JP3780346B2 - Pulse compression method and apparatus for monostatic radar - Google Patents

Pulse compression method and apparatus for monostatic radar Download PDF

Info

Publication number
JP3780346B2
JP3780346B2 JP2003286497A JP2003286497A JP3780346B2 JP 3780346 B2 JP3780346 B2 JP 3780346B2 JP 2003286497 A JP2003286497 A JP 2003286497A JP 2003286497 A JP2003286497 A JP 2003286497A JP 3780346 B2 JP3780346 B2 JP 3780346B2
Authority
JP
Japan
Prior art keywords
time
transmission
pulse train
transmission pulse
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003286497A
Other languages
Japanese (ja)
Other versions
JP2005055302A (en
Inventor
信也 関澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2003286497A priority Critical patent/JP3780346B2/en
Publication of JP2005055302A publication Critical patent/JP2005055302A/en
Application granted granted Critical
Publication of JP3780346B2 publication Critical patent/JP3780346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、1つの共通アンテナを送信と受信に切り換えて用いるモノスタティックレーダのためのパルス圧縮方法及び装置に関する。   The present invention relates to a pulse compression method and apparatus for monostatic radar that uses one common antenna by switching between transmission and reception.

ウィンドプロファイラレーダ(WPR)のようなパルスレーダが知られている。これは、地上から上空へ向けて電波を送信し、大気乱流や降水粒子によって散乱された微弱な電波を受信して、その送受信電波の周波数の差(ドップラ周波数偏移)や受信信号強度を計測することにより、風向風速や乱流強度、降雨強度の高度分布を観測するレーダである。   A pulse radar such as a wind profiler radar (WPR) is known. This is because radio waves are transmitted from the ground to the sky, weak radio waves scattered by atmospheric turbulence and precipitation particles are received, and the frequency difference (Doppler frequency shift) and received signal strength of the transmitted and received radio waves are measured. It is a radar that observes the altitude distribution of wind direction, wind speed, turbulence intensity, and rainfall intensity by measuring.

ウィンドプロファイラレーダ(WPR)のようなパルスレーダの平均電力は、一般に尖頭電力と比較して数%と小さく(非特許文献1、2参照)、レーダの最大探知距離(Rmax)を大きくするためには送信時間率を高めることが効果的である。送信時間率を高めることができれば、レーダのSN比向上に貢献するのみならず、同じSN比(送信波の平均電力)を保ちながら送信パルスの尖頭電力が低減できるため装置の小型化、低コスト化が図れる。レーダのSN比を向上させる方法として、符号化パルスレーダのようなパルス圧縮法が有効な手段である。 The average power of a pulse radar such as a wind profiler radar (WPR) is generally as small as several percent compared to the peak power (see Non-Patent Documents 1 and 2), and the maximum detection distance (R max ) of the radar is increased. For this purpose, it is effective to increase the transmission time rate. If the transmission time rate can be increased, it not only contributes to the improvement of the S / N ratio of the radar, but the peak power of the transmission pulse can be reduced while maintaining the same S / N ratio (average power of the transmission wave). Cost can be reduced. A pulse compression method such as a coded pulse radar is an effective means for improving the S / N ratio of the radar.

図10は、一般的なパルス圧縮法による送信パルスと受信エコーの関係を示す図である。図示したように、各周期の始めに、送信パルス列が送信波として送信される。1つの共通アンテナを送信と受信に切り換えて用いるモノスタティックレーダにおいては、送信波を送信した後、次の周期において送信側に切り換えられるまで、アンテナは受信側に切り換えられて、受信エコーを受信する。この受信側に切り換えられている間が、観測距離によって決まる受信エコーの観測時間である。   FIG. 10 is a diagram illustrating a relationship between a transmission pulse and a reception echo by a general pulse compression method. As illustrated, a transmission pulse train is transmitted as a transmission wave at the beginning of each cycle. In a monostatic radar that uses one common antenna by switching between transmission and reception, the antenna is switched to the reception side after receiving the transmission wave until it is switched to the transmission side in the next cycle, and receives a reception echo. . While switching to the reception side, the reception echo observation time is determined by the observation distance.

また送信時間率を高める方法として、バーカー符号など用いるパルス圧縮法が一般的に知られているが、このようなパルス圧縮法は、符号系列の符号長が長くなるほど、その自己相関関数のサイドローブレベルは小さくなる反面、観測可能な最小探知距離(Rmin)が大きくなるという欠点があった。また、観測目標の移動によるドップラーシフトの影響を受け易く、サイドローブレベルが大きくなることがよく知られており(非特許文献3参照)、単純に符号のビット数を長くして送信時間率を高くすることには限界があった。
増田悦久,井原俊夫,中村健治,岡本謙一,大西勉,"低層大気観測用レーダの開発と初期観測データ,"通信総合研究所季報,vol.38, no.1, pp.15−33, Mar.1992. T Adachi, "Development of a 400MHz-band Wind Profiler Rader with RASS," Journal of the Communications Research Laboratory, vol.49, no.2, pp.211-216, June 2002. 近藤倫正,大橋由昌,実森彰朗,"計測・センサにおけるディジタル信号処理,"辻井重男(編),(株)昭晃堂,1993. R. C. Dixon,最新スペクトラム拡散通信方式,立野敏,片岡志津雄,飯田清(訳),ジャテック出版,東京,1978. 関澤信也,平和昌,神尾享秀,水野光彦,"仮想平面アレーを用いたマルチパス伝搬路の時空間特性測定システム,"信学論(B), vol.J83-B, no.9, pp.1303-1313, Sep.2000. 安田明生,"GPS技術の展望,"信学論(B), vol.J84-B, no.12, pp.2082-2091, Dec.2001.
As a method for increasing the transmission time rate, a pulse compression method using a Barker code or the like is generally known. However, such a pulse compression method increases the side length of the autocorrelation function as the code length of the code sequence increases. Although the level is small, the minimum observable detection distance (R min ) is large. In addition, it is well known that the side lobe level is likely to be easily affected by the Doppler shift due to the movement of the observation target (see Non-Patent Document 3), and the transmission bit rate is simply increased by increasing the number of bits of the code. There was a limit to raising it.
Masahisa Masuda, Toshio Ihara, Kenji Nakamura, Kenichi Okamoto, Tsutomu Onishi, "Development and initial observation data of radar for low-level atmospheric observation," Communications Research Laboratory quarterly report, vol.38, no.1, pp.15-33, Mar .1992. T Adachi, "Development of a 400MHz-band Wind Profiler Rader with RASS," Journal of the Communications Research Laboratory, vol.49, no.2, pp.211-216, June 2002. Tomonasa Kondo, Yoshimasa Ohashi, and Akira Akira Morimori, "Digital signal processing in measurement and sensors," Shigeo Sakurai (ed.), Shosodo Co., Ltd., 1993. RC Dixon, latest spread spectrum communication system, Satoshi Tateno, Shizuo Kataoka, Kiyoshi Iida (translation), JATEC Publishing, Tokyo, 1978. Shinya Sekizawa, Masaaki Heiwa, Yoshihide Kamio, Mitsuhiko Mizuno, "A system for measuring the spatio-temporal characteristics of multipath propagation paths using a virtual planar array," IEICE (B), vol.J83-B, no.9, pp .1303-1313, Sep. 2000. Akio Yasuda, “Prospects for GPS Technology,” Science Review (B), vol.J84-B, no.12, pp.2082-2091, Dec.2001.

WPRのように観測目標のドップラー速度が比較的遅い場合、符号1周期の時間が大気乱流からの散乱波がコヒーレントと見なせる時間(相関時間)よりも十分短く、符号1周期の時間におけるドップラーシフトによる散乱波の位相変化が2πより十分小さい条件であれば、周期の長い符号をレーダに用いることが十分可能と考えられる。   When the Doppler speed of the observation target is relatively slow like WPR, the time of one code period is sufficiently shorter than the time (correlation time) that the scattered wave from atmospheric turbulence can be regarded as coherent, and the Doppler shift in the time of one code period If the phase change of the scattered wave due to is sufficiently smaller than 2π, it is considered possible to use a code with a long period for the radar.

一方、PN(Pseudo Noise)符号の一つで、有限の符号系列が周期的に繰り返されるM系列(Maximal length sequence)は、その自己相関関数が鋭いピークを持つことから(非特許文献4参照)、移動通信における伝搬路のインパルス応答の測定(非特許文献5参照)やGPSによる測位(非特許文献6参照)など数多くの分野で利用されている。この符号をレーダに適用した場合の利点として、送信波が連続波となることから出力電力の大きな増幅器を必要としないこと、周期の長い符号系列を用いると最大探知距離(Rmax)が非常に大きくなること、そして同一周波数の他局からの干渉が軽減できることなどが上げられる。しかし、モノスタティックレーダでは、受信機における送受信信号の分離度を十分高めることが難しいことなどから、その適用は困難であった。 On the other hand, an M sequence (Maximal length sequence), which is one of PN (Pseudo Noise) codes and a finite code sequence is periodically repeated, has a sharp peak in its autocorrelation function (see Non-Patent Document 4). It is used in many fields such as measurement of impulse response of propagation path in mobile communication (see Non-Patent Document 5) and positioning by GPS (see Non-Patent Document 6). The advantage of applying this code to a radar is that the transmitted wave is a continuous wave, so that an amplifier with a large output power is not required, and the maximum detection distance (R max ) is very high when a code sequence with a long period is used. The increase in size and the reduction of interference from other stations of the same frequency can be raised. However, the monostatic radar has been difficult to apply because it is difficult to sufficiently increase the degree of separation of transmitted and received signals in the receiver.

本発明は、係る問題点を解決して、モノスタティックレーダのパルス圧縮技術において、レーダの観測可能な最小探知距離(Rmin)を増加させず、最大探知距離(Rmax)を減少させずに送信時間率を高めることや、同一周波数の他局からの干渉が軽減することを目的としている。 The present invention solves such a problem, and in the pulse compression technology of a monostatic radar, without increasing the minimum detectable distance (R min ) of the radar and without decreasing the maximum detectable distance (R max ). The purpose is to increase the transmission time rate and to reduce interference from other stations of the same frequency.

本発明のモノスタティックレーダのためのパルス圧縮方法は、1つの共通アンテナを送信と受信に切り換えて用いる。送信パルス列1周期の時間長Tcを所定数の整数N個の分割時間長TIPPに分割して、PN系列符号のビット情報を乗せた送信パルス列を生成する。この分割時間長TIPPをそれぞれ、送信時間Tsと残りの受信時間に分割して、この送信時間TsのN個に1周期の送信パルス列をN分割して、変調して送信すると共に、残りの受信時間の間に受信する。観測目標からの受信エコー情報から復調された時系列データ群と、前記送信パルス列との相関処理を行うことで、距離別に受信信号の複素時系列を算出する。 The pulse compression method for monostatic radar of the present invention uses one common antenna by switching between transmission and reception. A time length Tc of one cycle of the transmission pulse train is divided into a predetermined number N of divided time lengths T IPP to generate a transmission pulse train on which bit information of the PN sequence code is placed. Each of the divided time lengths T IPP is divided into a transmission time Ts and a remaining reception time, and a transmission pulse train of one period is divided into N parts of the transmission time Ts, modulated, and transmitted. Receive during reception time. By performing correlation processing between the time series data group demodulated from the received echo information from the observation target and the transmission pulse train, a complex time series of the received signal is calculated for each distance.

また、本発明のモノスタティックレーダのためのパルス圧縮装置は、1つの共通アンテナを送信と受信に切り換えて用いる。本発明は、PN系列符号を発生する発生器と、送信パルス列1周期の時間長Tcを所定数の整数N個の分割時間長TIPPに分割して、PN系列符号のビット情報を乗せた送信パルス列を生成する送信パルス列生成器と、前記分割時間長TIPPをそれぞれ、送信時間Tsと残りの受信時間に分割して、この送信時間TsのN個に1周期の送信パルス列をN分割して、変調して送信すると共に、前記残りの受信時間の間に受信するように切り換えられる送信/受信切り換え器と、観測目標からの受信エコー情報から復調された時系列データ群と、前記送信パルス列との相関処理を行うことで、距離別に受信信号の複素時系列を算出する相関器から構成される。 The pulse compression apparatus for monostatic radar according to the present invention uses one common antenna by switching between transmission and reception. The present invention relates to a generator for generating a PN sequence code, and a transmission in which the time length Tc of one transmission pulse train period is divided into a predetermined number N of divided time lengths T IPP and the bit information of the PN sequence code is placed A transmission pulse train generator for generating a pulse train, and the divided time length T IPP are divided into a transmission time Ts and a remaining reception time, respectively, and a transmission pulse train of one cycle is divided into N parts of the transmission time Ts. A transmission / reception switch that is modulated and transmitted and switched to receive during the remaining reception time, a time-series data group demodulated from reception echo information from an observation target, and the transmission pulse train By performing the correlation processing, the correlator is configured to calculate a complex time series of the received signal for each distance.

本発明によれば、モノスタティックレーダのパルス圧縮技術において、送信時間率を高めて、レーダの最小探知距離を増加させずに最大探知距離を大きくすることが可能となる。   According to the present invention, in the pulse compression technique of a monostatic radar, it is possible to increase the transmission time rate and increase the maximum detection distance without increasing the minimum detection distance of the radar.

また、これによって、レーダのSN比向上に貢献するのみならず、同じSN比(送信波の平均電力)を保ちながら送信パルスの尖頭電力が低減できるため装置の小型化、低コスト化が図れる。   This not only contributes to an improvement in the S / N ratio of the radar, but can reduce the peak power of the transmission pulse while maintaining the same S / N ratio (average power of the transmission wave), thereby reducing the size and cost of the apparatus. .

また、本発明方式にインコヒーレント積分を行いSN比の向上を図ると、送信パルスの尖頭電力が300 Wと比較的小電力でも高度2〜3 km程度までの大気観測が可能であることが分かり、本発明方式を用いるとレーダ装置の小型化、低コスト化が図れることからWPRの更なる普及が期待できる。   In addition, if incoherent integration is applied to the method of the present invention to improve the signal-to-noise ratio, it is possible to observe the atmosphere up to an altitude of 2 to 3 km even if the peak power of the transmitted pulse is 300 W and the power is relatively small. Obviously, if the method of the present invention is used, the radar apparatus can be reduced in size and cost, so that further WPR can be expected.

また、M系列の種類の違いを利用して同一周波数の自局と他局の分離が可能になるので、周波数利用効率の向上を図ることが可能になる。   In addition, since the own station and other stations having the same frequency can be separated using the difference in the types of M-sequences, it is possible to improve the frequency utilization efficiency.

以下、例示に基づき、本発明を説明する。図1は、本発明に基づき具体化されたパルス圧縮装置の概略構成を例示するブロック図である。図2は、図1に例示のパルス圧縮装置の動作を説明するための図であり、送信パルスと受信エコーの関係を示している。図3は、図1に例示の相関器における相関処理を説明する図である。図2及び図3において、パルス列或いは信号等に付加した丸数字は、図1の同一丸数字の位置において発生することを示している。   Hereinafter, the present invention will be described based on examples. FIG. 1 is a block diagram illustrating a schematic configuration of a pulse compression apparatus embodied according to the present invention. FIG. 2 is a diagram for explaining the operation of the pulse compression apparatus illustrated in FIG. 1 and shows the relationship between transmission pulses and reception echoes. FIG. 3 is a diagram for explaining the correlation processing in the correlator illustrated in FIG. In FIG. 2 and FIG. 3, the circled numbers added to the pulse train or signal indicate that they occur at the same circled numbers in FIG.

図1のPN系列発生器は、PN系列符号、例えば所定の符号長LのM系列符号を発生する。送信パルス列生成器は、M系列符号のビット情報を乗せた送信パルス列{c1、c2、・・・、cN}を生成する。 The PN sequence generator of FIG. 1 generates a PN sequence code, for example, an M sequence code having a predetermined code length L. The transmission pulse train generator generates a transmission pulse train {c 1 , c 2 ,..., C N } on which bit information of the M-sequence code is placed.

図2の最上位に示す送信パルス列(情報なし)は、送信パルス列1周期の時間長Tcが、N(所定数の整数)個の分割時間長TIPPに分割されていることを示している。さらに、この分割時間長TIPPはそれぞれ、送信時間Tsと、残りの受信時間に分割される。そして、この送信時間TsのN個に、1周期のM系列符号がN分割されて、そのビット情報が乗せられる。 The transmission pulse train (no information) shown at the top of FIG. 2 indicates that the time length Tc of one cycle of the transmission pulse train is divided into N (a predetermined number of integers) divided time lengths TIPP . Further, each of the division time lengths T IPP is divided into a transmission time Ts and a remaining reception time. Then, one cycle of the M-sequence code is divided into N parts of the N transmission times Ts, and the bit information is placed.

図2の送信波は、上記の送信パルス列を、図1のBPSK変調器で、搬送波発振器から発生した搬送波を用いてBPSK変調を行った信号を示している。この信号は、電力増幅器で増幅された後、送信/受信切り換え器で送信側に切り換えられているときに送受信アンテナから送信される。   The transmission wave in FIG. 2 shows a signal obtained by performing BPSK modulation on the above transmission pulse train using the carrier wave generated from the carrier oscillator by the BPSK modulator in FIG. This signal is amplified by the power amplifier and then transmitted from the transmitting / receiving antenna when switched to the transmission side by the transmission / reception switch.

次に観測目標からの受信エコー(図2参照)の情報は、送信パルスが発生していない期間において時系列データ群{r1、r2、・・・、rN}として取得する。即ち、受信エコーは、図1において、送受信アンテナから、送信/受信切り換え器を介して低雑音増幅器に入力され、ここで増幅された後、直交復調器に入力される。直交復調器では、BPSK変調器で用いたのと同じ搬送波を用いて、受信エコーの直交検波信号として時系列データ群{r1、r2、・・・、rN}を復調する。 Next, the information of the received echo (see FIG. 2) from the observation target is acquired as a time series data group {r 1 , r 2 ,..., R N } in a period in which no transmission pulse is generated. That is, in FIG. 1, the received echo is input from the transmission / reception antenna to the low noise amplifier via the transmission / reception switcher, amplified here, and then input to the quadrature demodulator. The quadrature demodulator demodulates the time-series data group {r 1 , r 2 ,..., R N } as a quadrature detection signal of the received echo using the same carrier as that used in the BPSK modulator.

送信パルスの時間間隔TIPPは、最大探知距離Rmaxに対応する時間長よりも遥かに短く設定する。距離が異なる散乱波が加算された受信エコーの直交検波信号は、図1の相関器において、送信パルス列との相関処理を行うことで、距離別に受信信号の複素時系列が算出できる。 The transmission pulse time interval T IPP is set to be much shorter than the time length corresponding to the maximum detection distance R max . The quadrature detection signal of the received echo to which the scattered waves having different distances are added is subjected to correlation processing with the transmission pulse train in the correlator of FIG. 1, so that a complex time series of the received signal can be calculated for each distance.

例えば、図3の下側に例示した送信パルス列(6列を図示)は、最上位に送信パルス列そのものを示し、次段に、最小探知距離Rminの距離に相当するだけ送信パルス列をずらして相関処理をした結果の受信信号強度を、図中においてその右側にグラフとして例示している。以下、同様に、最大探知距離Rmaxまで送信パルス列をずらしつつ相関処理を行って算出した受信信号の複素時系列をグラフに例示している。 For example, the transmission pulse train illustrated in the lower side of FIG. 3 (six rows are shown) shows the transmission pulse train itself at the top, and the transmission pulse train is shifted to the next stage by a distance corresponding to the minimum detection distance R min and correlated. The received signal strength as a result of processing is illustrated as a graph on the right side of the drawing. Hereinafter, similarly, a complex time series of received signals calculated by performing correlation processing while shifting the transmission pulse train to the maximum detection distance R max is illustrated in the graph.

送信パルス列1周期の時間長Tc はN×TIPPであり、原理的な最大探知距離RmaxはTc・c/2となる。ここでcは光速である。ただし、本方式の使用条件として、Tcは相関時間や送信パルスのレンジサイドローブの許容値を考慮して決定する必要がある。 The time length T c of one cycle of the transmission pulse train is N × T IPP , and the theoretical maximum detection distance R max is T c · c / 2. Where c is the speed of light. However, as a use condition of this method, T c needs to be determined in consideration of the correlation time and the allowable value of the range side lobe of the transmission pulse.

本方式の主な特長として次のことが上げられる。
(1) 送信時間率Dr(= パルス幅Ts / TIPP)が高く設定できるため、平均送信電力Pavが大きい(SN比はPavに比例して向上する)。
(2) 比較的周期の長い符号を使うにも関わらずRminを増加させずに、Rmaxが非常に大きい。
(3) ドップラーシフトが符号の自己相関特性に影響を与えない条件では、レンジサイドローブが非常に小さい。
(4) 異なる種類のM系列を用いることで、自局と同一周波数の他局からの干渉が抑圧できる。
The main features of this method are as follows.
(1) Since the transmission time rate D r (= pulse width T s / T IPP ) can be set high, the average transmission power P av is large (the SN ratio is improved in proportion to P av ).
(2) R max is very large without increasing R min in spite of using a relatively long cycle code.
(3) The range side lobe is very small under conditions where the Doppler shift does not affect the autocorrelation characteristics of the code.
(4) By using different types of M-sequences, interference from other stations with the same frequency as the own station can be suppressed.

一方、(5)送信期間に対応する距離の観測ができない欠点があり、用途は限定される。しかし、ウィンドプロファイラレーダ(WPR)に適用する場合のように観測結果が探知距離(高度)の変化に従って緩やかに変化するような用途においては、格別の問題とはならない。ただし、パルス送信中に受信を許せば (1)でDrを100 %として(5)を解決することも原理的には可能である。しかし、モノスタティックレーダでは受信機における送信信号と受信信号の分離度を高めるために送受信を同時に行わない方が望ましい。これらの特長を有する本方式は、レーダのSN比向上に貢献するのみならず、同SN比を保ちながら尖頭電力を低減することで低コスト化が図れる。また、移動通信のCDMA方式のようなM系列の種類の違いを利用して同一周波数の自局と他局の分離が可能になり、周波数利用効率の向上が期待できるため、同一周波数を使ったレーダの多数配置が可能となるなど、様々な応用例が考えられる。 On the other hand, (5) there is a drawback that the distance corresponding to the transmission period cannot be observed, and the application is limited. However, it is not a particular problem in applications where the observation results change slowly according to changes in the detection distance (altitude), as in the case of application to wind profiler radar (WPR). However, if reception is allowed during pulse transmission, it is possible in principle to solve (5) by setting Dr to 100% in (1). However, in monostatic radar, it is desirable not to perform transmission and reception at the same time in order to increase the degree of separation between the transmission signal and the reception signal in the receiver. The present system having these features not only contributes to the improvement of the S / N ratio of the radar, but also can reduce the cost by reducing the peak power while maintaining the S / N ratio. In addition, it is possible to separate the local station and other stations of the same frequency using the difference in the type of M-sequence like the CDMA system of mobile communication, and the improvement of frequency utilization efficiency can be expected, so the same frequency was used. Various application examples are conceivable, such as a large number of radars can be arranged.

図11は、本発明を大気の高密度観測システムに適用した例を示す図である。図1を参照して前述したパルス圧縮装置を備えたウィンドプロファイラレーダ(WPR)を、数kmの間隔をあけて配置された複数局のそれぞれに備える。各局は、ウィンドプロファイラレーダ(WPR)の送信パルスとして、異なるM系列符号(C1,C2,C3・・・)を割り当て、各WPRが同一周波数で同時刻に大気観測を行う。   FIG. 11 is a diagram showing an example in which the present invention is applied to an atmospheric high-density observation system. A wind profiler radar (WPR) equipped with the pulse compression device described above with reference to FIG. 1 is provided in each of a plurality of stations arranged at intervals of several kilometers. Each station assigns different M-sequence codes (C1, C2, C3...) As transmission pulses of the wind profiler radar (WPR), and each WPR performs atmospheric observation at the same time at the same frequency.

各WPRは自局に割り当てられているM系列符号で相関処理を行うことにより、自局の信号のみを受信し観測を行う。その結果、M系列符号の種類の異なる他局からの干渉信号が抑圧できるため、多数のWPRを比較的近い距離での配置が可能になるため、大気の高密度観測を行うことができる。   Each WPR performs correlation processing using an M-sequence code assigned to its own station, thereby receiving and observing only its own signal. As a result, since interference signals from other stations with different types of M-sequence codes can be suppressed, a large number of WPRs can be arranged at a relatively close distance, so that high-density observation of the atmosphere can be performed.

また、任意のWPRは、他局のM系列符号で相関処理を行うことにより、他局の信号を選択し受信することができる。その結果、ある位置の目標物(Target)を複数のWPRが別の角度から同時に観測(バイスタティック観測)できるため、大気乱流の3次元観測を行うことができる。   An arbitrary WPR can select and receive a signal of another station by performing a correlation process using the M-sequence code of the other station. As a result, since a plurality of WPRs can simultaneously observe a target at a certain position (Target) from different angles (bistatic observation), three-dimensional observation of atmospheric turbulence can be performed.

次に、レーダに適切な周期の符号を使うことにより、ドップラーシフトの影響によるサイドローブの上昇を抑えることができることを示す。また、計算機シミュレーションにより、本発明方式を適用した1.3 GHz帯WPRが送信パルスの平均電力を低く保ちながら尖頭電力の低減が図れることを確認する。さらに、上空の風速に応じたドップラー速度を持つ模擬信号を実際的な風速算出法を用いて解析することで本発明方式の有効性を確認する。最後に、本発明方式でインコヒーレント積分の処理によってSN比が向上するので、送信パルスの尖頭電力が300 Wでも高度2〜3 kmの風の観測が可能になることを確認した。
1) M系列の自己相関特性に与えるドップラーシフトの影響
本発明方式では送信パルス列1周期の時間長Tcが比較的長いため、観測目標が移動によって生じるドップラーシフトの影響を受けると、受信信号の位相が時間変化するため、M系列のビット情報を乗せた送信パルス列に対する自己相関特性が劣化することが考えられる。そこで計算機シミュレーションを用いて、ドップラーシフトの影響を受けた受信信号と、基準の送信パルス列との自己相関特性を求め、自己相関特性の劣化の程度を調べた。ただし、送信パルスの包絡線は簡単のため矩形とした。図4は、送信時間率Drを1とし、M系列の符号長Nをパラメータとした結果である。送信パルス列に与えるドップラー周波数fdを一定としたとき、Tc当たりの受信波の位相の変化量Δφは次式で示すことができる。
Next, it is shown that an increase in side lobe due to the influence of Doppler shift can be suppressed by using a code with an appropriate period for the radar. Moreover, it is confirmed by computer simulation that the peak power can be reduced while the 1.3 GHz band WPR to which the method of the present invention is applied keeps the average power of the transmission pulse low. Further, the effectiveness of the method of the present invention is confirmed by analyzing a simulation signal having a Doppler speed corresponding to the wind speed in the sky using a practical wind speed calculation method. Finally, it was confirmed that the wind at an altitude of 2 to 3 km can be observed even when the peak power of the transmission pulse is 300 W because the SN ratio is improved by the incoherent integration process in the method of the present invention.
1) Effect of Doppler shift on autocorrelation characteristics of M sequence In the method of the present invention, since the time length Tc of one cycle of the transmission pulse train is relatively long, if the observation target is affected by Doppler shift caused by movement, the received signal Since the phase changes with time, the autocorrelation characteristics for a transmission pulse train carrying M-sequence bit information may be degraded. Therefore, using computer simulation, the autocorrelation characteristics between the received signal affected by the Doppler shift and the reference transmission pulse train were obtained, and the degree of degradation of the autocorrelation characteristics was investigated. However, the envelope of the transmission pulse is rectangular for simplicity. FIG. 4 shows a result of setting the transmission time rate Dr to 1 and the code length N of the M sequence as a parameter. When the Doppler frequency f d given to the transmission pulse train is constant, the amount of change Δφ in the phase of the received wave per T c can be expressed by the following equation.

Δφ =2π・Tc・fd [rad] (1)
ただし、観測目標の視線方向の移動速度をv、電波の波長をλとするとfd は2v/λである。図4(A)はΔφに対する相関ピーク値Epを、図4(B)はΔφに対する相関ピーク値Epとサイドローブの最大値EsとのdB値の差Gpを示している。 図4(A)、(B)からΔφ=0(観測目標が静止状態)の場合は、符号長Nが2047の時のEpおよびGpは共に66.2 dBと非常に良好な自己相関特性を示していることが分かる。しかし、Δφが大きくなるとEpは緩やかに減少するが、Gpは急激に減少することが分かる。これは、ドップラー周波数と比例関係にあるΔφの増加に伴い、相関ピーク値Epは緩やかに減少するが、サイドローブ値Esは急激に増加することを示している。なお、図4の結果はDr<1においてもほぼ同じ特性を示す。
Δφ = 2π ・ T c・ f d [rad] (1)
However, f d is 2v / λ, where v is the moving speed in the line-of-sight direction of the observation target and λ is the wavelength of the radio wave. Figure 4 (A) is the correlation peak for [Delta] [phi value E p, FIG. 4 (B) shows the difference between G p in dB value of the maximum value E s of the correlation peak value E p and the side lobes with respect to [Delta] [phi. 4 (A) and 4 (B), when Δφ = 0 (observation target is stationary), both E p and G p when the code length N is 2047 are both 66.2 dB, showing very good autocorrelation characteristics. You can see that However, as Δφ increases, E p gradually decreases, but G p decreases rapidly. This is due to the increase of Δφ which is proportional to the Doppler frequency, but decreases gradually correlation peak value E p, sidelobe value E s is shown to increase rapidly. Note that the results of FIG. 4 show substantially the same characteristics even when D r <1.

本発明方式のように比較的周期の長いM系列符号を用いる場合、fdの影響による自己相関特性の劣化量が許容範囲に収まるようにTcを決定する必要がある。また、符号の自己相関特性の劣化を許容範囲内にするためは、NとTIPP の積であるTcの値は、想定される最大のドップラー周波数を考慮して決定する必要がある。従って、本発明方式における送信パルス列のTcは、想定される最大ドップラー周波数をfdmaxとすると、Gp=AGの条件を課した時のΔφがΔφ=BΔ[rad]である場合、(1)式より得られた次の条件を満たすように決定する必要がある。 When an M-sequence code having a relatively long period is used as in the present invention method, it is necessary to determine T c so that the amount of degradation of autocorrelation characteristics due to the influence of f d falls within an allowable range. In order to bring the deterioration of the autocorrelation characteristics of the code into an allowable range, the value of Tc , which is the product of N and T IPP , needs to be determined in consideration of the maximum expected Doppler frequency. Therefore, T c of the transmission pulse train in the present invention system is, when Δφ is Δφ = BΔ [rad] when the condition of G p = A G is imposed, where f dmax is the assumed maximum Doppler frequency, It is necessary to determine so as to satisfy the following condition obtained from equation (1).

Tc = N×TIPP ≦BΔ/(2π・fdmax) (2)
例えば、送信パルス列にN=2047のM系列を用いる場合、Gpを30 dB以上確保するためには、BΔは図4(B)より110.4 deg以下にする必要がある。従って、Tcの値(= N×TIPP)はBΔ=110.4 degと、想定されるfdmaxを式(2)に代入して決める。
2) 本方式をWPRに適用した検討結果
2−1 検討するWPRの諸元
本発明方式を表1に示した1.3 GHz帯WPRに適用し、計算機シミュレーションで各種検討を行った。表1よりWPRの送信周波数は1.3575 GHz、送信信号の尖頭電力を300 Wとした。パルス幅Tsは0.8 μsであり、高度分解能は120 mとなる。波形整形フィルタは簡単のためガウス型とし、その標準偏差σは0.1Tsとした。ただし、ここでの波形整形フィルタの特性とは、送受信フィルタの特性をまとめて表したものである。送信パルス列は、Tsを0.8 μs、Dr を 0.33の送信パルスに11段M系列(符号長N = 2047)のビット情報を乗せて発生させた。なお、送信期間と受信期間の割合は1:1とした。最終的に高度毎の受信信号は、相関処理によって相関処理期間に対応するTc毎の時系列データとして求められる。ここでTcは4.91 msであり、1.3 GHz帯WPRで実測した相関時間0.13 sec(非特許文献1参照)と比べ十分小さい値である。また、この時間は一般的なWPRで行うコヒーレント積分時間に相当する。この条件で観測できる理論上の高度Rmは、最小観測高度180 mから736.7 kmにおいて360 mステップの値となる。送受信アンテナの利得Gaは29 dBi、そのビーム幅θaは5 degとした(非特許文献1参照)。表1で示した本方式と、Pt及びTsが表1と同条件で、TIPP =50μs、コヒーレント積分を100回(コヒーレント積分時間5 ms≒Tc)行うモノパルスレーダを単純に比較すると、本方式の方がTIPPの期間内の送信パルスの数は20倍程度多い。このため、本方式の平均電力も20倍(13 dB)程度大きく、そのSN比も同じ値だけ優位である。
T c = N × T IPP ≦ BΔ / (2π ・ f dmax ) (2)
For example, when using the M-sequence of N = 2047 in the transmission pulse train, in order to secure the G p 30 dB or more, Bideruta should be 110.4 deg follows from FIG. 4 (B). Accordingly, the value of T c (= N × T IPP ) is determined by substituting BΔ = 110.4 deg and f dmax assumed in the equation (2).
2) Results of applying this method to WPR
2-1 Specifications of WPR to be examined The method of the present invention was applied to the 1.3 GHz band WPR shown in Table 1, and various studies were performed by computer simulation. From Table 1, the transmission frequency of WPR is 1.3575 GHz, and the peak power of the transmission signal is 300 W. The pulse width T s is 0.8 μs and the altitude resolution is 120 m. The waveform shaping filter is Gaussian for simplicity, and its standard deviation σ is 0.1 T s . However, the characteristic of the waveform shaping filter here is a summary of the characteristics of the transmission / reception filter. Transmission pulse train, Ts a 0.8 .mu.s, were generated carrying bit information of 11 stages M-sequence to a transmission pulse of 0.33 to D r (code length N = 2047). The ratio between the transmission period and the reception period was 1: 1. Finally, the received signal for each altitude is obtained as time series data for each Tc corresponding to the correlation processing period by the correlation processing. Here, Tc is 4.91 ms, which is a sufficiently small value compared with the correlation time of 0.13 sec (see Non-Patent Document 1) measured with 1.3 GHz band WPR. This time corresponds to a coherent integration time performed in general WPR. The theoretical altitude R m that can be observed under these conditions is a value of 360 m steps from the minimum observation altitude of 180 m to 736.7 km. The gain G a of the transmission / reception antenna was 29 dBi, and its beam width θ a was 5 deg (see Non-Patent Document 1). A simple comparison between this system shown in Table 1 and the monopulse radar that performs T IPP = 50μs and coherent integration 100 times (coherent integration time 5 ms ≒ T c ) under the same conditions as Table 1 with P t and T s In this method, the number of transmission pulses in the T IPP period is about 20 times larger. For this reason, the average power of this method is about 20 times larger (13 dB), and the S / N ratio is superior by the same value.

Figure 0003780346
Figure 0003780346

2−2 送信パルスと自己相関特性
表1の諸元において、波形整形フィルタを通した後の送信パルス列の波形の一部を図5(A)に示した。また、整形後の送信パルス列と整形前の送信パルス列との自己相関特性を図5(B)に示した。この図より自己相関特性の相関ピークとサイドローブとのdB値の差は66.2 dBであることが分かり、図4で示したDr = 1のときのM系列の自己相関特性の値と同じであることが確認できる。
2-2 Transmission Pulse and Autocorrelation Characteristics FIG. 5A shows a part of the waveform of the transmission pulse train after passing through the waveform shaping filter in the specifications shown in Table 1. FIG. 5B shows the autocorrelation characteristics between the transmission pulse train after shaping and the transmission pulse train before shaping. From this figure, it can be seen that the difference in dB value between the correlation peak and the side lobe of the autocorrelation characteristic is 66.2 dB, which is the same as the value of the autocorrelation characteristic of the M sequence when Dr = 1 shown in FIG. It can be confirmed that there is.

2−3 最大観測高度の評価
次に、上空の大気乱流による散乱波が風の流れによるドップラーシフトの影響を受けない風速0の条件で、表1の諸元における本発明方式の静特性の評価をし、最大観測高度を調べる。まず、今回行なったシミュレーションの概要を次に説明する。WPRから上空へ電波を発射し、観測高度分解能120 m毎の大気乱流による散乱波を受信することとした。この時の大気の反射率ηは0.38・l -1/3・Cn 2[m-1]であり、構造パラメータCn 2は10-0.000276R-13.862[m-2/3]を用いた。また、Rは観測高度である。各高度における散乱波の位相は一様分布とした。
2-3 Evaluation of the maximum observation altitude Next, the static characteristics of the method of the present invention in the specifications of Table 1 under the condition that the scattered wave due to the atmospheric turbulence in the sky is not affected by the Doppler shift due to the wind flow. Evaluate and examine the maximum observed altitude. First, the outline of the simulation performed this time will be described next. Radio waves were emitted from WPR to the sky, and scattered waves due to atmospheric turbulence at an observation altitude resolution of 120 m were received. The reflectivity of the atmosphere η at this time is 0.38 · l -1/3 · C n 2 [m -1], the structural parameters C n 2 with 10 -0.000276R-13.862 [m -2/3] . R is the observed altitude. The phase of the scattered wave at each altitude was uniformly distributed.

図6(A)、(B)は、本方式においてTcの期間内で得た受信エコーの時系列データ群について相関処理を行い、高度毎に求めた散乱波の受信電力と位相の偏差の計算結果の一例である。ここで、システム雑音指数NFをパラメータとしている。NFが3 dBの結果において、高度が約1.6 km以下の受信電力の計算値は、理論値に対して±3 dB以内であり理論値とほぼ一致し、位相についても真値に対する計算値の偏差は±30 deg以内の小さな値となっている。ただし、図6の結果は雑音の影響で値にばらつきがあるため、次に統計的な評価を行った。図7は、図6の結果を1000回求め、受信電力及び位相の計算値が真値から±3 dB以下でかつ±30 deg以下の精度を有する確率を高度毎に求めたものである。同図より、NFが3 dBにおいて、上記の精度を有する確率が0.9及び0.5とするためには、最大観測高度がそれぞれ1.02 km及び1.72 kmになることが分かる。また、最大観測高度1.02 km及び1.72 kmからの散乱波を受信したときのSN比は、図8に示した高度対SN比の理論曲線から3.2 dB及び−3.3 dBであることが分かる。このように、確率0.9となる誤差の少ない観測を行うためには最大観測高度を1.02 kmとする必要があり、この高度における散乱波の受信電力が雑音電力より3 dBを上まわっていることからも本シミュレーションによる計算結果が妥当であると考えられる。 6 (A) and 6 (B) show the correlation between the received power and phase deviation of the scattered wave obtained at every altitude by performing correlation processing on the time-series data group of received echoes obtained within the period of Tc in this method. It is an example of a calculation result. Here, the system noise figure NF is used as a parameter. When the NF is 3 dB, the calculated value of the received power with an altitude of about 1.6 km or less is within ± 3 dB of the theoretical value and almost matches the theoretical value, and the deviation of the calculated value from the true value is also true for the phase. Is a small value within ± 30 deg. However, since the results of FIG. 6 vary in value due to the influence of noise, statistical evaluation was performed next. FIG. 7 shows the results of FIG. 6 obtained 1000 times, and the probability that the calculated values of the received power and the phase are ± 3 dB or less from the true value and ± 30 deg or less is obtained for each altitude. From the figure, it can be seen that the maximum observed altitude is 1.02 km and 1.72 km, respectively, in order that the probability of having the above accuracy is 0.9 and 0.5 when the NF is 3 dB. It can also be seen that the SN ratio when receiving scattered waves from the maximum observed altitudes of 1.02 km and 1.72 km is 3.2 dB and −3.3 dB from the theoretical curve of the altitude-to-SN ratio shown in FIG. Thus, in order to perform observation with a small error with a probability of 0.9, the maximum observation altitude must be 1.02 km, and the received power of scattered waves at this altitude exceeds 3 dB from the noise power. It is considered that the calculation result by this simulation is appropriate.

2−4 ドップラースペクトルの解析
ここでは簡単なドップラー速度のモデルを使って、上空の風速を解析することによって本発明方式の有効性を確認する。通常WPRでは、天頂角の異なる複数のアンテナビームを用いて風向・風速を測定するが、本検討では1つのアンテナビームを用いて、そのビームの視線方向のドップラースペクトル(周波数パワースペクトル)を求めるような基礎的な検討を行うこととする。本シミュレーションで用いる散乱波は、観測高度分解能である120 m毎に発生させ、その全ての散乱波のドップラー速度を5 m/s(fd=45.2 Hz)の一定値とした。ただし、各散乱波の位相は一様分布で与えた。このドップラー速度の値は、アンテナ視線方向の天頂角を10 degとしたとき、水平方向の最大風速は28.8 m/sに相当する。このドップラー速度の影響において、Δφは(1)式より79.9 degとなり、N=2047におけるGpは図4(B)より33.0 dB確保していることが分かる。
2-4 Analysis of Doppler spectrum Here, the effectiveness of the method of the present invention is confirmed by analyzing the wind speed in the sky using a simple Doppler velocity model. Normally, WPR measures wind direction and speed using multiple antenna beams with different zenith angles. In this study, we use one antenna beam to obtain the Doppler spectrum (frequency power spectrum) in the line-of-sight direction of the beam. Basic study will be conducted. The scattered waves used in this simulation were generated every 120 m, which is the observation altitude resolution, and the Doppler velocity of all the scattered waves was set to a constant value of 5 m / s (f d = 45.2 Hz). However, the phase of each scattered wave was given by uniform distribution. This Doppler velocity value corresponds to a maximum horizontal wind velocity of 28.8 m / s when the zenith angle in the antenna viewing direction is 10 deg. In effect this Doppler velocity, [Delta] [phi is seen to 33.0 dB secured from (1) 79.9 deg next from the equation, G p is 4 in N = 2047 (B).

ここで、高度毎の散乱波の周波数パワースペクトルは、Tc(=4.91 ms)毎に得られる高度毎の受信信号256個を一つの時系列データ群として求めた。この条件により、周波数パワースペクトルの結果は最大ドップラー速度が±11.24 m/s(fdmaxが±101.7 Hz)、ドップラー速度の分解能が87.8 mm/s(周波数分解能が0.79 Hz)で得ることができる。図9はシミュレーションで得られた周波数パワースペクトルの計算結果である。このときNFは3 dBとした。同図より、高度が5 kmまでは散乱波のドップラー速度が正確に観測できており、本方式の有効性が確認できる。ただし、実際の大気乱流からの散乱波は、あるドップラー速度を中心に広がりを持っているため、その電力は分散することから、図9の結果のように5 kmに及ぶ観測は困難である。 Here, the frequency power spectrum of the scattered wave for each altitude was obtained as a single time-series data group with 256 received signals for each altitude obtained every T c (= 4.91 ms). Under this condition, frequency power spectrum results can be obtained with a maximum Doppler velocity of ± 11.24 m / s (f dmax of ± 101.7 Hz) and a Doppler velocity resolution of 87.8 mm / s (frequency resolution of 0.79 Hz). FIG. 9 shows the calculation result of the frequency power spectrum obtained by the simulation. At this time, NF was set to 3 dB. From this figure, the Doppler velocity of scattered waves can be observed accurately up to an altitude of 5 km, confirming the effectiveness of this method. However, since the scattered wave from the actual atmospheric turbulence has a spread around a certain Doppler velocity, its power is dispersed, so observation over 5 km is difficult as shown in the results of FIG. .

2−5 インコヒーレント積分による最大観測高度の類推
一般に、WPRはコヒーレント積分後の時系列データに対してFFTを行い、さらにFFTの結果の時系列データに対してインコヒーレント積分(非特許文献1参照)を行う。信号に付加される雑音成分が白色雑音の場合、SN比はコヒーレント積分を行うと積分回数に比例して向上する。また、インコヒーレント積分においても、積分回数の平方根に比例して向上する(非特許文献1参照)。例えば、256個の時系列データ群から求めた周波数パワースペクトルを80回積算(約100秒間)するようなインコヒーレント積分をさらに行えば、理論上SN比が9.5 dB向上することが期待できる。上記2−3において0.9及び0.5の確率で妥当な観測を行うためにはSN比を3.2 dB及び−3.3 dB確保する必要があることは既に述べたが、インコヒーレント積分を行うことによってSN比がさらに9.5 dB向上させることができれば、図7、図8より最大観測高度は2.14 km及び3.21 kmまで上昇することが分かる。このことから、本発明方式を用いた場合、送信パルスの尖頭電力が300 Wでも高度2〜3 km程度まで観測できることが期待できる。
2-5 Analogue of maximum observed altitude by incoherent integration Generally, WPR performs FFT on time series data after coherent integration, and then incoherent integration on the time series data of the FFT result (see Non-Patent Document 1). )I do. When the noise component added to the signal is white noise, the S / N ratio improves in proportion to the number of integrations when coherent integration is performed. In incoherent integration also improves in proportion to the square root of the number of integrations (see Non-Patent Document 1). For example, if further incoherent integration is performed such that the frequency power spectrum obtained from 256 time-series data groups is integrated 80 times (about 100 seconds), it can be expected that the SN ratio is theoretically improved by 9.5 dB. In the above 2-3, it has already been described that it is necessary to secure the SN ratio of 3.2 dB and -3.3 dB in order to perform reasonable observations with the probabilities of 0.9 and 0.5. However, by performing incoherent integration, the SN ratio can be increased. If 9.5 dB can be further improved, it can be seen from FIGS. 7 and 8 that the maximum observation altitude increases to 2.14 km and 3.21 km. From this, when the method of the present invention is used, it can be expected that even if the peak power of the transmission pulse is 300 W, it can be observed up to an altitude of about 2-3 km.

本発明に基づき具体化されたパルス圧縮装置の概略構成を例示するブロック図である。It is a block diagram which illustrates schematic structure of the pulse compression device actualized based on this invention. 図1に例示のパルス圧縮装置の動作を説明するための図であり、送信パルスと受信エコーの関係を示している。FIG. 2 is a diagram for explaining the operation of the pulse compression apparatus illustrated in FIG. 1 and shows the relationship between transmission pulses and reception echoes. 図1に例示の相関器における相関処理を説明する図である。It is a figure explaining the correlation process in the correlator illustrated in FIG. M系列の自己相関特性に与えるドップラーシフトの影響を示す図である。It is a figure which shows the influence of the Doppler shift which gives to the autocorrelation characteristic of M series. 本発明方式による送信パルスの特性を示す図である。It is a figure which shows the characteristic of the transmission pulse by this invention system. 高度毎の受信電力及び位相の計算結果の一例を示す図である。It is a figure which shows an example of the calculation result of the reception power and phase for every altitude. 高度毎の受信電力及び位相の計算値が真値から±3dB以下かつ±30deg以下となる確率を示す図である。It is a figure which shows the probability that the calculated value of the received power and phase for every altitude will be ± 3 dB or less and ± 30 deg or less from the true value. SN比の理論値を示す図である。It is a figure which shows the theoretical value of SN ratio. 周波数パワースペクトルの高度分布を示す図である。It is a figure which shows the altitude distribution of a frequency power spectrum. 一般的パルス圧縮法による送信パルスと受信エコーの関係を示す図である。It is a figure which shows the relationship between the transmission pulse and reception echo by a general pulse compression method. 本発明を大気の高密度観測システムに適用した例を示す図である。It is a figure which shows the example which applied this invention to the high-density observation system of air | atmosphere.

Claims (4)

1つの共通アンテナを送信と受信に切り換えて用いるモノスタティックレーダのためのパルス圧縮方法において、
送信パルス列1周期の時間長Tcを所定数の整数N個の分割時間長TIPPに分割して、PN系列符号のビット情報を乗せた送信パルス列を生成し、
前記分割時間長TIPPをそれぞれ、送信時間Tsと残りの受信時間に分割して、この送信時間TsのN個に1周期の送信パルス列をN分割して、変調して送信すると共に、前記残りの受信時間の間に受信し、
観測目標からの受信エコー情報から復調された時系列データ群と、前記送信パルス列との相関処理を行うことで、距離別に受信信号の複素時系列を算出し、
前記時間長Tcの値は、送信パルス列に与えるドップラー周波数f d の影響による自己相関特性の劣化量が許容範囲に収まるように、想定される最大ドップラー周波数f dmax に基づき決定し、
前記モノスタティックレーダをそれぞれが有する複数局を間隔をあけて配置し、各局が送信パルス列生成のために用いるPN系列符号として、互いに異なる符号を割り当てて、各局が同一周波数で同時刻に大気観測を行なうことから成るモノスタティックレーダのためのパルス圧縮方法。
In a pulse compression method for monostatic radar using one common antenna switched between transmission and reception,
A time length Tc of one cycle of the transmission pulse train is divided into a predetermined number N of divided time lengths T IPP to generate a transmission pulse train on which bit information of the PN sequence code is placed,
Each of the divided time lengths T IPP is divided into a transmission time Ts and a remaining reception time, and a transmission pulse train of one period is divided into N parts of the transmission time Ts, modulated, and transmitted. Received during the reception time of
By performing correlation processing between the time-series data group demodulated from the received echo information from the observation target and the transmission pulse train, the complex time series of the received signal is calculated for each distance,
The value of the time length Tc is determined based on the assumed maximum Doppler frequency f dmax so that the degradation amount of the autocorrelation characteristic due to the influence of the Doppler frequency f d given to the transmission pulse train is within an allowable range ,
A plurality of stations each having the monostatic radar are arranged at intervals, and each station assigns a different code as a PN sequence code used for transmission pulse train generation, and each station performs atmospheric observation at the same frequency and at the same time. pulse compression method for monostatic radar consisting performed.
各局は、自局に割り当てられているPN系列符号で相関処理を行うことにより自局の信号のみを受信し観測を行い、かつ、他局のPN系列符号で相関処理を行うことにより他局の信号を選択し受信することから成る請求項1に記載のモノスタティックレーダのためのパルス圧縮方法。 Each station receives and observes only its own signal by performing correlation processing with the PN sequence code assigned to itself, and performs correlation processing with the PN sequence code of the other station. 2. A pulse compression method for monostatic radar according to claim 1 , comprising selecting and receiving a signal. 1つの共通アンテナを送信と受信に切り換えて用いるモノスタティックレーダのためのパルス圧縮装置において、
PN系列符号を発生する発生器と、
送信パルス列1周期の時間長Tcを所定数の整数N個の分割時間長TIPPに分割して、PN系列符号のビット情報を乗せた送信パルス列を生成する送信パルス列生成器と、
前記分割時間長TIPPをそれぞれ、送信時間Tsと残りの受信時間に分割して、この送信時間TsのN個に1周期の送信パルス列をN分割して、変調して送信すると共に、前記残りの受信時間の間に受信するように切り換えられる送信/受信切り換え器と、
観測目標からの受信エコー情報から復調された時系列データ群と、前記送信パルス列との相関処理を行うことで、距離別に受信信号の複素時系列を算出する相関器と、を備え、
前記時間長Tcの値は、送信パルス列に与えるドップラー周波数f d の影響による自己相関特性の劣化量が許容範囲に収まるように、想定される最大ドップラー周波数f dmax に基づき決定し、
前記モノスタティックレーダをそれぞれが有する複数局を間隔をあけて配置し、各局が送信パルス列生成のために用いるPN系列符号として、互いに異なる符号を割り当てて、各局が同一周波数で同時刻に大気観測を行なうから成るモノスタティックレーダのためのパルス圧縮装置。
In a pulse compression apparatus for monostatic radar using one common antenna for switching between transmission and reception,
A generator for generating a PN sequence code;
A transmission pulse train generator that divides a time length Tc of one cycle of the transmission pulse train into a predetermined number N of divided time lengths T IPP and generates a transmission pulse train on which bit information of a PN sequence code is placed;
Each of the divided time lengths T IPP is divided into a transmission time Ts and a remaining reception time, and a transmission pulse train of one period is divided into N parts of the transmission time Ts, modulated, and transmitted. A transmission / reception switcher that is switched to receive during the reception time of
And time-series data group demodulated from received echo information from the observation target, by performing a correlation processing between the transmission pulse train, comprising a correlator for calculating a complex time-series of the received signal to the distance-and,
The value of the time length Tc is determined based on the assumed maximum Doppler frequency f dmax so that the degradation amount of the autocorrelation characteristic due to the influence of the Doppler frequency f d given to the transmission pulse train is within an allowable range ,
A plurality of stations each having the monostatic radar are arranged at intervals, and each station assigns a different code as a PN sequence code used for transmission pulse train generation, and each station performs atmospheric observation at the same frequency and at the same time. Pulse compression device for monostatic radar consisting of performing .
各局は、自局に割り当てられているPN系列符号で相関処理を行うことにより自局の信号のみを受信し観測を行い、かつ、他局のPN系列符号で相関処理を行うことにより他局の信号を選択し受信することから成る請求項3に記載のモノスタティックレーダのためのパルス圧縮装置。
Each station receives and observes only its own signal by performing correlation processing with the PN sequence code assigned to itself, and performs correlation processing with the PN sequence code of the other station. 4. A pulse compression apparatus for monostatic radar as claimed in claim 3 , comprising selecting and receiving a signal.
JP2003286497A 2003-08-05 2003-08-05 Pulse compression method and apparatus for monostatic radar Expired - Lifetime JP3780346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286497A JP3780346B2 (en) 2003-08-05 2003-08-05 Pulse compression method and apparatus for monostatic radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286497A JP3780346B2 (en) 2003-08-05 2003-08-05 Pulse compression method and apparatus for monostatic radar

Publications (2)

Publication Number Publication Date
JP2005055302A JP2005055302A (en) 2005-03-03
JP3780346B2 true JP3780346B2 (en) 2006-05-31

Family

ID=34365773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286497A Expired - Lifetime JP3780346B2 (en) 2003-08-05 2003-08-05 Pulse compression method and apparatus for monostatic radar

Country Status (1)

Country Link
JP (1) JP3780346B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887752B2 (en) 2005-11-17 2012-02-29 富士通株式会社 Impulse generator, communication device, and computer-readable recording medium recording impulse control program
JP6150474B2 (en) 2012-08-09 2017-06-21 三菱電機株式会社 Signal processing apparatus and signal processing method in wind profiler
JP2016151425A (en) 2015-02-16 2016-08-22 パナソニックIpマネジメント株式会社 Radar system
CN105353378B (en) * 2015-10-15 2017-09-29 中国气象科学研究院 A kind of cloud seeding operation effectiveness radar detection time series comparative analysis method and system
JP2016224067A (en) * 2016-09-01 2016-12-28 三菱電機株式会社 Signal processing device and signal processing method in wind profiler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196482A (en) * 1984-10-17 1986-05-15 Toshiba Corp Radar system
JPH0527690U (en) * 1991-09-24 1993-04-09 三菱電機株式会社 Ranging device
JPH09197040A (en) * 1996-01-16 1997-07-31 Mitsubishi Heavy Ind Ltd Wake control system
JP3020150B2 (en) * 1997-12-05 2000-03-15 株式会社ジーデイーエス Spread spectrum radar equipment
JP2002139565A (en) * 2000-11-02 2002-05-17 Toshiba Corp Radar device
JP3611115B2 (en) * 2001-10-03 2005-01-19 三菱電機株式会社 Ranging device and radar device equipped with the ranging device

Also Published As

Publication number Publication date
JP2005055302A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
US7038618B2 (en) Method and apparatus for performing bistatic radar functions
US9581681B2 (en) Method and apparatus for processing coded aperture radar (CAR) signals
EP3039447B1 (en) Radar system and associated apparatus and methods
Kulpa Signal processing in noise waveform radar
US6081220A (en) Radar system for observing weather phenomena with improved radar system parameters
EP2798370B1 (en) Coded aperture beam analysis method and apparatus
US9535151B2 (en) Coded aperture beam analysis method and apparatus
JP3798247B2 (en) A radar ice sounder with parallel Doppler processing.
CN107688178A (en) A kind of sawtooth waveforms ranging and range rate method based on 77GHz millimetre-wave radars
CN111175750B (en) Imaging method, device, equipment and storage medium of synthetic aperture radar
US8410978B2 (en) Shape measurement instrument and shape measurement method
Savci et al. Noise radar—overview and recent developments
Al-Hourani et al. Millimeter-wave integrated radar systems and techniques
EP1457789A2 (en) Adding error correction and coding to a radar system
CN108535730A (en) A kind of Doppler weather radar solution velocity ambiguity method and system
WO2013181246A1 (en) Wide band clear air scatter doppler radar
Tan et al. Feasibility analysis of GSM signal for passive radar
CN116930907A (en) Target coherent accumulation detection method of DDMA-MIMO radar
CN116087942A (en) Method for generating modulating signal of aeronautical altimeter
EP2278355A1 (en) Radar system
Higgins et al. Passive multistatic radar experiment using WiMAX signals of opportunity. Part 1: Signal processing
JP3780346B2 (en) Pulse compression method and apparatus for monostatic radar
JP2018105769A (en) Rader system and radar signal processing method therefor
CN113359131A (en) SAR low-interception radio frequency stealth system and design method thereof
Gurgel et al. Remote sensing of surface currents and waves by the HF radar WERA

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

R150 Certificate of patent or registration of utility model

Ref document number: 3780346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term