WO2014026496A1 - 非隔离led驱动系统及非隔离led驱动恒流控制电路 - Google Patents

非隔离led驱动系统及非隔离led驱动恒流控制电路 Download PDF

Info

Publication number
WO2014026496A1
WO2014026496A1 PCT/CN2013/076517 CN2013076517W WO2014026496A1 WO 2014026496 A1 WO2014026496 A1 WO 2014026496A1 CN 2013076517 W CN2013076517 W CN 2013076517W WO 2014026496 A1 WO2014026496 A1 WO 2014026496A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
capacitor
control circuit
output
mos transistor
Prior art date
Application number
PCT/CN2013/076517
Other languages
English (en)
French (fr)
Inventor
胡如波
闾建晶
Original Assignee
华润矽威科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华润矽威科技(上海)有限公司 filed Critical 华润矽威科技(上海)有限公司
Publication of WO2014026496A1 publication Critical patent/WO2014026496A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • Non-isolated LED drive system and non-isolated LED drive constant current control circuit are non-isolated LED drive constant current control circuit
  • the invention relates to a non-isolated LED driving system and a non-isolated LED driving constant current control circuit. Background technique
  • LEDs Light-emitting diodes
  • the brightness and color temperature are basically only related to their forward current. Therefore, LEDs require extremely precise constant-current driving to ensure their luminous efficacy.
  • the mainstream general-purpose non-isolated LED driver circuit in the prior art is a non-isolated floating buck (buck) architecture.
  • a floating buck architecture in the prior art, including a freewheeling diode D having a cathode receiving an input voltage Vin and connecting an anode of an LED load; an inductor L having one end connected to the anode of the freewheeling diode D and the other end A cathode connected to the LED load; a MOS transistor M0 having a drain connected to the anode of the freewheeling diode D, a source grounded via a current sampling resistor Res, and a gate receiving a control signal.
  • FIG 2 shows the non-isolated LED drive dialup operation signal diagram shown in Figure 1.
  • the common constant current control method of this architecture is the current peak control with fixed turn-off time mechanism.
  • the constant current principle is as follows:
  • ma is the rising slope of the inductor current IL when the MOS transistor M0 is turned on (mal, ma2, ma3 respectively correspond to different IL slopes in Fig. 2)
  • mb is the falling slope of the inductor current IL when the MOS transistor M0 is turned off
  • Vin is The voltage value of the input voltage
  • Vied is the voltage drop across the LED load
  • L is the inductance of the inductor L
  • Vref is the voltage value of the preset reference voltage
  • Res is the resistance value of the current sampling resistor Res
  • toff is the off time of the MOS transistor M0.
  • IL0 in Fig. 2 is the inductor current at the start of the MOS transistor M0 at the steady state.
  • Iled is related to Vied, and the load adjustment rate is poor
  • control circuit delay causes current overshoot, the overshoot slope is ma, and Vin, Vied, and L are all related, and the linear adjustment rate is greatly affected, and a compensation circuit needs to be added;
  • Iled is related to the inductance L of the key device inductance, which is inconsistent due to the deviation of the inductance L during production.
  • the technical problem to be solved by the present invention is to provide a non-isolated LED driving system and a non-isolated LED driving constant current control circuit, so that the output current is insensitive to the input voltage, output voltage and inductance of the system, which is advantageous for achieving excellent load.
  • the adjustment rate, batch consistency, and linear adjustment rate eliminate the linear adjustment rate compensation circuit.
  • the present invention provides a non-isolated LED driving constant current control circuit configured to be coupled with a non-isolated LED driving circuit, the non-isolated LED driving circuit comprising:
  • a freewheeling diode having a cathode that receives an input voltage and is connected to an anode of the LED load
  • An inductor having a first end connected to the anode of the freewheeling diode and a second end connected to the cathode of the LED load;
  • MOS transistor having a drain connected to an anode of the freewheeling diode, a source grounded via a current sampling resistor, and a source grounded via a grounding resistor;
  • the non-isolated LED driving constant current control circuit comprises:
  • a sampling compensation circuit sampling a gate voltage of the MOS transistor to obtain an on-time ton of the MOS transistor, a switching period Tsw of the MOS transistor, and a freewheeling diode when the MOS transistor is turned off Turn on the time tdis, and calculate the output signal according to the following formula: ( ton + tdis ) / Tsw; a multiplier, multiplying the sampling voltage Vcs_pk by an output signal (ton+tdis) /Tsw generated by the sampling compensation circuit;
  • the operational amplifier has a non-inverting input terminal receiving a preset reference voltage, an inverting input terminal connected to the output end of the multiplier, and an output terminal outputting a comparison signal.
  • Vcs_pk * ( ton + tdis ) / Tsw Vref, where Vref is the voltage value of the preset reference voltage.
  • the sampling compensation circuit includes:
  • a gater having a first input terminal grounded and a second input terminal receiving a predetermined negative voltage
  • a first comparator having a non-inverting input receiving the gate voltage and an inverting input coupled to an output of the gate
  • a first capacitor having a first end connected to the ground, and a second end connected to the first charging path for charging the first capacitor and a first discharging path for discharging the first capacitor;
  • a second capacitor having a first end connected to the ground, a second end connected to a second charging path for charging the second capacitor, and a second discharging path for discharging the second capacitor;
  • a second comparator having a non-inverting input connected to the second end of the second capacitor and an inverting input coupled to the second end of the first capacitor;
  • a logic control circuit having an input end connected to the output ends of the first comparator and the second comparator, and controlling the gate, the first charging according to a comparison result of the output ends of the first comparator and the second comparator a path, a first discharge path, a second charging path, and a second discharging path, and calculating the output signal (ton+tdis) /Tsw.
  • the first charging path includes: a first switch and a first current source connected in series between the positive pole of the power source and the second end of the first capacitor, wherein the control end of the first switch is configured by the logic The control circuit is controlled;
  • the first discharge path includes: a second switch connected in parallel with the first capacitor, the control end of which is controlled by the logic control circuit;
  • the second charging path includes: a third switch and a second current source connected in series between the positive pole of the power source and the second end of the second capacitor, wherein the control end of the third switch is controlled by the logic control circuit;
  • the second discharge path includes: a fourth switch in parallel with the second capacitor, the control terminal of which is controlled by the logic control circuit.
  • the capacitance values of the first capacitor and the second capacitor are equal, and the output currents of the first current source and the second current source are equal.
  • the non-isolated LED driving constant current control circuit further includes: a pulse width modulation circuit connected to an output end of the operational amplifier, and adjusting a gate voltage of the MOS transistor according to a comparison signal output by the operational amplifier Duty cycle.
  • the present invention also provides a non-isolated LED drive system comprising the non-isolated LED drive constant current control circuit of any of the above and a non-isolated LED drive circuit coupled thereto.
  • the present invention has the following advantages:
  • the gate voltage of the MOS transistor is sampled, and the change of the drain voltage is induced on the gate through the gate-drain capacitance of the MOS transistor, thereby obtaining the continuation
  • FIG. 1 is a circuit diagram of an LED driving circuit in the prior art
  • Figure 2 is a signal waveform diagram of the circuit shown in Figure 1;
  • FIG. 3 is a waveform diagram of an operation signal of another LED driving circuit in the prior art
  • FIG. 4 is a circuit diagram of an LED driving circuit of an embodiment of the present invention.
  • Figure 5 is a signal waveform diagram of the circuit shown in Figure 4.
  • FIG. 6 is a structural block diagram of a non-isolated LED driving constant current control circuit according to an embodiment of the present invention
  • FIG. 7 is a detailed circuit diagram of the sampling compensation circuit of FIG.
  • Figure 8 is a signal waveform diagram of the circuit shown in Figure 7. detailed description
  • FIG. 4 is a block diagram showing the structure of a non-isolated LED driving circuit in the non-isolated LED driving system of the present embodiment, which is similar to the floating buck architecture in the prior art, and includes: a freewheeling diode D having a cathode receiving input voltage Vin And connecting the anode of the LED load; the inductor L, the first end of which is connected to the anode of the freewheeling diode D, the second end of which is connected to the cathode of the LED load; the MOS transistor M0, the drain end of which is connected to the anode of the freewheeling diode D, the source thereof It is grounded via a current sampling resistor Res, and its source is grounded via a grounding resistor Rg.
  • the non-isolated LED driving constant current control circuit of this embodiment enables the floating buck architecture to operate in a discontinuous conduction mode (DCM).
  • DCM discontinuous conduction mode
  • IL is the inductor current flowing through the inductor L
  • Ipk is the inductor peak current when the MOS transistor M0 is turned on
  • ton is the on time of the MOS transistor M0
  • tdis is the on-time of the freewheeling diode D
  • Tsw is the MOS transistor M0 A complete switching cycle.
  • Iled 0.5*Ipk*(ton+tdis)/Tsw.
  • the inductor peak current Ipk Vcs - pk / Rcs, where Vcs - pk is the peak voltage value of the current sampling resistor Res, Res is the resistance value of the current sampling resistor Res. Further can be derived:
  • Iled 0.5*(Vcs— pk/Rcs)*(ton+tdis)/Tsw.
  • lied is independent of the input voltage Vin, the output voltage Vied (ie, the voltage across the load LED), and the inductance L of the inductor L.
  • the problem to be solved is the sampling of physical quantities such as Vcs_pk, ton, tdis and Tsw.
  • Vcs_ pk can be used to sample and hold the voltage across the current sampling resistor Res. Both ton and Tsw are easily obtained from the gate waveform of MOS transistor M0. Then the only problem to be solved is the sampling of tdis. From the above derivation, as long as the tdis can be accurately sampled, it can be ensured that lied is independent of the input voltage Vin, the output voltage Vied, and the inductance L, that is, an excellent constant current effect is achieved.
  • the inductor L charges the drain terminal capacitance Cd of the MOS transistor M0 (ie, the parasitic capacitance of the drain to the ground), so that the drain voltage Vsw of the MOS transistor M0 rises, and when Vsw rises to Vin+Vdf ( Vin is the voltage value of the input voltage Vin, for example, it can be AC bridge rectified voltage, Vdf is the forward voltage drop of the freewheeling diode D, Vdf is smaller than Vied, so it is ignored in the subsequent analysis), freewheeling diode D is turned on, and the inductor L starts to discharge.
  • the inductor current IL drops to zero, the normal discharge phase ends. This time period is the conduction time tdis of the freewheeling diode. There is no direct method for detecting the termination point, so tdis cannot be directly obtained.
  • the inductor L discharges the drain capacitor Cd, Vsw rises, and IL moves in the positive direction.
  • Vsw continues to rise, IL begins to fall.
  • Vsw rises to Vin IL drops to zero, and the voltage drop of inductor L is Vied, thus entering the second LC charge and discharge cycle, followed by the third, fourth... until The MOS transistor M0 is turned back on.
  • This periodic periodic charge and discharge of LC is called LC resonance, which is characterized by a constant period but exponentially decaying amplitude.
  • the starting point of tdis can be basically regarded as the moment when the MOS transistor M0 is turned off, and the end point of tdis is the starting point of the LC resonance.
  • the Vsw waveform contains all the information of the LC resonance, including the period Tic of the LC resonance, each 0.25*n*Tlc time point, and n is a natural number.
  • the resonant amplitude of Vsw is Vin to Vin-2*Vled, Vin is about 308V at AC220V, and Vied can reach tens of volts, far beyond the voltage range that conventional control chips can handle.
  • a conventional method in the prior art uses an auxiliary winding to couple the change in Vsw to a signal referenced to ground (gnd) and attenuated to a low voltage signal by a resistor divider.
  • this method requires the addition of an auxiliary winding coil and a resistor divider on the system, and the control chip needs to add a detection pin, which increases the system cost.
  • the increase of peripheral devices reduces the reliability of the system and increases the difficulty of system design.
  • the non-isolated LED driving constant current control circuit of the embodiment includes: a voltage sampling and holding circuit 501, sampling the voltage across the current sampling resistor Res, and maintaining the peak value thereof as the peak sampling voltage Vcs— Pk; sampling compensation circuit 503, sampling the gate voltage Vg of the MOS transistor M0, obtaining the on-time ton of the MOS transistor M0, the switching period Tsw of the MOS transistor M0, and the conduction of the freewheeling diode D when the MOS transistor M0 is turned off The time tdis is calculated, and the output signal is calculated according to the following formula: ( ton + tdis ) / Tsw; The multiplier 502 multiplies the peak sampling voltage Vcs — pk by the output signal ( ton+tdis ) /Tsw generated by the sampling compensation circuit.
  • an operational amplifier 504 Its non-inverting input terminal receives a preset reference voltage Vref, its inverting input terminal is connected to the output end of the multiplier 502, and its output terminal outputs a comparison signal COMP.
  • Vcs_pk* (ton +tdis ) /Tsw Vref, where Vref is the voltage value of the preset reference voltage Vref.
  • the voltage sample-and-hold circuit 501 can be any suitable sample-and-hold circuit in the prior art.
  • the multiplier 502 can be any suitable multiplier circuit in the prior art, and the structure of the two will not be described in detail herein.
  • the comparison signal COMP outputted from the operational amplifier 504 can be output to a pulse width modulation circuit (not shown), which adjusts the duty ratio of the gate voltage Vg of the MOS transistor M0 according to the voltage value of the comparison signal COMP, That is, the non-isolated LED driving constant current control circuit of the embodiment forms a feedback loop for the gate voltage Vg.
  • Figure 7 shows a detailed circuit of the sampling compensation circuit 503 of Figure 6, comprising: a gate 401 having a first input coupled to ground and a second input receiving a predetermined negative voltage (as a non-limiting example, In the embodiment, it is -0.1V); the first comparator 402 has a non-inverting input terminal receiving the gate voltage Vg of the MOS transistor M0 (FIG.
  • the capacitor 409 has a first end (eg, a lower plate) connected to the ground, and a second end (eg, an upper plate) connected to the first charging path for charging the first capacitor 409 and the first discharging path for discharging the first capacitor 409 a second capacitor 411 having a first end (eg, a lower plate) connected to the ground, and a second end (eg, an upper plate) connected to the second charging path for charging the second capacitor 411 and discharging the second capacitor 411
  • the second comparator 412 has a non-inverting input connected to the second end of the second capacitor 411, and an inverting input terminal connected to the second end of the first capacitor 409.
  • the logic control circuit 403 has an input terminal connected thereto.
  • An output of the comparator 402 and the second comparator 412, according to The comparison result of the outputs of the first comparator 402 and the second comparator 412 controls the first charging path, the first discharging path, the second charging path and the second discharging path of the gate 401, and calculates an output signal (ton+tdis
  • the first charging path specifically includes: a first switch 404 and a first current source 406 connected in series between the positive pole of the power source and the second end of the first capacitor 409, and the control end of the first switch 404 is controlled by logic Circuit 403 controls.
  • the first discharge path includes: a second switch 408 in parallel with the first capacitor 409, the control terminal of which is controlled by the logic control circuit 403.
  • the second charging path includes: a third switch 405 and a second current source 407 connected in series between the positive pole of the power source and the second end of the second capacitor 411, and the control end of the third switch 405 is controlled by the logic control circuit 403.
  • the second discharge path includes: a fourth switch 410 connected in parallel with the second capacitor 411, and a control end thereof Controlled by logic control circuit 403.
  • the logic control circuit 403 also controls the control terminal of the gate 401. 4, FIG. 7 and FIG. 8, in FIG.
  • vcl is the voltage of the first capacitor 409
  • vc2 is the voltage of the second capacitor 411
  • cmp_out is the output signal of the first comparator 402
  • Vg is the output of the MOS transistor M0. Gate voltage.
  • the sampling compensation circuit shown in Fig. 7 is based on the above derivation to obtain tdis, which is described in two stages, namely, the sampling phase of t1 and the compensation phase of t1 minus t1.
  • the gate voltage Vg is supplied to the non-inverting input terminal of the first comparator 402.
  • the logic control circuit 403 sends a control signal to the control terminal of the gate 401, and selects -0.1V to be supplied to the inverting input terminal of the first comparator 402, and the output of the first comparator 402 is maintained high. Level.
  • the inductor current IL drops to zero and the LC resonance begins, and Vg changes to a negative voltage.
  • the logic control circuit 403 issues a control signal to the gate 401, selecting 0V (gnd) the inverting input of the first comparator 402. After half of the LC resonance is terminated, Vg changes from a negative voltage to a positive voltage across zero, and the output of the first comparator 402 becomes a high level.
  • the logic control circuit 403 issues a control signal such that the first switch 404 is turned on, the second switch 408 is turned off, and the first current source 406 charges the first capacitor 409. Until the end of the first LC resonance period, Vg changes from a positive voltage to a negative voltage, and the output of the first comparator 402 becomes a low level.
  • the logic control circuit 403 issues a control signal to turn off the first switch 404 and maintain the off state of the second switch 408.
  • the charging process of the first capacitor 409 is stopped, and the time corresponding to the voltage across it remains at 0.5*tlc.
  • tl is stored in the first capacitor 409 as a voltage and is supplied to the inverting input of the second comparator 412.
  • an appropriate timing can be selected to end the current switching cycle, such as when the Vg changes from a negative voltage to a positive voltage in the second LC resonance phase (ie, the drain terminal voltage Vsw of the MOS transistor M0 reaches the second valley).
  • the MOS transistor M0 is turned on again to achieve the bottom conduction, and the loss at the time of conduction is reduced to improve the efficiency.
  • the logic control circuit 403 issues a control signal to the gate 401, selects -0.1V to be supplied to the inverting input of the first comparator 402, and simultaneously forces the The output of a comparator 402 is low.
  • the output of the first comparator 402 is forced to be low, the drain voltage Vsw of the MOS transistor M0 rises, and the freewheeling diode D is turned on. Since the gate voltage Vg voltage is zero, the first comparison The output of the 402 is high.
  • the circuit 403 After receiving the signal, the circuit 403 sends a control signal to turn on the third switch 405, turns off the fourth switch 410, and the second current source 407 charges the second capacitor 411.
  • the upper plate of the second capacitor 411 is connected to the non-inverting input of the second comparator 412, and is maintained until the voltage of the second capacitor 411 exceeds the voltage held by the first capacitor 409 in the sampling phase of the 0.5*Tlc sampling period (this voltage corresponds to 0.5). *tl).
  • This part of time is recorded as tcomp, and the method of obtaining t3 is, for example, the subtraction of the MOS transistor M0 as the starting point and the gate voltage Vg for the first time from the negative voltage zero crossing as the end point. Compensation.
  • the logic control circuit 403 issues a control signal to turn on the second switch 408 and the fourth switch 410 to clear the voltages of the two capacitors.
  • il is the output current of the first current source 406
  • i2 is the output current of the second current source 407
  • cl is the capacitance of the first capacitor 409
  • c2 is the capacitance of the second capacitor 411.
  • the following switching cycle repeats the above actions to complete the sampling and compensation of the real-time t1.
  • the logic control circuit 403 obtains (ton + tdis) / Tsw using a simple logic operation, and sends this signal to the multiplier 502 in FIG.
  • the embodiment further provides a non-isolated LED driving system, including the LED driving circuit of FIG. 4 coupled to each other and the non-isolated LED driving constant current control circuit of FIG. 6, wherein the non-isolated LED drives the output of the constant current control circuit.
  • the comparison signal COMP may be output to a pulse width modulation circuit (not shown) that adjusts the duty ratio of the gate voltage Vg of the MOS transistor M0 according to the voltage value of the comparison signal COMP, that is, the non-isolated LED of FIG.
  • the driving constant current control circuit forms a feedback loop for the gate voltage Vg.
  • the input voltage, output voltage, and inductance of the current pair outputted to the load LED are insensitive to the excellent load regulation, batch consistency, and linear adjustment rate, and the linear adjustment rate compensation circuit can be omitted.

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

一种非隔离LED驱动系统及非隔离LED驱动恒流控制电路,该恒流控制电路包括:电压采样保持电路(501),对电流采样电阻(Rcs)两端的电压进行采样,并将其峰值保持为峰值采样电压Vcs_pk;采样补偿电路(503),对MOS晶体管(M0)的栅极电压进行采样,获得MOS晶体管(M0)的导通时间ton、开关周期Tsw、续流二极管(D)在MOS晶体管(M0)关断时的导通时间tdis,并根据如下公式计算产生输出信号:(ton+tdis)/Tsw;乘法器(502),将峰值采样电压Vcs_pk与采样补偿电路(503)产生的输出信号(ton+tdis)/Tsw相乘;运算放大器(504),在其输出稳定时,Vcs_pk*(ton+tdis)/Tsw=Vref。该系统使得输出电流对系统的输入电压、输出电压以及电感量均不敏感。

Description

非隔离 LED驱动系统及非隔离 LED驱动恒流控制电路 技术领域
本发明涉及一种非隔离 LED驱动系统及非隔离 LED驱动恒流控制电路。 背景技术
发光二极管( LED )是电流控制的发光器件, 亮度和色温基本只和其正向电流 相关, 因此 LED需要极为精准的恒流驱动来保证其发光效果。 现有技术中主流的 通用照明非隔离 LED驱动电路为非隔离的浮动升压 ( buck ) 架构。 图 1示出了现 有技术中的一种浮动 buck架构, 包括续流二极管 D, 其阴极接收输入电压 Vin并 连接 LED负载的阳极;电感 L,其一端连接续流二极管 D的阳极,另一端连接 LED 负载的阴极; MOS晶体管 M0, 其漏极连接续流二极管 D的阳极, 源极经由电流 采样电阻 Res接地, 栅极接收控制信号。
图 2示出了图 1所示的非隔离 LED驱动 dialup工作信号图, 该架构常见的恒 流控制方法为电流峰值控制配合固定关断时间机制, 其恒流原理如下:
ma=(Vin-Vled)/L, mb=Vled/L;
其中, ma为 MOS晶体管 M0导通时电感电流 IL的上升斜率 (图 2中 mal、 ma2、 ma3分别对应不同的 IL斜率) , mb为 MOS晶体管 M0关断时电感电流 IL 的下降斜率, Vin为输入电压的电压值, Vied为 LED负载两端的压降, L为电感 L 的电感量;
仍然参考图 2, 根据图 2中电感电流 IL的波形可以确定:
IL=Vref/Rcs-0.5*toff*mb=Vref/Rcs-0.5*toff*Vled/L;
其中, Vref为预设参考电压的电压值, Res为电流采样电阻 Res的电阻值, toff 为 MOS晶体管 M0的关断时间。 另外, 图 2中的 IL0为稳态时 MOS晶体管 M0 导通起始时的电感电流。
对于浮动 buck架构, 稳态时流过 LED负载的电流 Iled=IL , 即:
Iled=Vref/Rcs-0.5 *toff*Vled/L;
上述方法存在下面的缺点:
1. Iled和 Vied相关, 负载调整率差;
2. 由于采用峰值控制, 控制电路延时造成电流过冲, 过冲量斜率为 ma, 和 Vin,、 Vied以及 L都相关, 线性调整率受到较大影响, 需要添加补偿电路;
3. Iled和关键器件电感的电感量 L相关, 在生产时由于电感量 L的偏差造成 一致性较差。
公开号为 CN 101808444A的中国专利申请中对此技术进行了改良, 但仍然是 固定关断时间模式, 其信号波形见图 3, 只是导通时间控制略有不同, 具体措施是 对开关 MOS晶体管开始导通到电感电流 IL到达 Vref/Rcs的时间进行计时并存储 为 tl , 开关 MOS晶体管继续导通, 当继续导通的时间 t2=tl时, 开关 MOS晶体管 关断。观察图 3中所示的电感电流 IL波形可知, LED负载的电流 Iled=IL= Vref/Rcs , 输出电流和输入输出电压以及电感值均无关系, 可以实现较好的恒流效果。但此种 方法的缺点是难以对 tl,t2的时间量进行精确控制, 导致恒流精度下降。 发明内容
本发明要解决的技术问题是提供一种非隔离 LED驱动系统及非隔离 LED驱 动恒流控制电路,使得输出电流对系统的输入电压、输出电压以及电感量均不敏感, 有利于实现优异的负载调整率、批量一致性以及线性调整率, 能够省去线性调整率 的补偿电路。
为解决上述技术问题, 本发明提供了一种非隔离 LED驱动恒流控制电路, 配 置为与非隔离 LED驱动电路耦合, 所述非隔离 LED驱动电路包括:
续流二极管, 其阴极接收输入电压并连接 LED负载的阳极;
电感, 其第一端连接所述续流二极管的阳极, 其第二端连接所述 LED负载的 阴极;
MOS晶体管, 其漏端连接所述续流二极管的阳极, 其源极经由电流采样电阻 接地, 其源极经由接地电阻接地;
所述非隔离 LED驱动恒流控制电路包括:
电压采样保持电路, 对所述电流采样电阻两端的电压进行采样, 并将其峰值 保持为峰值采样电压 Vcs— pk;
采样补偿电路, 对所述 MOS晶体管的栅极电压进行采样, 获得所述 MOS晶 体管的导通时间 ton、 所述 MOS晶体管的开关周期 Tsw、 所述续流二极管在所述 MOS晶体管关断时的导通时间 tdis,并根据如下公式计算产生输出信号: ( ton+tdis ) /Tsw; 乘法器, 将所述采样电压 Vcs— pk 与所述采样补偿电路产生的输出信号 ( ton+tdis ) /Tsw相乘;
运算放大器, 其正相输入端接收预设的参考电压, 其反相输入端与所述乘法 器的输出端相连, 其输出端输出比较信号, 在所述运算放大器的输出稳定时, Vcs— pk* ( ton+tdis ) /Tsw=Vref, 其中 Vref为所述预设的参考电压的电压值。
可选地, 所述采样补偿电路包括:
选通器, 其第一输入端接地, 第二输入端接收预设的负电压;
第一比较器, 其正相输入端接收所述栅极电压, 其反相输入端连接所述选通 器的输出端;
第一电容, 其第一端接地, 第二端连接对所述第一电容进行充电的第一充电 通路以及对所述第一电容进行放电的第一放电通路;
第二电容, 其第一端接地, 第二端连接对所述第二电容进行充电的第二充电 通路以及对所述第二电容进行放电的第二放电通路;
第二比较器, 其正相输入端连接所述第二电容的第二端, 其反相输入端连接 所述第一电容的第二端;
逻辑控制电路, 其输入端连接所述第一比较器和第二比较器的输出端, 根据 所述第一比较器和第二比较器的输出端的比较结果控制所述选通器、 第一充电通 路、 第一放电通路、 第二充电通路和第二放电通路, 并计算产生所述输出信号 ( ton+tdis ) /Tsw。
可选地, 所述第一充电通路包括: 第一开关和第一电流源, 串联在电源正极 和所述第一电容的第二端之间 , 所述第一开关的控制端由所述逻辑控制电路控制; 所述第一放电通路包括: 与所述第一电容并联的第二开关, 其控制端由所述 逻辑控制电路控制;
所述第二充电通路包括: 第三开关和第二电流源, 串联在电源正极和所述第 二电容的第二端之间, 所述第三开关的控制端由所述逻辑控制电路控制;
所述第二放电通路包括: 与所述第二电容并联的第四开关, 其控制端由所述 逻辑控制电路控制。
可选地, 所述第一电容和第二电容的电容值相等, 所述第一电流源和第二电 流源的输出电流相等。
可选地, 所述预设的负电压的电压值为 -0.1V。 可选地, 所述非隔离 LED驱动恒流控制电路还包括: 与所述运算放大器的输 出端相连的脉宽调制电路, 根据所述运算放大器输出的比较信号调节所述 MOS晶 体管的栅极电压的占空比。
本发明还提供了一种非隔离 LED 驱动系统, 包括以上任一项所述的非隔离 LED驱动恒流控制电路以及与其耦合的非隔离 LED驱动电路。
与现有技术相比, 本发明具有以下优点:
本发明实施例的非隔离 LED驱动恒流控制电路以及驱动系统中, 对 MOS晶 体管的栅极电压进行采样, 并通过 MOS晶体管的栅漏电容在栅极上感应漏极电压 的变化, 从而获得续流二极管在所述 MOS晶体管关断时的导通时间 tdis, 以使得 该非隔离 LED驱动恒流控制电路在反馈稳定时 Vcs— pk* ( ton+tdis ) /Tsw=Vref, 进 而保证了输出至 LED负载的电流与输入电压、 输出电压以及电感均无关。 附图说明
图 1是现有技术中的一种 LED驱动电路的电路图;
图 2是图 1所示电路的信号波形图;
图 3是现有技术中另一种 LED驱动电路的工作信号波形图;
图 4是本发明实施例的 LED驱动电路的电路图;
图 5是图 4所示电路的信号波形图;
图 6是本发明实施例的非隔离 LED驱动恒流控制电路的结构框图; 图 7是图 6中采样补偿电路的详细电路图;
图 8是图 7所示电路的信号波形图。 具体实施方式
下面结合具体实施例和附图对本发明作进一步说明, 但不应以此限制本发 明的保护范围。
图 4示出了本实施例的非隔离 LED驱动系统中的非隔离 LED驱动电路的结 构框图, 其与现有技术中的浮动 buck架构类似, 包括: 续流二极管 D, 其阴极接 收输入电压 Vin并连接 LED负载的阳极; 电感 L, 其第一端连接续流二极管 D的 阳极, 其第二端连接 LED负载的阴极; MOS晶体管 M0, 其漏端连接续流二极管 D的阳极, 其源极经由电流采样电阻 Res接地, 其源极经由接地电阻 Rg接地。 本实施例的非隔离 LED驱动恒流控制电路使得浮动 buck架构工作在电感电 流断续模式(DCM, Discontinuous Conduction Mode ) , 其主要思路如下:
IL=0.5 *Ipk*(ton+tdis)/Tsw ,
其中 IL为流过电感 L的电感电流, Ipk为 MOS晶体管 M0导通时的电感峰值 电流, ton为 MOS晶体管 M0的导通时间, tdis为续流二极管 D的导通时间, Tsw 为 MOS晶体管 M0的一个完整的开关周期。
由于流过负载 LED的电流 Iled=IL , 因此可以得到:
Iled=0.5*Ipk*(ton+tdis)/Tsw。
继续推导, 电感峰值电流 Ipk=Vcs— pk/Rcs , 其中 Vcs— pk为电流采样电阻 Res 两端的峰值电压值, Res为电流采样电阻 Res的电阻值。 则进一步可以推得:
Iled=0.5*(Vcs— pk/Rcs)*(ton+tdis)/Tsw。
如果可以控制 Vcs— pk*(ton+tdis)/Tsw=Vref, 其中 Vref为预设的恒定参考电压 的电压值, 那么 Iled=0.5*Vref/Rcs.
从以上推导看, lied与输入电压 Vin、 输出电压 Vied (即负载 LED两端的电 压) 以及电感 L的电感量 L均无关。 需要解决的问题是 Vcs— pk、 ton, tdis和 Tsw 等各个物理量的采样。
Vcs— pk可对电流采样电阻 Res两端的电压进行峰值采样保持得到, ton、 Tsw 均容易从 MOS晶体管 M0的栅极波形得到。 那么所要解决的问题只剩下 tdis的采 样。 从上述的推导来看, 只要能准确地采样到 tdis, 那么就可以确保 lied与输入电 压 Vin、 输出电压 Vied以及电感量 L均无关, 即实现极佳的恒流效果。
结合图 4和图 5, 在浮动 buck架构中, MOS晶体管 M0关断时, 可观察到如 下现象:
( 1 ) 正常放电阶段: 电感 L对 MOS晶体管 M0的漏端电容 Cd (即漏极对 地的寄生电容)充电, 使得 MOS晶体管 M0的漏极电压 Vsw上升, 当 Vsw上升 至 Vin+Vdf后(其中 Vin为输入电压 Vin的电压值,例如可以是 AC桥式整流后的 电压, Vdf为续流二极管 D的正向压降, Vdf与 Vied相比较小, 因而后续分析中 忽略) , 续流二极管 D导通, 电感 L开始放电。 当电感电流 IL降为零后 , 正常放 电阶段结束, 这个时间段即为续流二极管的导通时间 tdis, 其终止点目前尚无直接 的方法检测得到, 因此 tdis无法直接获得。
( 2 ) LC谐振阶段: 电感电流 IL降为零后 Vsw=Vin, 电感 L的压差为负载 LED的压降 Vled。 于是漏端电容 Cd (图中未示出)对电感 L放电, IL绝对值增 加, 方向为负。 当 Vsw降至 Vin-Vled时 IL达到负方向的最大值, 此时电感 L的 压差为零。 接下来 IL 绝对值减小向零点移动, Vsw 继续降低, 当 Vsw 降低至 Vsw-2*Vled时 IL绝对值降为零, 此时电感 L的压差为 -Vled。 电感 L对漏端电容 Cd放电, Vsw上升, IL向正方向移动, 当 Vsw= Vin-Vled后电感 L的压降为零, IL到达正方向的最大值。 Vsw继续上升, IL开始下降, 当 Vsw上升至 Vin后, IL 降为零, 电感 L的压降为 Vied, 从而进入第二个 LC充放电周期, 紧接着是第三 个, 第四个…直到 MOS晶体管 M0重新导通。 这种 LC周期性的相互充放电称为 LC谐振, 其特点是周期不变但幅度呈指数衰减。
tdis的起始点基本可看成 MOS晶体管 M0关断的时刻, tdis的终止点为 LC谐 振的起点。 Vsw的波形包含 LC谐振的所有讯息, 包含 LC谐振的周期 Tic, 每一 个 0.25*n*Tlc时间点, n为自然数。 Vsw的谐振幅度为 Vin到 Vin-2*Vled, Vin在 AC220V时约为 308V, Vied可达数十伏, 远远超出常规的控制芯片能处理的电压 范围。 现有技术中常规的方法是采用辅助绕组将 Vsw的变化耦合为以大地 (gnd)为 参考的信号, 并通过电阻分压器衰减成低压信号。但这个方法需要在系统上添加辅 助绕组线圈以及电阻分压器,且控制芯片需增加一个检测管脚,这增加了系统成本。 另外由于外围器件的增加降低了系统的可靠性, 同时增加了系统设计的难度。
本实施例的技术方案并不需要增加额外的器件以及额外的管脚,通过 MOS晶 体管 M0的栅漏电容 Cgd (栅极和漏极之间的寄生电容) 来感应 Vsw的变化, 感 应 电 流 Ig=Cgd*d(Vsw)/dt , 之 后 再 经 过 处 理 和 运 算 来 确 保 Vcs_pk*(ton+tdis)/Tsw=Vref, 其中 Cgd为栅漏电容 Cgd的电容值。
下面参考图 6至图 8对本实施例的非隔离 LED驱动恒流控制电路进行详细说 明。
首先参考图 4和图 6, 本实施例的非隔离 LED驱动恒流控制电路包括: 电压 采样保持电路 501 , 对电流采样电阻 Res两端的电压进行采样, 并将其峰值保持为 峰值采样电压 Vcs— pk; 采样补偿电路 503, 对 MOS晶体管 M0的栅极电压 Vg进 行采样, 获得 MOS晶体管 M0的导通时间 ton、 MOS晶体管 M0的开关周期 Tsw、 续流二极管 D在 MOS晶体管 M0关断时的导通时间 tdis, 并根据如下公式计算产 生输出信号: ( ton+tdis ) /Tsw; 乘法器 502, 将峰值采样电压 Vcs— pk与采样补偿 电路产生的输出信号( ton+tdis ) /Tsw相乘,得到输出结果 lo— cal;运算放大器 504, 其正相输入端接收预设的参考电压 Vref, 其反相输入端与乘法器 502的输出端相 连, 其输出端输出比较信号 COMP, 在运算放大器 504 的输出稳定时, Vcs— pk* ( ton+tdis ) /Tsw=Vref, 其中 Vref为预设的参考电压 Vref的电压值。
电压采样保持电路 501 可以是现有技术中各种适当的采样保持电路, 乘法器 502 可以是现有技术中各种适当的乘法器电路, 这里对二者的结构不进行详细描 述。
运算放大器 504输出的比较信号 COMP可以输出至脉宽调制电路(图中未示 出), 该脉宽调制电路根据比较信号 COMP的电压值来调节 MOS晶体管 M0的栅 极电压 Vg的占空比, 即本实施例的非隔离 LED驱动恒流控制电路对栅极电压 Vg 形成反馈回路, 在稳定时, 运算放大器 504 的两个输入端的电压值应当相等, 即 Vref=lo_cal=Vcs_pk* ( ton+tdis ) /Tsw。
图 7示出了图 6中采样补偿电路 503的详细电路, 包括: 选通器 401 , 其第一 输入端接地, 第二输入端接收预设的负电压(作为一个非限制性的例子, 本实施例 中为 -0.1V ) ; 第一比较器 402, 其正相输入端接收 MOS晶体管 M0 (图 4 ) 的栅 极电压 Vg, 其反相输入端连接选通器 401的输出端; 第一电容 409, 其第一端(例 如下极板 )接地, 第二端(例如上极板 )连接对第一电容 409进行充电的第一充电 通路以及对第一电容 409进行放电的第一放电通路; 第二电容 411 , 其第一端(例 如下极板 )接地, 第二端(例如上极板 )连接对第二电容 411进行充电的第二充电 通路以及对第二电容 411进行放电的第二放电通路; 第二比较器 412, 其正相输入 端连接第二电容 411的第二端,其反相输入端连接第一电容 409的第二端; 逻辑控 制电路 403, 其输入端连接第一比较器 402和第二比较器 412的输出端, 根据第一 比较器 402和第二比较器 412的输出端的比较结果控制选通器 401第一充电通路、 第一放电通路、 第二充电通路和第二放电通路, 并计算产生输出信号 (ton+tdis ) 本实施例中, 第一充电通路具体包括: 第一开关 404和第一电流源 406, 串联 在电源正极和第一电容 409的第二端之间,第一开关 404的控制端由逻辑控制电路 403控制。 第一放电通路包括: 与第一电容 409并联的第二开关 408, 其控制端由 逻辑控制电路 403控制。 第二充电通路包括: 第三开关 405和第二电流源 407, 串 联在电源正极和第二电容 411的第二端之间,第三开关 405的控制端由逻辑控制电 路 403控制。 第二放电通路包括: 与第二电容 411并联的第四开关 410, 其控制端 由逻辑控制电路 403控制。 此外, 逻辑控制电路 403还控制选通器 401的控制端。 结合图 4、 图 7和图 8, 图 8中 vcl为第一电容 409的电压, vc2为第二电容 411的电压, cmp— out为第一比较器 402的输出信号, Vg为 MOS晶体管 M0的栅 极电压。 通过对 Vg的波形分析可得, tdis=t3-t2, 其中 t3为 MOS晶体管 M0关断 后续流二极管 D开始放电到第一个 LC谐振周期的一半( 0.5*Tlc ) 结束时的时间, t2为第一个 0.5*Tlc的时间。 t2的起点不易采样获得, 但是 t2=tl , 都是 0.5*Tlc , 其中 tl是第二个 0.5*Tlc的时间 , tl更容易采样获得, 因此可以推得 tdis=t3-tl。 图 7所示的采样补偿电路正是基于上述推导来获得 tdis, 下面分两个阶段进行描述, 即 tl的采样阶段以及从 t3减去 tl的补偿阶段。
在采样阶段: MOS晶体管 M0关断后, 栅极电压 Vg送入第一比较器 402的 正相输入端。 MOS晶体管 M0关断后, 逻辑控制电路 403发出控制信号给选通器 401的控制端, 选择 -0.1V送入第一比较器 402的反相输入端, 第一比较器 402的 输出维持为高电平。 电感电流 IL降为零后开始 LC谐振, Vg往负电压变化。 当 Vg<0.1V后, 第一比较器 402的输出为低电平,接着逻辑控制电路 403发出控制信 号给选通器 401 , 选择 0V ( gnd ) 第一比较器 402的反相输入端。 半个 LC谐振结 束后, Vg从负电压往正电压变化过零, 第一比较器 402的输出变为高电平。 逻辑 控制电路 403发出控制信号使得第一开关 404导通,第二开关 408关断, 第一电流 源 406向第一电容 409充电。 直到第一个 LC谐振周期结束 Vg从正电压往负电压 变化过零, 第一比较器 402的输出变为低电平。逻辑控制电路 403发出控制信号关 断第一开关 404并维持第二开关 408的关断状态。 第一电容 409的充电过程停止, 且其两端的电压所对应的时间保持为 0.5*tlc。 这样 tl就以电压的形式存储在第一 电容 409中, 并送入第二比较器 412的反相输入端。采样完成后可选择适当的时机 结束当前的一个开关周期, 如在第二个 LC谐振阶段 Vg从负电压往正电压变化过 零 (即 MOS晶体管 M0的漏端电压 Vsw到达第二个谷底)时刻重新让 MOS晶体管 M0导通以实现谷底导通, 降低导通时的损耗从而提高效率。
在补偿阶段: 在 MOS晶体管 M0下一个开关周期的导通阶段, 逻辑控制电路 403发出控制信号给选通器 401 , 选择 -0.1V送入第一比较器 402的反相输入端, 同时强制第一比较器 402的输出为低电平。 MOS晶体管 M0关断后强制第一比较 器 402的输出为低的信号失效, MOS晶体管 M0漏端电压 Vsw上升, 续流二极管 D导通, 由于此时栅极电压 Vg电压为零, 第一比较器 402的输出为高。 逻辑控制 电路 403收到该信号后发出控制信号导通第三开关 405, 关断第四开关 410, 第二 电流源 407给第二电容 411充电。第二电容 411的上极板接到第二比较器 412的正 相输入端, 维持充电直到第二电容 411的电压超过 0.5*Tlc采样阶段第一电容 409 上保持的电压(此电压对应于 0.5*tl ) 。 这部分时间记为 tcomp, 从 t3 ( t3的获得 方法例如是: 以 MOS晶体管 M0关断时刻为起点, 以栅极电压 Vg第一次从负电 压过零的时刻为终点) 中减去则实现了补偿。 补偿过程结束后逻辑控制电路 403 发出控制信号导通第二开关 408以及第四开关 410, 将两个电容的电压清零。
根据上面的描述, Tcomp*i2/c2=tl*il/cl , 得到 Tcomp=tl*(il/i2)*(c2/cl), 设 计 il=i2,cl=c2使得 Tcomp=tl, 由此实现了精确的 tdis补偿。 其中, il为第一电流 源 406的输出电流, i2为第二电流源 407的输出电流, cl是第一电容 409的电容 值, c2是第二电容 411的电容值。
后面的开关周期重复上面的动作来完成实时 tl的采样和补偿。 逻辑控制电路 403根据上述的信息, 采用简单的逻辑运算可得到 (ton+tdis)/Tsw, 将此信号送给图 6中的乘法器 502。
本实施例还提供了一种非隔离 LED驱动系统, 包括相互耦合的图 4中的 LED 驱动电路以及图 6中的非隔离 LED驱动恒流控制电路,其中非隔离 LED驱动恒流 控制电路输出的比较信号 COMP可以输出至脉宽调制电路(未示出) , 该脉宽调 制电路根据比较信号 COMP的电压值来调节 MOS晶体管 M0的栅极电压 Vg的占 空比, 即图 6的非隔离 LED驱动恒流控制电路对栅极电压 Vg形成反馈回路, 在 稳定时,运算放大器 504的两个输入端的电压值应当相等,即 Vref=lo— cal=Vcs— pk* ( ton+tdis ) /Tsw, 使得整个驱动系统输出至负载 LED的电流对的输入电压、 输出 电压以及电感量均不敏感,有利于实现优异的负载调整率、批量一致性以及线性调 整率, 能够省去线性调整率的补偿电路。
本发明虽然以较佳实施例公开如上, 但其并不是用来限定本发明, 任何本 领域技术人员在不脱离本发明的精神和范围内, 都可以做出可能的变动和修 改, 因此本发明的保护范围应当以本发明权利要求所界定的范围为准。

Claims

权利要求书
1. 一种非隔离 LED驱动恒流控制电路,配置为与非隔离 LED驱动电路耦合, 所述非隔离 LED驱动电路包括:
续流二极管, 其阴极接收输入电压并连接 LED负载的阳极;
电感, 其第一端连接所述续流二极管的阳极, 其第二端连接所述 LED负载的 阴极;
MOS晶体管, 其漏端连接所述续流二极管的阳极, 其源极经由电流采样电阻 接地, 其源极经由接地电阻接地;
其特征在于, 所述非隔离 LED驱动恒流控制电路包括:
电压采样保持电路, 对所述电流采样电阻两端的电压进行采样, 并将其峰值 保持为峰值采样电压 Vcs— pk;
采样补偿电路, 对所述 MOS晶体管的栅极电压进行采样, 获得所述 MOS晶 体管的导通时间 ton、 所述 MOS晶体管的开关周期 Tsw、 所述续流二极管在所述 MOS晶体管关断时的导通时间 tdis,并根据如下公式计算产生输出信号: ( ton+tdis ) /Tsw;
乘法器, 将所述峰值采样电压 Vcs— pk 与所述采样补偿电路产生的输出信号 ( ton+tdis ) /Tsw相乘;
运算放大器, 其正相输入端接收预设的参考电压, 其反相输入端与所述乘法 器的输出端相连, 其输出端输出比较信号, 在所述运算放大器的输出稳定时, Vcs— pk* ( ton+tdis ) /Tsw=Vref, 其中 Vref为所述预设的参考电压的电压值。
2. 根据权利要求 1所述的非隔离 LED驱动恒流控制电路, 其特征在于, 所 述采样补偿电路包括:
选通器, 其第一输入端接地, 第二输入端接收预设的负电压;
第一比较器, 其正相输入端接收所述栅极电压, 其反相输入端连接所述选通 器的输出端;
第一电容, 其第一端接地, 第二端连接对所述第一电容进行充电的第一充电 通路以及对所述第一电容进行放电的第一放电通路;
第二电容, 其第一端接地, 第二端连接对所述第二电容进行充电的第二充电 通路以及对所述第二电容进行放电的第二放电通路; 第二比较器, 其正相输入端连接所述第二电容的第二端, 其反相输入端连接 所述第一电容的第二端;
逻辑控制电路, 其输入端连接所述第一比较器和第二比较器的输出端, 根据 所述第一比较器和第二比较器的输出端的比较结果控制所述选通器、 第一充电通 路、 第一放电通路、 第二充电通路和第二放电通路, 并计算产生所述输出信号 ( ton+tdis ) /Tsw。
3. 根据权利要求 2所述的非隔离 LED驱动恒流控制电路, 其特征在于, 所 述第一充电通路包括: 第一开关和第一电流源, 串联在电源正极和所述第一电容的 第二端之间, 所述第一开关的控制端由所述逻辑控制电路控制;
所述第一放电通路包括: 与所述第一电容并联的第二开关, 其控制端由所述 逻辑控制电路控制;
所述第二充电通路包括: 第三开关和第二电流源, 串联在电源正极和所述第 二电容的第二端之间, 所述第三开关的控制端由所述逻辑控制电路控制;
所述第二放电通路包括: 与所述第二电容并联的第四开关, 其控制端由所述 逻辑控制电路控制。
4. 根据权利要求 3所述的非隔离 LED驱动恒流控制电路, 其特征在于, 所 述第一电容和第二电容的电容值相等,所述第一电流源和第二电流源的输出电流相 等。
5. 根据权利要求 2所述的非隔离 LED驱动恒流控制电路, 其特征在于, 所 述预设的负电压的电压值为 -0.1V。
6. 根据权利要求 1所述的非隔离 LED驱动恒流控制电路, 其特征在于, 还 包括: 与所述运算放大器的输出端相连的脉宽调制电路,根据所述运算放大器输出 的比较信号调节所述 MOS晶体管的栅极电压的占空比。
7. 一种非隔离 LED驱动系统, 其特征在于, 包括权利要求 1至 6中任一项 所述的非隔离 LED驱动恒流控制电路以及与其耦合的非隔离 LED驱动电路。
PCT/CN2013/076517 2012-08-14 2013-05-30 非隔离led驱动系统及非隔离led驱动恒流控制电路 WO2014026496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210289133.6A CN103596319B (zh) 2012-08-14 2012-08-14 非隔离led驱动系统及非隔离led驱动恒流控制电路
CN201210289133.6 2012-08-14

Publications (1)

Publication Number Publication Date
WO2014026496A1 true WO2014026496A1 (zh) 2014-02-20

Family

ID=50086246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076517 WO2014026496A1 (zh) 2012-08-14 2013-05-30 非隔离led驱动系统及非隔离led驱动恒流控制电路

Country Status (2)

Country Link
CN (1) CN103596319B (zh)
WO (1) WO2014026496A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172750A (zh) * 2017-06-09 2017-09-15 欧普照明股份有限公司 控制电路及照明装置
CN108696967A (zh) * 2018-06-04 2018-10-23 浙江阳光美加照明有限公司 一种led灯的调光调色驱动电路
CN110018340A (zh) * 2019-03-15 2019-07-16 广州小鹏汽车科技有限公司 一种电池电压采样电路、方法及电池管理系统
CN111064361A (zh) * 2019-12-24 2020-04-24 保定天威保变电气股份有限公司 一种高频调制稳流电路的控制方法及装置
CN113014240A (zh) * 2019-12-19 2021-06-22 圣邦微电子(北京)股份有限公司 一种信号开关管的控制电路以及模拟开关电路
CN114967809A (zh) * 2022-05-24 2022-08-30 芯海科技(深圳)股份有限公司 一种稳流电路及其稳流方法、集成电路以及电子设备
CN117693094A (zh) * 2024-01-26 2024-03-12 杭州罗莱迪思科技股份有限公司 灯具及其控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105101576A (zh) * 2015-09-09 2015-11-25 无锡华润矽科微电子有限公司 一种用于led驱动的负载电压补偿电路
CN108681275B (zh) * 2018-04-28 2020-03-17 北京机械设备研究所 电压线性隔离调理电路输出电压参数化补偿方法与装置
CN110829807B (zh) * 2018-08-13 2022-03-15 美芯晟科技(北京)股份有限公司 一种thd补偿电路、系统及方法
CN109120139A (zh) * 2018-09-28 2019-01-01 杰华特微电子(杭州)有限公司 一种开关电源控制电路和方法及开关电源
CN112383982B (zh) * 2019-11-27 2022-04-15 深圳市东准电子科技有限公司 一种峰值电流校正补偿电路及具有其的降压驱动led电路
CN111050448B (zh) * 2019-12-27 2021-10-12 上海晶丰明源半导体股份有限公司 去纹波电路、去纹波芯片及电子产品
CN112332823B (zh) * 2020-10-19 2024-01-26 北京动力源科技股份有限公司 一种直流开关
CN114665707B (zh) * 2020-12-23 2024-06-18 圣邦微电子(北京)股份有限公司 电机驱动电路
CN113223449B (zh) * 2021-05-08 2022-09-02 厦门寒烁微电子有限公司 Led显示器的驱动电路及电容补偿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707837A (zh) * 2009-11-27 2010-05-12 上海晶丰明源半导体有限公司 输出电压及电感量变化保持恒流的源级驱动led驱动电路
CN101877922A (zh) * 2009-04-30 2010-11-03 华润矽威科技(上海)有限公司 非隔离式ac-dc led驱动器电流补偿电路
CN101883461A (zh) * 2010-06-09 2010-11-10 北京交通大学 带功率因数校正的led自适应恒流控制器
CN101925237A (zh) * 2010-08-20 2010-12-22 杭州电子科技大学 隔离型反激变换器的原边恒流控制装置
US20110068700A1 (en) * 2009-09-21 2011-03-24 Suntec Enterprises Method and apparatus for driving multiple LED devices
CN102427638A (zh) * 2011-09-14 2012-04-25 杭州士兰微电子股份有限公司 一种恒流led驱动电路、led驱动装置及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201388313Y (zh) * 2009-04-17 2010-01-20 上海晶丰明源半导体有限公司 高效率恒流led驱动电路
CN101807922B (zh) * 2010-03-19 2013-03-06 北京时代民芯科技有限公司 采用补偿方式提高性能的采样保持电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101877922A (zh) * 2009-04-30 2010-11-03 华润矽威科技(上海)有限公司 非隔离式ac-dc led驱动器电流补偿电路
US20110068700A1 (en) * 2009-09-21 2011-03-24 Suntec Enterprises Method and apparatus for driving multiple LED devices
CN101707837A (zh) * 2009-11-27 2010-05-12 上海晶丰明源半导体有限公司 输出电压及电感量变化保持恒流的源级驱动led驱动电路
CN101883461A (zh) * 2010-06-09 2010-11-10 北京交通大学 带功率因数校正的led自适应恒流控制器
CN101925237A (zh) * 2010-08-20 2010-12-22 杭州电子科技大学 隔离型反激变换器的原边恒流控制装置
CN102427638A (zh) * 2011-09-14 2012-04-25 杭州士兰微电子股份有限公司 一种恒流led驱动电路、led驱动装置及其控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107172750A (zh) * 2017-06-09 2017-09-15 欧普照明股份有限公司 控制电路及照明装置
CN107172750B (zh) * 2017-06-09 2023-07-14 欧普照明股份有限公司 控制电路及照明装置
CN108696967A (zh) * 2018-06-04 2018-10-23 浙江阳光美加照明有限公司 一种led灯的调光调色驱动电路
CN108696967B (zh) * 2018-06-04 2023-11-10 浙江阳光美加照明有限公司 一种led灯的调光调色驱动电路
CN110018340A (zh) * 2019-03-15 2019-07-16 广州小鹏汽车科技有限公司 一种电池电压采样电路、方法及电池管理系统
CN113014240A (zh) * 2019-12-19 2021-06-22 圣邦微电子(北京)股份有限公司 一种信号开关管的控制电路以及模拟开关电路
CN113014240B (zh) * 2019-12-19 2022-10-14 圣邦微电子(北京)股份有限公司 一种信号开关管的控制电路以及模拟开关电路
CN111064361A (zh) * 2019-12-24 2020-04-24 保定天威保变电气股份有限公司 一种高频调制稳流电路的控制方法及装置
CN114967809A (zh) * 2022-05-24 2022-08-30 芯海科技(深圳)股份有限公司 一种稳流电路及其稳流方法、集成电路以及电子设备
CN114967809B (zh) * 2022-05-24 2023-10-27 芯海科技(深圳)股份有限公司 一种稳流电路及其稳流方法、集成电路以及电子设备
CN117693094A (zh) * 2024-01-26 2024-03-12 杭州罗莱迪思科技股份有限公司 灯具及其控制方法

Also Published As

Publication number Publication date
CN103596319A (zh) 2014-02-19
CN103596319B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2014026496A1 (zh) 非隔离led驱动系统及非隔离led驱动恒流控制电路
US9756688B2 (en) High efficiency LED drivers with high power factor
TWI441427B (zh) 並聯調節器、返馳轉換器及其輸出回授的控制方法
TWI468068B (zh) 光源驅動電路、光源亮度控制器以及光源亮度控制方法
US20130300306A1 (en) Circuit for the operation of at least one led
WO2011127682A1 (zh) 开关电源及其输出电流的调节方法
US9131568B2 (en) Light-emitting diode driving apparatus and semiconductor device
US20090231895A1 (en) Rectifier circuit
US9078319B2 (en) Conversion control circuit and converter thereof
US8476888B1 (en) Switching regulator providing current regulation based on using switching transistor current to control on time
US9013166B2 (en) DC-DC converter controller
TW201218853A (en) Differential driving circuit and system for powering light source
CN101039070A (zh) 具有弱电流涓流模式的开关电压调节器
TWI583120B (zh) A system and method for providing an output current to one or more light emitting diodes
TWI720713B (zh) 準諧振調光控制系統和方法
CN105636303A (zh) 一种恒流控制电路及方法
CN111711344B (zh) 开关电源的自校准过零检测电路
CN112235903B (zh) 控制电路、控制方法及其led驱动电路
US11665794B2 (en) Dimming circuit and dimming control method
CN104052279A (zh) 一种基于MOSFET的自激式Sepic变换器
US8836233B2 (en) Light source apparatus and driving apparatus thereof
CN112469165A (zh) Led驱动电路及方法
TWI462651B (zh) 轉換器及其轉換控制電路
US10050539B2 (en) Switched mode power supply with reduced delay time
CN115498894A (zh) 一种基于反激式开关电源的原边控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13829112

Country of ref document: EP

Kind code of ref document: A1