WO2014026494A1 - 上行控制信息的发送方法和装置 - Google Patents

上行控制信息的发送方法和装置 Download PDF

Info

Publication number
WO2014026494A1
WO2014026494A1 PCT/CN2013/076155 CN2013076155W WO2014026494A1 WO 2014026494 A1 WO2014026494 A1 WO 2014026494A1 CN 2013076155 W CN2013076155 W CN 2013076155W WO 2014026494 A1 WO2014026494 A1 WO 2014026494A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
channel
serving cell
physical uplink
uplink control
Prior art date
Application number
PCT/CN2013/076155
Other languages
English (en)
French (fr)
Inventor
官磊
成艳
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380000527.8A priority Critical patent/CN103748821B/zh
Priority to EP13829892.2A priority patent/EP2874339B1/en
Publication of WO2014026494A1 publication Critical patent/WO2014026494A1/zh
Priority to US14/617,425 priority patent/US9807742B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiments of the present invention relate to the field of wireless communications, and in particular, to a method and an apparatus for transmitting uplink control information. Background technique
  • LTE long term evolution
  • UE user equipment
  • CA carrier aggregation
  • one UE can be served by multiple uplink carriers at the same time, or can be simultaneously served by multiple downlink carriers to improve the peak data rate of the UE.
  • Early carrier aggregation systems were aggregated by carriers under the same base station, or carrier aggregation under macro cells and microcells with ideal backhaul. Among them, two nodes with ideal backhaul can be regarded as the same base station.
  • the ideal backhaul means that the transmission delay of the backhaul is small, for example, the macro base station and the base station are backhauled through the optical fiber connection, and the delay between the nodes connected by the optical fibers is small.
  • the base station can also know the scheduling situation on another carrier in real time when scheduling one carrier in the aggregated carrier, joint scheduling can be adopted between these carriers.
  • an acknowledgment (ACK), or a non-acknowledgement (NACK) of the downlink data scheduling is carried on a physical uplink control channel (PUCCH), and the PUCCH is only on one uplink.
  • the uplink carrier is called the uplink primary carrier, and the sequence related information of the PUCCH is determined by the cell identifier corresponding to the uplink carrier.
  • the data carried by the PUCCH format lb (PUCCH format lb) channel is composed of a cyclic shift of a Zad-off Chu (ZC) sequence in the frequency domain, and is multiplied by a spreading code by ACK or NACK in the time domain.
  • the different PUCCH format lb channels in one resource block (RB) are distinguished by the cyclic shift and the time domain spreading code of the above ZC sequence, that is, one PUCCH format lb channel includes a cyclic shift of a ZC sequence.
  • a time domain spreading code, the ZC sequence being determined by a cell identifier corresponding to an uplink carrier that sends the PUCCH.
  • Channel selection means that the same PUCCH information (such as modulation symbols) is transmitted on different PUCCH channels to indicate different information. For example, the same modulation symbol is transmitted on PUCCH format lb channel 1 to indicate ACK, and PUCCH format lb channel 2 is transmitted to indicate NACK. :.
  • the allocation of the channel resources of the PUCCH format lb specifically includes:
  • the channel resource of the PUCCH format lb is implicitly determined by the parameters of the corresponding PDCCH, for example, the PUCCH format lb resource is determined by the CCE index of the PDCCH, or the PUCCH format lb resource is determined by the eCCE index and/or the antenna port number of the ePDCCH.
  • the PDCCH and the ePDCCH are both represented by the PDCCH.
  • the PUCCH format lb resource allocation adopts a scheme of dynamically selecting the PDCCH and dynamically selecting the PDCCH, and specifically includes: a channel of the PUCCH format lb
  • the resource may configure four sets of channel resources by using RRC (radio resource control) signaling, and then the base station dynamically indicates one of the four sets of channel resources to the UE by scheduling two bits in the PDCCH of the secondary carrier. For current use.
  • RRC radio resource control
  • the channel resources of different PUCCH format 3 in one resource block are distinguished by the above spreading code.
  • a PUCCH format 3 channel on a different orthogonal frequency division multiplexing (OFDM) symbol of one subframe may adopt different cyclic shifts of modulation symbols spread by the time domain spreading code Bit code. Which cyclic shift code is used is determined based on the cell label corresponding to the uplink carrier of the PUCCH.
  • PUCCH format 3-channel resource allocation mode adopts high-level reservation combined with PDCCH dynamic selection
  • the solution specifically includes: the channel resource of the PUCCH format 3 can be configured with four resources by using RRC signaling, and then the base station dynamically indicates to the UE that one of the four resources is provided by scheduling two bits in the PDCCH of the secondary carrier.
  • RRC signaling the channel resource of the PUCCH format 3
  • the base station dynamically indicates to the UE that one of the four resources is provided by scheduling two bits in the PDCCH of the secondary carrier.
  • carrier aggregation between base stations with non-ideal backhaul is introduced, that is, data cannot be transmitted in real time between base stations, and as a result, scheduling between multiple carriers belonging to different base stations is performed independently. That is to say, when one base station schedules one carrier in the aggregated carrier, it is not clear on the other carrier scheduled by another base station.
  • a macro cell deployed at frequency fl mainly provides system information and performs wireless link monitoring and mobility management to ensure continuity of services; deployment in multiple micro cells of frequency mainly provides transmission of high data rate services, and The plurality of micro cells are within the coverage of the macro cell.
  • the above macro cells and micro cells, as well as micro cells, are non-ideal backhaul, that is, information cannot be exchanged in real time.
  • the embodiment of the present invention provides a method and an apparatus for transmitting uplink control information to solve the problem of how to transmit a PUCCH in a CA system.
  • a first aspect provides a method for transmitting an uplink control channel, where the method includes:
  • the user equipment UE receives the downlink data that is scheduled by the network device by using the downlink control channel, where the downlink control channel is a downlink control channel corresponding to the serving cell, and the serving cell is a service in at least two serving cells configured for the UE. a cell, where the at least two serving cells include one primary serving cell and at least one secondary serving cell; Selecting identification information according to the downlink control channel;
  • the selecting the identifier information according to the downlink control channel includes:
  • the selected identifier information is second identifier information, and the selected identifier information is used to generate the downlink information.
  • the physical uplink control channel corresponding to the downlink data includes: generating, by using the second identifier information, a physical uplink control channel corresponding to the downlink data; or
  • the selected identifier information is first identifier information, and the downlink information is generated by using the selected identifier information.
  • the physical uplink control channel corresponding to the data includes: generating, by using the first identifier information, a physical uplink control channel corresponding to the downlink data.
  • the first identifier information is cell identifier information corresponding to the primary serving cell
  • the second identifier information is the cell identifier information corresponding to the one secondary serving cell;
  • the selecting the second identifier information by the UE includes: the UE selecting the according to a predetermined rule. Second identification information.
  • the selecting, by the downlink control channel, the identifier information includes:
  • the selected identifier information is first identifier information, and the selected identifier information is used to generate the downlink information.
  • the physical uplink control channel corresponding to the downlink data includes: using the first The identification information generates a physical uplink control channel corresponding to the downlink data; and/or
  • the selected identifier information is second identifier information, and the downlink information is generated by using the selected identifier information.
  • the physical uplink control channel corresponding to the data includes: generating, by using the second identifier information, a physical uplink control channel corresponding to the downlink data.
  • the first identifier information is cell identifier information corresponding to the primary serving cell
  • the second identifier information is cell identifier information corresponding to the one secondary serving cell
  • the selecting the second identifier information by the UE includes: the UE selecting the according to a predetermined rule. Second identification information.
  • the selecting, by the UE, the second identifier information according to a predetermined rule including:
  • the UE selects cell identity information corresponding to any one of the multiple secondary serving cells as the second identifier information
  • the UE selects cell identity information notified by the network device corresponding to the primary serving cell as the second identifier information; or
  • the UE selects the public cell identity information corresponding to the at least one secondary serving cell as the second identifier information.
  • the cell identity information is a cell identity and/or a virtual cell identity.
  • the physical uplink control is sent on a channel resource of the physical uplink control channel.
  • the method further includes:
  • the sending the physical uplink control channel on the channel resource of the physical uplink control channel includes: if the UE only receives the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, in the first channel resource Transmitting the physical uplink control channel, where the first channel resource is a channel resource of the physical uplink control channel corresponding to a channel resource parameter, and the channel resource parameter is a downlink control channel corresponding to the primary serving cell Channel resource parameter; or
  • the method further includes: acquiring information about a channel resource or a group of channel resources of the physical uplink control channel;
  • the sending the physical uplink control channel on the channel resource of the physical uplink control channel includes: if the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, and the second channel resource Transmitting the physical uplink control channel, where the second channel resource is the one channel resource or the group of channel resources corresponding to the information of the one channel resource or a group of channel resources.
  • the transmitting the physical uplink control channel on the channel resource of the physical uplink control channel includes: if the UE only receives the downlink control channel scheduling corresponding to one of the at least one secondary serving cell And the downlink data, the physical uplink control channel is sent on the third channel resource, where the third channel resource is the physical uplink control channel corresponding to the channel resource parameter of the downlink control channel corresponding to the one secondary serving cell Channel resource; or Before the sending the physical uplink control channel on the channel resource of the physical uplink control channel, the method further includes: acquiring information about a channel resource or a group of channel resources of the physical uplink control channel; And sending the physical uplink control channel on the channel resource of the physical uplink control channel, including:
  • the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the primary serving cell and one or more secondary serving cells in the at least one secondary serving cell, or if the UE receives The downlink data includes downlink data scheduled by a downlink control channel corresponding to multiple secondary serving cells in the at least one secondary serving cell, and the physical uplink control channel is sent on a fourth channel resource, where the fourth The channel resource is the one channel resource or the group of channel resources corresponding to the information of the one channel resource or a group of channel resources; or
  • the UE only receives downlink data scheduled by a downlink control channel corresponding to one of the at least one secondary serving cell, and sends the physical uplink control channel on the fifth channel resource;
  • the four channel resources are the set of channel resources, and the fifth channel resource is one of the set of channel resources.
  • the sending the physical uplink control channel on the channel resource of the physical uplink control channel includes:
  • the UE only receives the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, and sends the physical uplink control channel on the first channel resource; where the first channel resource is the primary a channel resource of the physical uplink control channel corresponding to a channel resource parameter of a downlink control channel corresponding to the serving cell; or
  • the UE receives downlink data scheduled by a downlink control channel corresponding to one of the at least one secondary serving cell, and sends the physical uplink control channel on the third channel resource, where the third channel
  • the resource is the one of the at least one secondary serving cell a channel resource of the physical uplink control channel corresponding to a channel resource parameter of a downlink control channel corresponding to the serving cell; or
  • the method further includes: acquiring information about a channel resource or a group of channel resources of the physical uplink control channel;
  • the sending the physical uplink control channel on the channel resource of the physical uplink control channel includes: if the downlink data received by the UE includes downlink control channel scheduling corresponding to multiple secondary serving cells in the at least one secondary serving cell Downlink data, or if the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the primary serving cell and downlink data scheduled by the downlink control channel corresponding to one or more secondary serving cells, And transmitting, by the four channel resources, the physical uplink control channel, where the fourth channel resource is the one channel resource or the group of channel resources corresponding to the information of the one channel resource or a group of channel resources; Or
  • the UE receives downlink data scheduled by a downlink control channel corresponding to one of the at least one secondary serving cell, and sends the physical uplink control channel on the fifth channel resource;
  • the channel resource is the set of channel resources, and the fifth channel resource is one of the set of channel resources.
  • the acquiring information about a channel resource or a group of channel resources of the physical uplink control channel includes:
  • the sending the physical uplink control channel includes:
  • the downlink data received by the UE includes a downlink control channel corresponding to the primary serving cell Scheduling downlink data, where the channel resource is carried on an uplink carrier corresponding to the primary serving cell;
  • the channel resource is carried on the uplink carrier corresponding to the one secondary serving cell corresponding to the downlink data;
  • the channel resource is carried in one of the multiple secondary serving cells.
  • the sending the physical uplink control channel includes:
  • the channel resource is carried on the uplink carrier corresponding to the primary serving cell;
  • the channel resource is carried on the uplink carrier corresponding to the secondary serving cell.
  • the determining, by using the selected identifier information, the physical uplink control channel corresponding to the downlink data includes:
  • the feedback mode of the downlink control channel format 3 For the feedback mode of the downlink control channel format 3, generating, by using the selected identification information, a cyclic shift pattern of modulation symbols of the physical uplink control channel and/or performing orthogonal spreading code by using the selected identification information Mapping.
  • the method further includes: Determining, according to the downlink data transmission mode scheduled by the downlink control channel of the secondary serving cell, the physical uplink control channel, if the UE does not receive downlink data scheduled by the downlink control channel corresponding to the primary serving cell. Codebook size; or
  • the sending by using, the physical uplink control channel on the channel resource, a value and a transmit power control TPC command in the downlink control channel to determine a transmit power of the physical uplink control channel, and send the physical uplink control channel by using the determined transmit power, where
  • the TPC command is in a secondary serving cell or multiple secondary serving cells corresponding to the downlink data. a TPC command in the downlink control channel of a secondary serving cell; or
  • the TPC command is a TPC command in a downlink control channel of the primary serving cell.
  • the path loss is a first path loss
  • the path loss is a second path loss
  • the second path loss is based on the first transmit power of the downlink reference signal sent by the primary serving cell. Determining, by the first received power, that the first received power is obtained by the UE by measuring the downlink reference signal sent by the primary serving cell; the first path loss is according to the at least one secondary service The second of the downlink reference signals sent by one secondary serving cell in the cell And determining, by the transmit power, the second received power, and the power offset, where the second received power is obtained by the UE by measuring the downlink reference signal sent by the one serving cell; or
  • the second path loss is according to the downlink reference signal sent by the primary serving cell Determined by the first transmit power, the first receive power, and the power offset, where the first received power is obtained by the UE by measuring the downlink reference signal sent by the primary serving cell;
  • the first path loss is determined according to the second transmit power and the second receive power of the downlink reference signal sent by the one secondary serving cell, where the second received power is that the UE passes the measurement of the one secondary service
  • the downlink reference signal sent by the cell is obtained.
  • the sending by using the physical uplink control channel on the channel resource, includes:
  • the downlink data received by the UE includes only downlink data scheduled by the downlink control channel of the primary serving cell, where the TPC command is a TPC command in a downlink control channel of the primary serving cell; or
  • the TPC command is one of a secondary serving cell or a secondary serving cell corresponding to the downlink data.
  • the path loss is a second path loss
  • the path loss is a first path loss
  • the second path loss is based on the first transmit power of the downlink reference signal sent by the primary serving cell.
  • the first received power is determined, where the first received power is the UE pass Obtaining the downlink reference signal that is sent by the primary serving cell;
  • the first path loss is a second transmit power of the downlink reference signal sent according to one of the at least one secondary serving cell Determined by the received power and the power offset, where the second received power is obtained by the UE by measuring the downlink reference signal sent by the one secondary serving cell; or
  • the second path loss is according to the downlink reference signal sent by the primary serving cell Determined by the first transmit power, the first receive power, and the power offset, where the first received power is obtained by the UE by measuring the downlink reference signal sent by the primary serving cell;
  • the first path loss is determined according to the second transmit power and the second receive power of the downlink reference signal sent by the one secondary serving cell, where the second received power is that the UE passes the measurement of the one secondary service
  • the downlink reference signal sent by the cell is obtained.
  • the power offset is a frequency point of the primary serving cell and the secondary serving cell The power difference caused by the path loss.
  • a second aspect provides a method for receiving an uplink control channel, where the method includes: the network device sends, to the user equipment UE, downlink data scheduled by a downlink control channel, where the downlink control channel is a secondary device corresponding to the network device. a downlink control channel corresponding to the serving cell, or the downlink control channel is a downlink control channel corresponding to the primary serving cell corresponding to the network side device, where the secondary serving cell is in at least two serving cells configured for the UE a serving cell, the at least two serving cells further including the primary serving cell;
  • the physical uplink control channel corresponding to the downlink data where the physical uplink control channel is used by the UE, on a channel resource that is used to feed back the physical uplink control channel.
  • the identification information that the UE may use Generated by one of the identification information that the UE may use.
  • the identifier information that the UE may use includes cell identifier information corresponding to the primary serving cell, cell identifier information corresponding to the secondary serving cell corresponding to the network device, or identifier information determined according to a predetermined rule; or
  • the identifier information that the UE may use includes the cell identity information corresponding to the primary serving cell and the cell identity information corresponding to all the secondary serving cells configured for the UE.
  • the identifier information determined according to the predetermined rule includes:
  • Public cell identity information corresponding to all secondary serving cells configured for the UE is not limited to all secondary serving cells.
  • the cell identifier information is a cell identifier and/or a virtual cell identifier.
  • the method before the detecting the physical uplink control channel corresponding to the downlink data, the method further includes:
  • the acquiring information about a channel resource or a group of channel resources of the physical uplink control channel includes: RRC signaling acquiring information about the one channel resource or the set of channel resources; or
  • a third aspect provides a user equipment, where the user equipment UE includes:
  • a receiving module configured to receive downlink data that is sent by the network device by using a downlink control channel, where
  • the downlink control channel is a downlink control channel corresponding to the serving cell
  • the serving cell is a serving cell in at least two serving cells configured for the UE, and the at least two serving cells include a primary serving cell and at least one Secondary service area;
  • a selection module configured to select, according to the downlink data received by the receiving module, the downlink control channel selection identifier information
  • a generating module configured to generate, by using the identifier information selected by the selecting module, a physical uplink control channel corresponding to the downlink data
  • a sending module configured to send the physical uplink control channel on a channel resource of the physical uplink control channel generated by the generating module.
  • the selecting module is specifically configured to: if the downlink data received by the receiving module does not include the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select the second identifier information; Generating, by using the second identifier information, a physical uplink control channel corresponding to the downlink data; or
  • the selecting module is specifically configured to: if the downlink data received by the receiving module includes the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select the first identifier information; Generating, by using the first identifier information, a physical uplink control channel corresponding to the downlink data.
  • the selecting module is specifically configured to: select the cell identity information corresponding to the primary serving cell as the first identifier information; Or
  • the selecting module is specifically configured to: if the receiving module only receives the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, select the cell identity information corresponding to the one secondary serving cell as the second identifier information; Or
  • the selecting module is specifically configured to: if the receiving module only receives downlink data scheduled by a downlink control channel corresponding to multiple secondary serving cells in the at least one secondary serving cell, according to a predetermined rule The second identification information is selected.
  • the selecting module is specifically configured to: if the downlink data received by the UE includes only the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select the first identifier information; Generating, by using the first identifier information, a physical uplink control channel corresponding to the downlink data; and/or,
  • the selecting module is specifically configured to: if the downlink data that is received by the UE includes the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, select the second identifier information; The second identifier information generates a physical uplink control channel corresponding to the downlink data.
  • the selecting module is specifically configured to: select, as the first identifier information, cell identity information corresponding to the primary serving cell; Or
  • the selecting module is specifically configured to: if the receiving module receives the downlink data scheduled by the primary serving cell and the downlink control channel corresponding to only one secondary serving cell, select the cell identity information corresponding to the one secondary serving cell as the Said second identification information; or
  • the selecting module is specifically configured to: if the receiving module only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell, select the second identifier information according to a predetermined rule. .
  • the selecting module is specifically configured to: select, according to a predetermined rule, the second identifier information according to a predetermined rule: selecting cell identifier information corresponding to any one of the multiple secondary serving cells as the second identifier information; or And selecting the cell identity information that is notified by the network device corresponding to the primary serving cell as the second identity information; or, selecting the common cell identity information corresponding to the at least one secondary serving cell as the second identity information.
  • the selecting module is specifically configured to select the cell identity information as follows: The cell identity and/or the virtual cell identity are used as the cell identity information.
  • the user equipment further includes a channel resource acquiring module
  • the channel resource acquiring module is configured to acquire information about a channel resource or a group of channel resources of the physical uplink control channel, where the sending module is specifically configured to send on a channel resource of the physical uplink control channel as follows
  • the physical uplink control channel is sent by the generating module on the one channel resource or a group of channel resources corresponding to the one channel resource or the group of channel resources acquired by the channel resource acquiring module
  • the physical uplink control channel is sent by the generating module on the one channel resource or a group of channel resources corresponding to the one channel resource or the group of channel resources acquired by the channel resource acquiring module The physical uplink control channel.
  • the user equipment is further Including a channel resource acquisition module
  • the channel resource acquiring module is configured to determine that the serving cell corresponding to the downlink data that is received by the receiving module is the primary serving cell, and acquire channel resource parameters of the downlink control channel that are corresponding to the primary serving cell;
  • the sending module is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: on a first channel resource corresponding to the channel resource parameter acquired by the channel resource acquiring module Transmitting, by the generating module, the physical uplink control channel, where the first channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the channel resource acquiring module; or
  • the channel resource acquiring module is configured to determine that the serving cell corresponding to the downlink data received by the receiving module includes the secondary serving cell, and acquire information about a channel resource or a group of channel resources of the physical uplink control channel.
  • the sending module is configured to send the physical uplink control channel on the channel resource of the physical uplink control channel as follows: the physical uplink control channel generated by the generating module is sent on the second channel resource;
  • the second channel resource is a location corresponding to the information of the one channel resource or a group of channel resources acquired by the channel resource acquiring module. Describe a channel resource or the set of channel resources.
  • the user equipment further includes a channel resource acquisition module
  • the channel resource acquiring module is configured to determine that the serving cell corresponding to the downlink data that is received by the receiving module is one of the at least one secondary serving cell, and obtain the downlink corresponding to the one secondary serving cell a channel resource parameter of the control channel;
  • the sending module is configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending, on a third channel resource, the physical uplink control channel
  • the third channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the channel resource acquiring module; or
  • the channel resource acquiring module configured to determine that the serving cell corresponding to the downlink data that is received by the receiving module includes one or more secondary serving cells of the primary serving cell and the at least one secondary serving cell, or Include a plurality of secondary serving cells in the at least one secondary serving cell, and acquire the information of one channel resource or a group of channel resources of the physical uplink control channel;
  • the sending module is specifically configured to be in the following manner Transmitting the physical uplink control channel on the channel resource of the physical uplink control channel: transmitting, on the fourth channel resource, the physical uplink control channel, where the fourth channel resource is obtained by the channel resource acquiring module Said one channel resource or the set of channel resources corresponding to said one channel resource or said set of channel resources; or
  • the channel resource acquiring module is configured to determine that the serving cell corresponding to the downlink data received by the receiving module is a secondary serving cell of the at least one secondary serving cell, and obtain a channel of the physical uplink control channel.
  • the information about the resource or a group of channel resources; the sending module is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: on the fifth channel resource, send the physical uplink a control channel; wherein, if the fourth channel resource is the set of channel resources acquired by the channel resource acquisition module, the fifth channel resource is one of the channel resources of the group of channel resources.
  • the user equipment further includes a channel resource acquisition module
  • the channel resource acquiring module is configured to determine that a serving cell corresponding to the downlink data that is received by the receiving module is the primary serving cell, and obtain a channel resource parameter of a downlink control channel corresponding to the primary serving cell;
  • the sending module is configured to send the physical uplink control channel on the channel resource of the physical uplink control channel as follows: sending, on the first channel resource, the physical uplink control channel, where the first channel resource a channel resource corresponding to the channel resource parameter acquired by the channel resource acquiring module; or
  • the channel resource acquiring module is configured to determine that the serving cell corresponding to the downlink data that is received by the receiving module is one of the at least one secondary serving cell, and obtain the at least one secondary serving cell a channel resource parameter of the downlink control channel corresponding to the one serving cell; the sending module is configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: Transmitting the physical uplink control channel, where the third channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the channel resource acquiring module; or
  • the channel resource acquiring module configured to determine that the serving cell corresponding to the downlink data received by the receiving module includes multiple secondary serving cells in the at least one secondary serving cell, or includes the primary serving cell and the Obtaining one or more secondary serving cells of the at least one secondary serving cell, and acquiring information of one channel resource or a group of channel resources of the physical uplink control channel;
  • the sending module is specifically configured to perform the physical uplink in the following manner Transmitting the physical uplink control channel on the channel resource of the control channel: transmitting the physical uplink control channel on the fourth channel resource, where the fourth channel resource is the one channel resource acquired by the channel resource acquiring module Or the one channel resource or the set of channel resources corresponding to information of a group of channel resources;
  • the channel resource acquiring module is configured to determine that the serving cell corresponding to the downlink data received by the receiving module is a secondary serving cell in the at least one secondary serving cell, and acquire the physical The information of one channel resource or a group of channel resources of the uplink control channel; the sending module is specifically configured to send the physical uplink control channel on the channel resource of the physical uplink control channel as follows: on the fifth channel resource Transmitting the physical uplink control channel; where, if the fourth channel resource is the set of channel resources, the fifth channel resource is one of the set of channel resources.
  • the receiving module is further configured to: receive the information about the one channel resource or a group of channel resources that are sent by the network device by using a radio resource control RRC signaling; the channel resource acquiring module is specifically configured to acquire the Receiving, by the module, the information about the one channel resource or the set of channel resources; or
  • the user equipment further includes a storage module, where the storage module is configured to store the information of the one channel resource or the set of channel resources; the channel resource acquiring module is specifically configured to acquire the storage module from the storage module. Said information of a channel resource or said set of channel resources.
  • the sending module is configured to send the physical uplink control channel generated by the generating module on a channel resource of the physical uplink control channel as follows:
  • the channel resource is carried on the uplink carrier corresponding to the primary serving cell, and the generating module generates The physical uplink control channel;
  • the receiving module only receives the downlink data scheduled by the downlink control channel of the one of the multiple secondary serving cells, the channel resource is carried on the uplink carrier corresponding to the one secondary serving cell, and the Generating the physical uplink control channel generated by the module;
  • the receiving module only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell, the channel resource is carried in the multiple auxiliary services.
  • the physical uplink control channel generated by the generating module is sent on an uplink carrier corresponding to a secondary serving cell in the serving cell.
  • the sending module is configured to send the physical uplink control channel generated by the generating module on a channel resource of the physical uplink control channel as follows:
  • the channel resource is carried on the uplink carrier corresponding to the primary serving cell;
  • the channel resource is carried on the uplink carrier corresponding to the secondary serving cell.
  • the generating module is configured to generate the physical uplink control channel corresponding to the downlink data by using the selected identifier information as follows: for the feedback mode of the downlink control channel format lb combined with the channel selection, using the selected identifier information Generating a sequence of the physical uplink control channel; or, for a feedback mode of the downlink control channel format 3, generating a cyclic shift pattern and/or utilization of a modulation symbol of the physical uplink control channel by using the selected identification information
  • the selected identification information is used to perform mapping of orthogonal spreading codes.
  • the user equipment further includes:
  • a codebook determining module configured to: in a feedback mode for the format 3, if the receiving module does not receive the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, according to the downlink data transmission of the secondary serving cell The mode determines a codebook size of the physical uplink control channel; or, if the receiving module receives the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, the root Determining, according to a transmission mode of the downlink data of the primary serving cell and the secondary serving cell, the codebook size of the physical uplink control channel;
  • the generating module is further configured to generate the physical uplink control channel according to the codebook size determined by the codebook determining module and the identifier information selected by the selecting module.
  • the user equipment further includes a power determining module, in a sixteenth possible implementation manner
  • the power determining module is configured to determine a transmit power of the physical uplink control channel according to a path loss value and a transmit power control TPC command in the downlink control channel corresponding to the downlink data received by the receiving module; If the downlink data received by the receiving module does not include downlink data scheduled by the downlink control channel of the primary serving cell, the TPC command is a secondary serving cell or multiple secondary serving cells corresponding to the downlink data.
  • the TPC command in the downlink control channel of the secondary serving cell or, if the downlink data received by the receiving module includes the downlink data scheduled by the downlink control channel of the primary serving cell, the TPC command is the downlink a TPC command in a downlink control channel of a secondary serving cell or a secondary serving cell of the secondary serving cell corresponding to the data;
  • the sending module is configured to send the physical uplink control channel generated by the generating module according to the following manner: sending, by using the sending power determined by the power determining module, the physical uplink control channel generated by the generating module .
  • the user equipment further includes a power determining module, in the seventeenth possible implementation manner;
  • the power determining module is configured to determine a transmit power of the physical uplink control channel according to a path loss value and a transmit power control TPC command in the downlink control channel corresponding to the downlink data received by the receiving module; If the downlink data received by the receiving module includes only the downlink data scheduled by the downlink control channel of the primary serving cell, the TPC command is a TPC command in the downlink control channel of the primary serving cell; or If the downlink data received by the receiving module includes downlink data scheduled by the downlink control channel of the secondary serving cell, the TPC command is A TPC command in a downlink control channel of a secondary serving cell or a secondary serving cell of the secondary serving cell corresponding to the downlink data.
  • the sending module is configured to send the physical uplink control channel generated by the generating module according to the following manner: sending, by using the sending power determined by the power determining module, the physical uplink control channel generated by the generating module .
  • the user equipment further includes a measurement module
  • the power determining module is further configured to: determine the path loss according to the following manner: if the downlink data received by the receiving module does not include downlink data scheduled by a downlink control channel corresponding to the primary serving cell, determine the The path loss is the first path loss; if the downlink data received by the receiving module includes the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, the path loss is the second path loss;
  • the sending module sends the physical uplink control channel on an uplink carrier corresponding to the primary serving cell
  • the receiving module is further configured to receive a downlink reference signal that is sent by the primary serving cell, where the measurement module is configured to measure a first received power of the downlink reference signal that is sent by the primary serving cell that is received by the receiving module;
  • the power determining module determines the second path loss according to the first sending power of the downlink reference signal sent by the primary serving cell and the first receiving power measured by the measuring module;
  • the receiving module is further configured to receive a downlink reference signal sent by one of the at least one secondary serving cell;
  • the measuring module is configured to measure a second receiving power of the downlink reference signal sent by the one serving cell that is received by the receiving module
  • the first path loss determined by the power determining module according to a second transmit power of the downlink reference signal sent by the one secondary serving cell, the second received power measured by the measurement module, and a power offset ;
  • the sending module corresponds to one of the at least one secondary serving cell Transmitting the physical uplink control channel on an uplink carrier
  • the receiving module is further configured to receive a downlink reference signal that is sent by the primary serving cell, where the measurement module is configured to measure a first received power of the downlink reference signal that is sent by the primary serving cell that is received by the receiving module;
  • the power determining module determines the second path loss according to the first sending power of the downlink reference signal sent by the primary serving cell, the first receiving power and the power offset measured by the measuring module;
  • the receiving module is further configured to receive a downlink reference signal sent by one of the at least one secondary serving cell, where the measuring module is configured to measure the downlink sent by the one serving cell that is received by the receiving module a second received power of the reference signal; the first determining power determined by the power determining module according to the second transmit power of the downlink reference signal sent by the one secondary serving cell and the second received power measured by the measurement module Path loss.
  • the user equipment further includes a measurement module
  • the power determining module is further configured to: determine the path loss according to the following manner: if the downlink data received by the receiving module includes only downlink data scheduled by a downlink control channel of the primary serving cell, determining the TPC The command is a TPC command in the downlink control channel of the primary serving cell; or, if the downlink data received by the receiving module includes downlink data scheduled by the downlink control channel of the secondary serving cell, determining the TPC command a TPC command in a downlink control channel of a secondary serving cell or a secondary serving cell of the secondary serving cell corresponding to the downlink data; wherein, if the sending module is on an uplink carrier corresponding to the primary serving cell Sending the physical uplink control channel,
  • the receiving module is further configured to receive a downlink reference signal that is sent by the primary serving cell, where the measurement module is configured to measure a first received power of the downlink reference signal that is sent by the primary serving cell that is received by the receiving module;
  • the power determining module determines the second path loss according to the first sending power of the downlink reference signal sent by the primary serving cell and the first receiving power measured by the measuring module;
  • the receiving module is further configured to receive One of the at least one secondary serving cell a downlink reference signal sent by the secondary serving cell;
  • the measuring module is configured to measure a second receiving power of the downlink reference signal sent by the one serving cell that is received by the receiving module; a second transmit power of a downlink reference signal sent by a secondary serving cell, the second received power measured by the measurement module, and the first path loss determined by a power offset;
  • the sending module sends the physical uplink control channel on an uplink carrier corresponding to one of the at least one secondary serving cell
  • the receiving module is further configured to receive a downlink reference signal that is sent by the primary serving cell, where the measurement module is configured to measure a first received power of the downlink reference signal that is sent by the primary serving cell that is received by the receiving module;
  • the power determining module determines the second path loss according to the first sending power of the downlink reference signal sent by the primary serving cell, the first receiving power and the power offset measured by the measuring module;
  • the receiving module is further configured to receive a downlink reference signal sent by one of the at least one secondary serving cell, where the measuring module is configured to measure the downlink sent by the one serving cell that is received by the receiving module a second received power of the reference signal; the first determining power determined by the power determining module according to the second transmit power of the downlink reference signal sent by the one secondary serving cell and the second received power measured by the measurement module Path loss.
  • a network device where the network device includes:
  • a sending module configured to send downlink data scheduled by the downlink control channel to the user equipment UE, where the downlink control channel is a downlink control channel corresponding to the secondary serving cell, or the downlink control channel is a master corresponding to the network side device a downlink control channel corresponding to the serving cell, where the secondary serving cell is a serving cell in at least two serving cells configured for the UE, and the at least two serving cells further include the primary serving cell;
  • a determining module configured to determine, after the sending module sends the downlink data, identifier information that the UE may use; a receiving module, configured to detect, by using the identifier information that may be used by the determining module, the physical uplink control channel corresponding to the downlink data, on the channel resource used for the feedback of the physical uplink control channel, where The physical uplink control channel is generated by the UE using one of identification information that may be used by the UE.
  • the determining module is specifically configured to: determine that the identifier information that the UE may use includes: cell identifier information corresponding to the primary serving cell, cell identifier information corresponding to the secondary serving cell corresponding to the network device, and Identification information determined by the rules; or
  • the identifier information that the UE may use includes the cell identity information corresponding to the primary serving cell and the cell identity information corresponding to all the secondary serving cells configured for the UE;
  • the cell identity information is a cell identity and/or a virtual cell identity.
  • the determining module is specifically configured to determine the identifier information according to a predetermined rule:
  • the network device further includes:
  • a channel resource acquiring module configured to acquire information about a channel resource or a group of channel resources of the physical uplink control channel, and acquire channel resource parameters of the downlink control channel corresponding to the downlink data sent by the sending module;
  • the receiving module is configured to detect, by using the identifier information that may be used by the determining module, the physical uplink control channel corresponding to the downlink data: the one obtained by the channel resource acquiring module a channel resource or a set of channel resources corresponding to the one channel resource or the set of channel resources, and the physical uplink control corresponding to the channel resource parameter acquired by the channel resource acquiring module And detecting, by using the identifier information that is determined by the determining module, the physical uplink control channel corresponding to the downlink data.
  • the receiving module is further configured to receive, by receiving radio resource control RRC signaling, And the information about the one channel resource or the group of channel resources of the physical uplink control channel;
  • the channel resource acquiring module is specifically configured to acquire, by using the RRC signaling received by the receiving module, the physical uplink control channel The information of the one channel resource or a group of channel resources; or the network device further includes a storage module, where the storage module is configured to store the one channel resource or a group of channel resources received by the receiving module
  • the channel resource acquiring module is specifically configured to acquire the information of the one channel resource or a group of channel resources from the storage module.
  • a user equipment wherein the user equipment UE includes: a receiver, configured to receive downlink data that is scheduled by the network device by using a downlink control channel, where the downlink control channel is a downlink corresponding to the serving cell a control channel, the serving cell is a serving cell in at least two serving cells configured for the UE, and the at least two serving cells include one primary serving cell and at least one secondary serving cell;
  • a processor configured to select, according to the downlink control channel corresponding to the downlink data that is received by the receiver, identification information, and use the identifier information to generate a physical uplink control channel corresponding to the downlink data;
  • a transmitter configured to send the physical uplink control channel on a channel resource of the physical uplink control channel generated by the generating module.
  • the processor is specifically configured to: if the downlink data received by the receiver does not include downlink data scheduled by a downlink control channel corresponding to the primary serving cell, select second identifier information, and use the second identifier The information generates a physical uplink control channel corresponding to the downlink data; or
  • the processor is specifically configured to: if the downlink data received by the receiver includes downlink data scheduled by a downlink control channel corresponding to the primary serving cell, select first identifier information, and use the first identifier information Generating a physical uplink control channel corresponding to the downlink data.
  • the processor is specifically configured to select the identifier information as follows: the cell identifier information corresponding to the primary serving cell is selected as the first identifier information; or
  • the processor is specifically configured to select the identifier information according to the following manner: if the receiver only receives the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, select the cell identifier information corresponding to the one secondary serving cell as the Said second identification information; or
  • the processor is specifically configured to select the identifier information according to the following manner: if the receiver only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell, and selects according to a predetermined rule. The second identification information.
  • the processor is specifically configured to: if the downlink data received by the receiver includes only downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select first identifier information, and use the first identifier The information generates a physical uplink control channel corresponding to the downlink data; and/or
  • the processor is specifically configured to: if the downlink data received by the receiver includes downlink data scheduled by a downlink control channel corresponding to the secondary serving cell, select second identifier information, and use the second identifier information Generating a physical uplink control channel corresponding to the downlink data.
  • the processor is specifically configured to select the identifier information by: selecting the cell identifier information corresponding to the primary serving cell as the Said first identification information; or
  • the processor is specifically configured to select the identifier information according to the following manner: if the receiver receives downlink data scheduled by the primary serving cell and the downlink control channel corresponding to only one secondary serving cell, selecting the one secondary serving cell Cell identification information as the second identification information; or
  • the processor is specifically configured to select the identifier information according to the following manner: if the receiver only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell, and selects according to a predetermined rule. The second identification information.
  • the processor is specifically configured to: select, according to a predetermined rule, the second identifier information according to a predetermined rule: selecting cell identifier information corresponding to any one of the multiple secondary serving cells as the second identifier information; or And selecting the cell identity information that is notified by the network device corresponding to the primary serving cell as the second identity information; or, selecting the common cell identity information corresponding to the at least one secondary serving cell as the second identity information.
  • the processor is specifically configured to select the cell identifier information as follows: The cell identity and/or the virtual cell identity are used as the cell identity information.
  • the processor is further configured to acquire a channel resource or a group of the physical uplink control channel.
  • Information about the channel resource the transmitter is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: the one channel resource or a group of channels acquired by the processor And transmitting, by the one channel resource or a group of channel resources corresponding to the information of the resource, the physical uplink control channel generated by the processor.
  • the processor is further configured to: determine, by the receiver, The serving cell corresponding to the downlink data is the primary serving cell, and acquires channel resource parameters of the downlink control channel corresponding to the primary serving cell; the transmitter is specifically configured to perform the physical uplink control in the following manner Transmitting, by the channel resource of the channel, the physical uplink control channel: sending, by using the first channel resource corresponding to the channel resource parameter acquired by the processor, the physical uplink control channel generated by the processor, where The first channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the processor; or
  • the processor is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver includes the secondary serving cell, and acquire information about a channel resource or a group of channel resources of the physical uplink control channel;
  • the transmitter is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending the processor to generate on a second channel resource The physical uplink control channel, where the second channel resource is the one channel resource or the group of channels corresponding to the information of the one channel resource or a group of channel resources acquired by the processor Resources.
  • the processor is further configured to: determine that the serving cell corresponding to the downlink data that is received by the receiver is one of the at least one secondary serving cell, and obtain downlink control corresponding to the one secondary serving cell a channel resource parameter of the channel; the transmitter is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending, on a third channel resource, the physical uplink control channel; The third channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the processor; or
  • the processor is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver includes one or more secondary serving cells of the primary serving cell and the at least one secondary serving cell, or includes And the plurality of secondary serving cells in the at least one secondary serving cell, and acquiring the information of one channel resource or a group of channel resources of the physical uplink control channel; the transmitter is specifically configured to be in the following manner Transmitting the physical uplink control channel on the channel resource of the physical uplink control channel: transmitting, on the fourth channel resource, the physical uplink control channel, where the fourth channel resource is the one channel acquired by the processor The one channel resource or the set of channel resources corresponding to the resource or a set of channel resources; or
  • the processor is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver is one of the at least one secondary serving cell, and obtain a channel resource of the physical uplink control channel. Or the information of a set of channel resources; the transmitter is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: on the fifth channel resource, send the physical uplink control a channel; wherein, if the fourth channel resource is the set of channel resources acquired by the processor, the fifth channel resource is one of the set of channel resources.
  • the processor is further configured to: determine that a serving cell corresponding to the downlink data that is received by the receiver is the primary serving cell, and obtain a channel resource parameter of a downlink control channel corresponding to the primary serving cell;
  • the device is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending, on the first channel resource, the physical uplink control channel, where the first channel resource is a channel resource corresponding to the channel resource parameter acquired by the processor; or
  • the processor is further configured to: determine that the serving cell corresponding to the downlink data that is received by the receiver is one of the at least one secondary serving cell, and obtain the location in the at least one secondary serving cell a channel resource parameter of a downlink control channel corresponding to a secondary serving cell; the transmitter is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: on a third channel resource Transmitting the physical uplink control channel, where the third channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the processor; or
  • the processor is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver includes multiple secondary serving cells in the at least one secondary serving cell, or include the primary serving cell and the at least And one or more secondary serving cells in the secondary serving cell, and acquiring information about a channel resource or a group of channel resources of the physical uplink control channel; the transmitter is specifically configured to perform the physical uplink control in the following manner Transmitting the physical uplink control channel on a channel resource of the channel: transmitting the physical uplink control channel on a fourth channel resource, where the fourth channel resource is the one channel resource or a group acquired by the processor The one channel resource or the set of channel resources corresponding to the information of the channel resource;
  • the processor is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver is one of the at least one secondary serving cell, and obtain a channel resource of the physical uplink control channel. Or information of a set of channel resources; the transmitter is specifically used in the following manner Transmitting the physical uplink control channel on a channel resource of the physical uplink control channel: transmitting the physical uplink control channel on a fifth channel resource; where, if the fourth channel resource is the set of channel resources, The fifth channel resource is one of the set of channel resources.
  • the receiver is further configured to receive the information about the one channel resource or a group of channel resources that are sent by the network device by using a radio resource control RRC signaling; the processor is specifically configured to: acquire the receiving The RRC signaling received by the device acquires the information of the one channel resource or the set of channel resources; or
  • the user equipment further includes a memory, where the memory is used to store the information of the one channel resource or the set of channel resources; the channel resource acquisition is specifically used to acquire the one channel resource from the memory. Or the information of the set of channel resources.
  • the transmitter is specifically configured to send the physical uplink control channel generated by the processor on a channel resource of the physical uplink control channel as follows:
  • the channel resource is carried on the uplink carrier corresponding to the primary serving cell, and the processor is generated.
  • the channel resource is carried on the uplink carrier corresponding to the one secondary serving cell, and the The physical uplink control channel generated by the processor;
  • the receiver only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell, the channel resource is carried in one of the multiple secondary serving cells And sending, by the uplink carrier corresponding to the secondary serving cell, the physical uplink control channel generated by the processor.
  • the transmitter is specifically configured to send the physical uplink control channel generated by the processor on a channel resource of the physical uplink control channel as follows:
  • the channel resource is carried on the uplink carrier corresponding to the primary serving cell;
  • the channel resource is carried on the uplink carrier corresponding to the secondary serving cell.
  • the processor is specifically configured to generate, by using the selected identification information, a physical uplink control channel corresponding to the downlink data as follows:
  • the feedback mode of the downlink control channel format 3 For the feedback mode of the downlink control channel format 3, generating, by using the selected identification information, a cyclic shift pattern of modulation symbols of the physical uplink control channel and/or performing orthogonal spreading code by using the selected identification information Mapping.
  • the processor is further configured to: if the feedback mode of the format 3 is Receiving downlink data scheduled by the downlink control channel corresponding to the primary serving cell, determining a codebook size of the physical uplink control channel according to a transmission mode of the downlink data of the secondary serving cell; or, if the receiver Receiving downlink data scheduled by the downlink control channel corresponding to the primary serving cell, and determining the codebook size of the physical uplink control channel according to a transmission mode of downlink data of the primary serving cell and the secondary serving cell;
  • the processor is specifically configured to generate the physical uplink control channel according to the following manner: generating the physical uplink control channel according to the determined codebook size and the selected identifier information.
  • the processor is further configured to: according to the path loss value and the received by the receiver a transmit power control TPC command in the downlink control channel corresponding to the downlink data, determining a transmit power of the physical uplink control channel, where the downlink data received by the receiver does not include the primary serving cell Downlink data scheduled by the downlink control channel, where the TPC command is a TPC command in a downlink serving channel of a secondary serving cell or a secondary serving cell of the secondary serving cell corresponding to the downlink data; or, if the receiving The downlink data received by the device includes downlink data scheduled by the downlink control channel of the primary serving cell, and the TPC command is downlink of one secondary serving cell or one secondary serving cell of the multiple secondary serving cells corresponding to the downlink data.
  • the TPC command in the control channel is specifically configured to send the physical generated by the processor in the following manner Row control channel: transmitting the physical uplink control channel generated by the processor by
  • the processor is further configured to determine the path loss as follows: if the receiver receives The downlink data does not include downlink data scheduled by the downlink control channel corresponding to the primary serving cell, and determines that the path loss is a first path loss; if the downlink data received by the receiver includes the primary serving cell And the downlink loss of the corresponding downlink control channel, where the path loss is the second path loss;
  • the transmitter sends the physical uplink control channel on an uplink carrier corresponding to the primary serving cell
  • the receiver is further configured to receive a downlink reference signal sent by the primary serving cell; the processor is further configured to: measure, by the receiver, a first received power of the downlink reference signal sent by the primary serving cell; Determining the second path loss according to the first transmit power of the downlink reference signal sent by the primary serving cell and the measured first received power; the receiver further And a downlink reference signal sent by the one serving cell in the at least one secondary serving cell; the processor is further configured to: measure, by the receiver, the downlink reference signal sent by the one serving cell The second received power; and the first path loss determined according to the second transmit power of the downlink reference signal sent by the one secondary serving cell, the measured second received power, and the power offset;
  • the transmitter sends the physical uplink control channel on an uplink carrier corresponding to one of the at least one secondary serving cell
  • the receiver is further configured to receive a downlink reference signal that is sent by the primary serving cell
  • the processor is further configured to: measure, by the receiver, the first receiving of the downlink reference signal sent by the primary serving cell And determining, according to the first transmit power of the downlink reference signal sent by the primary serving cell, the measured first received power, and the power offset, the second path loss; the receiver further And a second downlink signal that is sent by the one of the at least one secondary serving cell, where the processor is configured to measure the second downlink signal that is sent by the one of the secondary serving cells Receiving power; and determining the first path loss according to the second transmit power of the downlink reference signal sent by the one secondary serving cell and the measured second received power.
  • the processor is further configured to: according to the path loss value and the received by the receiver a transmit power control TPC command in the downlink control channel corresponding to the downlink data, determining a transmit power of the physical uplink control channel, where the downlink data received by the UE includes only a downlink of the primary serving cell Controlling the downlink data scheduled by the channel, the TPC command is a TPC command in the downlink control channel of the primary serving cell; or if the downlink data received by the UE includes a downlink control channel scheduling of the secondary serving cell
  • the transmitter is specifically configured to send the physical uplink control channel generated by the processor in the following manner: sending, by using the transmit power determined by the processor, the physical uplink control channel generated by the processor
  • the processor is further configured to determine the path loss as follows: if the UE receives the The downlink data includes only downlink data scheduled by the downlink control channel corresponding to the primary serving cell, and determines that the path loss is a second path loss; if the downlink data received by the UE includes downlink control corresponding to the secondary serving cell The downlink data of the channel scheduling determines that the path loss is the first path loss;
  • the transmitter sends the physical uplink control channel on an uplink carrier corresponding to the primary serving cell
  • the receiver is further configured to receive a downlink reference signal sent by the primary serving cell; the processor is further configured to: measure, by the receiver, a first received power of the downlink reference signal sent by the primary serving cell; Determining the second path loss according to the first transmit power of the downlink reference signal sent by the primary serving cell and the measured first received power; the receiver is further configured to receive the at least one auxiliary a downlink reference signal sent by a secondary serving cell in the serving cell; the processor is further configured to: measure, by the receiver, a second received power of the downlink reference signal sent by the one secondary serving cell; The second transmission power of the downlink reference signal sent by the one secondary serving cell, the measured second received power, and the first path loss determined by the power offset;
  • the transmitter sends the physical uplink control channel on an uplink carrier corresponding to one of the at least one secondary serving cell
  • the receiver is further configured to receive a downlink reference signal that is sent by the primary serving cell
  • the processor is further configured to: measure, by the receiver, the first receiving of the downlink reference signal sent by the primary serving cell Power; and according to the first of the downlink reference signals sent by the primary serving cell The transmit power, the measurement to the first received power, and the power offset determine the second path loss
  • the receiver is further configured to receive a downlink sent by one of the at least one secondary serving cell a reference signal
  • the processor is configured to measure a second received power of the downlink reference signal sent by the one secondary serving cell received by the receiver; and according to a second downlink signaling signal sent by the one secondary serving cell Transmit power and the measured first path loss determined by the second received power.
  • a network device where the network device includes:
  • a transmitter configured to send, to the user equipment UE, downlink data scheduled by the downlink control channel, where the downlink control channel is a downlink control channel corresponding to the secondary serving cell, or the downlink control channel is a master corresponding to the network side device a downlink control channel corresponding to the serving cell, where the secondary serving cell is a serving cell in at least two serving cells configured for the UE, and the at least two serving cells further include a primary serving cell;
  • a processor configured to determine, after the transmitter sends the downlink data, identifier information that the UE may use
  • a receiver configured to detect, by using the identifier information that may be used by the processor, the physical uplink control channel corresponding to the downlink data, on the channel resource used for the feedback of the physical uplink control channel, where The physical uplink control channel is generated by the UE using one of identification information that may be used by the UE.
  • the processor is specifically configured to: determine that the identifier information that the UE may use includes:
  • the identifier information that the UE may use includes the cell identity information corresponding to the primary serving cell and the cell identity information corresponding to all the secondary serving cells configured for the UE;
  • the cell identity information is a cell identity and/or a virtual cell identity.
  • the processor is specifically configured to determine the cell identity information according to a predetermined rule:
  • the processor is further configured to acquire information about a channel resource or a group of channel resources of the physical uplink control channel, and obtain a channel resource parameter of the downlink control channel corresponding to the downlink data sent by the transmitter;
  • the receiver is specifically configured to detect, by using the identifier information that may be used by the processor, the physical uplink control channel corresponding to the downlink data: the one channel resource acquired by the processor Or the one channel resource or the set of channel resources corresponding to the information of a set of channel resources, and the channel resource of the physical uplink control corresponding to the channel resource parameter acquired by the processor, And detecting, by using the identifier information that may be used by the processor, a physical uplink control channel corresponding to the downlink data.
  • the receiver is further configured to receive, by receiving, a radio resource control RRC signaling And the information about the one channel resource or a group of channel resources of the physical uplink control channel;
  • the processor is specifically configured to acquire, by using the RRC signaling received by the receiver, the physical uplink control channel The information of a channel resource or a group of channel resources;
  • the network device further includes a memory, the memory is configured to store the information of the one channel resource or a group of channel resources received by the receiver; the processor is specifically configured to acquire the one from the memory The information of a channel resource or a set of channel resources.
  • the network device that sends the downlink control channel to the UE can distinguish the corresponding information according to the used identification information.
  • the physical uplink control channel realizes multiplexing the same PUCCH channel resources among multiple network devices, and does not need to know the scheduling situation of downlink data of other base stations in real time.
  • FIG. 1 is a flowchart of a method for transmitting uplink control information according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for transmitting uplink control information according to another embodiment of the present invention
  • FIG. 3a is a schematic diagram of downlink scheduling and uplink PUCCH resources in carrier aggregation for non-ideal backhaul according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for sending uplink control information according to another embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a user equipment according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • FIG. 8b is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a user equipment according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a network device according to another embodiment of the present invention. detailed description
  • the above-described prior art PUCCH transmission mode is not applicable under the carrier aggregation system between base stations. Since the downlink scheduling between the base stations is independent, and the base stations cannot know the scheduling of the channel resources of other base stations in real time, the foregoing PUCCH channel resource allocation scheme cannot be applied. For example, for a scheme of high-layer reservation combined with PDCCH dynamic selection, it is assumed that the macro base station's fl is the primary carrier, and the macro base The station does not know the specific status of the two bits of the dynamic indication in the PDCCH scheduled by the micro base station in real time, and the channel resources of the explicitly indicated PUCCH format 3 or PUCCH format lb cannot be obtained.
  • the PUCCH channel resources that need to be received by multiple base stations must be semi-statically reserved or statically reserved.
  • PUCCH channel resources can be configured through RRC signaling, and multiple groups that are not dynamically notified from RRC signaling can be further dynamically. Or choose one of several resources to use.
  • the purely semi-statically reserved PUCCH channel resources cause a large resource overhead. Especially in the case where the number of UEs between the macro base station and the micro base station CA is large in the coverage of the macro base station, the problem of large channel resource overhead is particularly serious. .
  • the embodiment of the present invention adopts a multiplexing mechanism of channel resources, that is, the same PUCCH channel resource or the same group of PUCCH channel resources can be used simultaneously by multiple UEs, and the interference problem caused by the multiplexing resources is minimized.
  • the macro base station is at fl and the micro base station is at f2, and the backhaul between the macro base station and the micro base station is ideal, and the PUCCH needs to be considered for receiving the micro base station to reduce uplink interference.
  • the PUCCH needs to be considered for receiving the micro base station to reduce uplink interference.
  • improving the power efficiency of the UE so that the problem of PUCCH resource multiplexing needs to be considered between the micro base stations; sometimes the macro base station also needs to receive the PUCCH to obtain better mobility performance, so it is also necessary to consider the problem of combining the macro base station to receive the PUCCH. .
  • an embodiment of the present invention provides a method for transmitting uplink control information, as shown in FIG.
  • the method of this embodiment includes the following steps.
  • Step 110 The UE receives the downlink data that is scheduled by the network device by using the downlink control channel, where the downlink control channel is a downlink control channel corresponding to the serving cell, and the serving cell is in at least two serving cells configured for the UE.
  • the serving cell, the at least two serving cells include one primary serving cell and at least one secondary serving cell.
  • Step 120 Select identification information according to the downlink control channel.
  • Step 130 Generate, by using the selected identifier information, a physical uplink control channel corresponding to the downlink data.
  • Step 140 Send the physical uplink control channel on a channel resource of the physical uplink control channel.
  • the physical uplink control channel sent by the UE is correspondingly used.
  • the identifier information is generated, so that after receiving the physical uplink control channel, the network device that sends the downlink control channel to the UE can distinguish the corresponding physical uplink control channel according to the used identification information, and implements the multiple network devices.
  • the same PUCCH channel resource is multiplexed, and the scheduling of downlink data of other base stations is not needed in real time, the gain of cell splitting is achieved, and the utilization of PUCCH channel resources is improved.
  • the PUCCH can also be used for offloading on the uplink carrier of the micro base station, and the benefit of receiving radio resource control on the macro base station can be maintained.
  • Another embodiment of the present invention provides a method for receiving an uplink control channel, as shown in FIG. 2.
  • the method of this embodiment includes the following steps.
  • Step 210 The network device sends downlink data scheduled by the downlink control channel to the user equipment UE, where the downlink control channel is a downlink control channel corresponding to the secondary serving cell corresponding to the network device, or the downlink control channel is the downlink control channel.
  • the downlink control channel is a downlink control channel corresponding to the primary serving cell corresponding to the network side device, where the secondary serving cell is a serving cell in at least two serving cells configured for the UE, and the at least two serving cells further include the primary serving cell .
  • Step 220 Determine identification information that the UE may use.
  • the physical uplink control channel corresponding to the downlink data is detected by using the identifier information that may be used on the channel resource used for the feedback of the physical uplink control channel, where the physical uplink control channel is The UE is generated using one of the identification information that the UE may use.
  • the physical uplink control channel sent by the UE is generated by using the corresponding identifier information, and after receiving the physical uplink control channel, the primary serving cell corresponding to the downlink control channel is sent to the UE.
  • the network device can distinguish the corresponding physical uplink control channel according to the identifier information, and realize the multiplexing of the same PUCCH channel resource between multiple network devices, without realizing the scheduling of the PUCCH channel resources of other base stations in real time, and achieving cell splitting.
  • the gain increases the utilization of PUCCH channel resources.
  • the PUCCH can also be activated to the offloading of the uplink carrier of the micro station, and can be maintained on the macro station. Receive the benefits of wireless resource control.
  • Another embodiment of the present invention further provides a method for transmitting uplink control information, as shown in FIG.
  • the method of this embodiment includes the following steps.
  • Step 310 The UE receives the downlink data that is scheduled by the network device by using the downlink control channel, where the downlink control channel is a downlink control channel corresponding to the serving cell, and the serving cell is in at least two serving cells configured for the UE.
  • the serving cell, the at least two serving cells include one primary serving cell and at least one secondary serving cell.
  • the downlink control channel includes a PDCCH and/or an ePDCCH.
  • the PDCCH is used as an example for description.
  • the ePDCCH is implemented in the same manner as the PDCCH.
  • One downlink control channel may correspond to one serving cell.
  • the configuration information of the at least two serving cells configured by the network device may be acquired.
  • the UE may obtain configuration information of at least two services configured by the network device by using RRC signaling. For example, the UE initially accesses from the primary serving cell, and then the network device discovers that the data requirement of the UE is increased, and further adds a secondary serving cell to the UE through RRC signaling.
  • RRC signaling For example, the UE initially accesses from the primary serving cell, and then the network device discovers that the data requirement of the UE is increased, and further adds a secondary serving cell to the UE through RRC signaling.
  • the embodiment of the present invention is not limited thereto, and any method for configuring at least two serving cells may be used in the embodiment of the present invention.
  • a serving cell may include a downlink carrier and an uplink carrier corresponding to the downlink carrier. Therefore, a pair of uplink carriers and downlink carriers are also referred to as a serving cell, and the service cells and carriers are not distinguished herein.
  • this embodiment is described by taking two serving cells as an example, that is, one primary serving cell and one secondary serving cell, but the embodiment of the present invention is not limited to two serving cells. If there are more secondary service cells, the same method can be used.
  • the primary serving cell and the secondary serving cell may also be a general first cell and a second cell, which are not limited.
  • At least two serving cells in this embodiment may work at different frequency points, or may be Working at the same frequency, the following is the same.
  • Step 320 Select identification information according to the downlink control channel.
  • the identifier information is used to generate the physical uplink control channel corresponding to the downlink control channel. Among them, different identification information is selected for different serving cells.
  • this step can include:
  • the UE if the UE only receives downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, and does not receive downlink data scheduled by the downlink control channel corresponding to the primary serving cell, the UE Selecting the second identity information; and/or, if the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the primary serving cell, that is, the UE only receives the primary serving cell corresponding to the downlink data.
  • the downlink control channel schedules the downlink data, or the UE receives the downlink data scheduled by the downlink control channel corresponding to the primary serving cell and the one or more secondary serving cells, and the UE selects the first identifier information.
  • the first identifier information may be cell identifier information corresponding to the primary serving cell. If the UE receives only the downlink data of the downlink control channel scheduling corresponding to the secondary serving cell, the second identifier information may be the cell identifier information corresponding to the one secondary serving cell; or if the UE only receives the The downlink data of the downlink control channel scheduling corresponding to the multiple secondary serving cells in the at least one secondary serving cell, the step of the UE selecting the second identifier information includes: the UE selecting the second identifier information according to a predetermined rule.
  • the cell identity information may be a cell identity and/or a virtual cell identity.
  • the selected identification information is first identification information; and/or, if the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, that is, the The downlink data received by the UE includes only the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, or the UE receives the downlink control channel scheduling corresponding to the primary serving cell and the secondary serving cell at the same time.
  • the selected identification information Is the second identification information.
  • the first identifier information may be cell identifier information corresponding to the primary serving cell. If the UE receives the downlink data scheduled by the primary serving cell and the downlink control channel corresponding to only one secondary serving cell, the second identifier information may be the cell identifier information corresponding to the one secondary serving cell; or
  • the step of the UE selecting the second identifier information includes: the UE selecting according to a predetermined rule The second identification information.
  • the cell identity information may be a cell identity and/or a virtual cell identity.
  • the cell identifier corresponding to the serving cell in the embodiment may be a physical cell identifier corresponding to the synchronization signal of the serving cell, and the virtual cell identifier of the serving cell may be a network device
  • the RRC signaling is an identifier X configured by the UE, and the value range of the identifier X may be the same as the value range of the physical cell identifier, for example, an integer from 0 to 503.
  • the first cell identity information and the second cell identity information may be a cell identity of a primary serving cell and a cell identity of a secondary serving cell, respectively.
  • the UE may acquire the cell identity of the primary serving cell by detecting the synchronization channel of the primary serving cell; then the network device adds a secondary serving cell to the UE by using RRC signaling, for example The carrier f2 of the micro base station, the network device sends the cell identifier of the secondary serving cell to the UE by using the RRC signaling, or the UE may obtain the cell identifier by detecting the synchronization channel of the secondary serving cell.
  • the second cell identifier information may be a virtual cell identifier
  • the first 'h-zone identifier information may be a cell identifier or a virtual cell identifier.
  • This example uses the second cell identifier information as the virtual cell identifier as an example for description. As shown in FIG.
  • the cell identifier corresponding to the primary serving cell is the identifier X; and the plurality of micro base stations (carriers) are included in the coverage of the macro base station, and if the cell identifiers corresponding to the micro base stations are the same (of course, they may be different),
  • the network device may configure, for the UE, the virtual cell identifier corresponding to the base stations, that is, the second cell identifier information, so that interference between the multiple micro base stations is randomized.
  • the network device may configure the virtual cell identifier to the UE by using RRC signaling, and assume that the virtual cell identifier is Xi, where i is the label of each micro base station.
  • the identifier information in the embodiment of the present invention is not limited to the foregoing example, and may be information of an identifier configured by the network device for the UE, where the identifier may be different for different serving cells.
  • the main month service cell corresponds to one identifier
  • the auxiliary month service cell corresponds to one identifier.
  • the identifier information may also be other identifier information, as long as the serving cell can be distinguished.
  • Step 330 The UE generates a physical uplink control channel corresponding to the downlink data by using the selected cell identity information.
  • the UE After the network device configures a primary serving cell and a secondary serving cell for the UE, the UE separately monitors the downlink control channels on the two serving cells to receive downlink data through the two serving cells.
  • the following control channel is described as a PDCCH.
  • the downlink control channel may also be an ePDCCH based on a UE-specific reference signal. It is assumed here that the primary serving cell of the macro base station and one secondary serving cell of the micro base station are independently scheduled to the UE, and the following situations occur:
  • the UE only receives the PDCCH of the primary serving cell
  • the UE only receives the PDCCH of the secondary serving cell
  • the UE simultaneously receives the PDCCH of the primary serving cell and the PDCCH of the secondary serving cell.
  • the UE can only send the PUCCH on one uplink carrier at a certain time, for example, the UE can only send the PUCCH on the uplink carrier corresponding to the primary serving cell at a certain time, or the UE can only be in the secondary serving cell at a certain moment.
  • the PUCCH is sent on the corresponding uplink carrier, or the UE can only send the PUCCH on the uplink carrier corresponding to the primary serving cell at some time, and can only send the PUCCH on the uplink carrier corresponding to the secondary serving cell at other times;
  • the above case 1) may be that only the macro base station schedules the UE, and at this time, only the macro base station needs to receive the PUCCH
  • the case 2) may be that no macro base station schedules the UE, only the micro base station needs to receive the PUCCH
  • the case 3) Receive PUCCH For the case 3), considering that the UE is farther away from the macro base station than the macro base station, the power used by the UE when transmitting the PUCCH needs to be such that the macro base station can receive the PUCCH.
  • the UE is to generate the cell identifier X of the macro base station in order to not affect the other UEs served by the macro base station (such as the single-carrier UE3 in FIG. 3a).
  • the base sequence of PUCCH Since the base sequence corresponding to the primary serving cell is generated by the same cell identifier X, the base sequence used by the UE served by the macro base station to transmit the PUCCH to the macro base station is the same, so that all UEs served by the macro base station are directed to the Acer base.
  • the PUCCH transmitted by the station may be orthogonal, so the PUCCH transmitted by each UE to the macro base station does not interfere. Or, for case 3), the UE may also send the PUCCH to the micro base station, and assume that the backhaul condition between the macro base station and the micro base station is ideal, and the PUCCH is sent to the micro base station to save the UE power and uplink the PUCCH to the micro base station.
  • the carrier is offloaded, then the cell identifier Xi is needed to generate the PUCCH.
  • the UE also uses X to generate the PUCCH.
  • the UE needs to use the cell identifier of the micro base station or the virtual cell identifier Xi to generate a corresponding PUCCH, so that when multiple micro base stations use the same PUCCH channel resource, the different Xis of each micro base station are utilized.
  • interference randomization it is also possible to implement interference randomization between UEs transmitting PUCCH when the macro base station and the micro base station use the same PUCCH channel resource. For example, as shown in FIG.
  • UE1 and UE2 respectively generate the corresponding PUCCHs by using the cell identifiers XI and X2 of the respective micro base stations, thus implementing multiple micro- The PUCCH interference between the base stations is randomized.
  • the UE1 receives the PDCCH of the macro base station and the UE2 receives only the PDCCH of the micro base station, the UE1 generates the PUCCH with the cell identity X of the macro base station of the UE1, and potential other directions.
  • the PUCCH of the UE of the macro base station is orthogonalized, and the UE2 generates the PUCCH by using the cell identifier X2 of the micro base station.
  • the PUCCH sent by the UE1 with a larger power and the PUCCH sent by the UE2 itself are also Can achieve interference randomization.
  • Step 340 The UE sends the physical uplink control channel on a channel resource of the physical uplink control channel.
  • the UE acquires the PUCCH channel resource, and after generating the PUCCH, sends the PUCCH to the network device, that is, the macro base station and/or the micro base station, on the channel resource.
  • the physical uplink control channel sent by the UE is generated by using the corresponding cell identity information.
  • the network device that sends the downlink control channel to the UE can be configured according to the method.
  • the used cell identification information distinguishes the corresponding physical
  • the row control channel realizes multiplexing the same PUCCH channel resources among multiple network devices, and does not need to know the scheduling situation of downlink data of other base stations in real time, and achieves the gain of cell splitting, and improves
  • PUCCH interference randomization is also achieved by using the physical uplink control channel generated by using the corresponding cell identification information.
  • the UE selects the second cell identity information according to a predetermined rule.
  • This embodiment can have a variety of predetermined rules.
  • the UE selects cell identity information corresponding to any of the multiple secondary serving cells as the second cell identity information, and the secondary serving base station that sends the downlink data uses all possible uses.
  • the cell identification information detects the PUCCH.
  • the UE selects the cell identity information notified by the network device corresponding to the primary serving cell as the second cell identity information.
  • the UE selects the common cell identity information corresponding to the at least one secondary serving cell as the second cell identity information.
  • the public cell identifier information may be a virtual cell identifier that is sent by the network device to the UE, even if there are multiple secondary serving cell scheduling, or if the corresponding cell identifiers of the micro base stations are the same, the public cell identifier information may be The same cell identifiers and the like corresponding to the micro base stations, and the embodiments of the present invention are not limited to these manners, and may be other common cell identifiers.
  • the embodiment of the present invention is not limited thereto, and may be other predetermined rules.
  • the PUCCH is fed back by using one or a group of PUCCH channel resources that are notified or pre-stored by the network device.
  • the UE uses the corresponding primary serving cell.
  • the one or a group of PUCCH channel resources may also be used by the network device corresponding to the secondary serving cell.
  • the pre-stored one or a group of PUCCH channel resources may be one or a group of PUCCH channel resources stored after receiving one or a group of PUCCH channel resources notified by the network device. The embodiments below are the same as this.
  • the one or a set of PUCCH channel resources are network devices that are semi-statically configured for the UE. Specifically, the network device may notify the UE of the one or a group of PUCCH channel resources by using RRC signaling.
  • the PUCCH channel resource is a channel resource of one PUCCH format 3; for the PUCCH format lb combined with the channel selection feedback mode, the PUCCH channel resource is a PUCCH format lb channel resource for channel selection.
  • a channel resource of a set of PUCCH format lb for example, for channel selection of level M
  • the channel resource of the group of channel resources including M PUCCH format lb, the value of M may be 2, 3 or 4,
  • the value of M depends on the transmission mode of the downlink data corresponding to the serving cell.
  • the value of M depends on the number of downlink subframes in a binding window. In this way, one or a group of PUCCH channel resources are reserved, so that the implementation is relatively simple, and the number of channel resources for network device blind detection is also small.
  • the channel resource is the first channel resource; Or, if the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, the channel resource is a second channel resource.
  • the first channel resource is a channel resource of the physical uplink control channel implicitly corresponding to a channel resource parameter of a downlink control channel corresponding to the primary serving cell, such as an antenna port according to a CCE index and/or a downlink control channel. Or the channel resource determined according to the eCCE index and/or the antenna port number of the downlink control channel; the second channel resource is the physical uplink control channel notified by the network device corresponding to the primary serving cell A channel resource or a group of channel resources.
  • the channel resource is a first channel resource; and/or, If the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the primary serving cell, or if the downlink data received by the UE includes multiple of the at least one secondary serving cell Downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, where the channel resource is a second channel resource;
  • the second channel resource is a channel resource or a group of channel resources of the physical uplink control channel that is notified by the network device corresponding to the primary serving cell; the first channel resource is corresponding to the one secondary serving cell
  • the channel resource parameter of the downlink control channel implicitly corresponds to the channel resource of the physical uplink control channel, or if the second channel resource is a group of channel resources, the first channel resource is the set of channel resources One of the channel resources.
  • the channel resource is a first channel resource, where the first channel resource is the The channel resource parameter implicitly corresponding to the channel control parameter of the downlink control channel corresponding to the primary serving cell;
  • the downlink data received by the UE includes downlink data scheduled by a downlink control channel corresponding to multiple secondary serving cells in the at least one secondary serving cell, or if the downlink data received by the UE includes the primary service Downlink data scheduled by the downlink control channel corresponding to the cell and downlink data scheduled by the downlink control channel corresponding to the one or more secondary serving cells, where the channel resource is a third channel resource; the third channel resource is the primary serving cell a channel resource or a group of channel resources of the physical uplink control channel notified by the corresponding network device; or
  • the channel resource is a second channel resource, where the second channel resource is the The channel resource implicitly corresponding to the resource parameter of the downlink control channel corresponding to the one of the at least one secondary serving cell; or, if the third channel resource is the set of channel resources, the second channel A resource is one of the set of channel resources.
  • the one channel resource or a group of channel resources may be notified by the RRC signaling of the network device corresponding to the primary serving cell by using radio resource control.
  • the UE when only the PDCCH of the secondary serving cell is received, the UE does not need to perform channel selection, but uses a certain channel resource to feed back the PUCCH, thereby reducing the possibility of the network device blindly detecting different channels. PUCCH performance can be optimized.
  • the channel resource may be on the uplink carrier corresponding to the primary serving cell.
  • the channel resource may also be placed on the uplink carrier corresponding to the secondary serving cell, but there may be a scheduling conflict.
  • the channel resource is located on the uplink carrier corresponding to the secondary serving cell.
  • the channel resource is located on an uplink carrier corresponding to the secondary serving cell; when the UE simultaneously receives the primary serving cell and For the downlink control channel corresponding to the secondary serving cell, the channel resource may be on the uplink carrier corresponding to the primary serving cell or the uplink carrier corresponding to the secondary serving cell. If the downlink data of the downlink control channel scheduling corresponding to the multiple serving cell is not received by the UE, and the downlink data of the downlink control channel scheduling corresponding to the primary serving cell is not received, the uplink carrier may be any An uplink carrier corresponding to a secondary serving cell.
  • the first network device that schedules the primary serving cell and the second network device that schedules the secondary serving cell need to respectively receive respective corresponding ACKs or NACKs on the uplink carrier:
  • the channel resource is carried on the uplink carrier corresponding to the primary serving cell. And/or, if the downlink data received by the UE includes the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, the channel resource is carried on the uplink carrier corresponding to the secondary serving cell. Further, generating the physical uplink control channel corresponding to the downlink data by using the selected cell identifier information may include:
  • the selected cell identification information is used to generate a sequence of the physical uplink control channel;
  • the selected cell identification information is used to generate a mapping of cyclic shift patterns and/or orthogonal spreading codes of modulation symbols of the physical uplink control channel.
  • the cell identifier or the virtual cell identifier is used to generate a base sequence of the PUCCH, so that the same cell identifier corresponds to the same base sequence, and different cell identifiers correspond to different base sequences.
  • Orthogonalization can be implemented between different PUCCH channels generated using the same base sequence, and PUCCHs generated using different base sequences are pseudo-orthogonal, so different base sequences can be used by using the same PUCCH channel resources. Interference randomization and resource multiplexing between PUCCHs are implemented.
  • the cyclic shift and the time domain spreading code of the frequency domain ZC sequence of the PUCCH of the lb format can be determined according to the PUCCH channel resource, so that the PUCCH corresponding to the downlink data is generated.
  • the orthogonal spreading code is first determined according to the PUCCH channel, then the modulation symbol is spread, and then the spread modulation symbol is cyclically shifted to generate PUCCH format 3.
  • the cyclically shifted pattern or rule is determined by the cell identifier or the virtual cell identifier, so that the channel resources of the PUCCH format 3 can be orthogonalized by using different orthogonal spreading codes, and the same orthogonality is used.
  • the PUCCH resource of the spreading code may use different cell identifiers or virtual cell identifiers to cyclically shift the spread modulation symbols, so as to implement interference randomization and resource multiplexing of channel resources of PUCCH format 3.
  • the coding bits of the NACK in the prior art, regardless of the situation of the PUCCH being fed back, the UE is determined according to the transmission mode of the downlink data configured on the primary serving cell and the secondary serving cell.
  • the number of ACK or NACK bits corresponding to the downlink data scheduled by the primary serving cell and the secondary serving cell is 1,
  • the ACK or NACK codebook size under the PUCCH format 3 mechanism is 2, and even if only the secondary serving cell is scheduled at a certain time, the ACK or NACK codebook size is still 2.
  • the embodiment of the present invention optimizes the codebook size design only when the micro base station is scheduled. Specifically, if it is the feedback mode of the format 3, as shown in FIG. 3, the method in this embodiment may further include:
  • Step 311 If the UE does not receive the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, determine the physical basis according to the transmission mode of the downlink data scheduled by the corresponding downlink control channel of the secondary serving cell.
  • the codebook size of the uplink control channel or, if the UE receives the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, according to the transmission mode of the downlink data of the primary serving cell and the secondary serving cell Determining the codebook size of the physical uplink control channel.
  • the UE determines the codebook size of the PUCCH according to the transmission mode of the downlink data configured on the secondary serving cell, and thus determines The size of the codebook that comes out is a small codebook. And if the UE receives downlink data scheduled by the downlink control channel corresponding to the primary serving cell, the UE determines the physical according to a transmission mode of downlink data configured on the primary serving cell and the secondary serving cell.
  • the codebook size of the uplink control channel is such that the codebook size determined by the UE is a large codebook.
  • the codebook size of the PUCCH fed back by the UE is different in the two cases, thereby improving the transmission efficiency of the PUCCH.
  • each secondary serving cell is independent. Therefore, the determined codebook size is the sum of the codebook sizes corresponding to the respective transmission modes configured on each secondary serving cell.
  • the UE receives the downlink data of the primary serving cell and the downlink data of multiple secondary serving cells, the determined codebook size is configured on the primary serving cell and the multiple secondary serving cells. The sum of the codebook sizes corresponding to the transmission mode.
  • step 311 may be performed after step 310 and between any two steps before step 340.
  • the network device side can use different cell identification information to determine different codebook sizes, so that the codebook size design in the case where the UE receives only the downlink scheduling corresponding to the secondary serving cell can be optimized, and the performance of receiving the ACK or the NACK is improved.
  • the sending, by the UE, the physical uplink control channel on the channel resource may include:
  • TPC transmit power control
  • the TPC command is a secondary service corresponding to the downlink data. a TPC command in a downlink control channel of a secondary serving cell of the cell or multiple secondary serving cells; or if the downlink data received by the UE includes downlink data scheduled by the downlink control channel of the primary serving cell, the TPC The command is a TPC command in the downlink control channel of the primary serving cell.
  • the TPC command is in a downlink control channel of the primary serving cell.
  • the path loss may be a predetermined value.
  • the path loss is the first path loss; and/or, if the downlink data received by the UE includes the downlink data serving cell scheduled by the downlink control channel corresponding to the primary serving cell Corresponding downlink, the path loss is a second path loss;
  • the path loss is a second path loss; or, if the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, and the path loss is the first path loss.
  • the second path loss is measured by the power of the downlink reference signal sent by the primary serving cell and the UE
  • the received power of the downlink reference signal is determined, where the received power of the downlink reference signal is reference signal reference power (RSRP); the first path loss is sent by the secondary serving cell Determined by the power of the downlink reference signal, the received power of the downlink reference signal measured by the UE, and the power offset;
  • RSRP reference signal reference power
  • the second path loss is the power of the downlink reference signal sent by the primary serving cell, and the UE measures The received power of the downlink reference signal and the power offset are determined; the first path loss is a power of a downlink reference signal transmitted by the secondary serving cell and the downlink reference signal measured by the UE The received power is determined.
  • the value of the TPC command in the downlink control channel of the primary serving cell is a first TPC command value; and the value of the transmit power control TPC command in the downlink control channel of the secondary serving cell is a second TPC command value, where the difference between the first TPC command value and the second TPC command value is a power offset, where the first TPC command value is in a downlink control channel of the primary serving cell
  • the location in the set of values of the TPC command is the same as the location in the set of values of the TPC command in the downlink control channel of the secondary serving cell.
  • the TPC command is a first TPC command
  • the path loss value is a first path loss value
  • the TPC command is a second TPC command
  • the path loss value is a second path loss value
  • the TPC command is a second TPC command, and the path loss value is And a second path loss value; and/or, if the downlink data received by the UE includes downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, the TPC command is a first TPC command, and the path loss value is The first path loss value.
  • the first path loss is determined by the power of the downlink reference signal sent by the secondary serving cell and the received power of the downlink reference signal measured by the UE; the second path loss is passed by the primary path loss
  • the power of the downlink reference signal sent by the serving cell and the received power of the downlink reference signal measured by the UE are determined; the value set of the first TPC command and the value set of the second TPC command are corresponding to At least one of the elements has a different value and differs by one power offset.
  • the UE sends the physical uplink control channel on the uplink carrier corresponding to the primary serving cell, and the value set of the second TPC command is ⁇ -1, 0, 1, 3 ⁇ dB.
  • the UE may use the second path loss and the second TPC command.
  • the value of the value set is used to determine the transmit power of the PUCCH.
  • the set of values of the first TPC command may be ⁇ -3, 0, 1, 6 ⁇ dB, which can be seen as the fetch with the second TPC command.
  • the corresponding elements in the set of values have different values. Of course, other values are not excluded.
  • the difference between the corresponding values can be regarded as a power offset to compensate the primary serving cell and the The power difference of the path loss caused by the frequency at which the secondary serving cell is located.
  • the power offset may be a power difference of a path loss caused by a frequency point of the primary serving cell and the secondary serving cell, but is not limited thereto, and may be a one set according to other requirements. Power offset.
  • Step 350 If the network device corresponding to the primary serving cell sends the downlink number to the UE
  • the network device detects the first physical uplink control channel by using the first identifier, and the network device uses the second identifier to detect a second physical uplink control channel, where the size of the information codebook included in the first physical uplink control channel is determined according to the downlink data of the primary serving cell, and the size of the information codebook included in the second physical uplink control channel is according to the Determining the downlink data of the primary serving cell and the secondary serving cell, where the first identifier is the cell identifier information corresponding to the primary serving cell, and the second identifier is the cell identifier information corresponding to the secondary serving cell .
  • the method may further include:
  • the network device of the primary serving cell notifies the UE and a network device corresponding to all the secondary serving cells configured for the UE, to notify a channel resource or a group of channel resources of the physical uplink control channel.
  • the step 331 can be performed before any step before the step 340, and the embodiment of the present invention is not limited to the execution timing thereof. Wherein, it may be notified by RRC signaling. Network equipment such as devices.
  • the detecting the physical uplink control channel corresponding to the downlink data includes:: implicitly corresponding to the one channel resource or a group of channel resources and the downlink control channel
  • the physical uplink control channel corresponding to the downlink data is detected by using the cell identity information on a channel resource of the physical uplink control channel.
  • the detecting the physical uplink control channel corresponding to the downlink data includes: detecting, on an uplink carrier corresponding to the primary serving cell, a physical uplink control channel corresponding to the downlink data.
  • Step 360 If the network device corresponding to the secondary serving cell sends the downlink data to the UE, the network device corresponding to the secondary serving cell uses the possible used cell identifier on the channel resource used for feeding back the physical uplink control channel.
  • the information is used to detect a physical uplink control channel corresponding to the downlink data, where the physical uplink control channel is generated by the UE by using one of the cell identification information that may be used.
  • the network device detects the first physical uplink control channel by using the first identifier, and the network device uses the second identifier to detect a second physical uplink control channel, where the information codebook size included in the first physical uplink control channel is determined according to downlink data of the primary serving cell and the secondary serving cell, or determined according to downlink data of the secondary serving cell, The information codebook size of the second physical uplink control channel is determined according to the downlink data of the primary serving cell and the secondary serving cell, where the first identifier is the cell identity information corresponding to the primary serving cell.
  • the second identifier is cell identifier information corresponding to the secondary serving cell.
  • step 350 and step 360 may be arbitrary, for example, may be performed simultaneously or sequentially.
  • the cell identity information that the UE may use includes:
  • the identifier information that may be used by the UE includes the cell identifier information corresponding to the primary serving cell, the cell identifier information corresponding to the secondary serving cell corresponding to the network device, and the identifier information determined according to a predetermined rule; or
  • the identifier information that the UE may use includes the cell identity information corresponding to the primary serving cell and the cell identity information corresponding to all the secondary serving cells configured for the UE.
  • the cell identity information determined according to the predetermined rule includes: Cell identification information notified by the network device corresponding to the primary serving cell; or
  • the common cell identifier information corresponding to all the secondary serving cells configured by the UE where the public cell identifier information may be referred to in the foregoing embodiment, and details are not described herein again.
  • the detecting the information of the physical uplink control channel corresponding to the downlink data may include: using the possible used cell on the one channel resource or the group of channel resources corresponding to the information
  • the identifier information is used to detect the physical uplink control channel corresponding to the downlink data.
  • the detecting the physical uplink control channel corresponding to the downlink data may include: the foregoing, in the one channel resource or the group of channel resources. Detecting, by using the identifier information that may be used, the physical information corresponding to the downlink data, by using the one of the channel resources, the channel resources, and the channel resources of the physical uplink control channel corresponding to the downlink control channel. Uplink control channel.
  • the acquiring information about a channel resource or a group of channel resources of the physical uplink control channel may include: acquiring information about the one channel resource or the group of channel resources by using RRC signaling.
  • the method may further include: receiving, by using RRC signaling, the one channel resource or the group of channels Information of the resource, and storing the information of the one channel resource or the set of channel resources;
  • the acquiring information about a channel resource or a group of channel resources of the physical uplink control channel may include: acquiring the stored information.
  • the physical uplink control channel sent by the UE is generated by using the corresponding cell identity information, so after receiving the physical uplink control channel, the primary serving cell corresponding to the downlink control channel is sent to the UE.
  • the network device can distinguish the corresponding physical uplink control channel according to the cell identity information, and realize the multiplexing of the same PUCCH channel resource among multiple network devices, without realizing the scheduling of the PUCCH channel resources of other eNBs in real time, and achieving Community
  • the split gain improves the utilization of PUCCH channel resources.
  • the base station corresponding to the secondary serving cell reduces the possibility of blindly detecting different channels, and the PUCCH performance can be optimized.
  • Another embodiment of the present invention provides a method for transmitting an uplink control channel. As shown in FIG. 4, the method includes the following steps.
  • Step 410 The UE receives downlink data that is scheduled by the network device by using one or more downlink control channels, where the downlink control channel is a downlink control channel corresponding to one or more serving cells, where the one or more serving cells are The serving cell of the at least two serving cells configured by the UE, the at least two serving cells including one primary serving cell and at least one secondary serving cell.
  • the downlink control channel is a downlink control channel corresponding to one or more serving cells
  • the one or more serving cells are The serving cell of the at least two serving cells configured by the UE, the at least two serving cells including one primary serving cell and at least one secondary serving cell.
  • Step 420 Generate a physical uplink control channel corresponding to the downlink data.
  • Step 430 The UE determines a transmit power of the physical uplink control channel according to a TPC command and a path loss value in the downlink control channel, and sends the physical uplink control channel by using the determined transmit power.
  • the downlink control channel of the secondary serving cell is used.
  • the TPC command and path loss in the downlink control channel determine the transmit power of the PUCCH.
  • the UE receives the downlink data scheduled by the downlink control channel of the secondary serving cell, and receives the downlink data scheduled by the downlink control channel of the primary serving cell, the downlink control channel of the secondary serving cell is used.
  • a TPC command and a path loss to determine a transmit power of the PUCCH; and/or, if the downlink data received by the UE includes only downlink data scheduled by a downlink control channel of the primary serving cell, using the primary serving cell TPC commands and path loss in the downlink control channel The transmission power of the PUCCH is determined.
  • the TPC command in the downlink control channel of any secondary serving cell is used. And path loss to determine that the transmit power of the PUCCH is ok.
  • the path loss value is a first path loss value if the UE only receives downlink data scheduled by the downlink control channel corresponding to the secondary serving cell. Further, in an embodiment, if the UE only receives downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, the path loss value is a first path loss value; and/or, if The downlink data received by the UE includes the downlink corresponding to the downlink data serving cell scheduled by the downlink control channel corresponding to the primary serving cell, and the path loss value is the second path loss value.
  • the path loss value is a first path loss value
  • the second path loss is measured by the power of the downlink reference signal sent by the primary serving cell and the UE
  • the received power of the downlink reference signal is determined, where the received power of the downlink reference signal is reference signal reference power (RSRP); the first path loss is sent by the secondary serving cell Determined by the power of the downlink reference signal, the received power of the downlink reference signal measured by the UE, and the power offset;
  • RSRP reference signal reference power
  • the second path loss is the power of the downlink reference signal sent by the primary serving cell, and the UE measures The received power of the downlink reference signal and the power offset are determined; the first path loss is a power of a downlink reference signal transmitted by the secondary serving cell and the downlink reference signal measured by the UE The received power is determined.
  • the value of the TPC command in the downlink control channel of the primary serving cell is a first TPC command value; and the transmit power in the downlink control channel of the secondary serving cell controls a TPC command.
  • the value of the command is a second TPC command value, and the difference between the first TPC command value and the second TPC command value is a power offset, where the first TPC command value is in the downlink of the primary serving cell.
  • the location in the set of values of the TPC command in the control channel is the same as the location in the set of values of the TPC command in the downlink control channel of the secondary serving cell.
  • the TPC command is a first TPC command
  • the path loss value is The first path loss value
  • the TPC command is the second TPC.
  • the command, the path loss value is a second path loss value.
  • the TPC command is a second TPC command, and the path loss value is a second path loss value; and/or, if the downlink data received by the UE includes downlink data corresponding to a downlink data serving cell scheduled by the downlink control channel corresponding to the secondary serving cell, the TPC command is a first TPC command, The path loss value is a first path loss value.
  • the first path loss is determined by the power of the downlink reference signal sent by the secondary serving cell and the received power of the downlink reference signal measured by the UE; the second path loss is passed by the primary path loss
  • the power of the downlink reference signal sent by the serving cell and the received power of the downlink reference signal measured by the UE are determined; the value set of the first TPC command and the value set of the second TPC command are corresponding to At least one of the elements has a different value and differs by one power offset.
  • the UE sends the physical uplink control channel on the uplink carrier corresponding to the primary serving cell, and the value set of the second TPC command is ⁇ -1, 0, 1, 3 ⁇ dB.
  • the UE may use the second path loss and the second TPC command.
  • the value of the value set is used to determine the transmit power of the PUCCH.
  • the set of values of the first TPC command may be ⁇ -3, 0, 1, 6 ⁇ dB, which can be seen as the fetch with the second TPC command.
  • the corresponding elements in the value set have two values that are different. Of course, other values are not excluded. The difference between the two can be regarded as a power offset to compensate for the power difference of the path loss caused by the frequency of the primary serving cell and the secondary serving cell.
  • the power offset may be a power difference of a path loss caused by a frequency point of the primary serving cell and the secondary serving cell, but is not limited thereto, and may be a one set according to other requirements. Power offset.
  • the scheme can improve the power efficiency according to sending the physical uplink control channel to different transmission points with respective powers, and the speed is reduced to other UEs and base stations.
  • An embodiment of the present invention provides a user equipment 50.
  • the embodiment can perform the steps in the method in the foregoing embodiment.
  • This embodiment only describes the structure of the user equipment 50.
  • the user equipment 50 of this embodiment includes a receiving module 510, a selecting module 520, a generating module 530, and a sending module 540.
  • the receiving module 510 is configured to receive downlink data that is scheduled by the network device by using a downlink control channel, where the downlink control channel is a downlink control channel corresponding to the serving cell, and the serving cell is at least two serving cells configured for the UE. a serving cell, the at least two serving cells including one primary serving cell and at least one secondary serving cell;
  • the selecting module 520 is configured to select, according to the downlink data received by the receiving module 510, the identifier information corresponding to the downlink control channel;
  • the generating module 530 is configured to generate, by using the identifier information selected by the selecting module 520, a physical uplink control channel corresponding to the downlink data;
  • the sending module 540 is configured to send the physical uplink control channel on a channel resource of the physical uplink control channel generated by the generating module 530.
  • the selecting module 520 is specifically configured to: if the downlink data received by the receiving module 510 does not include downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select the second
  • the generating module 530 is specifically configured to: generate, by using the second identifier information, a physical uplink control channel corresponding to the downlink data; or, if the downlink data received by the receiving module 510 includes the primary The downlink data of the downlink control channel corresponding to the serving cell is selected, and the first identifier information is selected.
  • the generating module 530 is specifically configured to generate, by using the first identifier information, a physical uplink control channel corresponding to the downlink data.
  • the selecting module 520 is specifically configured to: select, as the first identifier information, cell identity information corresponding to the primary serving cell; or
  • the selecting module 520 is specifically configured to: if the receiving module 510 receives only the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, select the cell identity information corresponding to the one secondary serving cell as the second identifier. Or the second identification information is selected according to a predetermined rule if the receiving module 510 only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell.
  • the selecting module 520 is specifically configured to: if the downlink data received by the receiving module 510 includes only downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select the first identifier.
  • the generating module 530 is specifically configured to: generate, by using the first identifier information, a physical uplink control channel corresponding to the downlink data; and/or,
  • the selecting module 520 is specifically configured to: if the downlink data received by the receiving module 510 includes the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, select the second identifier information, where the generating module 530 is specific. And configured to generate, by using the second identifier information, a physical uplink control channel corresponding to the downlink data.
  • the selecting module 520 is specifically configured to: select the cell identity information corresponding to the primary serving cell as the first identifier information; or
  • the selecting module 520 is specifically configured to: if the receiving module 510 receives the downlink data scheduled by the primary serving cell and the downlink control channel corresponding to only one secondary serving cell, select the one.
  • the cell identification information corresponding to the secondary serving cell is used as the second identifier information; or
  • the selecting module 520 is specifically configured to: if the receiving module only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell, select the second identifier according to a predetermined rule. information.
  • the selecting module 520 is specifically configured to select the second identifier information according to a predetermined rule according to the following manner: selecting cell identity information corresponding to any secondary serving cell of the multiple secondary serving cells as the second cell Or identifying the cell identity information notified by the network device corresponding to the primary serving cell as the second cell identity information; or selecting the common cell identity information corresponding to the at least one secondary serving cell as the second Cell identification information.
  • the selecting module 520 may be specifically configured to select the cell identity information as follows: Select a cell identity and/or a virtual cell identity as the cell identity information.
  • the user equipment may further include a channel resource acquiring module 550.
  • the channel resource acquiring module 550 is configured to acquire information about a channel resource or a group of channel resources of the physical uplink control channel, where the sending module 540 is specifically configured to: Transmitting, by the channel resource of the physical uplink control channel, the physical uplink control channel: the one channel resource or a group corresponding to the information of the one channel resource or a group of channel resources acquired by the channel resource acquiring module 550 And transmitting, on the channel resource, the physical uplink control channel generated by the generating module 530.
  • the channel resource obtaining module 550 is configured to determine the receiving module.
  • the serving cell corresponding to the downlink data received by the 510 is the primary serving cell, and acquires a channel resource parameter of the downlink control channel corresponding to the primary serving cell;
  • the sending module 540 is specifically configured to be in the following manner Transmitting the physical uplink control channel on the channel resource of the physical uplink control channel: sending, by the generating module 530, the first channel resource corresponding to the channel resource parameter acquired by the channel resource acquiring module 550 a physical uplink control channel, where the first channel resource is the physical uplink corresponding to the channel resource parameter acquired by the channel resource acquiring module 550 Channel resources of the control channel; or
  • the channel resource obtaining module 550 is configured to determine that the serving cell corresponding to the downlink data received by the receiving module 510 includes the secondary serving cell, and obtain a channel resource or a group of channel resources of the physical uplink control channel.
  • the sending module 540 is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending the physics generated by the generating module 530 on a second channel resource An uplink control channel, where the second channel resource is the one channel resource or the group of channel resources corresponding to the information of the one channel resource or the group of channel resources acquired by the channel resource acquiring module 550 .
  • the channel resource acquiring module 550 is configured to determine that the serving cell corresponding to the downlink data received by the receiving module 510 is a secondary serving cell in the at least one secondary serving cell, and obtains The channel resource parameter of the downlink control channel corresponding to the one serving cell; the sending module 540 is specifically configured to send the physical uplink control channel on the channel resource of the physical uplink control channel as follows: And transmitting, by the resource, the physical uplink control channel, where the third channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the channel resource acquiring module 550; or
  • the channel resource obtaining module 550 is configured to determine that the serving cell corresponding to the downlink data received by the receiving module 510 includes one or more secondary serving cells of the primary serving cell and the at least one secondary serving cell, Or, the method includes: acquiring, by the multiple serving cell in the at least one secondary serving cell, the information about a channel resource or a group of channel resources of the physical uplink control channel; Transmitting the physical uplink control channel on the channel resource of the physical uplink control channel: sending, on the fourth channel resource, the physical uplink control channel, where the fourth channel resource is the channel resource acquiring module The one channel resource or the set of channel resources corresponding to the one channel resource or the group of channel resources acquired by the 550; or
  • the channel resource obtaining module 550 is configured to determine that the serving cell corresponding to the downlink data received by the receiving module 510 is a secondary serving cell in the at least one secondary serving cell, and obtains Information of one channel resource or a group of channel resources of the physical uplink control channel; the sending module
  • the 540 is specifically configured to send the physical uplink control channel on the channel resource of the physical uplink control channel as follows: on the fifth channel resource, send the physical uplink control channel; where, if the fourth channel resource For the set of channel resources acquired by the channel resource obtaining module 550, the fifth channel resource is one of the channel resources of the set of channel resources.
  • the channel resource acquiring module 550 is configured to determine that the serving cell corresponding to the downlink data received by the receiving module 510 is the primary serving cell, and obtain the downlink corresponding to the primary serving cell. a channel resource parameter of the control channel; the sending module 540 is configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending the physical uplink control on the first channel resource a channel, where the first channel resource is a channel resource corresponding to the channel resource parameter acquired by the channel resource acquiring module 550; or
  • the channel resource obtaining module 550 is configured to determine that the serving cell corresponding to the downlink data that is received by the receiving module 510 is one of the at least one secondary serving cell, and obtain the at least one secondary serving cell.
  • the channel resource parameter of the downlink control channel corresponding to the one of the secondary serving cells; the sending module 540 is specifically configured to send the physical uplink control channel on the channel resource of the physical uplink control channel as follows: Transmitting, by the three channel resources, the physical uplink control channel, where the third channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the channel resource acquiring module 550; or
  • the channel resource obtaining module 550 is configured to determine that the serving cell corresponding to the downlink data received by the receiving module 510 includes multiple secondary serving cells in the at least one secondary serving cell, or includes the primary serving cell and Obtaining one or more secondary serving cells of the at least one secondary serving cell, and acquiring information of one channel resource or a group of channel resources of the physical uplink control channel; the sending module 540 is specifically configured to be in the following manner
  • the physical uplink control channel is sent on the channel resource of the physical uplink control channel: the physical uplink control channel is sent on the fourth channel resource, where the fourth channel resource is obtained by the channel resource acquiring module 550 Said one channel resource or the set of channel resources corresponding to information of a channel resource or a group of channel resources;
  • the channel resource obtaining module 550 is configured to determine that the serving cell corresponding to the downlink data that is received by the receiving module 510 is one of the at least one secondary serving cell, and obtain the physical uplink control channel.
  • the sending module 540 is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending the a physical uplink control channel; wherein, if the fourth channel resource is the set of channel resources, the fifth channel resource is one of the set of channel resources.
  • the receiving module 510 is further configured to receive the information about the one channel resource or a group of channel resources that are sent by the network device by using the RC signaling; the channel resource acquiring module 550 is specifically configured to acquire the receiving The one channel resource or the information of the set of channel resources received by module 510.
  • the user equipment further includes a storage module 560.
  • the storage module 560 is configured to store the information of the one channel resource or the set of channel resources.
  • the channel resource acquisition 550 is specifically configured to acquire the one channel resource from the storage module 560 or The information of the set of channel resources.
  • the sending module 520 is specifically configured to send the physical uplink control channel generated by the generating module 530 on the channel resource of the physical uplink control channel as follows:
  • the channel resource is carried on the uplink carrier corresponding to the primary serving cell, and the generating module is sent.
  • the receiving module 510 only receives the downlink data scheduled by the downlink control channel of the one of the multiple secondary serving cells, the channel resource is carried on the uplink carrier corresponding to the one secondary serving cell.
  • the receiving module 510 only receives multiple auxiliary services in the at least one secondary serving cell And transmitting the downlink uplink data of the downlink control channel corresponding to the cell, and transmitting, by using the channel resource, the physical uplink control generated by the generating module 530, on an uplink carrier corresponding to a secondary serving cell of the multiple secondary serving cells channel.
  • the sending module 520 is specifically configured to send, according to the channel resource of the physical uplink control channel, the physical uplink control channel generated by the generating module 530: if the receiving module The received downlink data includes only the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, and the channel resource is carried on the uplink carrier corresponding to the primary serving cell; or if the receiving module receives The downlink data includes the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, and the channel resource is carried on the uplink carrier corresponding to the secondary serving cell.
  • the generating module 530 is specifically configured to generate the physical uplink control channel corresponding to the downlink data by using the selected identifier information as follows:
  • the information For the feedback mode of the downlink control channel format lb combined with the channel selection, using the selected identification information to generate a sequence of the physical uplink control channel; or, for the feedback mode of the downlink control channel format 3, using the selected identifier
  • the information generates a cyclic shift pattern of modulation symbols of the physical uplink control channel and/or performs mapping of orthogonal spreading codes using the selected identification information.
  • the user equipment may further include:
  • the codebook determining module 570 is configured to: in the feedback mode of the format 3, if the receiving module 510 does not receive downlink data scheduled by the downlink control channel corresponding to the primary serving cell, according to the downlink data of the secondary serving cell
  • the transmission mode determines the codebook size of the physical uplink control channel; or, if the receiving module 510 receives the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, according to the primary serving cell and the secondary Determining, by the transmission mode of the downlink data of the serving cell, the codebook size of the physical uplink control channel;
  • the generating module 530 is further configured to generate the physical uplink control channel according to the codebook size determined by the codebook determining module 570 and the identifier information selected by the selecting module.
  • the user equipment further includes:
  • a power determining module 580 configured to determine a transmit power of the physical uplink control channel according to a path loss value and a transmit power control TPC command in the downlink control channel corresponding to the downlink data received by the receiving module 510; If the downlink data received by the receiving module 510 does not include downlink data scheduled by the downlink control channel of the primary serving cell, the TPC command is a secondary serving cell or multiple secondary services corresponding to the downlink data.
  • the TPC command is a TPC command in a downlink control channel of a secondary serving cell or a secondary serving cell of the secondary serving cell corresponding to the downlink data;
  • the sending module 540 is specifically configured to send the physical uplink control channel generated by the generating module 530 according to the following manner: sending, according to the sending power determined by the power determining module 580, the generated by the generating module 530 Physical uplink control channel.
  • the user equipment further includes:
  • the power determining module 580 is configured to: if the downlink data received by the receiving module includes only downlink data scheduled by a downlink control channel of the primary serving cell, where the TPC command is in a downlink control channel of the primary serving cell The TPC command; or, if the downlink data received by the UE includes the downlink data scheduled by the downlink control channel of the secondary serving cell, the TPC command is a secondary serving cell or multiple secondary corresponding to the downlink data. a TPC command in a downlink control channel of a secondary serving cell in the serving cell;
  • the sending module 540 is specifically configured to send the physical uplink control channel generated by the generating module 530 according to the following manner: sending, according to the sending power determined by the power determining module 580, the generated by the generating module 530 Physical uplink control channel.
  • the user equipment further includes a measurement module 590.
  • the power determining module 580 is further configured to: determine the path loss according to the following manner: if the downlink data received by the receiving module 510 does not include a downlink control signal corresponding to the primary serving cell The downlink data of the channel scheduling is determined to be the first path loss; if the downlink data received by the receiving module 510 includes downlink data scheduled by the downlink control channel corresponding to the primary serving cell, the path is The loss is a second path loss, or if the downlink data received by the receiving module only includes downlink data scheduled by the downlink control channel corresponding to the primary serving cell, the path loss is a second path loss; If the downlink data received by the UE includes the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, the path loss is the first path loss; where, if the UE is in the uplink carrier corresponding to the primary serving cell, Transmitting the physical uplink control channel,
  • the receiving module 510 is further configured to receive a downlink reference signal sent by the primary serving cell, where the measuring module 590 is configured to measure a first received power of the downlink reference signal sent by the primary serving cell received by the receiving module 510.
  • the power determining module 580 determines the second path loss according to the first transmit power of the downlink reference signal sent by the primary serving cell and the first received power measured by the measurement module 590;
  • the receiving The module 510 is further configured to receive a downlink reference signal that is sent by one of the at least one secondary serving cell, where the measurement module 590 is configured to measure the a second received power of the downlink reference signal; the second determining power of the downlink reference signal sent by the one secondary serving cell, the second received power measured by the measuring module 590, and the power offset The first path loss determined by the shift amount;
  • the UE sends the physical uplink control channel on an uplink carrier corresponding to one of the at least one secondary serving cell
  • the receiving module 510 is further configured to receive a downlink reference signal that is sent by the primary serving cell, where the measurement module 590 is configured to measure, by the receiving module 510, the first downlink signaling signal that is sent by the primary serving cell. Receive power; the power determining module 580 determines the first according to the first transmit power of the downlink reference signal sent by the primary serving cell, the measurement module 590 measures the first received power, and the power offset Two path loss; the receiving module 510 The method is further configured to receive a downlink reference signal that is sent by one of the at least one secondary serving cell, where the measurement module 590 is configured to measure the downlink reference sent by the one serving cell that is received by the receiving module 510. a second received power of the signal; the power determining module 580 determines the second transmit power of the downlink reference signal sent by the one secondary serving cell and the second received power measured by the measurement module 590 A path loss.
  • An embodiment of the present invention provides a network device 80.
  • the embodiment can perform the steps in the method in the foregoing embodiment.
  • This embodiment only describes the structure of the network device 80.
  • the network device 80 of this embodiment includes a sending module 810, a determining module 820, and a receiving module 830.
  • the sending module 810 is configured to send the downlink data of the downlink control channel scheduling to the UE, where the downlink control channel is a downlink control channel corresponding to the secondary serving cell, and the secondary serving cell is at least two services configured for the UE.
  • the serving cell in the cell, or the downlink control channel is a downlink control channel corresponding to the primary serving cell corresponding to the network side device, and the at least two serving cells further include the primary serving cell;
  • a determining module 820 configured to determine, after the sending module 810 sends the downlink data, identifier information that the UE may use;
  • the receiving module 830 is configured to detect, by using the identifier information that is determined by the determining module 820, the physical uplink control channel corresponding to the downlink data, on the channel resource used for the feedback of the physical uplink control channel.
  • the physical uplink control channel is generated by the UE by using one of the identifier information that may be used.
  • the determining module 820 is specifically configured to: determine that the identifier information that the UE may use includes: cell identifier information corresponding to the primary serving cell, cell identifier information corresponding to the secondary serving cell corresponding to the network device, and The identification information determined by the predetermined rule; or
  • the identifier information that the UE may use includes the cell identity information corresponding to the primary serving cell and the cell identity information corresponding to all the secondary serving cells configured for the UE;
  • the cell identity information is a cell identity and/or a virtual cell identity.
  • the determining module 820 is specifically configured to determine the identifier information according to a predetermined rule: the cell identifier information notified by the network device corresponding to the primary serving cell, or the public corresponding to all the secondary serving cells configured by the UE Cell identification information.
  • the network device may further include:
  • the channel resource obtaining module 850 is configured to acquire information about a channel resource or a group of channel resources of the physical uplink control channel, and acquire channel resources of the downlink control channel corresponding to the downlink data sent by the sending module 810. Parameter
  • the receiving module 830 is specifically configured to detect, by using the identifier information that may be used by the determining module 820, the physical uplink control channel corresponding to the downlink data: obtained by the channel resource acquiring module 850.
  • the one channel resource or the set of channel resources corresponding to the one channel resource or the group of channel resources, and the channel resource parameter obtained by the channel resource acquiring module 850 The physical uplink control channel corresponding to the downlink data is detected by using the identifier information that may be used by the determining module 820.
  • the receiving module 830 is further configured to receive, by receiving the radio resource control RRC signaling, the information about the one channel resource or the group of channel resources of the physical uplink control channel, where the channel resource acquiring module 850 is specific. For obtaining, by the RRC signaling received by the receiving module 830, the information about the one channel resource or a group of channel resources of the physical uplink control channel; or
  • the network device further includes a storage module 840.
  • the network device further includes a storage module 840, where the storage module 840 is configured to store the information of the one channel resource or a group of channel resources received by the receiving module 830; The information of the one channel resource or a group of channel resources is obtained from the storage module 840.
  • An embodiment of the present invention provides a network device 90. The embodiment can perform the steps in the method in the foregoing embodiment. This embodiment only describes the structure of the network device 90. For the specific implementation, refer to the description in the foregoing embodiment.
  • the network device 90 of this embodiment includes a sending module 910, a determining module 920, and a receiving module 830.
  • the sending module 910 is configured to send downlink data scheduled by the downlink control channel to the UE, where the downlink control channel is a downlink control channel corresponding to the primary serving cell, and the primary serving cell is at least two services configured for the UE The primary serving cell in the cell, the at least two serving cells further including at least one secondary serving cell.
  • the determining module 920 is configured to determine, after the sending module 910 sends the downlink data, cell identity information corresponding to the primary serving cell, and transmit the cell identity information to the receiving module 930.
  • the receiving module 930 is configured to detect, by using the cell identity information that is sent by the determining module 920, the physical uplink control channel corresponding to the downlink data, on the channel resource that is used by the determining module 920 to be used for the feedback of the physical uplink control channel.
  • the physical uplink control channel is generated by the UE by using cell identity information corresponding to the primary serving cell.
  • the sending module 910 is further configured to notify the user equipment and a network device corresponding to all the secondary serving cells configured for the user equipment of a channel resource or a group of channel resources of the physical uplink control channel.
  • the receiving module 910 is specifically configured to: in the one channel resource or a group of channel resources The source and the channel resource of the physical uplink control channel that is implicitly corresponding to the downlink control channel, use the cell identity information to detect a physical uplink control channel corresponding to the downlink data; or, in the one channel resource or one And detecting the downlink corresponding to the physical uplink control channel serving cell corresponding to the downlink data by using the cell identifier information.
  • the receiving module 910 is specifically configured to detect, on an uplink carrier corresponding to the primary serving cell, a physical uplink control channel corresponding to the downlink data.
  • the cell identifier information may be a cell identifier and/or a virtual cell identifier.
  • the same PUCCH channel resource is multiplexed between multiple network devices, and the scheduling condition of the PUCCH channel resources of other base stations is not needed in real time, the gain of cell splitting is achieved, and the PUCCH channel is improved. Utilization of resources.
  • An embodiment of the present invention provides a communication system, which includes the user equipment 50, the network device 80, and the network device 90 provided by the foregoing embodiments. For details, refer to the description in the above embodiments, and details are not described herein again.
  • the user equipment 50, the network device 80, and the network device 90 provided in this embodiment can perform the steps in the foregoing method.
  • An embodiment of the present invention provides a user equipment 1000.
  • the embodiment can perform the steps in the method in the foregoing embodiment.
  • This embodiment only describes the structure of the user equipment 1000.
  • the user equipment 1000 of this embodiment includes a receiver 1010, a processor 1020, and a transmitter 1030.
  • the receiver 1010 is configured to receive downlink data that is scheduled by the network device by using a downlink control channel, where the downlink control channel is a downlink control channel corresponding to the serving cell, and the serving cell is at least two serving cells configured for the UE.
  • the serving cell, the at least two serving cells include one primary serving cell and at least one secondary serving cell;
  • the processor 1020 is configured to correspond to the downlink data received by the receiver 1010.
  • the downlink control channel, the identifier information is selected, and the physical uplink control channel corresponding to the downlink data is generated by using the identifier information;
  • the transmitter 1030 is configured to send the physical uplink control channel on a channel resource of the physical uplink control channel generated by the generating module.
  • the processor 1020 is specifically configured to: if the downlink data received by the receiver 1010 does not include downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select second identifier information, and use the Generating, by the second identifier information, a physical uplink control channel corresponding to the downlink data; or
  • the processor 1020 is specifically configured to: if the downlink data received by the receiver 1010 includes downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select first identifier information, and use the first The identification information generates a physical uplink control channel corresponding to the downlink data.
  • the processor 1020 is specifically configured to select the identifier information as follows: the cell identifier information corresponding to the primary serving cell is selected as the first identifier information; or
  • the processor 1020 is specifically configured to select the identifier information according to the following manner: if the receiver 1010 receives only the downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, the cell identifier information corresponding to the one secondary serving cell is selected. As the second identification information; or
  • the processor 1020 is specifically configured to select the identifier information according to the following manner: if the receiver 1010 only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell, according to the predetermined The rule selects the second identification information.
  • the processor 1020 is specifically configured to: if the downlink data received by the receiver 1010 includes only downlink data scheduled by the downlink control channel corresponding to the primary serving cell, select the first identifier. And generating, by using the first identifier information, a physical uplink control channel corresponding to the downlink data; and/or
  • the processor 1020 is specifically configured to: if the receiver 1010 receives the downlink data The downlink data of the downlink control channel scheduling corresponding to the secondary serving cell is selected, the second identifier information is selected, and the physical uplink control channel corresponding to the downlink data is generated by using the second identifier information.
  • the processor 1020 is specifically configured to: select the identifier information as follows: select the cell identifier information corresponding to the primary serving cell as the first identifier information; or the processor is specifically used to Selecting the identification information as follows: if the receiver receives the downlink data scheduled by the primary serving cell and the downlink control channel corresponding to only one secondary serving cell, selecting the cell identity information corresponding to the one secondary serving cell as the Second identification information; or
  • the processor is specifically configured to select the identifier information according to the following manner: if the receiver only receives the downlink data scheduled by the downlink control channel corresponding to the multiple secondary serving cells in the at least one secondary serving cell, and selects according to a predetermined rule.
  • the second identification information Further, the processor 1020 is specifically configured to select the second identifier information according to a predetermined rule according to the following manner: selecting cell identifier information corresponding to any one of the multiple secondary serving cells as the second Or identifying the cell identity information that is notified by the network device corresponding to the primary serving cell as the second identity information; or: selecting the common cell identity information corresponding to the at least one secondary serving cell as the second Identification information.
  • the processor 1020 is specifically configured to select the cell identity information as follows: Select a cell identity and/or a virtual cell identity as the cell identity information.
  • the processor 1020 is further configured to: acquire information about a channel resource or a group of channel resources of the physical uplink control channel; and the transmitter 1030 is specifically configured to: Transmitting, by the channel resource of the uplink control channel, the physical uplink control channel: the one channel resource or a group of channel resources corresponding to the one channel resource or the group of channel resources acquired by the processor 1020 And transmitting, by the processor 1020, the physical uplink control channel.
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 is the primary serving cell, and obtain the primary serving cell pair.
  • the channel resource parameter of the downlink control channel should be: the transmitter 1030 is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: acquired by the processor 1020 And sending, by the processor 1020, the physical uplink control channel, where the first channel resource is the channel resource parameter acquired by the processor 1020, where the channel resource parameter corresponds to the first channel resource.
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 includes the secondary serving cell, and acquire one channel resource or a group of channel resources of the physical uplink control channel.
  • the transmitter 1030 is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: send the physical uplink generated by the processor 1020 on a second channel resource. a control channel, where the second channel resource is the one channel resource or the group of channel resources corresponding to the information of the one channel resource or a group of channel resources acquired by the processor 1020.
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 is one of the at least one secondary serving cell, and acquire the a channel resource parameter of a downlink control channel corresponding to a secondary serving cell; the transmitter 1030 is configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: And transmitting, by the physical uplink control channel, the third channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the processor 1020; or
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 includes one or more secondary serving cells of the primary serving cell and the at least one secondary serving cell, or And including the multiple secondary serving cells in the at least one secondary serving cell, and acquiring the information of one channel resource or a group of channel resources of the physical uplink control channel; the transmitter 1030 is specifically configured to be as follows Transmitting the physical uplink control channel on the channel resource of the physical uplink control channel: transmitting, on the fourth channel resource, the physical uplink control channel, where the fourth channel resource is acquired by the processor 1020 The one channel resource or a group of channel resources The one channel resource or the set of channel resources corresponding to the information; or
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 is one of the at least one secondary serving cell, and acquire one of the physical uplink control channels. a channel resource or a group of channel resource information; the transmitter 1030 is configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: on the fifth channel resource, send the a physical uplink control channel; wherein, if the fourth channel resource is the set of channel resources acquired by the processor 1020, the fifth channel resource is one of the set of channel resources.
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 is the primary serving cell, and obtain downlink control corresponding to the primary serving cell. a channel resource parameter of the channel; the transmitter 1030 is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending the physical uplink control channel on the first channel resource
  • the first channel resource is a channel resource corresponding to the channel resource parameter acquired by the processor 1020; or
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 is one of the at least one secondary serving cell, and obtain the at least one secondary serving cell.
  • the channel resource parameter of the downlink control channel corresponding to the one serving cell; the transmitter 1030 is specifically configured to send the physical uplink control channel on the channel resource of the physical uplink control channel as follows: Transmitting, by the channel resource, the physical uplink control channel, where the third channel resource is a channel resource of the physical uplink control channel corresponding to the channel resource parameter acquired by the processor 1020; or
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 includes multiple secondary serving cells in the at least one secondary serving cell, or include the primary serving cell and the And the one or more secondary serving cells in the at least one secondary serving cell, and acquiring information about a channel resource or a group of channel resources of the physical uplink control channel; the transmitter 1030 is specifically configured to be in the following manner Transmitting the physical uplink control on a channel resource of a physical uplink control channel The channel is: the physical uplink control channel is sent on the fourth channel resource, where the fourth channel resource is the one corresponding to the information of the one channel resource or a group of channel resources acquired by the processor 1020 Channel resources or the set of channel resources;
  • the processor 1020 is further configured to: determine that the serving cell corresponding to the downlink data received by the receiver 1010 is one of the at least one secondary serving cell, and acquire one of the physical uplink control channels.
  • the information of the channel resource or a group of channel resources; the transmitter 1030 is specifically configured to send the physical uplink control channel on a channel resource of the physical uplink control channel as follows: sending the physical on the fifth channel resource An uplink control channel; wherein, if the fourth channel resource is the set of channel resources, the fifth channel resource is one of the set of channel resources.
  • the receiver 1010 is further configured to: receive the information about the one channel resource or a group of channel resources that are sent by the network device by using a radio resource control RRC signaling; Acquiring, by acquiring the RRC signaling received by the receiver 1010, the information about the one channel resource or the set of channel resources; or
  • the user equipment further includes a memory 1040, where the memory 1040 is configured to store the information of the one channel resource or the set of channel resources; the processor 1020 is specifically configured to: The storage module acquires the information of the one channel resource or the set of channel resources.
  • the transmitter 1030 is specifically configured to send the physical uplink control channel generated by the processor 1020 on a channel resource of the physical uplink control channel as follows:
  • the channel resource is carried on the uplink carrier corresponding to the primary serving cell, and the processor is sent.
  • the channel resource is carried on the uplink carrier corresponding to the one secondary serving cell.
  • the physical uplink control channel generated by the processor 1020; or
  • the receiver 1010 receives only multiple secondary services in the at least one secondary serving cell And transmitting the downlink uplink data of the downlink control channel corresponding to the cell, and transmitting, by using the channel resource, the physical uplink control generated by the processor 1020 on an uplink carrier corresponding to one secondary serving cell of the multiple secondary serving cells channel.
  • the transmitter 1030 is specifically configured to send, according to the channel resource of the physical uplink control channel, the physical uplink control channel generated by the processor 1020: if the receiver The downlink data received by the 1010 includes only the downlink data scheduled by the downlink control channel corresponding to the primary serving cell, and the channel resource is carried on the uplink carrier corresponding to the primary serving cell; or
  • the channel resource is carried on the uplink carrier corresponding to the secondary serving cell.
  • the processor 1020 is specifically configured to generate the physical uplink control channel corresponding to the downlink data by using the selected identifier information as follows:
  • the feedback mode of the downlink control channel format 3 For the feedback mode of the downlink control channel format 3, generating, by using the selected identification information, a cyclic shift pattern of modulation symbols of the physical uplink control channel and/or performing orthogonal spreading code by using the selected identification information Mapping.
  • the processor 1020 is further configured to: if the receiver 1010 does not receive downlink data scheduled by the downlink control channel corresponding to the primary serving cell, according to the feedback mode of the format 3, according to the secondary serving cell
  • the transmission mode of the downlink data determines a codebook size of the physical uplink control channel; or, if the receiver 1010 receives downlink data scheduled by the downlink control channel corresponding to the primary serving cell, according to the primary serving cell Determining, by the transmission mode of the downlink data of the secondary serving cell, the codebook size of the physical uplink control channel;
  • the processor 1020 is specifically configured to generate the physical uplink control channel according to the codebook size determined by the codebook determining module and the identifier information selected by the processor 1020. Generating the physical uplink control channel.
  • the processor 1020 is further configured to determine the physical uplink control channel according to a path loss value and a transmit power control TPC command in the downlink control channel corresponding to the downlink data received by the receiver 1010. Transmit power; wherein, if the downlink data received by the receiver 1010 does not include downlink data scheduled by the downlink control channel of the primary serving cell, the TPC command is a secondary serving cell corresponding to the downlink data.
  • the TPC command is a TPC command in a downlink serving channel of a secondary serving cell or a secondary serving cell of the secondary serving cell, and the transmitter 1030 is specifically configured to send the processor as follows:
  • the processor 1020 is further configured to: control a TPC command according to a path loss value and a transmit power in the downlink control channel corresponding to the downlink data received by the receiver 1010. And determining, according to the transmit power of the physical uplink control channel, where the downlink data received by the receiver 1010 includes only downlink data scheduled by a downlink control channel of the primary serving cell, where the TPC command is The TPC command in the downlink control channel of the primary serving cell; or, if the downlink data received by the receiver 1010 includes the downlink data scheduled by the downlink control channel of the secondary serving cell, the TPC command is the downlink data.
  • the processor 1020 is further configured to: determine the path loss according to the following manner: if the downlink data received by the receiver 1010 does not include downlink data scheduled by the downlink control channel corresponding to the primary serving cell Determining, the path loss is a first path loss; if the downlink data received by the receiver 1010 includes downlink data scheduled by the downlink control channel corresponding to the primary serving cell, the path loss is a second path loss, Or determining, if the downlink data received by the receiver 1010 includes only downlink data scheduled by the downlink control channel corresponding to the primary serving cell, The path loss is the second path loss; if the downlink data received by the receiver 1010 includes downlink data scheduled by the downlink control channel corresponding to the secondary serving cell, determining that the path loss is the first path loss;
  • the transmitter sends the physical uplink control channel on an uplink carrier corresponding to the primary serving cell
  • the receiver 1010 is further configured to receive a downlink reference signal sent by the primary serving cell, where the processor 1020 is further configured to measure a first receiving of the downlink reference signal sent by the primary serving cell received by the receiver 1010. And determining, according to the first transmit power of the downlink reference signal sent by the primary serving cell and the measured first received power, the second path loss; the receiver 1010 is further configured to receive the a downlink reference signal sent by one of the at least one secondary serving cell; the processor 1020 is further configured to: measure, by the receiver 1010, the downlink reference signal sent by the one serving cell Receiving power; and determining, according to the second transmit power of the downlink reference signal sent by the one secondary serving cell, the measured second received power, and the power offset;
  • the transmitter sends the physical uplink control channel on an uplink carrier corresponding to one of the at least one secondary serving cell
  • the receiver 1010 is further configured to receive a downlink reference signal sent by the primary serving cell, where the processor 1020 is further configured to: measure, by the receiver 1010, the downlink reference signal sent by the primary serving cell Determining the second path loss according to the first transmit power of the downlink reference signal sent by the primary serving cell, the measured first received power, and the power offset;
  • the receiver 1010 is further configured to receive a downlink reference signal sent by one of the at least one secondary serving cell, where the processor 1020 is configured to measure, by the receiver 1010, the one sent by the one serving cell. And a second received power of the downlink reference signal; and the first path loss determined according to the second transmit power of the downlink reference signal sent by the one secondary serving cell and the measured second received power.
  • An embodiment of the present invention further provides a network device 1100.
  • the embodiment can perform the steps in the method in the foregoing embodiment.
  • This embodiment only describes the structure of the network device. For the specific implementation, refer to the description in the foregoing embodiment.
  • the network device of this embodiment includes a transmitter 1110, a processor 1120, and a receiver 1130.
  • the transmitter 1110 is configured to send downlink data scheduled by the downlink control channel to the user equipment UE, where the downlink control channel is a downlink control channel corresponding to the secondary serving cell, or the downlink control channel is corresponding to the network side device.
  • a downlink control channel corresponding to the primary serving cell where the secondary serving cell is a serving cell in at least two serving cells configured for the UE, and the at least two serving cells further include the primary serving cell;
  • the processor 1120 is configured to determine, after the transmitter 1110 sends the downlink data, identifier information that the UE may use;
  • the receiver 1130 is configured to detect, by using the identifier information that may be used by the processor 1120, the physical uplink control channel corresponding to the downlink data, on the channel resource used for the feedback of the physical uplink control channel, where The physical uplink control channel is generated by the UE using one of identification information that may be used by the UE.
  • processor 1120 is specifically configured to: determine identifier information that the UE may use, including:
  • the identification information that the UE may use includes a cell identification letter corresponding to the primary serving cell.
  • the cell identity information corresponding to all the secondary serving cells configured for the UE, where the cell identity information is a cell identity and/or a virtual cell identity.
  • the processor 1120 is specifically configured to determine the cell identity information according to a predetermined rule:
  • the processor 1120 is further configured to: acquire information about a channel resource or a group of channel resources of the physical uplink control channel, and acquire the downlink control corresponding to the downlink data sent by the transmitter 1110. Channel resource parameters of the channel;
  • the receiver 1130 is specifically configured to detect, by using the identifier information that may be used by the processor 1120, the physical uplink control channel corresponding to the downlink data, as described in the processor 1120.
  • the one channel resource or the set of channel resources corresponding to the information of a channel resource or a group of channel resources, and the physical uplink control corresponding to the channel resource parameter acquired by the processor 1120 And detecting, by using the identifier information that is determined by the processor 1120, the physical uplink control channel corresponding to the downlink data.
  • the receiver 1130 is further configured to: receive the information about the one channel resource or the group of channel resources of the physical uplink control channel by receiving radio resource control RRC signaling; Acquiring, by the RRC signaling received by the receiver 1130, the information about the one channel resource or a group of channel resources of the physical uplink control channel; or
  • the network device further includes a memory 1140, where the memory 1140 is configured to store the information of the one channel resource or a group of channel resources received by the receiver 1130. The information for acquiring the one channel resource or a group of channel resources from the memory 1140.
  • An embodiment of the present invention provides a network device 1200.
  • the embodiment can perform the steps in the method in the foregoing embodiment.
  • This embodiment only describes the structure of the network device 1200.
  • the network of this embodiment includes a transmitter 1210, a processor 1220, and a receiver 1230.
  • the transmitter 1210 is configured to send downlink data scheduled by the downlink control channel to the UE, where the downlink control channel is a downlink control channel corresponding to the primary serving cell, and the primary serving cell is at least two services configured for the UE.
  • the primary serving cell in the cell, the at least two serving cells further include at least one secondary serving cell.
  • the processor 1220 after the transmitter 1210 sends the downlink data, determines cell identity information corresponding to the primary serving cell.
  • the receiver 1230 is configured to detect the physical uplink control channel corresponding to the downlink data by using the cell identifier information on a channel resource that is used by the UE to feed back a physical uplink control channel, where the physical uplink control is performed.
  • the channel is generated by the UE using cell identity information of the primary serving cell.
  • the transmitter 1210 is further configured to notify a network device or a group of channel resources of the physical uplink control channel to the user equipment and the network equipment corresponding to all the secondary serving cells configured for the user equipment.
  • the receiver 1230 is specifically configured to: use the cell identity information on the channel resource of the one channel resource or a group of channel resources and the physical uplink control channel implicitly corresponding to the downlink control channel. Detecting a physical uplink control channel corresponding to the downlink data; or detecting, by using the cell identity information, the downlink corresponding to the physical uplink control channel serving cell corresponding to the downlink data, on the one channel resource or the group of channel resources.
  • the receiver 1230 is specifically configured to detect, on an uplink carrier corresponding to the primary serving cell, a physical uplink control channel corresponding to the downlink data.
  • the cell identifier information may be a cell identifier and/or a virtual cell identifier.
  • the same PUCCH channel resource is multiplexed between multiple network devices, and the scheduling of the PUCCH channel resources of other base stations is not needed in real time, and the scheduling situation is achieved.
  • the gain of cell splitting improves the utilization of PUCCH channel resources.
  • An embodiment of the present invention provides a communication system, which includes the user equipment 1000, the network device 1100, and the network device 1200 provided by the foregoing embodiments.
  • the user equipment 1000, the network device 1100, and the network device 1200 provided in this embodiment can perform the steps in the foregoing method.
  • the specific implementation refer to the description in the foregoing method embodiments.
  • the embodiments of the present invention are applicable to base stations or terminals in various communication systems.
  • the user equipment and the network equipment provided by the foregoing embodiments may further include components such as a power controller, a decoding processor, and a memory.
  • the processing module in the embodiment of the present invention may also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processing module. A portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the user equipment and the network device in the embodiment of the present invention may further include a carrier that accommodates the transmitting circuit and the receiving circuit to allow data transmission and reception between the user equipment or the network device and the remote location.
  • the transmit module and the receive module can be coupled to an antenna.
  • the various components are coupled together by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the processor disclosed in the above embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, baseband processor or the like.
  • the steps of the method disclosed in the embodiment of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc. Quality.
  • the storage medium is located in the memory, and the processing module reads the information in the memory and completes the steps of the above method in combination with the hardware.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • a disk and a disc include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种上行控制信道发送方法和装置。用户设备UE接收网络设备通过下行控制信道调度的下行数据,其中,所述下行控制信道为服务小区对应的下行控制信道,所述服务小区是为所述UE配置的至少两个服务小区中的服务小区,所述至少两个服务小区包括一个主服务小区和至少一个辅服务小区。上述UE根据所述下行控制信道选择标识信息。所述UE利用所述选择的标识信息生成所述下行数据对应的物理上行控制信道,在所述物理上行控制信道的信道资源上发送所述物理上行控制信道。通过上述方案,实现了多个网络设备间复用相同的PUCCH信道资源,而不需要实时获知其他基站的下行数据的调度情况。

Description

上行控制信息的发送方法和装置
本申请要求于 2012 年 8 月 17 日提交中国专利局、 申请号为 PCT/CN2012/080309 , 发明名称为 "上行控制信息的发送方法和装置" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及无线通信领域, 尤其涉及上行控制信息的发送方法和装 置。 背景技术
在早期的长期演进 ( LTE, long term evolution )系统中, 用户设备 (UE, user equipment)的上行和下行都只能被一个载波服务。 随着标准的进展, 引入了载波 聚合 (CA, carrier aggregation)技术,此时一个 UE可以同时被多个上行载波服务, 也可以同时被多个下行载波服务, 以提高 UE的峰值数据速率。早期的载波聚合 系统都是同一个基站下的载波进行聚合, 或者是有理想回传 (backhaul)的宏小区 和微小区下的载波聚合。 其中, 有理想回传的两个节点可以看做是同一个基站。 其中, 理想回传指该回传的传输时延艮小可以忽略, 比如, 宏基站和 基站通 过光纤连接构成的回传, 这些光纤连接的多个节点之间的延时很小。 这种情况 下, 由于基站在调度聚合载波中的一个载波时, 也能够实时地知道另一个载波 上的调度情况, 因此, 这些载波间可以采用联合调度。 现有 CA系统中, 下行数 据调度对应的确认 (ACK:, acknowledge)或非确认 (NACK, non-acknowledge)承载 在物理上行控制信道 (PUCCH, physical uplink control channel)上, 该 PUCCH只 在一个上行载波上发送, 这个上行载波称为上行主载波, 该 PUCCH的序列相关 信息是通过该上行载波对应的小区标识确定的。
现有 CA系统中, PUCCH的反馈模式有两种, 一种是 PUCCH格式 lb结 合信道选择的反馈模式, 另一种是 PUCCH格式 3的反馈模式。
对于 PUCCH格式 lb结合信道选择的反馈模式: PUCCH格式 lb ( PUCCH format lb )信道承载的数据在频域上是由一个 Zad-off Chu(ZC)序列的循环移位构成,在时域上是由 ACK或 NACK乘以一个扩 频码构成。 一个资源块 (RB, resource block)中的不同 PUCCH格式 lb信道是通 过上述 ZC序列的循环移位和时域扩频码来区分的, 即一个 PUCCH格式 lb信 道包括一个 ZC 序列的循环移位和一个时域扩频码, 所述 ZC 序列由发送该 PUCCH的上行载波对应的小区标识确定。信道选择是指同样的 PUCCH信息(如 调制符号 )在不同的 PUCCH信道发送表示不同的信息, 比如同样的调制符号在 PUCCH格式 lb信道 1上发送表示 ACK,在 PUCCH格式 lb信道 2上发送表示 NACK:。
对于主载波的下行调度, PUCCH格式 lb的信道资源的分配方式具体包括:
PUCCH格式 lb的信道资源通过对应的 PDCCH的参数进行隐式确定,比如通过 PDCCH的 CCE索引(index) 确定 PUCCH格式 lb资源,或通过 ePDCCH的 eCCE 索引和 /或天线端口号等确定 PUCCH格式 lb 资源; 为了便于描述, 下文中的 PDCCH和 ePDCCH都以 PDCCH来表示; 对于辅载波的下行调度, PUCCH格 式 lb资源分配的方式采用高层预留结合 PDCCH动态选择的方案, 具体包括: PUCCH格式 lb的信道资源可以通过无线资源控制( RRC , radio resource control ) 信令配置 4组信道资源,然后基站通过调度辅载波的 PDCCH中的两个比特来动 态地向 UE指示者 4组信道资源中的一组来供当前使用。
对于 PUCCH格式 3的反馈模式: 码,一个资源块中的不同 PUCCH格式 3的信道资源是通过上述扩频码来区分的。 在一个子帧的不同的正交频分复用 (OFDM, orthogonal frequency division multiplexing)符号上的 PUCCH格式 3的信道, 可以采用经过该时域扩频码扩频 后的调制符号的不同的循环移位码。采用哪个循环移位码是艮据该 PUCCH的上 行载波对应的小区标 、确定的。
PUCCH格式 3信道资源的分配的方式采用高层预留结合 PDCCH动态选择 的方案, 具体包括: PUCCH格式 3的信道资源可以通过 RRC信令配置 4个资 源, 然后基站通过调度辅载波的 PDCCH中的两个比特来动态地向 UE指示在这 4个资源中一个来供当前使用。
在后续演进的 LTE系统中, 会引入具有非理想回传的基站间的载波聚合, 即基站间无法实时传送数据, 这样导致的结果是隶属于不同基站的多个载波间 的调度是独立进行的, 也就是说, 一个基站调度聚合载波中的一个载波时, 并 不清楚另一个基站调度的另一个载波上的情况。
例如: 部署在频率 fl的宏小区主要提供系统信息和进行无线链路监测和移 动性管理, 以保证业务的连续性; 部署在频率 多个微小区主要提供高数据速 率业务的传输, 并且, 所述多个微小区在宏小区的覆盖范围内。 上述宏小区和 微小区, 还有微小区之间都是非理想回传, 即无法实时交互信息。
在上述具有非理想回传的基站间的 CA 系统中, 由于多个下行载波的数据 调度是每个基站独立进行的, 比如在频率 fl的宏基站和在频率 的微基站独立 调度, 一个直接的方案就是把多个 PUCCH分别在多个载波上发送,从而分别把 ACK或 NACK反馈给各自的基站。 然而, 有些低端 UE的上行没有多个载波的 发射能力; 即使某些高端 UE的上行具有多个载波的发射能力, 在 UE功率受限 时, 同时发射多个 PUCCH会影响 PUCCH的性能。 发明内容
有鉴于此, 本发明实施例提供了上行控制信息的发送方法和装置, 以解决 在 CA系统中, 如何发送 PUCCH的问题。
第一方面, 提供了一种上行控制信道发送方法, 所述方法包括:
用户设备 UE接收网络设备通过下行控制信道调度的下行数据, 其中, 所 述下行控制信道为服务小区对应的下行控制信道,所述服务小区是为所述 UE配 置的至少两个服务小区中的服务小区, 所述至少两个服务小区包括一个主服务 小区和至少一个辅服务小区; 根据所述下行控制信道选择标识信息;
利用所述选择的标识信息生成所述下行数据对应的物理上行控制信道; 以 及
在所述物理上行控制信道的信道资源上发送所述物理上行控制信道。
在第一方面的第一种可能的实现方式中, 所述根据所述下行控制信道选择 标识信息, 包括:
如果所述 UE接收到的所述下行数据不包括所述主服务小区对应的下行控 制信道调度的下行数据, 所述选择的标识信息为第二标识信息, 利用所述选择 的标识信息生成所述下行数据对应的物理上行控制信道, 包括: 利用所述第二 标识信息生成所述下行数据对应的物理上行控制信道; 或
如果所述 UE接收到的所述下行数据包括所述主服务小区对应的下行控制 信道调度的下行数据, 所述选择的标识信息为第一标识信息, 利用所述选择的 标识信息生成所述下行数据对应的物理上行控制信道, 包括: 利用所述第一标 识信息生成所述下行数据对应的物理上行控制信道。
结合在第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述第一标识信息为所述主服务小区对应的小区标识信息;
如果所述 UE只接收到一个辅服务小区对应的下行控制信道调度的下行数 据, 所述第二标识信息为所述一个辅服务小区对应的小区标识信息; 或者
如果所述 UE只接收到所述至少一个辅服务小区中的多个辅服务小区对应 的下行控制信道调度的下行数据, 所述 UE选择第二标识信息包括: 所述 UE按 照预定规则选择所述第二标识信息。
在第一方面的第三种可能的实现方式中, 所述根据所述下行控制信道选择 标识信息, 包括:
如果所述 UE接收到的所述下行数据只包括所述主服务小区对应的下行控 制信道调度的下行数据, 所述选择的标识信息为第一标识信息, 利用所述选择 的标识信息生成所述下行数据对应的物理上行控制信道, 包括: 利用所述第一 标识信息生成所述下行数据对应的物理上行控制信道; 和 /或
如果所述 UE接收到的所述下行数据包括所述辅服务小区对应的下行控制 信道调度的下行数据, 所述选择的标识信息为第二标识信息, 利用所述选择的 标识信息生成所述下行数据对应的物理上行控制信道, 包括: 利用所述第二标 识信息生成所述下行数据对应的物理上行控制信道。
结合在第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述第一标识信息为所述主服务小区对应的小区标识信息;
如果所述 UE接收到所述主服务小区和只有一个辅服务小区对应的下行控 制信道调度的下行数据, 所述第二标识信息为所述一个辅服务小区对应的小区 标识信息; 或者
如果所述 UE只接收到所述至少一个辅服务小区中的多个辅服务小区对应 的下行控制信道调度的下行数据, 所述 UE选择第二标识信息包括: 所述 UE按 照预定规则选择所述第二标识信息。
结合在第一方面的第二种或第四种可能的实现方式, 在第五种可能的实现 方式中,
所述 UE按照预定规则选择所述第二标识信息, 包括:
所述 UE选择所述多个辅服务小区中的任一辅服务小区对应的小区标识信 息作为所述第二标识信息;
所述 UE选择所述主服务小区对应的网络设备通知的小区标识信息作为所 述第二标识信息; 或者
所述 UE选择所述至少一个辅服务小区对应的公共的小区标识信息作为所 述第二标识信息。
结合在第一方面的第二种至第五种中任一种可能的实现方式, 在第六种可 能的实现方式中, 所述小区标识信息为小区标识和 /或虚拟小区标识。
结合第一方面或上述第一方面的任一种可能的实现方式, 在第七种可能的 实现方式中, 所述在所述物理上行控制信道的信道资源上发送所述物理上行控 制信道之前, 所述方法还包括:
获取所述物理上行控制信道的一个信道资源或一组信道资源的信息; 所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道, 包括: 在所述一个信道资源或一组信道资源的所述信息对应的所述一个信道资 源或所述一组信道资源上发送所述物理上行控制信道。
结合第一方面或上述第一方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 在第八种可能的实现方式中,
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道, 包括:如果所述 UE只接收到所述主服务小区对应的下行控制信道调度的下行数 据, 在第一信道资源上发送所述物理上行控制信道, 其中, 所述第一信道资源 为信道资源参数对应的所述物理上行控制信道的信道资源, 所述信道资源参数 为所述主服务小区对应的下行控制信道的信道资源参数; 或者
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道之 前, 所述方法还包括: 获取所述物理上行控制信道的一个信道资源或一组信道 资源的信息; 所述在所述物理上行控制信道的信道资源上发送所述物理上行控 制信道, 包括: 如果所述 UE接收到的下行数据包含所述辅服务小区对应的下行 控制信道调度的下行数据, 在第二信道资源上发送所述物理上行控制信道; 其 中, 所述第二信道资源为所述一个信道资源或一组信道资源的所述信息对应的 所述一个信道资源或所述一组信道资源。
结合第一方面或上述第一方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 在第九种可能的实现方式中,
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道, 包括:如果所述 UE只接收到所述至少一个辅服务小区中的一个辅服务小区对应 的下行控制信道调度的下行数据, 在第三信道资源上发送所述物理上行控制信 道; 其中, 所述第三信道资源为所述一个辅服务小区对应的下行控制信道的信 道资源参数对应的所述物理上行控制信道的信道资源; 或者 所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道之 前, 所述方法还包括: 获取所述物理上行控制信道的一个信道资源或一组信道 资源的信息; 所述在所述物理上行控制信道的信道资源上发送所述物理上行控 制信道, 包括:
如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制 信道调度的下行数据和所述至少一个辅服务小区中的一个或多个辅服务小 区, 或者, 如果所述 UE接收到的所述下行数据包括所述至少一个辅服务小 区中的多个辅服务小区对应的下行控制信道调度的下行数据,在第四信道资 源上发送所述物理上行控制信道,其中,所述第四信道资源为所述一个信道 资源或一组信道资源所述信息对应的所述一个信道资源或所述一组信道资 源; 或,
如果所述 UE只接收到所述至少一个辅服务小区中的一个辅服务小区 对应的下行控制信道调度的下行数据,在第五信道资源上发送所述物理上行 控制信道; 其中, 如果所述第四信道资源为所述一组信道资源, 所述第五信 道资源为所述一组信道资源中的一个信道资源。
结合第一方面或上述第一方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 在第十种可能的实现方式中,
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道, 包括:
如果所述 UE只接收到所述主服务小区对应的所述下行控制信道调度 的下行数据, 在第一信道资源上发送所述物理上行控制信道; 其中, 所述第 一信道资源为所述主服务小区对应的下行控制信道的信道资源参数对应的 所述物理上行控制信道的信道资源; 或者
如果所述 UE接收到所述至少一个辅服务小区中的一个辅服务小区对 应的下行控制信道调度的下行数据,在第三信道资源上发送所述物理上行控 制信道,其中,所述第三信道资源为所述至少一个辅服务小区中的所述一个 辅服务小区对应的下行控制信道的信道资源参数对应的所述物理上行控制 信道的信道资源; 或者
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道之前,所述方法还包括:获取所述物理上行控制信道的一个信道资源或一 组信道资源的信息;所述在所述物理上行控制信道的信道资源上发送所述物 理上行控制信道, 包括: 如果所述 UE接收到的下行数据包括所述至少一个 辅服务小区中的多个辅服务小区对应的下行控制信道调度的下行数据, 或 者,如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信 道调度的下行数据和一个或多个辅服务小区对应的下行控制信道调度的下 行数据, 在第四信道资源上发送所述物理上行控制信道; 其中, 所述第四信 道资源为所述一个信道资源或一组信道资源的所述信息对应的所述一个信 道资源或所述一组信道资源; 或者
如果所述 UE接收到所述至少一个辅服务小区中的一个辅服务小区对 应的下行控制信道调度的下行数据,在第五信道资源上发送所述物理上行控 制信道; 其中, 如果所述第四信道资源为所述一组信道资源, 所述第五信道 资源为所述一组信道资源中的一个信道资源。
结合上述第一方面的第七种可能的实现方式至第十种可能的实现方式中的 任一种可能的实现方式, 在第十一种可能的实现方式中,
所述获取所述物理上行控制信道的一个信道资源或一组信道资源的信息, 包括:
通过无线资源控制 RRC 信令获取所述一个信道资源或所述一组信道资源 的所述信息; 或者
获取预存的所述一个信道资源或所述一组信道资源的所述信息。
结合第一方面或上述第一方面的任一种可能的实现方式, 在第十二种可能 的实现方式中, 所述发送所述物理上行控制信道, 包括:
如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道 调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上行载波上; 或
如果所述 UE只接收到一个辅服务小区对应的下行控制信道调度的下行数 据, 则将所述信道资源承载在所述下行数据对应的所述一个辅服务小区对应的 上行载波上; 或
如果所述 UE只接收到所述至少一个辅服务小区中的多个辅服务小区对应 的下行控制信道调度的下行数据, 则将所述信道资源承载在所述多个辅服务小 区中的一个辅服务小区对应的上行载波上。
结合第一方面或上述第一方面的任一种可能的实现方式, 在第十三种可能 的实现方式中, 所述发送所述物理上行控制信道, 包括:
如果所述 UE接收到的下行数据只包括所述主服务小区对应的下行控制信 道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上行载波 上; 或
如果所述 UE接收到的下行数据包括所述辅服务小区对应的下行控制信道 调度的下行数据, 则将所述信道资源承载在所述辅服务小区对应的上行载波上。
结合第一方面或上述第一方面的任一种可能的实现方式, 在第十四种可能 的实现方式中, 所述利用所述选择的标识信息生成所述下行数据对应的物理上 行控制信道, 包括:
对于下行控制信道格式 lb结合信道选择的反馈模式,利用所述所选择的标 识信息生成所述物理上行控制信道的序列; 或
对于下行控制信道格式 3的反馈模式, 利用所述所选择的标识信息生成所 述物理上行控制信道的调制符号的循环移位图样和 /或利用所述所选择的标识信 息进行正交扩频码的映射。
结合第一方面或上述第一方面的任一种可能的实现方式, 在第十五种可能 的实现方式中, 对于格式 3 的反馈模式, 所述利用所述选择的标识信息生成所 述下行数据对应的物理上行控制信道之前, 所述方法还包括: 如果所述 UE没有接收到所述主服务小区对应的下行控制信道调度的下行 数据, 根据所述辅服务小区的对应的下行控制信道调度的所述下行数据的传输 模式确定所述物理上行控制信道的码本大小; 或
如果所述 UE接收到所述主服务小区对应的下行控制信道调度的下行数据, 根据所述主服务小区和所述辅服务小区的下行数据的传输模式来确定所述物理 上行控制信道的所述码本大小。
结合第一方面或上述第一方面的任一种可能的实现方式, 在第十六种可能 的实现方式中, 所述在所述信道资源上发送所述物理上行控制信道, 包括: 根据路径损耗值和所述下行控制信道中的发送功率控制 TPC命令确定所述 物理上行控制信道的发送功率, 并以所述确定的发送功率来发送所述物理上行 控制信道, 其中,
如果所述 UE接收到的所述下行数据不包括所述主服务小区的下行控制信 道调度的下行数据, 所述 TPC命令为所述下行数据对应的一个辅服务小区或多 个辅服务小区中的一个辅服务小区的下行控制信道中的 TPC命令; 或
如果所述 UE接收到的下行数据包括所述主服务小区的下行控制信道调度 的下行数据, 所述 TPC命令为所述主服务小区的下行控制信道中的 TPC命令。
结合第一方面的第十六种可能的实现方式,在第十七种可能的实现方式中, 如果所述 UE接收到的所述下行数据不包括所述主服务小区对应的下行控制信 道调度的下行数据, 所述路径损耗为第一路径损耗; 或者
如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道 调度的下行数据, 则所述路径损耗为第二路径损耗;
其中, 如果所述 UE在所述主服务小区对应的上行载波上发送所述物理上 行控制信道, 则所述第二路径损耗是根据所述主服务小区发送的下行参考信号 的第一发送功率和第一接收功率确定的, 其中, 所述第一接收功率为所述 UE通 过测量所述主服务小区发送的所述下行参考信号得到的; 所述第一路径损耗是 根据所述至少一个辅服务小区中的一个辅服务小区发送的下行参考信号的第二 发送功率、 第二接收功率以及功率偏移量来确定的, 其中, 所述第二接收功率 是所述 UE通过测量所述一个辅服务小区发送的所述下行参考信号得到的; 或 者,
如果所述 UE在所述至少一个辅服务小区中的一个辅服务小区对应的上行 载波上发送所述物理上行控制信道, 则所述第二路径损耗是根据所述主服务小 区发送的下行参考信号的第一发送功率、 第一接收功率以及功率偏移量来确定 的, 其中, 所述第一接收功率为所述 UE通过测量所述主服务小区发送的所述下 行参考信号得到的; 所述第一路径损耗是根据所述一个辅服务小区发送的下行 参考信号的第二发送功率和第二接收功率来确定的, 其中, 所述第二接收功率 是所述 UE通过测量所述一个辅服务小区发送的所述下行参考信号得到的。
结合第一方面或上述第一方面的任一种可能的实现方式, 在第十八种可能 的实现方式中, 所述在所述信道资源上发送所述物理上行控制信道, 包括: 如果所述 UE接收到的所述下行数据只包括所述主服务小区的下行控制信 道调度的下行数据, 所述 TPC命令为所述主服务小区的下行控制信道中的 TPC 命令; 或
如果所述 UE接收到的所述下行数据包括所述辅服务小区的下行控制信道 调度的下行数据所述 TPC命令为所述下行数据对应的一个辅服务小区或多个辅 服务小区中的一个辅服务小区的下行控制信道中的 TPC命令。
结合第一方面的第十八种可能的实现方式,在第十九种可能的实现方式中, 如果所述 UE接收到的所述下行数据只包括所述主服务小区对应的下行控制信 道调度的下行数据, 所述路径损耗为第二路径损耗; 或
如果所述 UE接收到的下行数据包括所述辅服务小区对应的下行控制信道 调度的下行数据, 则所述路径损耗为第一路径损耗;
其中, 如果所述 UE在所述主服务小区对应的上行载波上发送所述物理上 行控制信道, 则所述第二路径损耗是根据所述主服务小区发送的下行参考信号 的第一发送功率和第一接收功率确定的, 其中, 所述第一接收功率为所述 UE通 过测量所述主服务小区发送的所述下行参考信号得到的; 所述第一路径损耗是 根据所述至少一个辅服务小区中的一个辅服务小区发送的下行参考信号的第二 发送功率、 第二接收功率以及功率偏移量来确定的, 其中, 所述第二接收功率 是所述 UE通过测量所述一个辅服务小区发送的所述下行参考信号得到的; 或 者,
如果所述 UE在所述至少一个辅服务小区中的一个辅服务小区对应的上行 载波上发送所述物理上行控制信道, 则所述第二路径损耗是根据所述主服务小 区发送的下行参考信号的第一发送功率、 第一接收功率以及功率偏移量来确定 的, 其中, 所述第一接收功率为所述 UE通过测量所述主服务小区发送的所述下 行参考信号得到的; 所述第一路径损耗是根据所述一个辅服务小区发送的下行 参考信号的第二发送功率和第二接收功率来确定的, 其中, 所述第二接收功率 是所述 UE通过测量所述一个辅服务小区发送的所述下行参考信号得到的。
结合第一方面的第十七或第十九种可能的实现方式, 在第二十种可能的实 现方式中, 所述功率偏移量为所述主服务小区和所述辅服务小区所在频点造成 的路径损耗的功率差。
第二方面, 提供了一种上行控制信道的接收方法, 所述方法包括: 网络设备向用户设备 UE发送下行控制信道调度的下行数据, 其中, 所述 下行控制信道为所述网络设备对应的辅服务小区对应的下行控制信道, 或所述 下行控制信道为所述网络侧设备对应的主服务小区对应的下行控制信道, 所述 辅服务小区是为所述 UE配置的至少两个服务小区中的服务小区,所述至少两个 服务小区还包括所述主服务小区;
确定所述 UE可能使用的标识信息; 以及
在用于反馈所述物理上行控制信道的信道资源上, 使用所述可能使用的标 识信息检测所述下行数据对应的所述物理上行控制信道, 其中, 所述物理上行 控制信道是所述 UE使用所述 UE可能使用的标识信息中的一种生成的。
在第二方面的第一种可能的实现方式中, 所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息, 所述网络设备对应的所述辅服务小区对应的小区标识信息, 或按照预定规则确 定的标识信息; 或者
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息和 为所述 UE配置的所有辅服务小区对应的小区标识信息。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述按照预定规则确定的标识信息包括:
所述主服务小区对应的网络设备通知的小区标识信息; 或者
为所述 UE配置的所有辅服务小区对应的公共的小区标识信息。
结合第二方面的第一种可能的实现方式或第二种可能的实现方式, 在第三 种可能的实现方式中, 所述小区标识信息为小区标识和 /或虚拟小区标识。
结合第二方面或第一方面的任一种可能的实现方式, 在第四种可能的实现 方式中, 所述检测所述下行数据对应的物理上行控制信道之前, 所述方法还包 括:
获取所述物理上行控制信道的一个信道资源或一组信道资源的信息; 所述检测所述下行数据对应的物理上行控制信道, 包括: 在所述一个信道 资源或一组信道资源的所述信息对应的所述一个信道资源或所述一组信道资源 以及所述下行控制信道对应的所述物理上行控制信道的信道资源上, 使用所述 可能使用的标识信息检测所述下行数据对应的物理上行控制信道。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所 述获取所述物理上行控制信道的一个信道资源或一组信道资源的信息, 包括: 通过无线资源控制 RRC 信令获取所述一个信道资源或所述一组信道资源的信 息; 或者
获取预存的所述一个信道资源或所述一组信道资源的信息。
第三方面, 提供了一种用户设备, 所述用户设备 UE包括:
接收模块, 用于接收网络设备通过下行控制信道调度的下行数据, 其中, 所述下行控制信道为服务小区对应的下行控制信道, 所述服务小区是为所述 UE 配置的至少两个服务小区中的服务小区, 所述至少两个服务小区包括一个主服 务小区和至少一个辅服务小区;
选择模块, 用于根据所述接收模块接收的所述下行数据对应所述下行控制 信道选择标识信息;
生成模块, 用于利用所述选择模块选择的所述标识信息生成所述下行数据 对应的物理上行控制信道; 以及
发送模块, 用于在所述生成模块生成的所述物理上行控制信道的信道资源 上发送所述物理上行控制信道。
在第三方面的第一种可能的实现方式中,
所述选择模块具体用于, 如果所述接收模块接收到的所述下行数据不包括 所述主服务小区对应的下行控制信道调度的下行数据, 选择第二标识信息; 所 述生成模块具体用于, 利用所述第二标识信息生成所述下行数据对应的物理上 行控制信道; 或,
所述选择模块具体用于, 如果所述接收模块接收到的所述下行数据包括所 述主服务小区对应的下行控制信道调度的下行数据, 选择第一标识信息; 所述 生成模块具体用于, 利用所述第一标识信息生成所述下行数据对应的物理上行 控制信道。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述选择模块具体用于, 选择所述主服务小区对应的小区标识信息作为所 述第一标识信息; 或者
所述选择模块具体用于, 如果所述接收模块只接收到一个辅服务小区对应 的下行控制信道调度的下行数据, 选择所述一个辅服务小区对应的小区标识信 息作为所述第二标识信息; 或者
所述选择模块具体用于, 如果所述接收模块只接收到所述至少一个辅服务 小区中的多个辅服务小区对应的下行控制信道调度的下行数据, 按照预定规则 选择所述第二标识信息。
在第三方面的第三种可能的实现方式中,
所述选择模块具体用于, 如果所述 UE接收到的所述下行数据只包括所述 主服务小区对应的下行控制信道调度的下行数据, 选择第一标识信息; 所述生 成模块具体用于, 利用所述第一标识信息生成所述下行数据对应的物理上行控 制信道; 和 /或,
所述选择模块具体用于, 如果所述 UE接收到的所述下行数据包括所述辅 服务小区对应的下行控制信道调度的下行数据, 选择第二标识信息; 所述生成 模块具体用于, 利用所述第二标识信息生成所述下行数据对应的物理上行控制 信道。
结合第三方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述选择模块具体用于, 选择所述主服务小区对应的小区标识信息作为所 述第一标识信息; 或者
所述选择模块具体用于, 如果所述接收模块接收到所述主服务小区和只有 一个辅服务小区对应的下行控制信道调度的下行数据, 选择所述一个辅服务小 区对应的小区标识信息作为所述第二标识信息; 或者
所述选择模块具体用于, 如果所述接收模块只接收到所述至少一个辅服务 小区中的多个辅服务小区对应的下行控制信道调度的下行数据, 按照预定规则 选择所述第二标识信息。
结合在第三方面的第二种或第四种可能的实现方式, 在第五种可能的实现 方式中,
所述选择模块具体用于基于如下方式按照预定规则选择所述第二标识信 息: 选择所述多个辅服务小区中的任一辅服务小区对应的小区标识信息作为所 述第二标识信息; 或者, 选择所述主服务小区对应的网络设备通知的小区标识 信息作为所述第二标识信息; 或者, 选择所述至少一个辅服务小区对应的公共 的小区标识信息作为所述第二标识信息。 结合在第三方面的第二种至第五种中任一种可能的实现方式, 在第六种可 能的实现方式中, 所述选择模块具体用于按如下方式选择所述小区标识信息: 选择小区标识和 /或虚拟小区标识作为所述小区标识信息。
结合第三方面或上述第三方面的任一种可能的实现方式, 在第七种可能的 实现方式中, 所述用户设备还包括信道资源获取模块;
所述信道资源获取模块, 用于获取所述物理上行控制信道的一个信道资源 或一组信道资源的信息; 所述发送模块具体用于按如下方式在所述物理上行控 制信道的信道资源上发送所述物理上行控制信道: 在所述信道资源获取模块获 取的所述一个信道资源或一组信道资源的所述信息对应的所述一个信道资源或 一组信道资源上, 发送所述生成模块生成的所述物理上行控制信道。
结合第三方面或上述第三方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 在第八种可能的实现方式中, 所述用户设 备还包括信道资源获取模块;
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述主服务小区, 并获取所述主服务小区对应的所述下行控制信 道的信道资源参数; 所述发送模块具体用于按如下方式在所述物理上行控制信 道的信道资源上发送所述物理上行控制信道: 在所述信道资源获取模块获取的 所述信道资源参数对应的第一信道资源上, 发送所述生成模块生成的所述物理 上行控制信道, 其中, 所述第一信道资源为所述信道资源获取模块获取的所述 信道资源参数对应的所述物理上行控制信道的信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区包含所述辅服务小区, 并获取所述物理上行控制信道的一个信道资 源或一组信道资源的信息; 所述发送模块具体用于按如下方式在所述物理上行 控制信道的信道资源上发送所述物理上行控制信道: 在第二信道资源上发送所 述生成模块生成的所述物理上行控制信道; 其中, 所述第二信道资源为所述信 道资源获取模块获取的所述一个信道资源或一组信道资源的所述信息对应的所 述一个信道资源或所述一组信道资源。
结合第三方面或上述第三方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 在第九种可能的实现方式中,
所述用户设备还包括信道资源获取模块;
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述一个 辅服务小区对应的下行控制信道的信道资源参数; 所述发送模块具体用于按如 下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在 第三信道资源上, 发送所述物理上行控制信道; 其中, 所述第三信道资源为所 述信道资源获取模块获取的所述信道资源参数对应的所述物理上行控制信道的 信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区包括所述主服务小区和所述至少一个辅服务小区中的一个或多个辅 服务小区, 或者, 包括所述至少一个辅服务小区中的多个辅服务小区, 并获取 所述物理上行控制信道的一个信道资源或一组信道资源的所述信息; 所述发送 模块具体用于按如下方式在所述物理上行控制信道的信道资源上发送所述物理 上行控制信道: 在第四信道资源上, 发送所述物理上行控制信道, 其中, 所述 第四信道资源为所述信道资源获取模块获取的所述一个信道资源或一组信道资 源所述信息对应的所述一个信道资源或所述一组信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述物理 上行控制信道的一个信道资源或一组信道资源的信息; 所述发送模块具体用于 按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道: 在第五信道资源上, 发送所述物理上行控制信道; 其中, 如果所述第四信 道资源为所述信道资源获取模块获取的所述一组信道资源, 所述第五信道资源 为所述一组信道资源的中的一个信道资源。 结合第三方面或上述第三方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 在第十种可能的实现方式中,
所述用户设备还包括信道资源获取模块;
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述主服务小区, 并获取所述主服务小区对应的下行控制信道的 信道资源参数; 所述发送模块具体用于按如下方式在所述物理上行控制信道的 信道资源上发送所述物理上行控制信道: 在第一信道资源上, 发送所述物理上 行控制信道, 其中, 所述第一信道资源为所述信道资源获取模块获取的所述信 道资源参数对应的信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述至少 一个辅服务小区中的所述一个辅服务小区对应的下行控制信道的信道资源参 数; 所述发送模块具体用于按如下方式在所述物理上行控制信道的信道资源上 发送所述物理上行控制信道: 在第三信道资源上发送所述物理上行控制信道, 其中, 所述第三信道资源为所述信道资源获取模块获取的所述信道资源参数对 应的所述物理上行控制信道的信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区包括所述至少一个辅服务小区中的多个辅服务小区, 或包括所述主 服务小区和所述至少一个辅服务小区中的一个或多个辅服务小区, 并获取所述 物理上行控制信道的一个信道资源或一组信道资源的信息; 所述发送模块具体 用于按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制 信道: 在第四信道资源上发送所述物理上行控制信道; 其中, 所述第四信道资 源为所述信道资源获取模块获取的所述一个信道资源或一组信道资源的信息对 应的所述一个信道资源或所述一组信道资源;
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述物理 上行控制信道的一个信道资源或一组信道资源的信息; 所述发送模块具体用于 按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道: 在第五信道资源上发送所述物理上行控制信道; 其中, 如果所述第四信道 资源为所述一组信道资源, 所述第五信道资源为所述一组信道资源中的一个信 道资源。
结合上述第三方面的第七种可能的实现方式至第十种可能的实现方式中的 任一种可能的实现方式, 在第十一种可能的实现方式中,
所述接收模块还用于,接收所述网络设备通过无线资源控制 RRC信令发送 的所述一个信道资源或一组信道资源的所述信息; 所述信道资源获取模块具体 用于, 获取所述接收模块接收的所述一个信道资源或所述一组信道资源的所述 信息; 或者
所述用户设备还包括存储模块, 所述存储模块用于存储所述一个信道资源 或所述一组信道资源的所述信息; 所述信道资源获取模块具体用于, 从所述存 储模块获取所述一个信道资源或所述一组信道资源的所述信息。
结合第三方面或上述第三方面的任一种可能的实现方式, 在第十二种可能 的实现方式中,
所述发送模块具体用于按如下方式在所述物理上行控制信道的信道资源上 发送所述生成模块生成的所述物理上行控制信道:
如果所述接收模块接收到的下行数据包括所述主服务小区对应的下行控制 信道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上行载 波上发送所述生成模块生成的所述物理上行控制信道; 或者
如果所述接收模块只接收到所述多个辅服务小区中的一个对应的下行控制 信道调度的下行数据, 则将所述信道资源承载在所述一个辅服务小区对应的上 行载波上发送所述生成模块生成的所述物理上行控制信道; 或者
如果所述接收模块只接收到所述至少一个辅服务小区中的多个辅服务小区 对应的下行控制信道调度的下行数据, 则将所述信道资源承载在所述多个辅服 务小区中的一个辅服务小区对应的上行载波上发送所述生成模块生成的所述物 理上行控制信道。
结合第三方面或上述第三方面的任一种可能的实现方式, 在第十三种可能 的实现方式中,
所述发送模块具体用于按如下方式在所述物理上行控制信道的信道资源上 发送所述生成模块生成的所述物理上行控制信道:
如果所述接收模块接收到的下行数据只包括所述主服务小区对应的下行控 制信道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上行 载波上; 或者
如果所述接收模块接收到的下行数据包括所述辅服务小区对应的下行控制 信道调度的下行数据, 则将所述信道资源承载在所述辅服务小区对应的上行载 波上。
结合第三方面或上述第三方面的任一种可能的实现方式, 在第十四种可能 的实现方式中,
所述生成模块具体用于按如下方式利用所述选择的标识信息生成所述下行 数据对应的物理上行控制信道: 对于下行控制信道格式 lb结合信道选择的反馈 模式, 利用所述所选择的标识信息生成所述物理上行控制信道的序列; 或, 对 于下行控制信道格式 3 的反馈模式, 利用所述所选择的标识信息生成所述物理 上行控制信道的调制符号的循环移位图样和 /或利用所述所选择的标识信息进行 正交扩频码的映射。
结合第三方面或上述第三方面的任一种可能的实现方式, 在第十五种可能 的实现方式中, 所述用户设备还包括:
码本确定模块, 用于对于格式 3的反馈模式, 如果所述接收模块没有接收 到所述主服务小区对应的下行控制信道调度的下行数据, 根据所述辅服务小区 的所述下行数据的传输模式确定所述物理上行控制信道的码本大小; 或, 如果 所述接收模块接收到所述主服务小区对应的下行控制信道调度的下行数据, 根 据所述主服务小区和所述辅服务小区的下行数据的传输模式来确定所述物理上 行控制信道的所述码本大小;
所述生成模块还用于, 根据所述码本确定模块确定的所述码本大小和所述 选择模块选择的所述标识信息, 生成所述物理上行控制信道。
结合第三方面或上述第三方面的任一种可能的实现方式, 在第十六种可能 的实现方式中, 所述用户设备还包括功率确定模块;
所述功率确定模块用于, 根据路径损耗值和所述接收模块接收的所述下行 数据对应的所述下行控制信道中的发送功率控制 TPC命令, 确定所述物理上行 控制信道的发送功率; 其中, 如果所述接收模块接收到的所述下行数据不包括 所述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述下行数 据对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控制信 道中的 TPC命令; 或者, 如果所述接收模块接收到的下行数据包括所述主服务 小区的下行控制信道调度的下行数据, 所述 TPC命令为所述下行数据对应的一 个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控制信道中的 TPC 命令;
所述发送模块具体用于按如下方式发送所述生成模块生成的所述物理上行 控制信道: 以所述功率确定模块确定的所述发送功率来发送所述生成模块生成 的所述物理上行控制信道。
结合第三方面或上述第三方面的任一种可能的实现方式, 在第十七种可能 的实现方式中, 所述用户设备还包括功率确定模块;
所述功率确定模块用于, 根据路径损耗值和所述接收模块接收的所述下行 数据对应的所述下行控制信道中的发送功率控制 TPC命令, 确定所述物理上行 控制信道的发送功率; 其中, 如果所述接收模块接收到的所述下行数据只包括 所述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述主服务 小区的下行控制信道中的 TPC命令; 或者, 如果所述接收模块接收到的所述下 行数据包括所述辅服务小区的下行控制信道调度的下行数据所述 TPC命令为所 述下行数据对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下 行控制信道中的 TPC命令。
所述发送模块具体用于按如下方式发送所述生成模块生成的所述物理上行 控制信道: 以所述功率确定模块确定的所述发送功率来发送所述生成模块生成 的所述物理上行控制信道。
结合第三方面的第十三种可能的实现方式,在第十八种可能的实现方式中, 所述用户设备还包括测量模块;
所述功率确定模块还用于, 按如下方式确定所述路径损耗: 如果所述接收 模块接收到的所述下行数据不包括所述主服务小区对应的下行控制信道调度的 下行数据, 确定所述路径损耗为第一路径损耗; 如果所述所述接收模块接收到 的下行数据包括所述主服务小区对应的下行控制信道调度的下行数据, 则所述 路径损耗为第二路径损耗; 其中,
如果所述发送模块在所述主服务小区对应的上行载波上发送所述物理上行 控制信道,
所述接收模块还用于接收所述主服务小区发送的下行参考信号; 所述 测量模块用于测量所述接收模块接收的主服务小区发送的所述下行参考信 号的第一接收功率;所述功率确定模块根据所述主服务小区发送的所述下行 参考信号的第一发送功率和所述测量模块测量到所述第一接收功率确定所 述第二路径损耗;所述接收模块还用于接收所述至少一个辅服务小区中的一 个辅服务小区发送的下行参考信号;所述测量模块用于测量所述接收模块接 收的所述一个辅服务小区发送的所述下行参考信号的第二接收功率;所述功 率确定模块根据所述一个辅服务小区发送的下行参考信号的第二发送功率、 所述测量模块测量到的所述第二接收功率以及功率偏移量确定的所述第一 路径损耗;
或者,
如果所述发送模块在所述至少一个辅服务小区中的一个辅服务小区对应的 上行载波上发送所述物理上行控制信道,
所述接收模块还用于接收所述主服务小区发送的下行参考信号; 所述 测量模块用于测量所述接收模块接收的所述主服务小区发送的所述下行参 考信号的第一接收功率;所述功率确定模块根据所述主服务小区发送的所述 下行参考信号的第一发送功率、所述测量模块测量到所述第一接收功率以及 功率偏移量确定所述第二路径损耗;所述接收模块还用于接收所述至少一个 辅服务小区中的一个辅服务小区发送的下行参考信号;所述测量模块用于测 量所述接收模块接收的所述一个辅服务小区发送的所述下行参考信号的第 二接收功率;所述功率确定模块根据所述一个辅服务小区发送的下行参考信 号的第二发送功率和所述测量模块测量到的所述第二接收功率确定的所述 第一路径损耗。
结合第三方面的第十三种可能的实现方式,在第十九种可能的实现方式中, 所述用户设备还包括测量模块;
所述功率确定模块还用于, 按如下方式确定所述路径损耗: 如果所述接收 模块接收到的所述下行数据只包括所述主服务小区的下行控制信道调度的下行 数据, 确定所述 TPC命令为所述主服务小区的下行控制信道中的 TPC命令; 或 者, 如果所述接收模块接收到的所述下行数据包括所述辅服务小区的下行控制 信道调度的下行数据, 确定所述 TPC命令为所述下行数据对应的一个辅服务小 区或多个辅服务小区中的一个辅服务小区的下行控制信道中的 TPC命令;其中, 如果所述发送模块在所述主服务小区对应的上行载波上发送所述物理上行 控制信道,
所述接收模块还用于接收所述主服务小区发送的下行参考信号; 所述 测量模块用于测量所述接收模块接收的主服务小区发送的所述下行参考信 号的第一接收功率;所述功率确定模块根据所述主服务小区发送的所述下行 参考信号的第一发送功率和所述测量模块测量到所述第一接收功率确定所 述第二路径损耗;所述接收模块还用于接收所述至少一个辅服务小区中的一 个辅服务小区发送的下行参考信号;所述测量模块用于测量所述接收模块接 收的所述一个辅服务小区发送的所述下行参考信号的第二接收功率;所述功 率确定模块根据所述一个辅服务小区发送的下行参考信号的第二发送功率、 所述测量模块测量到的所述第二接收功率以及功率偏移量确定的所述第一 路径损耗;
或者,
如果所述发送模块在所述至少一个辅服务小区中的一个辅服务小区对应的 上行载波上发送所述物理上行控制信道,
所述接收模块还用于接收所述主服务小区发送的下行参考信号; 所述 测量模块用于测量所述接收模块接收的所述主服务小区发送的所述下行参 考信号的第一接收功率;所述功率确定模块根据所述主服务小区发送的所述 下行参考信号的第一发送功率、所述测量模块测量到所述第一接收功率以及 功率偏移量确定所述第二路径损耗;所述接收模块还用于接收所述至少一个 辅服务小区中的一个辅服务小区发送的下行参考信号;所述测量模块用于测 量所述接收模块接收的所述一个辅服务小区发送的所述下行参考信号的第 二接收功率;所述功率确定模块根据所述一个辅服务小区发送的下行参考信 号的第二发送功率和所述测量模块测量到的所述第二接收功率确定的所述 第一路径损耗。
第四方面, 提供了一种网络设备, 所述网络设备包括:
发送模块, 用于向用户设备 UE发送下行控制信道调度的下行数据, 其中, 所述下行控制信道为辅服务小区对应的下行控制信道, 或所述下行控制信道为 所述网络侧设备对应的主服务小区对应的下行控制信道, 所述辅服务小区是为 所述 UE配置的至少两个服务小区中的服务小区,所述至少两个服务小区还包括 所述主服务小区;
确定模块, 用于在所述发送模块发送所述下行数据后, 确定所述 UE可能 使用的标识信息; 以及 接收模块, 用于在用于反馈物理上行控制信道的信道资源上, 使用所述确 定模块确定的所述可能使用的标识信息检测所述下行数据对应的所述物理上行 控制信道, 其中, 所述物理上行控制信道是所述 UE使用所述 UE可能使用的标 识信息中的一种生成的。
在第四方面的第一种可能的实现方式中,
所述确定模块具体用于, 确定所述 UE可能使用的标识信息包括: 所述主服务小区对应的小区标识信息, 所述网络设备对应的所述辅服务小 区对应的小区标识信息, 和按照预定规则确定的标识信息; 或者
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息和 为所述 UE配置的所有辅服务小区对应的小区标识信息;
其中, 所述小区标识信息为小区标识和 /或虚拟小区标识。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述确定模块具体用于按如下预定规则确定所述标识信息:
所述主服务小区对应的网络设备通知的小区标识信息, 或者为所述 UE配 置的所有辅服务小区对应的公共的小区标识信息。
结合第四方面的第一种可能的实现方式或第二种可能的实现方式, 在第三 种可能的实现方式中, 所述网络设备还包括:
信道资源获取模块, 用于获取所述物理上行控制信道的一个信道资源或一 组信道资源的信息, 并获取所述发送模块发送的所述下行数据对应的所述下行 控制信道的信道资源参数;
所述接收模块具体用于按如下方式使用所述确定模块确定的所述可能使用 的标识信息检测所述下行数据对应的所述物理上行控制信道: 在所述信道资源 获取模块获取的所述一个信道资源或一组信道资源的所述信息对应的所述一个 信道资源或所述一组信道资源上, 以及在所述信道资源获取模块获取的所述信 道资源参数对应的所述物理上行控制的信道资源上, 使用所述确定模块确定的 所述可能使用的标识信息检测所述下行数据对应的物理上行控制信道。 结合第四方面的第二种可能的实现方式或第三种可能的实现方式, 在第四 种可能的实现方式中, 所述接收模块还用于, 通过接收无线资源控制 RRC信令 接收所述物理上行控制信道的所述一个信道资源或一组信道资源的所述信息; 所述信道资源获取模块具体用于, 通过所述接收模块接收的所述 RRC信令获取 所述物理上行控制信道的所述一个信道资源或一组信道资源的所述信息; 或者 所述网络设备还包括存储模块, 所述存储模块用于存储所述接收模块接收 的所述一个信道资源或一组信道资源的所述信息; 所述信道资源获取模块具体 用于从所述存储模块获取所述一个信道资源或一组信道资源的所述信息。
第五方面, 一种用户设备, 其特征在于, 所述用户设备 UE包括: 接收器, 用于接收网络设备通过下行控制信道调度的下行数据, 其中, 所 述下行控制信道为服务小区对应的下行控制信道,所述服务小区是为所述 UE配 置的至少两个服务小区中的服务小区, 所述至少两个服务小区包括一个主服务 小区和至少一个辅服务小区;
处理器, 用于根据所述接收器接收的所述下行数据对应的所述下行控制信 道, 选择标识信息, 利用所述标识信息生成所述下行数据对应的物理上行控制 信道; 以及
发送器, 用于在所述生成模块生成的所述物理上行控制信道的信道资源上 发送所述物理上行控制信道。
在第五方面的第一种可能的实现方式中,
所述处理器具体用于, 如果所述接收器接收到的所述下行数据不包括所述 主服务小区对应的下行控制信道调度的下行数据, 选择第二标识信息, 并利用 所述第二标识信息生成所述下行数据对应的物理上行控制信道; 或,
所述处理器具体用于, 如果所述接收器接收到的所述下行数据包括所述主 服务小区对应的下行控制信道调度的下行数据, 选择第一标识信息, 并利用所 述第一标识信息生成所述下行数据对应的物理上行控制信道。
结合在第五方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述处理器具体用于按如下方式选择标识信息: 选择所述主服务小区对应 的小区标识信息作为所述第一标识信息; 或者
所述处理器具体用于按如下方式选择标识信息: 如果所述接收器只接收到 一个辅服务小区对应的下行控制信道调度的下行数据, 选择所述一个辅服务小 区对应的小区标识信息作为所述第二标识信息; 或者
所述处理器具体用于按如下方式选择标识信息: 如果所述接收器只接收到 所述至少一个辅服务小区中的多个辅服务小区对应的下行控制信道调度的下行 数据, 按照预定规则选择所述第二标识信息。
在第五方面的第三种可能的实现方式中,
所述处理器具体用于, 如果所述接收器接收到的所述下行数据只包括所述 主服务小区对应的下行控制信道调度的下行数据, 选择第一标识信息, 并利用 所述第一标识信息生成所述下行数据对应的物理上行控制信道; 和 /或
所述处理器具体用于, 如果所述接收器接收到的所述下行数据包括所述辅 服务小区对应的下行控制信道调度的下行数据, 选择第二标识信息, 并利用所 述第二标识信息生成所述下行数据对应的物理上行控制信道。
结合第五方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述处理器具体用于按如下方式选择标识信息: 选择所述主服务小区对应 的小区标识信息作为所述第一标识信息; 或者
所述处理器具体用于按如下方式选择标识信息: 如果所述接收器接收到所 述主服务小区和只有一个辅服务小区对应的下行控制信道调度的下行数据, 选 择所述一个辅服务小区对应的小区标识信息作为所述第二标识信息; 或者
所述处理器具体用于按如下方式选择标识信息: 如果所述接收器只接收到 所述至少一个辅服务小区中的多个辅服务小区对应的下行控制信道调度的下行 数据, 按照预定规则选择所述第二标识信息。
结合在第五方面的第二种或第四种可能的实现方式, 在第五种可能的实现 方式中, 所述处理器具体用于基于如下方式按照预定规则选择所述第二标识信息: 选择所述多个辅服务小区中的任一辅服务小区对应的小区标识信息作为所述第 二标识信息; 或者, 选择所述主服务小区对应的网络设备通知的小区标识信息 作为所述第二标识信息; 或者, 选择所述至少一个辅服务小区对应的公共的小 区标识信息作为所述第二标识信息。
结合在第五方面的第二种至第五种中任一种可能的实现方式, 在第六种可 能的实现方式中, 所述处理器具体用于按如下方式选择所述小区标识信息: 选 择小区标识和 /或虚拟小区标识作为所述小区标识信息。
结合第五方面或上述第五方面的任一种可能的实现方式, 在第七种可能的 实现方式中, 所述处理器还用于, 获取所述物理上行控制信道的一个信道资源 或一组信道资源的信息; 所述发送器具体用于按如下方式在所述物理上行控制 信道的信道资源上发送所述物理上行控制信道: 在所述处理器获取的所述一个 信道资源或一组信道资源的所述信息对应的所述一个信道资源或一组信道资源 上, 发送所述处理器生成的所述物理上行控制信道。
结合第五方面或上述第五方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 所述处理器还用于, 确定所述接收器接收 的所述下行数据对应的服务小区为所述主服务小区, 并获取所述主服务小区对 应的所述下行控制信道的信道资源参数; 所述发送器具体用于按如下方式在所 述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在所述处理器 获取的所述信道资源参数对应的第一信道资源上, 发送所述处理器生成的所述 物理上行控制信道, 其中, 所述第一信道资源为所述处理器获取的所述信道资 源参数对应的所述物理上行控制信道的信道资源; 或者
所述处理器还用于, 确定所述接收器接收的所述下行数据对应的服务小区 包含所述辅服务小区, 并获取所述物理上行控制信道的一个信道资源或一组信 道资源的信息; 所述发送器具体用于按如下方式在所述物理上行控制信道的信 道资源上发送所述物理上行控制信道: 在第二信道资源上发送所述处理器生成 的所述物理上行控制信道; 其中, 所述第二信道资源为所述处理器获取的所述 一个信道资源或一组信道资源的所述信息对应的所述一个信道资源或所述一组 信道资源。
结合第五方面或上述第五方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 在第九种可能的实现方式中,
所述处理器还用于, 确定所述接收器接收的所述下行数据对应的服务小区 为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述一个辅服务小区 对应的下行控制信道的信道资源参数; 所述发送器具体用于按如下方式在所述 物理上行控制信道的信道资源上发送所述物理上行控制信道: 在第三信道资源 上, 发送所述物理上行控制信道; 其中, 所述第三信道资源为所述处理器获取 的所述信道资源参数对应的所述物理上行控制信道的信道资源; 或者
所述处理器还用于, 确定所述接收器接收的所述下行数据对应的服务小区 包括所述主服务小区和所述至少一个辅服务小区中的一个或多个辅服务小区, 或者, 包括所述至少一个辅服务小区中的多个辅服务小区, 并获取所述物理上 行控制信道的一个信道资源或一组信道资源的所述信息; 所述发送器具体用于 按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道: 在第四信道资源上, 发送所述物理上行控制信道, 其中, 所述第四信道资 源为所述处理器获取的所述一个信道资源或一组信道资源所述信息对应的所述 一个信道资源或所述一组信道资源; 或者
所述处理器还用于, 确定所述接收器接收的所述下行数据对应的服务小区 为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述物理上行控制信 道的一个信道资源或一组信道资源的信息; 所述发送器具体用于按如下方式在 所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在第五信道 资源上, 发送所述物理上行控制信道; 其中, 如果所述第四信道资源为所述处 理器获取的所述一组信道资源, 所述第五信道资源为所述一组信道资源的中的 一个信道资源。 结合第五方面或上述第五方面的第一种可能的实现方式至第六种可能的实 现方式中的任一种可能的实现方式, 在第十种可能的实现方式中,
所述处理器还用于, 确定所述接收器接收的所述下行数据对应的服务小区 为所述主服务小区, 并获取所述主服务小区对应的下行控制信道的信道资源参 数; 所述发送器具体用于按如下方式在所述物理上行控制信道的信道资源上发 送所述物理上行控制信道: 在第一信道资源上, 发送所述物理上行控制信道, 其中, 所述第一信道资源为所述处理器获取的所述信道资源参数对应的信道资 源; 或者
所述处理器还用于, 确定所述接收器接收的所述下行数据对应的服务小区 为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述至少一个辅服务 小区中的所述一个辅服务小区对应的下行控制信道的信道资源参数; 所述发送 器具体用于按如下方式在所述物理上行控制信道的信道资源上发送所述物理上 行控制信道: 在第三信道资源上发送所述物理上行控制信道, 其中, 所述第三 信道资源为所述处理器获取的所述信道资源参数对应的所述物理上行控制信道 的信道资源; 或者
所述处理器还用于, 确定所述接收器接收的所述下行数据对应的服务小区 包括所述至少一个辅服务小区中的多个辅服务小区, 或包括所述主服务小区和 所述至少一个辅服务小区中的一个或多个辅服务小区, 并获取所述物理上行控 制信道的一个信道资源或一组信道资源的信息; 所述发送器具体用于按如下方 式在所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在第四 信道资源上发送所述物理上行控制信道; 其中, 所述第四信道资源为所述处理 器获取的所述一个信道资源或一组信道资源的信息对应的所述一个信道资源或 所述一组信道资源;
所述处理器还用于, 确定所述接收器接收的所述下行数据对应的服务小区 为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述物理上行控制信 道的一个信道资源或一组信道资源的信息; 所述发送器具体用于按如下方式在 所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在第五信道 资源上发送所述物理上行控制信道; 其中, 如果所述第四信道资源为所述一组 信道资源, 所述第五信道资源为所述一组信道资源中的一个信道资源。
结合上述第五方面的第七种可能的实现方式至第十种可能的实现方式中的 任一种可能的实现方式, 在第十一种可能的实现方式中,
所述接收器还用于,接收所述网络设备通过无线资源控制 RRC信令发送的 所述一个信道资源或一组信道资源的所述信息; 所述处理器具体用于, 通过获 取所述接收器接收的所述 RRC信令获取所述一个信道资源或所述一组信道资源 的所述信息; 或者
所述用户设备还包括存储器, 所述存储器用于存储所述一个信道资源或所 述一组信道资源的所述信息; 所述信道资源获取具体用于, 从所述存储器获取 所述一个信道资源或所述一组信道资源的所述信息。
结合第五方面或上述第五方面的任一种可能的实现方式, 在第十二种可能 的实现方式中,
所述发送器具体用于按如下方式在所述物理上行控制信道的信道资源上发 送所述处理器生成的所述物理上行控制信道:
如果所述接收器接收到的下行数据包括所述主服务小区对应的下行控制信 道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上行载波 上发送所述处理器生成的所述物理上行控制信道; 或者
如果所述接收器只接收到所述多个辅服务小区中的一个对应的下行控制信 道调度的下行数据, 则将所述信道资源承载在所述一个辅服务小区对应的上行 载波上发送所述处理器生成的所述物理上行控制信道; 或者
如果所述接收器只接收到所述至少一个辅服务小区中的多个辅服务小区对 应的下行控制信道调度的下行数据, 则将所述信道资源承载在所述多个辅服务 小区中的一个辅服务小区对应的上行载波上发送所述处理器生成的所述物理上 行控制信道。 结合第五方面或上述第五方面的任一种可能的实现方式, 在第十三种可能 的实现方式中,
所述发送器具体用于按如下方式在所述物理上行控制信道的信道资源上发 送所述处理器生成的所述物理上行控制信道:
如果所述接收器接收到的下行数据只包括所述主服务小区对应的下行控制 信道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上行载 波上; 或
如果所述接收器接收到的下行数据包括所述辅服务小区对应的下行控制信 道调度的下行数据, 则将所述信道资源承载在所述辅服务小区对应的上行载波 上。
结合第五方面或上述第五方面的任一种可能的实现方式, 在第十四种可能 的实现方式中,
所述处理器具体用于按如下方式利用所述选择的标识信息生成所述下行数 据对应的物理上行控制信道:
对于下行控制信道格式 lb结合信道选择的反馈模式,利用所述所选择的标 识信息生成所述物理上行控制信道的序列; 或者,
对于下行控制信道格式 3的反馈模式, 利用所述所选择的标识信息生成所 述物理上行控制信道的调制符号的循环移位图样和 /或利用所述所选择的标识信 息进行正交扩频码的映射。
结合第五方面或上述第五方面的任一种可能的实现方式, 在第十五种可能 的实现方式中, 所述处理器还用于, 对于格式 3 的反馈模式, 如果所述接收器 没有接收到所述主服务小区对应的下行控制信道调度的下行数据, 根据所述辅 服务小区的所述下行数据的传输模式确定所述物理上行控制信道的码本大小; 或, 如果所述接收器接收到所述主服务小区对应的下行控制信道调度的下行数 据, 根据所述主服务小区和所述辅服务小区的下行数据的传输模式来确定所述 物理上行控制信道的所述码本大小; 所述处理器具体用于按如下方式生成所述物理上行控制信道: 根据所述确 定的所述码本大小和所述选择的所述标识信息, 生成所述物理上行控制信道。 结合第五方面或上述第五方面的任一种可能的实现方式, 在第十六种可能的实 现方式中, 所述处理器还用于, 根据路径损耗值和所述接收器接收的所述下行 数据对应的所述下行控制信道中的发送功率控制 TPC命令, 确定所述物理上行 控制信道的发送功率; 其中, 如果所述接收器接收到的所述下行数据不包括所 述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述下行数据 对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控制信道 中的 TPC命令; 或者, 如果所述接收器接收到的下行数据包括所述主服务小区 的下行控制信道调度的下行数据, 所述 TPC命令为所述下行数据对应的一个辅 服务小区或多个辅服务小区中的一个辅服务小区的下行控制信道中的 TPC命令 所述发送器具体用于按如下方式发送所述处理器生成的所述物理上行控制信 道: 以所述处理器确定的所述发送功率来发送所述处理器生成的所述物理上行 控制信道。
结合第五方面的第十六种可能的实现方式,在第十七种可能的实现方式中, 所述处理器还用于, 按如下方式确定所述路径损耗: 如果所述接收器接收到的 所述下行数据不包括所述主服务小区对应的下行控制信道调度的下行数据, 确 定所述路径损耗为第一路径损耗; 如果所述所述接收器接收到的下行数据包括 所述主服务小区对应的下行控制信道调度的下行数据, 则所述路径损耗为第二 路径损耗; 其中,
如果所述发送器在所述主服务小区对应的上行载波上发送所述物理上行控 制信道,
所述接收器还用于接收所述主服务小区发送的下行参考信号; 所述处 理器还用于测量所述接收器接收的主服务小区发送的所述下行参考信号的 第一接收功率;并根据所述主服务小区发送的所述下行参考信号的第一发送 功率和所述测量到所述第一接收功率确定所述第二路径损耗;所述接收器还 用于接收所述至少一个辅服务小区中的一个辅服务小区发送的下行参考信 号; 所述处理器还用于,测量所述接收器接收的所述一个辅服务小区发送的 所述下行参考信号的第二接收功率;并根据所述一个辅服务小区发送的下行 参考信号的第二发送功率、所述测量到的所述第二接收功率以及功率偏移量 确定的所述第一路径损耗;
或者,
如果所述发送器在所述至少一个辅服务小区中的一个辅服务小区对应的上 行载波上发送所述物理上行控制信道,
所述接收器还用于接收所述主服务小区发送的下行参考信号; 所述处 理器还用于,测量所述接收器接收的所述主服务小区发送的所述下行参考信 号的第一接收功率;并根据所述主服务小区发送的所述下行参考信号的第一 发送功率、所述测量到所述第一接收功率以及功率偏移量确定所述第二路径 损耗;所述接收器还用于接收所述至少一个辅服务小区中的一个辅服务小区 发送的下行参考信号;所述处理器用于测量所述接收器接收的所述一个辅服 务小区发送的所述下行参考信号的第二接收功率;并根据所述一个辅服务小 区发送的下行参考信号的第二发送功率和所述测量到的所述第二接收功率 确定的所述第一路径损耗。
结合第五方面或上述第五方面的任一种可能的实现方式, 在第十八种可能 的实现方式中, 所述处理器还用于, 根据路径损耗值和所述接收器接收的所述 下行数据对应的所述下行控制信道中的发送功率控制 TPC命令, 确定所述物理 上行控制信道的发送功率; 其中, 如果所述 UE接收到的所述下行数据只包括所 述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述主服务小 区的下行控制信道中的 TPC命令; 或者, 如果所述 UE接收到的所述下行数据 包括所述辅服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述下 行数据对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控 制信道中的 TPC命令; 所述发送器具体用于按如下方式发送所述处理器生成的所述物理上行控制 信道: 以所述处理器确定的所述发送功率来发送所述处理器生成的所述物理上 行控制信道。
结合第五方面的第十八种可能的实现方式,在第十九种可能的实现方式中, 所述处理器还用于,按如下方式确定所述路径损耗: 如果所述 UE接收到的所述 下行数据只包括所述主服务小区对应的下行控制信道调度的下行数据, 确定所 述路径损耗为第二路径损耗;如果所述 UE接收到的下行数据包括所述辅服务小 区对应的下行控制信道调度的下行数据, 则确定所述路径损耗为第一路径损耗; 其中,
如果所述发送器在所述主服务小区对应的上行载波上发送所述物理上行控 制信道,
所述接收器还用于接收所述主服务小区发送的下行参考信号; 所述处 理器还用于测量所述接收器接收的主服务小区发送的所述下行参考信号的 第一接收功率;并根据所述主服务小区发送的所述下行参考信号的第一发送 功率和所述测量到所述第一接收功率确定所述第二路径损耗;所述接收器还 用于接收所述至少一个辅服务小区中的一个辅服务小区发送的下行参考信 号; 所述处理器还用于,测量所述接收器接收的所述一个辅服务小区发送的 所述下行参考信号的第二接收功率;并根据所述一个辅服务小区发送的下行 参考信号的第二发送功率、所述测量到的所述第二接收功率以及功率偏移量 确定的所述第一路径损耗;
或者,
如果所述发送器在所述至少一个辅服务小区中的一个辅服务小区对应的上 行载波上发送所述物理上行控制信道,
所述接收器还用于接收所述主服务小区发送的下行参考信号; 所述处 理器还用于,测量所述接收器接收的所述主服务小区发送的所述下行参考信 号的第一接收功率;并根据所述主服务小区发送的所述下行参考信号的第一 发送功率、所述测量到所述第一接收功率以及功率偏移量确定所述第二路径 损耗;所述接收器还用于接收所述至少一个辅服务小区中的一个辅服务小区 发送的下行参考信号;所述处理器用于测量所述接收器接收的所述一个辅服 务小区发送的所述下行参考信号的第二接收功率;并根据所述一个辅服务小 区发送的下行参考信号的第二发送功率和所述测量到的所述第二接收功率 确定的所述第一路径损耗。
第六方面, 提供了一种网络设备, 所述网络设备包括:
发送器, 用于向用户设备 UE发送下行控制信道调度的下行数据, 其中, 所述下行控制信道为辅服务小区对应的下行控制信道, 或所述下行控制信道为 所述网络侧设备对应的主服务小区对应的下行控制信道, 所述辅服务小区是为 所述 UE配置的至少两个服务小区中的服务小区,所述至少两个服务小区还包括 一个主服务小区;
处理器, 用于在所述发送器发送所述下行数据后, 确定所述 UE可能使用 的标识信息; 以及
接收器, 用于在用于反馈物理上行控制信道的信道资源上, 使用所述处理 器确定的所述可能使用的标识信息检测所述下行数据对应的所述物理上行控制 信道, 其中, 所述物理上行控制信道是所述 UE使用所述 UE可能使用的标识信 息中的一种生成的。
在第六方面的第一种可能的实现方式中,
所述处理器具体用于, 确定所述 UE可能使用的标识信息包括:
所述主服务小区对应的小区标识信息, 所述网络设备对应的所述辅服 务小区对应的小区标识信息, 和按照预定规则确定的标识信息; 或者
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信 息和为所述 UE配置的所有辅服务小区对应的小区标识信息;
其中, 所述小区标识信息为小区标识和 /或虚拟小区标识。 结合第六方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述处理器具体用于按如下预定规则确定所述小区标识信息:
所述主服务小区对应的网络设备通知的小区标识信息, 或者为所述 UE配 置的所有辅服务小区对应的公共的小区标识信息。
结合第六方面的第一种可能的实现方式或第二种可能的实现方式, 所述处 理器还用于, 获取所述物理上行控制信道的一个信道资源或一组信道资源的信 息, 并获取所述发送器发送的所述下行数据对应的所述下行控制信道的信道资 源参数;
所述接收器具体用于按如下方式使用所述处理器确定的所述可能使用的标 识信息检测所述下行数据对应的所述物理上行控制信道: 在所述处理器获取的 所述一个信道资源或一组信道资源的所述信息对应的所述一个信道资源或所述 一组信道资源上, 以及在所述处理器获取的所述信道资源参数对应的所述物理 上行控制的信道资源上, 使用所述处理器确定的所述可能使用的标识信息检测 所述下行数据对应的物理上行控制信道。
结合第六方面的第二种可能的实现方式或第三种可能的实现方式, 在第四 种可能的实现方式中, 所述接收器还用于, 通过接收无线资源控制 RRC信令接 收所述物理上行控制信道的所述一个信道资源或一组信道资源的所述信息; 所 述处理器具体用于, 通过所述接收器接收的所述 RRC信令获取所述物理上行控 制信道的所述一个信道资源或一组信道资源的所述信息; 或者
所述网络设备还包括存储器, 所述存储器用于存储所述接收器接收的所述 一个信道资源或一组信道资源的所述信息; 所述处理器具体用于从所述存储器 获取所述一个信道资源或一组信道资源的所述信息。
通过上述方案, 由于 UE发送的物理上行控制信道是使用相应的标识信息 生成的,在收到上述物理上行控制信道之后, 向 UE发送了下行控制信道的网络 设备能够根据使用的标识信息区分出对应的物理上行控制信道, 实现了多个网 络设备间复用相同的 PUCCH信道资源,而不需要实时获知其他基站的下行数据 的调度情况。 附图说明
图 1 为本发明一实施例提供的一种上行控制信息的发送方法的流程图; 图 2 为本发明另一实施例提供的一种上行控制信息的发送方法的流程图; 图 3 为本发明另一实施例提供的一种上行控制信息的发送方法的流程图; 图 3a为本发明实施例非理想回传的载波聚合中下行调度和上行 PUCCH资 源示意图;
图 4为本发明另一实施例提供的一种上行控制信息的发送方法的流程图; 图 5为本发明一实施例提供的用户设备的结构示意图;
图 6为本发明另一实施例提供的用户设备的结构示意图;
图 7为本发明一实施例提供的用户设备的结构示意图;
图 8为本发明一实施例提供的网络设备的结构示意图;
图 8a为本发明另一实施例提供的网络设备的结构示意图;
图 8b为本发明另一实施例提供的网络设备的结构示意图;
图 9为本发明另一实施例提供的网络设备的结构示意图;
图 10为本发明另一实施例提供的用户设备的结构示意图;
图 10a为本发明另一实施例提供的用户设备的结构示意图;
图 1 1为本发明另一实施例提供的网络设备的结构示意图;
图 1 la为本发明另一实施例提供的网络设备的结构示意图;
图 12为本发明另一实施例提供的网络设备的结构示意图。 具体实施方式
上述现有技术的 PUCCH的发送模式, 在基站间的载波聚合系统下是不适 用的。 由于基站间的下行调度是独立的, 各基站无法实时获知其他基站的信道 资源的调度情况, 因此上述 PUCCH信道资源分配的方案是无法应用的。 例如, 对于高层预留结合 PDCCH动态选择的方案, 假设宏基站的 fl为主载波, 宏基 站并不能实时获知微基站调度的 PDCCH中的动态指示的两个比特的具体状态, 也就无法获取该显式指示的 PUCCH格式 3或 PUCCH格式 lb的信道资源。
因此, 需要多个基站同时接收的 PUCCH信道资源必须是半静态预留或静 态预留的, 比如, 可以通过 RRC信令配置 PUCCH信道资源, 而不可以进一步 动态地从 RRC信令通知的多组或多个资源中选择其中一个使用。 但純半静态预 留的 PUCCH信道资源会造成资源开销较大,尤其是在宏基站覆盖范围内做宏基 站和微基站间 CA的 UE数较多的情况下, 信道资源开销大的问题尤为严重。 因 此本发明实施例采用信道资源的复用机制,即同一个 PUCCH信道资源或同一组 PUCCH信道资源可供多个 UE同时使用,又尽量降低复用资源带来的干扰问题。
此外, 对于有理想回传条件的载波聚合场景, 比如宏基站在 fl而微基站在 f2, 且宏基站和微基站间的回传是理想的, 也需要考虑 PUCCH供微基站接收来 降低上行干扰和提高 UE功率效率,这样在微基站之间需要考虑 PUCCH资源复 用的问题; 有时宏基站也需要接收 PUCCH来获得较好的移动性性能, 因此还需 要考虑与宏基站接收 PUCCH相结合的问题。
基于上述问题, 本发明一实施例提供了一种上行控制信息的发送方法, 如 图 1所示。 本实施例的方法包括如下步骤。
步骤 110, UE接收网络设备通过下行控制信道调度的下行数据, 其中, 所 述下行控制信道为服务小区对应的下行控制信道,所述服务小区是为所述 UE配 置的至少两个服务小区中的服务小区, 所述至少两个服务小区包括一个主服务 小区和至少一个辅服务小区。
步骤 120, 根据所述下行控制信道选择标识信息。
步骤 130, 利用所述选择的标识信息生成所述下行数据对应的物理上行控 制信道。
步骤 140, 在所述物理上行控制信道的信道资源上发送所述物理上行控制 信道。
通过采用本实施例的方法, 由于 UE发送的物理上行控制信道是使用相应 的标识信息生成的, 这样, 在收到上述物理上行控制信道之后, 向 UE发送了下 行控制信道的网络设备能够根据使用的标识信息区分出对应的物理上行控制信 道, 实现了多个网络设备间复用相同的 PUCCH信道资源, 而不需要实时获知其 他基站的下行数据的调度情况, 达到了小区分裂的增益,提高了 PUCCH信道资 源的利用率。 此外, 在宏微站之间存在理想回传的条件下, 还可以起到 PUCCH 向微基站上行载波上的卸载的作用, 同时可以保持在宏基站上的接收无线资源 控制的好处。
本发明另一实施例提供了一种上行控制信道的接收方法, 如图 2所示。 本 实施例的方法包括如下步骤。
步骤 210, 网络设备向用户设备 UE发送下行控制信道调度的下行数据, 其 中, 所述下行控制信道为所述网络设备对应的辅服务小区对应的下行控制信道, 或所述下行控制信道为所述网络侧设备对应的主服务小区对应的下行控制信 道, 所述辅服务小区是为所述 UE配置的至少两个服务小区中的服务小区, 所述 至少两个服务小区还包括所述主服务小区。
步骤 220, 确定所述 UE可能使用的标识信息。
步骤 230, 在用于反馈所述物理上行控制信道的信道资源上, 使用所述可 能使用的标识信息检测所述下行数据对应的所述物理上行控制信道, 其中, 所 述物理上行控制信道是所述 UE使用所述 UE可能使用的标识信息中的一种生成 的。
通过采用本实施例的方法, 由于 UE发送的物理上行控制信道是使用相应 的标识信息生成的, 这样, 在收到上述物理上行控制信道之后, 向 UE发送了下 行控制信道的主服务小区对应的网络设备能够根据该标识信息区分出对应的物 理上行控制信道, 实现了多个网络设备间复用相同的 PUCCH信道资源, 而不需 要实时获知其他基站的 PUCCH信道资源的调度情况, 达到了小区分裂的增益, 提高了 PUCCH信道资源的利用率。此外,在宏微站之间存在理想回传的条件下, 还可以启到 PUCCH向微站上行载波上的卸载的作用,同时可以保持在宏站上的 接收无线资源控制的好处。
本发明另一实施例还提供了一种上行控制信息的传输方法, 如图 3所示。 本实施例的方法包括如下步骤。
步骤 310, UE接收网络设备通过下行控制信道调度的下行数据, 其中, 所 述下行控制信道为服务小区对应的下行控制信道,所述服务小区是为所述 UE配 置的至少两个服务小区中的服务小区, 所述至少两个服务小区包括一个主服务 小区和至少一个辅服务小区。
需要说明的是, 本发明实施例中, 下行控制信道包括 PDCCH 和 /或 ePDCCH, 本文均以 PDCCH为例进行描述, ePDCCH的实现方式与 PDCCH相 同。
其中, 一个下行控制信道可以对应一个服务小区。
UE在被配置了至少两个服务小区后,即可获取网络设备所配置的所述至少 两个服务小区的配置信息。
其中, UE可以通过 RRC信令获取网络设备配置的至少两个服务 ' j、区的配 置信息。 例如, UE初始从主服务小区接入, 然后网络设备发现该 UE的数据需 求增加, 就进一步通过 RRC信令为该 UE添加了一个辅服务小区。 这里只是一 种配置两个服务小区的示例, 本发明实施例并不限于此, 任何配置至少两个服 务小区的方法均可以用于本发明实施例。
一个服务小区可以包括一个下行载波和与这个下行载波对应的一个上行载 波, 因此, 一对上行载波和下行载波又称为一个服务小区, 本文不区分服务小 区和载波。
此外, 本实施例以两个服务小区为例进行说明, 即一个主服务小区和一个 辅服务小区, 但是本发明实施例并不限于两个服务小区。 如果有更多的辅服务 小区, 可以采用同样的方法。 其中, 主服务小区和辅服务小区还可以是一般的 第一小区和第二小区, 并不做限定。
此外, 本实施例中的至少两个服务小区可以在工作不同的频点, 也可以是 在工作在相同的频点, 下文均与此相同。
步骤 320, 根据所述下行控制信道选择标识信息。
其中, 所述标识信息用于生成所述下行控制信道对应的所述物理上行控制 信道。 其中, 针对不同的服务小区, 选择不同的标识信息。
例如, 本步骤可以包括:
在一个实施例中, 如果所述 UE只接收到所述辅服务小区对应的下行控制 信道调度的下行数据, 而没有接收到所述主服务小区对应的下行控制信道调度 的下行数据, 所述 UE选择第二标识信息; 和 /或, 如果所述 UE接收到的所述下 行数据包括所述主服务小区对应的下行控制信道调度的下行数据,即所述 UE只 接收到所述主服务小区对应的下行控制信道调度的下行数据,或者, 所述 UE同 时接收到所述主服务小区和一个或多个辅服务小区对应的下行控制信道调度的 下行数据, 所述 UE选择第一标识信息。
进一步地,所述第一标识信息可以为所述主服务小区对应的小区标识信息。 如果所述 UE只接收到一个辅服务小区对应的下行控制信道调度的下行数 据, 所述第二标识信息可以为所述一个辅服务小区对应的小区标识信息; 或者 如果所述 UE只接收到所述至少一个辅服务小区中的多个辅服务小区对应 的下行控制信道调度的下行数据, 所述 UE选择第二标识信息的步骤包括: 所述 UE按照预定规则选择所述第二标识信息。
其中, 所述小区标识信息可以为小区标识和 /或虚拟小区标识。
在另一个实施例中, 如果所述 UE接收到的所述下行数据只包括所述主服 务小区对应的下行控制信道调度的下行数据, 而没有接收到所述辅服务小区对 应的下行控制信道调度的下行数据, 所述选择的标识信息为第一标识信息; 和 / 或,如果所述 UE接收到的所述下行数据包括所述辅服务小区对应的下行控制信 道调度的下行数据,即所述 UE接收到的所述下行数据只包括所述辅服务小区对 应的下行控制信道调度的下行数据,或者, 所述 UE同时接收到所述主服务小区 和所述辅服务小区对应的下行控制信道调度的下行数据, 所述选择的标识信息 为第二标识信息。
进一步地,所述第一标识信息可以为所述主服务小区对应的小区标识信息。 如果所述 UE接收到所述主服务小区和只有一个辅服务小区对应的下行控 制信道调度的下行数据, 所述第二标识信息可以为所述一个辅服务小区对应的 小区标识信息; 或者
如果所述 UE只接收到所述至少一个辅服务小区中的多个辅服务小区对应 的下行控制信道调度的下行数据, 所述 UE选择第二标识信息的步骤包括: 所述 UE按照预定规则选择所述第二标识信息。
其中, 所述小区标识信息可以为小区标识和 /或虚拟小区标识。
具体的, 本实施例中的服务小区对应的小区标识可以是与该服务小区的同 步信号对应的物理小区标识, 服务小区的虚拟小区标识可以是网络设备通过
RRC信令为 UE配置的一个标识 X, 该标识 X的取值范围可以跟上述物理小区 标识的取值范围相同, 例如从 0到 503中的整数。
一个示例中, 所述第一小区标识信息和第二小区标识信息可以分别为主服 务小区的小区标识和辅服务小区的小区标识。 假设 UE通过该主服务小区接入 LTE系统,该 UE可以通过检测主服务小区的同步信道获取到主服务小区的小区 标识; 之后网络设备通过 RRC信令为该 UE添加了一个辅服务小区, 例如微基 站的载波 f2, 那么网络设备就通过该 RRC信令将该辅服务小区的小区标识发送 给该 UE, 或者 UE也可以通过检测该辅服务小区的同步信道获取其小区标识。
另一个示例中, 第二小区标识信息可以为虚拟小区标识, 第一' h区标识信 息可以为小区标识, 也可以为虚拟小区标识。 本示例以第二小区标识信息为虚 拟小区标识为例进行说明。 如图 3a所示, 假设主服务小区对应的小区标识为标 识 X; 宏基站的覆盖范围内有多个微基站 (载波为 ), 如果这些微基站对应的小 区标识相同(当然也可以不同 ), 网络设备可以为 UE配置这些 基站对应的虚 拟小区标识, 即第二小区标识信息, 从而使得多个微基站间干扰随机化。 其中, 网络设备可以通过 RRC信令将虚拟小区标识配置给 UE, 假设虚拟小区标识为 Xi, 其中 i是各微基站的标号。
需要说明的是, 本发明实施例中所述的标识信息并不限于上述示例, 还可 以是网络设备为所述 UE配置的标识的信息, 其中, 所述标识对于不同的服务小 区可以是不同的, 如, 主月良务小区对应一个标识, 辅月良务小区对应一个标识。 当然, 所述标识信息还可以是其他的标识信息, 只要能够区分服务小区即可。
步骤 330,所述 UE利用所选择的小区标识信息生成所述下行数据对应的物 理上行控制信道。
当网络设备为 UE配置了一个主服务小区和一个辅服务小区后, UE就要分 别监测这两个服务小区上的下行控制信道, 以通过这两个服务小区接收下行数 据。本实施例以下行控制信道为 PDCCH进行说明, 当然下行控制信道也可以是 基于 UE特定参考信号的 ePDCCH。这里假设宏基站的主服务小区和微基站的一 个辅服务小区对所述 UE是独立调度的, 会出现如下几种情况:
1 ) UE只收到主服务小区的 PDCCH;
2 ) UE只收到辅服务小区的 PDCCH;
3 ) UE同时收到主服务小区的 PDCCH和辅服务小区的 PDCCH。
如果 UE在某个时刻只能在一个上行载波上发送 PUCCH, 例如, UE在某 个时刻只能在主服务小区对应的上行载波上发送 PUCCH, 或者, UE在某个时 刻只能在辅服务小区对应的上行载波上发送 PUCCH, 或者 UE在某些时刻只能 在主服务小区对应的上行载波上发送 PUCCH, 在另一些时刻只能在辅服务小区 对应的上行载波上发送 PUCCH, 等等;
那么上述情况 1 )可以是只有宏基站调度 UE, 此时, 只有宏基站要接收 PUCCH, 情况 2 )可以是没有宏基站调度 UE, 只有微基站要接收 PUCCH, 情 况 3 )下两个基站都要接收 PUCCH。 针对情况 3 ), 考虑到 UE距离宏基站一般 来说较微基站较远,则 UE在发送 PUCCH时所使用的功率需要满足能够使宏基 站可以接收到所述 PUCCH。 为了不对宏基站服务的其他 UE (如图 3a中的单载 波 UE3 )造成影响, 本发明实施例中该 UE要用宏基站的小区标识 X 来生成 PUCCH的基序列。 由于主服务小区对应的基序列是由相同的小区标识 X生成, 因此, 被宏基站服务的 UE向宏基站发送 PUCCH时使用的基序列都是相同的, 从而被宏基站服务的所有 UE向宏基站发送的 PUCCH可以正交, 因此各个 UE 向宏基站发送的 PUCCH没有干扰。 或者, 对于情况 3 ), UE还可以把 PUCCH 发送给微基站, 此时假设宏基站和微基站之间回传条件理想, 而把 PUCCH发送 到微基站来节省 UE功率且把 PUCCH向微基站上行载波上卸载,那么此时需要 用小区标识 Xi来生成 PUCCH。 同理, 对于情况 1 ) , 该 UE也要用 X来生成 PUCCH。 而对于情况 2 ) , 该 UE需要使用微基站的小区标识或虚拟小区标识 Xi来生成对应的 PUCCH,这样可以在多个微基站使用相同的 PUCCH信道资源 时, 利用各个微基站的各自不同的 Xi来做到干扰随机化, 也可以在宏基站和微 基站使用相同的 PUCCH信道资源时, 实现发送 PUCCH的 UE之间的干扰随机 化。例如,如图 3a所示,如果 UE1和 UE2都只收到各自微基站发送的 PDCCH, UE1和 UE2会分别用各自微基站的小区标识 XI和 X2来生成对应的 PUCCH, 这样实现了多个微基站间的 PUCCH干扰随机化; 或者, 如果 UE1收到宏基站 的 PDCCH, 而 UE2只收到微基站的 PDCCH, 则 UE1会用 UE1的宏基站的小 区标识 X生成 PUCCH,与潜在的其他发向宏基站的 UE的 PUCCH做到正交化, 而 UE2会用微基站的小区标识 X2生成 PUCCH, 这样, 在相同 PUCCH信道资 源上, UE1用较大功率发来的 PUCCH与 UE2 自己发送的 PUCCH也能够实现 干扰随机化。
步骤 340, 在所述物理上行控制信道的信道资源上, 所述 UE发送所述物理 上行控制信道。
本步骤中, 所述 UE获取了 PUCCH信道资源, 并生成了 PUCCH之后, 就 在该信道资源上发送该 PUCCH给网络设备, 即宏基站和 /或微基站。
通过采用本实施例的方法, 由于 UE发送的物理上行控制信道是使用相应 的小区标识信息生成的, 这样, 在收到上述物理上行控制信道之后, 向 UE发送 了下行控制信道的网络设备能够根据使用的小区标识信息区分出对应的物理上 行控制信道, 实现了多个网络设备间复用相同的 PUCCH信道资源, 而不需要实 时获知其他基站的下行数据的调度情况, 达到了小区分裂的增益, 提高了
PUCCH信道资源的利用率。 同时, 通过使用物理上行控制信道是使用相应的小 区标识信息生成的, 还实现了 PUCCH干扰随机化。
此外,如果网络设备为 UE配置了多个辅服务小区,所述 UE按照预定规则 选择所述第二小区标识信息。 本实施例可以有多种预定规则。
例如, 所述 UE选择所述多个辅服务小区中的任一辅服务小区对应的小区 标识信息作为所述第二小区标识信息, 此时, 发送了下行数据的辅服务基站使 用所有可能使用的小区标识信息检测 PUCCH。
又如, 所述 UE选择所述主服务小区对应的网络设备通知的小区标识信息 作为所述第二小区标识信息。
又如, 所述 UE选择所述至少一个辅服务小区对应的公共的小区标识信息 作为所述第二小区标识信息。 该公共的小区标识信息可以是网络设备下发给 UE 的一个虚拟小区标识, 即使有多个辅服务小区的调度, 或者, 如果这些微基站 对应的小区标识相同, 该公共的小区标识信息也可以是这些微基站对应的这一 相同的小区标识等, 本发明实施例并不限于这些方式, 还可以是其他的公共的 小区标识。
当然, 本发明实施例并不限于此, 还可以是其他的预定规则。
上述实施例中, 所述下行数据对应的物理上行控制信道的信道资源可以有 多种。
一个实现方式中, 如果 UE收到主服务小区对应的 PDCCH和 /或辅服务小 区对应的 PDCCH, 使用网络设备通知的或预存的一个或一组 PUCCH信道资源 来反馈 PUCCH。 这种情况下, 不论 UE收到的是主服务小区对应的 PDCCH调 度的下行数据还是辅服务小区对应的 PDCCH调度的下行数据, 还是二者都收 到,所述 UE均使用主服务小区对应的网络设备通知的一个或一组 PUCCH信道 资源。 该一个或一组 PUCCH信道资源也可以由辅服务小区对应的网络设备通 知。其中,预存的一个或一组 PUCCH信道资源可以是在接收到网络设备通知的 一个或一组 PUCCH信道资源后存储的一个或一组 PUCCH信道资源。下文的实 施例与此相同。
该一个或一组 PUCCH信道资源是网络设备为所述 UE半静态配置的。具体 的, 网络设备可以通过 RRC信令向 UE通知该一个或一组 PUCCH信道资源。 其中,对于 PUCCH格式 3的反馈模式,所述 PUCCH信道资源就是一个 PUCCH 格式 3的信道资源;对于 PUCCH格式 lb结合信道选择的反馈模式,所述 PUCCH 信道资源是供信道选择的 PUCCH格式 lb信道资源中的一组 PUCCH格式 lb的 信道资源, 比如对于 M级( level M )的信道选择则该一组信道资源中包括 M个 PUCCH格式 lb的信道资源, 该 M可以取值 2, 3或 4, 其中, M的值具体取决 于服务小区对应的下行数据的传输模式, 对于时分复用 (TDD, time division duplexing ) 系统, M 的取值还取决于一个绑定窗内的下行子帧的数目。 这样预 留一个或一组 PUCCH信道资源,使得实现较为简单, 网络设备盲检测的信道资 源个数也较少。
另一实现方式中, 如果所述 UE只接收到所述主服务小区对应的下行控制 信道调度的下行数据, 所述信道资源为第一信道资源, 则所述信道资源是第一 信道资源; 和 /或, 如果所述 UE接收到的下行数据包含所述辅服务小区对应的 下行控制信道调度的下行数据, 则所述信道资源是第二信道资源。 其中, 所述 第一信道资源为所述主服务小区对应的下行控制信道的信道资源参数隐式对应 的所述物理上行控制信道的信道资源,如根据 CCE索引和 /或下行控制信道的天 线端口号, 或者, 才艮据 eCCE索引和 /或下行控制信道的天线端口号, 确定的信 道资源; 所述第二信道资源为所述主服务小区对应的网络设备通知的所述物理 上行控制信道的一个信道资源或一组信道资源。
另一个实现方式中, 如果所述 UE只接收到所述至少一个辅服务小区中的 一个辅服务小区对应的下行控制信道调度的下行数据, 所述信道资源为第一信 道资源; 和 /或, 如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道 调度的下行数据, 或者,如果所述 UE接收到的所述下行数据包括所述至少一个 辅服务小区中的多个辅服务小区对应的下行控制信道调度的下行数据, 所述信 道资源为第二信道资源;
其中, 所述第二信道资源为所述主服务小区对应的网络设备通知的所述物 理上行控制信道的一个信道资源或一组信道资源; 所述第一信道资源为所述一 个辅服务小区对应的下行控制信道的信道资源参数隐式对应的所述物理上行控 制信道的信道资源, 或者, 如果所述第二信道资源为一组信道资源, 所述第一 信道资源为所述一组信道资源中的一个信道资源。
另一个实现方式中, 如果所述 UE只接收到所述主服务小区的所述下行控 制信道调度的下行数据, 所述信道资源为第一信道资源; 其中, 所述第一信道 资源为所述主服务小区对应的下行控制信道的信道资源参数隐式对应的信道资 源; 或者
如果所述 UE接收到的下行数据包括所述至少一个辅服务小区中的多个辅 服务小区对应的下行控制信道调度的下行数据,或者,如果所述 UE接收到的下 行数据包括所述主服务小区对应的下行控制信道调度的下行数据和一个或多个 辅服务小区对应的下行控制信道调度的下行数据, 所述信道资源为第三信道资 源; 所述第三信道资源为所述主服务小区对应的网络设备通知的所述物理上行 控制信道的一个信道资源或一组信道资源; 或者
如果所述 UE接收到所述至少一个辅服务小区中的一个辅服务小区对应的 下行控制信道调度的下行数据, 所述信道资源为第二信道资源, 其中, 所述第 二信道资源为所述至少一个辅服务小区中的所述一个辅服务小区对应的下行控 制信道的资源参数隐式对应的信道资源; 或者, 如果所述第三信道资源为所述 一组信道资源, 所述第二信道资源为所述一组信道资源中的一个信道资源。
其中, 所述一个信道资源或一组信道资源可以为所述主服务小区对应的网 络设备通过无线资源控制 RRC信令通知的。 通过上述几种实现方式, 在只收到辅服务小区的 PDCCH时, UE不用再去 执行信道选择, 而是用一个确定的信道资源来反馈 PUCCH, 减少了网络设备盲 检测不同信道的可能性, 可以优化 PUCCH性能。
进一步地, 如果所述 UE接收到的下行数据包括所述主服务小区对应的下 行控制信道调度的下行数据, 则该信道资源可以在主服务小区对应的上行载波 上。 当然该信道资源也可以放在辅服务小区对应的上行载波上, 只是可能会有 调度沖突。
如果所述 UE只接收到所述辅服务小区对应的下行控制信道调度的下行数 据, 所述信道资源位于所述辅服务小区对应的上行载波上。
同理, 如果所述 UE只接收到所述辅服务小区对应的下行控制信道调度的 下行数据, 所述信道资源位于辅服务小区对应的上行载波上; 当所述 UE同时接 收到主服务小区和辅服务小区对应的下行控制信道, 则该信道资源可以在主服 务小区对应的上行载波上或在辅服务小区对应的上行载波上。 其中, 如果所述 UE只接收到多个辅服务小区对应的下行控制信道调度的下行数据, 而没有接收 到所述主服务小区对应的下行控制信道调度的下行数据, 所述上行载波可以是 任一辅服务小区对应的上行载波。
相应地, 如果所述信道资源在主服务小区对应的上行载波上, 且 UE 同时 反馈了主服务小区对应的下行数据对应的 ACK或 NACK和辅服务小区对应的下 行数据对应的 ACK或 NACK,则调度主服务小区的第一网络设备和调度辅服务 小区的第二网络设备都需要在该上行载波上分别接收各自对应的 ACK 或 NACK:。
另一个实施例中, 如果所述 UE接收到的下行数据只包括所述主服务小区 对应的下行控制信道调度的下行数据, 则将所述信道资源承载在所述主服务小 区对应的上行载波上; 和 /或, 如果所述 UE接收到的下行数据包括所述辅服务 小区对应的下行控制信道调度的下行数据, 则将所述信道资源承载在所述辅服 务小区对应的上行载波上。 进一步地, 利用所选择的小区标识信息生成所述下行数据对应的物理上行 控制信道, 可以包括:
对于格式 lb结合信道选择的反馈模式,所述所选择的小区标识信息用于生 成所述物理上行控制信道的序列; 和 /或
对于格式 3的反馈模式, 所述所选择的小区标识信息用于生成所述物理上 行控制信道的调制符号的循环移位图样和 /或正交扩频码的映射。
具体地, 对于格式 lb结合信道选择的反馈模式, 小区标识或虚拟小区标识 用于生成 PUCCH的基序列,从而相同的小区标识对应相同的基序列, 不同的小 区标识对应不同的基序列。使用相同的基序列生成的不同的 PUCCH信道之间可 以实现正交化, 而使用不同的基序列生成的 PUCCH之间是伪正交的, 因此利用 相同的 PUCCH信道资源而使用不同的基序列可以实现 PUCCH之间的干扰随机 化和资源复用。 确定了基序列后, 就可以根据 PUCCH信道资源, 来确定 lb格 式的 PUCCH的频域 ZC序列的循环移位和时域扩频码, 这样就生成了下行数据 对应的 PUCCH。
对于格式 3的反馈模式, 首先根据 PUCCH信道来确定正交扩频码, 之后 对调制符号进行扩频, 然后对扩频后的调制符号进行循环移位, 从而生成 PUCCH格式 3。 其中, 该循环移位的图样或规则是由小区标识或虚拟小区标识 来确定的, 这样, 利用不同的正交扩频码可以对 PUCCH格式 3的信道资源正交 化, 而对于相同的正交扩频码的 PUCCH资源, 可以采用不同的小区标识或虚拟 小区标识来对扩频后的调制符号进行循环移位, 这样可以实现 PUCCH格式 3 的信道资源的干扰随机化和资源复用。
NACK的编码比特, 现有技术中, 不论反馈的 PUCCH是什么情况, UE都是根 据主服务小区和辅服务小区上配置的下行数据的传输模式来确定的。 假设主服 务小区和辅服务小区调度的下行数据对应的 ACK或 NACK比特数都是 1, 则 PUCCH格式 3机制下的 ACK或 NACK码本大小为 2, 即使某个时刻只调度了 辅服务小区, ACK或 NACK码本大小仍然为 2。 然而, 以 PUCCH格式 3为例, 如果总是按照主服务小区和辅服务小区上配置的下行数据的传输模式来确定 ACK或 NACK码本大小, 每次都需要按照最大的比特数传输 PUCCH。 因为宏 基站主要提供系统信息和移动性管理等控制信息, 因此宏基站的调度机会较小, 而大量的调度机会都会发生在微基站上。这样,在宏基站和微基站间的 CA的场 景下,使用最大的比特数传输 PUCCH会导致传输效率低, 因此本发明实施例优 化了只有微基站调度时的码本大小设计。 具体的, 如果是格式 3 的反馈模式, 则如图 3所示, 本实施例的方法还可以包括:
步骤 311,如果所述 UE没有接收到所述主服务小区对应的下行控制信道调 度的下行数据, 根据所述辅服务小区的对应的下行控制信道调度的所述下行数 据的传输模式确定所述物理上行控制信道的码本大小; 或者,如果所述 UE接收 到所述主服务小区对应的下行控制信道调度的下行数据, 根据所述主服务小区 和所述辅服务小区的下行数据的传输模式来确定所述物理上行控制信道的所述 码本大小。
如上所述, 如果所述 UE只接收到所述辅服务小区对应的下行控制信道调 度的下行数据, 则 UE 只根据辅服务小区上配置的下行数据的传输模式确定 PUCCH的码本大小, 这样确定出来的码本大小是一个小码本。 而如果所述 UE 接收到所述主服务小区对应的下行控制信道调度的下行数据,该 UE会根据所述 主服务小区和所述辅服务小区上配置的下行数据的传输模式来确定所述物理上 行控制信道的码本大小, 这样确定出来的码本大小是一个大码本, 因此, 这两 种情况下 UE所反馈的 PUCCH的码本大小不同, 从而会提高 PUCCH的传输效 率。 对于多个辅服务小区的情况, 各个辅服务小区是独立的, 因此, 确定出来 的码本大小是各个辅服务小区上配置的各个传输模式对应的码本大小之和。 而 如果所述 UE接收到所述主服务小区的下行数据以及多个辅服务小区的下行数 据, 确定出来的码本大小是所述主服务小区以及所述多个辅服务小区上配置的 传输模式对应的码本大小之和。
需要说明的是, 本步骤 311可以是在步骤 310之后, 步骤 340之前的任何 两个步骤之间执行。
网络设备侧可以用不同的小区标识信息确定不同的码本大小, 从而可以优 化 UE只收到辅服务小区对应的下行调度的情况下的码本大小设计,提高了接收 ACK或 NACK的性能。 进一步地, 步骤 340中, 所述 UE在所述信道资源上发送所述物理上行控 制信道, 可以包括:
所述 UE 根据路径损耗和所述下行控制信道中的发送功率控制(TPC, transmit power control)命令来确定所述物理上行控制信道的发送功率, 并以所述 确定的发送功率来发送所述物理上行控制信道。
具体的, 在一个实施例中, 如果所述 UE接收到的所述下行数据不包括所 述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述下行数据 对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控制信道 中的 TPC命令; 或如果所述 UE接收到的下行数据包括所述主服务小区的下行 控制信道调度的下行数据, 所述 TPC命令为所述主服务小区的下行控制信道中 的 TPC命令。
在另一个实施例中, 如果所述 UE接收到的所述下行数据只包括所述主服 务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述主服务小区的下 行控制信道中的 TPC命令; 或, 如果所述 UE接收到的所述下行数据包括所述 辅服务小区的下行控制信道调度的下行数据所述 TPC命令为所述下行数据对应 的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控制信道中的 TPC命令。
其中, 所述路径损耗可以是预定的一个值。
或者, 具体地, 在一个实施例中, 如果所述 UE只接收到所述辅服务小区 对应的下行控制信道调度的下行数据, 所述路径损耗为第一路径损耗; 和 /或, 如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道调度 的下行数据服务小区对应的下行, 则所述路径损耗为第二路径损耗;
在另一个实施例中, 如果所述 UE接收到的所述下行数据只包括所述主服 务小区对应的下行控制信道调度的下行数据, 所述路径损耗为第二路径损耗; 或,如果所述 UE接收到的下行数据包括所述辅服务小区对应的下行控制信道调 度的下行数据, 则所述路径损耗为第一路径损耗。
其中,
如果所述 UE在所述主服务小区对应的上行载波上发送所述物理上行控制 信道, 则所述第二路径损耗是通过所述主服务小区发送的下行参考信号的功率 和所述 UE测量到的所述下行参考信号的接收功率确定的, 其中, 所述下行参考 信号的接收功率即参考信号参考功率 (RSRP, reference signal reference power); 所述第一路径损耗是通过所述辅服务小区发送的下行参考信号的功率、 所述 UE 测量到的所述下行参考信号的接收功率以及功率偏移量来确定的;
如果所述 UE在所述辅服务小区对应的上行载波上发送所述物理上行控制 信道, 则所述第二路径损耗是通过所述主服务小区发送的下行参考信号的功率、 所述 UE测量到的所述下行参考信号的接收功率以及功率偏移量来确定的;所述 第一路径损耗是通过所述辅服务小区发送的下行参考信号的功率和所述 UE 测 量到的所述下行参考信号的接收功率来确定的。
另一个实施例是, 所述主服务小区的下行控制信道中的所述 TPC命令的值 为第一 TPC命令值; 所述辅服务小区的下行控制信道中的发送功率控制 TPC命 令的值为第二 TPC命令值, 所述第一 TPC命令值与所述第二 TPC命令值的差 为功率偏移量, 其中, 所述第一 TPC命令值在所述主服务小区的下行控制信道 中的所述 TPC命令的取值集合中的位置与所述第二 TPC命令值在所述辅服务小 区的下行控制信道中的所述 TPC命令的取值集合中的位置相同。
具体的, 在一个实施例中, 如果所述 UE接收到的下行数据不包括所述主 服务小区对应的下行控制信道调度的下行数据,所述 TPC命令为第一 TPC命令, 所述路径损耗值为第一路径损耗值; 和 /或, 如果所述 UE接收到的下行数据包 括所述主服务小区对应的下行控制信道调度的下行数据, 所述 TPC命令为第二 TPC命令, 所述路径损耗值为第二路径损耗值。
在另一个实施例中, 如果所述 UE接收到的下行数据只包括所述主服务小 区对应的下行控制信道调度的下行数据, 所述 TPC命令为第二 TPC命令, 所述 路径损耗值为第二路径损耗值; 和 /或, 如果所述 UE接收到的下行数据包括所 述辅服务小区对应的下行控制信道调度的下行数据, 所述 TPC命令为第一 TPC 命令, 所述路径损耗值为第一路径损耗值。
具体地, 所述第一路径损耗通过所述辅服务小区发送的下行参考信号的功 率和所述 UE测量到的所述下行参考信号的接收功率确定的;所述第二路径损耗 通过所述主服务小区发送的下行参考信号的功率和所述 UE 测量到的所述下行 参考信号的接收功率确定的; 所述第一 TPC命令的取值集合和所述第二 TPC命 令的取值集合中对应的元素取值至少有一个是不同的, 且相差一个功率偏移量。
举例说明, 假设所述 UE在所述主服务小区对应的上行载波上发送所述物 理上行控制信道, 且第二 TPC命令的取值集合为 {-1, 0, 1, 3}dB, 此时表示如 果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道调度的 下行数据服务小区对应的下行数据,所述 UE可以用所述第二路径损耗和所述第 二 TPC命令的取值集合中的某个取值来确定 PUCCH的发送功率; 第一 TPC命 令的取值集合可以为 {-3, 0, 1, 6}dB, 可以看出其与第二 TPC命令的取值集合 中的对应元素有两个取值是不同的, 当然其他取值也不排除, 这个对应取值之 间的差可以看作一个功率偏移量, 来补偿所述主服务小区和所述辅服务小区所 在频点造成的路径损耗的功率差。
本发明实施例中, 所述功率偏移量可以为所述主服务小区和所述辅服务小 区所在频点造成的路径损耗的功率差, 但不限于此, 还可以是根据其他需求设 置的一个功率偏移量。 通过采用上述方案, 在 UE距离微小区比宏小区近的多的情况下, 保证了 只向微小区发送的物理上行控制信道, 用微小区的路径损耗和 TPC命令计算发 送功率, 这样发送功率会比向宏小区发送的发送功率低。 因此, 该方案可以根 据向不同的发送点以各自的功率发送物理上行控制信道, 来提升功率效率, 降 氏对其他 UE和基站造成干 4尤。
步骤 350, 如果所述主服务小区对应的网络设备向所述 UE发送了下行数
的信道资源上, 使用主服务小区对应的标识信息检测所述下行数据对应的所述 物理上行控制信道, 其中, 所述物理上行控制信道是所述 UE使用所述主服务小 区对应的标识信息生成的。 或者, 如果所述下行控制信道为所述网络侧设备对 应的主服务小区对应的下行控制信道, 所述网络设备使用第一标识检测第一物 理上行控制信道, 所述网络设备使用第二标识检测第二物理上行控制信道, 所 述第一物理上行控制信道包含的信息码本大小根据所述主服务小区的下行数据 来确定, 所述第二物理上行控制信道包含的信息码本大小根据所述主服务小区 和所述辅服务小区的下行数据来确定, 其中, 所述第一标识为所述主服务小区 对应的小区标识信息, 所述第二标识为所述辅服务小区对应的小区标识信息。
进一步地, 步骤 340之前, 所述方法还可以包括:
步骤 331,所述主服务小区的网络设备向所述 UE和为所述 UE配置的所有 辅服务小区对应的网络设备, 通知所述物理上行控制信道的一个信道资源或一 组信道资源。
其中, 步骤 331可以在步骤 340之前的任意步骤之前执行, 本发明实施例 对于其执行时机并不限制。 其中, 可以是通过 RRC信令通知。 器等网络设备。
具体地, 所述检测所述下行数据对应的物理上行控制信道, 包括: 在所述一个信道资源或一组信道资源以及所述下行控制信道隐式对应的所 述物理上行控制信道的信道资源上, 使用所述小区标识信息检测所述下行数据 对应的物理上行控制信道。
进一步地, 所述检测所述下行数据对应的物理上行控制信道, 包括: 在所述主服务小区对应的上行载波上检测所述下行数据对应的物理上行控 制信道。
步骤 360,如果辅服务小区对应的网络设备向所述 UE发送了下行数据, 所 述辅服务小区对应的网络设备在用于反馈物理上行控制信道的信道资源上, 使 用所述可能使用的小区标识信息检测所述下行数据对应的物理上行控制信道, 其中,所述物理上行控制信道是所述 UE使用所述可能使用的小区标识信息中的 一个小区标识信息生成的。 或者, 如果所述下行控制信道为所述网络设备对应 的辅服务小区对应的下行控制信道, 所述网络设备使用第一标识检测第一物理 上行控制信道, 所述网络设备使用第二标识检测第二物理上行控制信道, 所述 第一物理上行控制信道包含的信息码本大小根据所述主服务小区和所述辅服务 小区的下行数据来确定或根据所述辅服务小区的下行数据来确定, 所述第二物 理上行控制信道包含的信息码本大小根据所述主服务小区和所述辅服务小区的 下行数据来确定, 其中, 所述第一标识为所述主服务小区对应的小区标识信息, 所述第二标识为所述辅服务小区对应的小区标识信息。
需要说明的是, 步骤 350与步骤 360的执行顺序可以是任意的, 如, 可以 是同时执行, 也可以是先后执行。
其中, 所述 UE可能使用的小区标识信息包括:
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息, 所述网络设备对应的所述辅服务小区对应的小区标识信息, 和按照预定规则确 定的标识信息; 或者
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息和 为所述 UE配置的所有辅服务小区对应的小区标识信息。
其中, 所述按照预定规则确定的小区标识信息包括: 所述主服务小区对应的网络设备通知的小区标识信息; 或者
为所述 UE配置的所有辅服务小区对应的公共的小区标识信息, 其中, 所 述公共的小区标识信息可参见上述实施例中的描述, 此处不再赘述。
当然, 本发明实施例并不仅限于上述预定规则。
步骤 360中, 所述检测所述下行数据对应的物理上行控制信道的信息, 可 以包括: 在所述信息对应的所述一个信道资源或所述一组信道资源上, 使用所 述可能使用的小区标识信息检测所述下行数据对应的物理上行控制信道; 或者 步骤 360中, 所述检测所述下行数据对应的物理上行控制信道, 可以包括: 在所述一个信道资源或一组信道资源的所述信息对应的所述一个信道资源或所 述一组信道资源以及所述下行控制信道对应的所述物理上行控制信道的信道资 源上, 使用所述可能使用的标识信息检测所述下行数据对应的物理上行控制信 道。
一种实现方式中, 所述获取所述物理上行控制信道的一个信道资源或一组 信道资源的信息, 可以包括: 通过 RRC信令获取所述一个信道资源或所述一组 信道资源的信息。
另一种实现方式中, 所述获取所述物理上行控制信道的一个信道资源或一 组信道资源之前, 所述方法还可以包括: 通过 RRC信令接收所述一个信道资源 或所述一组信道资源的信息, 并存储所述一个信道资源或所述一组信道资源的 所述信息;
所述获取所述物理上行控制信道的一个信道资源或一组信道资源的信息, 可以包括: 获取所述存储的信息。
通过采用本实施例的方法, 由于 UE发送的物理上行控制信道是使用相应 的小区标识信息生成的, 这样, 在收到上述物理上行控制信道之后, 向 UE发送 了下行控制信道的主服务小区对应的网络设备能够根据该小区标识信息区分出 对应的物理上行控制信道, 实现了多个网络设备间复用相同的 PUCCH信道资 源, 而不需要实时获知其他 eNB的 PUCCH信道资源的调度情况, 达到了小区 分裂的增益, 提高了 PUCCH信道资源的利用率。 同时, 通过上述实施例, 辅服 务小区对应的基站减少了盲检测不同信道的可能性, 可以优化 PUCCH性能。 本发明另一实施例提供了一种上行控制信道发送方法, 如图 4所示, 所述 方法包括如下步骤。
步骤 410,UE接收网络设备通过一个或多个下行控制信道调度的下行数据, 其中, 所述下行控制信道为一个或多个服务小区对应的下行控制信道, 所述一 个或多个服务小区是为所示 UE配置的至少两个服务小区中的服务小区,所述至 少两个服务小区包括一个主服务小区和至少一个辅服务小区。
步骤 420, 生成所述下行数据对应的物理上行控制信道。
其中, 上述步骤 410和步骤 420的具体实现方式可以参照上述实施例中的 描述, 此处不再赘述。
步骤 430, 根据所述下行控制信道中的 TPC命令和路径损耗值, 所述 UE 确定所述物理上行控制信道的发送功率, 并以所述确定的发送功率来发送所述 物理上行控制信道。
具体的, 在一个实施例中, 如果 UE只收到辅服务小区的下行控制信道调 度的下行数据, 没有收到主服务小区的下行控制信道调度的下行数据, 用辅服 务小区的下行控制信道中的 TPC命令和路径损耗来确定所述 PUCCH的发送功 率; 和 /或, 如果所述 UE收到的下行数据包括所述主服务小区的下行控制信道 调度的下行数据, 用所述主服务小区的下行控制信道中的 TPC命令和路径损耗 来确定 PUCCH的发送功率。
在另一个实施例中, 如果 UE收到辅服务小区的下行控制信道调度的下行 数据, 有或没有收到主服务小区的下行控制信道调度的下行数据, 用辅服务小 区的下行控制信道中的 TPC命令和路径损耗来确定所述 PUCCH的发送功率; 和 /或, 如果所述 UE收到的下行数据只包括所述主服务小区的下行控制信道调 度的下行数据, 用所述主服务小区的下行控制信道中的 TPC命令和路径损耗来 确定 PUCCH的发送功率。
其中, 如果是只收到多个辅服务小区的下行控制信道调度的下行数据, 没 有收到主服务小区的下行控制信道调度的下行数据, 用任一个辅服务小区的下 行控制信道中的 TPC命令和路径损耗来确定所述 PUCCH的发送功率均可以。
进一步地, 在一个实施例中, 如果所述 UE只接收到所述辅服务小区对应 的下行控制信道调度的下行数据, 所述路径损耗值为第一路径损耗值; 和 /或, 如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道调度 的下行数据服务小区对应的下行, 则所述路径损耗值为第二路径损耗值; 在另 一个实施例中,如果所述 UE接收到所述辅服务小区对应的下行控制信道调度的 下行数据, 所述路径损耗值为第一路径损耗值; 和 /或, 如果所述 UE接收到的 下行数据只包括所述主服务小区对应的下行控制信道调度的下行数据服务小区 对应的下行, 则所述路径损耗值为第二路径损耗值。
具体地,
如果所述 UE在所述主服务小区对应的上行载波上发送所述物理上行控制 信道, 则所述第二路径损耗是通过所述主服务小区发送的下行参考信号的功率 和所述 UE测量到的所述下行参考信号的接收功率确定的, 其中, 所述下行参考 信号的接收功率即参考信号参考功率 (RSRP, reference signal reference power); 所述第一路径损耗是通过所述辅服务小区发送的下行参考信号的功率、 所述 UE 测量到的所述下行参考信号的接收功率以及功率偏移量来确定的;
如果所述 UE在所述辅服务小区对应的上行载波上发送所述物理上行控制 信道, 则所述第二路径损耗是通过所述主服务小区发送的下行参考信号的功率、 所述 UE测量到的所述下行参考信号的接收功率以及功率偏移量来确定的;所述 第一路径损耗是通过所述辅服务小区发送的下行参考信号的功率和所述 UE 测 量到的所述下行参考信号的接收功率来确定的。
另一实现方式中, 所述主服务小区的下行控制信道中的所述 TPC命令的值 为第一 TPC命令值; 所述辅服务小区的下行控制信道中的发送功率控制 TPC命 令的值为第二 TPC命令值, 所述第一 TPC命令值与所述第二 TPC命令值的差 为功率偏移量, 其中, 所述第一 TPC命令值在所述主服务小区的下行控制信道 中的所述 TPC命令的取值集合中的位置与所述第二 TPC命令值在所述辅服务小 区的下行控制信道中的所述 TPC命令的取值集合中的位置相同。
具体的, 在一个实施例中, 如果所述 UE接收到的下行数据不包括所述主 服务小区对应的下行控制信道调度的下行数据,所述 TPC命令为第一 TPC命令, 所述路径损耗值为第一路径损耗值; 和 /或, 如果所述 UE接收到的下行数据包 括所述主服务小区对应的下行控制信道调度的下行数据服务小区对应的下行数 据, 所述 TPC命令为第二 TPC命令, 所述路径损耗值为第二路径损耗值。 在另 一个实施例中,如果所述 UE接收到的下行数据只包括所述主服务小区对应的下 行控制信道调度的下行数据, 所述 TPC命令为第二 TPC命令, 所述路径损耗值 为第二路径损耗值; 和 /或, 如果所述 UE接收到的下行数据包括所述辅服务小 区对应的下行控制信道调度的下行数据服务小区对应的下行数据, 所述 TPC命 令为第一 TPC命令, 所述路径损耗值为第一路径损耗值。
具体地, 所述第一路径损耗通过所述辅服务小区发送的下行参考信号的功 率和所述 UE测量到的所述下行参考信号的接收功率确定的;所述第二路径损耗 通过所述主服务小区发送的下行参考信号的功率和所述 UE 测量到的所述下行 参考信号的接收功率确定的; 所述第一 TPC命令的取值集合和所述第二 TPC命 令的取值集合中对应的元素取值至少有一个是不同的, 且相差一个功率偏移量。
举例说明, 假设所述 UE在所述主服务小区对应的上行载波上发送所述物 理上行控制信道, 且第二 TPC命令的取值集合为 {-1, 0, 1, 3}dB, 此时表示如 果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道调度的 下行数据服务小区对应的下行数据,所述 UE可以用所述第二路径损耗和所述第 二 TPC命令的取值集合中的某个取值来确定 PUCCH的发送功率; 第一 TPC命 令的取值集合可以为 {-3, 0, 1, 6}dB, 可以看出其与第二 TPC命令的取值集合 中的对应元素有两个取值是不同的, 当然其他取值也不排除, 这个对应取值之 间的差可以看作一个功率偏移量, 来补偿所述主服务小区和所述辅服务小区所 在频点造成的路径损耗的功率差。
本发明实施例中, 所述功率偏移量可以为所述主服务小区和所述辅服务小 区所在频点造成的路径损耗的功率差, 但不限于此, 还可以是根据其他需求设 置的一个功率偏移量。
通过采用上述方案, 在 UE距离微小区比宏小区近的多的情况下, 保证了 只向微小区发送的物理上行控制信道, 用微小区的路径损耗和 TPC命令计算发 送功率, 这样发送功率会比向宏小区发送的发送功率低。 因此, 该方案可以根 据向不同的发送点以各自的功率发送物理上行控制信道, 来提升功率效率, 降 氏对其他 UE和基站造成干 4尤。
本发明一实施例提供了一种用户设备 50, 本实施例能够执行上述实施例中 的方法中的步骤。 本实施例只对该用户设备 50的结构进行了简单的描述, 具体 实现方式可以参照上述实施例中的描述。 如图 5所示, 本实施例的用户设备 50 包括接收模块 510, 选择模块 520, 生成模块 530, 以及发送模块 540。
接收模块 510, 用于接收网络设备通过下行控制信道调度的下行数据, 其 中, 所述下行控制信道为服务小区对应的下行控制信道, 所述服务小区是为所 述 UE配置的至少两个服务小区中的服务小区,所述至少两个服务小区包括一个 主服务小区和至少一个辅服务小区;
所述选择模块 520, 用于用于根据所述接收模块 510接收的所述下行数据 对应所述下行控制信道选择标识信息;
所述生成模块 530, 用于利用所述选择模块 520选择的所述标识信息生成 所述下行数据对应的物理上行控制信道; 以及
所述发送模块 540, 用于在所述生成模块 530生成的所述物理上行控制信 道的信道资源上发送所述物理上行控制信道。
由于本实施例所执行的是上述实施例的方法, 因此, 本实施例能够获得的 技术效果可参见上述实施例中的描述, 此处不再赘述。 其中, 在一实施例中, 所述选择模块 520具体用于,如果所述接收模块 510 接收到的所述下行数据不包括所述主服务小区对应的下行控制信道调度的下行 数据, 选择第二标识信息; 所述生成模块 530具体用于, 利用所述第二标识信 息生成所述下行数据对应的物理上行控制信道; 或者, 如果所述接收模块 510 接收到的所述下行数据包括所述主服务小区对应的下行控制信道调度的下行数 据, 选择第一标识信息; 所述生成模块 530具体用于, 利用所述第一标识信息 生成所述下行数据对应的物理上行控制信道。
其中, 所述选择模块 520具体用于, 选择所述主服务小区对应的小区标识 信息作为所述第一标识信息; 或者
所述选择模块 520具体用于, 如果所述接收模块 510只接收到一个辅服务 小区对应的下行控制信道调度的下行数据, 选择所述一个辅服务小区对应的小 区标识信息作为所述第二标识信息; 或者, 如果所述接收模块 510 只接收到所 述至少一个辅服务小区中的多个辅服务小区对应的下行控制信道调度的下行数 据, 按照预定规则选择所述第二标识信息。
在另一实施例中, 所述选择模块 520具体用于, 如果所述接收模块 510接 收到的所述下行数据只包括所述主服务小区对应的下行控制信道调度的下行数 据, 选择第一标识信息, 所述生成模块 530具体用于, 利用所述第一标识信息 生成所述下行数据对应的物理上行控制信道; 和 /或,
所述选择模块 520具体用于, 如果所述接收模块 510接收到的所述下行数 据包括所述辅服务小区对应的下行控制信道调度的下行数据, 选择第二标识信 息, 所述生成模块 530具体用于, 利用所述第二标识信息生成所述下行数据对 应的物理上行控制信道。
在上述另一实施例中, 所述选择模块 520具体用于, 选择所述主服务小区 对应的小区标识信息作为所述第一标识信息; 或者
所述选择模块 520具体用于, 如果所述接收模块 510接收到所述主服务小 区和只有一个辅服务小区对应的下行控制信道调度的下行数据, 选择所述一个 辅服务小区对应的小区标识信息作为所述第二标识信息; 或者
所述选择模块 520具体用于, 如果所述接收模块只接收到所述至少一个辅 服务小区中的多个辅服务小区对应的下行控制信道调度的下行数据, 按照预定 规则选择所述第二标识信息。 其中, 所述选择模块 520具体用于基于如下方式按照预定规则选择所述第 二标识信息: 选择所述多个辅服务小区中的任一辅服务小区对应的小区标识信 息作为所述第二小区标识信息; 或者, 选择所述主服务小区对应的网络设备通 知的小区标识信息作为所述第二小区标识信息; 或者选择所述至少一个辅服务 小区对应的公共的小区标识信息作为所述第二小区标识信息。
具体地, 所述选择模块 520可以具体用于按如下方式选择所述小区标识信 息: 选择小区标识和 /或虚拟小区标识作为所述小区标识信息。
进一步地, 如图 6所示, 所述用户设备还可以包括信道资源获取模块 550。 第一种实现方式中, 所述信道资源获取模块 550, 用于获取所述物理上行 控制信道的一个信道资源或一组信道资源的信息; 所述发送模块 540 具体用于 按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道: 在所述信道资源获取模块 550获取的所述一个信道资源或一组信道资源的 所述信息对应的所述一个信道资源或一组信道资源上, 发送所述生成模块 530 生成的所述物理上行控制信道。
第二种实现方式中, 所述信道资源获取模块 550, 用于确定所述接收模块
510接收的所述下行数据对应的服务小区为所述主服务小区,并获取所述主服务 小区对应的所述下行控制信道的信道资源参数; 所述发送模块 540具体用于按 如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在所述信道资源获取模块 550获取的所述信道资源参数对应的第一信道资源上, 发送所述生成模块 530生成的所述物理上行控制信道, 其中, 所述第一信道资 源为所述信道资源获取模块 550获取的所述信道资源参数对应的所述物理上行 控制信道的信道资源; 或者
所述信道资源获取模块 550, 用于确定所述接收模块 510接收的所述下行 数据对应的服务小区包含所述辅服务小区, 并获取所述物理上行控制信道的一 个信道资源或一组信道资源的信息; 所述发送模块 540具体用于按如下方式在 所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在第二信道 资源上发送所述生成模块 530 生成的所述物理上行控制信道; 其中, 所述第二 信道资源为所述信道资源获取模块 550 获取的所述一个信道资源或一组信道资 源的所述信息对应的所述一个信道资源或所述一组信道资源。
第三种实现方式中, 所述信道资源获取模块 550, 用于确定所述接收模块 510接收的所述下行数据对应的服务小区为所述至少一个辅服务小区中的一个 辅服务小区, 并获取所述一个辅服务小区对应的下行控制信道的信道资源参数; 所述发送模块 540具体用于按如下方式在所述物理上行控制信道的信道资源上 发送所述物理上行控制信道: 在第三信道资源上, 发送所述物理上行控制信道; 其中, 所述第三信道资源为所述信道资源获取模块 550获取的所述信道资源参 数对应的所述物理上行控制信道的信道资源; 或者
所述信道资源获取模块 550, 用于确定所述接收模块 510接收的所述下行 数据对应的服务小区包括所述主服务小区和所述至少一个辅服务小区中的一个 或多个辅服务小区, 或者, 包括所述至少一个辅服务小区中的多个辅服务小区, 并获取所述物理上行控制信道的一个信道资源或一组信道资源的所述信息; 所 述发送模块 540具体用于按如下方式在所述物理上行控制信道的信道资源上发 送所述物理上行控制信道: 在第四信道资源上, 发送所述物理上行控制信道, 其中, 所述第四信道资源为所述信道资源获取模块 550获取的所述一个信道资 源或一组信道资源所述信息对应的所述一个信道资源或所述一组信道资源; 或 者
所述信道资源获取模块 550, 用于确定所述接收模块 510接收的所述下行 数据对应的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取 所述物理上行控制信道的一个信道资源或一组信道资源的信息; 所述发送模块
540 具体用于按如下方式在所述物理上行控制信道的信道资源上发送所述物理 上行控制信道: 在第五信道资源上, 发送所述物理上行控制信道; 其中, 如果 所述第四信道资源为所述信道资源获取模块 550获取的所述一组信道资源, 所 述第五信道资源为所述一组信道资源的中的一个信道资源。
第四种实现方式中, 所述信道资源获取模块 550, 用于确定所述接收模块 510接收的所述下行数据对应的服务小区为所述主服务小区,并获取所述主服务 小区对应的下行控制信道的信道资源参数; 所述发送模块 540具体用于按如下 方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在第 一信道资源上, 发送所述物理上行控制信道, 其中, 所述第一信道资源为所述 信道资源获取模块 550获取的所述信道资源参数对应的信道资源; 或者
所述信道资源获取模块 550, 用于确定所述接收模块 510接收的所述下行 数据对应的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取 所述至少一个辅服务小区中的所述一个辅服务小区对应的下行控制信道的信道 资源参数; 所述发送模块 540 具体用于按如下方式在所述物理上行控制信道的 信道资源上发送所述物理上行控制信道: 在第三信道资源上发送所述物理上行 控制信道, 其中, 所述第三信道资源为所述信道资源获取模块 550获取的所述 信道资源参数对应的所述物理上行控制信道的信道资源; 或者
所述信道资源获取模块 550, 用于确定所述接收模块 510接收的所述下行 数据对应的服务小区包括所述至少一个辅服务小区中的多个辅服务小区, 或包 括所述主服务小区和所述至少一个辅服务小区中的一个或多个辅服务小区, 并 获取所述物理上行控制信道的一个信道资源或一组信道资源的信息; 所述发送 模块 540具体用于按如下方式在所述物理上行控制信道的信道资源上发送所述 物理上行控制信道: 在第四信道资源上发送所述物理上行控制信道; 其中, 所 述第四信道资源为所述信道资源获取模块 550获取的所述一个信道资源或一组 信道资源的信息对应的所述一个信道资源或所述一组信道资源; 所述信道资源获取模块 550, 用于确定所述接收模块 510接收的所述下行 数据对应的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取 所述物理上行控制信道的一个信道资源或一组信道资源的信息; 所述发送模块 540 具体用于按如下方式在所述物理上行控制信道的信道资源上发送所述物理 上行控制信道: 在第五信道资源上发送所述物理上行控制信道; 其中, 如果所 述第四信道资源为所述一组信道资源, 所述第五信道资源为所述一组信道资源 中的一个信道资源。
对于上述实现方式, 一种获取所述信息的方式为:
所述接收模块 510还用于,接收所述网络设备通过 R C信令发送的所述一 个信道资源或一组信道资源的所述信息; 所述信道资源获取模块 550具体用于, 获取所述接收模块 510接收的所述一个信道资源或所述一组信道资源的所述信 息。
对于上述实现方式, 另一种获取所述信息的方式为:
如图 7所示, 所述用户设备还包括存储模块 560,
所述存储模块 560, 用于存储存储所述一个信道资源或所述一组信道资源 的所述信息; 所述信道资源获取 550具体用于, 从所述存储模块 560获取所述 一个信道资源或所述一组信道资源的所述信息。
进一步地, 所述发送模块 520具体用于按如下方式在所述物理上行控制信 道的信道资源上发送所述生成模块 530生成的所述物理上行控制信道:
如果所述接收模块 510接收到的下行数据包括所述主服务小区对应的下行 控制信道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上 行载波上发送所述生成模块 530生成的所述物理上行控制信道; 或者
如果所述接收模块 510只接收到所述多个辅服务小区中的一个对应的下行 控制信道调度的下行数据, 则将所述信道资源承载在所述一个辅服务小区对应 的上行载波上发送所述生成模块 530生成的所述物理上行控制信道; 或者
如果所述接收模块 510只接收到所述至少一个辅服务小区中的多个辅服务 小区对应的下行控制信道调度的下行数据, 则将所述信道资源承载在所述多个 辅服务小区中的一个辅服务小区对应的上行载波上发送所述生成模块 530生成 的所述物理上行控制信道。
在上述另一实施例中, 所述发送模块 520具体用于按如下方式在所述物理 上行控制信道的信道资源上发送所述生成模块 530生成的所述物理上行控制信 道: 如果所述接收模块接收到的下行数据只包括所述主服务小区对应的下行控 制信道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上行 载波上; 或者如果所述接收模块接收到的下行数据包括所述辅服务小区对应的 下行控制信道调度的下行数据, 则将所述信道资源承载在所述辅服务小区对应 的上行载波上。 进一步地, 所述生成模块 530具体用于按如下方式利用所述选择的标识信 息生成所述下行数据对应的物理上行控制信道:
对于下行控制信道格式 lb结合信道选择的反馈模式,利用所述所选择的标 识信息生成所述物理上行控制信道的序列; 或, 对于下行控制信道格式 3 的反 馈模式, 利用所述所选择的标识信息生成所述物理上行控制信道的调制符号的 循环移位图样和 /或利用所述所选择的标识信息进行正交扩频码的映射。
进一步地, 如图 7所示, 所述用户设备还可以包括:
码本确定模块 570, 用于对于格式 3 的反馈模式, 如果所述接收模块 510 没有接收到所述主服务小区对应的下行控制信道调度的下行数据, 根据所述辅 服务小区的所述下行数据的传输模式确定所述物理上行控制信道的码本大小; 或, 如果所述接收模块 510接收到所述主服务小区对应的下行控制信道调度的 下行数据, 根据所述主服务小区和所述辅服务小区的下行数据的传输模式来确 定所述物理上行控制信道的所述码本大小;
所述生成模块 530还用于, 根据所述码本确定模块 570确定的所述码本大 小和所述选择模块选择的所述标识信息, 生成所述物理上行控制信道。 在一实施例中, 进一步地, 所述用户设备还包括:
功率确定模块 580, 用于根据路径损耗值和所述接收模块 510接收的所述 下行数据对应的所述下行控制信道中的发送功率控制 TPC命令, 确定所述物理 上行控制信道的发送功率; 其中, 如果所述接收模块 510接收到的所述下行数 据不包括所述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所 述下行数据对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下 行控制信道中的 TPC命令; 或者, 如果所述接收模块 510接收到的下行数据包 括所述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述下行 数据对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控制 信道中的 TPC命令;
所述发送模块 540具体用于按如下方式发送所述生成模块 530生成的所述 物理上行控制信道: 以所述功率确定模块 580确定的所述发送功率来发送所述 生成模块 530生成的所述物理上行控制信道。
或者, 在一实施例中, 进一步地, 所述用户设备还包括:
功率确定模块 580, 用于如果所述接收模块接收到的所述下行数据只包括 所述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所述主服务 小区的下行控制信道中的 TPC命令; 或者, 如果所述 UE接收到的所述下行数 据包括所述辅服务小区的下行控制信道调度的下行数据所述 TPC命令为所述下 行数据对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控 制信道中的 TPC命令;
所述发送模块 540具体用于按如下方式发送所述生成模块 530生成的所述 物理上行控制信道: 以所述功率确定模块 580确定的所述发送功率来发送所述 生成模块 530生成的所述物理上行控制信道。
进一步地, 如图 7所示, 所述用户设备还包括测量模块 590。
所述功率确定模块 580还用于, 按如下方式确定所述路径损耗: 如果所述 接收模块 510接收到的所述下行数据不包括所述主服务小区对应的下行控制信 道调度的下行数据, 确定所述路径损耗为第一路径损耗; 如果所述所述接收模 块 510接收到的下行数据包括所述主服务小区对应的下行控制信道调度的下行 数据, 则所述路径损耗为第二路径损耗, 或者, 如果所述接收模块接收到的所 述下行数据只包括所述主服务小区对应的下行控制信道调度的下行数据, 所述 路径损耗为第二路径损耗;如果所述 UE接收到的下行数据包括所述辅服务小区 对应的下行控制信道调度的下行数据, 则所述路径损耗为第一路径损耗; 其中, 如果所述 UE在所述主服务小区对应的上行载波上发送所述物理上行控制 信道,
所述接收模块 510还用于接收所述主服务小区发送的下行参考信号; 所述测量模块 590用于测量所述接收模块 510接收的主服务小区发送的所述 下行参考信号的第一接收功率;所述功率确定模块 580根据所述主服务小区 发送的所述下行参考信号的第一发送功率和所述测量模块 590 测量到所述 第一接收功率确定所述第二路径损耗;所述接收模块 510还用于接收所述至 少一个辅服务小区中的一个辅服务小区发送的下行参考信号;所述测量模块 590用于测量所述接收模块 510接收的所述一个辅服务小区发送的所述下行 参考信号的第二接收功率;所述功率确定模块 580根据所述一个辅服务小区 发送的下行参考信号的第二发送功率、所述测量模块 590测量到的所述第二 接收功率以及功率偏移量确定的所述第一路径损耗;
或者,
如果所述 UE在所述至少一个辅服务小区中的一个辅服务小区对应的上行 载波上发送所述物理上行控制信道,
所述接收模块 510还用于接收所述主服务小区发送的下行参考信号; 所述测量模块 590用于测量所述接收模块 510接收的所述主服务小区发送的 所述下行参考信号的第一接收功率;所述功率确定模块 580根据所述主服务 小区发送的所述下行参考信号的第一发送功率、所述测量模块 590测量到所 述第一接收功率以及功率偏移量确定所述第二路径损耗; 所述接收模块 510 还用于接收所述至少一个辅服务小区中的一个辅服务小区发送的下行参考 信号;所述测量模块 590用于测量所述接收模块 510接收的所述一个辅服务 小区发送的所述下行参考信号的第二接收功率;所述功率确定模块 580根据 所述一个辅服务小区发送的下行参考信号的第二发送功率和所述测量模块 590测量到的所述第二接收功率确定的所述第一路径损耗。
通过采用本实施例的方法, 实现了多个网络设备间复用相同的 PUCCH信 道资源, 而不需要实时获知其他基站的 PUCCH信道资源的调度情况, 达到了小 区分裂的增益, 提高了 PUCCH信道资源的利用率。 本发明一实施例提供了一种网络设备 80, 本实施例能够执行上述实施例中 的方法中的步骤。 本实施例只对该网络设备 80的结构进行了简单的描述, 具体 实现方式可以参照上述实施例中的描述。 如图 8 所示, 本实施例的所述网络设 备 80包括发送模块 810, 确定模块 820, 以及接收模块 830。
发送模块 810, 用于向 UE发送下行控制信道调度的下行数据, 其中, 所述 下行控制信道为辅服务小区对应的下行控制信道, 所述辅服务小区是为所述 UE 配置的至少两个服务小区中的服务小区, 或所述下行控制信道为所述网络侧设 备对应的主服务小区对应的下行控制信道, 所述至少两个服务小区还包括所述 主服务小区;
确定模块 820, 用于在所述发送模块 810发送所述下行数据后, 确定所述 UE可能使用的标识信息; 以及
所述接收模块 830, 用于在用于反馈物理上行控制信道的信道资源上, 使 用所述确定模块 820确定的所述可能使用的标识信息检测所述下行数据对应的 所述物理上行控制信道, 其中, 所述物理上行控制信道是所述 UE使用所述可能 使用的标识信息中的一种生成的。
由于本实施例所执行的是上述实施例的方法, 因此, 本实施例能够获得的 技术效果可参见上述实施例中的描述, 此处不再赘述。 所述确定模块 820具体用于, 确定所述 UE可能使用的标识信息包括: 所 述主服务小区对应的小区标识信息, 所述网络设备对应的所述辅服务小区对应 的小区标识信息, 和按照预定规则确定的标识信息; 或者
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息和 为所述 UE配置的所有辅服务小区对应的小区标识信息;
其中, 所述小区标识信息为小区标识和 /或虚拟小区标识。
进一步地,所述确定模块 820具体用于按如下预定规则确定所述标识信息: 所述主服务小区对应的网络设备通知的小区标识信息, 或者为所述 UE配 置的所有辅服务小区对应的公共的小区标识信息。
进一步地, 如图 8a所示, 所述网络设备还可以包括:
信道资源获取模块 850, 用于获取所述物理上行控制信道的一个信道资源 或一组信道资源的信息, 并获取所述发送模块 810发送的所述下行数据对应的 所述下行控制信道的信道资源参数;
所述接收模块 830具体用于按如下方式使用所述确定模块 820确定的所述 可能使用的标识信息检测所述下行数据对应的所述物理上行控制信道: 在所述 信道资源获取模块 850获取的所述一个信道资源或一组信道资源的所述信息对 应的所述一个信道资源或所述一组信道资源上, 以及在所述信道资源获取模块 850获取的所述信道资源参数对应的所述物理上行控制的信道资源上,使用所述 确定模块 820确定的所述可能使用的标识信息检测所述下行数据对应的物理上 行控制信道。
其中, 所述接收模块 830还用于, 通过接收无线资源控制 RRC信令接收所 述物理上行控制信道的所述一个信道资源或一组信道资源的所述信息; 所述信 道资源获取模块 850具体用于, 通过所述接收模块 830接收的所述 RRC信令获 取所述物理上行控制信道的所述一个信道资源或一组信道资源的所述信息; 或 者
如图 8b所示, 所述网络设备还包括存储模块 840, 所述网络设备还包括存储模块 840, 所述存储模块 840用于存储所述接收 模块 830接收的所述一个信道资源或一组信道资源的所述信息; 所述信道资源 获取模块 850具体用于从所述存储模块 840获取所述一个信道资源或一组信道 资源的所述信息。 本发明一实施例提供了一种网络设备 90, 本实施例能够执行上述实施例中 的方法中的步骤。 本实施例只对该网络设备 90的结构进行了简单的描述, 具体 实现方式可以参照上述实施例中的描述。 如图 9 所示, 本实施例的所述网络设 备 90包括发送模块 910, 确定模块 920, 以及接收模块 830。
发送模块 910, 用于向 UE发送下行控制信道调度的下行数据, 其中, 所述 下行控制信道为主服务小区对应的下行控制信道, 所述主服务小区是为所述 UE 配置的至少两个服务小区中的主服务小区, 所述至少两个服务小区还包括至少 一个辅服务小区。
确定模块 920, 用于在所述发送模块 910发送所述下行数据后, 确定所述 主服务小区对应的小区标识信息, 并将所述小区标识信息传输给所述接收模块 930。
接收模块 930,在为所述 UE分配的用于反馈物理上行控制信道的信道资源 上, 使用所述确定模块 920传输的所述小区标识信息检测所述下行数据对应的 所述物理上行控制信道, 其中, 所述物理上行控制信道是所述 UE使用所述主服 务小区对应的小区标识信息生成的。
由于本实施例所执行的是上述实施例的方法, 因此, 本实施例能够获得的 技术效果可参见上述实施例中的描述, 此处不再赘述。
所述发送模块 910还用于, 向所述用户设备和为所述用户设备配置的所有 辅服务小区对应的网络设备通知所述物理上行控制信道的一个信道资源或一组 信道资源。
具体地, 所述接收模块 910具体用于, 在所述一个信道资源或一组信道资 源以及所述下行控制信道隐式对应的所述物理上行控制信道的信道资源上, 使 用所述小区标识信息检测所述下行数据对应的物理上行控制信道; 或者, 在所 述一个信道资源或一组信道资源上, 使用所述小区标识信息检测所述下行数据 对应的物理上行控制信道服务小区对应的下行。
进一步地, 所述接收模块 910具体用于, 在所述主服务小区对应的上行载 波上检测所述下行数据对应的物理上行控制信道。
本发明实施例中, 所述小区标识信息可以为小区标识和 /或虚拟小区标识。 通过采用本实施例的网络设备,实现了多个网络设备间复用相同的 PUCCH 信道资源, 而不需要实时获知其他基站的 PUCCH信道资源的调度情况, 达到了 小区分裂的增益, 提高了 PUCCH信道资源的利用率。 本发明一实施例提供了一种通信系统, 所述通信系统包括上述实施例所提 供的用户设备 50、 网络设备 80以及网络设备 90。 具体参见上述实施例中的描 述, 此处不再赘述。 此外, 本实施例所提供的用户设备 50、 网络设备 80以及网 络设备 90能够执行上述实施例中的方法中的步骤, 具体实现方式可以参照上述 方法实施例中的描述。 本发明一实施例提供了一种用户设备 1000, 本实施例能够执行上述实施例 中的方法中的步骤。 本实施例只对该用户设备 1000的结构进行了简单的描述, 具体实现方式可以参照上述实施例中的描述。 如图 10所示, 本实施例的用户设 备 1000包括接收器 1010, 处理器 1020, 以及发送器 1030。
接收器 1010,用于接收网络设备通过下行控制信道调度的下行数据,其中, 所述下行控制信道为服务小区对应的下行控制信道, 所述服务小区是为所述 UE 配置的至少两个服务小区中的服务小区, 所述至少两个服务小区包括一个主服 务小区和至少一个辅服务小区;
所述处理器 1020, 用于根据所述接收器 1010接收的所述下行数据对应的 所述下行控制信道, 选择标识信息, 利用所述标识信息生成所述下行数据对应 的物理上行控制信道; 以及
所述发送器 1030, 用于在所述生成模块生成的所述物理上行控制信道的信 道资源上发送所述物理上行控制信道。
由于本实施例所执行的是上述实施例的方法, 因此, 本实施例能够获得的 技术效果可参见上述实施例中的描述, 此处不再赘述。
其中, 所述处理器 1020具体用于, 如果所述接收器 1010接收到的所述下 行数据不包括所述主服务小区对应的下行控制信道调度的下行数据, 选择第二 标识信息, 并利用所述第二标识信息生成所述下行数据对应的物理上行控制信 道; 或,
所述处理器 1020具体用于, 如果所述接收器 1010接收到的所述下行数据 包括所述主服务小区对应的下行控制信道调度的下行数据, 选择第一标识信息, 并利用所述第一标识信息生成所述下行数据对应的物理上行控制信道。
其中, 所述处理器 1020具体用于按如下方式选择标识信息: 选择所述主服 务小区对应的小区标识信息作为所述第一标识信息; 或者
所述处理器 1020具体用于按如下方式选择标识信息:如果所述接收器 1010 只接收到一个辅服务小区对应的下行控制信道调度的下行数据, 选择所述一个 辅服务小区对应的小区标识信息作为所述第二标识信息; 或者
所述处理器 1020具体用于按如下方式选择标识信息:如果所述接收器 1010 只接收到所述至少一个辅服务小区中的多个辅服务小区对应的下行控制信道调 度的下行数据, 按照预定规则选择所述第二标识信息。
在另一实施例中, 所述处理器 1020具体用于, 如果所述接收器 1010接收 到的所述下行数据只包括所述主服务小区对应的下行控制信道调度的下行数 据, 选择第一标识信息, 并利用所述第一标识信息生成所述下行数据对应的物 理上行控制信道; 和 /或
所述处理器 1020具体用于, 如果所述接收器 1010接收到的所述下行数据 包括所述辅服务小区对应的下行控制信道调度的下行数据, 选择第二标识信息, 并利用所述第二标识信息生成所述下行数据对应的物理上行控制信道。
该实施例中, 进一步地, 所述处理器 1020具体用于按如下方式选择标识信 息: 选择所述主服务小区对应的小区标识信息作为所述第一标识信息; 或者 所述处理器具体用于按如下方式选择标识信息: 如果所述接收器接收到所 述主服务小区和只有一个辅服务小区对应的下行控制信道调度的下行数据, 选 择所述一个辅服务小区对应的小区标识信息作为所述第二标识信息; 或者
所述处理器具体用于按如下方式选择标识信息: 如果所述接收器只接收到 所述至少一个辅服务小区中的多个辅服务小区对应的下行控制信道调度的下行 数据, 按照预定规则选择所述第二标识信息。 进一步地,所述处理器 1020具体用于基于如下方式按照预定规则选择所述 第二标识信息: 选择所述多个辅服务小区中的任一辅服务小区对应的小区标识 信息作为所述第二标识信息; 或者, 选择所述主服务小区对应的网络设备通知 的小区标识信息作为所述第二标识信息; 或者, 选择所述至少一个辅服务小区 对应的公共的小区标识信息作为所述第二标识信息。
其中, 所述处理器 1020具体用于按如下方式选择所述小区标识信息: 选择 小区标识和 /或虚拟小区标识作为所述小区标识信息。
第一种实现方式中, 所述处理器 1020还用于, 获取所述物理上行控制信道 的一个信道资源或一组信道资源的信息; 所述发送器 1030具体用于按如下方式 在所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在所述处 理器 1020获取的所述一个信道资源或一组信道资源的所述信息对应的所述一个 信道资源或一组信道资源上, 发送所述处理器 1020生成的所述物理上行控制信 道。
第二种实现方式中, 所述处理器 1020还用于, 确定所述接收器 1010接收 的所述下行数据对应的服务小区为所述主服务小区, 并获取所述主服务小区对 应的所述下行控制信道的信道资源参数; 所述发送器 1030具体用于按如下方式 在所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在所述处 理器 1020 获取的所述信道资源参数对应的第一信道资源上, 发送所述处理器 1020生成的所述物理上行控制信道,其中,所述第一信道资源为所述处理器 1020 获取的所述信道资源参数对应的所述物理上行控制信道的信道资源; 或者
所述处理器 1020还用于, 确定所述接收器 1010接收的所述下行数据对应 的服务小区包含所述辅服务小区, 并获取所述物理上行控制信道的一个信道资 源或一组信道资源的信息; 所述发送器 1030具体用于按如下方式在所述物理上 行控制信道的信道资源上发送所述物理上行控制信道: 在第二信道资源上发送 所述处理器 1020生成的所述物理上行控制信道; 其中, 所述第二信道资源为所 述处理器 1020获取的所述一个信道资源或一组信道资源的所述信息对应的所述 一个信道资源或所述一组信道资源。
第三种实现方式中, 所述处理器 1020还用于, 确定所述接收器 1010接收 的所述下行数据对应的服务小区为所述至少一个辅服务小区中的一个辅服务小 区, 并获取所述一个辅服务小区对应的下行控制信道的信道资源参数; 所述发 送器 1030具体用于按如下方式在所述物理上行控制信道的信道资源上发送所述 物理上行控制信道: 在第三信道资源上, 发送所述物理上行控制信道; 其中, 所述第三信道资源为所述处理器 1020获取的所述信道资源参数对应的所述物理 上行控制信道的信道资源; 或者
所述处理器 1020还用于, 确定所述接收器 1010接收的所述下行数据对应 的服务小区包括所述主服务小区和所述至少一个辅服务小区中的一个或多个辅 服务小区, 或者, 包括所述至少一个辅服务小区中的多个辅服务小区, 并获取 所述物理上行控制信道的一个信道资源或一组信道资源的所述信息; 所述发送 器 1030具体用于按如下方式在所述物理上行控制信道的信道资源上发送所述物 理上行控制信道: 在第四信道资源上, 发送所述物理上行控制信道, 其中, 所 述第四信道资源为所述处理器 1020获取的所述一个信道资源或一组信道资源所 述信息对应的所述一个信道资源或所述一组信道资源; 或者
所述处理器 1020还用于, 确定所述接收器 1010接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述物理 上行控制信道的一个信道资源或一组信道资源的信息; 所述发送器 1030具体用 于按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道: 在第五信道资源上, 发送所述物理上行控制信道; 其中, 如果所述第四信 道资源为所述处理器 1020获取的所述一组信道资源, 所述第五信道资源为所述 一组信道资源的中的一个信道资源。
第四种实现方式中, 所述处理器 1020还用于, 确定所述接收器 1010接收 的所述下行数据对应的服务小区为所述主服务小区, 并获取所述主服务小区对 应的下行控制信道的信道资源参数; 所述发送器 1030具体用于按如下方式在所 述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在第一信道资 源上,发送所述物理上行控制信道,其中,所述第一信道资源为所述处理器 1020 获取的所述信道资源参数对应的信道资源; 或者
所述处理器 1020还用于, 确定所述接收器 1010接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述至少 一个辅服务小区中的所述一个辅服务小区对应的下行控制信道的信道资源参 数; 所述发送器 1030具体用于按如下方式在所述物理上行控制信道的信道资源 上发送所述物理上行控制信道: 在第三信道资源上发送所述物理上行控制信道, 其中, 所述第三信道资源为所述处理器 1020获取的所述信道资源参数对应的所 述物理上行控制信道的信道资源; 或者
所述处理器 1020还用于, 确定所述接收器 1010接收的所述下行数据对应 的服务小区包括所述至少一个辅服务小区中的多个辅服务小区, 或包括所述主 服务小区和所述至少一个辅服务小区中的一个或多个辅服务小区, 并获取所述 物理上行控制信道的一个信道资源或一组信道资源的信息; 所述发送器 1030具 体用于按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控 制信道: 在第四信道资源上发送所述物理上行控制信道; 其中, 所述第四信道 资源为所述处理器 1020获取的所述一个信道资源或一组信道资源的信息对应的 所述一个信道资源或所述一组信道资源;
所述处理器 1020还用于, 确定所述接收器 1010接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述物理 上行控制信道的一个信道资源或一组信道资源的信息; 所述发送器 1030具体用 于按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道: 在第五信道资源上发送所述物理上行控制信道; 其中, 如果所述第四信道 资源为所述一组信道资源, 所述第五信道资源为所述一组信道资源中的一个信 道资源。
上述实现方式中, 所述接收器 1010还用于,接收所述网络设备通过无线资 源控制 RRC信令发送的所述一个信道资源或一组信道资源的所述信息; 所述处 理器 1020具体用于, 通过获取所述接收器 1010接收的所述 RRC信令获取所述 一个信道资源或所述一组信道资源的所述信息; 或者
如图 10a所示,所述用户设备还包括存储器 1040,所述存储器 1040用于存 储所述一个信道资源或所述一组信道资源的所述信息; 所述处理器 1020具体用 于, 从所述存储模块获取所述一个信道资源或所述一组信道资源的所述信息。
进一步地,所述发送器 1030具体用于按如下方式在所述物理上行控制信道 的信道资源上发送所述处理器 1020生成的所述物理上行控制信道:
如果所述接收器 1010接收到的下行数据包括所述主服务小区对应的下行 控制信道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上 行载波上发送所述处理器 1020生成的所述物理上行控制信道; 或者
如果所述接收器 1010 只接收到所述多个辅服务小区中的一个对应的下行 控制信道调度的下行数据, 则将所述信道资源承载在所述一个辅服务小区对应 的上行载波上发送所述处理器 1020生成的所述物理上行控制信道; 或者
如果所述接收器 1010 只接收到所述至少一个辅服务小区中的多个辅服务 小区对应的下行控制信道调度的下行数据, 则将所述信道资源承载在所述多个 辅服务小区中的一个辅服务小区对应的上行载波上发送所述处理器 1020生成的 所述物理上行控制信道。
在上述另一实施例中,所述发送器 1030具体用于按如下方式在所述物理上 行控制信道的信道资源上发送所述处理器 1020生成的所述物理上行控制信道: 如果所述接收器 1010接收到的下行数据只包括所述主服务小区对应的下 行控制信道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的 上行载波上; 或
如果所述接收器 1010接收到的下行数据包括所述辅服务小区对应的下行 控制信道调度的下行数据, 则将所述信道资源承载在所述辅服务小区对应的上 行载波上。
进一步地,所述处理器 1020具体用于按如下方式利用所述选择的标识信息 生成所述下行数据对应的物理上行控制信道:
对于下行控制信道格式 lb结合信道选择的反馈模式,利用所述所选择的标 识信息生成所述物理上行控制信道的序列; 或者,
对于下行控制信道格式 3的反馈模式, 利用所述所选择的标识信息生成所 述物理上行控制信道的调制符号的循环移位图样和 /或利用所述所选择的标识信 息进行正交扩频码的映射。
进一步地, 所述处理器 1020还用于, 对于格式 3的反馈模式, 如果所述接 收器 1010没有接收到所述主服务小区对应的下行控制信道调度的下行数据, 根 据所述辅服务小区的所述下行数据的传输模式确定所述物理上行控制信道的码 本大小; 或, 如果所述接收器 1010接收到所述主服务小区对应的下行控制信道 调度的下行数据, 根据所述主服务小区和所述辅服务小区的下行数据的传输模 式来确定所述物理上行控制信道的所述码本大小;
所述处理器 1020具体用于按如下方式生成所述物理上行控制信道:根据所 述码本确定模块确定的所述码本大小和所述处理器 1020选择的所述标识信息, 生成所述物理上行控制信道。
进一步地, 所述处理器 1020还用于, 根据路径损耗值和所述接收器 1010 接收的所述下行数据对应的所述下行控制信道中的发送功率控制 TPC命令, 确 定所述物理上行控制信道的发送功率; 其中, 如果所述接收器 1010接收到的所 述下行数据不包括所述主服务小区的下行控制信道调度的下行数据, 所述 TPC 命令为所述下行数据对应的一个辅服务小区或多个辅服务小区中的一个辅服务 小区的下行控制信道中的 TPC命令; 或者,如果所述接收器 1010接收到的下行 数据包括所述主服务小区的下行控制信道调度的下行数据, 所述 TPC命令为所 述下行数据对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下 行控制信道中的 TPC命令所述发送器 1030具体用于按如下方式发送所述处理器 1020生成的所述物理上行控制信道: 以所述功率确定模块确定的所述发送功率 来发送所述处理器 1020生成的所述物理上行控制信道。
在上述另一实施例中, 进一步地, 所述处理器 1020还用于, 根据路径损耗 值和所述接收器 1010接收的所述下行数据对应的所述下行控制信道中的发送功 率控制 TPC命令, 确定所述物理上行控制信道的发送功率; 其中, 如果所述接 收器 1010接收到的所述下行数据只包括所述主服务小区的下行控制信道调度的 下行数据, 所述 TPC命令为所述主服务小区的下行控制信道中的 TPC命令; 或 者, 如果所述接收器 1010接收到的所述下行数据包括所述辅服务小区的下行控 制信道调度的下行数据所述 TPC命令为所述下行数据对应的一个辅服务小区或 多个辅服务小区中的一个辅服务小区的下行控制信道中的 TPC命令。
进一步地, 所述处理器 1020还用于, 按如下方式确定所述路径损耗: 如果 所述接收器 1010接收到的所述下行数据不包括所述主服务小区对应的下行控制 信道调度的下行数据,确定所述路径损耗为第一路径损耗;如果所述接收器 1010 接收到的下行数据包括所述主服务小区对应的下行控制信道调度的下行数据, 则所述路径损耗为第二路径损耗, 或者, 如果所述接收器 1010接收到的所述下 行数据只包括所述主服务小区对应的下行控制信道调度的下行数据, 确定所述 路径损耗为第二路径损耗; 如果所述接收器 1010接收到的下行数据包括所述辅 服务小区对应的下行控制信道调度的下行数据, 则确定所述路径损耗为第一路 径损耗; 其中,
如果发送器在所述主服务小区对应的上行载波上发送所述物理上行控制信 道,
所述接收器 1010还用于接收所述主服务小区发送的下行参考信号;所 述处理器 1020还用于测量所述接收器 1010接收的主服务小区发送的所述下 行参考信号的第一接收功率;并根据所述主服务小区发送的所述下行参考信 号的第一发送功率和所述测量到所述第一接收功率确定所述第二路径损耗; 所述接收器 1010还用于接收所述至少一个辅服务小区中的一个辅服务小区 发送的下行参考信号; 所述处理器 1020还用于,测量所述接收器 1010接收 的所述一个辅服务小区发送的所述下行参考信号的第二接收功率;并根据所 述一个辅服务小区发送的下行参考信号的第二发送功率、所述测量到的所述 第二接收功率以及功率偏移量确定的所述第一路径损耗;
或者,
如果所述发送器在所述至少一个辅服务小区中的一个辅服务小区对应的上 行载波上发送所述物理上行控制信道,
所述接收器 1010还用于接收所述主服务小区发送的下行参考信号;所 述处理器 1020还用于,测量所述接收器 1010接收的所述主服务小区发送的 所述下行参考信号的第一接收功率;并根据所述主服务小区发送的所述下行 参考信号的第一发送功率、所述测量到所述第一接收功率以及功率偏移量确 定所述第二路径损耗; 所述接收器 1010还用于接收所述至少一个辅服务小 区中的一个辅服务小区发送的下行参考信号; 所述处理器 1020用于测量所 述接收器 1010接收的所述一个辅服务小区发送的所述下行参考信号的第二 接收功率;并根据所述一个辅服务小区发送的下行参考信号的第二发送功率 和所述测量到的所述第二接收功率确定的所述第一路径损耗。 通过采用本实施例的方法, 实现了多个网络设备间复用相同的 PUCCH信 道资源, 而不需要实时获知其他基站的 PUCCH信道资源的调度情况, 达到了小 区分裂的增益, 提高了 PUCCH信道资源的利用率。 本发明一实施例还提供了一种网络设备 1100, 本实施例能够执行上述实施 例中的方法中的步骤。 本实施例只对该网络设备的结构进行了简单的描述, 具 体实现方式可以参照上述实施例中的描述。 如图 11所示, 本实施例的所述网络 设备包括发送器 1110, 处理器 1120, 以及接收器 1130。
发送器 1110, 用于向用户设备 UE发送下行控制信道调度的下行数据, 其 中, 所述下行控制信道为辅服务小区对应的下行控制信道, 或所述下行控制信 道为所述网络侧设备对应的主服务小区对应的下行控制信道, 所述辅服务小区 是为所述 UE配置的至少两个服务小区中的服务小区,所述至少两个服务小区还 包括所述主服务小区;
处理器 1120, 用于在所述发送器 1110发送所述下行数据后, 确定所述 UE 可能使用的标识信息; 以及
接收器 1130, 用于在用于反馈物理上行控制信道的信道资源上, 使用所述 处理器 1120确定的所述可能使用的标识信息检测所述下行数据对应的所述物理 上行控制信道, 其中, 所述物理上行控制信道是所述 UE使用所述 UE可能使用 的标识信息中的一种生成的。
由于本实施例所执行的是上述实施例的方法, 因此, 本实施例能够获得的 技术效果可参见上述实施例中的描述, 此处不再赘述。
进一步地, 所述处理器 1120具体用于, 确定所述 UE可能使用的标识信息 包括:
所述主服务小区对应的小区标识信息, 所述网络设备对应的所述辅服 务小区对应的小区标识信息, 和按照预定规则确定的标识信息; 或者
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信 息和为所述 UE配置的所有辅服务小区对应的小区标识信息; 其中, 所述小区标识信息为小区标识和 /或虚拟小区标识。 进一步地,所述处理器 1120具体用于按如下预定规则确定所述小区标识信 息:
所述主服务小区对应的网络设备通知的小区标识信息, 或者为所述 UE配 置的所有辅服务小区对应的公共的小区标识信息。
进一步地, 所述处理器 1120还用于, 获取所述物理上行控制信道的一个信 道资源或一组信道资源的信息, 并获取所述发送器 1110发送的所述下行数据对 应的所述下行控制信道的信道资源参数;
所述接收器 1130具体用于按如下方式使用所述处理器 1120确定的所述可 能使用的标识信息检测所述下行数据对应的所述物理上行控制信道: 在所述处 理器 1120获取的所述一个信道资源或一组信道资源的所述信息对应的所述一个 信道资源或所述一组信道资源上, 以及在所述处理器 1120获取的所述信道资源 参数对应的所述物理上行控制的信道资源上, 使用所述处理器 1120确定的所述 可能使用的标识信息检测所述下行数据对应的物理上行控制信道。
进一步地, 所述接收器 1130还用于, 通过接收无线资源控制 RRC信令接 收所述物理上行控制信道的所述一个信道资源或一组信道资源的所述信息; 所 述处理器 1120具体用于, 通过所述接收器 1130接收的所述 RRC信令获取所述 物理上行控制信道的所述一个信道资源或一组信道资源的所述信息; 或者
如图 11a所示,所述网络设备还包括存储器 1140,所述存储器 1140用于存 储所述接收器 1130接收的所述一个信道资源或一组信道资源的所述信息; 所述 处理器 1120具体用于从所述存储器 1140获取所述一个信道资源或一组信道资 源的所述信息。
本发明一实施例提供了一种网络设备 1200, 本实施例能够执行上述实施例 中的方法中的步骤。 本实施例只对该网络设备 1200的结构进行了简单的描述, 具体实现方式可以参照上述实施例中的描述。 如图 12所示, 本实施例的所述网 络设备 1200包括发送器 1210, 处理器 1220, 以及接收器 1230。
发送器 1210, 用于向 UE发送下行控制信道调度的下行数据, 其中, 所述 下行控制信道为主服务小区对应的下行控制信道, 所述主服务小区是为所述 UE 配置的至少两个服务小区中的主服务小区, 所述至少两个服务小区还包括至少 —个辅服务小区。
处理器 1220, 在所述发送器 1210发送所述下行数据后, 确定所述主服务 小区对应的小区标识信息。
接收器 1230, 在为所述 UE分配的用于反馈物理上行控制信道的信道资源 上, 使用所述小区标识信息检测所述下行数据对应的所述物理上行控制信道, 其中,所述物理上行控制信道是所述 UE使用所述主服务小区的小区标识信息生 成的。
由于本实施例所执行的是上述实施例的方法, 因此, 本实施例能够获得的 技术效果可参见上述实施例中的描述, 此处不再赘述。
所述发送器 1210还用于,向所述用户设备和为所述用户设备配置的所有辅 服务小区对应的网络设备, 通知所述物理上行控制信道的一个信道资源或一组 信道资源。
具体地, 所述接收器 1230具体用于, 在所述一个信道资源或一组信道资源 以及所述下行控制信道隐式对应的所述物理上行控制信道的信道资源上, 使用 所述小区标识信息检测所述下行数据对应的物理上行控制信道; 或者, 在所述 一个信道资源或一组信道资源上, 使用所述小区标识信息检测所述下行数据对 应的物理上行控制信道服务小区对应的下行。
进一步地, 所述接收器 1230具体用于, 在所述主服务小区对应的上行载波 上检测所述下行数据对应的物理上行控制信道。
本发明实施例中, 所述小区标识信息可以为小区标识和 /或虚拟小区标识。 通过采用本实施例的网络设备,实现了多个网络设备间复用相同的 PUCCH 信道资源, 而不需要实时获知其他基站的 PUCCH信道资源的调度情况, 达到了 小区分裂的增益, 提高了 PUCCH信道资源的利用率。 本发明一实施例提供了一种通信系统, 所述通信系统包括上述实施例所提 供的用户设备 1000、 网络设备 1100以及网络设备 1200。 具体参见上述实施例 中的描述, 此处不再赘述。 此外, 本实施例所提供的用户设备 1000、 网络设备 1100以及网络设备 1200能够执行上述实施例中的方法中的步骤,具体实现方式 可以参照上述方法实施例中的描述。
需要说明的是, 本发明实施例可应用于各种通信系统中的基站或者终端。 上述实施例提供的用户设备和网络设备还可以包括功率控制器、 解码处理器、 以及存储器等部件。 本发明实施例中的处理模块还可以称为 CPU。 存储器可以 包括只读存储器和随机存取存储器, 并向处理模块提供指令和数据。 存储器的 一部分还可以包括非易失行随机存取存储器(NVRAM )。 具体的应用中, 本发 明实施例中的用户设备和网络设备还可以包括容纳发射电路和接收电路的载 体, 以允许用户设备或网络设备和远程位置之间进行数据发射和接收。 发送模 块和接收模块可以耦合到天线。 各个组件通过总线系统耦合在一起, 其中 总线 系统除包括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 。 . 上述本发明实施例揭示的处理器可能是一种集成电路芯片, 具有信号的处 理能力。 上述的处理器可以是通用处理器、 数字信号处理器(DSP )、 专用集成 电路(ASIC )、 现成可编程门阵列 (FPGA )或者其他可编程逻辑器件、 分立门 或者晶体管逻辑器件、 或者分立硬件组件。 可以实现或者执行本发明实施例中 的公开的各方法、 步骤及逻辑框图。 通用处理器可以是微处理器或者该处理器 也可以是任何常规的处理器, 基带处理器等。 结合本发明实施例所公开的方法 的步骤可以直接体现为硬件解码处理器执行完成, 或者用解码处理器中的硬件 及软件模块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介 质中。 该存储介质位于存储器, 处理模块读取存储器中的信息, 结合其硬件完 成上述方法的步骤。 通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本发 明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件实现 时, 可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个 或多个指令或代码进行传输。 计算机可读介质包括计算机存储介质和通信介质, 其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计算机 可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其他光盘存储、 磁盘 存储介质或者其他磁存储设备、 或者能够用于携带或存储具有指令或数据结构 形式的期望的程序代码并能够由计算机存取的任何其他介质。 此外。 任何连接 可以适当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、 光纤光缆、 双绞线、 数字用户线(DSL )或者诸如红外线、 无线电和微波之类的无线技术从 网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL 或者诸如红外线、 无线和微波之类的无线技术包括在所属介质的定影中。 如本 发明所使用的, 盘(Disk )和碟(disc ) 包括压缩光碟 ( CD ) 、 激光碟、 光碟、 数字通用光碟(DVD ) 、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟 则用激光来光学的复制数据。 上面的组合也应当包括在计算机可读介质的保护 范围之内。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种上行控制信道发送方法, 其特征在于, 所述方法包括:
用户设备 UE接收网络设备通过下行控制信道调度的下行数据, 其中, 所 述下行控制信道为服务小区对应的下行控制信道, 所述服务小区是为所述 UE 配置的至少两个服务小区中的服务小区, 所述至少两个服务小区包括一个主服 务小区和至少一个辅服务小区;
根据所述下行控制信道选择标识信息;
利用所述选择的标识信息生成所述下行数据对应的物理上行控制信道; 以 及
在所述物理上行控制信道的信道资源上发送所述物理上行控制信道。
2、 如权利要求 1 所述的方法, 其特征在于, 所述根据所述下行控制信道 选择标识信息, 包括:
如果所述 UE接收到的所述下行数据不包括所述主服务小区对应的下行控 制信道调度的下行数据, 所述选择的标识信息为第二标识信息, 利用所述选择 的标识信息生成所述下行数据对应的物理上行控制信道, 包括: 利用所述第二 标识信息生成所述下行数据对应的物理上行控制信道; 或
如果所述 UE接收到的所述下行数据包括所述主服务小区对应的下行控制 信道调度的下行数据, 所述选择的标识信息为第一标识信息, 利用所述选择的 标识信息生成所述下行数据对应的物理上行控制信道, 包括: 利用所述第一标 识信息生成所述下行数据对应的物理上行控制信道。
3、 如权利要求 2所述的方法, 其特征在于,
所述第一标识信息为所述主服务小区对应的小区标识信息;
如果所述 UE只接收到一个辅服务小区对应的下行控制信道调度的下行数 据, 所述第二标识信息为所述一个辅服务小区对应的小区标识信息; 或者
如果所述 UE只接收到所述至少一个辅服务小区中的多个辅服务小区对应 的下行控制信道调度的下行数据, 所述 UE选择第二标识信息包括: 所述 UE 按照预定规则选择所述第二标识信息。
4、如权利要求 3所述的方法, 其特征在于, 所述 UE按照预定规则选择所 述第二标识信息, 包括:
所述 UE选择所述多个辅服务小区中的任一辅服务小区对应的小区标识信 息作为所述第二标识信息;
所述 UE选择所述主服务小区对应的网络设备通知的小区标识信息作为所 述第二标识信息; 或者
所述 UE选择所述至少一个辅服务小区对应的公共的小区标识信息作为所 述第二标识信息。
5、 如权利要求 3或 4所述的方法, 其特征在于,
所述小区标识信息为小区标识和 /或虚拟小区标识。
6、 如权利要求 1至 5中任一项所述的方法, 其特征在于, 所述在所述物 理上行控制信道的信道资源上发送所述物理上行控制信道之前, 所述方法还包 括:
获取所述物理上行控制信道的一个信道资源或一组信道资源的信息; 所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道, 包括: 在所述一个信道资源或一组信道资源的所述信息对应的所述一个信道资 源或所述一组信道资源上发送所述物理上行控制信道。
7、 如权利要求 1至 5中任一项所述的方法, 其特征在于, 所述在所述物 理上行控制信道的信道资源上发送所述物理上行控制信道, 包括:如果所述 UE 只接收到所述主服务小区对应的下行控制信道调度的下行数据, 在第一信道资 源上发送所述物理上行控制信道, 其中, 所述第一信道资源为信道资源参数对 应的所述物理上行控制信道的信道资源, 所述信道资源参数为所述主服务小区 对应的下行控制信道的信道资源参数; 或者
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道 之前, 所述方法还包括: 获取所述物理上行控制信道的一个信道资源或一组信 道资源的信息; 所述在所述物理上行控制信道的信道资源上发送所述物理上行 控制信道, 包括: 如果所述 UE接收到的下行数据包含所述辅服务小区对应的 下行控制信道调度的下行数据,在第二信道资源上发送所述物理上行控制信道; 其中, 所述第二信道资源为所述一个信道资源或一组信道资源的所述信息对应 的所述一个信道资源或所述一组信道资源。
8、 如权利要求 1至 5中任一项所述的方法, 其特征在于,
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道, 包括: 如果所述 UE只接收到所述至少一个辅服务小区中的一个辅服务小区对 应的下行控制信道调度的下行数据, 在第三信道资源上发送所述物理上行控制 信道; 其中, 所述第三信道资源为所述一个辅服务小区对应的下行控制信道的 信道资源参数对应的所述物理上行控制信道的信道资源; 或者
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道 之前, 所述方法还包括: 获取所述物理上行控制信道的一个信道资源或一组信 道资源的信息; 所述在所述物理上行控制信道的信道资源上发送所述物理上行 控制信道, 包括:
如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制 信道调度的下行数据和所述至少一个辅服务小区中的一个或多个辅服务小 区, 或者, 如果所述 UE接收到的所述下行数据包括所述至少一个辅服务 小区中的多个辅服务小区对应的下行控制信道调度的下行数据, 在第四信 道资源上发送所述物理上行控制信道, 其中, 所述第四信道资源为所述一 个信道资源或一组信道资源所述信息对应的所述一个信道资源或所述一组 信道资源; 或,
如果所述 UE只接收到所述至少一个辅服务小区中的一个辅服务小区 对应的下行控制信道调度的下行数据, 在第五信道资源上发送所述物理上 行控制信道; 其中, 如果所述第四信道资源为所述一组信道资源, 所述第 五信道资源为所述一组信道资源中的一个信道资源。
9、 如权利要求 1至 5中任一项所述的方法, 其特征在于,
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制信道, 包括:
如果所述 UE只接收到所述主服务小区对应的所述下行控制信道调度 的下行数据, 在第一信道资源上发送所述物理上行控制信道; 其中, 所述 第一信道资源为所述主服务小区对应的下行控制信道的信道资源参数对应 的所述物理上行控制信道的信道资源; 或者
如果所述 UE接收到所述至少一个辅服务小区中的一个辅服务小区对 应的下行控制信道调度的下行数据, 在第三信道资源上发送所述物理上行 控制信道, 其中, 所述第三信道资源为所述至少一个辅服务小区中的所述 一个辅服务小区对应的下行控制信道的信道资源参数对应的所述物理上行 控制信道的信道资源; 或者
所述在所述物理上行控制信道的信道资源上发送所述物理上行控制 信道之前, 所述方法还包括: 获取所述物理上行控制信道的一个信道资源 或一组信道资源的信息; 所述在所述物理上行控制信道的信道资源上发送 所述物理上行控制信道, 包括: 如果所述 UE接收到的下行数据包括所述 至少一个辅服务小区中的多个辅服务小区对应的下行控制信道调度的下行 数据, 或者, 如果所述 UE接收到的下行数据包括所述主服务小区对应的 下行控制信道调度的下行数据和一个或多个辅服务小区对应的下行控制信 道调度的下行数据, 在第四信道资源上发送所述物理上行控制信道; 其中, 所述第四信道资源为所述一个信道资源或一组信道资源的所述信息对应的 所述一个信道资源或所述一组信道资源; 或者
如果所述 UE接收到所述至少一个辅服务小区中的一个辅服务小区对 应的下行控制信道调度的下行数据, 在第五信道资源上发送所述物理上行 控制信道; 其中, 如果所述第四信道资源为所述一组信道资源, 所述第五 信道资源为所述一组信道资源中的一个信道资源。
10、 如权利要求 6至 9中任一项所述的方法, 其特征在于,
所述获取所述物理上行控制信道的一个信道资源或一组信道资源的信息, 包括:
通过无线资源控制 RRC信令获取所述一个信道资源或所述一组信道资源 的所述信息; 或者
获取预存的所述一个信道资源或所述一组信道资源的所述信息。
11、 如权利要求 1至 10中任一项所述的方法, 其特征在于, 所述发送所 述物理上行控制信道, 包括:
如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道 调度的下行数据,则将所述信道资源承载在所述主服务小区对应的上行载波上; 或
如果所述 UE只接收到一个辅服务小区对应的下行控制信道调度的下行数 据, 则将所述信道资源承载在所述下行数据对应的所述一个辅服务小区对应的 上行载波上; 或
如果所述 UE只接收到所述至少一个辅服务小区中的多个辅服务小区对应 的下行控制信道调度的下行数据, 则将所述信道资源承载在所述多个辅服务小 区中的一个辅服务小区对应的上行载波上。
12、 如权利要求 1至 11 中任一项所述的方法, 其特征在于, 所述利用所 述选择的标识信息生成所述下行数据对应的物理上行控制信道, 包括:
对于下行控制信道格式 lb结合信道选择的反馈模式, 利用所述所选择的 标识信息生成所述物理上行控制信道的序列; 或
对于下行控制信道格式 3的反馈模式, 利用所述所选择的标识信息生成所 述物理上行控制信道的调制符号的循环移位图样和 /或利用所述所选择的标识 信息进行正交扩频码的映射。
13、 如权利要求 1至 12 中任一项所述的方法, 其特征在于, 对于格式 3 的反馈模式, 所述利用所述选择的标识信息生成所述下行数据对应的物理上行 控制信道之前, 所述方法还包括:
如果所述 UE没有接收到所述主服务小区对应的下行控制信道调度的下行 数据, 根据所述辅服务小区的对应的下行控制信道调度的所述下行数据的传输 模式确定所述物理上行控制信道的码本大小; 或
如果所述 UE接收到所述主服务小区对应的下行控制信道调度的下行数 据, 根据所述主服务小区和所述辅服务小区的下行数据的传输模式来确定所述 物理上行控制信道的所述码本大小。
14、 如权利要求 1至 13 中任一项所述的方法, 其特征在于, 所述在所述 信道资源上发送所述物理上行控制信道, 包括:
根据路径损耗值和所述下行控制信道中的发送功率控制 TPC命令确定所 述物理上行控制信道的发送功率, 并以所述确定的发送功率来发送所述物理上 行控制信道, 其中,
如果所述 UE接收到的所述下行数据不包括所述主服务小区的下行控制信 道调度的下行数据,所述 TPC命令为所述下行数据对应的一个辅服务小区或多 个辅服务小区中的一个辅服务小区的下行控制信道中的 TPC命令; 或
如果所述 UE接收到的下行数据包括所述主服务小区的下行控制信道调度 的下行数据, 所述 TPC命令为所述主服务小区的下行控制信道中的 TPC命令
15、 如权利要求 14所述的方法, 其特征在于,
如果所述 UE接收到的所述下行数据不包括所述主服务小区对应的下行控 制信道调度的下行数据, 所述路径损耗为第一路径损耗; 或者
如果所述 UE接收到的下行数据包括所述主服务小区对应的下行控制信道 调度的下行数据, 则所述路径损耗为第二路径损耗;
其中, 如果所述 UE在所述主服务小区对应的上行载波上发送所述物理上 行控制信道, 则所述第二路径损耗是根据所述主服务小区发送的下行参考信号 的第一发送功率和第一接收功率确定的, 其中, 所述第一接收功率为所述 UE 通过测量所述主服务小区发送的所述下行参考信号得到的; 所述第一路径损耗 是根据所述至少一个辅服务小区中的一个辅服务小区发送的下行参考信号的第 二发送功率、 第二接收功率以及功率偏移量来确定的, 其中, 所述第二接收功 率是所述 UE通过测量所述一个辅服务小区发送的所述下行参考信号得到的; 或者,
如果所述 UE在所述至少一个辅服务小区中的一个辅服务小区对应的上行 载波上发送所述物理上行控制信道, 则所述第二路径损耗是根据所述主服务小 区发送的下行参考信号的第一发送功率、 第一接收功率以及功率偏移量来确定 的, 其中, 所述第一接收功率为所述 UE通过测量所述主服务小区发送的所述 下行参考信号得到的; 所述第一路径损耗是根据所述一个辅服务小区发送的下 行参考信号的第二发送功率和第二接收功率来确定的, 其中, 所述第二接收功 率是所述 UE通过测量所述一个辅服务小区发送的所述下行参考信号得到的。
16、 如权利要求 15所述的方法, 其特征在于,
所述功率偏移量为所述主服务小区和所述辅服务小区所在频点造成的路 径损耗的功率差。
17、 一种上行控制信道的接收方法, 其特征在于, 所述方法包括: 网络设备向用户设备 UE发送下行控制信道调度的下行数据, 其中, 所述 下行控制信道为所述网络设备对应的辅服务小区对应的下行控制信道, 所述辅 服务小区是为所述 UE配置的至少两个服务小区中的服务小区, 所述至少两个 服务小区还包括所述主服务小区;
确定所述 UE可能使用的标识信息; 以及
在用于反馈所述物理上行控制信道的信道资源上, 使用所述可能使用的标 识信息检测所述下行数据对应的所述物理上行控制信道, 其中, 所述物理上行 控制信道是所述 UE使用所述 UE可能使用的标识信息中的一种生成的。
18、 如权利要求 17所述的方法, 其特征在于,
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息, 所述网络设备对应的所述辅服务小区对应的小区标识信息, 和按照预定规则确 定的标识信息; 或者
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息和 为所述 UE配置的所有辅服务小区对应的小区标识信息。
19、 如权利要求 18所述的方法, 其特征在于, 所述按照预定规则确定的 标识信息包括:
所述主服务小区对应的网络设备通知的小区标识信息; 或者
为所述 UE配置的所有辅服务小区对应的公共的小区标识信息。
20、 如权利要求 18或 19所述的方法, 其特征在于,
所述小区标识信息为小区标识和 /或虚拟小区标识。
21、 如权利要求 17至 20中任一项所述的方法, 其特征在于,
所述检测所述下行数据对应的物理上行控制信道之前, 所述方法还包括: 获取所述物理上行控制信道的一个信道资源或一组信道资源的信息; 所述检测所述下行数据对应的物理上行控制信道, 包括: 在所述一个信道 资源或一组信道资源的所述信息对应的所述一个信道资源或所述一组信道资源 以及所述下行控制信道对应的所述物理上行控制信道的信道资源上, 使用所述 可能使用的标识信息检测所述下行数据对应的物理上行控制信道。
22、 如权利要求 21所述的方法, 其特征在于,
所述获取所述物理上行控制信道的一个信道资源或一组信道资源的信息, 包括:通过无线资源控制 RRC信令获取所述一个信道资源或所述一组信道资源 的信息; 或者
获取预存的所述一个信道资源或所述一组信道资源的信息。
23、 一种用户设备, 其特征在于, 所述用户设备 UE包括:
接收模块, 用于接收网络设备通过下行控制信道调度的下行数据, 其中, 所述下行控制信道为服务小区对应的下行控制信道,所述服务小区是为所述 UE 配置的至少两个服务小区中的服务小区, 所述至少两个服务小区包括一个主服 务小区和至少一个辅服务小区; 选择模块, 用于根据所述接收模块接收的所述下行数据对应所述下行控制 信道选择标识信息;
生成模块, 用于利用所述选择模块选择的所述标识信息生成所述下行数据 对应的物理上行控制信道; 以及
发送模块, 用于在所述生成模块生成的所述物理上行控制信道的信道资源 上发送所述物理上行控制信道。
24、 如权利要求 23所述的用户设备, 其特征在于,
所述选择模块具体用于, 如果所述接收模块接收到的所述下行数据不包括 所述主服务小区对应的下行控制信道调度的下行数据, 选择第二标识信息; 所 述生成模块具体用于, 利用所述第二标识信息生成所述下行数据对应的物理上 行控制信道; 或,
所述选择模块具体用于, 如果所述接收模块接收到的所述下行数据包括所 述主服务小区对应的下行控制信道调度的下行数据, 选择第一标识信息; 所述 生成模块具体用于, 利用所述第一标识信息生成所述下行数据对应的物理上行 控制信道。
25、 如权利要求 24所述的用户设备, 其特征在于,
所述选择模块具体用于, 选择所述主服务小区对应的小区标识信息作为所 述第一标识信息; 或者
所述选择模块具体用于, 如果所述接收模块只接收到一个辅服务小区对应 的下行控制信道调度的下行数据, 选择所述一个辅服务小区对应的小区标识信 息作为所述第二标识信息; 或者
所述选择模块具体用于, 如果所述接收模块只接收到所述至少一个辅服务 小区中的多个辅服务小区对应的下行控制信道调度的下行数据, 按照预定规则 选择所述第二标识信息。
26、 如权利要求 25所述的用户设备, 其特征在于,
所述选择模块具体用于基于如下方式按照预定规则选择所述第二标识信 息: 选择所述多个辅服务小区中的任一辅服务小区对应的小区标识信息作为所 述第二标识信息; 或者, 选择所述主服务小区对应的网络设备通知的小区标识 信息作为所述第二标识信息; 或者, 选择所述至少一个辅服务小区对应的公共 的小区标识信息作为所述第二标识信息。
27、 如权利要求 25或 26所述的用户设备, 其特征在于,
所述选择模块具体用于按如下方式选择所述小区标识信息: 选择小区标识 和 /或虚拟小区标识作为所述小区标识信息。
28、 如权利要求 23至 27中任一项所述的用户设备, 其特征在于, 所述用 户设备还包括信道资源获取模块;
所述信道资源获取模块, 用于获取所述物理上行控制信道的一个信道资源 或一组信道资源的信息; 所述发送模块具体用于按如下方式在所述物理上行控 制信道的信道资源上发送所述物理上行控制信道: 在所述信道资源获取模块获 取的所述一个信道资源或一组信道资源的所述信息对应的所述一个信道资源或 一组信道资源上, 发送所述生成模块生成的所述物理上行控制信道。
29、 如权利要求 23至 27中任一项所述的用户设备, 其特征在于, 所述用 户设备还包括信道资源获取模块;
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述主服务小区, 并获取所述主服务小区对应的所述下行控制信 道的信道资源参数; 所述发送模块具体用于按如下方式在所述物理上行控制信 道的信道资源上发送所述物理上行控制信道: 在所述信道资源获取模块获取的 所述信道资源参数对应的第一信道资源上, 发送所述生成模块生成的所述物理 上行控制信道, 其中, 所述第一信道资源为所述信道资源获取模块获取的所述 信道资源参数对应的所述物理上行控制信道的信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区包含所述辅服务小区, 并获取所述物理上行控制信道的一个信道资 源或一组信道资源的信息; 所述发送模块具体用于按如下方式在所述物理上行 控制信道的信道资源上发送所述物理上行控制信道: 在第二信道资源上发送所 述生成模块生成的所述物理上行控制信道; 其中, 所述第二信道资源为所述信 道资源获取模块获取的所述一个信道资源或一组信道资源的所述信息对应的所 述一个信道资源或所述一组信道资源。
30、 如权利要求 23至 27中任一项所述的用户设备, 其特征在于, 所述用 户设备还包括信道资源获取模块;
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述一个 辅服务小区对应的下行控制信道的信道资源参数; 所述发送模块具体用于按如 下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信道: 在 第三信道资源上, 发送所述物理上行控制信道; 其中, 所述第三信道资源为所 述信道资源获取模块获取的所述信道资源参数对应的所述物理上行控制信道的 信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区包括所述主服务小区和所述至少一个辅服务小区中的一个或多个辅 服务小区, 或者, 包括所述至少一个辅服务小区中的多个辅服务小区, 并获取 所述物理上行控制信道的一个信道资源或一组信道资源的所述信息; 所述发送 模块具体用于按如下方式在所述物理上行控制信道的信道资源上发送所述物理 上行控制信道: 在第四信道资源上, 发送所述物理上行控制信道, 其中, 所述 第四信道资源为所述信道资源获取模块获取的所述一个信道资源或一组信道资 源所述信息对应的所述一个信道资源或所述一组信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述物理 上行控制信道的一个信道资源或一组信道资源的信息; 所述发送模块具体用于 按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道: 在第五信道资源上, 发送所述物理上行控制信道; 其中, 如果所述第四信 道资源为所述信道资源获取模块获取的所述一组信道资源, 所述第五信道资源 为所述一组信道资源的中的一个信道资源。
31、 如权利要求 23至 27中任一项所述的用户设备, 其特征在于, 所述用 户设备还包括信道资源获取模块;
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述主服务小区, 并获取所述主服务小区对应的下行控制信道的 信道资源参数; 所述发送模块具体用于按如下方式在所述物理上行控制信道的 信道资源上发送所述物理上行控制信道: 在第一信道资源上, 发送所述物理上 行控制信道, 其中, 所述第一信道资源为所述信道资源获取模块获取的所述信 道资源参数对应的信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述至少 一个辅服务小区中的所述一个辅服务小区对应的下行控制信道的信道资源参 数; 所述发送模块具体用于按如下方式在所述物理上行控制信道的信道资源上 发送所述物理上行控制信道: 在第三信道资源上发送所述物理上行控制信道, 其中, 所述第三信道资源为所述信道资源获取模块获取的所述信道资源参数对 应的所述物理上行控制信道的信道资源; 或者
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区包括所述至少一个辅服务小区中的多个辅服务小区, 或包括所述主 服务小区和所述至少一个辅服务小区中的一个或多个辅服务小区, 并获取所述 物理上行控制信道的一个信道资源或一组信道资源的信息; 所述发送模块具体 用于按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制 信道: 在第四信道资源上发送所述物理上行控制信道; 其中, 所述第四信道资 源为所述信道资源获取模块获取的所述一个信道资源或一组信道资源的信息对 应的所述一个信道资源或所述一组信道资源;
所述信道资源获取模块, 用于确定所述接收模块接收的所述下行数据对应 的服务小区为所述至少一个辅服务小区中的一个辅服务小区, 并获取所述物理 上行控制信道的一个信道资源或一组信道资源的信息; 所述发送模块具体用于 按如下方式在所述物理上行控制信道的信道资源上发送所述物理上行控制信 道: 在第五信道资源上发送所述物理上行控制信道; 其中, 如果所述第四信道 资源为所述一组信道资源, 所述第五信道资源为所述一组信道资源中的一个信 道资源。
32、 如权利要求 28至 31中任一项所述的用户设备, 其特征在于, 所述接收模块还用于, 接收所述网络设备通过无线资源控制 RRC信令发 送的所述一个信道资源或一组信道资源的所述信息; 所述信道资源获取模块具 体用于, 获取所述接收模块接收的所述一个信道资源或所述一组信道资源的所 述信息; 或者
所述用户设备还包括存储模块, 所述存储模块用于存储所述一个信道资源 或所述一组信道资源的所述信息; 所述信道资源获取模块具体用于, 从所述存 储模块获取所述一个信道资源或所述一组信道资源的所述信息。
33、 如权利要求 23至 32中任一项所述的用户设备, 其特征在于, 所述发送模块具体用于按如下方式在所述物理上行控制信道的信道资源 上发送所述生成模块生成的所述物理上行控制信道:
如果所述接收模块接收到的下行数据包括所述主服务小区对应的下行控 制信道调度的下行数据, 则将所述信道资源承载在所述主服务小区对应的上行 载波上发送所述生成模块生成的所述物理上行控制信道; 或者
如果所述接收模块只接收到所述多个辅服务小区中的一个对应的下行控 制信道调度的下行数据, 则将所述信道资源承载在所述一个辅服务小区对应的 上行载波上发送所述生成模块生成的所述物理上行控制信道; 或者
如果所述接收模块只接收到所述至少一个辅服务小区中的多个辅服务小 区对应的下行控制信道调度的下行数据, 则将所述信道资源承载在所述多个辅 服务小区中的一个辅服务小区对应的上行载波上发送所述生成模块生成的所述 物理上行控制信道。
34、 如权利要求 23至 33中任一项所述的用户设备, 其特征在于, 所述生成模块具体用于按如下方式利用所述选择的标识信息生成所述下 行数据对应的物理上行控制信道:对于下行控制信道格式 lb结合信道选择的反 馈模式, 利用所述所选择的标识信息生成所述物理上行控制信道的序列; 或, 对于下行控制信道格式 3的反馈模式, 利用所述所选择的标识信息生成所述物 理上行控制信道的调制符号的循环移位图样和 /或利用所述所选择的标识信息 进行正交扩频码的映射。
35、 如权利要求 23至 34中任一项所述的用户设备, 其特征在于, 所述用 户设备还包括:
码本确定模块, 用于对于格式 3的反馈模式, 如果所述接收模块没有接收 到所述主服务小区对应的下行控制信道调度的下行数据, 根据所述辅服务小区 的所述下行数据的传输模式确定所述物理上行控制信道的码本大小; 或, 如果 所述接收模块接收到所述主服务小区对应的下行控制信道调度的下行数据, 根 据所述主服务小区和所述辅服务小区的下行数据的传输模式来确定所述物理上 行控制信道的所述码本大小;
所述生成模块还用于, 根据所述码本确定模块确定的所述码本大小和所述 选择模块选择的所述标识信息, 生成所述物理上行控制信道。
36、 如权利要求 23至 35中任一项所述的用户设备, 其特征在于, 所述用 户设备还包括功率确定模块;
所述功率确定模块用于, 根据路径损耗值和所述接收模块接收的所述下行 数据对应的所述下行控制信道中的发送功率控制 TPC命令,确定所述物理上行 控制信道的发送功率; 其中, 如果所述接收模块接收到的所述下行数据不包括 所述主服务小区的下行控制信道调度的下行数据,所述 TPC命令为所述下行数 据对应的一个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控制信 道中的 TPC命令; 或者, 如果所述接收模块接收到的下行数据包括所述主服务 小区的下行控制信道调度的下行数据,所述 TPC命令为所述下行数据对应的一 个辅服务小区或多个辅服务小区中的一个辅服务小区的下行控制信道中的 TPC 命令;
所述发送模块具体用于按如下方式发送所述生成模块生成的所述物理上 行控制信道: 以所述功率确定模块确定的所述发送功率来发送所述生成模块生 成的所述物理上行控制信道。
37、 如权利要求 36所述的用户设备, 其特征在于, 所述用户设备还包括 测量模块;
所述功率确定模块还用于, 按如下方式确定所述路径损耗: 如果所述接收 模块接收到的所述下行数据不包括所述主服务小区对应的下行控制信道调度的 下行数据, 确定所述路径损耗为第一路径损耗; 如果所述所述接收模块接收到 的下行数据包括所述主服务小区对应的下行控制信道调度的下行数据, 则所述 路径损耗为第二路径损耗; 其中,
如果所述发送模块在所述主服务小区对应的上行载波上发送所述物理上 行控制信道,
所述接收模块还用于接收所述主服务小区发送的下行参考信号; 所述 测量模块用于测量所述接收模块接收的主服务小区发送的所述下行参考信 号的第一接收功率; 所述功率确定模块根据所述主服务小区发送的所述下 行参考信号的第一发送功率和所述测量模块测量到所述第一接收功率确定 所述第二路径损耗; 所述接收模块还用于接收所述至少一个辅服务小区中 的一个辅服务小区发送的下行参考信号; 所述测量模块用于测量所述接收 模块接收的所述一个辅服务小区发送的所述下行参考信号的第二接收功 率; 所述功率确定模块根据所述一个辅服务小区发送的下行参考信号的第 二发送功率、 所述测量模块测量到的所述第二接收功率以及功率偏移量确 定的所述第一路径损耗;
或者, 如果所述发送模块在所述至少一个辅服务小区中的一个辅服务小区对应 的上行载波上发送所述物理上行控制信道,
所述接收模块还用于接收所述主服务小区发送的下行参考信号; 所述 测量模块用于测量所述接收模块接收的所述主服务小区发送的所述下行参 考信号的第一接收功率; 所述功率确定模块根据所述主服务小区发送的所 述下行参考信号的第一发送功率、 所述测量模块测量到所述第一接收功率 以及功率偏移量确定所述第二路径损耗; 所述接收模块还用于接收所述至 少一个辅服务小区中的一个辅服务小区发送的下行参考信号; 所述测量模 块用于测量所述接收模块接收的所述一个辅服务小区发送的所述下行参考 信号的第二接收功率; 所述功率确定模块根据所述一个辅服务小区发送的 下行参考信号的第二发送功率和所述测量模块测量到的所述第二接收功率 确定的所述第一路径损耗。
38、 一种网络设备, 其特征在于, 所述网络设备包括:
发送模块,用于向用户设备 UE发送下行控制信道调度的下行数据,其中, 所述下行控制信道为辅服务小区对应的下行控制信道, 所述辅服务小区是为所 述 UE配置的至少两个服务小区中的服务小区, 所述至少两个服务小区还包括 所述主服务小区;
确定模块, 用于在所述发送模块发送所述下行数据后, 确定所述 UE可能 使用的标识信息; 以及
接收模块, 用于在用于反馈物理上行控制信道的信道资源上, 使用所述确 定模块确定的所述可能使用的标识信息检测所述下行数据对应的所述物理上行 控制信道, 其中, 所述物理上行控制信道是所述 UE使用所述 UE可能使用的 标识信息中的一种生成的。
39、 如权利要求 38所述的网络设备, 其特征在于,
所述确定模块具体用于, 确定所述 UE可能使用的标识信息包括: 所述主服务小区对应的小区标识信息, 所述网络设备对应的所述辅服务小 区对应的小区标识信息, 和按照预定规则确定的标识信息; 或者
所述 UE可能使用的标识信息包括所述主服务小区对应的小区标识信息和 为所述 UE配置的所有辅服务小区对应的小区标识信息;
其中, 所述小区标识信息为小区标识和 /或虚拟小区标识。
40、 如权利要求 39所述的网络设备, 其特征在于,
所述确定模块具体用于按如下预定规则确定所述标识信息:
所述主服务小区对应的网络设备通知的小区标识信息, 或者为所述 UE配 置的所有辅服务小区对应的公共的小区标识信息。
41、 如权利要求 40所述的网络设备, 其特征在于, 所述网络设备还包括: 信道资源获取模块, 用于获取所述物理上行控制信道的一个信道资源或一 组信道资源的信息, 并获取所述发送模块发送的所述下行数据对应的所述下行 控制信道的信道资源参数;
所述接收模块具体用于按如下方式使用所述确定模块确定的所述可能使 用的标识信息检测所述下行数据对应的所述物理上行控制信道: 在所述信道资 源获取模块获取的所述一个信道资源或一组信道资源的所述信息对应的所述一 个信道资源或所述一组信道资源上, 以及在所述信道资源获取模块获取的所述 信道资源参数对应的所述物理上行控制的信道资源上, 使用所述确定模块确定 的所述可能使用的标识信息检测所述下行数据对应的物理上行控制信道。
42、 如权利要求 40或 41所述的网络设备, 其特征在于,
所述接收模块还用于, 通过接收无线资源控制 RRC信令接收所述物理上 行控制信道的所述一个信道资源或一组信道资源的所述信息; 所述信道资源获 取模块具体用于,通过所述接收模块接收的所述 RRC信令获取所述物理上行控 制信道的所述一个信道资源或一组信道资源的所述信息; 或者
所述网络设备还包括存储模块, 所述存储模块用于存储所述接收模块接收 的所述一个信道资源或一组信道资源的所述信息; 所述信道资源获取模块具体 用于从所述存储模块获取所述一个信道资源或一组信道资源的所述信息。
PCT/CN2013/076155 2012-08-17 2013-05-23 上行控制信息的发送方法和装置 WO2014026494A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380000527.8A CN103748821B (zh) 2012-08-17 2013-05-23 上行控制信息的发送方法和装置
EP13829892.2A EP2874339B1 (en) 2012-08-17 2013-05-23 Method and device for transmitting uplink control information
US14/617,425 US9807742B2 (en) 2012-08-17 2015-02-09 Method and device for transmitting uplink control information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/080309 WO2014026381A1 (zh) 2012-08-17 2012-08-17 上行控制信息的发送方法和装置
CNPCT/CN2012/080309 2012-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/617,425 Continuation US9807742B2 (en) 2012-08-17 2015-02-09 Method and device for transmitting uplink control information

Publications (1)

Publication Number Publication Date
WO2014026494A1 true WO2014026494A1 (zh) 2014-02-20

Family

ID=50101218

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/080309 WO2014026381A1 (zh) 2012-08-17 2012-08-17 上行控制信息的发送方法和装置
PCT/CN2013/076155 WO2014026494A1 (zh) 2012-08-17 2013-05-23 上行控制信息的发送方法和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080309 WO2014026381A1 (zh) 2012-08-17 2012-08-17 上行控制信息的发送方法和装置

Country Status (4)

Country Link
US (1) US9807742B2 (zh)
EP (1) EP2874339B1 (zh)
CN (1) CN104471999B (zh)
WO (2) WO2014026381A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3383101B1 (en) * 2013-04-19 2019-10-30 LG Electronics Inc. Power control method and apparatus in wireless access system
US9537612B2 (en) * 2013-12-09 2017-01-03 Apple Inc. Restrictions on transmissions of control plane data with carrier aggregation
CN105636222B (zh) 2014-11-06 2019-04-02 电信科学技术研究院 一种数据信道调度方法、装置及系统
US11818717B2 (en) * 2014-12-31 2023-11-14 Texas Instruments Incorporated Method and apparatus for uplink control signaling with massive Carrier Aggregation
US9503990B2 (en) 2015-01-30 2016-11-22 Innovative Technology Lab Co., Ltd. Apparatus and method for performing uplink power control in wireless communication system supporting carrier aggregation
WO2016204811A1 (en) * 2015-06-17 2016-12-22 Intel IP Corporation Ack/nack signals for next generation lte devices and systems
WO2018081985A1 (zh) * 2016-11-03 2018-05-11 华为技术有限公司 数据传输方法、网络设备及终端设备
CN113726492A (zh) * 2017-02-04 2021-11-30 华为技术有限公司 终端、网络设备和通信方法
US11575485B2 (en) 2018-01-05 2023-02-07 Nec Corporation Method and devices for uplink signal transmitting and receiving in a wireless communication system
CN110166214B (zh) * 2018-02-13 2020-08-21 华为技术有限公司 传输反馈信息的方法和通信设备
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
CN113572590B (zh) * 2021-08-17 2024-02-02 杭州红岭通信息科技有限公司 一种pucch资源复用及分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989898A (zh) * 2010-11-15 2011-03-23 中兴通讯股份有限公司 应答消息的发送方法和装置
CN102083189A (zh) * 2010-12-27 2011-06-01 中兴通讯股份有限公司 一种物理上行控制信道的功率控制方法及装置
WO2012036534A2 (ko) * 2010-09-19 2012-03-22 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US20120207111A1 (en) * 2011-02-15 2012-08-16 Lg Electronics Inc. Method and apparatus for transmitting channel quality control information in wireless access system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9053181B2 (en) * 2003-11-03 2015-06-09 James W. Wieder Adaptive personalized playback or presentation using count
CN101296207B (zh) * 2007-04-28 2011-08-10 华为技术有限公司 控制信令的传输方法、网络侧设备以及终端
RU2558733C2 (ru) * 2009-11-19 2015-08-10 Интердиджитал Пэйтент Холдингз, Инк. Активация/деактивация компонентных несущих в системах с несколькими несущими
JP5149348B2 (ja) * 2010-04-05 2013-02-20 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動局装置
CN101873602B (zh) * 2010-05-31 2013-04-17 新邮通信设备有限公司 Lte系统中物理上行控制信道的干扰抑制方法
WO2011162521A2 (ko) * 2010-06-21 2011-12-29 엘지전자 주식회사 다중 반송파 시스템에서 상향링크 제어 채널 전송 전력 제어 방법 및 이러한 방법을 이용하는 단말
JP4878651B1 (ja) * 2010-09-17 2012-02-15 シャープ株式会社 移動局装置、通信システム、通信方法および集積回路
CN101958777B (zh) 2010-09-28 2015-07-22 中兴通讯股份有限公司 正确/错误应答消息发送的处理方法及装置
US9155083B2 (en) 2010-10-12 2015-10-06 Lg Electronics Inc. Method and device for transmitting control information in a wireless communication system
KR101899820B1 (ko) * 2010-11-11 2018-11-08 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어정보 송수신 방법 및 장치
WO2012067430A2 (ko) * 2010-11-16 2012-05-24 엘지전자 주식회사 제어 정보를 제공하는 방법 및 이를 위한 장치
KR101867311B1 (ko) * 2010-12-21 2018-07-19 주식회사 골드피크이노베이션즈 Ack/nack 자원 할당 방법 및 장치와 이를 이용한 ack/nack 신호 전송 방법
CN102142941B (zh) 2011-04-01 2016-12-07 中兴通讯股份有限公司 一种时分双工系统中应答消息的发送方法及系统
KR102263020B1 (ko) * 2011-09-30 2021-06-09 인터디지탈 패튼 홀딩스, 인크 무선 통신의 다중점 송신
CN102355733B (zh) * 2011-09-30 2017-09-26 中兴通讯股份有限公司 一种物理上行控制信道的发送方法和用户设备
US9723592B2 (en) * 2011-10-13 2017-08-01 Lg Electronics Inc. Method and user equipment for transmitting uplink signal, and method and evolved node B for receiving uplink signal
CN102412883B (zh) * 2011-11-04 2017-07-07 中兴通讯股份有限公司 上行控制信息的发送方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036534A2 (ko) * 2010-09-19 2012-03-22 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
CN101989898A (zh) * 2010-11-15 2011-03-23 中兴通讯股份有限公司 应答消息的发送方法和装置
CN102083189A (zh) * 2010-12-27 2011-06-01 中兴通讯股份有限公司 一种物理上行控制信道的功率控制方法及装置
US20120207111A1 (en) * 2011-02-15 2012-08-16 Lg Electronics Inc. Method and apparatus for transmitting channel quality control information in wireless access system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2874339A4 *

Also Published As

Publication number Publication date
WO2014026381A1 (zh) 2014-02-20
EP2874339B1 (en) 2018-06-27
EP2874339A1 (en) 2015-05-20
CN104471999B (zh) 2018-12-14
US20150156768A1 (en) 2015-06-04
EP2874339A4 (en) 2015-07-01
US9807742B2 (en) 2017-10-31
CN104471999A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
US11804939B2 (en) System and method for sidelink feedback
JP6697698B2 (ja) 基地局装置、リソース割当方法および集積回路
WO2014026494A1 (zh) 上行控制信息的发送方法和装置
CN107736064B (zh) 用于在终端之间发送信号的方法及其设备
US9578628B2 (en) PUCCH resource configuration method, transmission method, device and system
JP6621758B2 (ja) ユーザ装置、フィードバック制御方法、及び再送制御方法
US8548483B2 (en) Feedback mapping for D2D control signals
CN111092698B (zh) 无线通信系统中的方法和节点
KR20200015284A (ko) 무선 통신 시스템에서 채널 점유 시간 지시 방법 및 장치
JP6833166B2 (ja) 複数キャリアについてのpusch上のharqの実装
US20150110027A1 (en) Method for transceiving data in wireless communication system, and apparatus therefor
EP2297893A2 (en) Selecting between normal and virtual dual layer ack/nack
WO2013000411A1 (zh) 确定控制信道资源的方法和用户设备
WO2014119865A1 (ko) 무선 통신 시스템에서 하향링크 제어 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
KR20200015513A (ko) 단말 및 통신 방법
US20140086113A1 (en) Method and apparatus for transmitting and receiving control channel in dynamic time division duplex system
WO2018103750A1 (zh) 一种信息传输方法及其网元
JP2022530508A (ja) 送受信処理を実行するユーザ装置及び基地局
WO2014067137A1 (zh) 确定控制信道资源的方法和用户设备
US20230422275A1 (en) Method and device for supporting multicast transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013829892

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE