weight of the polyol compound.
- the content of the nucleating agent may be about 1 part by weight to about 10 parts by weight based on 100 parts by weight of the polyol-based compound.
- thermosetting foam may further include a polymerization catalyst, a surfactant, and a blowing agent.
- thermosetting foam may have a thermal conductivity of about 0.025 W / mk or less.
- the thermosetting foam may have a density of about 10 kg / m 3 to about 150 kg / m 3 .
- Another embodiment of the present invention comprises the steps of mixing the polyol-based compound and the nucleating agent; Adding a flame retardant to the mixture of the polyol compound and the nucleating agent; And polymerizing the polyisocyanurate by stirring the isocyanate compound in the mixture obtained by adding the flame retardant, and providing a thermosetting foam manufacturing method having a pyrolysis start temperature of about 310 ° C. or higher by thermogravimetric analysis.
- thermosetting foam which is one embodiment of the present invention has a low thermal conductivity, has improved mechanical properties such as compressive strength and flexural strength, and has excellent flame retardancy.
- thermosetting foam manufacturing method of another embodiment of the present invention it is possible to obtain a small and uniform foaming cell through the addition of a nucleating agent while using an eco-friendly blowing agent that does not affect the ozone layer destruction.
- thermosetting foam comprising a polyisocyanurate foam, a nucleating agent, and a flame retardant formed by polymerization of a polyol-based compound and an isocyanate-based compound, and having a thermal decomposition starting temperature by thermogravimetric analysis of about 310 ° C. or more. to provide.
- the foam is a plastic material containing a relatively high volume percentage of small pupils.
- the thermosetting foam causes a chemical reaction to harden by applying heat, and the thermosetting resin which does not soften and melt even when heated again after cooling to form a foam. Can be manufactured and used.
- the thermosetting foam can secure a certain level of thermal insulation, it can be used as a heat insulating material of various buildings, warehouses, refrigerators.
- the size of the foam cell formed by increasing the surface tension when reacting with a polyisocyanurate foam or the like increases or causes it to burst.
- one embodiment of the present invention can compensate for the above negative effects resulting from the addition of flame retardants by controlling the surface tension through a nucleating agent with a limited average particle size.
- thermosetting foam includes a flame retardant
- the thermal decomposition start temperature by thermogravimetric analysis may be about 310 ° C. or more.
- the thermosetting foam does not have a negative effect caused by the flame retardant by including a nucleating agent together with the flame retardant, and by including a flame retardant, it is possible to provide a thermosetting foam having excellent flame retardancy and heat resistance as well.
- the polyisocyanurate foam included in the thermosetting foam may be formed by polymerizing a polyol compound and an isocyanate compound.
- Polyisocyanate urate foam is a material including an isocyanurate group in the form of three isocyanate groups bonded in a ring structure to a polyurethane foam that has been widely used as a heat insulating material. Due to this ring structure, polyisocyanurate foam has excellent performance in terms of thermal stability and mechanical strength.
- the prior art has the effect of reducing the size of the foaming cell through the introduction of additives, such as clay or aerosil, to the polyol during the production of polyurethane foam, thereby improving the thermal insulation performance.
- a nucleating agent is introduced to form a compact and uniform foam cell of the polyisocyanurate foam. You can. The smaller the foam cell formed in the insulation, the better the insulation effect and the higher the mechanical strength. Therefore, in addition to the foaming agent, materials that can help the initial nucleation are added to the polymer to reduce the foam cell size and increase the density of the foam cell. By increasing the physical properties of the heat insulating material can be improved.
- the polyol compound is a substance including a plurality of hydroxyl groups in one molecule, and reacts with an isocyanate compound to generate a urethane bond and proceed with polymerization.
- the polyol-based compound may be a polyester polyol or a polyether polyol. Polyester polyol is phthalic anhydride
- phthalic anhydride or adipic acid (adipic acid) may be prepared by reacting with ethylene oxide (propylene oxide), propylene oxide (propylene oxide) or a mixture thereof, the polyether polyol is ethylene glycol (ethylene glycol ), 1.2-propane glycol, butylene glycol, 1,6-hexanediol, 1,8-octanediol, 1,8-oxtanediol , Neopentyl glycol, 2-methyl-1,3-propanediol, 2-methyl-1,3-propanediol, glycerol, trimethylolpropane, 1,2,3-hexane Triol (1,2,3-hexanetriol), 1,2,4-butanetriol (1,2,4-butanetriol), trimethylolmethane, pentaerythriol, diethyleneglycol ), Triethylene glycol, polyethyleneglycol, tripropylene glycol, polypropyl
- polymeric methylene diphenyl diisocyanate polymeric MDI
- monomeric methylene diphenyl diisocyanate monomeric methylene diphenyl diisocyanate, monomeric MDI
- polymeric toluene diisocyanate polymeric TDI
- at least one selected from the group consisting of monomeric toluene diisocyanate monomeric TDI
- the flame retardant included in the thermosetting foam may be in liquid form or powder form.
- the flame retardant when in liquid form, it has excellent dispersibility and has an advantageous effect in that it does not agglomerate with polyisocyanurate foam or nucleating agent or a mixture thereof.
- the flame retardant may be in the form of a powder, and in particular, when using a flame retardant in the form of a powder, the flame retardant may secure dispersibility of the flame retardant by maintaining an average particle diameter of about 1 ⁇ m to about 100 ⁇ m, and It is possible to prevent foam cell breakage formed in the isocyanurate foam.
- the flame retardant may be at least one selected from the group consisting of a phosphorus flame retardant, a metal hydrate flame retardant, a halogen flame retardant, a flame retardant aid and a mixture thereof.
- the flame retardant is an additive added to improve the flame retardant plasticity of plastics, and has a function of preventing combustion, and thus, the flame retardant may be used to increase its use as a thermosetting foam.
- the phosphorus flame retardant includes at least one selected from the group consisting of triphenyl phosphate, cresyl diphenyl phosphate, isopropylphenyl diphenyl phosphate and mixtures thereof.
- the halogenated flame retardant may be decabromodiphenyl oxide or octabromodi phenyl oxide, the flame retardant aid may include antimony trioxide.
- the nucleating agent may include a silane compound or a siloxane compound.
- thermal conductivity inevitably rises due to the addition of the flame retardant can be suppressed to some extent, and the surface tension can be controlled.
- the kind of the nucleating agent is not particularly limited, and a silane-based nucleating agent, a siloxane-based nucleating agent, or a perfluoroalkane-based nucleating agent may be used.
- silane-based compounds and siloxane-based compounds having low surface tension and excellent compatibility with methylene diphenyl diisocyanate or polyol may be used, and one or more of them may be mixed and used.
- the silane compound compounds such as hexamethyldisilase and dimethoxydimethylsilane may be used, and as the siloxane compound, hexamethyldisiloxane may be used.
- the average diameter of the foam cells formed on the polyisocyanurate foam may be about 50 ⁇ m to about 200 ⁇ m.
- the average diameter refers to the average diameter or representative diameter of the formed foam cell. If the average diameter of the foam cell is less than about 50 ⁇ m, the thermal conductivity may increase rather than the contribution due to conduction in the thermal conductivity, about 200 If the size exceeds the size of the formed foam cell is too large, there is a problem that the foam cell is not produced uniformly. Therefore, there is an advantage in that uniform and small foam cells can be produced by keeping the content of the foam cell in the above range.
- the content of the flame retardant may be about 1 part by weight to about 20 parts by weight based on 100 parts by weight of the polyol compound.
- the flame retardant When the flame retardant is included in less than about 1 part by weight, the flame retardancy may be poor.
- the flame retardant is included in an amount exceeding about 20 parts by weight, the workability may be poor. Therefore, there is an advantage in that the content of the flame retardant can express all effects of maintaining workability and improving flame retardancy by maintaining the above range.
- the content of the nucleating agent may be about 1 part by weight to about 20 parts by weight based on 100 parts by weight of the polyol-based compound.
- the nucleating agent When the nucleating agent is included in less than about 1 part by weight, the nucleating agent added in a small amount is insignificant as the nucleating agent, and when it exceeds about 10 parts by weight, a non-uniform foaming cell may be formed due to the plasticizing effect. Therefore, there is an advantage in that the content of the nucleating agent can produce a small and uniform foaming cell even though the flame retardant is added by maintaining the above range.
- the thermosetting foam may further include a polymerization catalyst, a surfactant, and a blowing agent.
- the polymerization catalyst promotes trimerization of isocyanates and improves the reaction rate to serve to form isocyanurate groups.
- the polymerization catalyst is acetic acid, octanoic acid, 2,4,6-tris dimethylaminomethylphenol (2,4,6-tris [(dimethylamino) methyl] phenol), 1,3,5 -Tris 3-dimethylamine-propyl hexahydrotrizine (1,3,5-tris 3-dimethylamine-propyl hexahydrotrizine) and potassium hexanoate (potassium hexanoate) at least one selected from the group consisting of.
- the blowing agent serves to form a foam cell in the heat insulating material by generating a gas in the polymerization process. Since the blowing agent is present in the cell after forming the polyisocyanurate foam, it is advantageous to use a material having low thermal conductivity and high stability.
- the blowing agent is composed of cyclopentane, chlorofluorocarbon, isopentane, isopentane, n-pentane, hydrochlorofluorocarbon, hydrofluorocarbon and water. Cyclopentane, water or mixtures thereof, which may be at least one selected from the group, in particular a blowing agent that does not contain chlorine, is environmentally advantageous.
- the surfactant controls the surface tension at the time of formation of the foaming cell to suppress the size of the foaming cell from becoming too large, and serves to stabilize the formation of the foaming cell.
- the type of the surfactant it is possible to use various kinds known in the art.
- the thermosetting foam may have a thermal conductivity of about 0.025 W / mk or less.
- Thermal conductivity refers to a physical property indicating the magnitude of thermal conductivity. It can be inferred that the lower the thermal conductivity, the better the thermal insulation performance.
- the thermosetting foam includes a polyisocyanurate foam, a nucleating agent, and a flame retardant together, thereby showing not only flame retardancy but also excellent heat insulating property, thereby ensuring low thermal conductivity and maintaining the thermal conductivity of about 0.025 W / mk or less. It can increase the utilization of building, home appliances, automobiles, etc.
- the thermosetting foam may have an independent bubble ratio of about 80% or more.
- the thermosetting foam consists of a small honeycomb-shaped cell, the percentage of the closed cells of the cells is referred to as the independent bubble ratio.
- the higher the independent bubble ratio the better the thermal insulation. If the independent bubble ratio is less than about 80%, a certain level of thermal insulation may not be obtained.
- the upper limit of the independent bubble ratio is not limited, but when the independent bubble ratio is excessively high, physical properties such as poor air permeability, low elasticity, and poor durability may be exhibited.
- the thermosetting foam may have a density of about 10 kg / m 3 to about 150 kg / m 3 , specifically about 20 kg / m 3 to about 100 kg / m 3 . By maintaining the density of the thermosetting foam in the above range it can be provided a relatively light thermosetting foam.
- the mixing rate of the polyol compound and the nucleating agent in the step of mixing the polyol compound and the nucleating agent may be about 500rpm to about 5,000rpm.
- the mixture may be mixed at a low speed of about 500 rpm at about 30 seconds to about 60 seconds at an initial stage, and the speed may be gradually increased to increase the mixing speed up to about 5,000 rpm at a later stage of mixing.
- the viscosity of the polyol-based compound is high and the viscosity of the nucleating agent is low may cause a problem that the nucleating agent is not sufficiently dispersed.
- the step of mixing the polyol-based compound and the nucleating agent may be carried out at a temperature of about 0 °C to about 30 °C. If the advancing temperature is less than about 0 ° C., the dispersion between the polyol-based compound and the nucleating agent may not sufficiently occur. On the contrary, when the advancing temperature is higher than about 30 ° C., the nucleating agent may be evaporated because the volatile point of the nucleating agent is low.
- the stirring speed of adding the flame retardant to the mixture of the polyol-based compound and the nucleating agent may be about 500 rpm to about 5,000 rpm. This is a rate set so that the flame retardant may be uniformly mixed, and if it is out of this range, each material may be unevenly distributed, thereby deteriorating the physical properties of the polyisocyanurate foam.
- the step of adding a flame retardant to the mixture of the polyol-based compound and the nucleating agent may be carried out at a temperature of about 0 °C to about 40 °C. Exceeding this temperature range can change the properties of the flame retardant. Specifically, when the flame retardant is added after the addition of the surfactant, the flame retardant may be more effectively mixed with the mixture of the polyol-based compound having a low surface tension and the nucleating agent.
- the stirring rate of the step of polymerizing the polyisocyanurate by stirring the isocyanate compound in the mixture obtained by adding the flame retardant may be about 3,000 rpm to about 5,000 rpm. This is a rate set so that the reaction of the polyol compound and the isocyanate compound and the trimerization reaction of the isocyanates can be made within a sufficiently fast time. Stirring at a rate lower than about 3,000 rpm causes a problem that the polyol compound and the isocyanate compound do not mix sufficiently to smoothly react. On the contrary, if it exceeds 5,000 rpm, the contact time between the polyol compound and the isocyanate compound is short. The reaction may be incomplete.
- the step of polymerizing the polyisocyanurate by stirring the isocyanate compound in the mixture obtained by adding the flame retardant may be carried out in a temperature range of about 0 °C to about 20 °C. If the operating temperature is less than 0 °C condensation reaction between the polyol compound and the isocyanate compound and the trimerization reaction of the isocyanate groups is less likely to occur, on the contrary, if the operating temperature exceeds 20 °C, too fast reaction is induced to Problems arise when stabilization is hindered or reactants evaporate.
- the mixture was stirred for 1 second (1 step agitation), and then each was stirred at 1,000 rpm, 2,000 rpm, 3,000 rpm, 4,000 rpm, and 5,000 rpm for 30 seconds (two stage stirring) to prepare a mixed solution.
- a polyisocyanurate foam was prepared by stirring 1.0 g of flame retardant isopropyl phenyl diphenyl phosphate (IPPP) at 20 ° C. at 3000 rpm for 10 seconds.
- IPPP flame retardant isopropyl phenyl diphenyl phosphate
- the reaction mixture of the polyol compound and diisocyanate was stirred at 5,000 rpm for 20 seconds using a mechanical stirring device, and then a thermosetting foam was prepared in the mold.
- thermosetting foam was prepared in the same manner as in Example 1 except that the amount of the flame retardant isopropyl phenyl diphenyl phosphate (IsoPropylPhenyl Diphenyl Phosphate, IPPP) was increased to 3.0 g.
- the amount of the flame retardant isopropyl phenyl diphenyl phosphate IsoPropylPhenyl Diphenyl Phosphate, IPPP
- thermosetting foam was prepared in the same manner as in Example 1 except that the amount of the flame retardant isopropyl phenyl diphenyl phosphate (IPPP) was increased to 5.0 g.
- IPPP isopropyl phenyl diphenyl phosphate
- Cresyl Diphenyl Phosphate (CDP) was used instead of IsoPropylPhenyl Diphenyl Phosphate (IPPP) as a flame retardant, except that the amount added was 1.0 g. Cured foams were prepared.
- thermosetting foam was prepared in the same manner as in Example 4, except that the amount of the flame retardant, Cresyl Diphenyl Phosphate (CDP), was increased to 3.0 g.
- CDP Cresyl Diphenyl Phosphate
- thermosetting foam was prepared in the same manner as in Example 4, except that the crotch of the flame retardant Cresyl Diphenyl Phosphate (CDP) was increased to 5.0 g.
- CDP Cresyl Diphenyl Phosphate
- Clay-polyisocyanurate nanocomposite was prepared by adding a catalyst and a surfactant to the mixture and reacting at room temperature.
- the polymeric 4,4′-diphenylmethane diisocyanate containing the organic clay was stirred at 5,000 rpm for 10 seconds using a mechanical stirring device to produce a thermosetting foam in a mold.
- thermosetting foam was prepared in the same manner as in Example 1, except that 5.0 g of IsoPropylPhenyl Diphenyl Phosphate (IPPP) was added as a flame retardant without adding a nucleating agent such as tetramethylsilane.
- IPPP IsoPropylPhenyl Diphenyl Phosphate
- thermosetting foam was prepared in the same manner as in Example 1, except that a nucleating agent such as tetramethylsilane and a flame retardant such as isopropyl phenyl diphenyl phosphate (IPPP) were not added.
- a nucleating agent such as tetramethylsilane
- a flame retardant such as isopropyl phenyl diphenyl phosphate (IPPP) were not added.
- Example 1 Tetramethylsilane 3.0g Isopropylphenyl diphenyl phosphate 1.0 g Liquid
- Example 2 Tetramethylsilane 3.0g 3.0 g of isopropylphenyl diphenyl phosphate Liquid
- Example 3 Tetramethylsilane 3.0g 5.0 g of isopropylphenyl diphenyl phosphate Liquid
- Example 4 Tetramethylsilane 3.0g 1.0 g of cresyl diphenyl phosphate Liquid
- Example 5 Tetramethylsilane 3.0g 3.0 g of cresyl diphenyl phosphate Liquid
- Example 6 Tetramethylsilane 3.0g 5.0 g of cresyl diphenyl phosphate Liquid Comparative Example 1 3.0g organic clay - - Comparative Example 2 - Isopropylphenyl diphenyl phosphate 1.0 g Liquid Comparative Example 3 - - -
- thermo conductivity The thermal conductivity, compressive strength, bending strength and thermal decomposition start temperature of the Examples and Comparative Examples were measured.
- thermal conductivity was based on ASTM C518. The degree was measured and then the compressive strength was measured according to ASTM D 1621.
- the flexural strength was measured according to ASTM D790, and the pyrolysis start temperature when the weight change of the thermosetting foam occurred by thermogravimetric analysis.
- thermosetting foams according to Examples 1 to 6 were lower in thermal conductivity than the thermosetting foams of Comparative Examples 1 to 3. This is a property related to the thermal insulation performance, which is the most important property when the thermosetting foam is used as the heat insulating material, it can be seen that the heat insulating performance of the heat insulating material is improved when the silane-based compound is used as the nucleating agent.
- the organic clay was mixed with the nucleating agent, but the storage stability was lowered, and as a result, the heat insulating performance was also disadvantageous.
- the embodiment was measured as a more favorable result than the comparative example, and the compressive strength and flexural strength were accompanied by thermosetting foams, and both of the examples showed sufficient physical properties to be used as insulation. Showed.
- Example 1 since the flame retardant is included together with the nucleating agent, it is excellent in the flame retardant performance together with the thermal insulation performance, and pyrolysis was started at a temperature of about 310 ° C. or higher, whereas the comparative example 1 included the flame retardant. Pyrolysis began at temperatures below about 310 ° C. In Comparative Example 2, although the flame retardant was included, the pyrolysis start temperature was relatively high because it did not contain the nucleating agent, but the thermal conductivity was measured to be 0.029 W / mK. Comparative Example 3 did not include both the nucleating agent and the flame retardant, it was found that both the thermal insulation performance and the flame retardant performance is significantly reduced.
- the average particle diameter of the foam cells formed on the polyisocyanurate foam measured in the range of about 50 ⁇ m to about 200 ⁇ m in the Examples were all measured to be about 200 ⁇ m or more. Bar, when not including the flame retardant and nucleating agent at the same time, it was confirmed that there is a difficulty in forming a foam cell of uniform and small size.
- thermosetting foam according to one embodiment of the present invention is flame retardant by including a flame retardant in the polyisocyanurate foam, and at the same time to control the surface tension of the thermosetting foam by containing a nucleating agent to the polyisocyanurate foam It can be seen that it can maintain a constant size of the formed foam cell and also secure the thermal conductivity.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Provided is a thermosetting foam comprising: a polyisocyanurate foam formed by polymerizing a polyol-based compound and an isocyanate-based compound; a nucleating agent; and a flame retardant, wherein the thermal decomposition initiation temperature of the thermosetting foam measured by thermogravimetric analysis is 310 ℃ or higher. In addition, provided is a method for preparing a thermosetting foam having the thermal decomposition initiation temperature measured by thermogravimetric analysis of 310 ℃ or higher, comprising the steps of: mixing a polyol-based compound and a nucleating agent; adding a flame retardant to the mixture of the polyol-based compound and the nucleating agent; stirring an isocyanate-based compound with the mixture obtained by adding the flame retardant thereto to polymerize a polyisocyanurate.
Description
열경화성 발포체 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 단열성 및 난연성이 향상된 열경화성 발포체 및 이의 제조방법에 관한 것이다. The present invention relates to a thermosetting foam and a method for manufacturing the same, and more particularly, to a thermosetting foam and a method for manufacturing the same having improved thermal insulation and flame retardancy.
열경화성 발포체는 주로 각종 건축물, 창고, 냉장고의 단열재 등으로 사용될 수 있다. 이 때, 단열재는 건물 내, 외부간의 열 교환을 차단하거나 감소시켜 냉난방 효율을 증가시키기 위하여 사용되는 재료로, 건축용 보드와 판넬, LNG 선박용 보냉재, 가전제품 포장재 또는 자동차 내장재 등 다양한 분야에서 널리 사용될 수 있고, 단열재로써 사용되는 열경화성 발포체는 단열성능을 향상시키기 위해 발포가스가 채워진 발포셀 구조로 이루어질 수 있다. Thermosetting foam can be mainly used as a heat insulating material of various buildings, warehouses, refrigerators. At this time, the heat insulating material is used to increase the heating and cooling efficiency by blocking or reducing the heat exchange between the building and the outside, it can be widely used in various fields such as building boards and panels, LNG ship insulation, home appliance packaging or automotive interior materials. In addition, the thermosetting foam used as the heat insulating material may be made of a foaming cell structure filled with a foaming gas to improve the thermal insulation performance.
상기의 열경화성 발포체는 다른 합성수지에 비해 뛰어난 단열성능과 가공성,온도 편차에 따른 적은 물성변화를 가지고 있어 현재 널리 사용되고 있으나, 최근 단열재의 난연성에 관한 관련 법규가 강화됨에 따라 기존에 사용되던 열경화성 발포체에 난연제를 첨가하여 사용하고자 하는 연구가 이루어지고 있다. The above-mentioned thermosetting foams are widely used because they have excellent thermal insulation performance, processability, and small physical property change according to temperature variation, compared to other synthetic resins. Research has been made to add and use.
한국등록특허 제 10-0610392호에서 열가소성 수지와 난연제를 혼련하고, 그 후 연속적으로 상기 열가소성 수지에 유동상 발포제의 용해를 발생시켜 발포셀을 성장시키는 단계를 포함하는 열가소성 수지계 난연성 발포체의 제조방법에 대해서 기재하고 있기는 하지만, 난연제를 첨가함으로써 난연성이 증가하는 것에 비해, 열경화성 발포체의 물성 및 단열 성능은 감소하게 될 수 있다.In the method of manufacturing a thermoplastic resin-based flame retardant foam comprising the step of kneading the thermoplastic resin and the flame retardant in Korea Patent No. 10-0610392, thereafter continuously dissolution of the fluidized blowing agent in the thermoplastic resin to grow a foam cell Although described, the physical and thermal insulation performance of the thermosetting foam can be reduced, compared to the increase in flame retardancy by adding a flame retardant.
본 발명의 일 구현예에서, 폴리이소시안우레이트 폼을 사용하면서 동시에 핵제 및 난연제를 도입하여 작고 균일한 발포셀을 갖는 열경화성 발포체를 제공한다.In one embodiment of the present invention, a polyisocyanurate foam is used while simultaneously introducing a nucleating agent and a flame retardant to provide a thermosetting foam having a small and uniform foam cell.
본 발명의 다른 구현예에서, 단열성 및 난연성이 향상된 열경화성 발포체의 제조방법을 제공한다.In another embodiment of the present invention, a method for preparing a thermosetting foam having improved thermal insulation and flame retardancy is provided.
본 발명의 일 구현예는 폴리올계 화합물 및 이소시아네이트계 화합물이 중합되어 형성되는 폴리이소시안우레이트 폼, 핵제 및 난연제를 포함하고, 열중량분석법에 의한 열분해 시작온도가 약 310℃ 이상인 열경화성 발포체 를 제공한다.One embodiment of the present invention includes a polyisocyanurate foam, a nucleating agent, and a flame retardant formed by polymerizing a polyol-based compound and an isocyanate-based compound, and provides a thermosetting foam having a pyrolysis start temperature of about 310 ° C. or higher. do.
상기 난연제는 액상 형태 또는 분말 형태일 수 있다. The flame retardant may be in liquid form or in powder form.
상기 난연제는 인계 난연제, 금속수화물계 난연제, 할로겐계 난연제, 난연조제 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나일 수 있다.The flame retardant may be at least one selected from the group consisting of a phosphorus flame retardant, a metal hydrate flame retardant, a halogen flame retardant, a flame retardant aid and a mixture thereof.
상기 인계 난연제는 트리 페닐 포스페이트, 크레실 디페닐 포스페이트, 이소프로필페닐 디페닐 포스페이트 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나일 수 있다.The phosphorus flame retardant may be at least one selected from the group consisting of triphenyl phosphate, cresyl diphenyl phosphate, isopropylphenyl diphenyl phosphate, and mixtures thereof.
상기 할로곈계 난연제는 데카브로모디페닐 옥사이드 또는 옥타브로모디페닐 옥사이드일 수 있다.The halogenated flame retardant may be decabromodiphenyl oxide or octabromodiphenyl oxide.
상기 난연조제는 안티모니 트리옥사이드일 수 있다.The flame retardant aid may be antimony trioxide.
상기 핵제는 실란계 화합물 또는 실록산계 화합물을 포함할 수 있다. The nucleating agent may include a silane compound or a siloxane compound.
상기 폴리이소시안우레이트 폼에 형성된 발포셀의 평균직경은 약 50㎛ 내지 약 200㎛일 수 있다. An average diameter of the foam cells formed on the polyisocyanurate foam may be about 50 μm to about 200 μm.
상기 난연제의 함량은 상기 폴리올계 화합물 100중량부에 대하여 약 1중량부 내지 약 20중량부일 수 있다.The content of the flame retardant may be about 1 part by weight to about 20 parts by weight based on 100 parts by weight of the polyol compound.
상기 핵제의 함량은 상기 폴리올계 화합물 100중량부에 대하여 약 1중량부 내지 약 10중량부일 수 있다.The content of the nucleating agent may be about 1 part by weight to about 10 parts by weight based on 100 parts by weight of the polyol-based compound.
상기 열경화성 발포체에 중합촉매, 계면활성제 및 발포제를 더 포함할 수 있다.The thermosetting foam may further include a polymerization catalyst, a surfactant, and a blowing agent.
상기 열경화성 발포체는 열전도도가 약 0.025W/mk 이하일 수 있다.The thermosetting foam may have a thermal conductivity of about 0.025 W / mk or less.
상기 열경화성 발포체는 독립기포율이 약 80%이상일 수 있다.The thermosetting foam may have an independent bubble ratio of about 80% or more.
상기 열경화성 발포체는 밀도가 약 10kg/m3 내지 약 150kg/m3일 수 있다. The thermosetting foam may have a density of about 10 kg / m 3 to about 150 kg / m 3 .
본 발명의 다른 구현예는 폴리올계 화합물 및 핵제를 혼합하는 단계; 상기 폴리올계 화합물 및 핵제의 혼합물에 난연제를 추가하는 단계; 및 상기 난연제를 추가해서 얻어진 혼합물에 이소시아네이트계 화합물을 교반하여 폴리이소시안우레이트를 중합하는 단계를 포함하고, 열중량분석법에 의한 열분해 시작온도가 약 310℃이상인 열경화성 발포체 제조방법를 제공한다.Another embodiment of the present invention comprises the steps of mixing the polyol-based compound and the nucleating agent; Adding a flame retardant to the mixture of the polyol compound and the nucleating agent; And polymerizing the polyisocyanurate by stirring the isocyanate compound in the mixture obtained by adding the flame retardant, and providing a thermosetting foam manufacturing method having a pyrolysis start temperature of about 310 ° C. or higher by thermogravimetric analysis.
본 발명의 일 구현예인 열경화성 발포체는 열전도도가 낮으며, 압축강도 및 굴곡 강도 등의 기계적 물성이 향상된 동시에 뛰어난 난연성을 갖는다. The thermosetting foam which is one embodiment of the present invention has a low thermal conductivity, has improved mechanical properties such as compressive strength and flexural strength, and has excellent flame retardancy.
또한, 본 발명의 다른 구현예인 열경화성 발포체의 제조 방법을 이용하면,오존층 파괴에 영향을 주지 않는 친환경 발포제를 이용하면서도 핵제의 첨가를 통해 작고 균일한 발포 셀을 얻을 수 있다.In addition, by using the thermosetting foam manufacturing method of another embodiment of the present invention, it is possible to obtain a small and uniform foaming cell through the addition of a nucleating agent while using an eco-friendly blowing agent that does not affect the ozone layer destruction.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다. Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
열경화성 발포체Thermosetting foam
본 발명의 일 구현예에서, 폴리올계 화합물 및 이소시아네이트계 화합물이 중합되어 형성되는 폴리이소시안우레이트 폼, 핵제 및 난연제를 포함하고, 열중량분석법에 의한 열분해 시작온도가 약 310℃ 이상인 열경화성 발포체를 제공한다. In one embodiment of the present invention, a thermosetting foam comprising a polyisocyanurate foam, a nucleating agent, and a flame retardant formed by polymerization of a polyol-based compound and an isocyanate-based compound, and having a thermal decomposition starting temperature by thermogravimetric analysis of about 310 ° C. or more. to provide.
발포체는 비교적 높은 부피 백분율의 작은 동공을 포함하고 있는 플라스틱 재료로써, 열경화성 발포체는 열을 가함으로써 화학반응을 일으켜 단단해지며, 냉각 후 다시 한 번 가열하여도 연화용융을 하지 않는 열경화성 수지를 발포체 형태로 제작하여 사용될 수 있다. 상기 열경화성 발포체는 일정수준 이상의 단열성을 확보할 수 있고, 각종 건축물, 창고, 냉장고의 단열재 등으로 사용될 수 있다.The foam is a plastic material containing a relatively high volume percentage of small pupils.The thermosetting foam causes a chemical reaction to harden by applying heat, and the thermosetting resin which does not soften and melt even when heated again after cooling to form a foam. Can be manufactured and used. The thermosetting foam can secure a certain level of thermal insulation, it can be used as a heat insulating material of various buildings, warehouses, refrigerators.
통상적으로, 일정수준의 단열성을 확보한 열경화성 발포체의 난연성을 향상시키기 위해 난연제를 첨가할 경우, 폴리이소시안우레이트 폼 등과의 반응시 표면장력이 증가하여 형성되는 발포셀의 크기가 커지거나, 터지게 될 수 있다. 그러나, 본 발명의 일실시예는 난연제 첨가로 인해 나타나는 상기의 부정적인 효과를 평균 입도가 한정된 핵제를 통해 표면장력을 제어함으로써 보완할 수 있다. In general, when a flame retardant is added to improve the flame retardancy of a thermosetting foam having a certain level of thermal insulation, the size of the foam cell formed by increasing the surface tension when reacting with a polyisocyanurate foam or the like increases or causes it to burst. Can be. However, one embodiment of the present invention can compensate for the above negative effects resulting from the addition of flame retardants by controlling the surface tension through a nucleating agent with a limited average particle size.
상기 열경화성 발포체는 난연제를 포함함으로써 열중량분석법에 의한 열분해 시작온도를 약 310℃ 이상으로 할 수 있다. 전술한 바와 같이 상기 열경화성 발포체는 난연제와 함께 핵제를 포함함으로써 난연제로 인해 발생하는 부정적인 효과가 발생하지 아니하고, 난연제를 포함함으로써 단열성과 함께 난연성 또한 우수한 열경화성 발포체를 제공할 수 있다. Since the thermosetting foam includes a flame retardant, the thermal decomposition start temperature by thermogravimetric analysis may be about 310 ° C. or more. As described above, the thermosetting foam does not have a negative effect caused by the flame retardant by including a nucleating agent together with the flame retardant, and by including a flame retardant, it is possible to provide a thermosetting foam having excellent flame retardancy and heat resistance as well.
상기 열중량분석법은 가열 중에 재료안에 일어나는 무게변화를 측정하는 분석을 일컫는바, 재료의 열에 대한 안정성을 알아보기 위해 측정하는 것이 보통이다. 대체적으로 상온에서 시작하여 약 600℃까지 측정하며, 분당 약 10℃씩 승온하면서 측정하며, 측정 중 질량이 5%이상 급속하게 감소하는 구간이 발생하는데, 이를 열분해 시작온도 또는 질량감소 온도라 한다. 상기 난연제를 포함함으로써 상기 열경화성 발포체의 열중량분석법에 의한 열분해 시작온도는 약 310℃이상으로 측정되는바, 핵제와 난연제를 동시에 포함함으로써 종래의 열경화성 발포체보다 높은 열분해 시작온도를 가질 수 있다.The thermogravimetric method refers to an analysis for measuring the change in weight occurring in a material during heating, which is usually measured to determine the heat stability of the material. Generally, it starts at room temperature and measures up to about 600 ℃, and measures by increasing the temperature by about 10 ℃ per minute. During the measurement, a section in which the mass decreases more than 5% occurs, which is called the pyrolysis start temperature or the mass reduction temperature. The pyrolysis start temperature by thermogravimetric analysis of the thermosetting foam by including the flame retardant is measured to be about 310 ° C. or more, and may include a nucleating agent and a flame retardant simultaneously to have a higher pyrolysis starting temperature than the conventional thermosetting foam.
상기 열경화성 발포체가 포함하는 폴리이소시안우레이트 폼은 폴리올계 화합물 및 이소시아네이트계 화합물이 중합되어 형성될 수 있다. 폴리이소시안 우레이트 폼은 종래에 단열재로 널리 사용되던 폴리우레탄 폼에 이소시아네이트기 세 개가 링구조로 결합한 형태의 이오시안우레이트기를 포함하는 물질이다. 폴리이소시안우레이트 폼은 이러한 링구조로 인하여 열안정성과 기계적 강도 측면에서 매우 우수한 성능을 보인다. 종래 기술은 폴리우레탄 폼의 제조시에 폴리올에 첨가제, 즉 클레이나 에어로질과 같은 물질을 도입함으로서 발포셀의 크기를 감소시키고 이를 통하여 단열성능이 향상되는 효과를 얻었다. The polyisocyanurate foam included in the thermosetting foam may be formed by polymerizing a polyol compound and an isocyanate compound. Polyisocyanate urate foam is a material including an isocyanurate group in the form of three isocyanate groups bonded in a ring structure to a polyurethane foam that has been widely used as a heat insulating material. Due to this ring structure, polyisocyanurate foam has excellent performance in terms of thermal stability and mechanical strength. The prior art has the effect of reducing the size of the foaming cell through the introduction of additives, such as clay or aerosil, to the polyol during the production of polyurethane foam, thereby improving the thermal insulation performance.
그러나 상기의 첨가제를 폴리올에 도입시, 분산성이나 저장안정성의 문제를 발생시킬 수 있으므로, 본 발명의 일 실시예에서는 핵제를 도입하여, 폴리이소시안우레이트 폼의 발포셀을 조밀하고 균일하게 형성시킬 수 있다. 단열재에 형성되는 발포셀은 크기가 작을수록 단열 효과가 뛰어나고 기계적 강도 또한 높으므로, 발포제 외에 초기 핵 형성에 도움을 줄 수 있는 물질을 중합물질에 첨가하여 발포셀의 크기를 줄이고 발포셀의 밀도를 증가시킴으로써 단열재의 물성을 향상시킬 수 있다. However, when the additive is introduced into the polyol, problems of dispersibility and storage stability may be caused. In one embodiment of the present invention, a nucleating agent is introduced to form a compact and uniform foam cell of the polyisocyanurate foam. You can. The smaller the foam cell formed in the insulation, the better the insulation effect and the higher the mechanical strength. Therefore, in addition to the foaming agent, materials that can help the initial nucleation are added to the polymer to reduce the foam cell size and increase the density of the foam cell. By increasing the physical properties of the heat insulating material can be improved.
상기 폴리올계 화합물은 하나의 분자 내에 복수개의 히드록시기를 포함하는 물질로, 이소시아네이트계 화합물과 반응하여 우레탄 결합을 생성하며 중합을 진행시킨다. 상기 폴리올계 화합물은 폴리에스테르 폴리올(polyester polyol) 또는 폴리에테르 폴리올(polyether polyol)일 수 있다. 폴리에스테르 폴리올은 무수프탈산The polyol compound is a substance including a plurality of hydroxyl groups in one molecule, and reacts with an isocyanate compound to generate a urethane bond and proceed with polymerization. The polyol-based compound may be a polyester polyol or a polyether polyol. Polyester polyol is phthalic anhydride
(phthalic anhydride) 또는 아디프산(adipic acid)을 에틸렌 옥사이드(ethylene oxide), 프로필렌 옥사이드(propylene oxide) 또는 이들의 혼합물과 반응시켜 중합함으로써 제조된 것일 수 있고, 폴리에테르 폴리올은 에틸렌글리콜(ethylene glycol), 1.2-프로판글리콜(1,2-propane glycol), 부틸렌글리콜(butylene glycol), 1,6-헥산디올(1,6-hexanediol),1,8-옥탄디올(1,8-oxtanediol), 네오펜틸글리콜(neopentyl glycol), 2-메틸-1,3-프로판디올(2-methyl-1,3-propanediol), 글리세롤(glycol), 트리메틸올프로판(trimethylolpropane), 1,2,3-헥산트리올(1,2,3-hexanetriol), 1,2,4-부탄트리올(1,2,4-butanetriol), 트리메틸올메탄(trimethylolmethane), 펜타에리트리톨 (pentaerythriol), 디에틸렌글리콜(diethyleneglycol), 트리에틸렌글리콜(triethylene glycol), 폴리에틸렌글리콜(polyethyleneglycol), 트리프로필렌글리콜(tripropylene glycol), 폴리프로필렌글리콜(polypropyleneglycol), 디부틸렌글리콜(dibutylene glycol), 폴리부틸렌글리콜(polybutyleneglycol), 솔비톨(sorbitol), 슈크로스(sucrose), 하이드로퀴논(hydroquinone), 레소시놀(resorcinol), 카테콜(catechol) 및 비스페놀 (bisphenol)로 구성된 군에서 선택된 적어도 하나를 에틸렌 옥사이드, 프로필렌 옥사이드 또는 이들의 혼합물을 반응시켜 중합함으로써 제조된 것일 수 있다.(phthalic anhydride) or adipic acid (adipic acid) may be prepared by reacting with ethylene oxide (propylene oxide), propylene oxide (propylene oxide) or a mixture thereof, the polyether polyol is ethylene glycol (ethylene glycol ), 1.2-propane glycol, butylene glycol, 1,6-hexanediol, 1,8-octanediol, 1,8-oxtanediol , Neopentyl glycol, 2-methyl-1,3-propanediol, 2-methyl-1,3-propanediol, glycerol, trimethylolpropane, 1,2,3-hexane Triol (1,2,3-hexanetriol), 1,2,4-butanetriol (1,2,4-butanetriol), trimethylolmethane, pentaerythriol, diethyleneglycol ), Triethylene glycol, polyethyleneglycol, tripropylene glycol, polypropylen eglycol, dibutylene glycol, polybutyleneglycol, sorbitol, sucrose, hydroquinone, resorcinol, catechol and At least one selected from the group consisting of bisphenol may be prepared by reacting and polymerizing ethylene oxide, propylene oxide or a mixture thereof.
상기 이소시아네이트계 화합물은 분자 내에 이소시아네이트기를 포함하고 있는 물질로서, 이소시아네이트기는 폴리올계 화합물의 히드록시기와 반응하여 우레탄 결합을 생성하고, 또한 3개의 이소시아네이트기가 반응하여 삼량화됨으로써 이소시안우레이트를 형성하게 하는 역할을 한다. 상기 이소시안우레이트 형성을 위하여 일반적으로 폴리우레탄의 중합에 사용되는 이소시아네이트계 화합물보다 이소시아네이트기의 개수가 많은 물질을 이용하는 것이 유리하므로, NCO 인덱스가 250정도로 높은 디이소시아네이트 화합물을 사용할 수 있다. The isocyanate compound is a substance containing an isocyanate group in a molecule, and the isocyanate group reacts with a hydroxyl group of a polyol compound to generate a urethane bond, and also serves to form isocyanurate by reacting and triming three isocyanate groups. Do it. In order to form the isocyanurate, it is advantageous to use a material having a larger number of isocyanate groups than the isocyanate compound generally used for polymerization of polyurethane, and thus, a diisocyanate compound having an NCO index of about 250 can be used.
본 발명의 일실시예에서는 폴리머릭 메틸렌 디페닐 디이소시아네이트 (polymeric methylene diphenyl diisocyanate, polymeric MDI), 모노머릭 메틸렌 디페닐 디이소시아네이트(monomeric methylene diphenyl diisocyanate, monomeric MDI), 폴리머릭 톨루엔 디이소시아네이트(polymeric toluene diisocyanate, polymeric TDI) 및 모노머릭 톨루엔 디이소시아네이트(monomeric toluene diisocyanate, monomeric TDI)로 구성된 군에서 선택된 적어도 하나가 이소시아네이트계 화합물로 사용될 수 있다.In one embodiment of the present invention, polymeric methylene diphenyl diisocyanate (polymeric MDI), monomeric methylene diphenyl diisocyanate (monomeric methylene diphenyl diisocyanate, monomeric MDI), polymeric toluene diisocyanate , polymeric TDI) and at least one selected from the group consisting of monomeric toluene diisocyanate (monomeric TDI) may be used as the isocyanate compound.
상기 열경화성 발포체가 포함하는 난연제는 액상 형태 또는 분말 형태일 수 있다. 난연제가 액상형태인 경우 분산성이 우수하며 폴리이소시안우레이트 폼 또는 핵제 또는 이들의 혼합물과 뭉치지 않는 다는 점에서 유리한 효과를 가진다.The flame retardant included in the thermosetting foam may be in liquid form or powder form. When the flame retardant is in liquid form, it has excellent dispersibility and has an advantageous effect in that it does not agglomerate with polyisocyanurate foam or nucleating agent or a mixture thereof.
또한, 상기 난연제는 분말 형태일 수 있으며, 구체적으로 분말형태의 난연제를 사용하는 경우, 상기 난연제는 약 1㎛ 내지 약 100㎛의 평균 입자직경을 유지함으로써 난연제의 분산성을 확보할 수 있고, 폴리이소시안우레이트 폼에 형성된 발포셀 파손을 방지할 수 있다. In addition, the flame retardant may be in the form of a powder, and in particular, when using a flame retardant in the form of a powder, the flame retardant may secure dispersibility of the flame retardant by maintaining an average particle diameter of about 1 μm to about 100 μm, and It is possible to prevent foam cell breakage formed in the isocyanurate foam.
상기 난연제는 인계 난연제, 금속수화물계 난연제, 할로겐계 난연제, 난연조제 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나일 수 있다. 난연제는 플라스틱의 내연 소성을 개량하기 위하여 첨가하는 첨가제로 연소를 방해하는 기능을 가지고 있는바, 난연성을 증가시킴으로써 열경화성 발포체로써의 활용도를 넓힐 수 있다. The flame retardant may be at least one selected from the group consisting of a phosphorus flame retardant, a metal hydrate flame retardant, a halogen flame retardant, a flame retardant aid and a mixture thereof. The flame retardant is an additive added to improve the flame retardant plasticity of plastics, and has a function of preventing combustion, and thus, the flame retardant may be used to increase its use as a thermosetting foam.
구체적으로, 상기 인계 난연제는 트리 페닐 포스페이트, 크레실 디페닐 포스페이트, 이소프로필페닐 디페닐 포스페이트 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나를 포함한다. 또한, 상기 할로곈계 난연제는 데카브로모디페닐 옥사이드 또는 옥타브로모디 페닐 옥사이드를, 상기 난연조제는 안티모니 트리옥사이드를 포함할 수 있다. Specifically, the phosphorus flame retardant includes at least one selected from the group consisting of triphenyl phosphate, cresyl diphenyl phosphate, isopropylphenyl diphenyl phosphate and mixtures thereof. In addition, the halogenated flame retardant may be decabromodiphenyl oxide or octabromodi phenyl oxide, the flame retardant aid may include antimony trioxide.
상기 핵제는 실란계 화합물 또는 실록산계 화합물을 포함할 수 있다. 핵제를 포함함으로써 난연제의 첨가로 인해 불가피하게 상승하는 열전도도를 어느 정도 억제시킬 수 있고, 표면장력도 제어할 수 있다. The nucleating agent may include a silane compound or a siloxane compound. By including the nucleating agent, thermal conductivity inevitably rises due to the addition of the flame retardant can be suppressed to some extent, and the surface tension can be controlled.
상기 핵제는 그 종류가 특별히 제한되는 것은 아니며, 실란계 핵제, 실록산계 핵제, 또는 퍼플루오르알칸계 핵제 등이 사용될 수 있다. 구체적으로는, 표면 장력이 낮고 메틸렌 디페닐 디이소사이네이트 또는 폴리올과 상용성이 우수한 실란계 화합물 및 실록산계 화합물이 사용될 수 있으며, 이들이 1종 이상이 혼합되어 사용될 수 있다. 상기 실란계 화합물로서는 헥사메틸디실라제인, 및 디메톡시디메틸실란과 같은 화합물이 사용될 수 있고, 상기 실록산계 화합물로서는 헥사메틸디실록산이 사용될 수 있다.The kind of the nucleating agent is not particularly limited, and a silane-based nucleating agent, a siloxane-based nucleating agent, or a perfluoroalkane-based nucleating agent may be used. Specifically, silane-based compounds and siloxane-based compounds having low surface tension and excellent compatibility with methylene diphenyl diisocyanate or polyol may be used, and one or more of them may be mixed and used. As the silane compound, compounds such as hexamethyldisilase and dimethoxydimethylsilane may be used, and as the siloxane compound, hexamethyldisiloxane may be used.
상기 폴리이소시안우레이트 폼에 형성된 발포셀의 평균직경은 약 50㎛ 내지 약 200㎛이 될 수 있다. 평균직경이란 형성된 발포셀의 평균지름이나 대표지름을 일컫는 것으로 상기 발포셀의 평균직경이 약 50㎛미만인 경우 열전도도에서 전도에 의한 기여도가 커지므로 열전도도가 오히려 상승하게 되는 우려가 있고, 약 200㎛를 초과하는 경우 형성된 발포셀의 크기가 너무 커지므로 발포셀이 균일하게 생성되지 못하는 문제점이 있다. 그러므로 상기 발포셀의 함량이 상기 범위를 유지함으로써 균일하고 작은 발포셀들이 생성될 수 있다는 면에서 장점이 있다. The average diameter of the foam cells formed on the polyisocyanurate foam may be about 50㎛ to about 200㎛. The average diameter refers to the average diameter or representative diameter of the formed foam cell. If the average diameter of the foam cell is less than about 50 μm, the thermal conductivity may increase rather than the contribution due to conduction in the thermal conductivity, about 200 If the size exceeds the size of the formed foam cell is too large, there is a problem that the foam cell is not produced uniformly. Therefore, there is an advantage in that uniform and small foam cells can be produced by keeping the content of the foam cell in the above range.
상기 난연제의 함량은 상기 폴리올계 화합물 100중량부에 대하여 약 1중량부 내지 약 20중량부일 수 있다. 상기 난연제를 약 1중량부 미만으로 포함하는 경우 난연성이 불량해질 수 있고, 약 20중량부를 초과하여 포함하는 경우 가공성이 불량해질 우려가 있다. 그러므로, 상기 난연제의 함량이 상기 범위를 유지함으로써 가공성이 유지되고 난연성이 향상되는 효과를 모두 발현할 수 있다는 면에서 장점이 있다. The content of the flame retardant may be about 1 part by weight to about 20 parts by weight based on 100 parts by weight of the polyol compound. When the flame retardant is included in less than about 1 part by weight, the flame retardancy may be poor. When the flame retardant is included in an amount exceeding about 20 parts by weight, the workability may be poor. Therefore, there is an advantage in that the content of the flame retardant can express all effects of maintaining workability and improving flame retardancy by maintaining the above range.
상기 핵제의 함량은 상기 폴리올계 화합물 100중량부에 대하여 약 1중량부 내지 약 20중량부일 수 있다. 상기 핵제를 약 1중량부 미만으로 포함하는 경우 소량으로 첨가된 핵제로 인해 핵제로서의 효과 발현이 미미하며, 약 10중량부를 초과하는 경우 가소효과로 인해 불균일한 발포셀이 형성될 수 있다. 그러므로, 상기 핵제의 함량이 상기 범위를 유지함으로써 난연제를 첨가함에도 불구하고 작고 균일한 발포셀을 생성할 수 있다는 면에서 장점이 있다. The content of the nucleating agent may be about 1 part by weight to about 20 parts by weight based on 100 parts by weight of the polyol-based compound. When the nucleating agent is included in less than about 1 part by weight, the nucleating agent added in a small amount is insignificant as the nucleating agent, and when it exceeds about 10 parts by weight, a non-uniform foaming cell may be formed due to the plasticizing effect. Therefore, there is an advantage in that the content of the nucleating agent can produce a small and uniform foaming cell even though the flame retardant is added by maintaining the above range.
상기 열경화성 발포체에 중합촉매, 계면활성제 및 발포제를 더 포함할 수 있다. 구체적으로, 중합촉매는 이소시아네이트끼리의 삼량화 반응(trimerization)을 촉진시키며, 반응속도를 개선하여 이소시안우레이트기를 형성하는 것을 돕는 역할을 한다. 상기 중합촉매는 아세트산(acetic acid), 옥탄산(octanoic acid), 2,4,6-트리스 디메틸아미노메틸페놀(2,4,6-tris[(dimethylamino)methyl]phenol), 1,3,5-트리스 3-디메틸아민-프로필 헥사하이드로트라이진(1,3,5-tris 3-dimethylamine-propyl hexahydrotrizine) 및 포타슘 헥사노에이트(potassium hexanoate)로 이루어진 군에서 선택된 적어도 하나일 수 있다.The thermosetting foam may further include a polymerization catalyst, a surfactant, and a blowing agent. Specifically, the polymerization catalyst promotes trimerization of isocyanates and improves the reaction rate to serve to form isocyanurate groups. The polymerization catalyst is acetic acid, octanoic acid, 2,4,6-tris dimethylaminomethylphenol (2,4,6-tris [(dimethylamino) methyl] phenol), 1,3,5 -Tris 3-dimethylamine-propyl hexahydrotrizine (1,3,5-tris 3-dimethylamine-propyl hexahydrotrizine) and potassium hexanoate (potassium hexanoate) at least one selected from the group consisting of.
상기 발포제는 중합과정에서 기체를 발생시킴으로써 단열재 내부에 발포셀을 형성하는 역할을 한다. 발포제는 폴리이소시안우레이트 폼 형성 후 셀 안에 존재하므로 열전도도가 낮으며 안정성이 높은 물질이 사용되는 것이 유리하다. 상기 발포제는 사이클로펜탄(cyclopentne), 클로로플루오로카본(chlorofluorocarbon), 이소펜탄 (isopentane), 노르말펜탄 (n-pentane), 히드로클로로플루오로카본 (hydrochlorofluorocarbon), 히드로플루오로카본(hydrofluorocarbon) 및 물로 구성된 군에서 선택된 적어도 하나일 수 있고, 특히 염소를 포함하지 않는 발포제인 사이클로펜탄, 물 또는 이들의 혼합물은 환경적인 측면에서 유리하다. The blowing agent serves to form a foam cell in the heat insulating material by generating a gas in the polymerization process. Since the blowing agent is present in the cell after forming the polyisocyanurate foam, it is advantageous to use a material having low thermal conductivity and high stability. The blowing agent is composed of cyclopentane, chlorofluorocarbon, isopentane, isopentane, n-pentane, hydrochlorofluorocarbon, hydrofluorocarbon and water. Cyclopentane, water or mixtures thereof, which may be at least one selected from the group, in particular a blowing agent that does not contain chlorine, is environmentally advantageous.
상기 계면활성제는 발포셀의 형성시에 표면장력을 조절하여 발포셀의 크기가 지나치게 커지는 것을 억제하고, 발포셀의 형성을 안정화시키는 역할을 한다. 상기 계면활성제의 종류로는 이 분야에서 공지된 다양한 종류를 사용하는 것이 가능하다.The surfactant controls the surface tension at the time of formation of the foaming cell to suppress the size of the foaming cell from becoming too large, and serves to stabilize the formation of the foaming cell. As the type of the surfactant, it is possible to use various kinds known in the art.
상기 열경화성 발포체는 열전도도가 약 0.025W/mk 이하일 수 있다. 열전도도는 열전도의 크기를 나타내는 물성치를 일컫는바, 열전도도가 낮을수록 단열성능이 뛰어난 것으로 유추할 수 있다. 상기 열경화성 발포체는 폴리이소시안우레이트 폼, 핵제 및 난연제를 함께 포함함으로써, 난연성 뿐만 아니라 우수한 단열성을 보이는바, 낮은 열전도도를 확보할 수 있고, 상기 열전도도가 약 0.025W/mk이하를 유지함으로써 건축용, 가전제품용, 자동차용 등의 활용도를 높일 수 있다. The thermosetting foam may have a thermal conductivity of about 0.025 W / mk or less. Thermal conductivity refers to a physical property indicating the magnitude of thermal conductivity. It can be inferred that the lower the thermal conductivity, the better the thermal insulation performance. The thermosetting foam includes a polyisocyanurate foam, a nucleating agent, and a flame retardant together, thereby showing not only flame retardancy but also excellent heat insulating property, thereby ensuring low thermal conductivity and maintaining the thermal conductivity of about 0.025 W / mk or less. It can increase the utilization of building, home appliances, automobiles, etc.
상기 열경화성 발포체는 독립기포율이 약 80%이상일 수 있다. 상기 열경화성 발포체는 작은 벌집형 모양의 셀로 이루어지는바, 상기 셀들 중 닫혀진 셀의 백분율을 독립기포율이라고 한다. 독립기포율이 높을수록 단열성이 개선되는 것으로, 상기 독립기포율이 약 80% 미만인 경우 일정수준의 단열성을 확보하지 못할 수 있다. 독립기포율의 상한에 제한이 있는 것은 아니나, 독립기포율이 과하게 높은 경우 열경화성 발포체의 통기성이 떨어지고 탄성이 저하되고 내구성이 떨어지는 등의 물성저하가 나타날 수 있어 약 95%를 상한으로 할 수 있다. The thermosetting foam may have an independent bubble ratio of about 80% or more. The thermosetting foam consists of a small honeycomb-shaped cell, the percentage of the closed cells of the cells is referred to as the independent bubble ratio. The higher the independent bubble ratio, the better the thermal insulation. If the independent bubble ratio is less than about 80%, a certain level of thermal insulation may not be obtained. The upper limit of the independent bubble ratio is not limited, but when the independent bubble ratio is excessively high, physical properties such as poor air permeability, low elasticity, and poor durability may be exhibited.
상기 열경화성 발포체는 밀도가 약 10kg/m3 내지 약 150kg/m3, 구체적으로 약 20 kg/m3 내지 약 100kg/m3일 수 있다. 상기 열경화성 발포체의 밀도를 상기 범위를 유지함으로써 상대적으로 가벼운 열경화성 발포체를 제공할 수 있다. The thermosetting foam may have a density of about 10 kg / m 3 to about 150 kg / m 3 , specifically about 20 kg / m 3 to about 100 kg / m 3 . By maintaining the density of the thermosetting foam in the above range it can be provided a relatively light thermosetting foam.
열경화성 발포체 제조방법Thermosetting Foam Manufacturing Method
본 발명의 다른 구현예에서, 폴리올계 화합물 및 핵제를 혼합하는 단계; 상기 폴리올계 화합물 및 핵제의 혼합물에 난연제를 추가하는 단계; 및 상기 난연제를 추가해서 얻어진 혼합물에 이소시아네이트계 화합물을 교반하여 폴리이소시안우레이트를 중합하는 단계를 포함하고, 열중량분석법에 의한 열분해 시작온도가 310℃ 이상인 열경화성 발포체 제조방법을 제공한다. 열분해 시작온도는 약 310℃ 이상이 될 수 있는바, 이는 전술한 바와 같다. In another embodiment of the invention, the step of mixing the polyol-based compound and nucleating agent; Adding a flame retardant to the mixture of the polyol compound and the nucleating agent; And a step of polymerizing the polyisocyanurate by stirring the isocyanate compound in the mixture obtained by adding the flame retardant, and providing a thermosetting foam production method having a pyrolysis start temperature of 310 ° C. or higher by thermogravimetric analysis. The pyrolysis start temperature may be about 310 ° C. or more, as described above.
상기 폴리올계 화합물 및 핵제를 혼합하는 단계에서 폴리올계 화합물 및 핵제를 혼합하는 속도는 약 500rpm 내지 약 5,000rpm으로 할 수 있다. 폴리올계 화합물, 핵제의 균일한 분산을 위하여 혼합 초기에는 약 500rpm 정도의 저속으로 약 30초 내지 약 60초 정도 혼합하고, 점점 속도를 증가시켜 혼합 후기에는 약 5,000rpm까지 혼합속도를 증가시킬 수 있다. 반면에, 초기 혼합시에 지나치게 저속으로 혼합하면 폴리올계 화합물의 점도는 높고 핵제의 점도는 낮기 때문에 핵제가 충분히 분산되지 않는 문제가 발생할 수 있다. The mixing rate of the polyol compound and the nucleating agent in the step of mixing the polyol compound and the nucleating agent may be about 500rpm to about 5,000rpm. In order to uniformly disperse the polyol-based compound and the nucleating agent, the mixture may be mixed at a low speed of about 500 rpm at about 30 seconds to about 60 seconds at an initial stage, and the speed may be gradually increased to increase the mixing speed up to about 5,000 rpm at a later stage of mixing. . On the other hand, if the mixing is too slow at the time of initial mixing, the viscosity of the polyol-based compound is high and the viscosity of the nucleating agent is low may cause a problem that the nucleating agent is not sufficiently dispersed.
또한 폴리올계 화합물 및 핵제를 혼합하는 단계는 약 0℃ 내지 약 30℃의 온도에서 진행될 수 있다. 진행온도가 약 0℃ 미만인 경우 폴리올계 화합물 및 핵제 사이의 분산이 충분히 일어나지 못하게 되며, 반대로 진행온도가 약 30℃를 초과하는 경우 핵제의 휘발점이 낮으므로 핵제가 증발될 수 있다.In addition, the step of mixing the polyol-based compound and the nucleating agent may be carried out at a temperature of about 0 ℃ to about 30 ℃. If the advancing temperature is less than about 0 ° C., the dispersion between the polyol-based compound and the nucleating agent may not sufficiently occur. On the contrary, when the advancing temperature is higher than about 30 ° C., the nucleating agent may be evaporated because the volatile point of the nucleating agent is low.
상기 폴리올계 화합물 및 핵제의 혼합물에 난연제를 추가하는 단계의 교반 속도는 약 500rpm 내지 약 5,000rpm으로 할 수 있다. 이는 난연제가 균일하게 혼합될 수 있도록 설정된 속도이며, 이 범위를 벗어날 경우 각 물질이 불균일하게 분포되어 폴리이소시안우레이트 폼의 물성이 저하될 수 있다. The stirring speed of adding the flame retardant to the mixture of the polyol-based compound and the nucleating agent may be about 500 rpm to about 5,000 rpm. This is a rate set so that the flame retardant may be uniformly mixed, and if it is out of this range, each material may be unevenly distributed, thereby deteriorating the physical properties of the polyisocyanurate foam.
또한 상기 폴리올계 화합물 및 핵제의 혼합물에 난연제를 추가하는 단계는 약 0℃ 내지 약 40℃의 온도에서 수행될 수 있다. 이 온도범위를 초과할 경우 난연제의 특성을 변화시킬 수 있다. 구체적으로, 계면활성제를 추가한 이후에 난연제를 첨가하는 경우 표면장력이 낮아진 폴리올계 화합물 및 핵제의 혼합물에 난연제가 좀 더 효과적으로 섞일 수 있다. In addition, the step of adding a flame retardant to the mixture of the polyol-based compound and the nucleating agent may be carried out at a temperature of about 0 ℃ to about 40 ℃. Exceeding this temperature range can change the properties of the flame retardant. Specifically, when the flame retardant is added after the addition of the surfactant, the flame retardant may be more effectively mixed with the mixture of the polyol-based compound having a low surface tension and the nucleating agent.
상기 난연제를 추가해서 얻어진 혼합물에 이소시아네이트계 화합물을 교반하여 폴리이소시안우레이트를 중합하는 단계의 교반 속도는 약 3,000rpm 내지 약 5,000rpm으로 할 수 있다. 이는 폴리올계 화합물과 이소시아네이트계 화합물의 반응과 이소시아네이트끼리의 삼량화 반응이 충분히 빠른 시간 내에 이루어질 수 있도록 설정된 속도이다. 약 3,000rpm보다 낮은 속도로 교반하면 폴리올계 화합물과 이소시아네이트 화합물의 반응이 원활하게 이루어질 정도로 충분히 섞이지 않는 문제가 발생하고, 반대로 약 5,000rpm을 초과하면 폴리올계 화합물과 이소시아네이트의 화합물이 접촉하는 시간이 짧아 반응이 불완전하게 일어날수 있다. The stirring rate of the step of polymerizing the polyisocyanurate by stirring the isocyanate compound in the mixture obtained by adding the flame retardant may be about 3,000 rpm to about 5,000 rpm. This is a rate set so that the reaction of the polyol compound and the isocyanate compound and the trimerization reaction of the isocyanates can be made within a sufficiently fast time. Stirring at a rate lower than about 3,000 rpm causes a problem that the polyol compound and the isocyanate compound do not mix sufficiently to smoothly react. On the contrary, if it exceeds 5,000 rpm, the contact time between the polyol compound and the isocyanate compound is short. The reaction may be incomplete.
또한 상기 난연제를 추가해서 얻어진 혼합물에 이소시아네이트계 화합물을 교반하여 폴리이소시안우레이트를 중합하는 단계는 약 0℃ 내지 약 20℃의 온도 범위에서 수행될 수 있다. 만약 수행온도가 0℃미만인 경우 폴리올계 화합물과 이소시아네이트계 화합물간의 축합반응 및 이소시아네이트기끼리의 삼량화 반응이 잘 일어나지 않게 되고, 반대로 수행온도가 20℃를 초과하는 경우 지나치게 빠른 반응이 유도되어 셀의 안정화가 방해를 받거나 반응 물질이 휘발되는 문제가 발생한다.In addition, the step of polymerizing the polyisocyanurate by stirring the isocyanate compound in the mixture obtained by adding the flame retardant may be carried out in a temperature range of about 0 ℃ to about 20 ℃. If the operating temperature is less than 0 ℃ condensation reaction between the polyol compound and the isocyanate compound and the trimerization reaction of the isocyanate groups is less likely to occur, on the contrary, if the operating temperature exceeds 20 ℃, too fast reaction is induced to Problems arise when stabilization is hindered or reactants evaporate.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.The following presents specific embodiments of the present invention. However, the embodiments described below are merely for illustrating or explaining the present invention in detail, and thus the present invention is not limited thereto.
<실시예 및 비교예><Examples and Comparative Examples>
실시예 1Example 1
중량 100g의 폴리올에 핵제인 테트라메틸실란(Tetramethyl silane, TMS) 3.0g, 난연제는 이소프로필페닐 디페닐 포스페이트(IsoPropylPhenyl Diphenyl Phosphate, IPPP)를 1.0g 첨가하였다. 상기 폴리올로는 폴리에스터 폴리올(polyether polyol)과 폴리에스테르 폴리올(polyester polyol)을 4:6의 중랑비로 혼합한 혼합물을 사용하였다. 사용된 폴리올의 점도는 핵제인 테트라메틸실란에 비해 상대적으로 높기 때문에 테트라메틸실란이 폴리올 화합물 사이에 잘 삽입될 수 있게 하기 위하여 기계적 교반장치(mechanical stirrer)를 이용하여 반응 초기에는 500rpm의 저속으로 30초간 교반하여 주었으며(1단계 교반),이후 각각 1,000rpm, 2,000rpm, 3,000rpm, 4,000rpm, 5,000rpm으로 각각 30초 동안 교반시켜(2단계 교반) 혼합액을 제조하였다. 3.0 g of tetramethyl silane (TMS), which is a nucleating agent, and 1.0 g of isopropyl phenyl diphenyl phosphate (IPPP) were added to a polyol having a weight of 100 g. As the polyol, a mixture of a polyester polyol and a polyester polyol in a middle ratio of 4: 6 was used. Since the viscosity of the polyol used is relatively high compared to the tetramethylsilane, which is a nucleating agent, a mechanical stirrer is used at a low speed of 500 rpm at the beginning of the reaction so that the tetramethylsilane can be intercalated between the polyol compounds. The mixture was stirred for 1 second (1 step agitation), and then each was stirred at 1,000 rpm, 2,000 rpm, 3,000 rpm, 4,000 rpm, and 5,000 rpm for 30 seconds (two stage stirring) to prepare a mixed solution.
상기 혼합액에 난연제인 이소프로필페닐 디페닐 포스페이트(IsoPropylPhenyl Diphenyl Phosphate, IPPP) 1.0g을 20℃에서 3000rpm으로 10초 동안 교반하여 폴리이소시안우레이트 폼을 제조하였다. 또한, 상기 폴리올 화합물과 디이소시아네이트의 반응을 위하여 기계적 교반 장치를 이용하여 5,000rpm으로 20초 동안 교반한 후,몰드에서 열경화성 발포체를 제조하였다.A polyisocyanurate foam was prepared by stirring 1.0 g of flame retardant isopropyl phenyl diphenyl phosphate (IPPP) at 20 ° C. at 3000 rpm for 10 seconds. In addition, the reaction mixture of the polyol compound and diisocyanate was stirred at 5,000 rpm for 20 seconds using a mechanical stirring device, and then a thermosetting foam was prepared in the mold.
실시예 2Example 2
난연제인 이소프로필페닐 디페닐 포스페이트(IsoPropylPhenyl Diphenyl Phosphate, IPPP)의 첨가량을 3.0g으로 증가시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 열경화 발포체를 제조하였다.A thermosetting foam was prepared in the same manner as in Example 1 except that the amount of the flame retardant isopropyl phenyl diphenyl phosphate (IsoPropylPhenyl Diphenyl Phosphate, IPPP) was increased to 3.0 g.
실시예 3Example 3
난연제인 이소프로필페닐 디페닐 포스페이트(IsoPropylPhenyl Diphenyl Phosphate, IPPP)의 첨가량을 5.0g으로 증가시킨 것을 제외하고는 상기 실시예 1 과 동일한 방법으로 열경화 발포체를 제조하였다.A thermosetting foam was prepared in the same manner as in Example 1 except that the amount of the flame retardant isopropyl phenyl diphenyl phosphate (IPPP) was increased to 5.0 g.
실시예 4Example 4
난연제로 이소프로필페닐 디페닐 포스페이트(IsoPropylPhenyl Diphenyl Phosphate, IPPP) 대신 크레실 디페닐 포스페이트(Cresyl Diphenyl Phosphate, CDP)를 사용하였으며, 첨가량이 1.0g 인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 열경화 발포체를 제조하였다.Cresyl Diphenyl Phosphate (CDP) was used instead of IsoPropylPhenyl Diphenyl Phosphate (IPPP) as a flame retardant, except that the amount added was 1.0 g. Cured foams were prepared.
실시예 5Example 5
난연제인 크레실 디페닐 포스페이트(Cresyl Diphenyl Phosphate, CDP)의 첨가량을 3.0g으로 증가시킨 것을 제외하고는 상기 실시예4와 동일한 방법으로 열경화 발포체를 제조하였다.A thermosetting foam was prepared in the same manner as in Example 4, except that the amount of the flame retardant, Cresyl Diphenyl Phosphate (CDP), was increased to 3.0 g.
실시예 6Example 6
난연제인 크레실 디페닐 포스페이트(Cresyl Diphenyl Phosphate, CDP)의 침가랑을 5.0g으로 증가시킨 것을 제외하고는 상기 실시예4와 동일한 방법으로 열경화 발포체를 제조하였다.A thermosetting foam was prepared in the same manner as in Example 4, except that the crotch of the flame retardant Cresyl Diphenyl Phosphate (CDP) was increased to 5.0 g.
비교예 1Comparative Example 1
수산기를 포함하는 유기 클레이(30B clay, Southern Clay Co.)의 내부에 포함된 수분을 제거하기 위해 진공오븐에서 24시간 동안 건조하였다. 다음으로 실시예1에서 사용한 폴리올 100g에,폴리머릭 4,4-디페닐데탄 디이소시아네이트 (M50, 바스프사) 160g 및 상기 30B clay를 3.0g 첨가하고,반응온도를 60°C로 유지시킨 오일 항온조 내에서 중탕시키며 반응시켰다. 상기 M50와 30B clay가 균일하게 혼합되고 원활한 반응을 진행하도록 하기 위하여 기계적 교반장치(mechanical stirrer)를 이용하여 3,000rpm의 속도로 2시간 동안 교반시켜 혼합액을 제조하였다. In order to remove moisture contained in the organic clay (30B clay, Southern Clay Co.) containing a hydroxyl group it was dried for 24 hours in a vacuum oven. Next, to 100 g of the polyol used in Example 1, 160 g of polymer 4,4-diphenyldetane diisocyanate (M50, BASF) and 3.0 g of the 30B clay were added, and an oil thermostat was maintained at 60 ° C. The reaction was carried out in a water bath. In order to uniformly mix the M50 and 30B clay and to proceed with a smooth reaction, a mixed solution was prepared by stirring at a speed of 3,000 rpm for 2 hours using a mechanical stirrer.
상기 혼합액에 촉매 및 계면활성제를 넣어 상온에서 반응시킴으로써 클레 이-폴리이소시안우레이트 나노 복합체를 제조하였다. 상기 유기 클레이가 포함된 폴리머릭 4 ,4’-디페닐메탄디이소시아네이트는 반응을 위하여 기계적 교반 장치를 이용하여 5,000rpm으로 10초 동안 교반하여 몰드에서 열경화성 발포체를 제조하였다Clay-polyisocyanurate nanocomposite was prepared by adding a catalyst and a surfactant to the mixture and reacting at room temperature. The polymeric 4,4′-diphenylmethane diisocyanate containing the organic clay was stirred at 5,000 rpm for 10 seconds using a mechanical stirring device to produce a thermosetting foam in a mold.
비교예 2Comparative Example 2
테트라메틸실란과 같은 핵제를 첨가하지 않고,난연제로 이소프로필페닐 디페닐 포스페이트(IsoPropylPhenyl Diphenyl Phosphate, IPPP)를 5.0g 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 열경화성 발포체를 제조하였다.A thermosetting foam was prepared in the same manner as in Example 1, except that 5.0 g of IsoPropylPhenyl Diphenyl Phosphate (IPPP) was added as a flame retardant without adding a nucleating agent such as tetramethylsilane.
비교예 3Comparative Example 3
테트라메틸실란과 같은 핵제 및 이소프로필페닐 디페닐 포스페이트 (IsoPropyl Phenyl Diphenyl Phosphate, IPPP)와 같은 난연제를 첨가하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 열경화성 발포체를 제조하였다.A thermosetting foam was prepared in the same manner as in Example 1, except that a nucleating agent such as tetramethylsilane and a flame retardant such as isopropyl phenyl diphenyl phosphate (IPPP) were not added.
표 1
Table 1
핵제 | 난연제 | 난연제 형태 | |
실시예1 | 테트라메틸실란 3.0g | 이소프로필페닐 디페닐 포스페이트 1.0g | 액상 |
실시예2 | 테트라메틸실란 3.0g | 이소프로필페닐 디페닐 포스페이트 3.0g | 액상 |
실시예3 | 테트라메틸실란 3.0g | 이소프로필페닐 디페닐 포스페이트 5.0g | 액상 |
실시예4 | 테트라메틸실란 3.0g | 크레실 디페닐 포스페이트 1.0g | 액상 |
실시예5 | 테트라메틸실란 3.0g | 크레실 디페닐 포스페이트 3.0g | 액상 |
실시예6 | 테트라메틸실란 3.0g | 크레실 디페닐 포스페이트 5.0g | 액상 |
비교예1 | 유기 클레이 3.0g | - | - |
비교예2 | - | 이소프로필페닐 디페닐 포스페이트 1.0g | 액상 |
비교예3 | - | - | - |
Nuclear agent | Flame retardant | Flame Retardant Form | |
Example 1 | Tetramethylsilane 3.0g | Isopropylphenyl diphenyl phosphate 1.0 g | Liquid |
Example 2 | Tetramethylsilane 3.0g | 3.0 g of isopropylphenyl diphenyl phosphate | Liquid |
Example 3 | Tetramethylsilane 3.0g | 5.0 g of isopropylphenyl diphenyl phosphate | Liquid |
Example 4 | Tetramethylsilane 3.0g | 1.0 g of cresyl diphenyl phosphate | Liquid |
Example 5 | Tetramethylsilane 3.0g | 3.0 g of cresyl diphenyl phosphate | Liquid |
Example 6 | Tetramethylsilane 3.0g | 5.0 g of cresyl diphenyl phosphate | Liquid |
Comparative Example 1 | 3.0g organic clay | - | - |
Comparative Example 2 | - | Isopropylphenyl diphenyl phosphate 1.0 g | Liquid |
Comparative Example 3 | - | - | - |
<실험예> - 열경화성 발포체의 물리적 특성Experimental Example Physical Properties of Thermosetting Foams
상기 실시예 및 비교예의 열전도도, 압축강도, 굴곡강조 및 열분해시작온도를 측정하였는바, 우선, 상기 실시예 및 비교예에 따라 제조된 열경화성 발포체의 단열성능을 비교하기 위하여 ASTM C518에 의거하여 열전도도를 측정하였고, 그 후 ASTM D 1621에 의거하여 압축강도를 측정하였다.The thermal conductivity, compressive strength, bending strength and thermal decomposition start temperature of the Examples and Comparative Examples were measured. First, in order to compare the thermal insulation performance of the thermosetting foams prepared according to the Examples and Comparative Examples, the thermal conductivity was based on ASTM C518. The degree was measured and then the compressive strength was measured according to ASTM D 1621.
또한, ASTM D790에 의거하여 굴곡강도를 측정하였고, 열중량분석법에 의하여 열경화성 발포체의 무게변화가 일어나는 때의 열분해시작온도를 측정하였다. In addition, the flexural strength was measured according to ASTM D790, and the pyrolysis start temperature when the weight change of the thermosetting foam occurred by thermogravimetric analysis.
표 2
TABLE 2
열전도도(W/mK) | 압축강도(kg/cm2) | 굴곡강도(kg/cm2) | 열분해시작온도(℃) | 발포셀 평균 입자직경(㎛) | |
실시예1 | 0.021 | 1.56 | 7.23 | 315 | 172 |
실시예2 | 0.022 | 1.47 | 6.98 | 321 | 165 |
실시예3 | 0.022 | 1.39 | 6.81 | 329 | 148 |
실시예4 | 0.021 | 1.59 | 7.10 | 316 | 170 |
실시예5 | 0.022 | 1.53 | 6.92 | 327 | 150 |
실시예6 | 0.023 | 1.41 | 6.87 | 341 | 130 |
비교예1 | 0.026 | 0.98 | 3.62 | 302 | 320 |
비교예2 | 0.029 | 1.04 | 4.87 | 309 | 280 |
비교예3 | 0.027 | 1.28 | 5.45 | 300 | 250 |
Thermal Conductivity (W / mK) | Compressive strength (kg / cm 2 ) | Flexural Strength (kg / cm 2 ) | Pyrolysis start temperature (℃) | Foam cell average particle diameter (㎛) | |
Example 1 | 0.021 | 1.56 | 7.23 | 315 | 172 |
Example 2 | 0.022 | 1.47 | 6.98 | 321 | 165 |
Example 3 | 0.022 | 1.39 | 6.81 | 329 | 148 |
Example 4 | 0.021 | 1.59 | 7.10 | 316 | 170 |
Example 5 | 0.022 | 1.53 | 6.92 | 327 | 150 |
Example 6 | 0.023 | 1.41 | 6.87 | 341 | 130 |
Comparative Example 1 | 0.026 | 0.98 | 3.62 | 302 | 320 |
Comparative Example 2 | 0.029 | 1.04 | 4.87 | 309 | 280 |
Comparative Example 3 | 0.027 | 1.28 | 5.45 | 300 | 250 |
상기의 실험예로부터 실시예 1 내지 6에 따른 열경화 발포체가 비교예 1 내지 3의 열경화 발포체보다 열전도도가 낮음을 확인할 수 있었다. 이는 열경화 발포체가 단열재로 사용될 경우 가장 중요한 물성인 단열성능과 관련된 물성으로, 실란계 화합물이 핵제로 사용된 경우 단열재의 단열성능이 향상됨을 알 수 있다. 비교예 1의 경우 유기 클레이가 핵제로 혼합되긴 하였으나, 저장안정성 등이 저하되어 결과적으로 단열성능에도 불리한 결과를 나타내었다. From the above experimental example, it was confirmed that the thermosetting foams according to Examples 1 to 6 were lower in thermal conductivity than the thermosetting foams of Comparative Examples 1 to 3. This is a property related to the thermal insulation performance, which is the most important property when the thermosetting foam is used as the heat insulating material, it can be seen that the heat insulating performance of the heat insulating material is improved when the silane-based compound is used as the nucleating agent. In the case of Comparative Example 1, the organic clay was mixed with the nucleating agent, but the storage stability was lowered, and as a result, the heat insulating performance was also disadvantageous.
압축강도 및 굴곡강도 측정결과를 보면, 실시예가 비교예보다 대체적으로 유리한 결과로 측정되었고, 압축강도 및 굴곡강도는 열경화성 발포체에 부수하는 기능으로 실시예 모두 단열재로 사용되기에 충분한 물성을 나타내고 있는 결과를 보였다.As a result of the measurement of compressive strength and flexural strength, the embodiment was measured as a more favorable result than the comparative example, and the compressive strength and flexural strength were accompanied by thermosetting foams, and both of the examples showed sufficient physical properties to be used as insulation. Showed.
또한, 실시예 1 내지 6의 경우 핵제와 함께 난연제를 포함하고 있어 단열성능과 함께 난연성능에서도 우수함을 보이며, 약 310℃이상의 온도에서 열분해가 시작되었지만, 이에 반해, 비교예1의 경우 난연제를 포함하고 있지 않은바 약 310℃미만의 온도에서 열분해가 시작되었다. 비교예 2의 경우는 난연제를 포함하고 있기는 하나, 핵제를 포함하고 있지 않아 열분해 시작온도는 비교적 높았으나, 열전도도가 0.029W/mK로 측정되어 단열성능이 떨어짐을 확인하였다. 비교예 3의 경우 핵제 및 난연제를 모두 포함하지 않아 단열성능 및 난연성능이 모두 현저히 떨어짐을 알 수 있었다. In addition, in Examples 1 to 6, since the flame retardant is included together with the nucleating agent, it is excellent in the flame retardant performance together with the thermal insulation performance, and pyrolysis was started at a temperature of about 310 ° C. or higher, whereas the comparative example 1 included the flame retardant. Pyrolysis began at temperatures below about 310 ° C. In Comparative Example 2, although the flame retardant was included, the pyrolysis start temperature was relatively high because it did not contain the nucleating agent, but the thermal conductivity was measured to be 0.029 W / mK. Comparative Example 3 did not include both the nucleating agent and the flame retardant, it was found that both the thermal insulation performance and the flame retardant performance is significantly reduced.
나아가, 폴리이소시안우레이트 폼에 형성된 발포셀의 평균 입자직경이 실시예의 경우 약 50㎛ 내지 약 200㎛으로 측정된 것과 대조적으로 비교예의 발포셀의 평균 입자직경은 모두 약 200㎛이상으로 측정되었는바, 난연제와 핵제를 동시에 포함하지 않는경우, 균일하고 작은 크기의 발포셀을 형성하기에 어려움이 있음을 확인하였다. Furthermore, in contrast to the average particle diameter of the foam cells formed on the polyisocyanurate foam measured in the range of about 50 μm to about 200 μm in the Examples, the average particle diameters of the foam cells of the Comparative Example were all measured to be about 200 μm or more. Bar, when not including the flame retardant and nucleating agent at the same time, it was confirmed that there is a difficulty in forming a foam cell of uniform and small size.
결과적으로, 본 발명의 일실시예인 열경화성 발포체는 폴리이소시안우레이트 폼에 난연제를 포함함으로써 난연성을 확보하고, 그와 동시에 핵제를 포함함으로써 열경화성 발포체의 표면장력을 제어하여 폴리이소시안우레이트 폼에 형성된 발포셀의 일정크기를 유지할 수 있고 열전도도 확보할 수 있음을 알 수 있었다. As a result, the thermosetting foam according to one embodiment of the present invention is flame retardant by including a flame retardant in the polyisocyanurate foam, and at the same time to control the surface tension of the thermosetting foam by containing a nucleating agent to the polyisocyanurate foam It can be seen that it can maintain a constant size of the formed foam cell and also secure the thermal conductivity.
Claims (15)
- 폴리올계 화합물 및 이소시아네이트계 화합물이 중합되어 형성되는 폴리이소시안우레이트 폼, 핵제 및 난연제를 포함하고, A polyisocyanurate foam formed by polymerizing a polyol compound and an isocyanate compound, a nucleating agent and a flame retardant,열중량분석법에 의한 열분해 시작온도가 310℃ 이상인 Starting temperature of pyrolysis by thermogravimetric analysis열경화성 발포체. Thermosetting foam.
- 제 1항에 있어서,The method of claim 1,상기 난연제는 액상 형태 또는 분말 형태인The flame retardant is in liquid form or powder form열경화성 발포체.Thermosetting foam.
- 제 1항에 있어서,The method of claim 1,상기 난연제는 인계 난연제, 금속수화물계 난연제, 할로겐계 난연제, 난연조제 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나인 The flame retardant is at least one selected from the group consisting of phosphorus flame retardant, metal hydrate flame retardant, halogen flame retardant, flame retardant aid and mixtures thereof.열경화성 발포체. Thermosetting foam.
- 제 3항에 있어서,The method of claim 3, wherein상기 인계 난연제는 트리 페닐 포스페이트, 크레실 디페닐 포스페이트, 이소프로필페닐 디페닐 포스페이트 및 이들의 혼합물로 이루어진 군에서 선택된 적어도 하나인 The phosphorus flame retardant is at least one selected from the group consisting of triphenyl phosphate, cresyl diphenyl phosphate, isopropylphenyl diphenyl phosphate and mixtures thereof열경화성 발포체. Thermosetting foam.
- 제 3항에 있어서,The method of claim 3, wherein상기 할로곈계 난연제는 데카브로모디페닐 옥사이드 또는 옥타브로모디페닐 옥사이드인 The halogenated flame retardant is decabromodiphenyl oxide or octabromodiphenyl oxide열경화성 발포체. Thermosetting foam.
- 제 3항에 있어서,The method of claim 3, wherein상기 난연조제는 안티모니 트리옥사이드인The flame retardant aid is antimony trioxide열경화성 발포체.Thermosetting foam.
- 제 1항에 있어서,The method of claim 1,상기 핵제는 실란계 화합물 또는 실록산계 화합물을 포함하는 The nucleating agent comprises a silane compound or a siloxane compound열경화성 발포체. Thermosetting foam.
- 제 1항에 있어서,The method of claim 1,상기 폴리이소시안우레이트 폼에 형성된 발포셀의 평균직경은 50㎛ 내지 200㎛인The average diameter of the foam cells formed on the polyisocyanurate foam is 50㎛ to 200㎛열경화성 발포체. Thermosetting foam.
- 제 1항에 있어서, The method of claim 1,상기 난연제의 함량은 상기 폴리올계 화합물 100중량부에 대하여 1중량부 내지 20중량부인The content of the flame retardant is 1 part by weight to 20 parts by weight based on 100 parts by weight of the polyol compound.열경화성 발포체. Thermosetting foam.
- 제 1항에 있어서, The method of claim 1,상기 핵제의 함량은 상기 폴리올계 화합물 100중량부에 대하여 1중량부 내지 10중량부인The content of the nucleating agent is 1 part by weight to 10 parts by weight based on 100 parts by weight of the polyol-based compound.열경화성 발포체. Thermosetting foam.
- 제 1항에 있어서,The method of claim 1,상기 열경화성 발포체에 중합촉매, 계면활성제 및 발포제를 더 포함하는Further comprising a polymerization catalyst, a surfactant and a blowing agent in the thermosetting foam열경화성 발포체.Thermosetting foam.
- 제 1항에 있어서,The method of claim 1,상기 열경화성 발포체는 열전도도가 0.025W/mk 이하인The thermosetting foam has a thermal conductivity of 0.025 W / mk or less열경화성 발포체. Thermosetting foam.
- 제 1항에 있어서,The method of claim 1,상기 열경화성 발포체는 독립기포율이 80%이상인The thermosetting foam has an independent foam ratio of 80% or more열경화성 발포체.Thermosetting foam.
- 제 1항에 있어서,The method of claim 1,상기 열경화성 발포체는 밀도가 10kg/m3 내지 150kg/m3인The thermosetting foam has a density of 10 kg / m 3 to 150 kg / m 3열경화성 발포체. Thermosetting foam.
- 폴리올계 화합물 및 핵제를 혼합하는 단계;Mixing the polyol compound and the nucleating agent;상기 폴리올계 화합물 및 핵제의 혼합물에 난연제를 추가하는 단계; 및Adding a flame retardant to the mixture of the polyol compound and the nucleating agent; And상기 난연제를 추가해서 얻어진 혼합물에 이소시아네이트계 화합물을 교반하여 폴리이소시안우레이트를 중합하는 단계를 포함하고,Stirring the isocyanate compound to the mixture obtained by adding the flame retardant to polymerize the polyisocyanurate,열중량분석법에 의한 열분해 시작온도가 310℃ 이상인 열경화성 발포체 제조방법. A thermosetting foam manufacturing method of the pyrolysis start temperature by the thermogravimetric analysis is 310 ℃ or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280075251.5A CN104540885B (en) | 2012-08-16 | 2012-12-21 | Thermocurable foaming body that thermal insulation and anti-flammability are improved and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120089610A KR20140023581A (en) | 2012-08-16 | 2012-08-16 | Thermosetting foaming body with superior adiabatic and flameproof effect and method for manufacturing the same |
KR10-2012-0089610 | 2012-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014027726A1 true WO2014027726A1 (en) | 2014-02-20 |
Family
ID=50268936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/011229 WO2014027726A1 (en) | 2012-08-16 | 2012-12-21 | Thermosetting foam with improved thermal insulation and flame retardancy, and preparation method therefor |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20140023581A (en) |
CN (1) | CN104540885B (en) |
WO (1) | WO2014027726A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2016343601B2 (en) * | 2015-10-20 | 2020-06-25 | Basf Se | System and method for producing in-situ foam |
KR20200070068A (en) * | 2018-12-07 | 2020-06-17 | (주)엘지하우시스 | Phenol resin foam, method of producing the same, and insulating material |
JP7355824B2 (en) * | 2018-12-07 | 2023-10-03 | エルエックス・ハウシス・リミテッド | Thermosetting foam, manufacturing method thereof, and heat insulating material containing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070100009A1 (en) * | 2005-11-01 | 2007-05-03 | Creazzo Joseph A | Methods for making foams using blowing agents comprising unsaturated fluorocarbons |
KR20100119709A (en) * | 2009-10-13 | 2010-11-10 | 최정헌 | Polyurethane form and manufacturing method thereof |
KR20100137815A (en) * | 2009-06-23 | 2010-12-31 | 고려대학교 산학협력단 | Method for preparing polyisocyanurate foam using liquid nucleating agents and polyisocyanurate foam prepared by the same |
US20110064938A1 (en) * | 2003-11-26 | 2011-03-17 | Breindel Raymond M | Thermoplastic foams and method of forming them using nano-graphite |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1026490C (en) * | 1988-09-22 | 1994-11-09 | 石油部施工技术研究所 | Composite of high-temp. modified polyisocyanurate |
-
2012
- 2012-08-16 KR KR1020120089610A patent/KR20140023581A/en active Application Filing
- 2012-12-21 WO PCT/KR2012/011229 patent/WO2014027726A1/en active Application Filing
- 2012-12-21 CN CN201280075251.5A patent/CN104540885B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110064938A1 (en) * | 2003-11-26 | 2011-03-17 | Breindel Raymond M | Thermoplastic foams and method of forming them using nano-graphite |
US20070100009A1 (en) * | 2005-11-01 | 2007-05-03 | Creazzo Joseph A | Methods for making foams using blowing agents comprising unsaturated fluorocarbons |
KR20100137815A (en) * | 2009-06-23 | 2010-12-31 | 고려대학교 산학협력단 | Method for preparing polyisocyanurate foam using liquid nucleating agents and polyisocyanurate foam prepared by the same |
KR20100119709A (en) * | 2009-10-13 | 2010-11-10 | 최정헌 | Polyurethane form and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20140023581A (en) | 2014-02-27 |
CN104540885A (en) | 2015-04-22 |
CN104540885B (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4205136A (en) | Process for producing a rigid polyurethane foam having excellent flame retardance and low-smoke development | |
JP6388905B2 (en) | Flame retardant polyurethane foam and method for producing the same | |
JP2019206724A (en) | Flame-retardant urethane resin composition | |
JP6134421B2 (en) | Flame retardant urethane resin composition | |
JP6510749B2 (en) | Fireproof soundproof panel | |
JP7497133B2 (en) | Polyol composition for spray coating, foamable polyurethane premix composition, and foamable polyurethane composition | |
JP2018206604A (en) | Cell, battery module, battery pack, and battery | |
CN108341946A (en) | A kind of phosphorus base block flame retarding polyether and preparation method thereof and the application in hard polyurethane foams | |
KR20110022466A (en) | Polyurethane foam composition and polyurethane foam prepared using same | |
WO2019054795A1 (en) | Phenol foam and manufacturing method therefor | |
WO2020262881A1 (en) | Rigid urethane foam and method for manufacturing same | |
WO2014027726A1 (en) | Thermosetting foam with improved thermal insulation and flame retardancy, and preparation method therefor | |
WO2013085300A1 (en) | Eco-friendly phenolic foam resin composition having improved insulation properties and phenolic foam using same | |
WO2010150955A1 (en) | Method for preparing polyisocyanurate foam by using liquid nucleating agent and polyisocyanurate foam prepared by the same | |
Kim et al. | Effects of liquid‐type silane additives and organoclay on the morphology and thermal conductivity of rigid polyisocyanurate‐polyurethane foams | |
KR20220159238A (en) | A semi-nonflammable foam used as insulation | |
KR101796824B1 (en) | Thermosetting foaming body with superior adiabatic and flameproof effect and method for manufacturing the same | |
KR20170002016A (en) | Method and compositions of the polyurethane product and flame-retardant insulation is rigid polyurethane foam excellent supplement. | |
JP5013861B2 (en) | Method for producing polymeric material | |
JP2019112631A (en) | Fireproof and soundproof panel | |
WO2021006423A1 (en) | Polyurethane foam having excellent refractory characteristics, and preparation method therefor | |
JPH05105811A (en) | Flame-retarding composition for polyurethane | |
WO2015050384A1 (en) | Polyisocyanurate foam and preparation method therefor | |
WO2014073753A1 (en) | Particle reinforced cellular foam and preparation method thereof | |
CN110003420A (en) | A kind of poly-isocyanurate foaming material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12891426 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12891426 Country of ref document: EP Kind code of ref document: A1 |