WO2014026884A1 - Actionneur élastomère diélectrique et procédé de production - Google Patents

Actionneur élastomère diélectrique et procédé de production Download PDF

Info

Publication number
WO2014026884A1
WO2014026884A1 PCT/EP2013/066491 EP2013066491W WO2014026884A1 WO 2014026884 A1 WO2014026884 A1 WO 2014026884A1 EP 2013066491 W EP2013066491 W EP 2013066491W WO 2014026884 A1 WO2014026884 A1 WO 2014026884A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
depressions
electrodes
actuator according
elastomer actuator
Prior art date
Application number
PCT/EP2013/066491
Other languages
German (de)
English (en)
Inventor
Irene Jansen
Tom Schiefer
Tilo KÖCKRITZ
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Technische Universität Dresden filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2014026884A1 publication Critical patent/WO2014026884A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/206Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the invention relates to dielectric elastomer actuators and to a manufacturing method for such elastomer actuators (DEA).
  • Elastomer actuators are also referred to as polymer dielectric actuators. They can be used in a variety of ways and, for example, replace piezoelectric actuators or open up additional applications. Their increased elasticity is a particular advantage.
  • such elastomer actuators are formed from a dielectric elastic polymer layer on which an electrically conductive electrode is formed on two opposing surfaces.
  • the electrodes are also elastically deformable.
  • the electrodes can be formed from a polymer matrix in which electrically conductive particles are contained in sufficient numbers, so that the percolation threshold is exceeded.
  • electrically conductive particles are particularly suitable carbon nanotubes, since even a small amount is sufficient to exceed the percolation threshold.
  • optically transparent polymers it is thus possible to obtain an electrode which is also optically transparent.
  • electrically conductive metallic particles or graphite were also used for this purpose.
  • Examples of such elastomer actuators are known from DE 10 2008 039 757 AI. This also mentions that it is particularly favorable to use the same polymer for dielectric layers and the electrodes. Thereby, equal elastic deformation of the electrodes and the dielectric layer can be achieved when an electric voltage has been applied to the electrodes. If an electrical voltage is applied to the electrodes, a deformation of the dielectric layer can be achieved, which can be exploited. As a rule, the dielectric layer is compressed as a result of the electric field, so that the entire elastomer actuator expands in its length. This effect can then be exploited, for example to exploit a force effect with the elastomer actuator.
  • elastomeric actuators are provided with a dielectric layer having a constant layer thickness over the entire surface.
  • the electrodes can have geoemetric shapes in different forms. However, this means that only a limited influence on the respective effect achievable with an elastomer actuator is possible, which particularly concerns the respective direction of this effect. In particular, deformations and thus effects in two- or even three-dimensional form are not achievable.
  • a dielectric elastomer actuator according to the invention has an elastically deformable dielectric layer which is embedded on two opposite surfaces with two elastically deformable electrodes which are embedded in a polymer in the electrically conductive particle, in particular carbon nanotubes, in a proportion with which the percolation threshold is exceeded. is enclosed.
  • the electrodes are firmly bonded to the dielectric layer.
  • the depressions can be rectilinear and thereby linear, meandering, curved, circular or part-circular.
  • the rigidity of the dielectric layer can be selectively influenced, and at the positions where recesses are formed, the rigidity to regions free of recesses is smaller.
  • the electrodes Due to the fact that regions of the dielectric layer having a constant layer thickness are present between adjacent depressions, it can be achieved that the electric field is at least largely homogeneous when the electrical voltage applied to the electrodes. For this purpose, it is also advantageous if the electrodes have a constant layer thickness over the entire surface of the dielectric layer, that is to say also in regions with depressions.
  • an actuation effect can be achieved in which a bending or curling of the elastomer actuator is performed around a depression parallel to the depressions. formed axis is reachable.
  • Such an elastomer actuator may then be referred to as a bimorph.
  • depressions in the form of a circle or several part-circular depressions are formed on a dielectric layer, there is the possibility of a concave and convex deformation.
  • a plurality of circular or part-circular depressions may be formed with different radii about a common center.
  • Recesses having mutually differing depths, widths and / or cross-sectional shapes may be formed on a dielectric layer in order to locally influence the rigidity in a targeted manner. It is possible to achieve different mechanical resistance moments with differently shaped depressions.
  • Recesses may preferably be formed convexly curved. But you can also have, for example, rectangular or triangular cross-sectional shapes.
  • the dielectric layer may be formed from a polymer in which electrically non-conductive particles, preferably ceramic particles, are embedded. This can bring about advantages in the production of a surface-structured dielectric layer, which will be described below, if the production is carried out using laser radiation, since a dielectric layer containing such a particle has a higher absorption of the used
  • Recesses by a fabric removal by means of a laser beam, in a two-dimensional relative movement between the focal spot of the laser beam and the dielectric layer, are formed.
  • depressions can also be formed on the dielectric layer by means of a molding tool having a corresponding negative contour of the surface structuring to be formed, preferably a plastic injection molding tool.
  • FIG. 1 shows an example of a device according to the invention
  • Elastomeraktor deployable dielectric layer, formed on two opposite surfaces depressions in a sectional view.
  • recesses 2 with a concave cross-sectional shape are formed in staggered arrangement with respect to one another on the two opposite surfaces of the dielectric layer 1. These can be formed as rectilinear mutually parallel depressions or as each one formed on the respective surface meandering depression.
  • Dielectric layer 1 was made from the additively crosslinkable Sylgard 184-2K silicone commercially available from DowCorning.
  • Dielectric particles were in the dielectric layer
  • Lead magnesium containing niobate lead titanate in a proportion of 50% by mass in embedded form was carried out using a fiber laser CleanLasersysteme GmbH. This emitted laser radiation of a wavelength of 1062 nm, with a maximum power of 50 W, a focus diameter of 41 ⁇ to 71 ⁇ , with a pulse duration of 120 ns and an energy density of 94 J / cm 2 in the focal spot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne des actionneurs élastomères diélectriques (DEA) et un procédé de production de tels actionneurs élastomères. Selon l'invention, une couche polymère (1) diélectrique à déformation élastique est, sur deux surfaces opposées, bordée de deux électrodes à déformation élastique. Les électrodes sont réalisées dans un polymère dans lequel sont incorporées des particules électroconductrices, notamment des nanotubes de carbone dans une proportion telle que le seuil de percolation soit dépassé. Les électrodes sont reliées à la couches diélectrique par liaison de matière, une structuration dotée de creux (2) étant formée au moins sur une des surfaces de la couche diélectrique, sur laquelle est formée une électrode.
PCT/EP2013/066491 2012-08-13 2013-08-06 Actionneur élastomère diélectrique et procédé de production WO2014026884A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012016378.9A DE102012016378B4 (de) 2012-08-13 2012-08-13 Dielektrischer Elastomeraktor und Verfahren zu seiner Herstellung
DE102012016378.9 2012-08-13

Publications (1)

Publication Number Publication Date
WO2014026884A1 true WO2014026884A1 (fr) 2014-02-20

Family

ID=48917555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/066491 WO2014026884A1 (fr) 2012-08-13 2013-08-06 Actionneur élastomère diélectrique et procédé de production

Country Status (2)

Country Link
DE (1) DE102012016378B4 (fr)
WO (1) WO2014026884A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218637B3 (de) * 2018-10-31 2020-02-20 Festo Ag & Co. Kg Elektroaktive Polymeraktuatoreinrichtung
DE102019123887B4 (de) * 2019-09-05 2022-06-09 CRRC New Material Technologies GmbH Verfahren zum Herstellen eines elastischen Dielektrikums für eine dielektrische Vorrichtung
DE102019123894B4 (de) * 2019-09-05 2022-06-09 CRRC New Material Technologies GmbH Herstellung eines elastischen Dielektrikums aus Nitril-Butadien-Rubber oder eines Derivats davon
DE102019123910B4 (de) * 2019-09-05 2022-06-09 CRRC New Material Technologies GmbH Kompensieren einer Retardation-Eigenschaft in einem elastischen Polymer einer dielektrischen Vorrichtung
DE102019123907B4 (de) * 2019-09-05 2022-03-24 CRRC New Material Technologies GmbH Dielektrikum mit verschiedenen Elastizitätseigenschaften für eine dielektrische Vorrichtung
DE102019123909B4 (de) * 2019-09-05 2022-06-09 CRRC New Material Technologies GmbH Kompensieren einer Abweichung von einer Kennliniencharakteristik einer dielektrischen Vorrichtung
DE102020216579B4 (de) 2020-12-28 2022-08-18 Cellcopedia GmbH Vorrichtung und Verfahren zur Separation von Partikeln in einer Flüssigkeit, Kit enthaltend die Vorrichtung und Verwendungen der Vorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006575A1 (fr) * 1999-07-20 2001-01-25 Sri International Polymeres electroactifs ameliores
WO2002037660A1 (fr) * 2000-11-02 2002-05-10 Danfoss A/S Element d'actionnement et son procede de fabrication
DE102008039757A1 (de) 2008-08-20 2010-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aktorelement sowie seine Verwendung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2233190A (en) * 1989-05-03 1991-01-02 Plessey Co Plc Improvements relating to transducers.
US6812624B1 (en) 1999-07-20 2004-11-02 Sri International Electroactive polymers
US7548015B2 (en) 2000-11-02 2009-06-16 Danfoss A/S Multilayer composite and a method of making such
EP1843406A1 (fr) * 2006-04-05 2007-10-10 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Actuateur comprenant un polymère électroactif
EP2286988A1 (fr) * 2008-12-13 2011-02-23 Bayer MaterialScience AG Composite ferroélectrique à deux et plusieurs couches et son procédé de fabrication
EP2244489A1 (fr) * 2009-04-24 2010-10-27 Bayer MaterialScience AG Procédé de fabrication d'un convertisseur électromécanique
EP2506325A1 (fr) 2011-04-01 2012-10-03 Bayer Material Science AG Convertisseur électromécanique, son procédé de fabrication et d'utilisation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006575A1 (fr) * 1999-07-20 2001-01-25 Sri International Polymeres electroactifs ameliores
WO2002037660A1 (fr) * 2000-11-02 2002-05-10 Danfoss A/S Element d'actionnement et son procede de fabrication
DE102008039757A1 (de) 2008-08-20 2010-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aktorelement sowie seine Verwendung

Also Published As

Publication number Publication date
DE102012016378B4 (de) 2020-06-18
DE102012016378A1 (de) 2014-02-13

Similar Documents

Publication Publication Date Title
WO2014026884A1 (fr) Actionneur élastomère diélectrique et procédé de production
EP1966839B1 (fr) Élément piézo empilé tridimensionnel et activateur piézoélectrique comportant un tel élément piézo empilé
DE102011050250A1 (de) Elektrodensubstrat sowie flächige optoelektronische Vorrichtung
DE102010011047A1 (de) Biegewandler
EP2483942B1 (fr) Procédé de fabrication d'un module fonctionnel piézoélectrique
EP1476907B1 (fr) Actionneur piezo-electrique a electrode externe structuree
EP2013920B1 (fr) Activateur piézoélectrique avec une couche d'encapsulation à gradient et son procédé de fabrication
DE102008039757A1 (de) Aktorelement sowie seine Verwendung
DE102012207598A1 (de) Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements als Stapel und elektronisches Bauelement mit einer Kontaktierungsstruktur
DE102008009428A1 (de) Thermo-elektrischer Wandler und zugehöriges Herstellungsverfahren
DE102018218637B3 (de) Elektroaktive Polymeraktuatoreinrichtung
DE102012207276B4 (de) Vollaktiver Piezostack mit Passivierung
DE102006004284A1 (de) Piezoaktor und Verfahren zur Herstellung desselben
DE102009002631A1 (de) Piezoelektrischer Antrieb und Mikroventil mit einem solchen
DE102008027115A1 (de) Kontaktstruktur, elektronisches Bauelement mit einer Kontaktstruktur und Verfahren zu deren Herstellung
DE102007004893B4 (de) Piezoelektrischer Vielschichtaktor und Verfahren zu seiner Herstellung
DE102015226233A1 (de) Biegewandler sowie Verfahren zu dessen Herstellung sowie zu dessen Betrieb
DE102009017434A1 (de) Elektronisches Bauelement und Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements als Stapel
DE102011004543A1 (de) Impulswiderstand, Leiterplatte und elektrisches oder elektronisches Gerät
DE102012016376B4 (de) Verfahren zur geometrischen Strukturierung oder zum Zuschneiden dielektrischer Elastomeraktoren
DE102011050249A1 (de) Substrat für eine optoelektronische Vorrichtung
DE102019123877B4 (de) Dielektrische Vorrichtung mit einer Elektrode mit nicht-planaren Strukturierungen
AT512577B1 (de) Vorrichtung und Verfahren zum Bilden eines Temperaturgradienten
DE102006012321A1 (de) Piezoelektrische Vorrichtung
DE102016200153B4 (de) Elektromechanischer Wandler und Verfahren zur Herstellung eines elektromechanischen Wandlers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13745425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13745425

Country of ref document: EP

Kind code of ref document: A1