WO2014024960A1 - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
WO2014024960A1
WO2014024960A1 PCT/JP2013/071486 JP2013071486W WO2014024960A1 WO 2014024960 A1 WO2014024960 A1 WO 2014024960A1 JP 2013071486 W JP2013071486 W JP 2013071486W WO 2014024960 A1 WO2014024960 A1 WO 2014024960A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
intermediate layer
content
current collecting
fuel electrode
Prior art date
Application number
PCT/JP2013/071486
Other languages
French (fr)
Japanese (ja)
Inventor
拓 岡本
崇 龍
吉田 俊広
誠 大森
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2013549662A priority Critical patent/JP5449636B1/en
Publication of WO2014024960A1 publication Critical patent/WO2014024960A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • H01M4/8642Gradient in composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell.
  • a solid oxide fuel cell including a fuel electrode composed of a fuel electrode current collecting layer containing Ni and Y 2 O 3 and a fuel electrode active layer containing Ni and YSZ is widely known (patent) Reference 1).
  • an insulating dense layer may be formed between the fuel electrode current collecting layer and the fuel electrode active layer.
  • the supply of fuel gas from the anode current collecting layer to the anode active layer is hindered, and the electrical resistance between the anode current collecting layer and the anode active layer is increased. Resulting in.
  • the present invention has been made in view of this problem, and provides a solid oxide fuel cell capable of improving fuel gas permeability and conductivity between an anode current collecting layer and an anode active layer. With the goal. (Means for solving the problem)
  • the solid oxide fuel cell according to the present invention is disposed on a fuel electrode current collecting layer containing Ni and Y 2 O 3 , and on the fuel electrode current collecting layer, and contains Ni and Y-containing oxides and Y 4 Zr 3 O 12.
  • a porous intermediate layer including: a fuel electrode active layer disposed on the intermediate layer and including a Y-containing oxide having Ni and oxygen ion conductivity; and a solid electrolyte layer disposed on the fuel electrode active layer; And an air electrode disposed on the opposite side of the fuel electrode active layer with the solid electrolyte layer interposed therebetween.
  • the anode current collecting layer, the intermediate layer, and the anode active layer are co-fired.
  • the first content of Y in the solid phase of the intermediate layer is lower than the second content of Y in the solid phase of the anode current collecting layer, and is less than the third content of Y in the solid phase of the anode active layer. Is also expensive.
  • the intermediate layer has a thickness of 194.1 ⁇ m or less.
  • the reduced porosity of the intermediate layer is 48.1% or less. (The invention's effect) ADVANTAGE OF THE INVENTION According to this invention, the solid oxide fuel cell which can improve the fuel gas permeability and electroconductivity between a fuel electrode current collection layer and a fuel electrode active layer can be provided.
  • FIG. 5 A perspective view showing a configuration of a solid oxide fuel cell II-II sectional view of FIG. Photograph showing concentration distribution data of Zr, Y, Ni obtained by mapping analysis by EPMA in a conventional solid oxide fuel cell Sample No. after reduction 4 SEM photo XRD pattern of the intermediate layer related to the oxidant of sample No. 5 Thermal expansion curves of the anode current collecting layer, intermediate layer, and anode active layer related to the oxidant of sample No. 5
  • FIG. 1 is a perspective view showing a configuration of a solid oxide fuel cell 100.
  • a solid oxide fuel cell (hereinafter abbreviated as “fuel cell”) 100 includes a support substrate 10, a plurality of solid oxide fuel cell (hereinafter abbreviated as “cell”) cells 20, and a plurality of Interconnector 30.
  • the fuel cell 10 is a so-called horizontal stripe type fuel cell in which a plurality of cells 20 are electrically connected in series via a plurality of interconnectors 30 on a support substrate 10.
  • the support substrate 10 is a flat plate-like porous member.
  • the thickness of the support substrate 10 is about 1 mm to 10 mm.
  • the surface of the support substrate 10 is covered with a solid electrolyte layer 2 described later except for a region where the plurality of cells 20 are arranged.
  • a flow path 10a for flowing hydrogen gas during power generation is formed inside the support substrate 10.
  • the flow path 10 a extends along the longitudinal direction of the support substrate 10.
  • the support substrate 10 has electrical insulation in order to suppress electrical shorts between the plurality of cells 20.
  • the support substrate 10 includes Ni (nickel) or Ni oxide (NiO), a rare earth element oxide, and MgO.
  • the rare earth element constituting the rare earth element oxide include Y (yttrium), La (lanthanum), Yb (ytterbium), and the like.
  • the support substrate 10 may contain MgO—Y 2 O 3 (magnesia-yttria) as a main component. When the support substrate 10 contains NiO, NiO may be reduced to Ni by hydrogen gas during power generation.
  • containing as a main component may mean containing 50% by weight or more of the component, and containing 60% by weight or more, 80% by weight or more, or 90% by weight or more. It may be. Further, “contained as a main component” is a concept encompassing the case of consisting only of the component.
  • the plurality of cells 20 are arranged in the longitudinal direction on the support substrate 10. The plurality of cells 20 are electrically connected in series by a plurality of interconnectors 30. The configuration of the cell 20 will be described later.
  • the plurality of interconnectors 30 are provided corresponding to the plurality of cells 20.
  • the plurality of interconnectors 30 are made of a material having conductivity, reduction resistance, and oxidation resistance.
  • An example of such a material is a chromite material.
  • the chromite-based material is a complex oxide also called a chromite-based perovskite oxide.
  • the composition of the chromite material can be expressed by the following general formula (1).
  • Ln 1-x A x Cr 1-yz B y O 3 (1)
  • Ln is at least one element selected from the group consisting of Y and lanthanoids (La, Ce, Eu, Sm, Yb, Gd, etc.)
  • A is Ca, Sr and Ba
  • 0.025 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.22, and 0 ⁇ z ⁇ 0.15 are established.
  • ⁇ Configuration of cell 20> The configuration of the cell 20 will be described with reference to the drawings. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the cell 20 includes a fuel electrode 1, a solid electrolyte layer 2, a barrier layer 3, an air electrode 4, and a current collecting layer 5.
  • the fuel electrode 1 is disposed on the support substrate 10.
  • the anode 1 includes an anode current collecting layer 11, an intermediate layer 12, and an anode active layer 13.
  • the anode current collecting layer 11, the intermediate layer 12, and the anode active layer 13 are co-fired in a stacked state.
  • the anode current collecting layer 11 is disposed on the support substrate 10.
  • the above-described interconnector 30 is disposed on the anode current collecting layer 11.
  • the thickness of the anode current collecting layer 11 can be 50 ⁇ m or more and 500 ⁇ m or less.
  • the anode current collecting layer 11 contains Ni or Ni oxide and Y 2 O 3 as main components. When the anode current collecting layer 11 contains NiO, NiO may be reduced to Ni by hydrogen gas during power generation.
  • the “Y content in the solid phase of the fuel electrode current collecting layer 11 is preferably 20.0 atom% or more and 75.0 atom% or less. Moreover, it is preferable that the porosity of the anode current collecting layer 11 at the time of reduction is 15% or more and 50% or less.
  • the solid phase of the anode current collecting layer 11 does not include carbon, oxygen, and substances (for example, gold, silver, carbon, etc.) deposited on the sample surface during analysis. This is because it is necessary to avoid the influence of carbon and oxygen contained in the resin because the sample is filled with the resin during analysis.
  • the Y content is the average content of the Y component in each layer.
  • the Y content can be obtained, for example, by analysis based on an atomic concentration profile, that is, comparison of characteristic X-ray intensities using EPMA (Electron Probe Micro Micro Analyzer). Specifically, Y concentration distribution data is acquired by performing EPMA analysis along the thickness direction in a cross section parallel to the thickness direction of the cell 20. The Y content can also be analyzed in the same manner by EDS (Energy Dispersive X-ray Spectroscopy: Energy Dispersive X-ray Spectroscopy).
  • the intermediate layer 12 is disposed on the anode current collecting layer 11.
  • the intermediate layer 12 covers the surface of the anode current collecting layer 11 other than the region where the interconnector 30 is disposed, and is located immediately below the anode active layer 13.
  • the thickness of the intermediate layer 12 is preferably 5.8 ⁇ m or more and 194.1 ⁇ m or less.
  • the intermediate layer 12 includes Ni or Ni oxide, a Y-containing oxide, and Y 4 Zr 3 O 12 . When the intermediate layer 12 includes NiO, NiO may be reduced to Ni by hydrogen gas during power generation.
  • the Y-containing oxide include yttria (Y 2 O 3 ) and yttria-stabilized zirconia (8YSZ, 10YSZ, etc.).
  • the intermediate layer 12 may contain ZrO 2 (zirconia).
  • the volume ratio between the Y-containing oxide and Y 4 Zr 3 O 12 can be set to 1: 9 to 9: 1.
  • the Y content in the solid phase of the intermediate layer 12 (an example of the first content)” is lower than the “Y content in the solid phase of the fuel electrode current collecting layer 11”.
  • “Y content in the solid phase of the intermediate layer 12” is higher than “Y content in the solid phase of the fuel electrode active layer 13 (an example of the third content)” described later.
  • the ratio of “Y content in the solid phase of the intermediate layer 12” to “Y content in the solid phase of the anode current collecting layer 11” is 0.10 or more and 0.95 or less. preferable.
  • the ratio of “Y content in the solid phase of the intermediate layer 12” to “Y content in the solid phase of the fuel electrode active layer 13” is preferably 1.79 or more and 14.66 or less.
  • the “Y content in the solid phase of the intermediate layer 12” is preferably 8.06 atom% or more and 60.16 atom% or less.
  • the porosity of the intermediate layer 12 at the time of reduction is preferably 14.3% or more and 48.1% or less.
  • “the thermal expansion coefficient of the intermediate layer 12 (an example of the first thermal expansion coefficient)” is larger than “the thermal expansion coefficient of the anode current collecting layer 11 (an example of the second thermal expansion coefficient)”, and It is smaller than “the thermal expansion coefficient of the fuel electrode active layer 13 (an example of a third thermal expansion coefficient)”.
  • first coefficient difference a value obtained by subtracting “thermal expansion coefficient of the fuel electrode current collecting layer 11” from “thermal expansion coefficient of the intermediate layer 12” (hereinafter referred to as “first coefficient difference”) is “thermal expansion of the fuel electrode active layer 13”. It is preferably smaller than a value obtained by subtracting “thermal expansion coefficient of intermediate layer 12” from “coefficient” (hereinafter referred to as “second coefficient difference”). As described above, when the intermediate layer 12 includes Y 4 Zr 3 O 12 , it is easy to make the first coefficient difference smaller than the second coefficient difference.
  • the interface between the anode current collecting layer 11 and the intermediate layer 12 and the interface between the intermediate layer 12 and the anode active layer 13 are defined based on the concentration distribution of elements (Ni, Y, other components) constituting each layer. can do.
  • the concentration distribution of the constituent elements in the thickness direction can be mapped using EPMA or EDS, and a line in which the concentration rapidly changes can be defined as the interface.
  • the analysis may be performed by enlarging the cross section at a magnification of about 400 times.
  • the thickness of the fuel electrode 1 is large, it is preferable to continuously analyze in a plurality of fields in the thickness direction.
  • the anode active layer 13 is disposed on the intermediate layer 12.
  • the thickness of the anode active layer 13 can be 5 ⁇ m or more and 100 ⁇ m or less.
  • the anode active layer 13 contains Ni or Ni oxide and a Y-containing oxide having oxygen ion conductivity. When the anode active layer 13 contains NiO, NiO may be reduced to Ni by hydrogen gas during power generation. Examples of the Y-containing oxide having oxygen ion conductivity include yttria-stabilized zirconia (8YSZ, 10YSZ, etc.).
  • the “Y content in the solid phase of the fuel electrode active layer 13” is preferably 0.5 atom% or more and 10.0 atom% or less.
  • the porosity of the fuel electrode active layer 13 during reduction is preferably 15% or more and 50% or less.
  • the solid electrolyte layer 2 is disposed on the anode active layer 13.
  • the solid electrolyte layer 2 is preferably co-fired with the anode current collecting layer 11, the intermediate layer 12, the anode active layer 13, and the barrier layer 3.
  • the solid electrolyte layer 2 may contain ZrO 2 as a main component.
  • the solid electrolyte layer 2 can be composed of a zirconia-based material such as yttria-stabilized zirconia such as 3YSZ or 8YSZ or ScSZ (scandia-stabilized zirconia).
  • yttria-stabilized zirconia such as 3YSZ or 8YSZ or ScSZ (scandia-stabilized zirconia).
  • the barrier layer 3 is provided on the solid electrolyte layer 2.
  • the barrier layer 3 is preferably co-fired with the solid electrolyte layer 2.
  • the barrier layer 3 may contain a ceria (CeO 2 ) -based material containing a rare earth element as a main component.
  • the barrier layer 3 can be composed of GDC ((Ce, Gd) O 2 : gadolinium doped ceria), SDC ((Ce, Sm) O 2 : samarium doped ceria) or the like.
  • the air electrode 4 is disposed on the barrier layer 3.
  • the air electrode 4 is disposed on the opposite side of the fuel electrode 1 with the solid electrolyte layer 2 interposed therebetween.
  • the air electrode 4 may contain a lanthanum-containing perovskite complex oxide as a main component.
  • examples of the lanthanum-containing perovskite complex oxide include LSCF (lanthanum strontium cobalt ferrite), lanthanum manganite, lanthanum cobaltite, and lanthanum ferrite.
  • the lanthanum-containing perovskite complex oxide may be doped with strontium, calcium, chromium, cobalt, iron, nickel, aluminum, or the like.
  • the air electrode current collecting layer 5 is disposed on the air electrode 4 of the cell 20, and electrically connects the air electrode 4 of the cell 20 and the fuel electrode 1 of the adjacent cell 20 via the interconnector 30. .
  • the thickness of the current collecting layer 5 can be about 50 to 500 ⁇ m.
  • MgO powder, NiO powder and Y 2 O 3 powder are weighed so as to have a predetermined mixing ratio, and a predetermined amount of pore former (eg, cellulose) or IPA is added to the mixed powder.
  • the mixed raw material powder is obtained by mixing the powder raw material to which the pore former is added with a ball mill and then drying. Subsequently, a uniaxial pressure molding and CIP molding are sequentially performed on the mixed raw material powder to produce a molded body for the support substrate 10.
  • NiO and Y 2 O 3 are weighed and mixed so that Ni: Y 2 O 3 at the time of reduction becomes a predetermined value, and a predetermined amount of pore former (for example, cellulose) is added to the mixed powder.
  • a predetermined amount of pore former for example, cellulose
  • an organic solvent such as terpineol
  • a binder such as polyvinyl bratil
  • a fuel electrode current collecting layer paste is prepared.
  • the Y-containing powder including Y 4 Zr 3 O 12 ) and NiO are weighed and mixed so that the Ni: Y-containing oxide at the time of reduction becomes a predetermined value, and a predetermined amount of pores are formed in the mixed powder.
  • Add ingredients At this time, by adjusting the mixing amount of the Y-containing powder, the Y content is kept lower than that of the anode current collecting layer paste.
  • an organic solvent such as terpineol
  • a binder such as polyvinyl bratil
  • the Y-containing powder and NiO are weighed and mixed so that the Ni: Y-containing oxide at the time of reduction becomes a predetermined value.
  • the mixing amount of the Y-containing powder by adjusting the mixing amount of the Y-containing powder, the Y content is lowered as compared with the intermediate layer paste.
  • the relationship of the anode current collecting layer 11> the intermediate layer 12> the anode active layer 13 can be established.
  • an organic solvent and a binder are mixed with mixed raw material powder obtained by mixing the mixed powder with a ball mill and then drying to prepare a fuel electrode active layer paste.
  • the anode electrode current collector layer paste, the intermediate layer paste, and the anode active layer paste are sequentially screen-printed on both surfaces of the support substrate molded body to produce a laminate of the anode 1. .
  • the thickness of the intermediate layer 12 can be adjusted by repeatedly printing the intermediate layer paste.
  • a solid electrolyte layer paste made of zirconia material and a barrier layer paste made of ceria material are prepared.
  • a solid electrolyte layer paste and a barrier layer paste are sequentially screen-printed on the surface of the fuel electrode stack 1 to produce a co-fired laminate.
  • the laminate for co-firing is co-fired (1-20 hours, 1000-1500 ° C.) to produce a co-fired body.
  • the material of the air electrode 4 is applied on the solid electrolyte layer 2 of the co-fired body, and the material of the air electrode 4 is fired.
  • the fuel cell 100 is completed.
  • a horizontal stripe fuel cell has been described as an example of a solid oxide fuel cell.
  • the embodiment is not limited to a horizontal stripe fuel cell.
  • the present invention is applicable to various types of solid oxide fuel cells such as a vertical stripe type, a flat plate type, and a cylindrical type.
  • the vertically striped fuel cell is formed on a support body that functions as a fuel electrode current collecting layer, one power generation unit formed on the first main surface of the support body, and on the second main surface of the support body.
  • the power generation unit includes a fuel electrode active layer, a solid electrolyte layer, and an air electrode.
  • the cell 20 has the barrier layer 3 between the solid electrolyte layer 2 and the air electrode 4, but the barrier layer 3 may not be provided.
  • Samples No. 1 to No. 53 were produced as follows. First, NiO and Y 2 O 3 were weighed so that Ni: Y 2 O 3 was 40 vol%: 60 vol% during reduction, and 20 wt% cellulose was added externally. Next, the mixed raw material powder obtained by mixing NiO and Y 2 O 3 to which cellulose has been added by a ball mill and then drying is sequentially subjected to 30 MPa uniaxial pressure molding and 100 MPa CIP molding, thereby producing a fuel electrode. A compact of the current collecting layer was produced.
  • the materials shown in Table 1 were weighed so that the ratio of Ni to Y-containing oxide and Y 4 Zr 3 O 12 during reduction was 30 vol% to 40 vol%: 70 vol% to 60 vol%, and the intermediate layer In order to change the porosity, 0 to 20% by weight of cellulose was added as appropriate. Note that the volume ratio of the Y-containing oxide and Y 4 Zr 3 O 12 was appropriately adjusted to 1: 9 to 9: 1.
  • an intermediate layer paste was prepared by mixing terpineol and polyvinyl bratil into the mixed raw material powder obtained by mixing the mixed powder to which the pore former was added with a ball mill and then drying.
  • the materials shown in Table 1 were weighed and mixed so that the ratio of Ni to Y-containing oxide during reduction was 40 vol%: 60 vol%.
  • terpineol and polyvinyl bratil were mixed with the mixed raw material powder obtained by mixing the mixed powder with a ball mill and then drying to prepare a fuel electrode active layer paste.
  • an intermediate layer paste and a fuel electrode active layer paste were sequentially screen-printed on both surfaces of the molded body for the fuel electrode current collecting layer, thereby producing a laminate for the fuel electrode.
  • the intermediate layer paste was not printed, but only the fuel electrode active layer paste was printed.
  • the thickness of the intermediate layer was adjusted to about 5 ⁇ m to about 250 ⁇ m as shown in Table 1 by changing the number of times of printing the intermediate layer paste.
  • the fuel electrode laminate was fired (1500 ° C., 1 hour, air atmosphere) to produce a fuel electrode.
  • the dimensions of this fuel electrode were approximately ⁇ 16 mm and thickness 2 mm.
  • the fuel electrode was surface ground to a diameter of 15 mm and a thickness of 1 mm. At this time, the thickness of the fuel electrode was adjusted by subjecting only one side of the fuel electrode to surface grinding.
  • the surface-ground fuel electrode was subjected to reduction treatment (750 ° C., 2 hours, 100% H 2 atmosphere) to produce Samples No. 1 to No. 53.
  • the interface in the fuel electrode was defined based on a line in which the concentration distribution of Ni, Y, Zr in the thickness direction obtained by EPMA (magnification: 400 times) changes rapidly.
  • EPMA magnification: 400 times
  • the thermal expansion coefficient (an example of the first thermal expansion coefficient) of the intermediate layer is larger than the thermal expansion coefficient (an example of the second thermal expansion coefficient) of the anode current collecting layer, and the anode activity is increased. It is smaller than the thermal expansion coefficient of the layer (an example of a third thermal expansion coefficient). Further, the difference between the thermal expansion coefficient of the intermediate layer and the thermal expansion coefficient of the anode current collecting layer is smaller than the difference between the thermal expansion coefficient of the intermediate layer and the thermal expansion coefficient of the anode active layer. That is, the value of the thermal expansion coefficient of the intermediate layer is closer to the value of the thermal expansion coefficient of the anode current collecting layer than the value of the thermal expansion coefficient of the anode active layer.
  • the Young's modulus tends to be relatively high in the anode current collecting layer formed thicker than the intermediate layer and the anode active layer. Therefore, by making the value of the thermal expansion coefficient of the intermediate layer close to the value of the thermal expansion coefficient of the anode current collecting layer, the stress remaining at the anode current collecting layer / intermediate layer interface can be reduced. As a result, it is possible to suppress the occurrence of cracks and separation at the fuel electrode current collector / intermediate layer interface.
  • the fuel gas permeability and conductivity between the anode current collecting layer and the anode active layer can be improved, which is useful in the fuel cell field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

A solid oxide fuel cell (20) is provided with: a fuel electrode collector layer (11) that contains Ni and Y2O3; a porous intermediate layer (12) that contains Ni, a Y-containing oxide and Y4Zr3O12; and a fuel electrode active layer (13) that contains Ni and a Y-containing oxide that has oxygen ion conductivity. The fuel electrode collector layer, the intermediate layer and the fuel electrode active layer are fired together. The Y content in the solid phase of the intermediate layer (12) is lower than the Y content in the solid phase of the fuel electrode collector layer (11), but higher than the Y content in the solid phase of the fuel electrode active layer (13). The intermediate layer has a thickness of 194.1 μm or less. The intermediate layer has a porosity of 48.1% or less when reduced.

Description

固体酸化物型燃料電池Solid oxide fuel cell
 本発明は、固体酸化物型燃料電池に関する。 The present invention relates to a solid oxide fuel cell.
 従来、NiとYを含む燃料極集電層と、NiとYSZを含む燃料極活性層と、によって構成される燃料極を備える固体酸化物型燃料電池が広く知られている(特許文献1参照)。 Conventionally, a solid oxide fuel cell including a fuel electrode composed of a fuel electrode current collecting layer containing Ni and Y 2 O 3 and a fuel electrode active layer containing Ni and YSZ is widely known (patent) Reference 1).
特開2005-346991号公報JP 2005-346991 A
(発明が解決しようとする課題)
 しかしながら、上述の燃料極の原材料を焼結すると、燃料極集電層と燃料極活性層の間に絶縁性の緻密層が形成される場合がある。このような緻密層が形成されると、燃料極集電層から燃料極活性層への燃料ガスの供給が妨げられるとともに、燃料極集電層と燃料極活性層との間の電気抵抗が増大してしまう。
(Problems to be solved by the invention)
However, when the above-described raw material of the fuel electrode is sintered, an insulating dense layer may be formed between the fuel electrode current collecting layer and the fuel electrode active layer. When such a dense layer is formed, the supply of fuel gas from the anode current collecting layer to the anode active layer is hindered, and the electrical resistance between the anode current collecting layer and the anode active layer is increased. Resulting in.
 本発明は、この問題点に鑑みてなされたものであり、燃料極集電層と燃料極活性層の間における燃料ガス透過性と導電性を向上可能な固体酸化物型燃料電池を提供することを目的とする。
(課題を解決するための手段)
 本発明に係る固体酸化物型燃料電池は、NiとYを含む燃料極集電層と、燃料極集電層上に配置され、NiとY含有酸化物とYZr12を含む多孔質の中間層と、中間層上に配置され、Niと酸素イオン伝導性を有するY含有酸化物を含む燃料極活性層と、燃料極活性層上に配置される固体電解質層と、固体電解質層を挟んで燃料極活性層の反対側に配置される空気極と、を備える。燃料極集電層と中間層と燃料極活性層は、共焼成されている。中間層の固相におけるYの第1含有率は、燃料極集電層の固相におけるYの第2含有率よりも低く、かつ、燃料極活性層の固相におけるYの第3含有率よりも高い。中間層の厚みは、194.1μm以下である。還元された前記中間層の気孔率は、48.1%以下である。
(発明の効果)
 本発明によれば、燃料極集電層と燃料極活性層の間における燃料ガス透過性と導電性を向上可能な固体酸化物型燃料電池を提供することができる。
The present invention has been made in view of this problem, and provides a solid oxide fuel cell capable of improving fuel gas permeability and conductivity between an anode current collecting layer and an anode active layer. With the goal.
(Means for solving the problem)
The solid oxide fuel cell according to the present invention is disposed on a fuel electrode current collecting layer containing Ni and Y 2 O 3 , and on the fuel electrode current collecting layer, and contains Ni and Y-containing oxides and Y 4 Zr 3 O 12. A porous intermediate layer including: a fuel electrode active layer disposed on the intermediate layer and including a Y-containing oxide having Ni and oxygen ion conductivity; and a solid electrolyte layer disposed on the fuel electrode active layer; And an air electrode disposed on the opposite side of the fuel electrode active layer with the solid electrolyte layer interposed therebetween. The anode current collecting layer, the intermediate layer, and the anode active layer are co-fired. The first content of Y in the solid phase of the intermediate layer is lower than the second content of Y in the solid phase of the anode current collecting layer, and is less than the third content of Y in the solid phase of the anode active layer. Is also expensive. The intermediate layer has a thickness of 194.1 μm or less. The reduced porosity of the intermediate layer is 48.1% or less.
(The invention's effect)
ADVANTAGE OF THE INVENTION According to this invention, the solid oxide fuel cell which can improve the fuel gas permeability and electroconductivity between a fuel electrode current collection layer and a fuel electrode active layer can be provided.
固体酸化物型燃料電池の構成を示す斜視図A perspective view showing a configuration of a solid oxide fuel cell 図1のII-II断面図II-II sectional view of FIG. 従来の固体酸化物型燃料電池において、EPMAによるマッピング分析で得られたZr,Y,Niの濃度分布データを示す写真Photograph showing concentration distribution data of Zr, Y, Ni obtained by mapping analysis by EPMA in a conventional solid oxide fuel cell 還元後におけるサンプルNo.4のSEM写真Sample No. after reduction 4 SEM photo サンプルNo.5の酸化体に係る中間層のXRDパターンXRD pattern of the intermediate layer related to the oxidant of sample No. 5 サンプルNo.5の酸化体に係る燃料極集電層,中間層,燃料極活性層の熱膨張カーブThermal expansion curves of the anode current collecting layer, intermediate layer, and anode active layer related to the oxidant of sample No. 5
 <固体酸化物型燃料電池100の構成>
 固体酸化物型燃料電池100の構成について、図面を参照しながら説明する。図1は、固体酸化物型燃料電池100の構成を示す斜視図である。ただし、図1では、後述する空気極集電層5(図2参照)が省略されている。
 固体酸化物型燃料電池(以下、「燃料電池」と略称する)100は、支持基板10と、複数の固体酸化物型燃料電池セル(以下、「セル」と略称する)セル20と、複数のインターコネクタ30と、を備える。燃料電池10は、支持基板10上において複数のセル20が複数のインターコネクタ30を介して電気的に直列に接続された、いわゆる横縞型の燃料電池である。
<Configuration of Solid Oxide Fuel Cell 100>
The configuration of the solid oxide fuel cell 100 will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a solid oxide fuel cell 100. However, in FIG. 1, an air electrode current collecting layer 5 (see FIG. 2) described later is omitted.
A solid oxide fuel cell (hereinafter abbreviated as “fuel cell”) 100 includes a support substrate 10, a plurality of solid oxide fuel cell (hereinafter abbreviated as “cell”) cells 20, and a plurality of Interconnector 30. The fuel cell 10 is a so-called horizontal stripe type fuel cell in which a plurality of cells 20 are electrically connected in series via a plurality of interconnectors 30 on a support substrate 10.
 支持基板10は、扁平板状の多孔質部材である。支持基板10の厚みは、1mm~10mm程度である。支持基板10の表面は、複数のセル20が配置される領域を除いて、後述する固体電解質層2によって覆われている。支持基板10の内部には、発電時に水素ガスを流すための流路10aが形成されている。流路10aは、支持基板10の長手方向に沿って延びる。 The support substrate 10 is a flat plate-like porous member. The thickness of the support substrate 10 is about 1 mm to 10 mm. The surface of the support substrate 10 is covered with a solid electrolyte layer 2 described later except for a region where the plurality of cells 20 are arranged. Inside the support substrate 10, a flow path 10a for flowing hydrogen gas during power generation is formed. The flow path 10 a extends along the longitudinal direction of the support substrate 10.
 また、支持基板10は、複数のセル20間における電気的ショートを抑えるために電気絶縁性を有する。支持基板10は、Ni(ニッケル)又はNi酸化物(NiO)と、希土類元素酸化物と、MgOと、を含む。希土類元素酸化物を構成する希土類元素としては、Y(イットリウム)、La(ランタン)、Yb(イッテルビウム)などが挙げられる。具体的に、支持基板10は、MgO-Y(マグネシア‐イットリア)を主成分として含有していてもよい。なお、支持基板10がNiOを含む場合、発電時において、NiOは水素ガスによってNiに還元されてもよい。 Further, the support substrate 10 has electrical insulation in order to suppress electrical shorts between the plurality of cells 20. The support substrate 10 includes Ni (nickel) or Ni oxide (NiO), a rare earth element oxide, and MgO. Examples of the rare earth element constituting the rare earth element oxide include Y (yttrium), La (lanthanum), Yb (ytterbium), and the like. Specifically, the support substrate 10 may contain MgO—Y 2 O 3 (magnesia-yttria) as a main component. When the support substrate 10 contains NiO, NiO may be reduced to Ni by hydrogen gas during power generation.
 なお、本明細書において、「主成分として含有する」とは、その成分を50重量%以上含有することであってもよく、60重量%以上、80重量%以上、又は90重量%以上含有することであってもよい。また、「主成分として含有する」とは、その成分のみからなる場合も包含する概念である。
 複数のセル20は、支持基板10上において長手方向に並べられている。複数のセル20は、複数のインターコネクタ30によって電気的に直列に接続されている。セル20の構成については後述する。
In the present specification, “containing as a main component” may mean containing 50% by weight or more of the component, and containing 60% by weight or more, 80% by weight or more, or 90% by weight or more. It may be. Further, “contained as a main component” is a concept encompassing the case of consisting only of the component.
The plurality of cells 20 are arranged in the longitudinal direction on the support substrate 10. The plurality of cells 20 are electrically connected in series by a plurality of interconnectors 30. The configuration of the cell 20 will be described later.
 複数のインターコネクタ30は、複数のセル20に対応して設けられる。複数のインターコネクタ30は、導電性、耐還元性及び耐酸化性を有する材料によって構成されている。このような材料としては、クロマイト系材料が挙げられる。クロマイト系材料とは、クロマイト系ペロブスカイト型酸化物とも称される複合酸化物である。クロマイト系材料の組成は、次の一般式(1)で表すことができる。 The plurality of interconnectors 30 are provided corresponding to the plurality of cells 20. The plurality of interconnectors 30 are made of a material having conductivity, reduction resistance, and oxidation resistance. An example of such a material is a chromite material. The chromite-based material is a complex oxide also called a chromite-based perovskite oxide. The composition of the chromite material can be expressed by the following general formula (1).
 Ln1-xCr1-y-z   (1)
 (式(1)において、Lnは、Y及びランタノイド(La,Ce,Eu,Sm,Yb,Gdなど)からなる群より選択される少なくとも1種類の元素である。Aは、Ca,Sr及びBaからなる群より選択される少なくとも1種類の元素を含有する。Bは、Ti,V,Mn,Fe,Co,Cu,Ni,Zn,Mg及びAlからなる群より選択される少なくとも1種類の元素を含有する。式(1)では、0.025≦x≦0.3、0≦y≦0.22、0≦z≦0.15が成立する。)
 <セル20の構成>
 セル20の構成について、図面を参照しながら説明する。図2は、図1のII-II断面図である。
Ln 1-x A x Cr 1-yz B y O 3 (1)
(In the formula (1), Ln is at least one element selected from the group consisting of Y and lanthanoids (La, Ce, Eu, Sm, Yb, Gd, etc.) A is Ca, Sr and Ba And at least one element selected from the group consisting of Ti, V, Mn, Fe, Co, Cu, Ni, Zn, Mg, and Al. (In the formula (1), 0.025 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.22, and 0 ≦ z ≦ 0.15 are established.)
<Configuration of cell 20>
The configuration of the cell 20 will be described with reference to the drawings. 2 is a cross-sectional view taken along the line II-II in FIG.
 セル20は、燃料極1と、固体電解質層2と、バリア層3と、空気極4と、集電層5と、を備える。
 燃料極1は、支持基板10上に配置される。燃料極1は、燃料極集電層11と、中間層12と、燃料極活性層13と、によって構成される。燃料極集電層11と中間層12と燃料極活性層13は、積層された状態で共焼成されている。
The cell 20 includes a fuel electrode 1, a solid electrolyte layer 2, a barrier layer 3, an air electrode 4, and a current collecting layer 5.
The fuel electrode 1 is disposed on the support substrate 10. The anode 1 includes an anode current collecting layer 11, an intermediate layer 12, and an anode active layer 13. The anode current collecting layer 11, the intermediate layer 12, and the anode active layer 13 are co-fired in a stacked state.
 燃料極集電層11は、支持基板10上に配置される。燃料極集電層11上には、上述のインターコネクタ30が配置されている。燃料極集電層11の厚みは、50μm以上500μm以下とすることができる。燃料極集電層11は、Ni又はNi酸化物と、Yとを主成分として含有する。燃料極集電層11がNiOを含む場合、発電時において、NiOは水素ガスによってNiに還元されてもよい。 The anode current collecting layer 11 is disposed on the support substrate 10. The above-described interconnector 30 is disposed on the anode current collecting layer 11. The thickness of the anode current collecting layer 11 can be 50 μm or more and 500 μm or less. The anode current collecting layer 11 contains Ni or Ni oxide and Y 2 O 3 as main components. When the anode current collecting layer 11 contains NiO, NiO may be reduced to Ni by hydrogen gas during power generation.
 また、“燃料極集電層11の固相におけるYの含有率(第2含有率の一例)”は、20.0atom%以上75.0atom%以下であることが好ましい。また、還元時における燃料極集電層11の気孔率は、15%以上50%以下であることが好ましい。
 ただし、燃料極集電層11の固相には、炭素、酸素、及び分析時に試料表面に蒸着される物質(例えば、金、銀、炭素など)は含まれていない。これは、分析時に試料が樹脂埋めされるため、樹脂に含まれる炭素や酸素の影響を避ける必要があるためである。
The “Y content in the solid phase of the fuel electrode current collecting layer 11 (an example of the second content)” is preferably 20.0 atom% or more and 75.0 atom% or less. Moreover, it is preferable that the porosity of the anode current collecting layer 11 at the time of reduction is 15% or more and 50% or less.
However, the solid phase of the anode current collecting layer 11 does not include carbon, oxygen, and substances (for example, gold, silver, carbon, etc.) deposited on the sample surface during analysis. This is because it is necessary to avoid the influence of carbon and oxygen contained in the resin because the sample is filled with the resin during analysis.
 本実施形態において、Yの含有率とは、各層におけるY成分の平均含有量である。Yの含有率は、例えば、原子濃度プロファイルによる分析、つまりEPMA(Electron Probe Micro Analyzer)による特性X線強度の比較によって取得することができる。具体的には、セル20の厚み方向に平行な断面において、厚み方向に沿ってEPMA分析を行うことにより、Yの濃度分布データが取得される。また、Yの含有率は、EDS(エネルギー分散型X線分光法:Energy Dispersive x-ray Spectroscopy)でも同様に分析可能である。 In this embodiment, the Y content is the average content of the Y component in each layer. The Y content can be obtained, for example, by analysis based on an atomic concentration profile, that is, comparison of characteristic X-ray intensities using EPMA (Electron Probe Micro Micro Analyzer). Specifically, Y concentration distribution data is acquired by performing EPMA analysis along the thickness direction in a cross section parallel to the thickness direction of the cell 20. The Y content can also be analyzed in the same manner by EDS (Energy Dispersive X-ray Spectroscopy: Energy Dispersive X-ray Spectroscopy).
 中間層12は、燃料極集電層11上に配置される。中間層12は、燃料極集電層11の表面のうちインターコネクタ30が配置される領域以外を覆っており,燃料極活性層13の直下に位置している。中間層12の厚みは、5.8μm以上194.1μm以下であることが好ましい。
 中間層12は、Ni又はNi酸化物と、Y含有酸化物と、YZr12とを含む。中間層12がNiOを含む場合、発電時において、NiOは水素ガスによってNiに還元されてもよい。Y含有酸化物としては、イットリア(Y)やイットリア安定化ジルコニア(8YSZ、10YSZなど)などが挙げられる。また、中間層12は、ZrO(ジルコニア)を含んでいてもよい。なお、Y含有酸化物とYZr12の体積比は、1:9~9:1に設定することができる。
The intermediate layer 12 is disposed on the anode current collecting layer 11. The intermediate layer 12 covers the surface of the anode current collecting layer 11 other than the region where the interconnector 30 is disposed, and is located immediately below the anode active layer 13. The thickness of the intermediate layer 12 is preferably 5.8 μm or more and 194.1 μm or less.
The intermediate layer 12 includes Ni or Ni oxide, a Y-containing oxide, and Y 4 Zr 3 O 12 . When the intermediate layer 12 includes NiO, NiO may be reduced to Ni by hydrogen gas during power generation. Examples of the Y-containing oxide include yttria (Y 2 O 3 ) and yttria-stabilized zirconia (8YSZ, 10YSZ, etc.). In addition, the intermediate layer 12 may contain ZrO 2 (zirconia). The volume ratio between the Y-containing oxide and Y 4 Zr 3 O 12 can be set to 1: 9 to 9: 1.
 また、“中間層12の固相におけるYの含有率(第1含有率の一例)”は、“燃料極集電層11の固相におけるYの含有率”よりも低い。“中間層12の固相におけるYの含有率”は、後述する“燃料極活性層13の固相におけるYの含有率(第3含有率の一例)”よりも高い。具体的に、“中間層12の固相におけるYの含有率”の“燃料極集電層11の固相におけるYの含有率”に対する比は、0.10以上0.95以下であることが好ましい。“中間層12の固相におけるYの含有率”の“燃料極活性層13の固相におけるYの含有率”に対する比は、1.79以上14.66以下であることが好ましい。 Also, “the Y content in the solid phase of the intermediate layer 12 (an example of the first content)” is lower than the “Y content in the solid phase of the fuel electrode current collecting layer 11”. “Y content in the solid phase of the intermediate layer 12” is higher than “Y content in the solid phase of the fuel electrode active layer 13 (an example of the third content)” described later. Specifically, the ratio of “Y content in the solid phase of the intermediate layer 12” to “Y content in the solid phase of the anode current collecting layer 11” is 0.10 or more and 0.95 or less. preferable. The ratio of “Y content in the solid phase of the intermediate layer 12” to “Y content in the solid phase of the fuel electrode active layer 13” is preferably 1.79 or more and 14.66 or less.
 また、“中間層12の固相におけるYの含有率”は、8.06atom%以上60.16atom%以下であることが好ましい。還元時における中間層12の気孔率は、14.3%以上48.1%以下であることが好ましい。
 ここで、“中間層12の熱膨張係数(第1熱膨張係数の一例)”は、“燃料極集電層11の熱膨張係数(第2熱膨張係数の一例)”よりも大きく、かつ、“燃料極活性層13の熱膨張係数(第3熱膨張係数の一例)”よりも小さい。また、“中間層12の熱膨張係数”から“燃料極集電層11の熱膨張係数”を引いた値(以下、「第1係数差」という)は、“燃料極活性層13の熱膨張係数”から“中間層12の熱膨張係数”を引いた値(以下、「第2係数差」という)よりも小さいことが好ましい。上述のように中間層12がYZr12を含む場合には、第1係数差を第2係数差よりも小さくしやすい。
The “Y content in the solid phase of the intermediate layer 12” is preferably 8.06 atom% or more and 60.16 atom% or less. The porosity of the intermediate layer 12 at the time of reduction is preferably 14.3% or more and 48.1% or less.
Here, “the thermal expansion coefficient of the intermediate layer 12 (an example of the first thermal expansion coefficient)” is larger than “the thermal expansion coefficient of the anode current collecting layer 11 (an example of the second thermal expansion coefficient)”, and It is smaller than “the thermal expansion coefficient of the fuel electrode active layer 13 (an example of a third thermal expansion coefficient)”. Further, a value obtained by subtracting “thermal expansion coefficient of the fuel electrode current collecting layer 11” from “thermal expansion coefficient of the intermediate layer 12” (hereinafter referred to as “first coefficient difference”) is “thermal expansion of the fuel electrode active layer 13”. It is preferably smaller than a value obtained by subtracting “thermal expansion coefficient of intermediate layer 12” from “coefficient” (hereinafter referred to as “second coefficient difference”). As described above, when the intermediate layer 12 includes Y 4 Zr 3 O 12 , it is easy to make the first coefficient difference smaller than the second coefficient difference.
 なお、燃料極集電層11と中間層12の界面、及び中間層12と燃料極活性層13の界面は、各層を構成する元素(Ni、Y、その他の成分)の濃度分布に基づいて定義することができる。具体的には、EPMA又はEDSを用いて厚み方向における構成元素の濃度分布をマッピングし、濃度が急激に変化するラインを界面と規定することができる。この場合、400倍程度の倍率で断面を拡大して分析すればよく、燃料極1の膜厚が厚い場合には厚み方向に複数視野で連続して分析することが好ましい。 The interface between the anode current collecting layer 11 and the intermediate layer 12 and the interface between the intermediate layer 12 and the anode active layer 13 are defined based on the concentration distribution of elements (Ni, Y, other components) constituting each layer. can do. Specifically, the concentration distribution of the constituent elements in the thickness direction can be mapped using EPMA or EDS, and a line in which the concentration rapidly changes can be defined as the interface. In this case, the analysis may be performed by enlarging the cross section at a magnification of about 400 times. When the thickness of the fuel electrode 1 is large, it is preferable to continuously analyze in a plurality of fields in the thickness direction.
 燃料極活性層13は、中間層12上に配置される。燃料極活性層13の厚みは、5μm以上100μm以下とすることができる。
 燃料極活性層13は、Ni又はNi酸化物と、酸素イオン伝導性を有するY含有酸化物とを含む。燃料極活性層13がNiOを含む場合、発電時において、NiOは水素ガスによってNiに還元されてもよい。酸素イオン伝導性を有するY含有酸化物としては、イットリア安定化ジルコニア(8YSZ、10YSZなど)などが挙げられる。
The anode active layer 13 is disposed on the intermediate layer 12. The thickness of the anode active layer 13 can be 5 μm or more and 100 μm or less.
The anode active layer 13 contains Ni or Ni oxide and a Y-containing oxide having oxygen ion conductivity. When the anode active layer 13 contains NiO, NiO may be reduced to Ni by hydrogen gas during power generation. Examples of the Y-containing oxide having oxygen ion conductivity include yttria-stabilized zirconia (8YSZ, 10YSZ, etc.).
 また、“燃料極活性層13の固相におけるYの含有率”は、0.5atom%以上10.0atom%以下であることが好ましい。還元時における燃料極活性層13の気孔率は、15%以上50%以下であることが好ましい。
 固体電解質層2は、燃料極活性層13上に配置される。固体電解質層2は、燃料極集電層11、中間層12、燃料極活性層13及びバリア層3と共焼成されていることが好ましい。固体電解質層2は、ZrOを主成分として含んでいてもよい。具体的に、固体電解質層2は、3YSZ、8YSZ等のイットリア安定化ジルコニアやScSZ(スカンジア安定化ジルコニア)等のジルコニア系材料によって構成することができる。
The “Y content in the solid phase of the fuel electrode active layer 13” is preferably 0.5 atom% or more and 10.0 atom% or less. The porosity of the fuel electrode active layer 13 during reduction is preferably 15% or more and 50% or less.
The solid electrolyte layer 2 is disposed on the anode active layer 13. The solid electrolyte layer 2 is preferably co-fired with the anode current collecting layer 11, the intermediate layer 12, the anode active layer 13, and the barrier layer 3. The solid electrolyte layer 2 may contain ZrO 2 as a main component. Specifically, the solid electrolyte layer 2 can be composed of a zirconia-based material such as yttria-stabilized zirconia such as 3YSZ or 8YSZ or ScSZ (scandia-stabilized zirconia).
 バリア層3は、固体電解質層2上に設けられる。バリア層3は、固体電解質層2と共焼成されていることが好ましい。バリア層3は、希土類元素を含有するセリア(CeO)系材料を主成分として含んでいてもよい。具体的に、バリア層3は、GDC((Ce,Gd)O:ガドリニウムドープセリア)、SDC((Ce, Sm)O:サマリウムドープセリア)等によって構成することができる。 The barrier layer 3 is provided on the solid electrolyte layer 2. The barrier layer 3 is preferably co-fired with the solid electrolyte layer 2. The barrier layer 3 may contain a ceria (CeO 2 ) -based material containing a rare earth element as a main component. Specifically, the barrier layer 3 can be composed of GDC ((Ce, Gd) O 2 : gadolinium doped ceria), SDC ((Ce, Sm) O 2 : samarium doped ceria) or the like.
 空気極4は、バリア層3上に配置される。空気極4は、固体電解質層2を挟んで燃料極1の反対側に配置されている。空気極4は、ランタン含有ペロブスカイト型複合酸化物を主成分として含んでいてもよい。具体的に、ランタン含有ペロブスカイト型複合酸化物としては、LSCF(ランタンストロンチウムコバルトフェライト)、ランタンマンガナイト、ランタンコバルタイト、ランタンフェライトが挙げられる。また、ランタン含有ペロブスカイト型複合酸化物には、ストロンチウム、カルシウム、クロム、コバルト、鉄、ニッケル、アルミニウム等がドープされていてもよい。 The air electrode 4 is disposed on the barrier layer 3. The air electrode 4 is disposed on the opposite side of the fuel electrode 1 with the solid electrolyte layer 2 interposed therebetween. The air electrode 4 may contain a lanthanum-containing perovskite complex oxide as a main component. Specifically, examples of the lanthanum-containing perovskite complex oxide include LSCF (lanthanum strontium cobalt ferrite), lanthanum manganite, lanthanum cobaltite, and lanthanum ferrite. The lanthanum-containing perovskite complex oxide may be doped with strontium, calcium, chromium, cobalt, iron, nickel, aluminum, or the like.
 空気極集電層5は、セル20の空気極4上に配置されており、当該セル20の空気極4と隣接するセル20の燃料極1とをインターコネクタ30を介して電気的に接続する。集電層5の厚みは、50~500μm程度にすることができる。
 <燃料電池100の製造方法>
 燃料電池100の製造方法の一例について説明する。
The air electrode current collecting layer 5 is disposed on the air electrode 4 of the cell 20, and electrically connects the air electrode 4 of the cell 20 and the fuel electrode 1 of the adjacent cell 20 via the interconnector 30. . The thickness of the current collecting layer 5 can be about 50 to 500 μm.
<Method for Manufacturing Fuel Cell 100>
An example of a method for manufacturing the fuel cell 100 will be described.
 まず、MgO粉末、NiO粉末及びY粉末を所定の混合比になるように秤量して、混合粉末に所定量の造孔材(例えば、セルロースなど)やIPAなどを添加する。
 次に、造孔材などが添加された粉末原料をボールミルで混合した後に乾燥することによって混合原料粉を得る。続いて、混合原料粉に一軸加圧成形及びCIP成形を順次行うことによって、支持基板用10の成形体を作製する。
First, MgO powder, NiO powder and Y 2 O 3 powder are weighed so as to have a predetermined mixing ratio, and a predetermined amount of pore former (eg, cellulose) or IPA is added to the mixed powder.
Next, the mixed raw material powder is obtained by mixing the powder raw material to which the pore former is added with a ball mill and then drying. Subsequently, a uniaxial pressure molding and CIP molding are sequentially performed on the mixed raw material powder to produce a molded body for the support substrate 10.
 次に、還元時におけるNi:Yが所定値となるように、NiOとYを秤量して混合し、混合粉末に所定量の造孔材(例えば、セルロースなど)を添加する。
 次に、造孔材が添加されたNiOとYをボールミルで混合した後に乾燥して得られる混合原料粉に有機溶剤(テルピネオールなど)及びバインダ(ポリビニルブラチールなど)を混合することによって、燃料極集電層用ペーストを作製する。
Next, NiO and Y 2 O 3 are weighed and mixed so that Ni: Y 2 O 3 at the time of reduction becomes a predetermined value, and a predetermined amount of pore former (for example, cellulose) is added to the mixed powder. To do.
Next, an organic solvent (such as terpineol) and a binder (such as polyvinyl bratil) are mixed with the mixed raw material powder obtained by mixing NiO and Y 2 O 3 to which a pore former is added with a ball mill and then drying. Then, a fuel electrode current collecting layer paste is prepared.
 次に、還元時におけるNi:Y含有酸化物が所定値となるように、Y含有粉末(YZr12を含む)とNiOを秤量して混合し、混合粉末に所定量の造孔材を添加する。この際、Y含有粉末の混合量を調整することによって、燃料極集電層用ペーストに比べてY含有率を低くしておく。
 次に、造孔材が添加された混合粉末をボールミルで混合した後に乾燥して得られる混合原料粉に有機溶剤(テルピネオールなど)及びバインダ(ポリビニルブラチールなど)を混合することによって、中間層用ペーストを作製する。
Next, the Y-containing powder (including Y 4 Zr 3 O 12 ) and NiO are weighed and mixed so that the Ni: Y-containing oxide at the time of reduction becomes a predetermined value, and a predetermined amount of pores are formed in the mixed powder. Add ingredients. At this time, by adjusting the mixing amount of the Y-containing powder, the Y content is kept lower than that of the anode current collecting layer paste.
Next, by mixing an organic solvent (such as terpineol) and a binder (such as polyvinyl bratil) with the mixed raw material powder obtained by mixing the mixed powder with the pore former added by a ball mill and drying it, the intermediate layer can be used. Make a paste.
 次に、還元時におけるNi:Y含有酸化物が所定値となるように、Y含有粉末とNiOを秤量して混合する。この際、Y含有粉末の混合量を調整することによって、中間層用ペーストに比べてY含有率を低くしておく。これにより、Y含有率について、燃料極集電層11>中間層12>燃料極活性層13の関係を成立させることができる。
 次に、混合粉末をボールミルで混合した後に乾燥して得られる混合原料粉に有機溶剤及びバインダを混合することによって、燃料極活性層用ペーストを作製する。
Next, the Y-containing powder and NiO are weighed and mixed so that the Ni: Y-containing oxide at the time of reduction becomes a predetermined value. At this time, by adjusting the mixing amount of the Y-containing powder, the Y content is lowered as compared with the intermediate layer paste. Thereby, regarding the Y content, the relationship of the anode current collecting layer 11> the intermediate layer 12> the anode active layer 13 can be established.
Next, an organic solvent and a binder are mixed with mixed raw material powder obtained by mixing the mixed powder with a ball mill and then drying to prepare a fuel electrode active layer paste.
 次に、支持基板用の成形体の両面に、燃料極集電層用ペースト、中間層用ペースト、及び燃料極活性層用ペーストを順次スクリーン印刷することによって、燃料極1の積層体を作製する。この際、中間層用ペーストを繰り返し印刷することによって、中間層12の厚みを調整することができる。
 次に、ジルコニア系材料からなる固体電解質層用ペーストとセリア系材料からなるバリア層用ペーストを作製する。
Next, the anode electrode current collector layer paste, the intermediate layer paste, and the anode active layer paste are sequentially screen-printed on both surfaces of the support substrate molded body to produce a laminate of the anode 1. . At this time, the thickness of the intermediate layer 12 can be adjusted by repeatedly printing the intermediate layer paste.
Next, a solid electrolyte layer paste made of zirconia material and a barrier layer paste made of ceria material are prepared.
 次に、燃料極1の積層体の表面に固体電解質層用ペーストとバリア層用ペーストを順次スクリーン印刷することによって、共焼成用の積層体を作製する。
 次に、共焼成用の積層体を共焼成(1-20時間、1000~1500℃)することによって、共焼成体を作製する。
 次に、共焼成体のうち固体電解質層2上に空気極4の材料を塗布し、空気極4の材料を焼成する。以上によって、燃料電池100が完成する。
Next, a solid electrolyte layer paste and a barrier layer paste are sequentially screen-printed on the surface of the fuel electrode stack 1 to produce a co-fired laminate.
Next, the laminate for co-firing is co-fired (1-20 hours, 1000-1500 ° C.) to produce a co-fired body.
Next, the material of the air electrode 4 is applied on the solid electrolyte layer 2 of the co-fired body, and the material of the air electrode 4 is fired. Thus, the fuel cell 100 is completed.
 <その他の実施形態>
 (A)上記実施形態では、固体酸化物型燃料電池の一例として横縞型の燃料電池について説明したが、横縞型の燃料電池に限定されるものではない。本発明は、縦縞型、平板型及び円筒型などの種々のタイプの固体酸化物型燃料電池に適用可能である。
 なお、縦縞型の燃料電池とは、燃料極集電層として機能する支持体と、支持体の第1主面上に形成される1つの発電部と、支持体の第2主面上に形成される1つのインターコネクタと、を備えるタイプの燃料電池である。発電部は、燃料極活性層と固体電解質層と空気極とを備えている。このような縦縞型の燃料電池においても、上記実施形態と同様に、Y含有率について燃料極集電層11>中間層12>燃料極活性層13の関係を成立させることによって、燃料極1の燃料ガス透過性と導電性を向上させることができる。
<Other embodiments>
(A) In the above embodiment, a horizontal stripe fuel cell has been described as an example of a solid oxide fuel cell. However, the embodiment is not limited to a horizontal stripe fuel cell. The present invention is applicable to various types of solid oxide fuel cells such as a vertical stripe type, a flat plate type, and a cylindrical type.
The vertically striped fuel cell is formed on a support body that functions as a fuel electrode current collecting layer, one power generation unit formed on the first main surface of the support body, and on the second main surface of the support body. A type of fuel cell. The power generation unit includes a fuel electrode active layer, a solid electrolyte layer, and an air electrode. In such a vertically striped fuel cell, as in the above-described embodiment, the relationship between the anode current collecting layer 11> the intermediate layer 12> the anode active layer 13 is established for the Y content. Fuel gas permeability and conductivity can be improved.
 (B)上記実施形態において、セル20は、固体電解質層2と空気極4との間にバリア層3を有することとしたが、バリア層3を有していなくてもよい。 (B) In the above embodiment, the cell 20 has the barrier layer 3 between the solid electrolyte layer 2 and the air electrode 4, but the barrier layer 3 may not be provided.
 (サンプルNo.1~No.53の作製)
 以下のようにして、サンプルNo.1~No.53を作製した。
 まず、還元時においてNi:Yが40vol%:60vol%となるようにNiOとYを秤量して、外配で20wt%のセルロースを添加した。
 次に、セルロースが添加されたNiOとYをボールミルで混合した後に乾燥して得られた混合原料粉に、30MPaの一軸加圧成形及び100MPaのCIP成形を順次行うことによって、燃料極集電層の成形体を作製した。
(Production of sample No. 1 to No. 53)
Samples No. 1 to No. 53 were produced as follows.
First, NiO and Y 2 O 3 were weighed so that Ni: Y 2 O 3 was 40 vol%: 60 vol% during reduction, and 20 wt% cellulose was added externally.
Next, the mixed raw material powder obtained by mixing NiO and Y 2 O 3 to which cellulose has been added by a ball mill and then drying is sequentially subjected to 30 MPa uniaxial pressure molding and 100 MPa CIP molding, thereby producing a fuel electrode. A compact of the current collecting layer was produced.
 次に、還元時におけるNiとY含有酸化物及びYZr12との比が30vol%~40vol%:70vol%~60vol%となるように表1に示す材料を秤量して、中間層の気孔率を変化させるために外配で0~20wt%のセルロースを適宜添加した。なお、Y含有酸化物とYZr12の体積比は、1:9~9:1に適宜調整した。
 次に、造孔材が添加された混合粉末をボールミルで混合した後に乾燥して得られた混合原料粉にテルピネオール及びポリビニルブラチールを混合することによって、中間層用ペーストを作製した。
Next, the materials shown in Table 1 were weighed so that the ratio of Ni to Y-containing oxide and Y 4 Zr 3 O 12 during reduction was 30 vol% to 40 vol%: 70 vol% to 60 vol%, and the intermediate layer In order to change the porosity, 0 to 20% by weight of cellulose was added as appropriate. Note that the volume ratio of the Y-containing oxide and Y 4 Zr 3 O 12 was appropriately adjusted to 1: 9 to 9: 1.
Next, an intermediate layer paste was prepared by mixing terpineol and polyvinyl bratil into the mixed raw material powder obtained by mixing the mixed powder to which the pore former was added with a ball mill and then drying.
 次に、還元時におけるNiとY含有酸化物の比が40vol%:60vol%となるように表1に示す材料を秤量して混合した。次に、混合粉末をボールミルで混合した後に乾燥して得られる混合原料粉にテルピネオール及びポリビニルブラチールを混合することによって、燃料極活性層用ペーストを作製した。
 次に、燃料極集電層用の成形体の両面に、中間層用ペーストと燃料極活性層用ペーストを順次スクリーン印刷することによって、燃料極用の積層体を作製した。ただし、従来例に相当するサンプルNo.42では、中間層用のペーストを印刷せず、燃料極活性層用のペーストだけを印刷した。なお、中間層用ペーストの印刷回数を変更することによって、表1に示すように中間層の厚みを約5μm~約250μmに調整した。
Next, the materials shown in Table 1 were weighed and mixed so that the ratio of Ni to Y-containing oxide during reduction was 40 vol%: 60 vol%. Next, terpineol and polyvinyl bratil were mixed with the mixed raw material powder obtained by mixing the mixed powder with a ball mill and then drying to prepare a fuel electrode active layer paste.
Next, an intermediate layer paste and a fuel electrode active layer paste were sequentially screen-printed on both surfaces of the molded body for the fuel electrode current collecting layer, thereby producing a laminate for the fuel electrode. However, in sample No. 42 corresponding to the conventional example, the intermediate layer paste was not printed, but only the fuel electrode active layer paste was printed. The thickness of the intermediate layer was adjusted to about 5 μm to about 250 μm as shown in Table 1 by changing the number of times of printing the intermediate layer paste.
 次に、燃料極用の積層体を焼成(1500℃、1時間、大気雰囲気)することによって、燃料極を作製した。この燃料極の寸法は,おおよそφ16mm、厚み2mmであった。
 次に、燃料極をφ15mm、厚み1mmに平面研削した。このとき、燃料極の片面のみを平面研削することによって、燃料極の厚みを調整した。
 次に、平面研削した燃料極に還元処理(750℃、2時間、100%H雰囲気)を施すことによって、サンプルNo.1~No.53を作製した。
Next, the fuel electrode laminate was fired (1500 ° C., 1 hour, air atmosphere) to produce a fuel electrode. The dimensions of this fuel electrode were approximately φ16 mm and thickness 2 mm.
Next, the fuel electrode was surface ground to a diameter of 15 mm and a thickness of 1 mm. At this time, the thickness of the fuel electrode was adjusted by subjecting only one side of the fuel electrode to surface grinding.
Next, the surface-ground fuel electrode was subjected to reduction treatment (750 ° C., 2 hours, 100% H 2 atmosphere) to produce Samples No. 1 to No. 53.
 [断面の観察と気孔率の測定]
 サンプルNo.1~No.53(n=3)の断面のSEM(日本電子製:JSM-6610LV)写真を撮り、その写真を観察することによって、燃料極内の界面における緻密層の有無を確認した。また、サンプルNo.42以外のサンプルのSEM写真を画像解析することによって、中間層の気孔率を測定した。図4は、還元後におけるサンプルNo.4のSEM写真である。観察結果及び気孔率は、表1にまとめて示されている。
[Observation of cross section and measurement of porosity]
SEM (Nippon Denshi: JSM-6610LV) photograph of the cross section of sample No. 1 to No. 53 (n = 3) is taken and the presence or absence of a dense layer at the interface in the fuel electrode is confirmed by observing the photograph did. Moreover, the porosity of the intermediate layer was measured by image analysis of SEM photographs of samples other than sample No. 42. 4 shows the sample No. after reduction. 4 is an SEM photograph of No. 4. The observation results and porosity are summarized in Table 1.
 なお、燃料極内の界面は、EPMA(倍率:400倍)によって取得されるNi、Y、Zrの厚み方向における濃度分布が急激に変化するラインに基づいて規定した。
 [Y含有率の測定]
 サンプルNo.1~No.41,No.43~No.53(n=3)の断面において5μm×5μmの領域をEDS(Oxford Instruments社製:X-act)で分析することによって、各層の固相におけるY含有率の平均値を測定した。各層の固相におけるY含有率の平均値は、表1にまとめて示されている。ただし、ここで言う固相には、炭素、酸素、分析時の蒸着物質は含まれていない。
The interface in the fuel electrode was defined based on a line in which the concentration distribution of Ni, Y, Zr in the thickness direction obtained by EPMA (magnification: 400 times) changes rapidly.
[Measurement of Y content]
By analyzing an area of 5 μm × 5 μm in the cross sections of Samples No. 1 to No. 41 and No. 43 to No. 53 (n = 3) with EDS (Oxford Instruments, Inc .: X-act), each layer was fixed. The average value of the Y content in the phase was measured. The average value of the Y content in the solid phase of each layer is summarized in Table 1. However, the solid phase referred to here does not contain carbon, oxygen, and vapor deposition materials at the time of analysis.
 [圧力損失の測定]
 サンプルNo.1~No.53を圧力損失用の治具にセットし、各サンプルの片面に100mL/minでHeガスを供給し、Heガスが各サンプルを通過したときの圧力損失を、燃料極集電層単体の圧力損失を基準として測定した。中間層及び燃料極集電層は還元された薄膜多孔質体であるので、測定された圧力損失は、燃料極集電層/中間層の界面と中間層/燃料極活性層の界面とにおける圧力損失に近似することができる。圧力損失値は、表1にまとめて示されている。
[Measurement of pressure loss]
Samples No. 1 to No. 53 are set in a jig for pressure loss, He gas is supplied to one side of each sample at 100 mL / min, and the pressure loss when He gas passes through each sample is expressed as the fuel electrode. The measurement was performed based on the pressure loss of the current collecting layer alone. Since the intermediate layer and the anode current collecting layer are reduced thin film porous bodies, the measured pressure loss is the pressure at the anode current collecting layer / intermediate layer interface and the intermediate layer / electrode active layer interface. It can approximate loss. The pressure loss values are summarized in Table 1.
 [電気抵抗の測定]
 表裏にPtペーストを塗布したサンプルNo.1~No.53に、800℃のH雰囲気で1Aの定電流を流したときの電圧を測定し、測定された電圧値に基づいて電気抵抗値を算出した。電気抵抗値は、表1にまとめて示されている。
 [各層の熱膨膨張係数の測定]
 次に、燃料極集電層/中間層/燃料極活性層それぞれの熱膨張係数を測定した。図6は、サンプルNo.5の酸化体における各層の熱膨張係数を示すグラフである。
[Measurement of electrical resistance]
Measure the voltage when a constant current of 1 A was applied to the samples No. 1 to No. 53 with Pt paste applied on the front and back in an H 2 atmosphere at 800 ° C., and the electrical resistance value was calculated based on the measured voltage value. Calculated. The electrical resistance values are summarized in Table 1.
[Measurement of thermal expansion coefficient of each layer]
Next, the thermal expansion coefficients of the fuel electrode current collecting layer / intermediate layer / fuel electrode active layer were measured. FIG. 5 is a graph showing a thermal expansion coefficient of each layer in an oxidant of 5;
 図6に示すように、中間層の熱膨張係数(第1熱膨張係数の一例)は、燃料極集電層の熱膨張係数(第2熱膨張係数の一例)より大きく、かつ、燃料極活性層の熱膨張係数(第3熱膨張係数の一例)より小さい。また、中間層の熱膨張係数と燃料極集電層の熱膨張係数の差は、中間層の熱膨張係数と燃料極活性層の熱膨張係数の差よりも小さい。すなわち、中間層の熱膨張係数の値は、燃料極活性層の熱膨張係数の値よりも燃料極集電層の熱膨張係数の値に近い。 As shown in FIG. 6, the thermal expansion coefficient (an example of the first thermal expansion coefficient) of the intermediate layer is larger than the thermal expansion coefficient (an example of the second thermal expansion coefficient) of the anode current collecting layer, and the anode activity is increased. It is smaller than the thermal expansion coefficient of the layer (an example of a third thermal expansion coefficient). Further, the difference between the thermal expansion coefficient of the intermediate layer and the thermal expansion coefficient of the anode current collecting layer is smaller than the difference between the thermal expansion coefficient of the intermediate layer and the thermal expansion coefficient of the anode active layer. That is, the value of the thermal expansion coefficient of the intermediate layer is closer to the value of the thermal expansion coefficient of the anode current collecting layer than the value of the thermal expansion coefficient of the anode active layer.
 従って、中間層や燃料極活性層よりも厚めに形成される燃料極集電層では、ヤング率が比較的高くなりやすいと予想される。そのため、中間層の熱膨張係数の値を燃料極集電層の熱膨張係数の値に近づけることによって、燃料極集電層/中間層の界面に残留する応力を低減することができる。その結果、燃料極集電層/中間層の界面にクラックや剥離が発生することを抑制することができる。 Therefore, it is expected that the Young's modulus tends to be relatively high in the anode current collecting layer formed thicker than the intermediate layer and the anode active layer. Therefore, by making the value of the thermal expansion coefficient of the intermediate layer close to the value of the thermal expansion coefficient of the anode current collecting layer, the stress remaining at the anode current collecting layer / intermediate layer interface can be reduced. As a result, it is possible to suppress the occurrence of cracks and separation at the fuel electrode current collector / intermediate layer interface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Y含有率について燃料極集電層>中間層>燃料極活性層の関係を成立するサンプルでは、燃料極の内部に緻密層が形成されることを抑制できた。これによって、燃料極における圧力損失を低減することができた。また、緻密層の形成を抑制できたサンプルのうち中間層の厚みが194.1μm以下であり、かつ、中間層の気孔率が48.1%以下のサンプルでは、電気抵抗値を1.93mΩcmよりも小さくすることができた。 As shown in Table 1, in the sample satisfying the relationship of the anode current collecting layer> the intermediate layer> the anode active layer with respect to the Y content, it was possible to suppress the formation of a dense layer inside the anode. As a result, the pressure loss in the fuel electrode could be reduced. Further, among the samples in which the formation of the dense layer could be suppressed, in the samples where the thickness of the intermediate layer was 194.1 μm or less and the porosity of the intermediate layer was 48.1% or less, the electric resistance value was 1.93 mΩcm 2. Can be made smaller.
 本発明によれば、燃料極集電層と燃料極活性層の間における燃料ガス透過性と導電性を向上できるため、燃料電池分野において有用である。 According to the present invention, the fuel gas permeability and conductivity between the anode current collecting layer and the anode active layer can be improved, which is useful in the fuel cell field.
 100  横縞型固体酸化物型燃料
 10   支持基板
 20   固体酸化物型燃料電池セル
 30   インターコネクタ
  1   燃料極
 11   燃料極集電層
 12   中間層
 13   燃料極活性層
 2  固体電解質層
 3  バリア層
 4  空気極
 5  集電層
DESCRIPTION OF SYMBOLS 100 Horizontal stripe type solid oxide fuel 10 Support substrate 20 Solid oxide fuel cell 30 Interconnector 1 Fuel electrode 11 Fuel electrode current collecting layer 12 Intermediate layer 13 Fuel electrode active layer 2 Solid electrolyte layer 3 Barrier layer 4 Air electrode 5 Current collector

Claims (6)

  1.  NiとYを含む燃料極集電層と、
     前記燃料極集電層上に配置され、NiとY含有酸化物とYZr12を含む多孔質の中間層と、
     前記中間層上に配置され、Niと酸素イオン伝導性を有するY含有酸化物を含む燃料極活性層と、
     前記燃料極活性層上に配置される固体電解質層と、
     前記固体電解質層を挟んで前記燃料極活性層の反対側に配置される空気極と、
    を備え、
     前記燃料極集電層と前記中間層と前記燃料極活性層は、共焼成されており、
     前記中間層の固相におけるYの第1含有率は、前記燃料極集電層の固相におけるYの第2含有率よりも低く、かつ、前記燃料極活性層の固相におけるYの第3含有率よりも高く、
     前記中間層の厚みは、194.1μm以下であり、
     還元された前記中間層の気孔率は、48.1%以下である、
    固体酸化物型燃料電池。
    An anode current collecting layer containing Ni and Y 2 O 3 ;
    Disposed on the anode current collecting layer, an intermediate layer of a porous, including Ni and Y-containing oxide and Y 4 Zr 3 O 12,
    An anode active layer that is disposed on the intermediate layer and includes a Y-containing oxide having Ni and oxygen ion conductivity;
    A solid electrolyte layer disposed on the anode active layer;
    An air electrode disposed on the opposite side of the fuel electrode active layer across the solid electrolyte layer;
    With
    The anode current collecting layer, the intermediate layer, and the anode active layer are co-fired,
    The first content of Y in the solid phase of the intermediate layer is lower than the second content of Y in the solid phase of the anode current collecting layer, and the third content of Y in the solid phase of the anode active layer. Higher than the content rate,
    The intermediate layer has a thickness of 194.1 μm or less,
    The porosity of the reduced intermediate layer is 48.1% or less,
    Solid oxide fuel cell.
  2.  前記第1含有率は、8.06atom%以上である、
    請求項1に記載の固体酸化物型燃料電池。
    The first content is 8.06 atom% or more.
    The solid oxide fuel cell according to claim 1.
  3.  前記第1含有率は、60.16atom%以下である、
    請求項1又は2に記載の固体酸化物型燃料電池。
    The first content is 60.16 atom% or less.
    The solid oxide fuel cell according to claim 1 or 2.
  4.  前記第1含有率の前記第2含有率に対する比は、0.10以上0.95以下である、
    請求項1乃至3のいずれかに記載の固体酸化物型燃料電池。
    The ratio of the first content to the second content is 0.10 or more and 0.95 or less.
    The solid oxide fuel cell according to any one of claims 1 to 3.
  5.  前記第1含有率の前記第3含有率に対する比は、1.79以上14.66以下である、
    請求項1乃至4のいずれかに記載の固体酸化物型燃料電池。
    The ratio of the first content to the third content is 1.79 or more and 14.66 or less.
    The solid oxide fuel cell according to any one of claims 1 to 4.
  6.  前記中間層の第1熱膨張係数は、前記燃料極集電層の第2熱膨張係数より大きく、かつ、前記燃料極活性層の第3熱膨張係数より小さく、
     前記第1熱膨張係数と前記第2熱膨張係数の差は、前記第1熱膨張係数と前記第3熱膨張係数の差よりも小さい、
    請求項1乃至5のいずれかに記載の固体酸化物型燃料電池。
    A first thermal expansion coefficient of the intermediate layer is larger than a second thermal expansion coefficient of the anode current collecting layer and smaller than a third thermal expansion coefficient of the anode active layer;
    The difference between the first thermal expansion coefficient and the second thermal expansion coefficient is smaller than the difference between the first thermal expansion coefficient and the third thermal expansion coefficient.
    The solid oxide fuel cell according to claim 1.
PCT/JP2013/071486 2012-08-09 2013-08-08 Solid oxide fuel cell WO2014024960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013549662A JP5449636B1 (en) 2012-08-09 2013-08-08 Solid oxide fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012177464 2012-08-09
JP2012-177464 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014024960A1 true WO2014024960A1 (en) 2014-02-13

Family

ID=50068181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071486 WO2014024960A1 (en) 2012-08-09 2013-08-08 Solid oxide fuel cell

Country Status (2)

Country Link
JP (1) JP5449636B1 (en)
WO (1) WO2014024960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157693A (en) * 2015-02-25 2016-09-01 日本特殊陶業株式会社 Solid oxide fuel battery single cell and solid oxide fuel battery stack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152585A (en) * 2002-10-30 2004-05-27 Kyocera Corp Cell of fuel cell and fuel cell
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2008084716A (en) * 2006-09-28 2008-04-10 Kyocera Corp Fuel battery cell, fuel battery cell stack, and fuel cell
JP2010231918A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fuel battery cell, fuel battery cell stack device, fuel cell module, and fuel cell device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152585A (en) * 2002-10-30 2004-05-27 Kyocera Corp Cell of fuel cell and fuel cell
JP2005346991A (en) * 2004-05-31 2005-12-15 Kyocera Corp Solid electrolyte fuel cell cell stack, bundle, fuel cell, and manufacturing method of fuel cell cell stack
JP2008084716A (en) * 2006-09-28 2008-04-10 Kyocera Corp Fuel battery cell, fuel battery cell stack, and fuel cell
JP2010231918A (en) * 2009-03-26 2010-10-14 Kyocera Corp Fuel battery cell, fuel battery cell stack device, fuel cell module, and fuel cell device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157693A (en) * 2015-02-25 2016-09-01 日本特殊陶業株式会社 Solid oxide fuel battery single cell and solid oxide fuel battery stack

Also Published As

Publication number Publication date
JPWO2014024960A1 (en) 2016-07-25
JP5449636B1 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Khan et al. Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: a review
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
US10033059B2 (en) Fuel cell
JP4928642B1 (en) Solid oxide fuel cell
WO2016014578A1 (en) Composition for fuel cell electrode
JP4913260B1 (en) Solid oxide fuel cell
JP5296939B2 (en) Solid oxide fuel cell
Timurkutluk et al. Effects of electrolyte pattern on mechanical and electrochemical properties of solid oxide fuel cells
US9620805B2 (en) Solid oxide fuel cell
WO2007086346A1 (en) Conductive sintered body, conductive member for fuel cell, fuel-cell cell, and fuel cell
JP5091346B1 (en) Solid oxide fuel cell
EP2772473B1 (en) Ceramic sintered compact, high-temperature member, and electrochemical element
JP4988072B1 (en) Solid oxide fuel cell
EP2688128B1 (en) Solid oxide fuel cell
JP5449636B1 (en) Solid oxide fuel cell
JP5555682B2 (en) Solid oxide fuel cell
JP5395295B1 (en) Fuel cell
JP5270807B1 (en) Solid oxide fuel cell
JP5090575B1 (en) Solid oxide fuel cell
JP4868557B2 (en) Solid oxide fuel cell
Zhang et al. Performance and Optimization of Ni/3 Mol% Y2O3-ZrO2 Anode Supported SOFC
KR20200099784A (en) Composition for connecting material for solid oxide fuel cell, manufacturing method of connecting material for solid oxide fuel cell using same and solid oxide fuel cell comprising same
Song et al. Effect of Co-doped GDC buffer layer on the power density of solid oxide fuel cell (SOFC)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013549662

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827541

Country of ref document: EP

Kind code of ref document: A1