WO2014026610A1 - 一种太阳能聚集系统 - Google Patents

一种太阳能聚集系统 Download PDF

Info

Publication number
WO2014026610A1
WO2014026610A1 PCT/CN2013/081463 CN2013081463W WO2014026610A1 WO 2014026610 A1 WO2014026610 A1 WO 2014026610A1 CN 2013081463 W CN2013081463 W CN 2013081463W WO 2014026610 A1 WO2014026610 A1 WO 2014026610A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar energy
mirror
fresnel reflection
concentrating
reflection main
Prior art date
Application number
PCT/CN2013/081463
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京兆阳能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆阳能源技术有限公司 filed Critical 北京兆阳能源技术有限公司
Publication of WO2014026610A1 publication Critical patent/WO2014026610A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a solar energy gathering system. Background technique
  • the main object of the present invention is to overcome the insufficient receiving energy per unit area of the conventional trough-type gathering system in the middle and high latitude regions described above, and the excessive receiving energy per unit area of the mirror in summer (the heat storage capacity will be selected under the specific energy storage capacity). , the overall manufacturing cost is high; Fresnel aggregation system though The construction cost is reduced, but the specular receiving energy per unit area is low throughout the year.
  • a solar energy gathering system is proposed, which includes at least one set of Fresnel reflection main concentrating device and a Fresnel reflection main concentrating light.
  • each set of Fresnel reflecting main concentrating device is a mirror array group arranged with 4 axes or more; the array plane of the Fresnel reflecting main concentrating device is sunny The surface is arranged obliquely, and the solar energy gathering system is arranged at an area above 20 degrees latitude.
  • the distance between the group of the above groups of Fresnel reflection main concentrating devices is 0.6 to 2 times the width of the mirror array group of the Fresnel reflection main concentrating device (the width of the mirror array group is defined as the main aggregation)
  • the Fresnel reflection main concentrating device is in the state of the maximum contour size , the vertical projection distance between the trailing edge of the mirror array group of the former group of main concentrating devices and the front edge of the mirror array group of the latter group of main concentrating devices) to increase the effective intercepting area of the entire mirror field Or efficiency.
  • the receiving device includes a secondary optical device, such as a secondary compound parabolic concentrating device
  • the angle of the concentrated light of the Fresnel reflection main concentrating device is less than 90°, preferably, the angle of the concentrated light of the Fresnel reflection main concentrating device is less than 60°; optimally the Fresnel reflection
  • the angle of the concentrated light of the main concentrating device is less than 45 °; the smaller the angle of the concentrated light is, the easier the secondary optical device in the receiving device is to collect the incident light at a higher multiple, so that the overall concentrating ratio of the system is higher.
  • the angle of the concentrated light is defined as the angle formed by the width of the mirror array group as the base and the center of the receiving device as the apex.
  • the mirror strips of the mirror array group are one-dimensional curved cylinders with a light concentrating effect.
  • the mirror strip of the mirror array group is a one-dimensional arc-shaped cylinder surface, which is convenient for processing, measuring and mounting.
  • the number of mirror bars (or the number of bars) of the mirror array group is within 10 axes.
  • the number of mirror bars (or the number of bars) of the mirror array group is within 6 axes to simplify the construction of the system.
  • the mirror surface of the mirror can be adjusted to stand upright or approximately erect, in an anti-icing state, and enhance the resistance to hail impact.
  • the mirror surface of the mirror is a non-tempered glass mirror, and under the premise of ensuring strength, Reduce the manufacturing cost of the mirror.
  • the angle of the tilt of the mirror array group of the Fresnel reflection main concentrating device is inclined to be greater than 15°, and the tilt angle is the lowest axis to the highest axis of each set of mirror arrays. The angle between the line and the horizontal line.
  • the array plane of the solar energy collecting system Fresnel reflection main concentrating device has an inclination angle ranging from 15 to 50° on the slope of the sunny slope ; the system has an inclination of at least 30-45 ° in the northern part of China.
  • the mirror receiving capacity of the Fresnel array unit is increased by 20% ⁇ 30% compared with the flat ground.
  • the receiving device is a photovoltaic cell device or a photothermal heat collecting device, or the receiving device is composed of a photovoltaic cell device, a photothermal heat collecting device and a secondary optical device, that is, the system can be applied to solar thermal collection. Power generation can also be applied to solar photovoltaic power generation.
  • the one or more aggregation systems are arranged on the same rotating platform to perform overall azimuth rotation; the mirror array group performs the swing in the height direction to complete the two-dimensional tracking, and obtain a more excellent mirror cut per unit area. Light efficiency.
  • the solar energy gathering system is arranged on the roof portion of the building to form a complete unit with the inclined surface of the building roof.
  • the solar energy gathering system of the invention has the following characteristics and advantages: 1.
  • the overall cost of the solar energy gathering system is relatively low, and the cost is significantly smaller than that of the conventional trough when the specular energy of the unit area is substantially equivalent to that of the conventional trough type.
  • the Fresnel structure arranged horizontally compared with the common east-west axis and the north-south axis has similar construction and installation costs, and has a cutting efficiency higher than 20% ⁇ 30% of the specular energy of the unit area; 2.
  • the solar energy gathering The system is particularly effective in high latitudes, especially in most high-light areas such as China, the United States, Australia, and North Africa. 3.
  • the solar energy gathering system can be applied to solar thermal power generation (CSP) or solar energy.
  • CSP solar thermal power generation
  • FIG. 2 is a schematic structural view of a second embodiment of the solar energy gathering system of the present invention.
  • Figure 3 is a cumulative view of the average monthly light interception capacity of the trough, Fresnel and the apparatus of the present embodiment. detailed description
  • FIG. 1 is a schematic view showing the structure of a first embodiment of the solar energy collecting system of the present invention.
  • the array group 101 is easy
  • the solar energy gathering system is suitable for high latitude areas, such as a latitude range of 30 to 50 degrees.
  • the solar energy gathering system has an inclination angle ranging from 15 to 50° as a whole, and the inclination angle is preferably 30° in the Beijing region, for example, and has a good overall cost, installation and light intercepting effect.
  • the spacing B of the Fresnel reflection main concentrating device of each group is 0.6 to 2 times the width A of the mirror array group of the Fresnel reflection main concentrating device, so as to increase the effective sectional area or efficiency of the entire mirror field.
  • the mirror array group width A is defined as the maximum contour size connection length of the outer edge of the mirror strip array of the Fresnel reflection main concentrating device from the outer edge of the mirror strip to the outer edge of the end strip.
  • the main concentrating device pitch B is defined as the state of the maximum profile size connection length, the trailing edge of the mirror array group of the former group of Fresnel reflection main concentrating devices and the latter group of Fresnel reflection main concentrating devices The vertical projection distance of the ground between the leading edges of the mirror array group.
  • the angle of the concentrated light of the Fresnel reflection main concentrating device is less than 90°, preferably less than 60°, and optimally less than 45°, wherein the angle of the concentrated light is defined as a mirror array of the Fresnel reflection main concentrating device
  • the group width A is the bottom edge, and the apex angle ⁇ formed by the center point of the receiving device is the apex ; the smaller the angle of the concentrated light is, the easier the receiving device receives the concentrated light, and the higher the tolerance performance;
  • the Fresnel reflection main concentrating device is Multiple mirror array groups, the mirror array group consists of mirror strips of the array (the mirror strips are single
  • the axially arranged mirror arrays each include a plurality of axially arranged mirrors, and the mirror strips are one-dimensional curved cylinders with good convergence effects.
  • the mirror strips of the mirror array group are one-dimensional arc-shaped cylinders for convenient processing.
  • the number of mirror bars (or the number of bars) of the mirror array group 101 is within 10 axes.
  • the number of mirror bars (or the number of bars) of the mirror array group is within 6 axes to simplify the construction of the system.
  • the mirror surface of the mirror may be erected or approximately erected in an anti-icing state.
  • the mirror surface of the mirror is a non-tempered glass mirror, and the manufacturing cost of the mirror is reduced under the premise of ensuring strength.
  • the receiving device 103 of the solar energy collecting system includes a secondary optical device such as a secondary compound parabolic concentrating device CPC or a light turning mirror or a wavelength beam splitter, etc., and the sunlight that is not directly incident on the surface of the receiver inside the receiving device 103 is again Reflected to the outer surface of the receiver; when the receiver is a photothermal collector (not labeled in Figure 1), the solar energy gathering system converts the solar energy into heat, and then pushes the heat engine to generate solar thermal power; the solar energy gathering system can be applied not only In addition to solar thermal power generation, it can also be applied to solar photovoltaic power generation, that is, when the receiving device is a photovoltaic receiving device, the photovoltaic battery group is used as a receiver to implement photovoltaic power generation. That is, the photovoltaic cell device or the photothermal collector in the embodiment of the present invention can be used alone as a receiving device.
  • the solar energy gathering system can be placed on the roof to form a complete unit with the inclined surface
  • the device includes at least one set of Fresnel reflection main concentrating device, and a receiving device 203 disposed in a concentrating direction of the Fresnel reflection main concentrating device; and each set of Fresnel reflection main concentrating device a mirror array group 201 and a mirror array group 202 arranged in a four-axis or more axis; the array plane of the Fresnel reflection main concentrating device is inclined to the sun slope; and the mirror array group 201 is taken as an example for description.
  • the mirror array group 201 is arranged obliquely to the sunny slope along the east-west axis, and the tilt angle is preferably 30° to ensure easy installation of the solar energy gathering system and good light intercepting capability.
  • the solar energy gathering system is suitable for high latitude areas, such as a latitude range of 20 to 50 degrees.
  • the receiving device 203 of the solar energy collecting system comprises a photovoltaic cell device 221, a photothermal collector 224 and a wavelength splitting device 225 arranged therebetween; the wavelength splitting device 225 can use a wavelength splitting film splitter to collect the concentrated incident light.
  • wavelength splitting device 225 also uses prism beam splitter or prism beam splitter group to refract incident light to select wavelength splitting; overall implementation of high-efficiency solar spectrum separation and utilization, improve photovoltaic cell power generation efficiency (reduce low spectral response rate range)
  • the reception of the spectrum reduces the conversion of energy to heat, ensuring efficient generation of photovoltaic cells and ideal operating temperatures.
  • the solar energy gathering system is disposed above the rotating platform 209.
  • the mirror array group 201 and the mirror array group 202 are disposed on the rotating platform 209, and the plurality of solar energy collecting systems are disposed on the same rotating platform 209 to complete the rotation together.
  • the azimuth angle is tracked in one dimension.
  • the mirrors in different solar energy gathering systems are independently swiveled to complete the tracking in the height direction, and the tracking in the other dimension is completed.
  • the two complete the two-dimensional tracking together to obtain a more excellent mirror cut per unit area.
  • the solar energy gathering system is about 15% more efficient than the one-dimensional swing.
  • FIG 3 is a cumulative view of the average monthly light interception capability of the trough, Fresnel and apparatus of the present embodiment.
  • each month corresponds to a histogram group consisting of three histograms.
  • the gray histogram near the Y-axis in each histogram group represents the unit area of the traditional trough collector system throughout the year.
  • Accumulation of specular received energy; black histogram in the middle indicates the accumulation of specular received energy per unit area of the traditional Fresnel collector system throughout the year; white histogram away from the Y axis represents the aggregation system of this embodiment throughout the year
  • the cumulative amount of energy received per unit area of the mirror is a histogram group consisting of three histograms.
  • the gray histogram near the Y-axis in each histogram group represents the unit area of the traditional trough collector system throughout the year.
  • black histogram in the middle indicates the accumulation of specular received energy per unit area
  • the unit mirror receives less energy per month in the winter; in summer, the mirror area receives more energy, the difference between winter and summer is larger, and the monthly power generation is uneven; the traditional Fresnel set The thermostat system receives less energy per unit area of the mirror per month, and the overall mirror efficiency is generally lower; in the aggregation system of this embodiment, the specular surface receives more energy per unit area than the conventional trough type in winter. In the summer, the monthly unit mirror receives less energy than the trough, and the overall reception is more average throughout the year, which facilitates the power supply and meets the user's needs.
  • the traditional trough is because The difference between each month is large, which is not convenient to match.
  • the energy storage is large, for example, it can meet the heat storage in summer, but in winter, the storage capacity is seriously insufficient to meet the heat storage tank capacity design; when the storage capacity is designed as At medium levels, the summer energy storage has to be partially abandoned, resulting in no small waste; the system receives the energy in winter and summer. Little difference, to facilitate the storage capacity of the heat storage tank rational and rational design requirements and network users.
  • the mirror array group arranged on the east-west axis is arranged obliquely on the sunny slope surface.
  • the mirror array group is obliquely arranged on the sunny slope surface, and the plurality of mirror array groups are facing the south side of the sun.
  • the width of the parabolic trough is 6m; the distance between two adjacent parabolic troughs is 15m; the spacing of neutrals is 9m; the shading formed by receiving sunlight in the morning to 17 o'clock is limited, so the receiving of the lens per unit area
  • the ability is relatively strong; assuming that the incident angle of the incident mirror slot after the one-dimensional tracking of the trough-type north-south axis is ⁇ 1 : where sin ⁇ ⁇ cosh ⁇ cos ⁇ ; the corresponding cosine value is cos e ⁇ l-cos ⁇ Cos ⁇ 15 ;
  • h is the height angle of the sun's rays and Y is the azimuth of the sun's rays.
  • the azimuth angle Y can be wide from -90 ° to 90 °, and the azimuth angle cosine is smaller than the sine of the azimuth angle.
  • the traditional trough receives a large amount of energy per unit area of the mirror in summer;
  • the azimuth angle Y may range from -60° to 60°, and the smaller the azimuth angle is closer to noon, and the DNI at noon is larger than the DNI in the morning or evening, so the mirror array group per unit area mirror arranged on the east-west axis in winter
  • the receiving energy is greater than the specular receiving energy per unit area of the traditional trough north and south axis.
  • the solar energy gathering system has great advantages in structure, the cost is half lower than that of the general frame, and more energy can be absorbed in winter, which is suitable for high latitude applications, and can be applied to a solar thermal power generation system (CSP), and can also be applied.
  • CSP solar thermal power generation system
  • LCPV solar concentrating photovoltaic system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能聚集系统,包括至少1组菲涅尔反射主聚光装置以及置于主聚光装置聚光方向上的接收装置(103,203)。每组菲涅尔反射主聚光装置为4轴或以上东西轴向布置的反射镜阵列组(101,201,202)。菲涅尔反射主聚光装置的阵列平面向阳坡面倾斜布置,太阳能聚集系统布置在纬度20度以上地区。多个太阳能聚集系统布置于同一旋转平台(209)之上,以实施整体方位旋转。太阳能聚集系统的接收装置(103,203)为光伏电池装置(221)或光热集热器(224),即该系统可以应用于太阳能光热集热,也可以应用于太阳能光热发电。该太阳能聚集系统具有成本低、单位镜面截光能量高的优点,且能与建筑一体化建设。

Description

一种太阳能聚集系统
技术领域
本发明涉及一种太阳能聚集系统。 背景技术
能源短缺以及环境问题已经逐歩成为制约我国与世界经济和社会长期发 展的重大瓶颈。 为了解决这一问题, 除大力开展节能与科学用能和努力发展 化石燃料外, 必须加速可再生能源的开发和利用。 开发利用可再生能源, 对 优化能源结构、 保护环境、 减排温室气体、 应对气候变化具有十分重要的作 用, 在这方面太阳能起着很重要的作用。 太阳能是一种取之不竭、 清洁的可 再生能源。 开发利用太阳能资源是开拓新能源和保护环境、 节能减排的有效 途径。 随着太阳能等可再生能源利用在全世界蓬勃发展, 太阳能聚热发电 (CSP) 逐歩为人们所认识。
全球大部分太阳能资源丰富地区、 DNI 高的地区都集中在中、 高纬度 35-40度附近,因此存在由于光线入射角度的变化对聚光效果造成的季节性影 响。
常见的线型 CSP聚集系统有槽式聚集系统和菲涅尔式聚集系统。 传统的 槽式聚集系统在冬天时单位面积镜面接收能量不足, 而夏天单位面积镜面接 收能量过多 (超出热机、 储热系统需求导致弃热) , 整体的框架、 镜面制造 成本较高; 传统的菲涅尔式聚集系统虽然克服了成本高的缺点, 但是存在单 位面积镜面全年接收能量较低并且需要较大太阳能镜场面积等缺点。 因此开 发一种成本较低,具有较高单位面积镜面截光能量的聚集系统具有巨大价值, 且迫在眉睫。 发明内容
本发明的主要目的为克服上述描述的中、 高纬度地区传统槽式聚集系统 冬天单位面积镜面接收能量不足, 而夏天单位面积镜面接收能量过多 (特定 储能容量条件下将会选择弃热) , 整体制造成本高昂; 菲涅尔聚集系统虽然 建造成本下降, 但单位面积镜面接收能量全年较低等问题, 针对上述问题, 提出一种太阳能聚集系统, 包括至少 1组菲涅尔反射主聚光装置、 置于菲涅 尔反射主聚光装置聚光方向上的接收装置; 所述每组菲涅尔反射主聚光装置 为 4轴或以上东西轴布置的反射镜阵列组; 所述菲涅尔反射主聚光装置的阵 列平面向阳坡面倾斜布置, 所述太阳能聚集系统布置在纬度 20度以上地区。
进一歩地, 所述一组以上各组菲涅尔反射主聚光装置间距为菲涅尔反射 主聚光装置的反射镜阵列组宽度的 0.6〜2倍 (反射镜阵列组宽度定义为主聚 光装置的反射镜阵列组最起始镜条的外边缘到最末端镜条的外边缘的最大轮 廓尺寸连线长度。 菲涅尔反射主聚光装置间距为最大轮廓尺寸连线长度的状 态时, 前一组主聚光装置的反射镜阵列组的后沿与后一组主聚光装置的反射 镜阵列组的前沿之间的地面垂直投影距离) , 以增加整体镜场的有效截光面 积或效率。
进一歩地, 所述接收装置包括二次光学装置, 如二次复合抛物聚光装置
CPC或光线转向反射镜或波长分光镜等。
进一歩地, 所述菲涅尔反射主聚光装置的汇聚光线夹角小于 90° , 优选 地, 菲涅尔反射主聚光装置的汇聚光线夹角小于 60° ; 最优为菲涅尔反射主 聚光装置的汇聚光线夹角小于 45 ° ; 汇聚光线夹角越小接收装置中的二次光 学装置越容易更高倍数的汇聚入射光线, 使系统整体聚光倍数更高。 其中汇 聚光线夹角定义为以反射镜阵列组宽度为底边、 接收装置中心点为顶点所形 成的夹角。
进一歩地, 所述反射镜阵列组的镜条为一维弧形柱面, 具有光线汇聚效 果。
优选地, 所述反射镜阵列组的镜条为一维圆弧形柱面, 方便加工、 测量、 安装。
进一歩地, 所述反射镜阵列组的镜条轴数 (或条数) 为 10轴以内。
优选地, 所述反射镜阵列组的镜条轴数 (或条数) 为 6轴以内, 以简化 系统的建设。
进一歩地, 所述反射镜的镜面可调节至竖立或近似竖立, 处于防冰雹状 态, 增强抵抗冰雹冲击能力。
进一歩地, 所述反射镜的镜面为非钢化玻璃镜, 在保证强度的前提下, 减少反射镜的制造成本。
进一歩地, 所述菲涅尔反射主聚光装置的反射镜阵列组整体向阳坡面倾 斜布置的倾斜角度大于 15 ° , 所述倾斜角度为每组镜条阵列中最低轴心到最 高轴心的连线与水平线的夹角。
进一歩地, 所述太阳能聚集系统菲涅尔反射主聚光装置的阵列平面向阳 坡面倾斜布置的倾斜角度范围为 15〜50°; 该系统在中国北方地区整体呈至少 30-45 ° 的倾斜时, 具有良好的截光能力, 较平铺地面的菲涅尔阵列单位镜面 接收能力增加 20%〜30%。
进一歩地, 所述接收装置为光伏电池装置或光热集热装置, 或者接收装 置由光伏电池装置、 光热集热装置以及二次光学装置组成, 即该系统可以应 用于太阳能光热集热发电, 也可以应用于太阳能光伏发电。
进一歩地, 所述一个或多个聚集系统布置于同一旋转平台之上, 实施整 体方位旋转; 反射镜阵列组实施高度方向上的摆转, 完成二维跟踪, 获得更 加优良的单位面积镜面截光效率。
进一歩地, 所述太阳能聚集系统布置于建筑屋顶部, 与建筑屋顶倾斜面 形成完整的整体。
本发明的一种太阳能聚集系统具有以下特点及优点: 1、 该太阳能聚集系 统整体造价成本较低, 在获得与传统槽式基本相当的单位面积镜面截光能量 的情况下, 成本明显小于传统槽式; 较普通东西轴、 南北轴水平布置的菲涅 尔结构具有相近的建造和安装成本, 同时具有高于其单位面积镜面截光能量 20%〜30%的截光效率; 2、该太阳能聚集系统在高纬度地区效果尤其明显, 特 别适合在中国、 美国、 澳大利亚、 北非等大部分高光照地区; 3、 该太阳能聚 集系统可以应用于太阳能光热发电系统 (CSP ) 中, 也可以应用于太阳能聚 光光伏发电系统 (LCPV) 中; 4、 多个该太阳能聚集系统布置于同一个旋转 平台之上, 共同完成旋转方位角度跟踪, 同时不同的太阳能聚集系统中的镜 面独自摆转完成高度方向的跟踪, 共同完成二维跟踪, 获得更加优良的单位 镜面截光能量; 5、 太阳能聚集系统布置于建筑屋顶上, 与建筑屋顶倾斜面形 成完整的整体。 附图说明 下面参照附图对本发明的具体实施方案进行详细的说明, 附图中: 图 1是本发明的太阳能聚集系统的第一实施例的结构示意图;
图 2是本发明的太阳能聚集系统的第二实施例的结构示意图;
图 3是槽式、 菲涅尔和本实施例装置各月平均截光能力的累计图。 具体实施方式
下面结合实施例对本发明进行进一歩的详细说明。
图 1是本发明的太阳能聚集系统的第一实施例的结构示意图。 如图 1所 示, 包括至少 1组菲涅尔反射主聚光装置、 置于菲涅尔反射主聚光装置聚光 方向上的接收装置 103 ; 所述每组菲涅尔反射主聚光装置为 4轴或以上东西 轴布置的反射镜阵列组 101 ; 多片反射镜例如反射镜 110和反射镜 112; 所述 菲涅尔反射主聚光装置的阵列平面向阳坡面倾斜布置; 接收装置 103位于反 射镜阵列组 101的上方, 布置于支撑架 109的上部位置; 太阳能聚集系统整 体的向阳坡面倾斜布置的倾斜角度范围为 15〜50°; 倾斜角度一般大于 20° , 此时, 反射镜阵列组 101易安装并且具有良好的截光能力, 与普通平铺地面 的菲涅尔阵列单位镜面相比, 其接收能力可增加 20%〜30% 。
该太阳能聚集系统适用于高纬度地区, 例如纬度范围 30〜50° 。 优选地, 太阳能聚集系统整体的倾斜角度范围为 15〜50°, 倾斜角度例如在北京区域优 选为 30° , 具有良好的综合成本、 安装和截光效果。 各组的所述菲涅尔反射 主聚光装置间距 B为菲涅尔反射主聚光装置的反射镜阵列组宽度 A的 0.6〜2 倍, 以增加整体镜场的有效截光面积或效率。 其中, 反射镜阵列组宽度 A定 义为菲涅尔反射主聚光装置的反射镜阵列组最起始镜条的外边缘到最末端镜 条的外边缘的最大轮廓尺寸连线长度。 主聚光装置间距 B定义为最大轮廓尺 寸连线长度的状态时, 前一组菲涅尔反射主聚光装置的反射镜阵列组的后沿 与后一组菲涅尔反射主聚光装置的反射镜阵列组的前沿之间的地面垂直投影 距离。 菲涅尔反射主聚光装置的汇聚光线夹角小于 90° , 优选地小于 60° , 最优地小于 45 ° , 其中汇聚光线夹角定义为以菲涅尔反射主聚光装置的反射 镜阵列组宽度 A为底边、 接收装置中心点为顶点形成的顶角 α ; 汇聚光线夹 角越小接收装置越容易接收汇聚光, 具有更高的容差性能; 菲涅尔反射主聚 光装置为多个反射镜阵列组, 反射镜阵列组由阵列的镜条组成 (镜条为单个 轴向布置的反射镜阵列, 各镜条包括多个沿轴向布置的反射镜) , 镜条为一 维弧形柱面, 具有良好的汇聚效果。 优选地, 所述反射镜阵列组的镜条为一 维圆弧形柱面, 方便加工。
反射镜阵列组 101的镜条轴数 (或条数) 为 10轴以内。 优选地, 所述反 镜阵列组的镜条轴数(或条数)为 6轴以内, 以简化系统的建设。 进一歩地, 所述反射镜的镜面可竖立或近似竖立, 处于防冰雹状态。 进一歩地, 所述反 射镜的镜面为非钢化玻璃镜, 在保证强度的前提下, 减少反射镜的制造成本。
太阳能聚集系统的接收装置 103包括二次光学装置, 如二次复合抛物聚 光装置 CPC 或光线转向反射镜或波长分光镜等, 将未直接入射到接收装置 103 内部的接收器表面的太阳光再次反射至接收器外表面; 当接收器为光热 集热器 (图 1 中没有标注) 时, 太阳能聚集系统将太阳能转换成热量后, 推 动热机进行光热发电;该太阳能聚集系统除了可以应用于太阳能光热发电外, 还可以应用于太阳能光伏发电, 即接收装置为光伏接收装置时, 光伏电池组 作为接收器实施光伏发电。 也就是说, 本发明实施例中光伏电池装置或者光 热集热器可以单独作为接收装置使用。该太阳能聚集系统可以布置于屋顶上, 与屋顶倾斜面形成完整的整体。
图 2是本发明的太阳能聚集系统的第二实施例的结构示意图。 如图 2所 示, 包括至少 1组菲涅尔反射主聚光装置、 置于菲涅尔反射主聚光装置聚光 方向上的接收装置 203 ; 所述每组菲涅尔反射主聚光装置为 4轴或以上东西 轴布置的反射镜阵列组 201和反射镜阵列组 202; 所述菲涅尔反射主聚光装 置的阵列平面向阳坡面倾斜布置; 以反射镜阵列组 201为例进行描述, 反射 镜阵列组 201沿东西轴方向向阳坡面倾斜布置, 倾斜角度优选为 30° , 以保 证太阳能聚集系统安装简易, 并且能够拥有良好的截光能力。 该太阳能聚集 系统适用于高纬度地区, 例如纬度范围 20〜50° 。 太阳能聚集系统的接收装 置 203包括光伏电池装置 221、 光热集热器 224和二者之间布置的波长分光 装置 225 ; 该波长分光装置 225, 可以采用波长分光薄膜分光镜对汇聚的入射 光进行透射、 反射选择分光; 波长分光装置 225也采用棱镜分光镜或棱镜分 光镜组对入射光进行折射选择波长分光;整体实施高效太阳能光谱分离利用, 提高光伏电池发电效率 (减少低光谱响应率范围内光谱的接收, 即减少了能 量向热量的转化, 保证光伏电池高效发电及理想工作温度) 。 如图 2所示, 该太阳能聚集系统布置于旋转平台 209之上, 例如反射镜阵列组 201和反射 镜阵列组 202布置在旋转平台 209上, 多个该太阳能聚集系统布置于同一个 旋转平台 209之上, 共同完成旋转方位角度一个维度上的跟踪, 同时不同的 太阳能聚集系统中的镜面独自摆转完成高度方向的跟踪, 完成另一维度上的 跟踪, 二者共同完成二维跟踪, 获得更加优良的单位面积镜面截光能量; 大 约较一维摆转的该太阳能聚集系统效率提高 15%左右。
图 3是槽式、菲涅尔和本实施例装置各月平均截光能力的累计图。如图 3 所示, 图中每月份均对应一个由 3个柱状图组成的柱状图组, 各柱状图组中 靠近 Y轴的灰色柱状图表示传统槽式集热器系统全年各月单位面积镜面接收 能量的累计; 位于中部的黑色柱状图表示传统菲涅尔集热器系统全年各月单 位面积镜面接收能量的累计; 远离 Y轴的白色柱状图表示为本实施例的聚集 系统全年各月单位面积镜面接收能量的累计。传统槽式集热器系统在冬季时, 各月单位镜面接收能量较少; 夏季时, 单位面积镜面接受能量较多, 冬季和 夏季相差较大, 各月发电量不均匀; 传统菲涅尔集热器系统在全年各月单位 面积镜面接收的能量都较少, 整体镜面效率普遍较低; 本实施例的聚集系统 在冬季时各月单位面积镜面接收的能量较传统槽式要多, 而在夏季时, 各月 单位镜面接收的能量较槽式要稍少, 整体全年接收较为平均, 方便电量上网 并满足了用户需求; 再者, 考虑到光热系统的存储容量, 传统槽式因为各月 相差较大, 并不方便匹配, 当储能量较大时, 例如可以满足夏日的储热, 但 到冬天时, 存储容量严重不足不能满足储热罐容量设计; 当将存储容量设计 为中等水平时, 夏天的储能量不得不有部分弃热, 造成不小的浪费; 该系统 冬天和夏天对应接收的能量相差很少, 方便储热罐存储容量的合理设计和用 户并网的合理需求。
南北轴向布置的菲涅尔聚集系统, 因其平铺地面, 当入射角度小时, 相 邻反射镜的镜条之间容易出现遮光; 当入射角度大时相邻反射镜的镜条之间 容易出现漏光; 而本实施例中, 东西轴布置的反射镜阵列组整体向阳坡面倾 斜布置, 例如在北半球上, 反射镜阵列组向阳坡面倾斜布置, 多个反射镜阵 列组迎向太阳南面进行截光接收; 多个反射镜的镜条之间遮光很少, 漏光也 较南北轴布置的反射镜阵列组要少; 如此整体上南北轴布置的菲涅尔反射镜 结构单位面积反射镜接收能量小于东西轴布置的菲涅尔反射镜阵列组单位面 积反射镜接收能量, 二者全年累计平均大约相差 25%〜30%左右; 传统的南北 轴布置的槽式聚集系统的两个相临槽式的空挡间距大约为抛物槽开口宽度的 1.5倍, 例如抛物槽开口宽度为 6m; 两个相邻的抛物槽中心距为 15m; 空挡 间距为 9m; 在早上 Ί点至晚上 17点时间段接收太阳光形成的遮光有限, 所 以单位面积镜片的接收能力相对要强; 假定槽式南北轴布置反射镜完成一维 跟踪后的入射反射镜槽的入射角度为 Θ 1 : 其中 sin Θ ^cosh^cos γ; 对应的余 弦值为 cos e ^l-cos ^cos^ 15; 实施例一的东西轴布置的反射镜阵列组整 体向阳坡面倾斜角度 45 ° , 其东西轴布置完成一维跟踪后的入射角度为 θ 2 : 其中 sin Θ 2=C0Sh*sin γ; 对应的余弦值为 cos Θ 2=(l-COS 2h*sin2 γ )。·5; 其中 h 为太阳光线的高度角度, Y为太阳光线的方位角度。 在夏天时方位角度 Y范 围很宽可为 -90 ° 〜90 ° , 方位角度余弦值小于方位角度的正弦值, 所以传统 槽式在夏天的单位面积镜面接收能量要大; 而在冬天太阳升起方位角度 Y范 围可能为 -60° 〜60° , 又因为方位角度越小越靠近中午, 而中午的 DNI要比 早上或傍晚的 DNI大, 因此在冬天东西轴布置的反射镜阵列组单位面积镜面 接收能量要大于传统槽式南北轴单位面积镜面接收能量。
该太阳能聚集系统结构上具有很大的优势, 成本较一般的框架低一半, 冬季可以吸收更多的能量, 适于高纬度应用, 可应用于太阳能光热发电系统 ( CSP ) 中, 也可以应用于太阳能聚光光伏发电系统 (LCPV) 中。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的本 发明可以有许多变化。 因此, 所有对于本领域技术人员来说显而易见的改变, 都应包括在本权利要求书所涵盖的范围之内。 本发明所要求保护的范围仅由 所述的权利要求书进行限定。

Claims

权 利 要 求 书
1、 一种太阳能聚集系统, 包括至少 1组菲涅尔反射主聚光装置、 置于所 述菲涅尔反射主聚光装置聚光方向上的接收装置; 其特征在于, 所述每组菲 涅尔反射主聚光装置为 4轴或以上东西轴布置的反射镜阵列组; 所述菲涅尔 反射主聚光装置的阵列平面向阳坡面倾斜布置, 所述太阳能聚集系统布置在 纬度 20度以上地区。
2、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述菲涅 尔反射主聚光装置的汇聚光线夹角小于 90 ° 。
3、 根据权利要求 2所述的一种太阳能聚集系统, 其特征在于, 所述菲涅 尔反射主聚光装置的汇聚光线夹角小于 60 ° 。
4、 根据权利要求 3所述的一种太阳能聚集系统, 其特征在于, 所述菲涅 尔反射主聚光装置的汇聚光线夹角小于 45 ° 。
5、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述菲涅 尔反射主聚光装置的阵列平面向阳坡面倾斜布置的倾斜角度范围为 15〜50°。
6、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述一组 以上各组菲涅尔反射主聚光装置间距为所述菲涅尔反射主聚光装置的反射镜 阵列组宽度的 0.6〜2倍。
7、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述反射 镜阵列组的镜条为一维弧形柱面。
8、 根据权利要求 Ί所述的一种太阳能聚集系统, 其特征在于, 所述反射 镜阵列组的镜条为一维圆弧形柱面。
9、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述反射 镜阵列组的镜条轴数为 10轴以内。
10、 根据权利 9所述的一种太阳能聚集系统, 其特征在于, 所述反射镜 阵列组的镜条轴数为 6轴以内。
1 1、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述反 射镜的镜面可调节至竖立或近似竖立。
12、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述反 射镜的镜面为非钢化玻璃镜。
13、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述接 收装置包括二次光学装置。
14、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述 收装置为光伏电池装置或光热集热器。
15、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述 收装置由光伏电池装置、 光热集热装置以及二次光学装置组成。
16、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 多个 述太阳能聚集系统布置于同一旋转平台之上, 实施整体方位旋转。
17、 根据权利要求 1所述的一种太阳能聚集系统, 其特征在于, 所述 阳能聚集系统布置于建筑屋顶部。
PCT/CN2013/081463 2012-08-14 2013-08-14 一种太阳能聚集系统 WO2014026610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210289624.0A CN103591703A (zh) 2012-08-14 2012-08-14 一种太阳能聚集系统
CN201210289624.0 2012-08-14

Publications (1)

Publication Number Publication Date
WO2014026610A1 true WO2014026610A1 (zh) 2014-02-20

Family

ID=50081944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081463 WO2014026610A1 (zh) 2012-08-14 2013-08-14 一种太阳能聚集系统

Country Status (2)

Country Link
CN (1) CN103591703A (zh)
WO (1) WO2014026610A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145579A1 (es) * 2018-01-26 2019-08-01 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Captador solar lineal fresnel adaptable
CN112728785A (zh) * 2021-01-19 2021-04-30 广东工业大学 一种用于斯特林机的太阳能加热装置
CN114723136A (zh) * 2022-04-07 2022-07-08 重庆大学 计及光热电站镜场面积和储热容量的优化运行方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775718B (zh) * 2018-03-26 2020-03-17 河海大学常州校区 双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法
CN114562820B (zh) * 2022-02-22 2023-08-04 同济大学 一种建筑整合型百叶窗式太阳能光伏光热收集器
CN114739134A (zh) * 2022-04-11 2022-07-12 华东交通大学 一种基于太阳能光谱分频药材干燥耦合供能系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075579A1 (en) * 2000-12-18 2002-06-20 Vasylyev Sergiy Victorovich Apparatus for collecting and converting radiant energy
CN101504199A (zh) * 2008-02-04 2009-08-12 张玉良 低成本太阳能跟踪及新的热力循环方法
US20100309569A1 (en) * 2007-12-17 2010-12-09 Karl Ricks Fresnel mirror and method for the production thereof
CN102116535A (zh) * 2011-03-24 2011-07-06 成都安锐达科技有限责任公司 菲涅尔中高温太阳能集热装置
CN102519153A (zh) * 2011-12-20 2012-06-27 金华金大光能科技有限公司 一种大功率菲涅尔太阳能条带形聚光反射镜场装置光学参数设计方法
CN202734290U (zh) * 2012-08-14 2013-02-13 北京兆阳能源技术有限公司 一种太阳能聚集系统
CN203022245U (zh) * 2013-01-04 2013-06-26 深圳市动静追日太阳能科技有限公司 一种建筑一体化的太阳能利用系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108317753A (zh) * 2008-09-22 2018-07-24 益科博科技有限公司 二维模块化日光反射装置的追踪及构造
US20100078011A1 (en) * 2008-09-25 2010-04-01 Peter Feher Ultra-compact, linear, solar-thermal steam generator
CN101865539A (zh) * 2010-05-13 2010-10-20 益科博能源科技(上海)有限公司 线性菲涅尔太阳集热器装置
KR101162988B1 (ko) * 2012-05-03 2012-07-09 안익로 태양열 집열기 및 이를 포함하는 집열시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075579A1 (en) * 2000-12-18 2002-06-20 Vasylyev Sergiy Victorovich Apparatus for collecting and converting radiant energy
US20100309569A1 (en) * 2007-12-17 2010-12-09 Karl Ricks Fresnel mirror and method for the production thereof
CN101504199A (zh) * 2008-02-04 2009-08-12 张玉良 低成本太阳能跟踪及新的热力循环方法
CN102116535A (zh) * 2011-03-24 2011-07-06 成都安锐达科技有限责任公司 菲涅尔中高温太阳能集热装置
CN102519153A (zh) * 2011-12-20 2012-06-27 金华金大光能科技有限公司 一种大功率菲涅尔太阳能条带形聚光反射镜场装置光学参数设计方法
CN202734290U (zh) * 2012-08-14 2013-02-13 北京兆阳能源技术有限公司 一种太阳能聚集系统
CN203022245U (zh) * 2013-01-04 2013-06-26 深圳市动静追日太阳能科技有限公司 一种建筑一体化的太阳能利用系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145579A1 (es) * 2018-01-26 2019-08-01 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Captador solar lineal fresnel adaptable
CN112728785A (zh) * 2021-01-19 2021-04-30 广东工业大学 一种用于斯特林机的太阳能加热装置
CN112728785B (zh) * 2021-01-19 2024-05-28 广东工业大学 一种用于斯特林机的太阳能加热装置
CN114723136A (zh) * 2022-04-07 2022-07-08 重庆大学 计及光热电站镜场面积和储热容量的优化运行方法
CN114723136B (zh) * 2022-04-07 2024-04-16 重庆大学 计及光热电站镜场面积和储热容量的优化运行方法

Also Published As

Publication number Publication date
CN103591703A (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
US8049150B2 (en) Solar collector with end modifications
WO2014026610A1 (zh) 一种太阳能聚集系统
US20100313933A1 (en) Reflector-solar receiver assembly and solar module
US20190190443A1 (en) Arrangements of a plurality of photovoltaic modules
CN107919848B (zh) 一种环形线性菲涅尔高倍聚光器
US20100206379A1 (en) Rotational Trough Reflector Array With Solid Optical Element For Solar-Electricity Generation
US20170353145A1 (en) Methods for Sunlight Collection and Solar Energy Generation
EP4145699A1 (en) Photovoltaic system for low solar elevation angles
US20090000653A1 (en) Solar power harvester with reflective border
CN104660153A (zh) 一种风光互补的太阳能发电系统
WO2015018132A1 (zh) 一种管状跟踪聚光光伏组件
US20160336897A1 (en) Apparatus for Sunlight Collection and Solar Energy Generation
CN115603657B (zh) 非追踪低倍率聚光太阳能发电装置及设计方法
WO2014026575A1 (zh) 一种太阳能建筑一体化装置
CN202734290U (zh) 一种太阳能聚集系统
Yoshioka et al. Preparation and properties of an experimental static concentrator with a new three‐dimensional lens
CN201937509U (zh) 一种聚光光伏系统
CN209013504U (zh) 太阳能利用装置、太阳能发电或热利用系统以及构筑物
US9941436B2 (en) Dual geometry trough solar concentrator
CN102081223B (zh) 太阳能光伏l型聚光器
CN201584928U (zh) 槽式光伏聚光装置
JP2011129847A (ja) 反射集光型太陽発電モジュール
CN206237360U (zh) 一种管状聚光光伏电池组件及阵列
CN214900779U (zh) 一种光伏设备
CN108931063A (zh) 太阳能利用装置、太阳能发电或热利用系统以及构筑物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13829822

Country of ref document: EP

Kind code of ref document: A1