WO2014024644A1 - Signal processing device and signal processing method in wind profiler - Google Patents

Signal processing device and signal processing method in wind profiler Download PDF

Info

Publication number
WO2014024644A1
WO2014024644A1 PCT/JP2013/069274 JP2013069274W WO2014024644A1 WO 2014024644 A1 WO2014024644 A1 WO 2014024644A1 JP 2013069274 W JP2013069274 W JP 2013069274W WO 2014024644 A1 WO2014024644 A1 WO 2014024644A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
noise
reception
unit
transmission
Prior art date
Application number
PCT/JP2013/069274
Other languages
French (fr)
Japanese (ja)
Inventor
松田 知也
大治 原田
敬央 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13828328.8A priority Critical patent/EP2884300B1/en
Priority to US14/420,498 priority patent/US10234556B2/en
Publication of WO2014024644A1 publication Critical patent/WO2014024644A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
    • G01S13/288Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses phase modulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a signal processing device and a signal processing method in a wind profiler that measures a wind speed distribution in the sky.
  • a technology for measuring the wind direction and speed of the sky with an atmospheric radar called a wind profiler.
  • the wind profiler can measure the wind direction and speed over the air every minute to several minutes.
  • the wind information of the sky measured with such a high temporal resolution is effective for improving the accuracy of weather forecasts.
  • Patent Document 1 discloses a technique for improving the calculation accuracy of a wind speed vector.
  • the wind profiler of Patent Document 1 calculates the Doppler velocity for each beam and altitude from the complex received signal, and confirms the consistency between the beams of the Doppler velocity for each altitude. Then, a beam combination for each altitude for calculating the wind speed vector is selected based on the consistency between the beams, and the wind speed vector is calculated for each altitude based on the selected beam combination for each altitude and the Doppler velocity.
  • Patent Document 2 discloses a signal processing technique for a wind profiler that improves the data acquisition rate in a wide altitude range.
  • an optimal incoherent integration time is set for each altitude.
  • a power spectrum is calculated from the Fourier-transformed data, and is time-integrated for a set incoherent integration time.
  • the low-quality Doppler velocity data is removed from the Doppler velocity calculated from the power spectrum obtained by incoherent integration, and the time average is performed.
  • a type of weather radar that calculates accurate Doppler velocity when switching noise generated at the time of switching between transmission and reception is mixed in the data at the stage of pulse compression processing in a wind profiler that calculates the wind direction and speed from the ground to the sky. There is a problem that you can not.
  • the present invention has been made to solve the above-described problems, and even in the case where noise associated with transmission / reception switching is mixed in the window profiler, the acquisition range up to an altitude at which noise is mixed in the received signal is obtained.
  • the purpose is to increase the number.
  • a signal processing apparatus radiates a pulsed electromagnetic wave into a space, switches transmission and reception, receives an electromagnetic wave reflected from an observation object, and receives the received electromagnetic wave.
  • a signal processing apparatus for a wind profiler that measures wind speed from a Doppler frequency, and that detects a noise section in which switching noise is generated by switching between transmission and reception, and converts a received signal in the noise section into substantially invalid data.
  • a signal suppression unit that suppress wind speed from a Doppler frequency, and that detects a noise section in which switching noise is generated by switching between transmission and reception, and converts a received signal in the noise section into substantially invalid data.
  • the number of acquisition ranges can be expanded up to an altitude at which noise is mixed in the received signal by converting the received signal in the noise section where the switching noise is generated into substantially invalid data.
  • FIG. 3 is a block diagram illustrating configurations of an unnecessary data determination unit and an unnecessary data deletion unit according to Embodiment 1.
  • FIG. 6 is a diagram illustrating an example of a power spectrum for unnecessary data determination according to Embodiment 1.
  • FIG. 6 is a diagram illustrating an example of a power spectrum for unnecessary data determination according to Embodiment 1.
  • FIG. 6 is a timing diagram illustrating an operation of determining and deleting unnecessary data according to the first embodiment. 6 is a diagram for explaining that the influence of noise can be avoided by noise section determination / replacement according to Embodiment 1.
  • FIG. It is a figure which shows the example of the power spectrum before removing the DC component which concerns on Embodiment 1.
  • FIG. 6 is a flowchart illustrating an example of a noise section determination / replacement operation according to the first embodiment. It is a block diagram which shows the structural example of the transmission / reception switching and frequency conversion part which concerns on Embodiment 2 of this invention.
  • FIG. 10 is a timing diagram illustrating an example of attenuating switching noise according to the second embodiment.
  • FIG. 1 is a block diagram showing the overall configuration of a wind profiler according to an embodiment of the present invention.
  • the wind profiler 100 is a type of Doppler radar, and includes an antenna device 101, a transmission / reception device 102, a signal processing device 103, a wind speed vector calculation device 104, and a display / recording device 105, as shown in FIG.
  • a reflected wave of an electromagnetic wave radiated from the antenna device 101 into the air is received by the antenna device 101, and the received electromagnetic wave is amplified and frequency-converted by the transmission / reception device 102 and received. Converted to an IF (intermediate frequency) signal.
  • IF intermediate frequency
  • the IF signal is subjected to analog-to-digital (A / D) conversion and frequency analysis processing by the signal processing device 103 to calculate spectrum data and send it to the wind speed vector calculation device 104.
  • the wind speed vector calculation device 104 calculates the Doppler speed from the spectrum data, and then calculates the wind speed vector.
  • the calculated wind speed vector is displayed or recorded by the display / recording device 105.
  • FIG. 2 is a block diagram for explaining the principle of the signal processing device of the wind profiler.
  • the signal processing device 103 includes, for example, an A / D conversion unit 1, a phase detection unit 2, a CIC decimation unit 4, an FIR unit 5, a pulse compression unit 6, a coherent integration unit 7, an FFT processing unit 8, and an incoherent integration unit 9. Composed.
  • an A / D conversion unit 1 for example, an A / D conversion unit 1
  • phase detection unit 2 for a phase detection unit 2
  • CIC decimation unit 4 an FIR unit 5
  • a pulse compression unit 6 a coherent integration unit 7
  • FFT processing unit 8 an incoherent integration unit 9.
  • the reception IF signal output from the transmission / reception device 102 in FIG. 1 is input to the AD conversion unit 1.
  • the AD converter 1 converts the received IF signal from an analog signal to a digital signal. This digital signal is input to the phase detection unit 2 and phase-detected by complex multiplication of a sine / cosine signal to generate an I / Q signal.
  • the I / Q signal is input to the CIC decimation unit 4 and thinned out by a CIC filter (CascadesIntegration Comb Filter).
  • the thinned I / Q data is input to the FIR unit 5 to correct the amplitude characteristic of the I / Q data after CIC filtering.
  • the pulse compression unit 6 performs pulse compression demodulation on the I / Q data after amplitude characteristic correction.
  • the demodulated I / Q data is coherently integrated by the coherent integrator 7, Fourier-transformed by the FFT processor 8, and input to the incoherent integrator 9.
  • the incoherent integration unit 9 calculates the power spectrum obtained by obtaining the power value from the Fourier transform of the received signal data, and then integrates the power spectra obtained at a plurality of times (incoherent integration). After integration) Output as power spectrum.
  • FIG. 3 is a diagram for explaining the principle of pulse compression in the wind profiler.
  • FIG. 3 shows the principle of 4-bit pulse compression using the Spano code.
  • FIG. 3 shows a case where the signal reflected by the R4 layer is decoded (demodulation of pulse compression).
  • “1” and “ ⁇ 1” in the transmission represent signals having phases of 0 and ⁇ , respectively.
  • the reflected signal from the R4 layer is multiplied by a plurality, and the others are canceled out.
  • FIG. 3 it is possible to obtain 8 times the reception intensity due to the effect of 4 bit pulse compression ⁇ 2 coherent integration. Then, the reflected signals from other layers are canceled out to zero.
  • FIG. 4 is a diagram for explaining the influence of switching noise when switching from reception to transmission in pulse compression.
  • FIG. 5 is a diagram for explaining the influence of switching noise when switching from transmission to reception in pulse compression.
  • switching from reception to transmission is performed immediately after the last bit of the transmission signal is reflected by the R4 layer and received. Therefore, noise is mixed in the received signal reflected from the layer above the R4 layer.
  • the transmission is switched from reception to reception shortly before the first bit of the transmission signal is reflected by the R6 layer and received. Therefore, noise is mixed in the received signal reflected from the layer below the R6 layer.
  • FIG. 6 is a diagram illustrating an example of noise due to the influence of transmission / reception switching near the maximum observation layer.
  • the observable range is narrowed.
  • the observable range is narrowed below the R4 layer.
  • the observable range is limited to an altitude of the R6 layer or higher. In the spectrum of FIG. 6, it is impossible to observe an altitude of 10 km or more.
  • FIG. 7 is a block diagram showing a configuration example of the signal processing apparatus according to Embodiment 1 of the present invention.
  • the signal processing device 103 shown in FIG. 7 corresponds to the signal processing device 103 of the window profiler 100 shown in FIG.
  • the signal processing apparatus 103 according to the first embodiment includes an unnecessary data deletion unit 3, an unnecessary data determination unit 10, and a DC component removal unit 15 in addition to the basic configuration shown in FIG.
  • Unnecessary data determination unit 10 determines the presence or absence of noise mixed during transmission / reception switching with respect to the power spectrum output from incoherent integration unit 9, and detects a noise interval.
  • the unnecessary data determination unit 10 sets a replacement section that should be substantially invalidated (unnecessary data should be deleted) in the received signal in accordance with the noise section.
  • the unnecessary data determination unit 10 sends a signal indicating the replacement section to the unnecessary data deletion unit 3.
  • the unnecessary data deleting unit 3 substantially invalidates the data in the replacement section with respect to the I / Q data output from the phase detection unit 2 in accordance with the signal indicating the replacement section. That is, the data in the replacement section is replaced with a certain value, for example, “0”.
  • the DC component removal unit 15 removes a DC component that appears prominently by deleting unnecessary data from the power spectrum output from the incoherent integration unit 9.
  • detailed processing operations of the unnecessary data deleting unit 3 and the unnecessary data determining unit 10 will be described.
  • FIG. 8 is a block diagram illustrating the configuration of the unnecessary data determination unit and the unnecessary data deletion unit according to the first embodiment.
  • the unnecessary data determination unit 10 includes a maximum value calculation unit 11, a short distance determination unit 12, and a long distance determination unit 13.
  • the unnecessary data deletion unit 3 includes a replacement gate signal generation unit 31 and a replacement processing unit 32.
  • the maximum value calculation unit 11 of the unnecessary data determination unit 10 calculates a maximum value for each altitude (distance from the wind profiler 100) for the power spectrum input from the incoherent integration unit 9.
  • the maximum value calculation unit 11 outputs the calculated maximum value to the short distance determination unit 12 and the long distance determination unit 13.
  • the short distance determination unit 12 is a noise section of the received signal reflected by a layer near the wind profiler 100, that is, a range in which the received signal should be substantially invalidated due to noise generated by switching from transmission to reception (replacement section). Is detected.
  • the long distance determination unit 13 is a noise section of the received signal reflected by a layer far from the wind profiler 100, that is, a range in which the received signal should be substantially invalidated due to noise generated by switching from reception to transmission (replacement section). Is detected.
  • a signal for switching between transmission and reception is input from the transmission / reception device 102 to the signal processing device 103.
  • the signal processing device 103 generates transmission / reception switching and instructs the transmission / reception device 102.
  • the transmission / reception switching timing is known by the unnecessary data determination unit 10.
  • the short distance determination unit 12 sets a replacement section for a reception signal reflected by a near layer where noise is generated due to switching from transmission to reception.
  • the short-range determination unit 12 performs replacement from the transmission period to the reception period (to the later time) until the maximum value of the power spectrum (in the near layer) is equal to or less than the threshold value based on the switching timing from transmission to reception. Extend the section. For example, when the maximum value of the power spectrum exceeds the threshold, the replacement interval is extended by a certain step time, and the change of the maximum value of the power spectrum is observed. This operation is repeated until the maximum value is less than or equal to the threshold value.
  • the long distance determination unit 13 sets a replacement section for a received signal reflected by a far layer where noise is generated due to switching from reception to transmission.
  • the long distance determination unit 13 uses the timing of switching from reception to transmission as a reference until the maximum value of the power spectrum (in the far layer) is equal to or less than the threshold value, from the subsequent transmission section to the previous reception section (front Extend the replacement interval. For example, when the maximum value of the power spectrum exceeds the threshold, the replacement interval is extended before a certain step time, and the change in the maximum value of the power spectrum is observed. This operation is repeated until the maximum value is less than or equal to the threshold value.
  • the range of the altitude to be determined can be determined. it can.
  • the short distance determination unit 12 and the long distance determination unit 13 may set a noise section in the range of each altitude. Further, the short distance determination unit 12 determines the end point of the replacement section in a time range (determination range) after the switching timing from transmission to reception. Then, the long distance determination unit 13 determines the start point of the replacement section in the previous time range (determination range) from the switching timing from reception to transmission.
  • FIG. 9A and FIG. 9B are diagrams showing examples of the power spectrum for unnecessary data determination according to the first embodiment.
  • 9A and 9B represent the power spectrum of the received signal reflected at a certain altitude.
  • FIG. 9A shows the case where the maximum value exceeds the threshold value
  • FIG. 9B shows the case where the maximum value is less than the threshold value.
  • Each of the short distance determination unit 12 and the long distance determination unit 13 extends the replacement section until the maximum value of the power spectrum of the target altitude is equal to or less than the threshold value.
  • the short distance determination unit 12 and the long distance determination unit 13 replace the received signal data with a constant value as a noise interval based on information on the maximum value of the power spectrum, the determination threshold, the determination range, and the step time. A position where I / Q data is replaced with a constant value is calculated, and a replacement signal (a short distance replacement signal and a long distance replacement signal) is output.
  • the short-distance determination unit 12 and the long-distance determination unit 13 have the same processing flow except that the set threshold value, determination range, and step time (for short-distance and long-distance) are different. If the direction to the later time is positive and the step time is a positive value for short distance and a negative value for long distance, the same algorithm can be used for short distance and long distance.
  • FIG. 10 is a timing chart showing an operation of determining and deleting unnecessary data according to the first embodiment.
  • the transmission / reception switching signal indicates transmission at a low level and reception at a high level.
  • the transmission type signal appears in the transmission interval.
  • the reference trigger indicates a switching timing from transmission to reception, and is a reference for setting a noise section (replacement section).
  • the short distance determination unit 12 extends the replacement section backward (in the direction in which time advances) from the reference trigger.
  • the long distance determination unit 13 extends the replacement section forward (in the direction of going back in time) from the reference trigger.
  • FIG. 10 shows a state in which the replacement interval is extended in the order of the time interval by determining the presence or absence of noise in one time interval and setting the replacement interval in the subsequent time interval.
  • the replacement gate signal generation unit 31 in FIG. 8 generates a replacement gate signal from the short distance replacement signal and the long distance replacement signal input from the short distance determination unit 12 and the long distance determination unit 13.
  • the replacement gate signal is a replacement section from a long distance replacement signal to a subsequent short distance replacement signal.
  • the low level of the replacement gate signal indicates the replacement interval.
  • the I / Q data input from the phase detection unit 2 is set to a constant value, for example, data “0”, only at the portion that is gated according to the replacement gate signal input from the replacement gate signal generation unit 31.
  • Replace with The data to be replaced is not limited to “0” and may be a constant value.
  • FIG. 10 shows how the received signal data in the replacement interval in the time interval after the time interval in which the presence / absence of noise is determined is replaced with “0” (a constant value), and the replacement interval is expanded in the order of the time interval. ing.
  • FIG. 11 is a diagram for explaining that the influence of noise can be avoided by the noise section determination / replacement according to the first embodiment.
  • the left side of FIG. 11 is the same as FIG. “1” and “ ⁇ 1” represent signals having phases of 0 and ⁇ , respectively.
  • “0” represents a constant value whose phase is not ⁇ / 2 (or ⁇ / 2) and whose amplitude is 0.
  • the layer in which the data is replaced for example, the R6 layer is less accurate because the number of compressed and stacked layers is smaller than the R4 layer in which the data is not replaced, but it can be compensated by increasing the incoherent integration time. it can.
  • the time change of the wind speed is small and the time resolution may be small, so that it is sufficiently practical.
  • the DC component is mixed into the spectrum data due to the discontinuity of the boundary between the actual data and the replacement data. Therefore, the DC component (point of Doppler 0) is deleted by the DC component removing unit 15 in FIG. For example, the DC component is removed by interpolating from data adjacent to the DC component of the power spectrum. This eliminates the problem caused by data discontinuity.
  • FIG. 12A is a diagram showing a power spectrum before the DC component according to Embodiment 1 is removed.
  • FIG. 12B is a diagram showing a power spectrum after the DC component according to Embodiment 1 is removed.
  • FIG. 13 is a flowchart showing an example of the noise section determination / replacement operation according to the first embodiment.
  • the noise interval determination threshold, determination range, and step time can be set individually on the short distance side (timing when switching from transmission to reception) and the long distance side (timing when switching from reception to transmission)
  • the determination process can be realized by the same method.
  • Unnecessary data determination unit 10 first reads the power spectrum from incoherent integration unit 9 (step ST1).
  • the unnecessary data determination unit 10 moves (sets the determination altitude) to the power spectrum of the first altitude in the determination range in the input power spectrum (step ST2).
  • the maximum value calculation unit 11 calculates the maximum value of the power spectrum of the moved altitude (step ST3).
  • the short distance determination unit 12 or the long distance determination unit 13 compares the maximum value with the threshold value, and if the maximum value ⁇ the threshold value (step ST4; YES), the replacement signal delay step ST5, and if the maximum value> the threshold value (step) ST4; NO), the process proceeds to an end altitude determination step ST7.
  • whether it is a short distance or a long distance is selected based on the altitude to be determined. For example, when the altitude is below a certain altitude, the short distance determination unit 12 determines, and when the altitude is higher than that, the long distance determination unit 13 determines.
  • the threshold for determining the maximum value, the time step to be extended, and the reference timing are changed depending on whether the distance is short distance or long distance.
  • the output timing of the replacement signal is extended by the step time set based on the previous replacement signal, and the process proceeds to time update step ST6.
  • the step time takes a positive value for short distance and a negative value for long distance, with the direction to the later time being positive.
  • the short distance determination unit 12 extends the short distance side replacement signal in the direction of delaying, and the long distance determination unit 13 extends the long distance side replacement signal in the direction of advancing.
  • the time interval to be processed (one transmission interval and the subsequent reception interval) is advanced to the next time interval, the altitude to be processed is initialized, and the processing returns to the data reading step ST1. .
  • step ST7 determines whether the altitude in the threshold determination step has reached the end altitude (ST7). As a result of the determination, if the end altitude has been reached (step ST7; YES), the process ends. If the end altitude has not been reached (step ST7; NO), the process proceeds to altitude update step ST8. In altitude update step ST8, the altitude to be processed is updated to the next altitude, and the process is repeated from the maximum value calculation of the altitude power spectrum (step ST3).
  • the DC component mixed in the power spectrum due to the discontinuity of the boundary between the actual data and the replacement is obtained by the DC component removal unit 15. Removed.
  • the demodulated power can be obtained by replacing the data mixed with noise at the time of transmission / reception switching with a constant value and removing the DC component. Only atmospheric echoes will appear in the spectrum. As a result, the number of data acquisition ranges can be expanded to an altitude at which noise is mixed in the received signal.
  • FIG. FIG. 14 is a block diagram illustrating a configuration example of a transmission / reception switching / frequency converting unit according to Embodiment 2 of the present invention.
  • a received signal including switching noise is attenuated to an intensity (substantially invalid level) that is not affected at the stage of the analog signal.
  • the transmission / reception switching / frequency conversion unit 112 includes a transmission / reception switching unit 20, an attenuation unit 21, a mixer 22, a 2 distribution unit 23, a STALO (stable local oscillator) 24, and a mixer 25.
  • the transmission / reception switching / frequency conversion unit 112 in FIG. 14 is included in the transmission / reception device 102 in FIG. 1, but here, at least the attenuation unit 21 is handled as a part of the signal processing device 103.
  • the periodic signal having a constant frequency generated by the STALO 24 is supplied to the mixer 25 on the transmission side and the mixer 22 on the reception side by the two distribution unit 23.
  • the transmission IF signal is up-converted to a carrier frequency by the mixer 25 and sent to the transmission / reception switching unit 20 as a transmission RF signal.
  • the transmission / reception switching unit 20 switches between transmission and reception in order to transmit the transmission RF signal to the transmission unit and the reception RF signal to the reception unit.
  • the transmission RF signal from the mixer 25 is sent to the antenna apparatus 101.
  • the reception RF signal from the antenna device 101 is sent to the attenuation unit 21.
  • the attenuating unit 21 attenuates the signal only in the portion of the attenuated gate signal with respect to the received RF signal input from the transmission / reception switching unit 20.
  • the attenuation gate signal is supplied from the signal processing device 103.
  • a timing signal transmission / reception switching signal shown in FIG. 10
  • a time range of a predetermined length from the timing signal which is a range where noise measured in advance is generated.
  • the replacement signal of the first embodiment is supplied as an attenuation gate signal by adjusting the delay time from the attenuation unit 21 to the unnecessary data determination unit 10.
  • the received RF signal with the attenuated gate signal portion attenuated is converted to an intermediate frequency by the mixer 22 and sent to the AD converter 1 of the signal processing device 103 as a received IF signal.
  • the portion of the attenuated gate signal in which switching noise for transmission / reception switching is mixed is attenuated to a substantially invalid level, so that an unnecessary peak does not appear in the power spectrum.
  • FIG. 15 is a timing diagram showing an example of attenuating switching noise according to the second embodiment. Strong switching noise is mixed in the received signal at the rise and fall of the transmission / reception switching signal. By attenuating only the signal in the section where the switching noise is mixed, the switching noise is attenuated and the actual echo can be made unaffected.

Abstract

The objective of the present invention is, in a wind profiler, to expand the number of acquired ranges until an altitude in which noise is mixed in a received signal even if noise is mixed accompanying transmission/reception changeover. The present invention is a signal processing device (103) in a wind profiler which emits a pulsed electromagnetic wave in a space, subsequently switches from transmission to reception, receives a reflected electromagnetic wave from an observation object, and measures wind velocity on the basis of the Doppler frequency of the received electromagnetic wave. The device is provided with an unnecessary data assessment unit (10) which detects a noise period in which switching noise occurs as a result of switching of the transmission and the reception, and an unnecessary data deletion unit (3) which converts the signal received in the noise period into substantially invalid data.

Description

ウィンドプロファイラにおける信号処理装置および信号処理方法Signal processing apparatus and signal processing method in wind profiler
 本発明は、上空の風速分布を測定するウィンドプロファイラにおける信号処理装置および信号処理方法に関する。 The present invention relates to a signal processing device and a signal processing method in a wind profiler that measures a wind speed distribution in the sky.
 近年、ウィンドプロファイラと呼ばれる大気レーダにより、上空の風向・風速を計測する技術が確立されつつある。ウィンドプロファイラでは、1分~数分毎に上空の風向・風速を計測することが可能となる。このような高い時間分解能により計測された上空の風情報は、気象予報の精度向上に有効である。 In recent years, a technology for measuring the wind direction and speed of the sky with an atmospheric radar called a wind profiler is being established. The wind profiler can measure the wind direction and speed over the air every minute to several minutes. The wind information of the sky measured with such a high temporal resolution is effective for improving the accuracy of weather forecasts.
 ウィンドプロファイラについて、例えば特許文献1には、風速ベクトルの算出精度を向上する技術が開示されている。特許文献1のウィンドプロファイラは、複素受信信号からビーム毎、高度毎にドップラ速度を算出し、高度毎にドップラ速度のビーム間の整合性を確認する。そして、ビーム間の整合性に基づき風速ベクトルを算出するための高度毎のビームの組合せを選択し、選択された高度毎のビームの組合せとドップラ速度に基づき、高度毎に風速ベクトルを算出する。 Regarding a wind profiler, for example, Patent Document 1 discloses a technique for improving the calculation accuracy of a wind speed vector. The wind profiler of Patent Document 1 calculates the Doppler velocity for each beam and altitude from the complex received signal, and confirms the consistency between the beams of the Doppler velocity for each altitude. Then, a beam combination for each altitude for calculating the wind speed vector is selected based on the consistency between the beams, and the wind speed vector is calculated for each altitude based on the selected beam combination for each altitude and the Doppler velocity.
 特許文献2には、広い高度範囲でデータ取得率を向上させるウィンドプロファイラの信号処理技術が開示されている。特許文献2の信号処理装置では、高度毎に最適なインコヒーレント積分時間を設定する。そして、フーリエ変換されたデータからパワースペクトルを算出し、それを設定されたインコヒーレント積分時間だけ時間積分する。さらにインコヒーレント積分したパワースペクトルから算出するドップラ速度のうち、低品質のドップラ速度のデータを取り除いて時間平均する。 Patent Document 2 discloses a signal processing technique for a wind profiler that improves the data acquisition rate in a wide altitude range. In the signal processing apparatus of Patent Document 2, an optimal incoherent integration time is set for each altitude. Then, a power spectrum is calculated from the Fourier-transformed data, and is time-integrated for a set incoherent integration time. Further, the low-quality Doppler velocity data is removed from the Doppler velocity calculated from the power spectrum obtained by incoherent integration, and the time average is performed.
特開2001-159636号公報JP 2001-159636 A 特開2002-168948号公報JP 2002-168948 A
 気象レーダの一種であり、地上から上空までの風向・風速を算出するウィンドプロファイラにおいて、送受切替時に発生するスイッチングノイズがパルス圧縮処理の段階でデータに混入していると、正確なドップラー速度を算出することができないという問題がある。 A type of weather radar that calculates accurate Doppler velocity when switching noise generated at the time of switching between transmission and reception is mixed in the data at the stage of pulse compression processing in a wind profiler that calculates the wind direction and speed from the ground to the sky. There is a problem that you can not.
 従来技術では、スイッチングノイズの影響しない範囲内のデータのみを処理するために、データの取得レンジ数を少なくしてノイズの影響を回避していた。しかし、この場合、観測可能範囲よりも取得できる処理データの範囲が少なくなっていた。 In the prior art, in order to process only data within a range not affected by switching noise, the number of data acquisition ranges is reduced to avoid the effect of noise. However, in this case, the range of processing data that can be acquired is smaller than the observable range.
 本発明は、上述のような問題点を解決するためになされたものであり、ウィンドプロファイラにおいて、送受切替に伴うノイズが混入する場合であっても、受信信号にノイズが混入する高度まで取得レンジ数を拡大することを目的とする。 The present invention has been made to solve the above-described problems, and even in the case where noise associated with transmission / reception switching is mixed in the window profiler, the acquisition range up to an altitude at which noise is mixed in the received signal is obtained. The purpose is to increase the number.
 上記目的を達成するため、本発明の観点に係る信号処理装置は、空間にパルス状の電磁波を放射したのち送受信を切り替えて、観測対象物から反射された電磁波を受信して、受信した電磁波のドップラ周波数から風速を測定するウィンドプロファイラにおける信号処理装置であって、送受信の切り替えでスイッチングノイズが発生するノイズ区間を検出する検出部と、ノイズ区間の受信信号を実質的に無効なデータに変換する信号抑制部と、を備える。 In order to achieve the above object, a signal processing apparatus according to an aspect of the present invention radiates a pulsed electromagnetic wave into a space, switches transmission and reception, receives an electromagnetic wave reflected from an observation object, and receives the received electromagnetic wave. A signal processing apparatus for a wind profiler that measures wind speed from a Doppler frequency, and that detects a noise section in which switching noise is generated by switching between transmission and reception, and converts a received signal in the noise section into substantially invalid data. A signal suppression unit.
 本発明によれば、スイッチングノイズが発生するノイズ区間の受信信号を実質的に無効なデータに変換することにより、受信信号にノイズが混入する高度まで取得レンジ数を拡大させることができる。 According to the present invention, the number of acquisition ranges can be expanded up to an altitude at which noise is mixed in the received signal by converting the received signal in the noise section where the switching noise is generated into substantially invalid data.
本発明の実施の形態に係るウィンドプロファイラの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the wind profiler which concerns on embodiment of this invention. ウィンドプロファイラの信号処理装置の原理を説明するブロック図である。It is a block diagram explaining the principle of the signal processing apparatus of a wind profiler. ウィンドプロファイラにおけるパルス圧縮の原理を説明するための図である。It is a figure for demonstrating the principle of the pulse compression in a wind profiler. パルス圧縮において受信から送信に切り替わる時のスイッチングノイズの影響を説明するための図である。It is a figure for demonstrating the influence of the switching noise when it switches from reception to transmission in pulse compression. パルス圧縮において送信から受信に切り替わる時のスイッチングノイズの影響を説明するための図である。It is a figure for demonstrating the influence of the switching noise when it switches from transmission to reception in pulse compression. 最大観測層近傍の送受切替の影響によるノイズの例を示す図である。It is a figure which shows the example of the noise by the influence of transmission / reception switching of the maximum observation layer vicinity. 本発明の実施の形態1に係る信号処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the signal processing apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係る不要データ判定部と不要データ削除部の構成を示すブロック図である。3 is a block diagram illustrating configurations of an unnecessary data determination unit and an unnecessary data deletion unit according to Embodiment 1. FIG. 実施の形態1に係る不要データ判定のパワースペクトルの例を示す図である。6 is a diagram illustrating an example of a power spectrum for unnecessary data determination according to Embodiment 1. FIG. 実施の形態1に係る不要データ判定のパワースペクトルの例を示す図である。6 is a diagram illustrating an example of a power spectrum for unnecessary data determination according to Embodiment 1. FIG. 実施の形態1に係る不要データの判定・削除の動作を示すタイミング図である。FIG. 6 is a timing diagram illustrating an operation of determining and deleting unnecessary data according to the first embodiment. 実施の形態1のノイズ区間判定・置換によりノイズの影響を回避できることを説明するための図である。6 is a diagram for explaining that the influence of noise can be avoided by noise section determination / replacement according to Embodiment 1. FIG. 実施の形態1に係るDC成分を除去する前のパワースペクトルの例を示す図である。It is a figure which shows the example of the power spectrum before removing the DC component which concerns on Embodiment 1. FIG. 実施の形態1に係るDC成分を除去した後のパワースペクトルの例を示す図である。It is a figure which shows the example of the power spectrum after removing the DC component which concerns on Embodiment 1. FIG. 実施の形態1に係るノイズ区間判定・置換の動作の一例を示すフローチャートである。6 is a flowchart illustrating an example of a noise section determination / replacement operation according to the first embodiment. 本発明の実施の形態2に係る送受切替・周波数変換部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the transmission / reception switching and frequency conversion part which concerns on Embodiment 2 of this invention. 実施の形態2に係るスイッチングノイズを減衰させる例を示すタイミング図である。FIG. 10 is a timing diagram illustrating an example of attenuating switching noise according to the second embodiment.
 図1は、本発明の実施の形態に係るウィンドプロファイラの全体構成を示すブロック図である。ウィンドプロファイラ100はドップラレーダの一種であり、図1に示すように、空中線装置101、送受信装置102、信号処理装置103、風速ベクトル算出装置104、表示・記録装置105によって構成されている。このように構成されたウィンドプロファイラ100では、空中線装置101より空中に放射された電磁波の反射波が空中線装置101にて受信され、その受信された電磁波が送受信装置102によって増幅、周波数変換されて受信IF(中間周波数)信号に変換される。このIF信号に信号処理装置103でA-D(Analogue-to-Digital)変換、周波数解析処理を行うことにより、スペクトラムデータを算出して、風速ベクトル算出装置104に送る。風速ベクトル算出装置104では、スペクトラムデータからドップラ速度を算出した後、風速ベクトルを算出する。そこで算出された風速ベクトルを表示・記録装置105で表示もしくは記録する。 FIG. 1 is a block diagram showing the overall configuration of a wind profiler according to an embodiment of the present invention. The wind profiler 100 is a type of Doppler radar, and includes an antenna device 101, a transmission / reception device 102, a signal processing device 103, a wind speed vector calculation device 104, and a display / recording device 105, as shown in FIG. In the wind profiler 100 configured as described above, a reflected wave of an electromagnetic wave radiated from the antenna device 101 into the air is received by the antenna device 101, and the received electromagnetic wave is amplified and frequency-converted by the transmission / reception device 102 and received. Converted to an IF (intermediate frequency) signal. The IF signal is subjected to analog-to-digital (A / D) conversion and frequency analysis processing by the signal processing device 103 to calculate spectrum data and send it to the wind speed vector calculation device 104. The wind speed vector calculation device 104 calculates the Doppler speed from the spectrum data, and then calculates the wind speed vector. The calculated wind speed vector is displayed or recorded by the display / recording device 105.
 図2は、ウィンドプロファイラの信号処理装置の原理を説明するブロック図である。信号処理装置103は、例えば、A-D変換部1、位相検波部2、CICデシメーション部4、FIR部5、パルス圧縮部6、コヒーレント積分部7、FFT処理部8およびインコヒーレント積分部9から構成される。以下、信号処理装置の概念的な動作を説明する。 FIG. 2 is a block diagram for explaining the principle of the signal processing device of the wind profiler. The signal processing device 103 includes, for example, an A / D conversion unit 1, a phase detection unit 2, a CIC decimation unit 4, an FIR unit 5, a pulse compression unit 6, a coherent integration unit 7, an FFT processing unit 8, and an incoherent integration unit 9. Composed. Hereinafter, the conceptual operation of the signal processing apparatus will be described.
 図1の送受信装置102より出力された受信IF信号はA-D変換部1に入力される。A-D変換部1では受信IF信号を、アナログ信号からデジタル信号に変換する。このデジタル信号は位相検波部2に入力され、正弦/余弦信号の複素乗算により位相検波され、I/Q信号が生成される。I/Q信号はCICデシメーション部4に入力され、CICフィルタ(Cascade Integration Comb Filter:カスケード積分コムフィルタ)により間引きを行う。間引きされたI/Qデータは、FIR部5に入力され、CICフィルタリング後のI/Qデータに対して振幅特性の補正を行う。 The reception IF signal output from the transmission / reception device 102 in FIG. 1 is input to the AD conversion unit 1. The AD converter 1 converts the received IF signal from an analog signal to a digital signal. This digital signal is input to the phase detection unit 2 and phase-detected by complex multiplication of a sine / cosine signal to generate an I / Q signal. The I / Q signal is input to the CIC decimation unit 4 and thinned out by a CIC filter (CascadesIntegration Comb Filter). The thinned I / Q data is input to the FIR unit 5 to correct the amplitude characteristic of the I / Q data after CIC filtering.
 パルス圧縮部6では、振幅特性補正後のI/Qデータに対し、パルス圧縮復調を行う。復調されたI/Qデータは、コヒーレント積分部7でコヒーレント積分され、FFT処理部8にてフーリエ変換されて、インコヒーレント積分部9に入力される。インコヒーレント積分部9では、受信信号のデータのフーリエ変換から電力値を求めることによって得られるパワースペクトルを算出した後、複数の時刻に得られたパワースペクトルの積算(インコヒーレント積分)を行い、(積算後)パワースペクトルとして出力する。 The pulse compression unit 6 performs pulse compression demodulation on the I / Q data after amplitude characteristic correction. The demodulated I / Q data is coherently integrated by the coherent integrator 7, Fourier-transformed by the FFT processor 8, and input to the incoherent integrator 9. The incoherent integration unit 9 calculates the power spectrum obtained by obtaining the power value from the Fourier transform of the received signal data, and then integrates the power spectra obtained at a plurality of times (incoherent integration). After integration) Output as power spectrum.
 ここで、ウィンドプロファイラでのパルス圧縮の原理について説明する。図3は、ウィンドプロファイラにおけるパルス圧縮の原理を説明するための図である。図3は、Spano符号による4bitパルス圧縮の原理を示す。図3では、R4層で反射された信号のデコード(パルス圧縮の復調)を行う場合を表している。送信の「1」、「-1」はそれぞれ、位相を0、πにした信号を表す。送信パルスがR4層で反射されて受信されるタイミングの受信信号に、送信したビットパターンを掛けて、時間方向に加算すると、R4層で反射されたデータのみがビット数分(図3では4個分)積み上がる。これを、ビットパターンを変えて送信したコヒーレントな複数のパルスについて積分すると、R4層からの反射信号は複数倍され、それ以外は相殺される。図3の例では、4bitパルス圧縮×2回のコヒーレント積分の効果により、8倍の受信強度を得ることができる。そして、他の層からの反射信号は、相殺されて0になる。 Here, the principle of pulse compression in the wind profiler will be described. FIG. 3 is a diagram for explaining the principle of pulse compression in the wind profiler. FIG. 3 shows the principle of 4-bit pulse compression using the Spano code. FIG. 3 shows a case where the signal reflected by the R4 layer is decoded (demodulation of pulse compression). “1” and “−1” in the transmission represent signals having phases of 0 and π, respectively. By multiplying the received signal at the timing at which the transmission pulse is reflected and received by the R4 layer by the transmitted bit pattern and adding it in the time direction, only the data reflected by the R4 layer is the number of bits (in FIG. Min) pile up. When this is integrated for a plurality of coherent pulses transmitted with different bit patterns, the reflected signal from the R4 layer is multiplied by a plurality, and the others are canceled out. In the example of FIG. 3, it is possible to obtain 8 times the reception intensity due to the effect of 4 bit pulse compression × 2 coherent integration. Then, the reflected signals from other layers are canceled out to zero.
 原理的には送受切替前後においても、復号に必要な信号の一部は送受切替前に既に受信しているため、不完全ながら復号は可能である。しかし、デコードを行うデータに送受切替に伴うノイズが混入しているため、ノイズがスペクトラムデータに現れ、実エコーとは異なるドップラー速度を算出することになる。 In principle, even before and after the transmission / reception switching, a part of the signal necessary for the decoding is already received before the transmission / reception switching. However, since noise accompanying transmission / reception switching is mixed in the data to be decoded, the noise appears in the spectrum data, and a Doppler velocity different from the actual echo is calculated.
 図4は、パルス圧縮において受信から送信に切り替わる時のスイッチングノイズの影響を説明するための図である。図5は、パルス圧縮において送信から受信に切り替わる時のスイッチングノイズの影響を説明するための図である。図4の例では、送信信号の最後のビットがR4層で反射されて受信した直後に受信から送信に切替を行っている。そのため、R4層より上の層から反射された受信信号にはノイズが混入する。また、図5の例では、送信信号の最初のビットがR6層で反射されて受信する少し前に送信から受信に切替を行っている。そのため、R6層より下の層から反射された受信信号にはノイズが混入している。図6は、最大観測層近傍の送受切替の影響によるノイズの例を示す図である。 FIG. 4 is a diagram for explaining the influence of switching noise when switching from reception to transmission in pulse compression. FIG. 5 is a diagram for explaining the influence of switching noise when switching from transmission to reception in pulse compression. In the example of FIG. 4, switching from reception to transmission is performed immediately after the last bit of the transmission signal is reflected by the R4 layer and received. Therefore, noise is mixed in the received signal reflected from the layer above the R4 layer. In the example of FIG. 5, the transmission is switched from reception to reception shortly before the first bit of the transmission signal is reflected by the R6 layer and received. Therefore, noise is mixed in the received signal reflected from the layer below the R6 layer. FIG. 6 is a diagram illustrating an example of noise due to the influence of transmission / reception switching near the maximum observation layer.
 ノイズの影響を回避するために、受信信号にノイズが混入する層からの反射波を除外して、影響しない範囲のみ処理するように取得するレンジ数を制限すると、観測可能範囲が狭まる。例えば、図4ではR4層以下に観測可能範囲を狭めることになる。また、図5の例では、R6層以上の高度に観測可能範囲を制限することになる。図6のスペクトルで言えば、10km以上の高度の観測ができないことになる。 ∙ In order to avoid the influence of noise, if the number of ranges to be acquired is limited so that only the unaffected range is processed by excluding the reflected wave from the layer in which noise is mixed in the received signal, the observable range is narrowed. For example, in FIG. 4, the observable range is narrowed below the R4 layer. In the example of FIG. 5, the observable range is limited to an altitude of the R6 layer or higher. In the spectrum of FIG. 6, it is impossible to observe an altitude of 10 km or more.
 実施の形態1.
 図7は、本発明の実施の形態1に係る信号処理装置の構成例を示すブロック図である。図7に示す信号処理装置103は、図1に示されるウィンドプロファイラ100の信号処理装置103に相当する。実施の形態1に係る信号処理装置103は、図2に示す原理的構成に加えて、不要データ削除部3、不要データ判定部10およびDC成分除去部15を備える。
Embodiment 1 FIG.
FIG. 7 is a block diagram showing a configuration example of the signal processing apparatus according to Embodiment 1 of the present invention. The signal processing device 103 shown in FIG. 7 corresponds to the signal processing device 103 of the window profiler 100 shown in FIG. The signal processing apparatus 103 according to the first embodiment includes an unnecessary data deletion unit 3, an unnecessary data determination unit 10, and a DC component removal unit 15 in addition to the basic configuration shown in FIG.
 不要データ判定部10は、インコヒーレント積分部9から出力されたパワースペクトルに対して、送受切替時に混入するノイズの有無を判定し、ノイズ区間を検出する。不要データ判定部10は、ノイズ区間に合わせて、受信信号のうち実質的に無効とすべき(不要データを削除すべき)置換区間を設定する。不要データ判定部10は、置換区間を示す信号を不要データ削除部3に送る。不要データ削除部3は、置換区間を示す信号に従って、位相検波部2から出力されたI/Qデータに対して置換区間のデータを実質的に無効にする。すなわち、置換区間のデータを一定値、例えば「0」に置き換える。DC成分除去部15は、インコヒーレント積分部9から出力されたパワースペクトルに対して、不要データを削除したことにより顕著に現れるDC成分を除去する。以下、不要データ削除部3と不要データ判定部10の詳細な処理動作について説明する。 Unnecessary data determination unit 10 determines the presence or absence of noise mixed during transmission / reception switching with respect to the power spectrum output from incoherent integration unit 9, and detects a noise interval. The unnecessary data determination unit 10 sets a replacement section that should be substantially invalidated (unnecessary data should be deleted) in the received signal in accordance with the noise section. The unnecessary data determination unit 10 sends a signal indicating the replacement section to the unnecessary data deletion unit 3. The unnecessary data deleting unit 3 substantially invalidates the data in the replacement section with respect to the I / Q data output from the phase detection unit 2 in accordance with the signal indicating the replacement section. That is, the data in the replacement section is replaced with a certain value, for example, “0”. The DC component removal unit 15 removes a DC component that appears prominently by deleting unnecessary data from the power spectrum output from the incoherent integration unit 9. Hereinafter, detailed processing operations of the unnecessary data deleting unit 3 and the unnecessary data determining unit 10 will be described.
 図8は、実施の形態1に係る不要データ判定部と不要データ削除部の構成を示すブロック図である。不要データ判定部10は、最大値算出部11、近距離判定部12および遠距離判定部13を含む。不要データ削除部3は、置換ゲート信号生成部31および置換処理部32を含む。 FIG. 8 is a block diagram illustrating the configuration of the unnecessary data determination unit and the unnecessary data deletion unit according to the first embodiment. The unnecessary data determination unit 10 includes a maximum value calculation unit 11, a short distance determination unit 12, and a long distance determination unit 13. The unnecessary data deletion unit 3 includes a replacement gate signal generation unit 31 and a replacement processing unit 32.
 不要データ判定部10の最大値算出部11は、インコヒーレント積分部9から入力されたパワースペクトルに対して、高度(ウィンドプロファイラ100からの距離)ごとに最大値を算出する。最大値算出部11は、算出した最大値を近距離判定部12および遠距離判定部13に出力する。 The maximum value calculation unit 11 of the unnecessary data determination unit 10 calculates a maximum value for each altitude (distance from the wind profiler 100) for the power spectrum input from the incoherent integration unit 9. The maximum value calculation unit 11 outputs the calculated maximum value to the short distance determination unit 12 and the long distance determination unit 13.
 近距離判定部12は、ウィンドプロファイラ100から近い層で反射された受信信号のノイズ区間、すなわち送信から受信への切替で発生するノイズによって受信信号を実質的に無効とすべき範囲(置換区間)を検出する。遠距離判定部13は、ウィンドプロファイラ100から遠い層で反射された受信信号のノイズ区間、すなわち受信から送信への切替で発生するノイズによって受信信号を実質的に無効とすべき範囲(置換区間)を検出する。 The short distance determination unit 12 is a noise section of the received signal reflected by a layer near the wind profiler 100, that is, a range in which the received signal should be substantially invalidated due to noise generated by switching from transmission to reception (replacement section). Is detected. The long distance determination unit 13 is a noise section of the received signal reflected by a layer far from the wind profiler 100, that is, a range in which the received signal should be substantially invalidated due to noise generated by switching from reception to transmission (replacement section). Is detected.
 図7および図8には示されていないが、送受信の切替を行う信号は、送受信装置102から信号処理装置103に入力される。あるいは、送受信の切替を信号処理装置103が生成して送受信装置102に指令する。いずれにしろ、送受切替のタイミングは、不要データ判定部10で分かっている。 Although not shown in FIGS. 7 and 8, a signal for switching between transmission and reception is input from the transmission / reception device 102 to the signal processing device 103. Alternatively, the signal processing device 103 generates transmission / reception switching and instructs the transmission / reception device 102. In any case, the transmission / reception switching timing is known by the unnecessary data determination unit 10.
 近距離判定部12は、送信から受信への切替によってノイズが発生する近い層で反射された受信信号について、置換区間を設定する。近距離判定部12は、送信から受信への切替タイミングを基準に、(近い層の)パワースペクトルの最大値が閾値以下になるまで、送信区間から受信区間の方向へ(後の時間へ)置換区間を延長する。例えば、パワースペクトルの最大値が閾値を越える場合、置換区間を一定のステップ時間延長して、パワースペクトルの最大値の変化を見る。最大値が閾値以下になるまで、この操作を繰り返す。 The short distance determination unit 12 sets a replacement section for a reception signal reflected by a near layer where noise is generated due to switching from transmission to reception. The short-range determination unit 12 performs replacement from the transmission period to the reception period (to the later time) until the maximum value of the power spectrum (in the near layer) is equal to or less than the threshold value based on the switching timing from transmission to reception. Extend the section. For example, when the maximum value of the power spectrum exceeds the threshold, the replacement interval is extended by a certain step time, and the change of the maximum value of the power spectrum is observed. This operation is repeated until the maximum value is less than or equal to the threshold value.
 遠距離判定部13は、受信から送信への切替によってノイズが発生する遠い層で反射された受信信号について、置換区間を設定する。遠距離判定部13は、受信から送信への切替タイミングを基準に、(遠い層の)パワースペクトルの最大値が閾値以下になるまで、後の送信区間からその前の受信区間の方向へ(前の時間へ)置換区間を延長する。例えば、パワースペクトルの最大値が閾値を越える場合、置換区間を一定のステップ時間前に延長して、パワースペクトルの最大値の変化を見る。最大値が閾値以下になるまで、この操作を繰り返す。 The long distance determination unit 13 sets a replacement section for a received signal reflected by a far layer where noise is generated due to switching from reception to transmission. The long distance determination unit 13 uses the timing of switching from reception to transmission as a reference until the maximum value of the power spectrum (in the far layer) is equal to or less than the threshold value, from the subsequent transmission section to the previous reception section (front Extend the replacement interval. For example, when the maximum value of the power spectrum exceeds the threshold, the replacement interval is extended before a certain step time, and the change in the maximum value of the power spectrum is observed. This operation is repeated until the maximum value is less than or equal to the threshold value.
 送受信の切替タイミングによって、近距離側のノイズの影響が及ぶ高度と、遠距離側のノイズが及ぶ高度は分かっているから(図4および図5参照)、それぞれ判定する高度の範囲を決めることができる。近距離判定部12および遠距離判定部13は、それぞれの高度の範囲でノイズ区間を設定すればよい。また、近距離判定部12は送信から受信への切替タイミングから後の時間範囲(判定範囲)で、置換区間の終点を判定する。そして、遠距離判定部13は、受信から送信への切替タイミングから前の時間範囲(判定範囲)で、置換区間の始点を判定する。 Since the altitude affected by the noise on the near side and the altitude affected by the noise on the far side are known by the transmission / reception switching timing (see FIGS. 4 and 5), the range of the altitude to be determined can be determined. it can. The short distance determination unit 12 and the long distance determination unit 13 may set a noise section in the range of each altitude. Further, the short distance determination unit 12 determines the end point of the replacement section in a time range (determination range) after the switching timing from transmission to reception. Then, the long distance determination unit 13 determines the start point of the replacement section in the previous time range (determination range) from the switching timing from reception to transmission.
 図9Aおよび図9Bは、実施の形態1に係る不要データ判定のパワースペクトルの例を示す図である。図9Aおよび図9Bは、ある高度で反射された受信信号のパワースペクトルを表し、図9Aは、最大値が閾値を超えている場合、図9Bは、最大値が閾値以下である場合を示す。近距離判定部12および遠距離判定部13は、それぞれ対象の高度のパワースペクトルの最大値が閾値以下になるまで、置換区間を延長する。 FIG. 9A and FIG. 9B are diagrams showing examples of the power spectrum for unnecessary data determination according to the first embodiment. 9A and 9B represent the power spectrum of the received signal reflected at a certain altitude. FIG. 9A shows the case where the maximum value exceeds the threshold value, and FIG. 9B shows the case where the maximum value is less than the threshold value. Each of the short distance determination unit 12 and the long distance determination unit 13 extends the replacement section until the maximum value of the power spectrum of the target altitude is equal to or less than the threshold value.
 近距離判定部12および遠距離判定部13では、パワースペクトルの最大値、判定の閾値、判定範囲、ステップ時間の情報をもとに、ノイズ区間として受信信号のデータを一定値に置き換える置換区間(I/Qデータを一定値に置き換える位置)を算出し、置換信号(近距離置換信号と遠距離置換信号)を出力する。ここで、近距離判定部12と遠距離判定部13は設定される閾値、判定範囲、ステップ時間(近距離用と遠距離用)が異なるだけで、処理フローは同じである。後の時間への方向を正として、ステップ時間を、近距離用では正の値、遠距離用では負の値とすれば、近距離と遠距離で同じアルゴリズムを用いることができる。 The short distance determination unit 12 and the long distance determination unit 13 replace the received signal data with a constant value as a noise interval based on information on the maximum value of the power spectrum, the determination threshold, the determination range, and the step time. A position where I / Q data is replaced with a constant value is calculated, and a replacement signal (a short distance replacement signal and a long distance replacement signal) is output. Here, the short-distance determination unit 12 and the long-distance determination unit 13 have the same processing flow except that the set threshold value, determination range, and step time (for short-distance and long-distance) are different. If the direction to the later time is positive and the step time is a positive value for short distance and a negative value for long distance, the same algorithm can be used for short distance and long distance.
 図10は、実施の形態1に係る不要データの判定・削除の作用を示すタイミング図である。送受切替信号は、低いレベルが送信、高いレベルが受信を示す。送信種信号は、送信区間に現れる。基準トリガは、送信から受信への切替タイミングを示し、ノイズ区間(置換区間)を設定する基準である。近距離判定部12は、基準トリガから後方(時間が進む方向)に置換区間を延長する。遠距離判定部13は、基準トリガから前方(時間を遡る方向)に置換区間を延長する。図10では、1つの時間間隔においてノイズの有無を判定して、その後の時間間隔における置換区間を設定することによって、時間間隔の順に置換区間が延長される様子が示されている。 FIG. 10 is a timing chart showing an operation of determining and deleting unnecessary data according to the first embodiment. The transmission / reception switching signal indicates transmission at a low level and reception at a high level. The transmission type signal appears in the transmission interval. The reference trigger indicates a switching timing from transmission to reception, and is a reference for setting a noise section (replacement section). The short distance determination unit 12 extends the replacement section backward (in the direction in which time advances) from the reference trigger. The long distance determination unit 13 extends the replacement section forward (in the direction of going back in time) from the reference trigger. FIG. 10 shows a state in which the replacement interval is extended in the order of the time interval by determining the presence or absence of noise in one time interval and setting the replacement interval in the subsequent time interval.
 図8の置換ゲート信号生成部31は、近距離判定部12および遠距離判定部13から入力された近距離置換信号と遠距離置換信号から、置換ゲート信号を生成する。置換ゲート信号は、遠距離置換信号からその後の近距離置換信号までが置換区間である。図10では、置換ゲート信号の低いレベルが置換区間を示す。 The replacement gate signal generation unit 31 in FIG. 8 generates a replacement gate signal from the short distance replacement signal and the long distance replacement signal input from the short distance determination unit 12 and the long distance determination unit 13. The replacement gate signal is a replacement section from a long distance replacement signal to a subsequent short distance replacement signal. In FIG. 10, the low level of the replacement gate signal indicates the replacement interval.
 置換処理部32では置換ゲート信号生成部31から入力された置換ゲート信号に応じてゲートがかかっている箇所のみ、位相検波部2から入力されたI/Qデータを一定値、例えばデータ「0」に置き換える。置き換えるデータは「0」に限らず、一定値であればよい。図10では、ノイズの有無を判定した時間間隔の後の時間間隔における置換区間の受信信号のデータを「0」(一定値)に置き換えて、時間間隔の順に置換区間が拡大する様子が示されている。 In the replacement processing unit 32, the I / Q data input from the phase detection unit 2 is set to a constant value, for example, data “0”, only at the portion that is gated according to the replacement gate signal input from the replacement gate signal generation unit 31. Replace with The data to be replaced is not limited to “0” and may be a constant value. FIG. 10 shows how the received signal data in the replacement interval in the time interval after the time interval in which the presence / absence of noise is determined is replaced with “0” (a constant value), and the replacement interval is expanded in the order of the time interval. ing.
 図11は、実施の形態1のノイズ区間判定・置換によりノイズの影響を回避できることを説明するための図である。図11の左側は図4と同じである。「1」、「-1」はそれぞれ、位相を0、πにした信号を表す。「0」は、位相がπ/2(または-π/2)ではなく、振幅が0の一定値を表す。「X」を付して表されるノイズの影響を受ける信号を、一定値「0」に置き換えることによって、例えばR6層のパルス圧縮後のデータにノイズが含まれないので、R6層のドップラ速度を正しく算出することができる。送受切替時のノイズが混入されていたデータを0で置き換えることにより、図11に示すように復調後のスペクトラムデータには大気エコーのみが現れることになる。 FIG. 11 is a diagram for explaining that the influence of noise can be avoided by the noise section determination / replacement according to the first embodiment. The left side of FIG. 11 is the same as FIG. “1” and “−1” represent signals having phases of 0 and π, respectively. “0” represents a constant value whose phase is not π / 2 (or −π / 2) and whose amplitude is 0. By replacing a signal affected by noise represented by “X” with a constant value “0”, for example, noise is not included in the data after pulse compression of the R6 layer, so the Doppler speed of the R6 layer Can be calculated correctly. By replacing the data mixed with noise at the time of transmission / reception switching with 0, only the atmospheric echo appears in the demodulated spectrum data as shown in FIG.
 データが置換される層、例えば、R6層は、データ置換されないR4層に比べて、圧縮されて積み上がる個数が少なくなるので精度は低下するが、インコヒーレント積分時間を長くすることによって補うことができる。高度の高い層では、風速の時間変化は小さく、時間分解能は小さくてもよいので、充分実用に耐える。 The layer in which the data is replaced, for example, the R6 layer is less accurate because the number of compressed and stacked layers is smaller than the R4 layer in which the data is not replaced, but it can be compensated by increasing the incoherent integration time. it can. In a high altitude layer, the time change of the wind speed is small and the time resolution may be small, so that it is sufficiently practical.
 上述の置換処理を行うことにより、実データと置換データの境界の不連続性により、スペクトラムデータにDC成分が混入される。そこで、図7のDC成分除去部15でDC成分(ドップラー0のポイント)を削除する。例えば、パワースペクトルのDC成分に隣接するデータから内挿することによってDC成分を除去する。これによりデータ不連続による問題は解消される。 By performing the above replacement process, the DC component is mixed into the spectrum data due to the discontinuity of the boundary between the actual data and the replacement data. Therefore, the DC component (point of Doppler 0) is deleted by the DC component removing unit 15 in FIG. For example, the DC component is removed by interpolating from data adjacent to the DC component of the power spectrum. This eliminates the problem caused by data discontinuity.
 図12Aは、実施の形態1に係るDC成分を除去する前のパワースペクトルを示す図である。図12Bは、実施の形態1に係るDC成分を除去した後のパワースペクトルを示図であるす。 FIG. 12A is a diagram showing a power spectrum before the DC component according to Embodiment 1 is removed. FIG. 12B is a diagram showing a power spectrum after the DC component according to Embodiment 1 is removed.
 図13は、実施の形態1に係るノイズ区間判定・置換の動作の一例を示すフローチャートである。上述のとおり、ノイズ区間判定の閾値、判定範囲、ステップ時間を近距離側(送信から受信に切り替わるタイミング)と遠距離側(受信から送信に切り替わるタイミング)とで個別に設定できるようにすることにより、判定処理を同じ方法で実現できる。 FIG. 13 is a flowchart showing an example of the noise section determination / replacement operation according to the first embodiment. As described above, by allowing the noise interval determination threshold, determination range, and step time to be set individually on the short distance side (timing when switching from transmission to reception) and the long distance side (timing when switching from reception to transmission) The determination process can be realized by the same method.
 不要データ判定部10は、まず、インコヒーレント積分部9からのパワースペクトルを読み込む(ステップST1)。不要データ判定部10は、その入力されたパワースペクトルのうち、判定する範囲の最初の高度のパワースペクトルに移動(判定する高度を設定)する(ステップST2)。最大値算出部11は、次に、移動した高度のパワースペクトルの最大値を算出する(ステップST3)。 Unnecessary data determination unit 10 first reads the power spectrum from incoherent integration unit 9 (step ST1). The unnecessary data determination unit 10 moves (sets the determination altitude) to the power spectrum of the first altitude in the determination range in the input power spectrum (step ST2). Next, the maximum value calculation unit 11 calculates the maximum value of the power spectrum of the moved altitude (step ST3).
 近距離判定部12または遠距離判定部13は、最大値と閾値と比較し最大値≦閾値の場合は(ステップST4;YES)、置換信号遅延ステップST5へ、最大値>閾値の場合は(ステップST4;NO)、終了高度判定ステップST7へ進む。上述のとおり、近距離か遠距離かは、判定する高度で選択する。例えば、ある高度以下の場合は、近距離判定部12が、それ以上の高度の場合は、遠距離判定部13が判定する。近距離か遠距離かによって、最大値を判定する閾値、延長する時間ステップおよび基準のタイミング(近距離側置換信号と遠距離側置換信号の基準)を変える。 The short distance determination unit 12 or the long distance determination unit 13 compares the maximum value with the threshold value, and if the maximum value ≦ the threshold value (step ST4; YES), the replacement signal delay step ST5, and if the maximum value> the threshold value (step) ST4; NO), the process proceeds to an end altitude determination step ST7. As described above, whether it is a short distance or a long distance is selected based on the altitude to be determined. For example, when the altitude is below a certain altitude, the short distance determination unit 12 determines, and when the altitude is higher than that, the long distance determination unit 13 determines. The threshold for determining the maximum value, the time step to be extended, and the reference timing (reference of the short distance side replacement signal and the long distance side replacement signal) are changed depending on whether the distance is short distance or long distance.
 置換信号遅延ステップST5では、前の置換信号を基準に設定されたステップ時間だけ置換信号の出力タイミングを延長し、時刻更新ステップST6へ進む。前述のとおり、後の時間への方向を正として、ステップ時間を、近距離用では正の値、遠距離用では負の値をとる。近距離判定部12では、近距離側置換信号を遅延する方向に、遠距離判定部13では、遠距離側置換信号を早める方向に延長する。時刻更新ステップST6において処理対象となる時間間隔(1回の送信区間とそれに続く受信区間)を次の時間間隔に進めるとともに、処理対象となる高度を初期化して、データ読込みステップST1の処理に戻る。 In replacement signal delay step ST5, the output timing of the replacement signal is extended by the step time set based on the previous replacement signal, and the process proceeds to time update step ST6. As described above, the step time takes a positive value for short distance and a negative value for long distance, with the direction to the later time being positive. The short distance determination unit 12 extends the short distance side replacement signal in the direction of delaying, and the long distance determination unit 13 extends the long distance side replacement signal in the direction of advancing. In the time update step ST6, the time interval to be processed (one transmission interval and the subsequent reception interval) is advanced to the next time interval, the altitude to be processed is initialized, and the processing returns to the data reading step ST1. .
 一方、最大値>閾値の場合(ステップST4;NO)、終了高度判定ステップST7において、閾値判定ステップの高度が終了高度まで達しているかどうか判定する(ST7)。判定の結果、終了高度までに達している場合(ステップST7;YES)は処理を終了し、終了高度までに達していない場合(ステップST7;NO)は高度更新ステップST8に進む。高度更新ステップST8では、処理対象となる高度を次の高度に更新した後、その高度のパワースペクトルの最大値算出(ステップST3)から繰り返す。 On the other hand, if the maximum value is greater than the threshold (step ST4; NO), it is determined in the end altitude determination step ST7 whether the altitude in the threshold determination step has reached the end altitude (ST7). As a result of the determination, if the end altitude has been reached (step ST7; YES), the process ends. If the end altitude has not been reached (step ST7; NO), the process proceeds to altitude update step ST8. In altitude update step ST8, the altitude to be processed is updated to the next altitude, and the process is repeated from the maximum value calculation of the altitude power spectrum (step ST3).
 不要データ判定部10と不要データ削除部3でノイズ区間判定・置換処理を行った結果、実データと置換の境界の不連続性によりパワースペクトルに混入されるDC成分は、DC成分除去部15で除去される。 As a result of the noise section determination / replacement processing performed by the unnecessary data determination unit 10 and the unnecessary data deletion unit 3, the DC component mixed in the power spectrum due to the discontinuity of the boundary between the actual data and the replacement is obtained by the DC component removal unit 15. Removed.
 以上説明したように、実施の形態1に係る信号処理装置103によれば、送受切替時のノイズが混入されていたデータを一定値で置き換え、またDC成分を除去することにより、復調後のパワースペクトルには大気エコーのみが現れることになる。その結果、受信信号にノイズが混入する高度までデータの取得レンジ数を拡大することができる。 As described above, according to the signal processing apparatus 103 according to the first embodiment, the demodulated power can be obtained by replacing the data mixed with noise at the time of transmission / reception switching with a constant value and removing the DC component. Only atmospheric echoes will appear in the spectrum. As a result, the number of data acquisition ranges can be expanded to an altitude at which noise is mixed in the received signal.
 実施の形態2.
 図14は、本発明の実施の形態2に係る送受切替・周波数変換部の構成例を示すブロック図である。実施の形態2では、スイッチングノイズが含まれる受信信号を、アナログ信号の段階で影響されない強度(実質的に無効なレベル)まで減衰させる方法である。
Embodiment 2. FIG.
FIG. 14 is a block diagram illustrating a configuration example of a transmission / reception switching / frequency converting unit according to Embodiment 2 of the present invention. In the second embodiment, a received signal including switching noise is attenuated to an intensity (substantially invalid level) that is not affected at the stage of the analog signal.
 送受切替・周波数変換部112は、送受切替部20、減衰部21、ミキサ22、2分配部23、STALO(安定局部発振器)24およびミキサ25を備える。図14の送受切替・周波数変換部112は、図1の送受信装置102に含まれるものであるが、ここでは、少なくとも減衰部21を信号処理装置103の一部として扱う。 The transmission / reception switching / frequency conversion unit 112 includes a transmission / reception switching unit 20, an attenuation unit 21, a mixer 22, a 2 distribution unit 23, a STALO (stable local oscillator) 24, and a mixer 25. The transmission / reception switching / frequency conversion unit 112 in FIG. 14 is included in the transmission / reception device 102 in FIG. 1, but here, at least the attenuation unit 21 is handled as a part of the signal processing device 103.
 STALO24で生成される一定周波数の周期信号は、2分配部23によって、送信側のミキサ25および受信側のミキサ22に供給される。送信IF信号はミキサ25で搬送波の周波数にアップコンバートされて、送信RF信号として送受切替部20に送られる。送受切替部20は、送信RF信号を送信部へ、受信RF信号を受信部へ伝送させるために送受信を切り替える。送信の場合は、ミキサ25からの送信RF信号を空中線装置101に送る。受信の場合は、空中線装置101からの受信RF信号を減衰部21に送る。 The periodic signal having a constant frequency generated by the STALO 24 is supplied to the mixer 25 on the transmission side and the mixer 22 on the reception side by the two distribution unit 23. The transmission IF signal is up-converted to a carrier frequency by the mixer 25 and sent to the transmission / reception switching unit 20 as a transmission RF signal. The transmission / reception switching unit 20 switches between transmission and reception in order to transmit the transmission RF signal to the transmission unit and the reception RF signal to the reception unit. In the case of transmission, the transmission RF signal from the mixer 25 is sent to the antenna apparatus 101. In the case of reception, the reception RF signal from the antenna device 101 is sent to the attenuation unit 21.
 減衰部21は、送受切替部20より入力される受信RF信号に対し、減衰ゲート信号の箇所のみ信号を減衰させる。減衰ゲート信号は、信号処理装置103から供給される。 The attenuating unit 21 attenuates the signal only in the portion of the attenuated gate signal with respect to the received RF signal input from the transmission / reception switching unit 20. The attenuation gate signal is supplied from the signal processing device 103.
 信号処理装置103では、例えば、送受信を切り替えるタイミング信号(図10に示される送受切替信号)を取り込んで、予め計測したノイズが発生する範囲である、タイミング信号から所定の長さの時間の範囲を減衰ゲート信号として生成する。または、実施の形態1の置換信号を、減衰部21から不要データ判定部10までの遅延時間を調整して、減衰ゲート信号として供給する。 In the signal processing device 103, for example, a timing signal (transmission / reception switching signal shown in FIG. 10) for switching between transmission and reception is acquired, and a time range of a predetermined length from the timing signal, which is a range where noise measured in advance is generated. Generated as an attenuated gate signal. Alternatively, the replacement signal of the first embodiment is supplied as an attenuation gate signal by adjusting the delay time from the attenuation unit 21 to the unnecessary data determination unit 10.
 減衰ゲート信号の箇所が減衰された受信RF信号は、ミキサ22で中間周波数に変換されて、受信IF信号として、信号処理装置103のA-D変換部1に送られる。送受切替のスイッチングノイズが混入している減衰ゲート信号の箇所は、実質的に無効なレベルに減衰されるので、パワースペクトルに不要なピークが現れることがない。 The received RF signal with the attenuated gate signal portion attenuated is converted to an intermediate frequency by the mixer 22 and sent to the AD converter 1 of the signal processing device 103 as a received IF signal. The portion of the attenuated gate signal in which switching noise for transmission / reception switching is mixed is attenuated to a substantially invalid level, so that an unnecessary peak does not appear in the power spectrum.
 図15は、実施の形態2に係るスイッチングノイズを減衰させる例を示すタイミング図である。送受切替信号の立上がり、立下り時に強いスイッチングノイズが受信信号に混入される。スイッチングノイズが混入される区間の信号にのみ減衰をかけることにより、スイッチングノイズは減衰され、実エコーは影響を受けないようにできる。 FIG. 15 is a timing diagram showing an example of attenuating switching noise according to the second embodiment. Strong switching noise is mixed in the received signal at the rise and fall of the transmission / reception switching signal. By attenuating only the signal in the section where the switching noise is mixed, the switching noise is attenuated and the actual echo can be made unaffected.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態および変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. The scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2012年8月9日に出願された、明細書、特許請求の範囲、図、および要約書を含む、日本国特許出願2012-176756号に基づく優先権を主張するものである。日本国特許出願2012-176756号の開示内容は参照により全体として本出願に含まれる。 This application claims priority based on Japanese Patent Application No. 2012-176756 filed on August 9, 2012, including the specification, claims, figures, and abstract. The disclosure of Japanese Patent Application No. 2012-176756 is included in this application as a whole by reference.
 1 A-D変換部、2 位相検波部、3 不要データ削除部、4 CICデシメーション部、5 FIR部、6 パルス圧縮部、7 コヒーレント積分部、8 FFT処理部、9 インコヒーレント積分部、10 不要データ判定部、11 最大値算出部、12 近距離判定部、13 遠距離判定部、15 DC成分除去部、20 送受切替部、21 減衰部、22 ミキサ、23 2分配部、24 STALO、25 ミキサ、31 置換ゲート信号生成部、32 置換処理部、100 ウィンドプロファイラ、101 空中線装置、102 送受信装置、103 信号処理装置、104 風速ベクトル算出装置、105 表示・記録装置、112 送受切替・周波数変換部。 1 AD conversion unit, 2 phase detection unit, 3 unnecessary data deletion unit, 4 CIC decimation unit, 5 FIR unit, 6 pulse compression unit, 7 coherent integration unit, 8 FFT processing unit, 9 incoherent integration unit, 10 unnecessary Data determination unit, 11 maximum value calculation unit, 12 short distance determination unit, 13 long distance determination unit, 15 DC component removal unit, 20 transmission / reception switching unit, 21 attenuation unit, 22 mixer, 23 2 distribution unit, 24 STALO, 25 mixer , 31 replacement gate signal generation unit, 32 replacement processing unit, 100 window profiler, 101 antenna device, 102 transmission / reception device, 103 signal processing device, 104 wind speed vector calculation device, 105 display / recording device, 112 transmission / reception switching / frequency conversion unit.

Claims (11)

  1.  空間にパルス状の電磁波を放射したのち送受信を切り替えて、観測対象物から反射された電磁波を受信して、受信した電磁波のドップラ周波数から風速を測定するウィンドプロファイラにおける信号処理装置であって、
     前記送受信の切り替えでスイッチングノイズが発生するノイズ区間を検出する検出部と、
     前記ノイズ区間の受信信号を実質的に無効なデータに変換する信号抑制部と、
     を備える信号処理装置。
    A signal processing device in a wind profiler that radiates a pulsed electromagnetic wave in space, switches between transmission and reception, receives an electromagnetic wave reflected from an observation object, and measures the wind speed from the Doppler frequency of the received electromagnetic wave,
    A detection unit for detecting a noise section in which switching noise is generated by switching between transmission and reception;
    A signal suppression unit that converts the received signal in the noise section into substantially invalid data;
    A signal processing apparatus comprising:
  2.  前記受信信号のデータにフーリエ変換を施すフーリエ変換処理部と、
     前記フーリエ変換処理部でフーリエ変換された受信信号のデータからパワースペクトルを算出するとともに、複数の時刻で得られるパワースペクトルを、インコヒーレント積分時間だけ時間積分するインコヒーレント積分部と、
     を備え、
     前記検出部は、前記インコヒーレント積分した後のパワースペクトルからノイズ信号の有無を判定することによって前記ノイズ区間を検出して、前記受信信号を一定値に置き換える置換区間を設定し、
     前記信号抑制部は、
     前記検出部が設定した置換区間をもとに、前記置換区間の前記受信信号のデータを一定値に置き換える不要データ削除部と、
     前記不要データ削除部で受信信号のデータを前記一定値に置き換えたことにより発生する、前記パワースペクトルのDC成分を除去するDC成分除去部と、
     を含む、
     請求項1に記載の信号処理装置。
    A Fourier transform processing unit for performing Fourier transform on the data of the received signal;
    An incoherent integrator that calculates the power spectrum from the data of the received signal Fourier-transformed by the Fourier transform processing unit, and time-integrates the power spectrum obtained at a plurality of times for an incoherent integration time;
    With
    The detection unit detects the noise interval by determining the presence or absence of a noise signal from the power spectrum after the incoherent integration, and sets a replacement interval for replacing the received signal with a constant value,
    The signal suppression unit is
    Based on the replacement interval set by the detection unit, an unnecessary data deletion unit that replaces the data of the received signal in the replacement interval with a constant value;
    A DC component removing unit that removes a DC component of the power spectrum generated by replacing the data of the received signal with the constant value in the unnecessary data deleting unit;
    including,
    The signal processing apparatus according to claim 1.
  3.  前記検出部は、1つの時間間隔においてノイズの有無を判定して、その後の時間間隔における前記置換区間を設定し、
     前記信号抑制部は、前記検出部がノイズの有無を判定した時間間隔の後の時間間隔における前記置換区間の受信信号のデータを前記一定値に置き換える、
     請求項2に記載の信号処理装置。
    The detection unit determines the presence or absence of noise in one time interval, sets the replacement interval in a subsequent time interval,
    The signal suppression unit replaces the data of the reception signal in the replacement interval in the time interval after the time interval in which the detection unit determines the presence or absence of noise with the constant value.
    The signal processing apparatus according to claim 2.
  4.  前記検出部は、前記インコヒーレント積分した後のパワースペクトルの最大値を算出し、設定された判定範囲内で前記最大値と閾値とを比較した結果に応じて、所定のステップ時間を単位として前記置換区間を設定する、請求項2または3に記載の信号処理装置。 The detection unit calculates the maximum value of the power spectrum after the incoherent integration, and according to a result of comparing the maximum value and a threshold value within a set determination range, the predetermined step time as a unit. The signal processing apparatus according to claim 2 or 3, wherein a replacement section is set.
  5.  前記検出部は、
     前記ウィンドプロファイラが送信から受信に切り替わるタイミングの判定範囲内で、前記最大値が第1の閾値より大きい場合に、前記送信から受信に切り替わるタイミングの前記置換区間を、第1のステップ時間だけ後の時間に延長し、
     前記ウィンドプロファイラが受信から送信に切り替わるタイミングの判定範囲内で、前記最大値が第2の閾値より大きい場合に、前記受信から送信に切り替わるタイミングの前記置換区間を、第2のステップ時間だけ前の時間に延長する、
     請求項4に記載の信号処理装置。
    The detector is
    Within the determination range of the timing at which the window profiler switches from transmission to reception, when the maximum value is larger than the first threshold, the replacement interval of the timing at which the window profiler switches from reception to the first step time is set. Extend to time,
    When the maximum value is larger than a second threshold within the determination range of the timing at which the window profiler switches from reception to transmission, the replacement interval of the timing at which the window profiler switches from reception to transmission is set to the second step time before. Extend to time,
    The signal processing apparatus according to claim 4.
  6.  前記検出部は、前記置換区間の開始と終了を示す置換ゲート信号を生成し、
     前記信号抑制部は、前記置換ゲート信号で指定される区間の受信信号のデータを前記一定値に置き換える、
     請求項2ないし5のいずれか1項に記載の信号処理装置。
    The detection unit generates a replacement gate signal indicating the start and end of the replacement section,
    The signal suppression unit replaces the received signal data in the section specified by the replacement gate signal with the constant value.
    The signal processing apparatus according to claim 2.
  7.  前記信号抑制部は、前記パワースペクトルのDC成分に隣接するデータから内挿することによって前記DC成分を除去する、請求項2ないし6のいずれか1項に記載の信号処理装置。 The signal processing apparatus according to any one of claims 2 to 6, wherein the signal suppressing unit removes the DC component by interpolating from data adjacent to the DC component of the power spectrum.
  8.  前記検出部は、前記送受信を切り替えるタイミング信号を取り込んで、前記タイミング信号から所定の長さの時間を前記ノイズ区間として検出し、
     前記信号抑制部は、前記ノイズ区間における前記受信信号を減衰させる、
     請求項1に記載の信号処理装置。
    The detection unit captures a timing signal for switching between transmission and reception, detects a predetermined length of time from the timing signal as the noise interval,
    The signal suppression unit attenuates the received signal in the noise interval;
    The signal processing apparatus according to claim 1.
  9.  空間にパルス状の電磁波を放射したのち送受信を切り替えて、観測対象物から反射された電磁波を受信して、受信した電磁波のドップラ周波数から風速を測定するウィンドプロファイラが行う信号処理方法であって、
     前記送受信の切り替えでスイッチングノイズが発生するノイズ区間を検出する検出ステップと、
     前記ノイズ区間の受信信号を実質的に無効なデータに変換する信号抑制ステップと、
     を備える信号処理方法。
    It is a signal processing method performed by a wind profiler that radiates pulsed electromagnetic waves in space and then switches between transmission and reception, receives electromagnetic waves reflected from the observation object, and measures the wind speed from the Doppler frequency of the received electromagnetic waves,
    A detection step of detecting a noise section in which switching noise is generated by switching between transmission and reception;
    A signal suppression step of converting the received signal in the noise interval into substantially invalid data;
    A signal processing method comprising:
  10.  前記受信信号のデータにフーリエ変換を施すフーリエ変換処理ステップと、
     前記フーリエ変換処理ステップでフーリエ変換された受信信号のデータからパワースペクトルを算出するとともに、複数の時刻で得られるパワースペクトルを、インコヒーレント積分時間だけ時間積分するインコヒーレント積分ステップと、
     を備え、
     前記検出ステップでは、前記インコヒーレント積分した後のパワースペクトルからノイズ信号の有無を判定することによって前記ノイズ区間を検出して、前記受信信号を一定値に置き換える置換区間を設定し、
     前記信号抑制ステップは、
     前記検出ステップで設定した置換区間をもとに、前記置換区間の前記受信信号のデータを一定値に置き換える不要データ削除ステップと、
     前記不要データ削除ステップで受信信号のデータを前記一定値に置き換えたことにより発生する、前記パワースペクトルのDC成分を除去するDC成分除去ステップと、
     を含む、
     請求項9に記載の信号処理方法。
    Fourier transform processing step for performing Fourier transform on the received signal data;
    An incoherent integration step of calculating a power spectrum from the data of the received signal Fourier-transformed in the Fourier transform processing step, and time integrating the power spectrum obtained at a plurality of times for an incoherent integration time;
    With
    In the detection step, the noise interval is detected by determining the presence or absence of a noise signal from the power spectrum after the incoherent integration, and a replacement interval for replacing the received signal with a constant value is set.
    The signal suppression step includes
    Based on the replacement interval set in the detection step, unnecessary data deletion step of replacing the data of the received signal in the replacement interval with a constant value;
    A DC component removing step for removing a DC component of the power spectrum generated by replacing the data of the received signal with the constant value in the unnecessary data deleting step;
    including,
    The signal processing method according to claim 9.
  11.  前記検出ステップでは、前記送受信を切り替えるタイミング信号を取り込んで、前記タイミング信号から所定の長さの時間を前記ノイズ区間として検出し、
     前記信号抑制ステップでは、前記ノイズ区間における前記受信信号を減衰させる、
     請求項9に記載の信号処理方法。
    In the detection step, a timing signal for switching between transmission and reception is captured, and a predetermined length of time is detected as the noise interval from the timing signal,
    In the signal suppression step, the received signal in the noise section is attenuated.
    The signal processing method according to claim 9.
PCT/JP2013/069274 2012-08-09 2013-07-16 Signal processing device and signal processing method in wind profiler WO2014024644A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13828328.8A EP2884300B1 (en) 2012-08-09 2013-07-16 Signal processing device and signal processing method in wind profiler
US14/420,498 US10234556B2 (en) 2012-08-09 2013-07-16 Signal processing device and signal processing method in wind profiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-176756 2012-08-09
JP2012176756A JP6150474B2 (en) 2012-08-09 2012-08-09 Signal processing apparatus and signal processing method in wind profiler

Publications (1)

Publication Number Publication Date
WO2014024644A1 true WO2014024644A1 (en) 2014-02-13

Family

ID=50067880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069274 WO2014024644A1 (en) 2012-08-09 2013-07-16 Signal processing device and signal processing method in wind profiler

Country Status (4)

Country Link
US (1) US10234556B2 (en)
EP (1) EP2884300B1 (en)
JP (1) JP6150474B2 (en)
WO (1) WO2014024644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884605A (en) * 2019-02-02 2019-06-14 中国气象科学研究院 Extracting method of the sexual intercourse to attenuation by absorption and the Mie scattering decaying of radar signal

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228397B2 (en) * 2015-11-20 2019-03-12 Keysight Technologies, Inc. Apparatus and associated methods for monitoring noise level of a signal
CN105467374B (en) * 2016-01-08 2018-03-20 西安电子科技大学 Object detection method based on prewhitening ratio cell average detector under sea clutter background
JP6671968B2 (en) * 2016-01-13 2020-03-25 株式会社東芝 Signal processing device, radar receiver, signal processing method and program
CN105675911A (en) * 2016-01-20 2016-06-15 林业城 Ecological landscape side slope capable of rapid real-time identification
CN105651481A (en) * 2016-01-20 2016-06-08 潘燕 Intelligent long-span rail transit bridge
CN105588701A (en) * 2016-01-20 2016-05-18 蔡雄 Curb ramp with rapid real-time recognition function
US20190018144A1 (en) * 2016-01-27 2019-01-17 Mitsubishi Electric Corporation Coherent lidar
CN105974387B (en) * 2016-05-13 2019-08-13 中国科学院电子学研究所 A kind of signal gain control method and device
JP2017215208A (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Pulse radar
CN107561508B (en) * 2017-08-24 2020-12-29 电子科技大学 Coherent accumulation detection method for uniformly accelerated moving target
CN107563436B (en) * 2017-08-30 2019-11-15 北京无线电测量研究所 A kind of method and system of the automatic identification low-level jet stream on barb figure
CN111505599B (en) * 2020-05-07 2020-12-01 哈尔滨工业大学 Coherent accumulation detection method based on accurate distance evolution model
EP3992133B1 (en) * 2020-10-28 2024-03-13 KONE Corporation Method for detecting loss or undervoltage condition of phase of electric converter unit, conveyor control unit, and conveyor system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148671A (en) * 1996-11-20 1998-06-02 Nec Corp Method and system for separating clutter
JP2001159636A (en) 1999-12-02 2001-06-12 Mitsubishi Electric Corp Wind profiler device and wind velocity vector calculation method
JP2002168948A (en) 2000-11-30 2002-06-14 Mitsubishi Electric Corp Device and method for processing signal in wind profiler
JP2012078119A (en) * 2010-09-30 2012-04-19 Yokowo Co Ltd Baseband amplifying unit and pulse radar device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441179U (en) 1977-08-05 1979-03-19
JP3794361B2 (en) * 2002-08-28 2006-07-05 三菱電機株式会社 Radar signal processing apparatus and radar signal processing method
JP3780346B2 (en) 2003-08-05 2006-05-31 独立行政法人情報通信研究機構 Pulse compression method and apparatus for monostatic radar
JP4819343B2 (en) * 2004-11-09 2011-11-24 Necエンジニアリング株式会社 Wind profiler system
US7728771B2 (en) * 2007-07-03 2010-06-01 Northrop Grumman Systems Corporation Dual band quadpack transmit/receive module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148671A (en) * 1996-11-20 1998-06-02 Nec Corp Method and system for separating clutter
JP2001159636A (en) 1999-12-02 2001-06-12 Mitsubishi Electric Corp Wind profiler device and wind velocity vector calculation method
JP2002168948A (en) 2000-11-30 2002-06-14 Mitsubishi Electric Corp Device and method for processing signal in wind profiler
JP2012078119A (en) * 2010-09-30 2012-04-19 Yokowo Co Ltd Baseband amplifying unit and pulse radar device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109884605A (en) * 2019-02-02 2019-06-14 中国气象科学研究院 Extracting method of the sexual intercourse to attenuation by absorption and the Mie scattering decaying of radar signal

Also Published As

Publication number Publication date
EP2884300B1 (en) 2018-03-07
US20150226849A1 (en) 2015-08-13
EP2884300A4 (en) 2016-04-20
EP2884300A1 (en) 2015-06-17
US10234556B2 (en) 2019-03-19
JP2014035276A (en) 2014-02-24
JP6150474B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP6150474B2 (en) Signal processing apparatus and signal processing method in wind profiler
KR101908196B1 (en) Frequency modulation scheme for fmcw radar
JP6744478B2 (en) Radar equipment
US8760340B2 (en) Processing radar return signals to detect targets
JP2008014837A (en) Radar system and its signal processing method
JP4999592B2 (en) Radar equipment
US10120070B2 (en) Detection device, radar device, detection method, and detection program
JP5355322B2 (en) Interference wave detection apparatus, radar apparatus, and interference wave detection method
WO2020076316A1 (en) Phase doppler radar
JP3773779B2 (en) Radar signal processing device
JP5574907B2 (en) Radar equipment
JP5196959B2 (en) Radar equipment
KR20140076972A (en) Impulsive radar interference removal method and apparatus using the same
CN113359145B (en) Target accurate positioning method in pulse laser ranging and application thereof
JP2016224067A (en) Signal processing device and signal processing method in wind profiler
JP2013015454A (en) Radar device and interference wave removing method
US11927666B2 (en) Signal processing apparatus and signal processing method
US11892535B2 (en) Signal processing apparatus and signal processing method
JP2005017143A (en) Meteorological radar signal processor
Malanowski et al. Robust detection in continuous-wave noise radar–experimental results
CN113608205B (en) Ultra-high precision extraterrestrial microwave landing radar distance and speed measuring method
JP2012173040A (en) Radar device and incident time estimation method
KR20190122425A (en) Method of suppressing periodic clutters included in received signal of automotive radar system due to road iron-structures and automotive radar system for the same
JP2005326187A (en) Radar image processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14420498

Country of ref document: US

Ref document number: 2013828328

Country of ref document: EP