WO2014025496A1 - Electromagnetic heating of cnt and cnt based derivatives dispersions and solutions or cnt and cnt based derivatives containing coatings or metals for oil and gas equipment for remediation or prevention of solids formation in wellbores - Google Patents
Electromagnetic heating of cnt and cnt based derivatives dispersions and solutions or cnt and cnt based derivatives containing coatings or metals for oil and gas equipment for remediation or prevention of solids formation in wellbores Download PDFInfo
- Publication number
- WO2014025496A1 WO2014025496A1 PCT/US2013/050432 US2013050432W WO2014025496A1 WO 2014025496 A1 WO2014025496 A1 WO 2014025496A1 US 2013050432 W US2013050432 W US 2013050432W WO 2014025496 A1 WO2014025496 A1 WO 2014025496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cnt
- pipe
- based derivatives
- solids
- electromagnetic energy
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 22
- 238000010438 heat treatment Methods 0.000 title claims abstract description 11
- 238000000576 coating method Methods 0.000 title claims description 4
- 230000015572 biosynthetic process Effects 0.000 title abstract description 8
- 229910052751 metal Inorganic materials 0.000 title description 3
- 239000002184 metal Substances 0.000 title description 3
- 150000002739 metals Chemical class 0.000 title description 3
- 239000006185 dispersion Substances 0.000 title description 2
- 230000002265 prevention Effects 0.000 title description 2
- 238000005067 remediation Methods 0.000 title description 2
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 41
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000725 suspension Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 8
- 238000005086 pumping Methods 0.000 claims abstract description 5
- 150000004677 hydrates Chemical class 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000005755 formation reaction Methods 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- -1 asphaltenes Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/04—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
Definitions
- This disclosure relates generally to the field of fusible solids removal from pipes used to produce hydrocarbons from subsurface reservoirs. More specifically, the invention relates to compositions of materials and methods of activating such materials to facilitate removal of heat sensitive solids containing hydrates, wax, paraffins, asphaltenes etc
- Thermodynamic conditions favoring solids formation are often found in pipelines. This is highly undesirable because the clathrate crystals might agglomerate and plug the pipeline or flowline and cause flow assurance failure and damage valves and instrumentation. The results can range from flow reduction to equipment damage. Hydrates may be formed in deepwater applications specifically in a tieback (a line that connects a producing well having a sea floor disposed outlet to a central collection and/or processing facility). Currently, to remove a hydrate plug, pressure reductions / pumping methanol is attempted to dissolve the plug, however such method has only shown limited success.
- solids such as asphaltenes, waxes and other paraffins may deposit within tubular components of wellbores during production of hydrocarbons from subsurface reservoirs. Such solids may also be deposited in pipelines if temperature and pressure conditions favor such deposition. [0004] What is needed is a method and system to enable relatively easy removal of solids if and when formed in such subsea or buried onshore lines or wellbores
- One aspect is a method for heating and/or removing and/or preventing fusible solids in a subsea pipe or wellbore which includes pumping a solution or suspension containing carbon nanotubes into the pipe or wellbore to a position proximate the solids and applying electromagnetic energy or electric current at a selected frequency to the pipe or wellbore proximatethe solution.
- the pipe or wellbore tubular itself may be pre- coated or manufactured with with carbon nanotubes (CNT) and CNT based derivatives containing material and exposed to radio frequency electromagnetic energy upon formation of solids threin.
- CNT carbon nanotubes
- FIG. 1 shows an example electromagnetic energy generating instrument in a wellbore.
- carbon nanotubes (CNT) and/or CNT based derivatives may be introduced into solutions or liquid suspensions, pumped into a pipe having hydrates and then heating the CNT and/or CNT based derivatives ("collectively "CNT") in the solution or suspension as needed when the CNT solution or suspension comes into contact with hydrates or surfaces where hydrates adhere, for example, in deepwater flow lines or tiebacks.
- CNT CNT based derivatives
- a concentration of the carbon nanotubes and/or CNT based derivatives in the solution or suspension may be in the range of 10 milligrams per liter to 90 % by weight.
- the solution/suspension of CNT may be pumped into a line with a remotely operated vehicle (ROV) or pre engineered subsea system and heated remotely by applying selected frequency or frequencies electromagnetic energy to the part of the line having the hydrates formed therein.
- Example solutions may include radio frequency (RF) absorption enhancers (e.g., CNT) added to a salt water solution such as sea water, solutions containing salt water, and salt water mixtures prior to applying electromagnetic energy to enhance the effects of the electromagnetic energy on the salt water, e.g., enhanced heating.
- RF absorption enhancers may be particles made from, for example, RF absorbing materials that absorb one or more frequencies of an electromagnetic signal substantially more than other materials, e.g., the CNT.
- the electromagnetic energy may be applied, for example, as a 13.56 MHz RF signal, which is expected to be effective to heat RF absorbing carbon molecules and compounds. RF absorption enhancers using these RF absorbing particles are also expected to be effective at slightly higher frequencies, such as those having a frequency on the order of the second or third harmonics of 13.56 MHz.
- the electromagnetic energy may be applied by having suitable equipment on an ROV, or as will be shown with reference to FIG. 1, on a wireline conveyed instrument within a wellbore casing.
- the selected frequency is not limited to the foregoing example of 13.56 MHz and may extend into the microwave range, e.g., several GHz or more.
- coatings to be applied to the pipe surfaces or added directly to the surface of the metals which form the pipe, CNT could be included in the coatings or bonded to the materials' surface and heated in the same manner.
- solids consisting of asphaltenes, waxes and/or other paraffins may be deposited in pipelines or wellbore tubular (e.g., casing or production tubing) as a result of producing hydrocarbons from subsurface reservoirs depending on pressure and temperature conditions within the wellbore tubular. The above described method may be used to equal effect on fusing and removal of such solids from wellbore tubulars.
- FIG. 1 shows an example electromagnetic energy generating instrument disposed in a wellbore to perform example procedures such as those described hereinabove.
- the instrument is illustrated generally at 100 during the operation of the instrument 100 in a wellbore 125 drilled through subsurface formations 126.
- the instrument 100 may be connected to a wire line 101 which is stored on a wire line truck 102 used to reel in and reel out the wire line 101 as is known.
- the instrument 100 may be initially positioned within a lubricator 103 on the top of a wellhead 104 and the instrument 100 is lowered on the wire line 101 to the position of interest within a well casing 110.
- the wire line truck 102 has an associated generator 111 which is connected to a power control unit (PCU) 112 which provides the necessary power to the wire line truck 102 and which, in turn, provides the proper power to the wire line 101 and to the instrument 100.
- the well casing 110 may include perforations 131 proximate a producing formation and a plug 130 at the bottom thereof.
- the instrument 100 may be disposed in a pressure resistant housing 132, and circuits shown generally at 114 may generate electromagnetic energy at the desired frequency to heat the CNTs. Electromagnetic energy may be radiated by transmitter coils 114A in the instrument 100. In other examples, the coils 114A may be substituted by electrodes (also shown at 114) so that electric current at a selected frequency may be passed through the CNTs to heat them in a manner similar to imparting electromagnetic energy.
- a pump P may be used to pump mixtures containing CNTs as explained above into the wellbore casing 110 so that areas therein requiring heating may be heated according to the example methods described above.
- the example shown in FIG. 1 is only one possible method for conveying an electromagnetic energy generating instrument to places in a pipe or wellbore requiring heating according to the techniques described above. Accordingly, the present disclosure is not limited to wireline conveyance within wellbores, but may extend to any form of conveyance and to any pipe or conduit that may require heating as explained herein.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
A method for heating / removing and/or preventing solids in onshore or subsea pipe or wellbore tubular includes pumping a solution or suspension containing carbon nanotubes (CNT) and/or CNT based derivatives into the pipe or wellbore to a position proximate the solids and applying electromagnetic energy or electric current at one or more selected frquencies to the pipe proximate the solution. The pipe or wellbore tubular itself may be pre-coated with carbon nanotube containing material and exposed to radio frequency energy upon formation of solids therein.
Description
ELECTROMAGNETIC HEATING OF CNT AND CNT BASED
DERIVATIVES DISPERSIONS AND SOLUTIONS OR CNT AND CNT BASED DERIVATIVES CONTAINING COATINGS OR METALS FOR OIL AND GAS EQUIPMENT FOR REMEDIATION OR PREVENTION OF SOLIDS FORMATION IN WELLBORES
Background
[0001] This disclosure relates generally to the field of fusible solids removal from pipes used to produce hydrocarbons from subsurface reservoirs. More specifically, the invention relates to compositions of materials and methods of activating such materials to facilitate removal of heat sensitive solids containing hydrates, wax, paraffins, asphaltenes etc
[0002] Thermodynamic conditions favoring solids formation, e.g., hydrate formation, are often found in pipelines. This is highly undesirable because the clathrate crystals might agglomerate and plug the pipeline or flowline and cause flow assurance failure and damage valves and instrumentation. The results can range from flow reduction to equipment damage. Hydrates may be formed in deepwater applications specifically in a tieback (a line that connects a producing well having a sea floor disposed outlet to a central collection and/or processing facility). Currently, to remove a hydrate plug, pressure reductions / pumping methanol is attempted to dissolve the plug, however such method has only shown limited success. Other known techniques include heating a solution of salts on the surface and pumping them down the line, but in long tiebacks the solutions cools too quickly and cannot be reheated. There is currently no known convenient way to heat up such lines and heat / melt / remove the hydrates once a hydrate plug is formed.
[0003] Similarly, solids such as asphaltenes, waxes and other paraffins may deposit within tubular components of wellbores during production of hydrocarbons from subsurface reservoirs. Such solids may also be deposited in pipelines if temperature and pressure conditions favor such deposition.
[0004] What is needed is a method and system to enable relatively easy removal of solids if and when formed in such subsea or buried onshore lines or wellbores
Summary
[0005] One aspect is a method for heating and/or removing and/or preventing fusible solids in a subsea pipe or wellbore which includes pumping a solution or suspension containing carbon nanotubes into the pipe or wellbore to a position proximate the solids and applying electromagnetic energy or electric current at a selected frequency to the pipe or wellbore proximatethe solution. The pipe or wellbore tubular itself may be pre- coated or manufactured with with carbon nanotubes (CNT) and CNT based derivatives containing material and exposed to radio frequency electromagnetic energy upon formation of solids threin.
[0006] Other aspects and advantages will be apparent from the description and claims which follow.
Brief Description of the Drawings
[0007] FIG. 1 shows an example electromagnetic energy generating instrument in a wellbore.
Detailed Description
[0008] In one example, carbon nanotubes (CNT) and/or CNT based derivatives may be introduced into solutions or liquid suspensions, pumped into a pipe having hydrates and then heating the CNT and/or CNT based derivatives ("collectively "CNT") in the solution or suspension as needed when the CNT solution or suspension comes into contact with hydrates or surfaces where hydrates adhere, for example, in deepwater flow lines or tiebacks. In some examples, a concentration of the carbon nanotubes and/or CNT based derivatives in the solution or suspension may be in the range of 10 milligrams per liter to 90 % by weight.
[0009] The solution/suspension of CNT may be pumped into a line with a remotely operated vehicle (ROV) or pre engineered subsea system and heated remotely by applying selected frequency or frequencies electromagnetic energy to the part of the line having the hydrates formed therein. Example solutions may include radio frequency (RF) absorption enhancers (e.g., CNT) added to a salt water solution such as sea water, solutions containing salt water, and salt water mixtures prior to applying electromagnetic energy to enhance the effects of the electromagnetic energy on the salt water, e.g., enhanced heating. The absorption enhancers may be particles made from, for example, RF absorbing materials that absorb one or more frequencies of an electromagnetic signal substantially more than other materials, e.g., the CNT. This may permit the electromagnetic signal to heat salt water (or any solution containing salt water or salt water mixture) containing electromagnetic energy absorbing enhancers, e.g., the CNT , substantially more than it would salt water (or salt water solution or salt water mixture) that does not contain additional electromagnetic energy absorption enhancers.
[0010] The electromagnetic energy may be applied, for example, as a 13.56 MHz RF signal, which is expected to be effective to heat RF absorbing carbon molecules and compounds. RF absorption enhancers using these RF absorbing particles are also expected to be effective at slightly higher frequencies, such as those having a frequency on the order of the second or third harmonics of 13.56 MHz. The electromagnetic energy may be applied by having suitable equipment on an ROV, or as will be shown with reference to FIG. 1, on a wireline conveyed instrument within a wellbore casing. The selected frequency is not limited to the foregoing example of 13.56 MHz and may extend into the microwave range, e.g., several GHz or more.
[0011] In test experiments, a 250 mg / L suspension of carbon nanotubes in water got as hot as 45°C within 25 seconds when treated with RF electromagnetic energy.
[0012] In other examples, coatings to be applied to the pipe surfaces or added directly to the surface of the metals which form the pipe, CNT could be included in the coatings or bonded to the materials' surface and heated in the same manner.
[0013] In yet other examples, solids consisting of asphaltenes, waxes and/or other paraffins may be deposited in pipelines or wellbore tubular (e.g., casing or production tubing) as a result of producing hydrocarbons from subsurface reservoirs depending on pressure and temperature conditions within the wellbore tubular. The above described method may be used to equal effect on fusing and removal of such solids from wellbore tubulars.
[0014] FIG. 1 shows an example electromagnetic energy generating instrument disposed in a wellbore to perform example procedures such as those described hereinabove. The instrument is illustrated generally at 100 during the operation of the instrument 100 in a wellbore 125 drilled through subsurface formations 126.
[0015] The instrument 100 may be connected to a wire line 101 which is stored on a wire line truck 102 used to reel in and reel out the wire line 101 as is known. The instrument 100 may be initially positioned within a lubricator 103 on the top of a wellhead 104 and the instrument 100 is lowered on the wire line 101 to the position of interest within a well casing 110. The wire line truck 102 has an associated generator 111 which is connected to a power control unit (PCU) 112 which provides the necessary power to the wire line truck 102 and which, in turn, provides the proper power to the wire line 101 and to the instrument 100. The well casing 110 may include perforations 131 proximate a producing formation and a plug 130 at the bottom thereof.
[0016] The instrument 100 may be disposed in a pressure resistant housing 132, and circuits shown generally at 114 may generate electromagnetic energy at the desired frequency to heat the CNTs. Electromagnetic energy may be radiated by transmitter coils 114A in the instrument 100. In other examples, the coils 114A may be substituted by electrodes (also shown at 114) so that electric current at a selected frequency may be passed through the CNTs to heat them in a manner similar to imparting electromagnetic energy.
[0017] A pump P may be used to pump mixtures containing CNTs as explained above into the wellbore casing 110 so that areas therein requiring heating may be heated according to the example methods described above.
[0018] The example shown in FIG. 1 is only one possible method for conveying an electromagnetic energy generating instrument to places in a pipe or wellbore requiring heating according to the techniques described above. Accordingly, the present disclosure is not limited to wireline conveyance within wellbores, but may extend to any form of conveyance and to any pipe or conduit that may require heating as explained herein.
[0019] While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Claims
1. A method for heating and/or removing and/or preventing solids in a pipe or wellbore tubular, comprising:
pumping a solution or suspension containing at least one of carbon nanotubes(CNT) and CNT based derivatives into the pipe or wellbore tubular to a position proximate the solids; and
applying at least one of electromagnetic energy and electric current at one or more selected frequencies to the pipe or wellbore tubular proximate the solution.
2. The method of claim 1 wherein a frequency of the at least one of electromagnetic energy and electric current is 13.56 Megahertz.
3. The method of claim 1 wherein a concentration of the carbon nanotubes and/or CNT based derivatives in the solution or suspension is in the range of 10 milligrams per liter to 90 % by weight
4. The method of claim 1 wherein the solids comprise at least one of hydrates, wax, asphaltenes and paraffins.
5. A method for fusing solids in a subsea pipe or a wellbore tubular, comprising:
coating a surface of the pipe or wellbore tubular with a material having carbon nanotubes (CNT) and/or CNT based derivatives suspended therein; and
applying at least one of electromagnetic energy and electric current at one or more selected frequencies to a portion of the pipe or wellbore tubular having solids therein.
6. The method of claim 5 wherein a frequency of the at least one of electromagnetic energy and electric current is 13.56 Megahertz.
7. The method of claim 5 wherein the material comprises carbon nanotubes (CNT) and/or CNT based derivatives bonded directly to a surface of the pipe.
8. The method of claim 5 wherein the solids comprise at least one of hydrates, wax, asphaltenes and paraffins.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261679823P | 2012-08-06 | 2012-08-06 | |
US61/679,823 | 2012-08-06 | ||
US201261705357P | 2012-09-25 | 2012-09-25 | |
US61/705,357 | 2012-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014025496A1 true WO2014025496A1 (en) | 2014-02-13 |
Family
ID=50024344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/050432 WO2014025496A1 (en) | 2012-08-06 | 2013-07-15 | Electromagnetic heating of cnt and cnt based derivatives dispersions and solutions or cnt and cnt based derivatives containing coatings or metals for oil and gas equipment for remediation or prevention of solids formation in wellbores |
Country Status (2)
Country | Link |
---|---|
US (1) | US20140034318A1 (en) |
WO (1) | WO2014025496A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115949381B (en) * | 2023-02-01 | 2024-06-04 | 西南石油大学 | Method and experimental device for improving shale oil reservoir recovery ratio by air injection and microwave cooperation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090032259A1 (en) * | 2007-05-08 | 2009-02-05 | Baker Hughes Incorporated | Downhole applications of composites having aligned nanotubes for heat transport |
US20090260818A1 (en) * | 2008-04-16 | 2009-10-22 | Sylvie Daniel | Microwave-Based Downhole Activation Method For Wellbore Consolidation Applications |
US20110003907A1 (en) * | 2007-02-27 | 2011-01-06 | Samsung Electronics Co., Ltd. | Dispersant for carbon nanotubes and carbon nanotube composition comprising the same |
WO2012057910A2 (en) * | 2010-10-27 | 2012-05-03 | Exxonmobil Upstream Research Company | Methods of using nano-particles in wellbore operations |
-
2013
- 2013-07-15 US US13/941,640 patent/US20140034318A1/en not_active Abandoned
- 2013-07-15 WO PCT/US2013/050432 patent/WO2014025496A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110003907A1 (en) * | 2007-02-27 | 2011-01-06 | Samsung Electronics Co., Ltd. | Dispersant for carbon nanotubes and carbon nanotube composition comprising the same |
US20090032259A1 (en) * | 2007-05-08 | 2009-02-05 | Baker Hughes Incorporated | Downhole applications of composites having aligned nanotubes for heat transport |
US20090260818A1 (en) * | 2008-04-16 | 2009-10-22 | Sylvie Daniel | Microwave-Based Downhole Activation Method For Wellbore Consolidation Applications |
WO2012057910A2 (en) * | 2010-10-27 | 2012-05-03 | Exxonmobil Upstream Research Company | Methods of using nano-particles in wellbore operations |
Also Published As
Publication number | Publication date |
---|---|
US20140034318A1 (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2014410768B2 (en) | Downhole resin coatings comprising a carbon nanomaterial and methods associated therewith | |
US20190323311A1 (en) | Method to Mitigate a Stuck Pipe During Drilling Operations | |
WO2014209446A1 (en) | In-situ downhole heating for a treatment in a well | |
CA2955934A1 (en) | Ferrofluids absorbed on graphene/graphene oxide for eor | |
WO2012050699A2 (en) | Control system for extraction of hydrocarbons from underground deposits | |
US20080067129A1 (en) | Inhibition of paraffin wall deposition in oil lines | |
NO20181506A1 (en) | System and method for producing methane from a methane hydrate formation | |
US20130098625A1 (en) | Systems and Methods For Inductive Subsea Hydrocarbon Pipeline Heating For Pipeline Remediation | |
US20170247608A1 (en) | Proppant of an electrically-conductive nano material | |
CA3094071A1 (en) | Using electromagnetic waves to remove near wellbore damages in a hydrocarbon reservoir | |
EP3601722B1 (en) | Mitigating corrosion of carbon steel tubing and surface scaling deposition in oilfield applications | |
WO2017144935A1 (en) | Devices and methods for generating radially propogating ultrasonic waves and their use | |
US20140034318A1 (en) | Electromagnetic heating of cnt and cnt based derivatives dispersions and solutions or cnt and cnt based derivatives containing coatings or metals for oil and gas equipment for remediation or prevention of solids formation in wellbores | |
US9556377B2 (en) | Treatment fluids containing a hydrophobically modified chelating agent and methods for use thereof | |
Ali et al. | Phenomena, factors of wax deposition and its management strategies | |
AU2011320622B2 (en) | Hydrate deposit inhibition with surface-chemical combination | |
Brand | Results from acid stimulation in Lloydminster SAGD applications | |
Heath et al. | Non-chemical methods for downhole control of carbonate and sulphate scales-an alternative approach to scale management? | |
Borden | The challenges of processing and transporting heavy crude | |
Piemontese et al. | Successful placement of an advancing sand and fines control chemical as a remedial sand control, using subsea flow lines from an FPSO | |
Nmegbu et al. | Subsea Technology: a Wholistic View on Existing Technologies and Operations | |
Lesin et al. | Study on application of colloidal particles of metal oxides to increase the oil recovery factor | |
Pedroso et al. | Subsea Systems Innovations and the Use of State of Art Subsea Technologies Help the Flow Assurance of Heavy Oil Production in Ultra-Deep Waters | |
Joshi et al. | Mitigating Flow Assurance Challenges Using Subsea Meters on Independence Hub | |
US20160304771A1 (en) | Hydrophobizing agents comprising an oligomeric polyamine and methods for coating particulates therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13827588 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13827588 Country of ref document: EP Kind code of ref document: A1 |