WO2014024949A1 - Resin composition, method for producing resin composition, and molding - Google Patents

Resin composition, method for producing resin composition, and molding Download PDF

Info

Publication number
WO2014024949A1
WO2014024949A1 PCT/JP2013/071444 JP2013071444W WO2014024949A1 WO 2014024949 A1 WO2014024949 A1 WO 2014024949A1 JP 2013071444 W JP2013071444 W JP 2013071444W WO 2014024949 A1 WO2014024949 A1 WO 2014024949A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
weight
polycarbonate
group
Prior art date
Application number
PCT/JP2013/071444
Other languages
French (fr)
Japanese (ja)
Inventor
一喜 大松
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201380041443.9A priority Critical patent/CN104520377B/en
Priority to KR1020157005194A priority patent/KR101980418B1/en
Publication of WO2014024949A1 publication Critical patent/WO2014024949A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a resin composition having excellent transparency and a method for producing the same. Furthermore, it is related with the molded object obtained by shape
  • Polycarbonate resins generally have excellent high temperature stability, dimensional stability, impact resistance, rigidity, transparency, and the like. However, scratch resistance and long-term UV resistance are insufficient, and there is a disadvantage that stress birefringence occurs.
  • acrylic resins such as polymethylmethacrylate are known to have excellent transparency, surface hardness, UV resistance, weather resistance, chemical resistance, and the like. However, acrylic resins are insufficient in dimensional stability, impact resistance, low temperature resistance and the like.
  • a mixture of a polycarbonate resin and an acrylic resin compensates for the disadvantages of each resin and has properties that can be used for various applications.
  • a mixture of a polycarbonate resin and an acrylic resin is opaque and has a problem that it cannot be used for applications requiring transparency. Therefore, various methods have been proposed in order to obtain a transparent mixture of a polycarbonate resin and an acrylic resin.
  • Patent Document 1 discloses a method of mixing an aromatic polycarbonate and syndiotactic polymethyl methacrylate in which at least 50% of all methyl methacrylate units are in a syndiotactic configuration.
  • Patent Document 2 discloses a melt-kneading method in which a resin composed of 97 to 60% by weight of polycarbonate and 3 to 40% by weight of polymethyl methacrylate is melt-kneaded using a trace type high-shear molding machine.
  • the melt-kneaded product obtained by this method is not always sufficient in terms of transparency.
  • Patent Document 3 discloses a copolymer mixture comprising an aromatic polycarbonate and a methacrylate copolymer obtained by copolymerizing methyl methacrylate and cyclohexyl methacrylate.
  • this copolymer mixture is not always sufficient in terms of transparency.
  • An object of the present invention is to provide a resin composition having excellent transparency.
  • the present invention relates to the following (1) to (6).
  • a resin composition containing 50 to 95% by weight of an acrylic resin and 5 to 50% by weight of a polycarbonate resin, wherein the acrylic resin contains 50 to 95% by weight of methyl methacrylate, Formula (I) (In formula (I), R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group, a cycloalkyl group, or an alkylcycloalkyl group substituted with a cycloalkyl group.) Viscosity average of 80000 to 300000 including a copolymer obtained by polymerizing a monomer component consisting of 5 to 50% by weight of acid ester and 0.1 to 20% by weight of other monofunctional monomer A resin having a molecular weight, wherein the polycarbonate resin has a viscosity average molecular weight of 16000 to 25000, a melt viscosity ( ⁇ A ) of the acrylic resin at a temperature of 240 ° C.
  • MVR PC represents a melt volume rate of the polycarbonate-based resin at 300 ° C.
  • W a is the weight percent of (meth) acrylic acid ester represented by the formula (I) in the monomer components represents, W b satisfies the representative.) the weight percent of the polycarbonate resin in the resin composition, the resin composition.
  • the (meth) acrylic acid ester represented by the formula (I) is at least one selected from the group consisting of cyclohexyl methacrylate, cyclohexyl acrylate, dicyclopentanyl methacrylate, and dicyclopentanyl acrylate.
  • the resin composition according to (1) which is an ester.
  • the resin composition according to (1), wherein the monofunctional monomer is at least one monomer selected from the group consisting of methyl acrylate, ethyl acrylate, and butyl acrylate.
  • a resin composition having excellent transparency can be obtained, and a molded article having excellent transparency can be obtained by molding this resin composition. Furthermore, the resin composition of the present invention and the molded article of the present invention also have excellent mechanical strength. Therefore, the resin composition of the present invention and the molded article of the present invention are suitably used for electro-optical materials, cover materials, resin glazing materials and the like.
  • the resin composition of the present invention contains a specific acrylic resin and a specific polycarbonate resin.
  • the acrylic resin used in the present invention comprises 50 to 95% by weight of methyl methacrylate and the following formula (I)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group, a cycloalkyl group, or an alkylcycloalkyl group substituted with a cycloalkyl group.
  • (meth) acryl means “acryl” or “methacryl”.
  • R 2 in formula (I) represents an alkyl group, a cycloalkyl group, an alkylcycloalkyl group or a dicyclopentanyl group substituted with a cycloalkyl group.
  • a cycloalkyl group or a dicyclopentanyl group is preferable.
  • the cycloalkyl group a cycloalkyl group having 5 to 12 carbon atoms is preferable.
  • Examples of the cycloalkyl group having 5 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group.
  • a cyclohexyl group is preferable.
  • the alkyl group an alkyl group having 1 to 4 carbon atoms is preferable.
  • Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group.
  • alkyl group substituted with a cycloalkyl group examples include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group in which at least one H (hydrogen atom) is substituted with the above cycloalkyl group having 5 to 12 carbon atoms. , N-butyl group, isobutyl group, tert-butyl group and the like.
  • alkylcycloalkyl group examples include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group in which at least one H is substituted with the above alkyl group having 1 to 4 carbon atoms.
  • the (meth) acrylic acid ester represented by the formula (I) is at least one ester selected from the group consisting of cyclohexyl methacrylate, cyclohexyl acrylate, dicyclopentanyl methacrylate and dicyclopentanyl acrylate. Of these, cyclohexyl methacrylate is more preferable.
  • Examples of monofunctional monomers other than methyl methacrylate and (meth) acrylic acid ester represented by formula (I) include (meth) acrylic acid esters other than methyl methacrylate and (meth) acrylic acid ester represented by formula (I). ) Alkyl acrylate, alkenyl cyanide compounds (for example, acrylonitrile, methacrylonitrile, etc.), acrylic acid, methacrylic acid, maleic anhydride and the like. Among these, alkyl methacrylate or alkyl acrylate is preferable.
  • alkyl methacrylate examples include ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, and the like. Is mentioned. Among these, alkyl methacrylate having an alkyl group having 2 to 4 carbon atoms is preferable.
  • alkyl acrylate examples include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, butyl acrylate (n-butyl acrylate, t-butyl acrylate, sec-butyl acrylate, acrylic acid Isobutyl) and 2-ethylhexyl acrylate.
  • an alkyl acrylate having an alkyl group having 1 to 4 carbon atoms is preferable, and methyl acrylate is more preferable.
  • a monofunctional monomer may be used independently and may use 2 or more types together.
  • methyl methacrylate is contained in the monomer component constituting the acrylic resin in a proportion of 50 to 95% by weight, preferably 60 to 90% by weight. Contained in proportions.
  • the (meth) acrylic acid ester represented by the formula (I) is contained in the monomer component constituting the acrylic resin in a proportion of 5 to 50% by weight, preferably in a proportion of 10 to 40% by weight. Is done. When the content of the (meth) acrylic acid ester represented by the formula (I) is less than 5% by weight, the compatibility of the obtained acrylic resin with the polycarbonate resin is lowered, and the transparency of the resin composition is lowered.
  • the weather resistance of the resin composition also decreases in addition to the decrease in compatibility (transparency).
  • transparency and a weather resistance fall also in the molded object obtained by shape
  • the monofunctional monomer is contained in the monomer component constituting the acrylic resin in a proportion of 0.1 to 20% by weight, preferably 0.2 to 10% by weight, more preferably 0.3 to It is contained at a ratio of 5% by weight.
  • the content of the monofunctional monomer is less than 0.1% by weight, the acrylic resin is likely to be thermally decomposed.
  • transparency and heat resistance are lowered.
  • the polymerization method of the monomer component is not particularly limited, and for example, a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, or a liquid injection polymerization method (cast polymerization method) is performed.
  • a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, or a liquid injection polymerization method (cast polymerization method) is performed.
  • Polymerization is performed using light irradiation or a polymerization initiator, and an azo initiator (for example, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), etc.) ), Peroxide initiators (lauroyl peroxide, 1,1-di (t-butylperoxy) cyclohexane, benzoyl peroxide, etc.), redox initiators combining organic peroxides and amines, etc. It is preferable to use a polymerization initiator.
  • an azo initiator for example, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), etc.
  • Peroxide initiators laauroyl peroxide, 1,1-di (t-butylperoxy) cyclohexane, benzoyl peroxide, etc.
  • redox initiators combining organic peroxide
  • the amount of the polymerization initiator used is appropriately determined according to the type of monomer, the ratio of the monomer, etc., but is usually 0.01 to 1 part by weight, preferably 100 parts by weight of the monomer component. Is used in a proportion of 0.01 to 0.5 parts by weight.
  • a polymerization initiator may be used independently and may use 2 or more types together.
  • chain transfer agents such as mercaptans such as methyl mercaptan, n-butyl mercaptan, t-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, 2-ethylhexyl thioglycolate
  • crosslinking An agent or the like may be added. The amount of these used is appropriately determined according to the type of monomer, the proportion of monomer, and the like.
  • the chain transfer agent and the crosslinking agent may be used alone or in combination of two or more.
  • the polymerization temperature and polymerization time of the monomer component are not particularly limited, and are appropriately determined according to the type of monomer, the ratio of the monomer, and the like.
  • the acrylic resin used in the present invention contains a copolymer obtained by polymerizing the above monomer components, and has a viscosity average molecular weight of 80,000 to 300,000.
  • the acrylic resin has a viscosity average molecular weight of less than 80000, impact resistance and heat resistance are lowered.
  • the viscosity average molecular weight of the acrylic resin exceeds 300,000, it becomes difficult to melt and knead, and molding processing becomes difficult.
  • the acrylic resin preferably has a viscosity average molecular weight of 90000-250,000.
  • the viscosity average molecular weight (Mv) of the acrylic resin is obtained using the following formula (1).
  • [ ⁇ ] represents the intrinsic viscosity, and is obtained from the viscosity number V N measured according to ISO 1628-6, using the following formula (2).
  • V N [ ⁇ ] + 0.4 ⁇ [ ⁇ ] 2 (2)
  • the fluidity of the acrylic resin is evaluated by a melt mass flow rate (MFR) at 230 ° C. measured at a load of 3.8 kg.
  • MFR melt mass flow rate
  • the fluidity (MFR) of the acrylic resin is not particularly limited, but is preferably 0.1 to 50 g / 10 minutes, more preferably 0.2 to 30 g / 10 minutes.
  • MFR melt mass flow rate
  • the acrylic resin has an MFR in such a range, the fluidity is excellent and the processability is improved, and the resin composition is easily melt-kneaded. Moreover, the transparency and mechanical strength of the resulting resin composition and molded article are also improved.
  • the polycarbonate resin used in the present invention is not particularly limited as long as it has a viscosity average molecular weight of 16000 to 25000.
  • Polycarbonate resins are, for example, resins obtained by reacting a dihydric phenol and a carbonylating agent by an interfacial polycondensation method or a melt transesterification method; by polymerizing a carbonate prepolymer by a solid phase transesterification method or the like.
  • the resin to be obtained include a resin obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method.
  • the polycarbonate resin preferably has a viscosity average molecular weight of 16000 to 24,000.
  • the fluidity of the polycarbonate resin used in the present invention is evaluated by the melt volume rate (MVR) at 300 ° C. measured with a 1.2 kg load.
  • the flowability (MVR) of the polycarbonate resin is not particularly limited, but is preferably 8 to 50 g / 10 minutes, more preferably 10 to 45 g / 10 minutes.
  • MVR melt volume rate
  • dihydric phenol examples include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ methane, 1,1- Bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3,5-dimethyl) phenyl ⁇ propane, 2,2-bis ⁇ (4-hydroxy-3,5-dibromo) ) Phenyl ⁇ propane, 2,2-bis ⁇ (3-isopropyl-4-hydroxy) phenyl ⁇ propane, 2,2-bis ⁇ ( -Hydroxy-3-phenyl) phenyl ⁇ propane, 2,2-bis (4-hydroxyphenyl)
  • bisphenol A 2,2-bis ⁇ (4-hydroxy-3-methyl) phenyl ⁇ propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4 -Hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-Hydroxyphenyl) -3,3,5-trimethylcyclohexane and ⁇ , ⁇ ′-bis (4-hydroxyphenyl) -m-diisopropylbenzene are preferred.
  • carbonylating agent examples include carbonyl halide (such as phosgene), carbonate ester (such as diphenyl carbonate), and haloformate (such as dihaloformate of dihydric phenol). These may be used alone or in combination of two or more.
  • the resin composition of the present invention contains 50 to 95% by weight of acrylic resin and 5 to 50% by weight of polycarbonate resin.
  • the acrylic resin is preferably contained in a proportion of 50 to 80% by weight, and the polycarbonate resin is preferably contained in a proportion of 20 to 50% by weight.
  • the resin composition of the present invention includes a compatibilizer, a stabilizer, an antioxidant, and a light stabilizer within a range that does not impair the object of the present invention.
  • Conventional additives such as additives, colorants, foaming agents, lubricants, mold release agents, antistatic agents, flame retardants, flame retardant aids, UV absorbers, dyes, pigments, polymerization inhibitors, reinforcing agents, etc.
  • a thermoplastic resin or the like may be blended. These additives may be added at the time of melt kneading of the resin mixture containing the acrylic resin and the polycarbonate resin, or may be added before or after the melt kneading. When the additive is added, the content thereof is preferably about 0.005 to 30% by weight with respect to the resin composition.
  • the ratio of the melt viscosity of the acrylic resin and (eta A) and the melt viscosity of the polycarbonate ( ⁇ B) is from 0.40 to 3.00.
  • the melt viscosity is a melt viscosity at a temperature of 240 ° C. and a shear rate of 60 sec ⁇ 1 . If this ratio ( ⁇ A / ⁇ B ) is less than 0.40 or exceeds 3.00, the viscosity of the resins will be too far apart, making it difficult to mix uniformly during melt-kneading, and the resulting resin composition The transparency of the is reduced.
  • This ratio ( ⁇ A / ⁇ B ) is preferably 0.42 to 2.90.
  • the resin composition of the present invention satisfies the following formula (a). 2 ⁇ (MVR PC ⁇ W a ⁇ W a ) / (W b ⁇ W b ) ⁇ 50 (a)
  • MVR PC represents a melt volume rate of the polycarbonate-based resin at 300 ° C.
  • W a is the weight percent of (meth) acrylic acid ester represented by the formula (I) in the monomer components It represents, W b represents the weight percent of the polycarbonate resin in the resin composition.
  • a resin composition having excellent transparency can be obtained.
  • the affinity between the acrylic resin and the polycarbonate resin is lowered, and a transparent resin composition cannot be obtained.
  • the resin composition of the present invention preferably satisfies the following formula (a) ′. 2.4 ⁇ (MVR PC ⁇ W a ⁇ W a ) / (W b ⁇ W b ) ⁇ 40 (a) ′
  • the resin composition of the present invention is obtained by melt-kneading a resin mixture containing the above-mentioned specific acrylic resin and the above-mentioned specific polycarbonate resin.
  • melt kneading is usually performed at a temperature of 180 to 320 ° C., preferably 200 to 300 ° C., and usually a shear rate of 10 to 500 sec ⁇ 1 , preferably 20 to 300 sec ⁇ 1. More preferably, it is carried out at a shear rate of 30 to 200 sec ⁇ 1 .
  • an ordinary mixer, kneader, or the like can be used as an apparatus used for melt kneading.
  • Specific examples include a single screw kneading extruder, a twin screw kneading extruder, a ribbon blender, a Henschel mixer, a Banbury mixer, and a drum tumbler.
  • a twin-screw kneading extruder is preferable.
  • the melt-kneading can be performed in an atmosphere of an inert gas such as nitrogen gas, argon gas, or helium gas as necessary.
  • the resin composition of the present invention is processed into a desired shape and processed into a molded article having excellent transparency (optical characteristics) and mechanical strength.
  • a molded body is useful as, for example, an electro-optical material, a cover material, a resin glazing material, and the like.
  • the obtained resin composition may be molded as it is in the apparatus used for the melt kneading described above. Further, after the obtained resin composition is made into a pellet or the like, it may be melt-molded in a molding machine using a molding machine such as an injection molding machine or a hydraulic press.
  • the molding temperature is usually about 150 to 350 ° C, preferably about 180 to 320 ° C, more preferably about 180 to 300 ° C.
  • MFR Mass Flow Rate
  • a reaction vessel was charged with 100 parts by weight of this monomer mixture, 285 parts by weight of ion-exchanged water, and 0.18 parts by weight of a 1.2% by weight sodium polyacrylate aqueous solution as a suspension stabilizer, and at 80 ° C. for 3 hours. Suspension polymerization was performed. The obtained slurry-like reaction liquid was dehydrated and washed with a dehydrator, and then dried to obtain a bead-like acrylic resin. This bead-shaped acrylic resin was charged into a biaxial kneader (manufactured by Nippon Steel Works, Ltd., TEX-30), and melt-kneaded at 250 ° C. and 200 rpm.
  • a biaxial kneader manufactured by Nippon Steel Works, Ltd., TEX-30
  • Table 2 shows the viscosity average molecular weight (Mv) and MVR of the polycarbonate (PC) used. These are all polycarbonates manufactured by Sumika Stylon Polycarbonate Co., Ltd. Hereinafter, as also described in Table 2, the caliber 301-40 may be abbreviated as PC-40.
  • Example 1 Preparation of resin composition
  • 70 wt% of the acrylic resin obtained in Synthesis Example 1 and 30 wt% of PC-40 were mixed with a twin-screw kneading extruder (manufactured by Nippon Steel Works, TEX-30SS, The ratio (L / D) of the screw length (L) to the screw diameter (D) was 41), and the mixture was melt-kneaded at a cylinder temperature of 250 ° C. and a rotation speed of 100 rpm (shear rate of 81 sec ⁇ 1 ).
  • Table 3 shows the melt viscosity ratio ( ⁇ A / ⁇ B ) between the acrylic resin and the polycarbonate resin.
  • the melt was extruded into a strand shape, cooled, and then cut with a strand cutter to obtain a pellet-shaped resin composition.
  • Table 3 shows the result of visual observation of the appearance of the obtained resin composition.
  • the obtained resin composition was injection molded into a mold having a cylinder temperature of 250 ° C. and a setting of 60 ° C. using an injection molding machine (“IS130FII” manufactured by Toshiba Machine Co., Ltd.).
  • a plate-like molded body of 50 mm ⁇ 3.4 mm was obtained.
  • the obtained plate-shaped molded product was calculated the value of "(MVR PC ⁇ W a ⁇ W a) / (W b ⁇ W b) ".
  • the results are shown in Table 3.
  • Examples 2 to 8 and Comparative Examples 1 to 7 Preparation of resin composition
  • Resin compositions were obtained in the same manner as in Example 1 except that the components shown in Table 3 were used in the proportions shown in Table 3.
  • Table 3 shows the result of visual observation of the appearance of the obtained resin composition.
  • the obtained resin composition was molded into a plate-like molded body in the same procedure as in Example 1, and the value of “(MVR PC ⁇ W a ⁇ W a ) / (W b ⁇ W b )” was set. Calculated. The results are shown in Table 3.
  • Total light transmittance (Tt) Total light transmittance (Tt)
  • HR-100 transmittance meter
  • JIS K7361-1 JIS K7361-1
  • VST Vicat softening temperature
  • molded articles obtained by molding the resin compositions of the present invention were made of acrylic resins having excellent transparency (Synthesis Examples 1, 3 and 5). It can be seen that the molded article obtained by molding (Reference Examples 1 to 3) has transparency comparable to that of the molded article. Moreover, it turns out that the molded object of this invention has the outstanding heat resistance and impact resistance. On the other hand, the molded products obtained by molding the resin compositions of Comparative Examples 1 to 3 and 5 are not particularly inferior in heat resistance and impact resistance, but it is found that Tt is remarkably low and not transparent.

Abstract

This resin composition contains an acrylic-based resin and a polycarbonate-based resin at a ratio of 50 to 95 mass% and 5 to 50 mass%, respectively. The acrylic-based resin comprises a copolymer obtained by polymerizing monomer components comprising 50 to 95 mass% methyl methacrylate, 5 to 50 mass% ester (meth)acrylate represented by formula (I), and 0.1 to 20 mass% other monofunctional monomer, and has a viscosity-average molecular weight of 80000 to 300000. The polycarbonate-based resin has a viscosity-average molecular weight of 16000 to 25000. The ratio (ηAB) between the melt viscosity (ηA) of the acrylic-based resin at a temperature of 240°C and a shear rate of 60sec-1 and the melt viscosity (ηB) of the polycarbonate-based resin at a temperature of 240°C and a shear rate of 60sec-1 is 0.40 to 3.00, and formula (a) is satisfied.

Description

樹脂組成物、樹脂組成物の製造方法および成形体Resin composition, method for producing resin composition, and molded article
 本発明は、優れた透明性を有する樹脂組成物およびその製造方法に関する。さらに、この樹脂組成物を成形して得られる成形体に関する。 The present invention relates to a resin composition having excellent transparency and a method for producing the same. Furthermore, it is related with the molded object obtained by shape | molding this resin composition.
 ポリカーボネート系樹脂は、一般的に、優れた高温安定性、寸法安定性、耐衝撃性、剛性、透明性などを有する。しかし、耐スクラッチ性および長期UV耐性が不十分で、応力複屈折の発生という欠点も有している。一方、ポリメチルメタクリレートなどのアクリル系樹脂は、優れた透明性、表面硬度、UV耐性、耐候性、化学耐性などを有することが知られている。しかし、アクリル系樹脂は、寸法安定性、耐衝撃性、低温耐性などが不十分である。 Polycarbonate resins generally have excellent high temperature stability, dimensional stability, impact resistance, rigidity, transparency, and the like. However, scratch resistance and long-term UV resistance are insufficient, and there is a disadvantage that stress birefringence occurs. On the other hand, acrylic resins such as polymethylmethacrylate are known to have excellent transparency, surface hardness, UV resistance, weather resistance, chemical resistance, and the like. However, acrylic resins are insufficient in dimensional stability, impact resistance, low temperature resistance and the like.
 したがって、ポリカーボネート系樹脂とアクリル系樹脂との混合物は、それぞれの樹脂が個々に有する欠点を補い、各種用途に使用可能な性質を有することが期待される。しかし、一般に、ポリカーボネート系樹脂とアクリル系樹脂との混合物は不透明であり、透明性が要求される用途には使用できないという問題がある。そこで、ポリカーボネート系樹脂とアクリル系樹脂との透明な混合物を得るために、種々の方法が提案されている。 Therefore, it is expected that a mixture of a polycarbonate resin and an acrylic resin compensates for the disadvantages of each resin and has properties that can be used for various applications. However, in general, a mixture of a polycarbonate resin and an acrylic resin is opaque and has a problem that it cannot be used for applications requiring transparency. Therefore, various methods have been proposed in order to obtain a transparent mixture of a polycarbonate resin and an acrylic resin.
 例えば、特許文献1には、芳香族ポリカーボネートと、全メチルメタクリレート単位の少なくとも50%がシンジオタクチック配置にある、シンジオタクチックポリメチルメタクリレートとを混合する方法が開示されている。しかし、この方法で得られる混合物は、透明性が必ずしも十分ではない。
 また、特許文献2には、ポリカーボネート97~60重量%とポリメチルメタクリレート3~40重量%からなる樹脂を、微量型高剪断成形加工機を用いて溶融混練する溶融混練方法が開示されている。しかし、この方法で得られる溶融混練物も、透明性の点で必ずしも十分ではない。
 また、特許文献3には、芳香族ポリカーボネートと、メチルメタクリレートとシクロヘキシルメタクリレートを共重合して得られるメタクリレート共重合体とからなる共重合体混合物が開示されている。しかし、この共重合体混合物も、透明性の点で必ずしも十分でない。
For example, Patent Document 1 discloses a method of mixing an aromatic polycarbonate and syndiotactic polymethyl methacrylate in which at least 50% of all methyl methacrylate units are in a syndiotactic configuration. However, the mixture obtained by this method is not necessarily sufficiently transparent.
Patent Document 2 discloses a melt-kneading method in which a resin composed of 97 to 60% by weight of polycarbonate and 3 to 40% by weight of polymethyl methacrylate is melt-kneaded using a trace type high-shear molding machine. However, the melt-kneaded product obtained by this method is not always sufficient in terms of transparency.
Patent Document 3 discloses a copolymer mixture comprising an aromatic polycarbonate and a methacrylate copolymer obtained by copolymerizing methyl methacrylate and cyclohexyl methacrylate. However, this copolymer mixture is not always sufficient in terms of transparency.
特開平6−128475号公報JP-A-6-128475 特開2009−196196号公報JP 2009-196196 A 特開平1−1749号公報JP-A-1-1749
 本発明の課題は、優れた透明性を有する樹脂組成物を提供することである。 An object of the present invention is to provide a resin composition having excellent transparency.
 本発明は、以下の(1)~(6)に関する。
 (1)アクリル系樹脂を50~95重量%およびポリカーボネート系樹脂を5~50重量%の割合で含有する樹脂組成物であって、前記アクリル系樹脂が、メタクリル酸メチル50~95重量%と、下記式(I)
Figure JPOXMLDOC01-appb-I000002
 (式(I)中、Rは水素原子またはメチル基を表し、Rはシクロアルキル基で置換されたアルキル基、シクロアルキル基またはアルキルシクロアルキル基を表す。)で示される(メタ)アクリル酸エステル5~50重量%と、これら以外の単官能単量体0.1~20重量%とからなる単量体成分を重合させて得られる共重合体を含み、かつ80000~300000の粘度平均分子量を有する樹脂であり、前記ポリカーボネート系樹脂が、16000~25000の粘度平均分子量を有し、温度240℃および剪断速度60sec−1におけるアクリル系樹脂の溶融粘度(η)と、温度240℃および剪断速度60sec−1におけるポリカーボネートの溶融粘度(η)との比(η/η)が0.40~3.00であり、下記式(a)
 2≦(MVRPC×W×W)/(W×W)≦50   (a)
 (式(a)中、MVRPCは300℃におけるポリカーボネート系樹脂のメルトボリュームレートを表し、Wは前記単量体成分中における式(I)で示される(メタ)アクリル酸エステルの重量%を表し、Wは樹脂組成物中におけるポリカーボネート系樹脂の重量%を表す。)を満足する、樹脂組成物。
 (2)前記式(I)で示される(メタ)アクリル酸エステルが、メタクリル酸シクロヘキシル、アクリル酸シクロヘキシル、メタクリル酸ジシクロペンタニルおよびアクリル酸ジシクロペンタニルからなる群より選ばれる少なくとも1種のエステルである、(1)に記載の樹脂組成物。
 (3)単官能単量体が、アクリル酸メチル、アクリル酸エチルおよびアクリル酸ブチルからなる群より選ばれる少なくとも1種の単量体である、(1)に記載の樹脂組成物。
 (4)上記(1)~(3)のいずれかに記載の樹脂組成物を製造する方法であって、アクリル系樹脂とポリカーボネート系樹脂を含む樹脂混合物を溶融混練する工程を含む、方法。
 (5)前記溶融混練が、180~320℃の温度、および10~500sec−1の剪断速度で行われる、(4)に記載の方法。
 (6)上記(1)から(3)のいずれかに記載の樹脂組成物を成形して得られる、成形体。
The present invention relates to the following (1) to (6).
(1) A resin composition containing 50 to 95% by weight of an acrylic resin and 5 to 50% by weight of a polycarbonate resin, wherein the acrylic resin contains 50 to 95% by weight of methyl methacrylate, Formula (I)
Figure JPOXMLDOC01-appb-I000002
(In formula (I), R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group, a cycloalkyl group, or an alkylcycloalkyl group substituted with a cycloalkyl group.) Viscosity average of 80000 to 300000 including a copolymer obtained by polymerizing a monomer component consisting of 5 to 50% by weight of acid ester and 0.1 to 20% by weight of other monofunctional monomer A resin having a molecular weight, wherein the polycarbonate resin has a viscosity average molecular weight of 16000 to 25000, a melt viscosity (η A ) of the acrylic resin at a temperature of 240 ° C. and a shear rate of 60 sec −1 , a temperature of 240 ° C. and The ratio (η A / η B ) to the melt viscosity (η B ) of polycarbonate at a shear rate of 60 sec −1 is 0.40 to 3.00, and the following formula (a )
2 ≦ (MVR PC × W a × W a ) / (W b × W b ) ≦ 50 (a)
(In the formula (a), MVR PC represents a melt volume rate of the polycarbonate-based resin at 300 ° C., W a is the weight percent of (meth) acrylic acid ester represented by the formula (I) in the monomer components represents, W b satisfies the representative.) the weight percent of the polycarbonate resin in the resin composition, the resin composition.
(2) The (meth) acrylic acid ester represented by the formula (I) is at least one selected from the group consisting of cyclohexyl methacrylate, cyclohexyl acrylate, dicyclopentanyl methacrylate, and dicyclopentanyl acrylate. The resin composition according to (1), which is an ester.
(3) The resin composition according to (1), wherein the monofunctional monomer is at least one monomer selected from the group consisting of methyl acrylate, ethyl acrylate, and butyl acrylate.
(4) A method for producing the resin composition according to any one of (1) to (3), comprising a step of melt-kneading a resin mixture containing an acrylic resin and a polycarbonate resin.
(5) The method according to (4), wherein the melt-kneading is performed at a temperature of 180 to 320 ° C. and a shear rate of 10 to 500 sec −1 .
(6) A molded product obtained by molding the resin composition according to any one of (1) to (3).
 本発明によれば、優れた透明性を有する樹脂組成物が得られ、この樹脂組成物を成形することにより、優れた透明性を有する成形体が得られる。さらに、本発明の樹脂組成物および本発明の成形体は、優れた機械的強度も有する。したがって、本発明の樹脂組成物および本発明の成形体は、電子光学材料、カバー材料、樹脂グレージング材料などに好適に使用される。 According to the present invention, a resin composition having excellent transparency can be obtained, and a molded article having excellent transparency can be obtained by molding this resin composition. Furthermore, the resin composition of the present invention and the molded article of the present invention also have excellent mechanical strength. Therefore, the resin composition of the present invention and the molded article of the present invention are suitably used for electro-optical materials, cover materials, resin glazing materials and the like.
 本発明の樹脂組成物は、特定のアクリル系樹脂および特定のポリカーボネート系樹脂を含有する。 The resin composition of the present invention contains a specific acrylic resin and a specific polycarbonate resin.
<アクリル系樹脂>
 本発明に用いられるアクリル系樹脂は、メタクリル酸メチル50~95重量%と、下記式(I)
Figure JPOXMLDOC01-appb-I000003
 (式(I)中、Rは水素原子またはメチル基を表し、Rはシクロアルキル基で置換されたアルキル基、シクロアルキル基またはアルキルシクロアルキル基を表す。)で示される(メタ)アクリル酸エステル5~50重量%と、これら以外の単官能単量体0.1~20重量%とからなる単量体成分を重合させて得られる共重合体を含み、かつ80000~300000の粘度平均分子量を有する樹脂である。
<Acrylic resin>
The acrylic resin used in the present invention comprises 50 to 95% by weight of methyl methacrylate and the following formula (I)
Figure JPOXMLDOC01-appb-I000003
(In formula (I), R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group, a cycloalkyl group, or an alkylcycloalkyl group substituted with a cycloalkyl group.) Viscosity average of 80000 to 300000 including a copolymer obtained by polymerizing a monomer component consisting of 5 to 50% by weight of acid ester and 0.1 to 20% by weight of other monofunctional monomer It is a resin having a molecular weight.
 なお、本明細書において、用語「(メタ)アクリル」は、「アクリル」または「メタクリル」を意味する。 In the present specification, the term “(meth) acryl” means “acryl” or “methacryl”.
 式(I)のRは、シクロアルキル基で置換されたアルキル基、シクロアルキル基、アルキルシクロアルキル基またはジシクロペンタニル基を表す。これらの中でもシクロアルキル基またはジシクロペンタニル基が好ましい。
 シクロアルキル基としては、炭素数5~12のシクロアルキル基が好ましい。炭素数5~12のシクロアルキル基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基などが挙げられる。これらの中でも、シクロヘキシル基が好ましい。
 アルキル基としては、炭素数1~4のアルキル基が好ましい。炭素数1~4のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基などが挙げられる。
 シクロアルキル基で置換されたアルキル基としては、例えば、少なくとも1つのH(水素原子)が上記炭素数5~12のシクロアルキル基で置換されたメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基などが挙げられる。
 アルキルシクロアルキル基としては、例えば、少なくとも1つのHが、上記炭素数1~4のアルキル基で置換されたシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基などが挙げられる。
R 2 in formula (I) represents an alkyl group, a cycloalkyl group, an alkylcycloalkyl group or a dicyclopentanyl group substituted with a cycloalkyl group. Among these, a cycloalkyl group or a dicyclopentanyl group is preferable.
As the cycloalkyl group, a cycloalkyl group having 5 to 12 carbon atoms is preferable. Examples of the cycloalkyl group having 5 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group. Among these, a cyclohexyl group is preferable.
As the alkyl group, an alkyl group having 1 to 4 carbon atoms is preferable. Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group.
Examples of the alkyl group substituted with a cycloalkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group in which at least one H (hydrogen atom) is substituted with the above cycloalkyl group having 5 to 12 carbon atoms. , N-butyl group, isobutyl group, tert-butyl group and the like.
Examples of the alkylcycloalkyl group include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group in which at least one H is substituted with the above alkyl group having 1 to 4 carbon atoms.
 式(I)で示される(メタ)アクリル酸エステルとしては、メタクリル酸シクロヘキシル、アクリル酸シクロヘキシル、メタクリル酸ジシクロペンタニルおよびアクリル酸ジシクロペンタニルからなる群より選ばれる少なくとも1種のエステルであることが好ましく、より好ましくはメタクリル酸シクロヘキシルである。 The (meth) acrylic acid ester represented by the formula (I) is at least one ester selected from the group consisting of cyclohexyl methacrylate, cyclohexyl acrylate, dicyclopentanyl methacrylate and dicyclopentanyl acrylate. Of these, cyclohexyl methacrylate is more preferable.
 メタクリル酸メチルおよび式(I)で示される(メタ)アクリル酸エステル以外の単官能単量体としては、例えば、メタクリル酸メチルおよび式(I)で示される(メタ)アクリル酸エステル以外の(メタ)アクリル酸アルキル、アルケニルシアン化合物(例えば、アクリロニトリル、メタクリロニトリルなど)、アクリル酸、メタクリル酸、無水マレイン酸などが挙げられる。これらの中でも、メタクリル酸アルキルまたはアクリル酸アルキルが好ましい。
 メタクリル酸アルキルとしては、例えば、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸t−ブチル、メタクリル酸sec−ブチル、メタクリル酸イソブチル、メタクリル酸2−エチルヘキシルなどが挙げられる。これらの中でも、炭素数2~4のアルキル基を有するメタクリル酸アルキルが好ましい。アクリル酸アルキルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸ブチル(アクリル酸n−ブチル、アクリル酸t−ブチル、アクリル酸sec−ブチル、アクリル酸イソブチル)、アクリル酸2−エチルヘキシルなどが挙げられる。これらの中でも、炭素数1~4のアルキル基を有するアクリル酸アルキルが好ましく、アクリル酸メチルがより好ましい。
 なお、単官能単量体は、単独で使用してもよく、2種以上を併用してもよい。
Examples of monofunctional monomers other than methyl methacrylate and (meth) acrylic acid ester represented by formula (I) include (meth) acrylic acid esters other than methyl methacrylate and (meth) acrylic acid ester represented by formula (I). ) Alkyl acrylate, alkenyl cyanide compounds (for example, acrylonitrile, methacrylonitrile, etc.), acrylic acid, methacrylic acid, maleic anhydride and the like. Among these, alkyl methacrylate or alkyl acrylate is preferable.
Examples of the alkyl methacrylate include ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, and the like. Is mentioned. Among these, alkyl methacrylate having an alkyl group having 2 to 4 carbon atoms is preferable. Examples of the alkyl acrylate include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, butyl acrylate (n-butyl acrylate, t-butyl acrylate, sec-butyl acrylate, acrylic acid Isobutyl) and 2-ethylhexyl acrylate. Among these, an alkyl acrylate having an alkyl group having 1 to 4 carbon atoms is preferable, and methyl acrylate is more preferable.
In addition, a monofunctional monomer may be used independently and may use 2 or more types together.
 メタクリル酸メチルは、アクリル系樹脂の耐候性および透明性の観点から、アクリル系樹脂を構成する単量体成分中に、50~95重量%の割合で含有され、好ましくは60~90重量%の割合で含有される。
 式(I)で示される(メタ)アクリル酸エステルは、アクリル系樹脂を構成する単量体成分中に、5~50重量%の割合で含有され、好ましくは10~40重量%の割合で含有される。式(I)で示される(メタ)アクリル酸エステルの含有量が5重量%未満の場合、得られるアクリル系樹脂のポリカーボネート系樹脂に対する相溶性が低下し、樹脂組成物の透明性が低くなる。一方、式(I)で示される(メタ)アクリル酸エステルの含有量が50重量%を超える場合、相溶性(透明性)の低下に加え、樹脂組成物の耐候性も低下する。なお、透明性および耐候性に乏しい樹脂組成物を成形して得られる成形体も、透明性および耐候性が低下する。
 単官能単量体は、アクリル系樹脂を構成する単量体成分中に、0.1~20重量%の割合で含有され、好ましくは0.2~10重量%、より好ましくは0.3~5重量%の割合で含有される。単官能単量体の含有量が0.1重量%未満の場合、アクリル系樹脂の熱分解が起こりやすくなる。一方、単官能単量体の含有量が20重量%を超えると、透明性および耐熱性が低下する。
From the viewpoint of weather resistance and transparency of the acrylic resin, methyl methacrylate is contained in the monomer component constituting the acrylic resin in a proportion of 50 to 95% by weight, preferably 60 to 90% by weight. Contained in proportions.
The (meth) acrylic acid ester represented by the formula (I) is contained in the monomer component constituting the acrylic resin in a proportion of 5 to 50% by weight, preferably in a proportion of 10 to 40% by weight. Is done. When the content of the (meth) acrylic acid ester represented by the formula (I) is less than 5% by weight, the compatibility of the obtained acrylic resin with the polycarbonate resin is lowered, and the transparency of the resin composition is lowered. On the other hand, when the content of the (meth) acrylic acid ester represented by the formula (I) exceeds 50% by weight, the weather resistance of the resin composition also decreases in addition to the decrease in compatibility (transparency). In addition, transparency and a weather resistance fall also in the molded object obtained by shape | molding a resin composition with few transparency and a weather resistance.
The monofunctional monomer is contained in the monomer component constituting the acrylic resin in a proportion of 0.1 to 20% by weight, preferably 0.2 to 10% by weight, more preferably 0.3 to It is contained at a ratio of 5% by weight. When the content of the monofunctional monomer is less than 0.1% by weight, the acrylic resin is likely to be thermally decomposed. On the other hand, when the content of the monofunctional monomer exceeds 20% by weight, transparency and heat resistance are lowered.
 単量体成分の重合法は、特に限定されず、例えば、乳化重合法、懸濁重合法、塊状重合法、注液重合法(キャスト重合法)などの公知の重合法で行われる。重合は、光照射や重合開始剤を用いて行われ、アゾ系開始剤(例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)など)、過酸化物系開始剤(ラウロイルパーオキサイド、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、ベンゾイルパーオキサイドなど)、有機過酸化物とアミン類とを組み合わせたレドックス系開始剤などの重合開始剤を用いることが好ましい。
 重合開始剤の使用量は、単量体の種類、単量体の割合などに応じて適宜決定されるが、単量体成分100重量部に対して、通常0.01~1重量部、好ましくは0.01~0.5重量部の割合で用いられる。
 なお、重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。
The polymerization method of the monomer component is not particularly limited, and for example, a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, or a liquid injection polymerization method (cast polymerization method) is performed. Polymerization is performed using light irradiation or a polymerization initiator, and an azo initiator (for example, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), etc.) ), Peroxide initiators (lauroyl peroxide, 1,1-di (t-butylperoxy) cyclohexane, benzoyl peroxide, etc.), redox initiators combining organic peroxides and amines, etc. It is preferable to use a polymerization initiator.
The amount of the polymerization initiator used is appropriately determined according to the type of monomer, the ratio of the monomer, etc., but is usually 0.01 to 1 part by weight, preferably 100 parts by weight of the monomer component. Is used in a proportion of 0.01 to 0.5 parts by weight.
In addition, a polymerization initiator may be used independently and may use 2 or more types together.
 さらに、分子量を制御するために、連鎖移動剤(メチルメルカプタン、n−ブチルメルカプタン、t−ブチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、2−エチルヘキシルチオグリコレートなどのメルカプタン類など)、架橋剤などを添加してもよい。これらの使用量は、単量体の種類、単量体の割合などに応じて適宜決定される。
 なお、連鎖移動剤および架橋剤は、それぞれ単独で用いてもよく、それぞれ2種以上を併用してもよい。
Furthermore, in order to control the molecular weight, chain transfer agents (such as mercaptans such as methyl mercaptan, n-butyl mercaptan, t-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, 2-ethylhexyl thioglycolate), crosslinking An agent or the like may be added. The amount of these used is appropriately determined according to the type of monomer, the proportion of monomer, and the like.
The chain transfer agent and the crosslinking agent may be used alone or in combination of two or more.
 単量体成分の重合温度、重合時間などは、特に限定されず、単量体の種類、単量体の割合などに応じて適宜決定される。 The polymerization temperature and polymerization time of the monomer component are not particularly limited, and are appropriately determined according to the type of monomer, the ratio of the monomer, and the like.
 本発明に用いられるアクリル系樹脂は、上記単量体成分を重合させて得られる共重合体を含み、かつ80000~300000の粘度平均分子量を有する。アクリル系樹脂の粘度平均分子量が80000未満の場合、耐衝撃性および耐熱性が低下する。一方、アクリル系樹脂の粘度平均分子量が300000を超える場合、溶融混練しにくくなり、成形加工がしにくくなる。アクリル系樹脂は、好ましくは90000~250000の粘度平均分子量を有する。
 アクリル系樹脂の粘度平均分子量(Mv)は、下記の式(1)を用いて求められる。
 lnMv={ln[η]−ln(4.8×10−5)}/0.8(1)
 式(1)中、[η]は極限粘度を表し、ISO 1628−6に準拠して測定される粘度数Vから、下記の式(2)を用いて求められる。
 V=[η]+0.4×[η]     (2)
The acrylic resin used in the present invention contains a copolymer obtained by polymerizing the above monomer components, and has a viscosity average molecular weight of 80,000 to 300,000. When the acrylic resin has a viscosity average molecular weight of less than 80000, impact resistance and heat resistance are lowered. On the other hand, when the viscosity average molecular weight of the acrylic resin exceeds 300,000, it becomes difficult to melt and knead, and molding processing becomes difficult. The acrylic resin preferably has a viscosity average molecular weight of 90000-250,000.
The viscosity average molecular weight (Mv) of the acrylic resin is obtained using the following formula (1).
lnMv = {ln [η] −ln (4.8 × 10 −5 )} / 0.8 (1)
In the formula (1), [η] represents the intrinsic viscosity, and is obtained from the viscosity number V N measured according to ISO 1628-6, using the following formula (2).
V N = [η] + 0.4 × [η] 2 (2)
 アクリル系樹脂の流動性は、3.8kg荷重で測定した230℃におけるメルトマスフローレート(MFR)で評価される。アクリル系樹脂の流動性(MFR)は特に限定されないが、好ましくは0.1~50g/10分、より好ましくは0.2~30g/10分である。アクリル系樹脂がこのような範囲のMFRを有すると、流動性に優れるため加工性が向上し、樹脂組成物を製造する際に溶融混練しやすくなる。また、得られる樹脂組成物および成形体の透明性および機械的強度も向上する。 The fluidity of the acrylic resin is evaluated by a melt mass flow rate (MFR) at 230 ° C. measured at a load of 3.8 kg. The fluidity (MFR) of the acrylic resin is not particularly limited, but is preferably 0.1 to 50 g / 10 minutes, more preferably 0.2 to 30 g / 10 minutes. When the acrylic resin has an MFR in such a range, the fluidity is excellent and the processability is improved, and the resin composition is easily melt-kneaded. Moreover, the transparency and mechanical strength of the resulting resin composition and molded article are also improved.
<ポリカーボネート系樹脂>
 本発明に用いられるポリカーボネート系樹脂は、16000~25000の粘度平均分子量を有するものであれば、特に限定されない。ポリカーボネート系樹脂は、例えば、二価フェノールとカルボニル化剤とを界面重縮合法や溶融エステル交換法などで反応させることにより得られる樹脂;カーボネートプレポリマーを固相エステル交換法などで重合させることにより得られる樹脂;環状カーボネート化合物を開環重合法で重合させることにより得られる樹脂などが挙げられる。
<Polycarbonate resin>
The polycarbonate resin used in the present invention is not particularly limited as long as it has a viscosity average molecular weight of 16000 to 25000. Polycarbonate resins are, for example, resins obtained by reacting a dihydric phenol and a carbonylating agent by an interfacial polycondensation method or a melt transesterification method; by polymerizing a carbonate prepolymer by a solid phase transesterification method or the like. Examples of the resin to be obtained include a resin obtained by polymerizing a cyclic carbonate compound by a ring-opening polymerization method.
 ポリカーボネート系樹脂の粘度平均分子量が16000未満の場合、耐衝撃性および耐熱性が低下する。一方、ポリカーボネート系樹脂の粘度平均分子量が25000を超える場合、溶融混練するときの温度を高くする必要があり、またアクリル系樹脂との相溶性が悪くなる。ポリカーボネート系樹脂は、好ましくは16000~24000の粘度平均分子量を有する。
 ポリカーボネート系樹脂の粘度平均分子量(Mv)は、Schnellの式[η]=1.23×10−4Mv0.83を用いて、20℃塩化メチレン溶液の極限粘度[η]から、算出することができる。
When the viscosity average molecular weight of the polycarbonate resin is less than 16000, impact resistance and heat resistance are lowered. On the other hand, when the viscosity average molecular weight of the polycarbonate resin exceeds 25,000, it is necessary to increase the temperature at the time of melt-kneading, and the compatibility with the acrylic resin is deteriorated. The polycarbonate resin preferably has a viscosity average molecular weight of 16000 to 24,000.
The viscosity average molecular weight (Mv) of the polycarbonate resin is calculated from the intrinsic viscosity [η] of a 20 ° C. methylene chloride solution using Schnell's formula [η] = 1.23 × 10 −4 Mv 0.83. Can do.
 本発明で用いるポリカーボネート系樹脂の流動性は、1.2kg荷重で測定した300℃におけるメルトボリュームレート(MVR)で評価される。ポリカーボネート系樹脂の流動性(MVR)は特に限定されないが、好ましくは8~50g/10分、より好ましくは10~45g/10分である。ポリカーボネート系樹脂がこのような範囲のMVRを有すると、流動性に優れるため加工性が向上し、樹脂組成物を製造する際に溶融混練しやすくなる。また、得られる樹脂組成物および成形体の透明性および機械的強度も向上する。 The fluidity of the polycarbonate resin used in the present invention is evaluated by the melt volume rate (MVR) at 300 ° C. measured with a 1.2 kg load. The flowability (MVR) of the polycarbonate resin is not particularly limited, but is preferably 8 to 50 g / 10 minutes, more preferably 10 to 45 g / 10 minutes. When the polycarbonate-based resin has an MVR in such a range, the fluidity is excellent, so that the processability is improved and the resin composition is easily melt-kneaded. Moreover, the transparency and mechanical strength of the resulting resin composition and molded article are also improved.
 二価フェノールとしては、例えば、ハイドロキノン、レゾルシノール、4,4’−ジヒドロキシジフェニル、ビス(4−ヒドロキシフェニル)メタン、ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3,5−ジブロモ)フェニル}プロパン、2,2−ビス{(3−イソプロピル−4−ヒドロキシ)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3−フェニル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,4−ビス(4−ヒドロキシフェニル)−2−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス{(4−ヒドロキシ−3−メチル)フェニル}フルオレン、α,α’−ビス(4−ヒドロキシフェニル)−o−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルケトン、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルエステルなどが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。 Examples of the dihydric phenol include hydroquinone, resorcinol, 4,4′-dihydroxydiphenyl, bis (4-hydroxyphenyl) methane, bis {(4-hydroxy-3,5-dimethyl) phenyl} methane, 1,1- Bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), 2,2-bis { (4-hydroxy-3-methyl) phenyl} propane, 2,2-bis {(4-hydroxy-3,5-dimethyl) phenyl} propane, 2,2-bis {(4-hydroxy-3,5-dibromo) ) Phenyl} propane, 2,2-bis {(3-isopropyl-4-hydroxy) phenyl} propane, 2,2-bis {( -Hydroxy-3-phenyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) ) -3,3-dimethylbutane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxyphenyl)- 4-methylpentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3 , 5-trimethylcyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis {(4-hydroxy -3-methyl) phenyl} fluorene, α, α′-bis (4-hydroxyphenyl) -o-diisopropylbenzene, α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene, α, α′- Bis (4-hydroxyphenyl) -p-diisopropylbenzene, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxydiphenylsulfoxide, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ester and the like. These may be used alone or in combination of two or more.
 これらの二価フェノールの中でも、ビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンおよびα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンが好ましい。特に、ビスフェノールAの単独使用や、ビスフェノールAと、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパンおよびα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンからなる群より選択される少なくとも1種との併用が好ましい。 Among these dihydric phenols, bisphenol A, 2,2-bis {(4-hydroxy-3-methyl) phenyl} propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4 -Hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) -3,3-dimethylbutane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 1,1-bis (4-Hydroxyphenyl) -3,3,5-trimethylcyclohexane and α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene are preferred. In particular, use of bisphenol A alone, bisphenol A, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis {(4-hydroxy-3-methyl) phenyl } Combination with at least one selected from the group consisting of propane and α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene is preferred.
 カルボニル化剤としては、例えばカルボニルハライド(ホスゲンなど)、カーボネートエステル(ジフェニルカーボネートなど)、ハロホルメート(二価フェノールのジハロホルメートなど)などが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。 Examples of the carbonylating agent include carbonyl halide (such as phosgene), carbonate ester (such as diphenyl carbonate), and haloformate (such as dihaloformate of dihydric phenol). These may be used alone or in combination of two or more.
<樹脂組成物>
 本発明の樹脂組成物は、アクリル系樹脂を50~95重量%およびポリカーボネート系樹脂を5~50重量%の割合で含有する。例えば、ポリカーボネート系樹脂の含有量が5重量%未満の場合、機械的性質が不十分となる。一方、ポリカーボネート系樹脂の含有量が50重量%を超える場合、樹脂組成物および成形して得られる成形体の透明性が低下する。
 アクリル系樹脂は、好ましくは50~80重量%の割合で含有され、ポリカーボネート系樹脂は、好ましくは20~50重量%の割合で含有される。
<Resin composition>
The resin composition of the present invention contains 50 to 95% by weight of acrylic resin and 5 to 50% by weight of polycarbonate resin. For example, when the content of the polycarbonate resin is less than 5% by weight, the mechanical properties become insufficient. On the other hand, when the content of the polycarbonate resin exceeds 50% by weight, the transparency of the resin composition and the molded product obtained by molding is lowered.
The acrylic resin is preferably contained in a proportion of 50 to 80% by weight, and the polycarbonate resin is preferably contained in a proportion of 20 to 50% by weight.
 本発明の樹脂組成物には、上述の特定のアクリル系樹脂および上述の特定のポリカーボネート系樹脂以外に、本発明の目的を損なわない範囲で、相溶化剤、安定剤、酸化防止剤、光安定剤、着色剤、発泡剤、滑剤、離型剤、帯電防止剤、難燃剤、難燃助剤、紫外線吸収剤、染料、顔料、重合抑制剤、補強剤などの慣用の添加剤、少量の他の熱可塑性樹脂等を配合してもよい。これらの添加剤は、アクリル系樹脂とポリカーボネート系樹脂とを含む樹脂混合物の溶融混練時に加えてもよく、溶融混練の前または後に加えてもよい。添加剤を添加する場合、その含有量は、樹脂組成物に対して、0.005~30重量%程度が好ましい。 In addition to the specific acrylic resin and the specific polycarbonate resin described above, the resin composition of the present invention includes a compatibilizer, a stabilizer, an antioxidant, and a light stabilizer within a range that does not impair the object of the present invention. Conventional additives such as additives, colorants, foaming agents, lubricants, mold release agents, antistatic agents, flame retardants, flame retardant aids, UV absorbers, dyes, pigments, polymerization inhibitors, reinforcing agents, etc. A thermoplastic resin or the like may be blended. These additives may be added at the time of melt kneading of the resin mixture containing the acrylic resin and the polycarbonate resin, or may be added before or after the melt kneading. When the additive is added, the content thereof is preferably about 0.005 to 30% by weight with respect to the resin composition.
 本発明の樹脂組成物において、アクリル系樹脂の溶融粘度(η)とポリカーボネートの溶融粘度(η)との比(η/η)は0.40~3.00である。なお、溶融粘度は、温度240℃および剪断速度60sec−1における溶融粘度である。この比(η/η)が、0.40未満または3.00を超える場合、樹脂同士の粘度が離れすぎることとなり、溶融混練時に均一に混合することが困難となり、得られる樹脂組成物の透明性が低下する。この比(η/η)は、好ましくは0.42~2.90である。 In the resin composition of the present invention, the ratio of the melt viscosity of the acrylic resin and (eta A) and the melt viscosity of the polycarbonate (η B) (η A / η B) is from 0.40 to 3.00. The melt viscosity is a melt viscosity at a temperature of 240 ° C. and a shear rate of 60 sec −1 . If this ratio (η A / η B ) is less than 0.40 or exceeds 3.00, the viscosity of the resins will be too far apart, making it difficult to mix uniformly during melt-kneading, and the resulting resin composition The transparency of the is reduced. This ratio (η A / η B ) is preferably 0.42 to 2.90.
 さらに、本発明の樹脂組成物は、下記の式(a)を満足する。
 2≦(MVRPC×W×W)/(W×W)≦50  (a)
 (式(a)中、MVRPCは300℃におけるポリカーボネート系樹脂のメルトボリュームレートを表し、Wは前記単量体成分中における式(I)で示される(メタ)アクリル酸エステルの重量%を表し、Wは樹脂組成物中におけるポリカーボネート系樹脂の重量%を表す。)
 式(a)を満足することで、優れた透明性を有する樹脂組成物が得られる。式(a)を満足しない場合、アクリル系樹脂とポリカーボネート系樹脂との親和性が低下し、透明な樹脂組成物を得ることができない。
Furthermore, the resin composition of the present invention satisfies the following formula (a).
2 ≦ (MVR PC × W a × W a ) / (W b × W b ) ≦ 50 (a)
(In the formula (a), MVR PC represents a melt volume rate of the polycarbonate-based resin at 300 ° C., W a is the weight percent of (meth) acrylic acid ester represented by the formula (I) in the monomer components It represents, W b represents the weight percent of the polycarbonate resin in the resin composition.)
By satisfying the formula (a), a resin composition having excellent transparency can be obtained. When the formula (a) is not satisfied, the affinity between the acrylic resin and the polycarbonate resin is lowered, and a transparent resin composition cannot be obtained.
 特に、本発明の樹脂組成物は、下記の式(a)’を満足することが好ましい。
 2.4≦(MVRPC×W×W)/(W×W)≦40   (a)’
In particular, the resin composition of the present invention preferably satisfies the following formula (a) ′.
2.4 ≦ (MVR PC × W a × W a ) / (W b × W b ) ≦ 40 (a) ′
<樹脂組成物の製造方法>
 本発明の樹脂組成物は、上述の特定のアクリル系樹脂と上述の特定のポリカーボネート系樹脂を含む樹脂混合物を溶融混練して得られる。
 これらの樹脂を均一に溶融混練するために、溶融混練は、通常180~320℃、好ましくは200~300℃の温度条件下、通常10~500sec−1の剪断速度、好ましくは20~300sec−1、より好ましくは30~200sec−1の剪断速度で行われる。
<Method for producing resin composition>
The resin composition of the present invention is obtained by melt-kneading a resin mixture containing the above-mentioned specific acrylic resin and the above-mentioned specific polycarbonate resin.
In order to melt and knead these resins uniformly, melt kneading is usually performed at a temperature of 180 to 320 ° C., preferably 200 to 300 ° C., and usually a shear rate of 10 to 500 sec −1 , preferably 20 to 300 sec −1. More preferably, it is carried out at a shear rate of 30 to 200 sec −1 .
 溶融混練に用いる機器としては、通常の混合機、混練機などを用いることができる。具体的には、一軸混練押出機、二軸混練押出機、リボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラーなどが挙げられる。これらの中でも、二軸混練押出機が好ましい。溶融混練は、必要に応じて、窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガスの雰囲気下で行うことができる。 As an apparatus used for melt kneading, an ordinary mixer, kneader, or the like can be used. Specific examples include a single screw kneading extruder, a twin screw kneading extruder, a ribbon blender, a Henschel mixer, a Banbury mixer, and a drum tumbler. Among these, a twin-screw kneading extruder is preferable. The melt-kneading can be performed in an atmosphere of an inert gas such as nitrogen gas, argon gas, or helium gas as necessary.
 このようにして、優れた透明性および機械的強度を有する樹脂組成物を得ることができる。 Thus, a resin composition having excellent transparency and mechanical strength can be obtained.
 (成形体)
 本発明の樹脂組成物は、所望の形状に加工され、優れた透明性(光学的特性)および機械的強度を有する成形体に加工される。このような成形体は、例えば、電子光学材料、カバー材料、樹脂グレージング材料などとして有用である。
(Molded body)
The resin composition of the present invention is processed into a desired shape and processed into a molded article having excellent transparency (optical characteristics) and mechanical strength. Such a molded body is useful as, for example, an electro-optical material, a cover material, a resin glazing material, and the like.
 得られた樹脂組成物は、上述の溶融混練に用いた機器内でそのまま成形してもよい。また、得られた樹脂組成物をペレット状などにした後、射出成形機、油圧プレスなどの成形機を用いて、成形機内にて溶融成形してもよい。
 成形温度は、通常150~350℃程度であり、好ましくは180~320℃程度、より好ましくは180~300℃程度である。
The obtained resin composition may be molded as it is in the apparatus used for the melt kneading described above. Further, after the obtained resin composition is made into a pellet or the like, it may be melt-molded in a molding machine using a molding machine such as an injection molding machine or a hydraulic press.
The molding temperature is usually about 150 to 350 ° C, preferably about 180 to 320 ° C, more preferably about 180 to 300 ° C.
 以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、アクリル系樹脂、ポリカーボネート系樹脂、得られた樹脂組成物および成形体の各種物性は、下記の方法によって測定および評価した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these Examples.
Various physical properties of the acrylic resin, the polycarbonate resin, the obtained resin composition, and the molded body were measured and evaluated by the following methods.
<メルトマスフローレート(MFR)>
 JIS K7210に準拠して、230℃および3.8kg荷重で測定した。
<Melt Mass Flow Rate (MFR)>
According to JIS K7210, it measured at 230 degreeC and a 3.8 kg load.
<メルトボリュームフローレート(MVR)>
 ISO 1133に準拠して、300℃および1.2kg荷重で測定した。
<Melt volume flow rate (MVR)>
In accordance with ISO 1133, measurement was performed at 300 ° C. and 1.2 kg load.
<樹脂組成物の外観>
 ペレット状の樹脂組成物を目視で観察して、透明か否か(白濁)を評価した。
<Appearance of resin composition>
The pellet-shaped resin composition was visually observed to evaluate whether it was transparent (white turbidity).
(合成例1:アクリル系樹脂の合成)
 表1に示すように、89.7重量%のメタクリル酸メチル(MMA)、10重量%のメタクリル酸シクロヘキシル(CHMA)、および0.3重量%のアクリル酸メチル(MA)を混合して単量体成分を得た。この単量体成分に、重合開始剤としてラウリルパーオキサイドを0.2重量%添加し、さらに連鎖移動剤としてn−オクチルメルカプタンを0.2重量%添加し、これらを単量体成分に溶解させて単量体混合物を得た。
 反応容器に、この単量体混合物100重量部、イオン交換水285重量部、および懸濁安定剤として1.2重量%のポリアクリル酸ナトリウム水溶液0.18重量部を仕込み、80℃で3時間、縣濁重合を行った。得られたスラリー状の反応液を、脱水機で脱水し洗浄した後、乾燥してビーズ状のアクリル系樹脂を得た。
 このビーズ状のアクリル系樹脂を、二軸混練機((株)日本製鋼所製、TEX−30)に仕込み、250℃および200rpmの回転数で溶融混練した。次いで、溶融物をストランド状に押し出し、冷却後にストランドカッターで切断してペレット状のアクリル系樹脂を得た。得られたアクリル系樹脂の粘度平均分子量(Mv)およびMFRを表1に示す。
(Synthesis Example 1: Synthesis of acrylic resin)
As shown in Table 1, 89.7% by weight of methyl methacrylate (MMA), 10% by weight of cyclohexyl methacrylate (CHMA), and 0.3% by weight of methyl acrylate (MA) were mixed to form a single amount. Body components were obtained. To this monomer component, 0.2% by weight of lauryl peroxide is added as a polymerization initiator, and further, 0.2% by weight of n-octyl mercaptan is added as a chain transfer agent, and these are dissolved in the monomer component. As a result, a monomer mixture was obtained.
A reaction vessel was charged with 100 parts by weight of this monomer mixture, 285 parts by weight of ion-exchanged water, and 0.18 parts by weight of a 1.2% by weight sodium polyacrylate aqueous solution as a suspension stabilizer, and at 80 ° C. for 3 hours. Suspension polymerization was performed. The obtained slurry-like reaction liquid was dehydrated and washed with a dehydrator, and then dried to obtain a bead-like acrylic resin.
This bead-shaped acrylic resin was charged into a biaxial kneader (manufactured by Nippon Steel Works, Ltd., TEX-30), and melt-kneaded at 250 ° C. and 200 rpm. Next, the melt was extruded into a strand shape, cooled, and then cut with a strand cutter to obtain a pellet-shaped acrylic resin. Table 1 shows the viscosity average molecular weight (Mv) and MFR of the obtained acrylic resin.
(合成例2~8および比較合成例1~3:アクリル系樹脂の調製)
 表1に記載の成分を表1に記載の割合で用いたこと以外は、合成例1と同様の手順で、ペレット状のアクリル系樹脂を得た。得られたアクリル系樹脂の粘度平均分子量(Mv)およびMFRを表1に示す。
(Synthesis Examples 2-8 and Comparative Synthesis Examples 1-3: Preparation of acrylic resin)
A pellet-shaped acrylic resin was obtained in the same procedure as in Synthesis Example 1 except that the components listed in Table 1 were used in the proportions listed in Table 1. Table 1 shows the viscosity average molecular weight (Mv) and MFR of the obtained acrylic resin.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に、使用したポリカーボネート(PC)の粘度平均分子量(Mv)およびMVRを示す。これらは、全て住化スタイロンポリカーボネート(株)製のポリカーボネートである。以下、表2にも記載のように、カリバー301−40であればPC−40のように、略して記載する場合がある。 Table 2 shows the viscosity average molecular weight (Mv) and MVR of the polycarbonate (PC) used. These are all polycarbonates manufactured by Sumika Stylon Polycarbonate Co., Ltd. Hereinafter, as also described in Table 2, the caliber 301-40 may be abbreviated as PC-40.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (実施例1:樹脂組成物の調製)
 表3に示すように、70重量%の合成例1で得られたアクリル系樹脂と30重量%のPC−40とを、二軸混練押出機((株)日本製鋼所製、TEX−30SS、スクリューの長さ(L)とスクリュー径(D)との比(L/D)は41)を用いて、シリンダー温度250℃および回転数100rpm(剪断速度81sec−1)で溶融混練した。二軸混練押出機のダイから吐出した直後の溶融物の温度を測定したところ、250~255℃であった。なお、アクリル系樹脂とポリカーボネート系樹脂との溶融粘度比(η/η)を、表3に示す。
 溶融物をストランド状に押出して冷却後にストランドカッターで切断し、ペレット状の樹脂組成物を得た。得られた樹脂組成物の外観を目視で観察した結果を表3に示す。
 次に、得られた樹脂組成物を、射出成形機(東芝機械(株)製の「IS130FII」)を用いて、250℃のシリンダー温度、60℃設定の金型に射出成形して、50mm×50mm×3.4mmの板状成形体を得た。得られた板状成形体について、「(MVRPC×W×W)/(W×W)」の値を算出した。結果を表3に示す。
(Example 1: Preparation of resin composition)
As shown in Table 3, 70 wt% of the acrylic resin obtained in Synthesis Example 1 and 30 wt% of PC-40 were mixed with a twin-screw kneading extruder (manufactured by Nippon Steel Works, TEX-30SS, The ratio (L / D) of the screw length (L) to the screw diameter (D) was 41), and the mixture was melt-kneaded at a cylinder temperature of 250 ° C. and a rotation speed of 100 rpm (shear rate of 81 sec −1 ). When the temperature of the melt immediately after being discharged from the die of the twin-screw kneading extruder was measured, it was 250 to 255 ° C. Table 3 shows the melt viscosity ratio (η A / η B ) between the acrylic resin and the polycarbonate resin.
The melt was extruded into a strand shape, cooled, and then cut with a strand cutter to obtain a pellet-shaped resin composition. Table 3 shows the result of visual observation of the appearance of the obtained resin composition.
Next, the obtained resin composition was injection molded into a mold having a cylinder temperature of 250 ° C. and a setting of 60 ° C. using an injection molding machine (“IS130FII” manufactured by Toshiba Machine Co., Ltd.). A plate-like molded body of 50 mm × 3.4 mm was obtained. The obtained plate-shaped molded product was calculated the value of "(MVR PC × W a × W a) / (W b × W b) ". The results are shown in Table 3.
 (実施例2~8および比較例1~7:樹脂組成物の調製)
 表3に記載の成分を表3に記載の割合で用いたこと以外は、実施例1と同様の手順で、それぞれ樹脂組成物を得た。得られた樹脂組成物の外観を目視で観察した結果を表3に示す。
 次に、得られた樹脂組成物を、実施例1と同様の手順で板状成形体に成形し、「(MVRPC×W×W)/(W×W)」の値を算出した。結果を表3に示す。
(Examples 2 to 8 and Comparative Examples 1 to 7: Preparation of resin composition)
Resin compositions were obtained in the same manner as in Example 1 except that the components shown in Table 3 were used in the proportions shown in Table 3. Table 3 shows the result of visual observation of the appearance of the obtained resin composition.
Next, the obtained resin composition was molded into a plate-like molded body in the same procedure as in Example 1, and the value of “(MVR PC × W a × W a ) / (W b × W b )” was set. Calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、本発明の樹脂組成物(実施例1~8)は無色透明であり、優れた透明性を有することがわかる。一方、比較例1~7の樹脂組成物は、いずれも白濁しており、透明でないことがわかる。 As shown in Table 3, it can be seen that the resin compositions of the present invention (Examples 1 to 8) are colorless and transparent and have excellent transparency. On the other hand, it can be seen that the resin compositions of Comparative Examples 1 to 7 are all cloudy and not transparent.
<各種物性の測定>
 次に、実施例1~8、比較例1~3および5で得られた板状成形体について、全光線透過率(Tt)、ビカット軟化温度(VST)および衝撃強度を測定した。
 なお、合成例1、3および5で得られたアクリル系樹脂を、実施例1と同様の手順で成形した板状成形体についても、全光線透過率(Tt)、ビカット軟化温度(VST)および衝撃強度を測定した(参考例1~3)。
<Measurement of various physical properties>
Next, the total light transmittance (Tt), Vicat softening temperature (VST), and impact strength of the plate-like molded bodies obtained in Examples 1 to 8 and Comparative Examples 1 to 3 and 5 were measured.
In addition, also about the plate-shaped molded object which shape | molded the acrylic resin obtained by the synthesis examples 1, 3, and 5 in the procedure similar to Example 1, total light transmittance (Tt), Vicat softening temperature (VST), and Impact strength was measured (Reference Examples 1 to 3).
 (全光線透過率(Tt))
 透過率計(HR−100、(株)村上色彩技術研究所製)を用い、JIS K7361−1に準拠して、全光線透過率(Tt)を測定した。この数値が大きいほど、光線が透過しやすく透明性が高いことを示す。結果を表4に示す。
(Total light transmittance (Tt))
Using a transmittance meter (HR-100, manufactured by Murakami Color Research Laboratory Co., Ltd.), the total light transmittance (Tt) was measured according to JIS K7361-1. The larger this value is, the more easily light is transmitted and the higher the transparency. The results are shown in Table 4.
 (ビカット軟化温度(VST))
 得られた成形体を、20mm×20mmの大きさに切断して試験片を作製した。得られた試験片についてJIS K7206のB50法に準拠して、荷重50Nおよび昇温速度50℃/時の条件で、ビカット軟化温度(VST)を測定した。この温度が高いほど、優れた耐熱性を有することを示す。結果を表4に示す。
(Vicat softening temperature (VST))
The obtained molded body was cut into a size of 20 mm × 20 mm to prepare a test piece. The Vicat softening temperature (VST) of the obtained test piece was measured under the conditions of a load of 50 N and a heating rate of 50 ° C./hour in accordance with JIS K7206 B50 method. It shows that it has the outstanding heat resistance, so that this temperature is high. The results are shown in Table 4.
 (衝撃強度)
 JIS K7111−2に準拠してシャルピー衝撃試験を行い、衝撃強度を測定した。
測定した成形体は、いずれもノッチ(切り込み)を入れていない。衝撃強度の値が大きいほど、優れた耐衝撃性を有することを示す。結果を表4に示す。
(Impact strength)
A Charpy impact test was performed in accordance with JIS K7111-2 to measure impact strength.
None of the measured compacts has a notch. It shows that it has the outstanding impact resistance, so that the value of impact strength is large. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、本発明の樹脂組成物(実施例1~8)を成形して得られた成形体は、優れた透明性を有するアクリル系樹脂(合成例1、3および5)を成形して得られた成形体(参考例1~3)と全く遜色のない透明性を有することがわかる。また、本発明の成形体は、優れた耐熱性および耐衝撃性を有することがわかる。
 一方、比較例1~3および5の樹脂組成物を成形して得られた成形体は、耐熱性および耐衝撃性について特に劣らないものの、Ttが著しく低く、透明でないことがわかる。
As shown in Table 4, molded articles obtained by molding the resin compositions of the present invention (Examples 1 to 8) were made of acrylic resins having excellent transparency (Synthesis Examples 1, 3 and 5). It can be seen that the molded article obtained by molding (Reference Examples 1 to 3) has transparency comparable to that of the molded article. Moreover, it turns out that the molded object of this invention has the outstanding heat resistance and impact resistance.
On the other hand, the molded products obtained by molding the resin compositions of Comparative Examples 1 to 3 and 5 are not particularly inferior in heat resistance and impact resistance, but it is found that Tt is remarkably low and not transparent.

Claims (6)

  1.  アクリル系樹脂を50~95重量%およびポリカーボネート系樹脂を5~50重量%の割合で含有する樹脂組成物であって、
     前記アクリル系樹脂が、メタクリル酸メチル50~95重量%と、下記式(I)
    Figure JPOXMLDOC01-appb-I000001
     (式(I)中、Rは水素原子またはメチル基を表し、Rはシクロアルキル基で置換されたアルキル基、シクロアルキル基またはアルキルシクロアルキル基を表す。)
    で示される(メタ)アクリル酸エステル5~50重量%と、これら以外の単官能単量体0.1~20重量%とからなる単量体成分を重合させて得られる共重合体を含み、かつ80000~300000の粘度平均分子量を有する樹脂であり、
     前記ポリカーボネート系樹脂が、16000~25000の粘度平均分子量を有し、
     温度240℃および剪断速度60sec−1におけるアクリル系樹脂の溶融粘度(η)と、温度240℃および剪断速度60sec−1におけるポリカーボネートの溶融粘度(η)との比(η/η)が0.40~3.00であり、
     下記式(a)
     2≦(MVRPC×W×W)/(W×W)≦50   (a)
     (式(a)中、MVRPCは300℃におけるポリカーボネート系樹脂のメルトボリュームレートを表し、Wは前記単量体成分中における式(I)で示される(メタ)アクリル酸エステルの重量%を表し、Wは樹脂組成物中におけるポリカーボネート系樹脂の重量%を表す。)
    を満足する、樹脂組成物。
    A resin composition containing 50 to 95% by weight of an acrylic resin and 5 to 50% by weight of a polycarbonate resin,
    The acrylic resin contains 50 to 95% by weight of methyl methacrylate and the following formula (I)
    Figure JPOXMLDOC01-appb-I000001
    (In formula (I), R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group, a cycloalkyl group or an alkylcycloalkyl group substituted with a cycloalkyl group.)
    A copolymer obtained by polymerizing a monomer component consisting of 5 to 50% by weight of (meth) acrylic acid ester and 0.1 to 20% by weight of a monofunctional monomer other than these, And a resin having a viscosity average molecular weight of 80,000 to 300,000,
    The polycarbonate resin has a viscosity average molecular weight of 16000 to 25000,
    The ratio of the melt viscosity of the acrylic resin at a temperature 240 ° C. and a shear rate of 60sec -1A), the melt viscosity of the polycarbonate at a temperature 240 ° C. and a shear rate of 60 sec -1 and (η B) (η A / η B) Is 0.40 to 3.00,
    The following formula (a)
    2 ≦ (MVR PC × W a × W a ) / (W b × W b ) ≦ 50 (a)
    (In the formula (a), MVR PC represents a melt volume rate of the polycarbonate-based resin at 300 ° C., W a is the weight percent of (meth) acrylic acid ester represented by the formula (I) in the monomer components It represents, W b represents the weight percent of the polycarbonate resin in the resin composition.)
    Satisfying the resin composition.
  2.  前記式(I)で示される(メタ)アクリル酸エステルが、メタクリル酸シクロヘキシル、アクリル酸シクロヘキシル、メタクリル酸ジシクロペンタニルおよびアクリル酸ジシクロペンタニルからなる群より選ばれる少なくとも1種のエステルである、請求項1に記載の樹脂組成物。 The (meth) acrylic acid ester represented by the formula (I) is at least one ester selected from the group consisting of cyclohexyl methacrylate, cyclohexyl acrylate, dicyclopentanyl methacrylate and dicyclopentanyl acrylate. The resin composition according to claim 1.
  3.  前記単官能単量体が、アクリル酸メチル、アクリル酸エチルおよびアクリル酸ブチルからなる群より選ばれる少なくとも1種の単量体である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the monofunctional monomer is at least one monomer selected from the group consisting of methyl acrylate, ethyl acrylate, and butyl acrylate.
  4.  請求項1に記載の樹脂組成物を製造する方法であって、
     アクリル系樹脂とポリカーボネート系樹脂を含む樹脂混合物を溶融混練する工程を含む、方法。
    A method for producing the resin composition according to claim 1, comprising:
    A method comprising a step of melt-kneading a resin mixture containing an acrylic resin and a polycarbonate resin.
  5.  前記溶融混練が、180~320℃の温度、および10~500sec−1の剪断速度で行われる、請求項4に記載の方法。 The method according to claim 4, wherein the melt-kneading is performed at a temperature of 180 to 320 ° C and a shear rate of 10 to 500 sec- 1 .
  6.  請求項1に記載の樹脂組成物を成形して得られる、成形体。 A molded body obtained by molding the resin composition according to claim 1.
PCT/JP2013/071444 2012-08-06 2013-08-01 Resin composition, method for producing resin composition, and molding WO2014024949A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380041443.9A CN104520377B (en) 2012-08-06 2013-08-01 Resin combination, the manufacture method of resin combination and formed body
KR1020157005194A KR101980418B1 (en) 2012-08-06 2013-08-01 Resin composition, method for producing resin composition, and molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012173634A JP5959102B2 (en) 2012-08-06 2012-08-06 Resin composition, method for producing resin composition, and molded article
JP2012-173634 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014024949A1 true WO2014024949A1 (en) 2014-02-13

Family

ID=50068170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071444 WO2014024949A1 (en) 2012-08-06 2013-08-01 Resin composition, method for producing resin composition, and molding

Country Status (3)

Country Link
JP (1) JP5959102B2 (en)
KR (1) KR101980418B1 (en)
WO (1) WO2014024949A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186629A1 (en) * 2014-06-03 2015-12-10 株式会社クラレ Methacrylic resin composition
WO2016114250A1 (en) * 2015-01-14 2016-07-21 住友化学株式会社 Resin composition
WO2016121924A1 (en) * 2015-01-30 2016-08-04 株式会社クラレ Methacrylic resin composition and laminate using same
EP3103837A4 (en) * 2014-02-06 2017-09-20 Sumitomo Chemical Company, Limited Resin composition and molded article thereof
EP3954729A4 (en) * 2019-04-08 2022-06-01 Mitsubishi Gas Chemical Company, Inc. Film, laminate, thermoformed body, in-mold molding, method for producing molding, and method for producing in-mold molding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182414A (en) * 2014-03-26 2015-10-22 住友化学株式会社 decorative film
WO2015159552A1 (en) * 2014-04-18 2015-10-22 株式会社クラレ Methacrylic resin composition, molded body, film and polarizing plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157890A (en) * 1992-07-21 1994-06-07 Roehm Gmbh Compatible transparent thermoplastic polymer mixture and molding and coated and fiber-reinforced laminate produced therefrom
WO2006077813A1 (en) * 2005-01-19 2006-07-27 Mitsubishi Rayon Co., Ltd. Aromatic polycarbonate resin composition and light-diffusing article
JP2009196196A (en) * 2008-02-21 2009-09-03 National Institute Of Advanced Industrial & Technology Melt kneading method, molding processing method, and resin molded product of polycarbonate and polymethyl methacrylate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280070A (en) 1992-06-01 1994-01-18 Enichem S.P.A. Polycarbonate-polymethyl methacrylate blends

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157890A (en) * 1992-07-21 1994-06-07 Roehm Gmbh Compatible transparent thermoplastic polymer mixture and molding and coated and fiber-reinforced laminate produced therefrom
WO2006077813A1 (en) * 2005-01-19 2006-07-27 Mitsubishi Rayon Co., Ltd. Aromatic polycarbonate resin composition and light-diffusing article
JP2009196196A (en) * 2008-02-21 2009-09-03 National Institute Of Advanced Industrial & Technology Melt kneading method, molding processing method, and resin molded product of polycarbonate and polymethyl methacrylate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103837A4 (en) * 2014-02-06 2017-09-20 Sumitomo Chemical Company, Limited Resin composition and molded article thereof
CN106459554B (en) * 2014-06-03 2018-12-21 株式会社可乐丽 Methacrylic resin composition
TWI658085B (en) * 2014-06-03 2019-05-01 Kuraray Co., Ltd. Methacrylic resin composition
CN106459554A (en) * 2014-06-03 2017-02-22 株式会社可乐丽 Methacrylic resin composition
JPWO2015186629A1 (en) * 2014-06-03 2017-04-20 株式会社クラレ Methacrylic resin composition
WO2015186629A1 (en) * 2014-06-03 2015-12-10 株式会社クラレ Methacrylic resin composition
WO2016114250A1 (en) * 2015-01-14 2016-07-21 住友化学株式会社 Resin composition
CN107207821A (en) * 2015-01-14 2017-09-26 住友化学株式会社 Resin combination
JPWO2016114250A1 (en) * 2015-01-14 2017-10-19 住友化学株式会社 Resin composition
CN107207822A (en) * 2015-01-30 2017-09-26 株式会社可乐丽 Methacrylic resin composition and the layered product using the resin combination
JPWO2016121924A1 (en) * 2015-01-30 2017-11-09 株式会社クラレ Methacrylic resin composition and laminate using the same
WO2016121924A1 (en) * 2015-01-30 2016-08-04 株式会社クラレ Methacrylic resin composition and laminate using same
EP3954729A4 (en) * 2019-04-08 2022-06-01 Mitsubishi Gas Chemical Company, Inc. Film, laminate, thermoformed body, in-mold molding, method for producing molding, and method for producing in-mold molding

Also Published As

Publication number Publication date
JP5959102B2 (en) 2016-08-02
CN104520377A (en) 2015-04-15
KR101980418B1 (en) 2019-05-20
KR20150040974A (en) 2015-04-15
JP2014031459A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5897249B2 (en) Method for producing resin composition
JP5736187B2 (en) Method for producing resin composition, resin composition and molded article
JP5959102B2 (en) Resin composition, method for producing resin composition, and molded article
US8232342B2 (en) Transparent ABS resin composition having excellent impact strength and flowability
US10066038B2 (en) Polycarbonate-based thermoplastic resin composition and product using same
KR20120066446A (en) Polycarbonate resin composition with flame retardancy and scratch resistance
JP2012201832A (en) Process for producing resin composition and resin composition
BR112014031892B1 (en) MIXTURE, AND, METHOD TO INCREASE THE RISK RESISTANCE OF POLYCARBONATE
JP6166147B2 (en) Resin composition and method for producing the same
KR101796879B1 (en) Polycarbonate thermoplastic resin composition and product by using the same
US8933185B2 (en) Acrylic resin having excellent transparency, fluidity and scratch-resistance
JP2012201831A (en) Resin composition, and method of producing the same
JP2000178432A (en) Thermoplastic resin composition
JPH061903A (en) Polymer composition
JP2008056798A (en) Transparent resin molded product and a variety of products
JP6212248B2 (en) Resin composition and method for producing the same
JP6680213B2 (en) Resin composition
JP5043257B2 (en) Thermoplastic resin composition
JP2015183158A (en) Methacrylic resin, resin composition, and molded article of the same
JP2015182414A (en) decorative film
JP2021126877A (en) Method for producing molded product
JP2022151565A (en) Thermoplastic resin composition, and molded article obtained by molding the same
JP2013116954A (en) Reisn composition, method for production thereof, and molded body
KR100600566B1 (en) Method of Preparing Branched Methacrylic Resin Having Good Flowability
JP2008031339A (en) Transparent extrusion product and various molded products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157005194

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13828501

Country of ref document: EP

Kind code of ref document: A1