WO2014024609A1 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
WO2014024609A1
WO2014024609A1 PCT/JP2013/068340 JP2013068340W WO2014024609A1 WO 2014024609 A1 WO2014024609 A1 WO 2014024609A1 JP 2013068340 W JP2013068340 W JP 2013068340W WO 2014024609 A1 WO2014024609 A1 WO 2014024609A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
control valve
opening area
correction value
egr control
Prior art date
Application number
PCT/JP2013/068340
Other languages
French (fr)
Japanese (ja)
Inventor
露木 毅
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014024609A1 publication Critical patent/WO2014024609A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine that recirculates part of exhaust gas upstream of a supercharger.
  • an EGR gas partial pressure estimated value is calculated using an air partial pressure estimated value and an intake pipe internal pressure, and the EGR gas partial pressure estimated value is calculated based on a throttle opening and an engine speed.
  • An EGR control device that performs feedback control so as to be equal to a target value for EGR gas partial pressure control is disclosed.
  • the actual volume efficiency is calculated based on the engine speed, the intake air amount, the gas temperature in the intake pipe, the pressure in the intake pipe, the exhaust amount per cylinder, and the gas constant.
  • the reference volumetric efficiency is an initial setting value that does not take into account individual differences or changes with time that the engine has individually, and is calculated based on the engine speed.
  • this Patent Document 1 performs feedback control so that the EGR gas partial pressure estimated value calculated from the air partial pressure estimated value and the intake pipe internal pressure becomes the EGR gas partial pressure control target value. For each (operating point), an EGR gas partial pressure estimate must be calculated. That is, there is a problem that the air partial pressure estimated value must be corrected with the learning correction value for every operating condition.
  • the present invention provides a control device for an internal combustion engine that recirculates a part of the exhaust gas as EGR from the upstream side of the turbocharger, and when the actual EGR amount deviates from the target EGR amount, It is determined that a change in pressure loss has occurred in the exhaust system, and the opening area of the EGR control valve corresponding to the EGR rate is corrected so that the actual EGR amount matches the target EGR amount.
  • the opening area of the EGR control valve can be corrected so that the actual EGR amount follows the target EGR amount, the EGR amount recirculated to the intake passage can be accurately controlled.
  • 1 is a system diagram showing the overall configuration of a control device for an internal combustion engine according to the present invention.
  • Explanatory drawing which showed typically the control content in 1st Example.
  • the block diagram which shows the calculation content of the opening degree correction
  • the block diagram which shows the calculation content of the opening degree correction
  • Explanatory drawing which showed typically the control content in 2nd Example.
  • FIG. 1 is a system diagram showing an overall configuration of an internal combustion engine 1 to which the present invention is applied.
  • the internal combustion engine 1 is mounted on a vehicle such as an automobile as a drive source, and an intake passage 2 and an exhaust passage 3 are connected to each other.
  • a throttle valve 5 is provided in the intake passage 2 connected to the internal combustion engine 1 via the intake manifold 4, and an air flow meter 6 and an air cleaner 7 for detecting the intake air amount are provided upstream thereof. Yes.
  • An exhaust catalyst 9 such as a three-way catalyst is provided for exhaust purification in the exhaust passage 3 connected to the internal combustion engine 1 via the exhaust manifold 8.
  • the internal combustion engine 1 has a turbocharger 10 that is coaxially provided with a compressor 11 disposed in the intake passage 2 and a turbine 12 disposed in the exhaust passage 3.
  • the compressor 11 is located upstream of the throttle valve 5 and is located downstream of the air flow meter 6.
  • the turbine 12 is located on the upstream side of the exhaust catalyst 9.
  • 13 in FIG. 1 is an intercooler provided on the downstream side of the throttle valve 5.
  • the intercooler 13 may be provided between the throttle valve 5 and the compressor 11.
  • a recirculation passage 14 that bypasses the compressor 11 and connects the upstream side and the downstream side of the compressor 11 is connected to the intake passage 2.
  • the recirculation is controlled so that the air in the intake passage 2 between the compressor 11 and the throttle valve 5 is returned to the upstream side of the compressor 11 when the throttle valve 5 is closed.
  • a ration valve 15 is interposed.
  • the exhaust passage 3 is connected to an exhaust bypass passage 16 that bypasses the turbine 12 and connects the upstream side and the downstream side of the turbine 12.
  • a waste gate valve 17 that controls the exhaust flow rate in the exhaust bypass passage 16 is interposed.
  • the internal combustion engine 1 can perform exhaust gas recirculation (EGR), and an EGR passage 20 is provided between the exhaust passage 3 and the intake passage 2.
  • EGR exhaust gas recirculation
  • One end of the EGR passage 20 is connected to the exhaust passage 3 at a position downstream of the exhaust catalyst 9, and the other end is connected to the intake passage 2 at a position downstream of the air cleaner 7 and upstream of the compressor 11.
  • An EGR control valve 21 and an EGR cooler 22 are interposed in the EGR passage 20.
  • the opening degree of the EGR control valve 21 is controlled by the control unit 25 so that a predetermined EGR rate corresponding to the operating condition is obtained.
  • the control unit 25 detects the intake pressure P1 in the intake passage 2 on the upstream side of the compressor 11 and the crank angle sensor 26 that detects the crank angle of the crankshaft (not shown), in addition to the detection signal of the air flow meter 6 described above.
  • the exhaust pressure sensor 28 may detect the exhaust pressure in the exhaust passage on the downstream side of the exhaust catalyst 9.
  • the control unit 25 controls the ignition timing and air-fuel ratio of the internal combustion engine 1 and controls the opening degree of the EGR control valve 21 to control the opening of the intake passage 2 from the exhaust passage 3.
  • Exhaust gas recirculation control EGR control
  • the opening degree of the throttle valve 5, the recirculation valve 15, and the waste gate valve 17 is also controlled by the control unit 25.
  • the recirculation valve 15 is not controlled to be opened and closed by the control unit 25, and a so-called check valve that opens only when the pressure on the downstream side of the compressor 11 exceeds a predetermined pressure can be used. is there.
  • EGR is introduced from the upstream side of the compressor 11 of the turbocharger 10 provided in the intake passage 2
  • EGR is introduced by the pressure difference between the exhaust pressure P2 and the intake pressure P1.
  • a proportional relationship is established between the intake air amount and the square root of the differential pressure across the EGR control valve 21 (pressure difference between the exhaust pressure P2 and the intake pressure P1). .
  • a proportional relationship is also established between the square root of the differential pressure across the EGR control valve 21 (the difference in pressure between the exhaust pressure P2 and the intake pressure P1) and the EGR amount (exhaust gas recirculation amount). Accordingly, a proportional relationship (constant EGR rate) is also established between the intake air amount and the EGR amount.
  • the EGR rate corresponding to the opening degree (opening area) of the EGR control valve 21 changes.
  • the actually measured EGR amount changes with respect to the target EGR amount.
  • the target EGR amount can be obtained, for example, by multiplying the target EGR rate estimated from the opening degree of the EGR control valve 21 by the intake air amount.
  • the actual EGR amount can be calculated from the intake pressure P1, the exhaust pressure P2, and the intake air amount before and after the EGR control valve 21.
  • the opening degree (opening area) of the EGR control valve 21 is constant, if the exhaust system muffler has a hole due to corrosion or the like and the pressure loss is small, the exhaust system pressure loss is small. As a result, the pressure difference becomes smaller and it becomes difficult to introduce EGR, and the actual EGR amount becomes smaller than the target EGR amount. In addition, when water enters the exhaust passage 3 due to traveling on the submerged channel and the pressure loss increases, the pressure difference increases and the EGR is introduced as the exhaust system pressure loss increases. As a result, the actual EGR amount becomes larger than the target EGR amount.
  • the opening degree (opening area) of the EGR control valve 21 corresponding to the EGR rate changes, so the actual EGR amount with respect to the target EGR amount Will diverge.
  • the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected so that the actual EGR amount matches the target EGR amount.
  • the actual EGR amount is made to follow the target EGR amount. That is, the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected according to the deviation of the actual EGR amount with respect to the target EGR amount regardless of the operating conditions.
  • the characteristic indicating the correlation between the two is shown. As shown in FIG. 2, the line A passes through the origin and becomes a straight line having a predetermined inclination.
  • the control unit 25 stores the value of the opening area of the EGR control valve 21 corresponding to the target EGR rate.
  • EGR that can be set so that the opening area of the EGR control valve 21 corresponding to the current target EGR rate corresponds to the actual EGR rate.
  • the correlation between the EGR rate and the opening area of the EGR control valve 21 is uniformly corrected over the entire rate range.
  • the inclination of the line A is corrected, and thereafter the opening area of the EGR control valve 21 is set from the target EGR rate according to the relationship of the characteristic line B.
  • an opening area correction value that is a flow rate ratio between the target EGR amount corresponding to the target EGR rate and the actual EGR amount corresponding to the actual EGR rate is calculated, and the EGR control valve 21 is based on the opening area correction value.
  • the EGR rate set corresponding to the opening area is corrected.
  • the opening area correction value is stored in a RAM or the like in the control unit 25 as a learning value.
  • this opening area correction value is multiplied by the current opening area of the EGR control valve, a new opening area of the EGR control valve that realizes the current target EGR amount can be calculated. For example, when the actual EGR amount is 20% short of the target EGR amount, the current target EGR amount is opened by opening the opening so that the opening area of the EGR control valve is increased by 20%. Can be realized. That is, this opening area correction value is a ratio of excess or deficiency of the opening area of the EGR control valve 21 necessary for realizing the target EGR rate.
  • the opening area of the EGR control valve 21 is set from the target EGR rate according to the relationship of the characteristic line B, if the actual EGR rate is deviated from the target EGR rate, the current target EGR rate is handled.
  • the inclination of the characteristic line B is corrected so that the opening area of the EGR control valve 21 corresponds to the actual EGR rate. That is, every time the actual EGR rate deviates from the target EGR rate, the opening area correction value is calculated, and a characteristic line representing the correlation between the EGR rate and the opening area of the EGR control valve 21 is calculated based on the opening area correction value.
  • the tilt is corrected.
  • the opening area of the corresponding EGR control valve 21 can be corrected for all the opening degrees of the EGR control valve 21, and the actual EGR amount can be reduced. It is possible to follow the target EGR amount. That is, it is possible to accurately control the amount of EGR returned to the intake passage 2.
  • the opening area correction value is a flow rate ratio between the target EGR amount and the actual EGR amount, and is not easily affected by the intake air temperature or the exhaust temperature. Therefore, the actual EGR amount follows the target EGR amount regardless of temperature factors. Thus, the opening area of the EGR control valve 21 can be corrected stably.
  • FIG. 3 is a block diagram showing the calculation content of the opening correction of the EGR control valve 21.
  • the provisional value of the opening area correction value is calculated by dividing the target EGR amount by the actual EGR amount.
  • a new opening area correction value is calculated by dividing the provisional value of the opening area correction value calculated in S1 by the opening area correction value (previous value) stored as a learning value. That is, the opening area correction value is newly calculated based on the previous value of the opening area correction value.
  • the opening area correction value newly calculated in S2 is stored as a learning value in association with the opening degree of the EGR control valve 21.
  • the opening area correction is performed since the actual EGR amount is made to follow the target EGR amount by correcting the inclination of the characteristic line A representing the correlation between the EGR rate and the opening area of the EGR control valve 21, the opening area correction is performed.
  • the correction target EGR rate corresponding to the opening area of the EGR control valve 21 is calculated by multiplying the opening area correction value stored in S3 as the learning value and the target EGR rate.
  • the opening area of the EGR control valve 21 corresponding to the corrected target EGR rate calculated in S4 is calculated. Then, the opening area of the EGR control valve 21 calculated in S5 is converted into the opening degree of the EGR control valve 21, and the EGR control valve 21 is controlled so as to have the converted opening degree.
  • the aperture area correction value is updated so that the learning result up to now is more important than the provisional value of the aperture area correction value. May be. In that case, it is possible to reduce the influence when the error of the provisional value of the opening area correction value is large.
  • FIG. 4 is a block diagram showing the calculation content of the opening correction of the EGR control valve 21 when the opening area correction value is updated so as to place importance on the learning results up to now.
  • the provisional value of the opening area correction value is calculated by dividing the target EGR amount by the actual EGR amount.
  • the first correction value is calculated by multiplying the provisional value of the opening area correction value by a predetermined coefficient K.
  • the coefficient K is a positive value of “1” or less, and is a value such as 0.2 or 0.3, for example.
  • the second correction value is calculated by multiplying the opening area correction value stored as the learning value by (1 ⁇ K), which is a value obtained by subtracting the coefficient K from 1.
  • the second correction value is added to the first correction value to calculate a new opening area correction value.
  • the opening area correction value newly calculated in S14 is stored as a learning value in association with the opening of the EGR control valve 21.
  • the opening area correction is performed. The value is constant regardless of the opening degree of the EGR control valve 21.
  • the correction target EGR rate corresponding to the opening area of the EGR control valve 21 is calculated by multiplying the opening area correction value stored as the learning value by the target EGR rate.
  • the opening area of the EGR control valve 21 corresponding to the corrected target EGR rate calculated in S16 is calculated. Then, the opening area of the EGR control valve 21 calculated in S17 is converted into the opening degree of the EGR control valve 21, and the EGR control valve 21 is controlled so as to have the converted opening degree.
  • the current correlation between the EGR rate and the opening area of the EGR control valve 21 is uniformly corrected using the opening area correction value when the EGR control valve 21 has an arbitrary opening degree.
  • an opening area correction value is calculated for each opening degree of the EGR control valve 21, and the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected for each opening degree of the EGR control valve 21. Good.
  • a second embodiment of the present invention for correcting the opening area of the EGR control valve 21 corresponding to the EGR rate for each opening degree of the EGR control valve 21 will be described with reference to FIGS.
  • the EGR rate and the EGR control valve 21 are controlled according to the characteristic of the characteristic line C1.
  • the EGR control valve 21 has an arbitrary opening degree V1
  • the target EGR rate and the actual EGR rate deviate for the first time for example, the actual EGR when the opening area A1 of the EGR control valve 21 corresponds to the opening degree V1.
  • the rate Ra1 is smaller than the target EGR rate Rt at that time (EGR rate corresponding to the opening area A1 in the characteristic line C1)
  • the EGR rate at the opening area A1 of the EGR control valve 21 is set to Ra1.
  • the slope of the characteristic line C1 is changed. That is, the characteristic line indicating the correlation between the EGR rate and the opening area of the EGR control valve 21 is changed from C1 to D1.
  • the characteristic line D1 is a straight line that passes through the origin and has a larger slope than the characteristic line C1, as indicated by a one-dot chain line in FIG.
  • the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected in the unlearned region. As a result, there is a step in the value of the opening area of the EGR control valve 21 with respect to the EGR rate between the already learned region and the unlearned region.
  • the opening area correction value calculated at the first time is reflected in the correction of the opening area of the EGR control valve 21 over the entire settable EGR rate so that such a step does not occur. It is.
  • the EGR control valve 21 When the EGR control valve 21 is controlled according to the characteristic of the characteristic line D1, if the actual EGR rate deviates from the target EGR rate, learning of the opening area correction value is performed.
  • the target EGR rate and the actual EGR rate deviate when the EGR control valve 21 is at the opening V2, for example, the actual EGR rate Ra2 at the opening area A2 of the EGR control valve 21 corresponding to the opening V2 is 5 is smaller than the target EGR rate Rt at the time (EGR rate corresponding to the opening area A2 in the characteristic line D1) so that the EGR rate at the opening area A2 of the EGR control valve 21 becomes Ra2.
  • the slope of D1 is changed in a region where the EGR rate Ra1 or higher.
  • the characteristic line indicating the correlation between the EGR rate and the opening area of the EGR control valve 21 is changed from D1 to E1.
  • the characteristic line E1 is a straight line having the same characteristics as the characteristic line D1 (passing through the origin and having the same slope as the characteristic line C1) in the region where the EGR rate is 0 to Ra1.
  • the characteristic line C1 is such that when the EGR rate is Ra1, the opening area of the EGR control valve 21 is A1, and when the EGR rate is Ra2, the opening area of the EGR control valve 21 is A2. It is a straight line with a larger slope than that.
  • the opening area correction value is calculated every time the actual EGR rate deviates from the target EGR rate.
  • the calculated opening area correction value is stored as a learning value in association with the opening degree of the EGR control valve 21 at that time.
  • the opening area correction value is set to 1.25 in the region where the opening degree of the EGR control valve 21 is 0 to V1. This is because when the EGR control valve 21 is at the opening degree V1, the opening area correction value is already calculated, and the correlation between the EGR rate and the opening area of the EGR control valve 21 so that the actual EGR rate follows the target EGR rate. This is because the correction is made.
  • the opening degree of the EGR control valve 21 is V1 to V2
  • the opening is corrected for each opening degree of the EGR control valve 21 by interpolation between the opening area correction value at the opening degree V1 and the opening area correction value at the opening degree V2.
  • the area correction value is determined. In the region where the opening degree of the EGR control valve 21 is V2 or more, the opening area correction value is set to 1.39.
  • FIG. 6 is an explanatory view schematically showing the correlation between the opening area of the EGR control valve 21 and the opening degree of the EGR control valve 21.
  • Characteristic lines C2, D2, and E2 in FIG. 6 correspond to the above-described characteristic lines C1, D1, and E1 in FIG.
  • the characteristic line indicating the correlation between the opening area of the EGR control valve 21 and the opening degree of the EGR control valve 21 changes accordingly. To do.
  • the calculated opening area correction value is sequentially written in a table as shown in FIG. 7 for each opening degree of the EGR control valve 21. That is, when the actual EGR rate deviates from the target EGR rate, the opening area correction value for the opening degree of the EGR control valve 21 at that time is learned.
  • the opening area of the EGR control valve 21 determined from the target EGR rate can be accurately corrected, and the actual EGR amount Can accurately follow the target EGR amount.
  • the opening area of the EGR control valve 21 is constant with respect to the EGR rate.
  • the opening area correction value at an arbitrary opening of the EGR control valve 21
  • the area correction value may be calculated, and the case where the opening area of the EGR control valve corresponding to the EGR rate is corrected for each opening degree of the EGR control valve 21 may be switched depending on the situation.
  • the opening area of the EGR control valve 21 is corrected in the same manner as in the first embodiment, and in other situations, the procedure is as in the second embodiment.
  • the opening area of the EGR control valve may be corrected.

Abstract

When the actual EGR amount deviates from a target EGR amount, it is determined that a change in the pressure loss has occurred in the intake/discharge system of an internal combustion engine (1), and the aperture area of an EGR control valve (21), which corresponds to the EGR rate, is corrected such that the actual EGR amount matches the target EGR amount. For example, an aperture area correction value, which is the flow volume ratio between the target EGR amount corresponding to the target EGR rate and the actual EGR amount corresponding to the actual EGR rate, is calculated, and the slope of a characteristic line indicating the correlation between the EGR rate and the aperture area of the EGR control valve (21) is corrected on the basis of the aperture area correction value. Thus, the EGR amount recirculated to the intake passage (2) can be controlled precisely.

Description

内燃機関の制御装置及び制御方法Control device and control method for internal combustion engine
 本発明は、過給機の上流側に排気の一部を還流する内燃機関の制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for an internal combustion engine that recirculates part of exhaust gas upstream of a supercharger.
 例えば、特許文献1には、空気分圧推定値と吸気管内圧力とを用いてEGRガス分圧推定値を算出し、このEGRガス分圧推定値がスロットル開度とエンジン回転数に基づいて算出されるEGRガス分圧制御目標値と等しくなるようにフィードバック制御を実施したEGR制御装置が開示されている。 For example, in Patent Document 1, an EGR gas partial pressure estimated value is calculated using an air partial pressure estimated value and an intake pipe internal pressure, and the EGR gas partial pressure estimated value is calculated based on a throttle opening and an engine speed. An EGR control device that performs feedback control so as to be equal to a target value for EGR gas partial pressure control is disclosed.
 この特許文献1においては、EGRを実施していないときに、実際の体積効率である実体積効率と、基準状態における体積効率である基準体積効率とを算出し、実体積効率と基準体積効率との差である学習補正値を学習するとともに、この学習補正値を用いて空気分圧推定値を算出することで、EGRガス分圧推定値の推定精度を向上させる技術が開示されている。 In this patent document 1, when EGR is not carried out, the actual volume efficiency that is the actual volume efficiency and the reference volume efficiency that is the volume efficiency in the reference state are calculated. A technique for improving the estimation accuracy of the EGR gas partial pressure estimation value by learning a learning correction value that is a difference between the two and calculating an air partial pressure estimation value using the learning correction value is disclosed.
 なお、実体積効率は、エンジン回転数と吸入空気量と吸気管内のガス温度と吸気管内圧力と1気筒当たりの排気量と気体定数とに基づいて算出されるものである。基準体積効率は、エンジンが個々に有する固体差や経時変化を等を考慮していない初期設定値であり、エンジン回転数に基づいて算出される。 The actual volume efficiency is calculated based on the engine speed, the intake air amount, the gas temperature in the intake pipe, the pressure in the intake pipe, the exhaust amount per cylinder, and the gas constant. The reference volumetric efficiency is an initial setting value that does not take into account individual differences or changes with time that the engine has individually, and is calculated based on the engine speed.
 しかしながら、この特許文献1は、空気分圧推定値と吸気管内圧力から算出されるEGRガス分圧推定値がEGRガス分圧制御目標値となるようにフィードバック制御するものであり、全ての運転条件(運転点)毎に、EGRガス分圧推定値を算出しなければならない。つまり、全ての運転条件毎に、空気分圧推定値を学習補正値で補正しなければならないという問題がある。 However, this Patent Document 1 performs feedback control so that the EGR gas partial pressure estimated value calculated from the air partial pressure estimated value and the intake pipe internal pressure becomes the EGR gas partial pressure control target value. For each (operating point), an EGR gas partial pressure estimate must be calculated. That is, there is a problem that the air partial pressure estimated value must be corrected with the learning correction value for every operating condition.
 また、特許文献1のように圧力を指標にしてEGR量を制御する場合、EGRガス分圧及び空気分圧の実際の値は空気温度やEGRガス温度の影響を受けやすいため、EGR制御の誤差要因になりやすいという問題がある。 Further, when the EGR amount is controlled using the pressure as an index as in Patent Document 1, since the actual values of the EGR gas partial pressure and the air partial pressure are easily affected by the air temperature and the EGR gas temperature, an error in the EGR control. There is a problem that it tends to be a factor.
特開2000-220532号公報JP 2000-220532 A
 そこで、本発明は、過給機よりも上流側から排気の一部をEGRとして還流する内燃機関の制御装置において、目標EGR量に対して実EGR量が乖離した場合には、内燃機関の吸排気系に圧力損失の変化が生じたと判定し、実EGR量が目標EGR量と一致するようにEGR率に対応するEGR制御弁の開口面積を補正することを特徴としている。 Accordingly, the present invention provides a control device for an internal combustion engine that recirculates a part of the exhaust gas as EGR from the upstream side of the turbocharger, and when the actual EGR amount deviates from the target EGR amount, It is determined that a change in pressure loss has occurred in the exhaust system, and the opening area of the EGR control valve corresponding to the EGR rate is corrected so that the actual EGR amount matches the target EGR amount.
 本発明によれば、実EGR量が目標EGR量に追従するようにEGR制御弁の開口面積を補正することができるので、吸気通路に還流するEGR量を精度よく制御することができる。 According to the present invention, since the opening area of the EGR control valve can be corrected so that the actual EGR amount follows the target EGR amount, the EGR amount recirculated to the intake passage can be accurately controlled.
本発明に係る内燃機関の制御装置の全体構成を示すシステム図。1 is a system diagram showing the overall configuration of a control device for an internal combustion engine according to the present invention. 第1実施例における制御内容を模式的に示した説明図。Explanatory drawing which showed typically the control content in 1st Example. EGR制御弁の開度補正の演算内容を示すブロック図。The block diagram which shows the calculation content of the opening degree correction | amendment of an EGR control valve. EGR制御弁の開度補正の演算内容を示すブロック図。The block diagram which shows the calculation content of the opening degree correction | amendment of an EGR control valve. 第2実施例における制御内容を模式的に示した説明図。Explanatory drawing which showed typically the control content in 2nd Example. 第2実施例における制御内容を模式的に示した説明図。Explanatory drawing which showed typically the control content in 2nd Example. 第2実施例における制御内容を模式的に示した説明図。Explanatory drawing which showed typically the control content in 2nd Example.
 以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、本発明が適用される内燃機関1の全体構成を示すシステム図である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram showing an overall configuration of an internal combustion engine 1 to which the present invention is applied.
 内燃機関1は、駆動源として自動車等の車両に搭載されるものであって、吸気通路2と排気通路3とが接続されている。吸気マニホールド4を介して内燃機関1に接続された吸気通路2には、スロットル弁5が設けられていると共に、その上流側には吸入空気量を検出するエアフローメータ6、エアクリーナ7が設けられている。排気マニホールド8を介して内燃機関1に接続された排気通路3には、排気浄化用として、三元触媒等の排気触媒9が設けられている。 The internal combustion engine 1 is mounted on a vehicle such as an automobile as a drive source, and an intake passage 2 and an exhaust passage 3 are connected to each other. A throttle valve 5 is provided in the intake passage 2 connected to the internal combustion engine 1 via the intake manifold 4, and an air flow meter 6 and an air cleaner 7 for detecting the intake air amount are provided upstream thereof. Yes. An exhaust catalyst 9 such as a three-way catalyst is provided for exhaust purification in the exhaust passage 3 connected to the internal combustion engine 1 via the exhaust manifold 8.
 また、この内燃機関1は、吸気通路2に配置されたコンプレッサ11と排気通路3に配置されたタービン12とを同軸上に備えたターボ過給機10を有している。コンプレッサ11は、スロットル弁5よりも上流側に位置していると共に、エアフローメータ6よりも下流側に位置している。タービン12は、排気触媒9よりも上流側に位置している。なお、図1中の13は、スロットル弁5の下流側に設けられたインタークーラである。このインタークーラ13は、スロットル弁5とコンプレッサ11との間に設けてもよい。 The internal combustion engine 1 has a turbocharger 10 that is coaxially provided with a compressor 11 disposed in the intake passage 2 and a turbine 12 disposed in the exhaust passage 3. The compressor 11 is located upstream of the throttle valve 5 and is located downstream of the air flow meter 6. The turbine 12 is located on the upstream side of the exhaust catalyst 9. In addition, 13 in FIG. 1 is an intercooler provided on the downstream side of the throttle valve 5. The intercooler 13 may be provided between the throttle valve 5 and the compressor 11.
 吸気通路2には、コンプレッサ11を迂回してコンプレッサ11の上流側と下流側とを接続するリサーキュレーション通路14が接続されている。リサーキュレーション通路14には、スロットル弁5が閉じられたときにコンプレッサ11とスロットル弁5との間の吸気通路2内の空気をコンプレッサ11の上流側へ戻すように開弁制御されるリサーキュレーション弁15が介装されている。 A recirculation passage 14 that bypasses the compressor 11 and connects the upstream side and the downstream side of the compressor 11 is connected to the intake passage 2. In the recirculation passage 14, the recirculation is controlled so that the air in the intake passage 2 between the compressor 11 and the throttle valve 5 is returned to the upstream side of the compressor 11 when the throttle valve 5 is closed. A ration valve 15 is interposed.
 排気通路3には、タービン12を迂回してタービン12の上流側と下流側とを接続する排気バイパス通路16が接続されている。排気バイパス通路16には、排気バイパス通路16内の排気流量を制御するウエストゲート弁17が介装されている。 The exhaust passage 3 is connected to an exhaust bypass passage 16 that bypasses the turbine 12 and connects the upstream side and the downstream side of the turbine 12. In the exhaust bypass passage 16, a waste gate valve 17 that controls the exhaust flow rate in the exhaust bypass passage 16 is interposed.
 また、内燃機関1は、排気還流(EGR)が実施可能なものであって、排気通路3と吸気通路2との間には、EGR通路20が設けられている。EGR通路20は、その一端が排気触媒9の下流側の位置で排気通路3に接続され、その他端がエアクリーナ7の下流側となりコンプレッサ11の上流側となる位置で吸気通路2に接続されている。このEGR通路20には、EGR制御弁21とEGRクーラ22が介装されている。EGR制御弁21の開度は、運転条件に応じた所定のEGR率が得られるように、コントロールユニット25によって制御される。 The internal combustion engine 1 can perform exhaust gas recirculation (EGR), and an EGR passage 20 is provided between the exhaust passage 3 and the intake passage 2. One end of the EGR passage 20 is connected to the exhaust passage 3 at a position downstream of the exhaust catalyst 9, and the other end is connected to the intake passage 2 at a position downstream of the air cleaner 7 and upstream of the compressor 11. . An EGR control valve 21 and an EGR cooler 22 are interposed in the EGR passage 20. The opening degree of the EGR control valve 21 is controlled by the control unit 25 so that a predetermined EGR rate corresponding to the operating condition is obtained.
 コントロールユニット25は、上述したエアフローメータ6の検出信号のほか、クランクシャフト(図示せず)のクランク角を検出するクランク角センサ26、コンプレッサ11上流側の吸気通路2内の吸気圧力P1を検出する吸気圧センサ27、排気触媒9下流側の排気通路3に接続されたEGR通路20のEGRクーラ22下流側の排気圧力P2を検出する排気圧センサ28、アクセルペダル(図示せず)の踏込量を検出するアクセル開度センサ29等のセンサ類の検出信号が入力されている。なお、排気圧センサ28は、排気触媒9下流側の排気通路内の排気圧力を検出するものであってもよい。 The control unit 25 detects the intake pressure P1 in the intake passage 2 on the upstream side of the compressor 11 and the crank angle sensor 26 that detects the crank angle of the crankshaft (not shown), in addition to the detection signal of the air flow meter 6 described above. The intake pressure sensor 27, the exhaust pressure sensor 28 for detecting the exhaust pressure P2 downstream of the EGR cooler 22 in the EGR passage 20 connected to the exhaust passage 3 downstream of the exhaust catalyst 9, and the amount of depression of an accelerator pedal (not shown). Detection signals of sensors such as the accelerator opening sensor 29 to be detected are input. The exhaust pressure sensor 28 may detect the exhaust pressure in the exhaust passage on the downstream side of the exhaust catalyst 9.
 そして、コントロールユニット25は、これらの検出信号に基づいて、内燃機関1の点火時期や空燃比等の制御を実施すると共に、EGR制御弁21の開度を制御して排気通路3から吸気通路2に排気の一部を還流する排気還流制御(EGR制御)を実施している。なお、スロットル弁5、リサーキュレーション弁15、ウエストゲート弁17の開度もコントロールユニット25により制御されている。リサーキュレーション弁15としては、コントロールユニット25により開閉制御されるものではなく、コンプレッサ11下流側の圧力が所定圧力以上となったときのみ開弁するようないわゆる逆止弁を用いることも可能である。 Based on these detection signals, the control unit 25 controls the ignition timing and air-fuel ratio of the internal combustion engine 1 and controls the opening degree of the EGR control valve 21 to control the opening of the intake passage 2 from the exhaust passage 3. Exhaust gas recirculation control (EGR control) for recirculating part of the exhaust gas is performed. The opening degree of the throttle valve 5, the recirculation valve 15, and the waste gate valve 17 is also controlled by the control unit 25. The recirculation valve 15 is not controlled to be opened and closed by the control unit 25, and a so-called check valve that opens only when the pressure on the downstream side of the compressor 11 exceeds a predetermined pressure can be used. is there.
 吸気通路2に設けられたターボ過給機10のコンプレッサ11の上流側からEGRが導入される構成では、排気圧力P2と吸気圧力P1との圧力差でEGRが導入される。 In the configuration in which EGR is introduced from the upstream side of the compressor 11 of the turbocharger 10 provided in the intake passage 2, EGR is introduced by the pressure difference between the exhaust pressure P2 and the intake pressure P1.
 ここで、ベルヌーイの定理に基づく関係から、吸入空気量と、EGR制御弁21の前後差圧(排気圧力P2と吸気圧力P1との圧力差)の平方根との間には、比例関係が成立する。またEGR制御弁21の前後差圧(排気圧力P2と吸気圧力P1の圧力差)の平方根と、EGR量(排気還流量)との間にも比例関係が成立する。従って、吸入空気量とEGR量の間にも比例関係(EGR率一定)が成立することになる。つまり、吸気圧力P1と排気圧力P2の圧力差を利用して排気の一部を吸気通路2に還流させる構成では、EGR制御弁21の開度(開口面積)が一定であれば、吸入空気量が変化しても、吸入空気量とEGR量の比率は一定となるので、EGR率は一定となる。 Here, from the relationship based on Bernoulli's theorem, a proportional relationship is established between the intake air amount and the square root of the differential pressure across the EGR control valve 21 (pressure difference between the exhaust pressure P2 and the intake pressure P1). . A proportional relationship is also established between the square root of the differential pressure across the EGR control valve 21 (the difference in pressure between the exhaust pressure P2 and the intake pressure P1) and the EGR amount (exhaust gas recirculation amount). Accordingly, a proportional relationship (constant EGR rate) is also established between the intake air amount and the EGR amount. That is, in the configuration in which a part of the exhaust gas is recirculated to the intake passage 2 using the pressure difference between the intake pressure P1 and the exhaust pressure P2, if the opening degree (opening area) of the EGR control valve 21 is constant, the intake air amount Even if changes, the ratio of the intake air amount and the EGR amount becomes constant, so that the EGR rate becomes constant.
 しかし、内燃機関1の吸排気系の圧力損失が変化し、EGR制御弁21の前後差圧が変化すると、EGR制御弁21の開度(開口面積)に対応したEGR率が変化することになり、目標EGR量に対して実測された実EGR量が変化することなる。ここで、目標EGR量は、例えば、EGR制御弁21の開度から推定される目標EGR率に吸入空気量を乗じることで得ることができる。実EGR量は、EGR制御弁21前後の吸気圧力P1、排気圧力P2、吸入空気量から算出することができる。 However, when the pressure loss of the intake / exhaust system of the internal combustion engine 1 changes and the differential pressure across the EGR control valve 21 changes, the EGR rate corresponding to the opening degree (opening area) of the EGR control valve 21 changes. The actually measured EGR amount changes with respect to the target EGR amount. Here, the target EGR amount can be obtained, for example, by multiplying the target EGR rate estimated from the opening degree of the EGR control valve 21 by the intake air amount. The actual EGR amount can be calculated from the intake pressure P1, the exhaust pressure P2, and the intake air amount before and after the EGR control valve 21.
 例えば、EGR制御弁21の開度(開口面積)が一定であっても、腐食等で排気系のマフラーに穴が開いて圧力損失が小さくなるような場合には、排気系の圧力損失が小さくなる分上記圧力差が小さくなってEGRが導入されにくくなり、実EGR量が目標EGR量よりも少なくなる。また、冠水路を走行したことにより排気通路3内に水が進入して圧力損失が大きくなるような場合には、排気系の圧力損失が大きくなる分上記圧力差が大きくなってEGRが導入されやすくなり、実EGR量が目標EGR量よりも多くなる。 For example, even if the opening degree (opening area) of the EGR control valve 21 is constant, if the exhaust system muffler has a hole due to corrosion or the like and the pressure loss is small, the exhaust system pressure loss is small. As a result, the pressure difference becomes smaller and it becomes difficult to introduce EGR, and the actual EGR amount becomes smaller than the target EGR amount. In addition, when water enters the exhaust passage 3 due to traveling on the submerged channel and the pressure loss increases, the pressure difference increases and the EGR is introduced as the exhaust system pressure loss increases. As a result, the actual EGR amount becomes larger than the target EGR amount.
 つまり、内燃機関の吸排気系の圧力損失に変化があると、EGR率に対応するEGR制御弁21の開度(開口面積)が変化することになるため、目標EGR量に対して実EGR量が乖離することになる。 That is, if there is a change in the pressure loss in the intake / exhaust system of the internal combustion engine, the opening degree (opening area) of the EGR control valve 21 corresponding to the EGR rate changes, so the actual EGR amount with respect to the target EGR amount Will diverge.
 そこで、目標EGR量に対して実EGR量が乖離している場合には、実EGR量が目標EGR量と一致するようにEGR率に対応するEGR制御弁21の開口面積を補正することで、実EGR量を目標EGR量に追従させる。つまり、運転条件によらず、目標EGR量に対する実EGR量のずれに応じてEGR率に対応するEGR制御弁21の開口面積を補正する。 Therefore, when the actual EGR amount deviates from the target EGR amount, the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected so that the actual EGR amount matches the target EGR amount. The actual EGR amount is made to follow the target EGR amount. That is, the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected according to the deviation of the actual EGR amount with respect to the target EGR amount regardless of the operating conditions.
 EGR率とEGR制御弁21の開口面積との間には比例関係が成立するため、例えば、縦軸をEGR制御弁21の開口面積、横軸をEGR率とすれば、両者の相関を示す特性線Aは、図2に示すように、原点を通り、所定の傾きを有する直線となる。 Since a proportional relationship is established between the EGR rate and the opening area of the EGR control valve 21, for example, if the vertical axis is the opening area of the EGR control valve 21 and the horizontal axis is the EGR rate, the characteristic indicating the correlation between the two is shown. As shown in FIG. 2, the line A passes through the origin and becomes a straight line having a predetermined inclination.
 コントロールユニット25は、目標EGR率に対応するEGR制御弁21の開口面積の値を記憶している。本実施例では、目標EGR率に対して実EGR率がずれた場合には、現在の目標EGR率に対応するEGR制御弁21の開口面積が実EGR率に対応するように、設定可能なEGR率の全域にわたってEGR率とEGR制御弁21の開口面積との相関関係を一律に補正する。 The control unit 25 stores the value of the opening area of the EGR control valve 21 corresponding to the target EGR rate. In the present embodiment, when the actual EGR rate deviates from the target EGR rate, EGR that can be set so that the opening area of the EGR control valve 21 corresponding to the current target EGR rate corresponds to the actual EGR rate. The correlation between the EGR rate and the opening area of the EGR control valve 21 is uniformly corrected over the entire rate range.
 つまり、図2に示すように、EGR制御弁21の現在の開口面積が実EGR率に対応するように、現在設定されているEGR率とEGR制御弁21の開口面積との相関関係を表す特性線Aの傾きを補正し、以降は特性線Bの関係に従って目標EGR率からEGR制御弁21の開口面積を設定する。換言すれば、目標EGR率に対応する目標EGR量と実EGR率に対応する実EGR量との流量比である開口面積補正値を算出し、この開口面積補正値に基づいて、EGR制御弁21の開口面積に対応して設定されたEGR率を補正する。開口面積補正値は、学習値としてコントロールユニット25内のRAM等に記憶される。 That is, as shown in FIG. 2, the characteristic representing the correlation between the currently set EGR rate and the opening area of the EGR control valve 21 so that the current opening area of the EGR control valve 21 corresponds to the actual EGR rate. The inclination of the line A is corrected, and thereafter the opening area of the EGR control valve 21 is set from the target EGR rate according to the relationship of the characteristic line B. In other words, an opening area correction value that is a flow rate ratio between the target EGR amount corresponding to the target EGR rate and the actual EGR amount corresponding to the actual EGR rate is calculated, and the EGR control valve 21 is based on the opening area correction value. The EGR rate set corresponding to the opening area is corrected. The opening area correction value is stored in a RAM or the like in the control unit 25 as a learning value.
 開口面積補正値を現在のEGR制御弁の開口面積に乗ずると、現在の目標EGR量を実現するEGR制御弁の新たな開口面積を算出することが可能となる。例えば、目標EGR量に対して、実EGR量が20%不足しているような場合には、EGR制御弁の開口面積が20%多くなるように開度を開くことで、現在の目標EGR量を実現することができる。つまり、この開口面積補正値は、目標EGR率を実現するために必要なEGR制御弁21の開口面積の過不足の割合である。 When the opening area correction value is multiplied by the current opening area of the EGR control valve, a new opening area of the EGR control valve that realizes the current target EGR amount can be calculated. For example, when the actual EGR amount is 20% short of the target EGR amount, the current target EGR amount is opened by opening the opening so that the opening area of the EGR control valve is increased by 20%. Can be realized. That is, this opening area correction value is a ratio of excess or deficiency of the opening area of the EGR control valve 21 necessary for realizing the target EGR rate.
 なお、特性線Bの関係に従って、目標EGR率からEGR制御弁21の開口面積を設定したときに、目標EGR率に対して実EGR率がずれた場合には、現在の目標EGR率に対応するEGR制御弁21の開口面積が実EGR率に対応するように特性線Bの傾きを補正することなる。つまり、目標EGR率に対して実EGR率が乖離する毎に開口面積補正値が算出され、開口面積補正値に基づいてEGR率とEGR制御弁21の開口面積との相関関係を表す特性線の傾きが補正される。 When the opening area of the EGR control valve 21 is set from the target EGR rate according to the relationship of the characteristic line B, if the actual EGR rate is deviated from the target EGR rate, the current target EGR rate is handled. The inclination of the characteristic line B is corrected so that the opening area of the EGR control valve 21 corresponds to the actual EGR rate. That is, every time the actual EGR rate deviates from the target EGR rate, the opening area correction value is calculated, and a characteristic line representing the correlation between the EGR rate and the opening area of the EGR control valve 21 is calculated based on the opening area correction value. The tilt is corrected.
 このように、排気系の圧力損失に変化が生じるような場合でも、EGR制御弁21の全ての開度について、対応するEGR制御弁21の開口面積を補正することが可能となり、実EGR量を目標EGR量に追従させることができる。つまり、吸気通路2に還流するEGR量を精度よく制御することができる。 As described above, even when the pressure loss of the exhaust system changes, the opening area of the corresponding EGR control valve 21 can be corrected for all the opening degrees of the EGR control valve 21, and the actual EGR amount can be reduced. It is possible to follow the target EGR amount. That is, it is possible to accurately control the amount of EGR returned to the intake passage 2.
 また、開口面積補正値は、目標EGR量と実EGR量との流量比であり、吸気温度や排気温度の影響を受けにくいため、温度要因によらずに、実EGR量が目標EGR量に追従するようにEGR制御弁21の開口面積を安定して補正することができる。 The opening area correction value is a flow rate ratio between the target EGR amount and the actual EGR amount, and is not easily affected by the intake air temperature or the exhaust temperature. Therefore, the actual EGR amount follows the target EGR amount regardless of temperature factors. Thus, the opening area of the EGR control valve 21 can be corrected stably.
 図3は、EGR制御弁21の開度補正の演算内容を示すブロック図である。 FIG. 3 is a block diagram showing the calculation content of the opening correction of the EGR control valve 21.
 S1では、目標EGR量を実EGR量で除すことで、開口面積補正値の仮値を算出する。S2では、S1で算出された開口面積補正値の仮値を、学習値として記憶されている開口面積補正値(前回値)で除すことで、新たに開口面積補正値を算出する。つまり、開口面積補正値の前回値を基準に、新たに開口面積補正値を算出している。S3では、S2で新たに算出された開口面積補正値を、学習値としてEGR制御弁21の開度と対応させて記憶する。なお、本実施例では、EGR率とEGR制御弁21の開口面積との相関関係を表す特性線Aの傾きを補正することで実EGR量を目標EGR量に追従させているため、開口面積補正値はEGR制御弁21の開度によらず一定となる。S4では、S3に学習値として記憶されている開口面積補正値と目標EGR率とを乗じて、EGR制御弁21の開口面積に対応する補正目標EGR率を算出する。S5では、S4で算出した補正目標EGR率に対応するEGR制御弁21の開口面積を算出する。そして、S5で算出されたEGR制御弁21の開口面積をEGR制御弁21の開度に変換し、変換された開度となるようにEGR制御弁21を制御する。 In S1, the provisional value of the opening area correction value is calculated by dividing the target EGR amount by the actual EGR amount. In S2, a new opening area correction value is calculated by dividing the provisional value of the opening area correction value calculated in S1 by the opening area correction value (previous value) stored as a learning value. That is, the opening area correction value is newly calculated based on the previous value of the opening area correction value. In S3, the opening area correction value newly calculated in S2 is stored as a learning value in association with the opening degree of the EGR control valve 21. In this embodiment, since the actual EGR amount is made to follow the target EGR amount by correcting the inclination of the characteristic line A representing the correlation between the EGR rate and the opening area of the EGR control valve 21, the opening area correction is performed. The value is constant regardless of the opening degree of the EGR control valve 21. In S4, the correction target EGR rate corresponding to the opening area of the EGR control valve 21 is calculated by multiplying the opening area correction value stored in S3 as the learning value and the target EGR rate. In S5, the opening area of the EGR control valve 21 corresponding to the corrected target EGR rate calculated in S4 is calculated. Then, the opening area of the EGR control valve 21 calculated in S5 is converted into the opening degree of the EGR control valve 21, and the EGR control valve 21 is controlled so as to have the converted opening degree.
 なお、開口面積補正値を学習するにあたっては、図4に示すように、開口面積補正値の仮値よりも、現在までの学習結果に重きをおくようして開口面積補正値を更新するようにしてもよい。その場合には、開口面積補正値の仮値の誤差が大きかった場合の影響を低減することができる。 When learning the aperture area correction value, as shown in FIG. 4, the aperture area correction value is updated so that the learning result up to now is more important than the provisional value of the aperture area correction value. May be. In that case, it is possible to reduce the influence when the error of the provisional value of the opening area correction value is large.
 図4は、現在までの学習結果に重きをおくようして開口面積補正値を更新する場合におけるEGR制御弁21の開度補正の演算内容を示すブロック図である。 FIG. 4 is a block diagram showing the calculation content of the opening correction of the EGR control valve 21 when the opening area correction value is updated so as to place importance on the learning results up to now.
 S11では、目標EGR量を実EGR量で除すことで、開口面積補正値の仮値を算出する。S12では、開口面積補正値の仮値に所定の係数Kを乗じて、第1補正値を算出する。上記係数Kは、「1」以下の正の値であり、例えば、0.2や0.3といった値である。S13では、学習値として記憶されている開口面積補正値に1から上記係数Kを減じた値である(1-K)を乗じて第2補正値を算出する。そして、S14では、第1補正値に第2補正値を加算して新たな開口面積補正値を算出する。S15では、S14で新たに算出された開口面積補正値を学習値としてEGR制御弁21の開度と対応させて記憶する。なお、この例においても、EGR率とEGR制御弁21の開口面積との相関関係を表す特性線Aの傾きを補正することで実EGR量を目標EGR量に追従させているため、開口面積補正値はEGR制御弁21の開度によらず一定となる。S16では、学習値として記憶されている開口面積補正値に目標EGR率を乗じて、EGR制御弁21の開口面積に対応する補正目標EGR率を算出する。S17では、S16で算出した補正目標EGR率に対応するEGR制御弁21の開口面積を算出する。そして、S17で算出されたEGR制御弁21の開口面積をEGR制御弁21の開度に変換し、変換された開度となるようにEGR制御弁21を制御する。 In S11, the provisional value of the opening area correction value is calculated by dividing the target EGR amount by the actual EGR amount. In S12, the first correction value is calculated by multiplying the provisional value of the opening area correction value by a predetermined coefficient K. The coefficient K is a positive value of “1” or less, and is a value such as 0.2 or 0.3, for example. In S13, the second correction value is calculated by multiplying the opening area correction value stored as the learning value by (1−K), which is a value obtained by subtracting the coefficient K from 1. In S14, the second correction value is added to the first correction value to calculate a new opening area correction value. In S15, the opening area correction value newly calculated in S14 is stored as a learning value in association with the opening of the EGR control valve 21. In this example as well, since the actual EGR amount is made to follow the target EGR amount by correcting the slope of the characteristic line A representing the correlation between the EGR rate and the opening area of the EGR control valve 21, the opening area correction is performed. The value is constant regardless of the opening degree of the EGR control valve 21. In S16, the correction target EGR rate corresponding to the opening area of the EGR control valve 21 is calculated by multiplying the opening area correction value stored as the learning value by the target EGR rate. In S17, the opening area of the EGR control valve 21 corresponding to the corrected target EGR rate calculated in S16 is calculated. Then, the opening area of the EGR control valve 21 calculated in S17 is converted into the opening degree of the EGR control valve 21, and the EGR control valve 21 is controlled so as to have the converted opening degree.
 また、上述した第1実施例では、EGR制御弁21が任意の開度のときの開口面積補正値を用いて、EGR率とEGR制御弁21の開口面積との現在の相関関係を一律に補正しているが、EGR制御弁21の開度毎に開口面積補正値を算出し、EGR制御弁21の開度毎にEGR率に対応するEGR制御弁21の開口面積を補正するようにしてもよい。 In the first embodiment described above, the current correlation between the EGR rate and the opening area of the EGR control valve 21 is uniformly corrected using the opening area correction value when the EGR control valve 21 has an arbitrary opening degree. However, an opening area correction value is calculated for each opening degree of the EGR control valve 21, and the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected for each opening degree of the EGR control valve 21. Good.
 図5~図7を用いて、EGR制御弁21の開度毎にEGR率に対応するEGR制御弁21の開口面積を補正する本発明の第2実施例について説明する。 A second embodiment of the present invention for correcting the opening area of the EGR control valve 21 corresponding to the EGR rate for each opening degree of the EGR control valve 21 will be described with reference to FIGS.
 上述したように、EGR率とEGR制御弁21の開口面積との間には比例関係が成立するため、開口面積補正値の学習が行われていない初期状態では、EGR率とEGR制御弁21の開口面積との相関を示す特性線C1は、図5中に破線で示すように、原点を通り、所定の傾きを有する直線となる。つまり、初期状態では、この特性線C1の特性に従ってEGR制御弁21を制御する。 As described above, since a proportional relationship is established between the EGR rate and the opening area of the EGR control valve 21, in the initial state where the learning of the opening area correction value is not performed, the EGR rate and the EGR control valve 21 The characteristic line C1 indicating the correlation with the opening area passes through the origin and becomes a straight line having a predetermined inclination as shown by a broken line in FIG. That is, in the initial state, the EGR control valve 21 is controlled according to the characteristic of the characteristic line C1.
 そして、EGR制御弁21が任意の開度V1のときに、始めて目標EGR率と実EGR率とが乖離した場合、例えば開度V1に相当するEGR制御弁21の開口面積A1のときの実EGR率Ra1が、そのときの目標EGR率Rt(特性線C1において開口面積A1に対応するEGR率)よりも小さい場合、EGR制御弁21の開口面積A1のときのEGR率がRa1となるように図5における特性線C1の傾きを変化させる。つまり、EGR率とEGR制御弁21の開口面積との相関を示す特性線をC1からD1に変更する。特性線D1は、図5中に一点鎖線で示すように、原点を通り、特性線C1よりも傾きが大きい直線となる。 Then, when the EGR control valve 21 has an arbitrary opening degree V1, when the target EGR rate and the actual EGR rate deviate for the first time, for example, the actual EGR when the opening area A1 of the EGR control valve 21 corresponds to the opening degree V1. When the rate Ra1 is smaller than the target EGR rate Rt at that time (EGR rate corresponding to the opening area A1 in the characteristic line C1), the EGR rate at the opening area A1 of the EGR control valve 21 is set to Ra1. 5, the slope of the characteristic line C1 is changed. That is, the characteristic line indicating the correlation between the EGR rate and the opening area of the EGR control valve 21 is changed from C1 to D1. The characteristic line D1 is a straight line that passes through the origin and has a larger slope than the characteristic line C1, as indicated by a one-dot chain line in FIG.
 例えば、実EGR率Ra1が、目標EGR率Rtに対して、20%不足しているような場合には、上述した開口面積補正値が1.25となり(1/0.8=1.25)、EGR率に対応するEGR制御弁21の開口面積が現在よりも一律1.25倍になるように補正する。EGR制御弁21の開度に対応した開口面積補正値が算出されていない未学習領域については、EGR制御弁21が開度V1のときの開口面積補正値を用いた補間により仮の学習値(開口面積補正値)が設定されることになる。 For example, when the actual EGR rate Ra1 is 20% less than the target EGR rate Rt, the above-described opening area correction value is 1.25 (1 / 0.8 = 1.25). Then, the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected so as to be uniformly 1.25 times that of the present time. For an unlearned region in which the opening area correction value corresponding to the opening degree of the EGR control valve 21 is not calculated, a temporary learning value (by interpolation using the opening area correction value when the EGR control valve 21 is the opening degree V1) Opening area correction value) is set.
 開口面積補正値が算出された既学習領域の他に開口面積補正値が算出されていない未学習領域があると、未学習領域ではEGR率に対応するEGR制御弁21の開口面積が補正されてないことになり、既学習領域と未学習領域との間で、EGR率に対するEGR制御弁21の開口面積の値に段差が生じて要因となる。 If there is an unlearned region for which the opening area correction value has not been calculated in addition to the already learned region for which the opening area correction value has been calculated, the opening area of the EGR control valve 21 corresponding to the EGR rate is corrected in the unlearned region. As a result, there is a step in the value of the opening area of the EGR control valve 21 with respect to the EGR rate between the already learned region and the unlearned region.
 そこで、このような段差が生じないように、初回に算出された開口面積補正値を初回の学習値として、設定可能なEGR率の全域にわたってEGR制御弁21の開口面積の補正に反映させているのである。 Therefore, the opening area correction value calculated at the first time is reflected in the correction of the opening area of the EGR control valve 21 over the entire settable EGR rate so that such a step does not occur. It is.
 そして、特性線D1の特性に従ってEGR制御弁21を制御している際に、目標EGR率に対して実EGR率が乖離すると、開口面積補正値の学習が実施される。EGR制御弁21が開度V2のときに、目標EGR率と実EGR率とが乖離した場合、例えば開度V2に相当するEGR制御弁21の開口面積A2のときの実EGR率Ra2が、そのときの目標EGR率Rt(特性線D1において開口面積A2に対応するEGR率)よりも小さい場合、EGR制御弁21の開口面積A2のときのEGR率がRa2となるように、図5における特性線D1の傾きを、EGR率Ra1以上の領域で変化させる。 When the EGR control valve 21 is controlled according to the characteristic of the characteristic line D1, if the actual EGR rate deviates from the target EGR rate, learning of the opening area correction value is performed. When the target EGR rate and the actual EGR rate deviate when the EGR control valve 21 is at the opening V2, for example, the actual EGR rate Ra2 at the opening area A2 of the EGR control valve 21 corresponding to the opening V2 is 5 is smaller than the target EGR rate Rt at the time (EGR rate corresponding to the opening area A2 in the characteristic line D1) so that the EGR rate at the opening area A2 of the EGR control valve 21 becomes Ra2. The slope of D1 is changed in a region where the EGR rate Ra1 or higher.
 つまり、EGR率とEGR制御弁21の開口面積との相関を示す特性線をD1からE1に変更する。特性線E1は、図5中に実線で示すように、EGR率が0~Ra1までの領域では、特性線D1と同じ特性(原点を通り、傾きが特性線C1と同じ)の直線であり、EGR率がRa1よりも大きい領域では、EGR率がRa1のときEGR制御弁21の開口面積がA1となり、EGR率がRa2のときEGR制御弁21の開口面積がA2となるように、特性線C1よりも傾きが大きい直線となっている。 That is, the characteristic line indicating the correlation between the EGR rate and the opening area of the EGR control valve 21 is changed from D1 to E1. As shown by the solid line in FIG. 5, the characteristic line E1 is a straight line having the same characteristics as the characteristic line D1 (passing through the origin and having the same slope as the characteristic line C1) in the region where the EGR rate is 0 to Ra1. In the region where the EGR rate is greater than Ra1, the characteristic line C1 is such that when the EGR rate is Ra1, the opening area of the EGR control valve 21 is A1, and when the EGR rate is Ra2, the opening area of the EGR control valve 21 is A2. It is a straight line with a larger slope than that.
 例えば、実EGR率Ra2が、目標EGR率Rtに対して、10%不足しているような場合には、EGR制御弁21が開度V2のときの開口面積補正値が1.39となる(1.25/0.9=1.39)。 For example, when the actual EGR rate Ra2 is 10% less than the target EGR rate Rt, the opening area correction value when the EGR control valve 21 is at the opening V2 is 1.39 ( 1.25 / 0.9 = 1.39).
 なお、この第2実施例においても、目標EGR率に対して実EGR率が乖離する毎に開口面積補正値が算出される。そして、算出された開口面積補正値は、学習値として、そのときのEGR制御弁21の開度に対応させて記憶される。 In the second embodiment, the opening area correction value is calculated every time the actual EGR rate deviates from the target EGR rate. The calculated opening area correction value is stored as a learning value in association with the opening degree of the EGR control valve 21 at that time.
 この第2実施例では、EGR制御弁21の開度が0~V1の領域では、開口面積補正値が1.25に設定される。これは、EGR制御弁21が開度V1のときには、既に開口面積補正値が算出され、目標EGR率に実EGR率が追従するように、EGR率とEGR制御弁21の開口面積との相関関係を補正しているからである。EGR制御弁21の開度がV1~V2の領域では、開度V1のときの開口面積補正値と開度V2のときの開口面積補正値との補間によりEGR制御弁21の開度毎に開口面積補正値を決定している。EGR制御弁21の開度がV2以上の領域では、開口面積補正値が1.39に設定される。 In this second embodiment, the opening area correction value is set to 1.25 in the region where the opening degree of the EGR control valve 21 is 0 to V1. This is because when the EGR control valve 21 is at the opening degree V1, the opening area correction value is already calculated, and the correlation between the EGR rate and the opening area of the EGR control valve 21 so that the actual EGR rate follows the target EGR rate. This is because the correction is made. In the region where the opening degree of the EGR control valve 21 is V1 to V2, the opening is corrected for each opening degree of the EGR control valve 21 by interpolation between the opening area correction value at the opening degree V1 and the opening area correction value at the opening degree V2. The area correction value is determined. In the region where the opening degree of the EGR control valve 21 is V2 or more, the opening area correction value is set to 1.39.
 図6は、EGR制御弁21の開口面積とEGR制御弁21の開度との相関を模式的に示した説明図である。図6中の特性線C2、D2、E2は、それぞれ上述した図5の特性線C1、D1、E1に対応するものである。実EGR率が目標EGR率に追従するように開口面積補正値を用いて補正されると、それにともないEGR制御弁21の開口面積とEGR制御弁21の開度との相関を示す特性線も変化する。 FIG. 6 is an explanatory view schematically showing the correlation between the opening area of the EGR control valve 21 and the opening degree of the EGR control valve 21. Characteristic lines C2, D2, and E2 in FIG. 6 correspond to the above-described characteristic lines C1, D1, and E1 in FIG. When the actual EGR rate is corrected using the opening area correction value so as to follow the target EGR rate, the characteristic line indicating the correlation between the opening area of the EGR control valve 21 and the opening degree of the EGR control valve 21 changes accordingly. To do.
 算出された開口面積補正値は、EGR制御弁21の開度毎に、図7に示すようなテーブルに逐次書き込まれていく。つまり、目標EGR率に対して実EGR率が乖離すると、そのときのEGR制御弁21の開度における開口面積補正値が学習される。 The calculated opening area correction value is sequentially written in a table as shown in FIG. 7 for each opening degree of the EGR control valve 21. That is, when the actual EGR rate deviates from the target EGR rate, the opening area correction value for the opening degree of the EGR control valve 21 at that time is learned.
 このような第2実施例においては、システム内に別の圧力損失が加わるような場合でも、目標EGR率から決定されるEGR制御弁21の開口面積を精度良く補正することができ、実EGR量を目標EGR量に精度よく追従させることができる。 In such a second embodiment, even when another pressure loss is added to the system, the opening area of the EGR control valve 21 determined from the target EGR rate can be accurately corrected, and the actual EGR amount Can accurately follow the target EGR amount.
 そして、ターボ過給機10のコンプレッサ11よりも上流側から排気の一部をEGRとして還流するようなシステムでは、EGR率に対してEGR制御弁21の開口面積が一定となるので、使用頻度が高いEGR率ほど学習回数が多くなり、EGR量がより精度よく補正されることになる。また、EGR制御弁21の各開度毎の流量ばらつきについても補正することができる。 In a system in which a part of the exhaust gas is recirculated as EGR from the upstream side of the compressor 11 of the turbocharger 10, the opening area of the EGR control valve 21 is constant with respect to the EGR rate. The higher the EGR rate, the greater the number of learning times, and the EGR amount is corrected more accurately. Further, the flow rate variation for each opening degree of the EGR control valve 21 can also be corrected.
 また、EGR率とEGR制御弁21の開口面積との相関関係を補正するにあたっては、上述した第1実施例のように、EGR制御弁21の任意の開度における開口面積補正値を用いて、設定可能なEGR率の全域にわたってEGR率とEGR制御弁21の開口面積との相関関係を一律に補正する場合と、上述した第2実施例のように、EGR制御弁21の開度毎に開口面積補正値を算出し、EGR制御弁21の開度毎にEGR率に対応するEGR制御弁の開口面積を補正する場合と、を状況に応じて切り替えるようにしてもよい。例えば、湿度が高い状況や、外気温度が低い状況では、上述した第1実施例の要領でEGR制御弁21の開口面積を補正し、それ以外の状況では、上述した第2実施例の要領でEGR制御弁の開口面積を補正するようにしてもよい。 Further, in correcting the correlation between the EGR rate and the opening area of the EGR control valve 21, as in the first embodiment described above, using the opening area correction value at an arbitrary opening of the EGR control valve 21, When the correlation between the EGR rate and the opening area of the EGR control valve 21 is uniformly corrected over the entire settable EGR rate, and at each opening degree of the EGR control valve 21 as in the second embodiment described above. The area correction value may be calculated, and the case where the opening area of the EGR control valve corresponding to the EGR rate is corrected for each opening degree of the EGR control valve 21 may be switched depending on the situation. For example, in a situation where the humidity is high or the outside air temperature is low, the opening area of the EGR control valve 21 is corrected in the same manner as in the first embodiment, and in other situations, the procedure is as in the second embodiment. The opening area of the EGR control valve may be corrected.

Claims (9)

  1.  スロットル弁の上流側に位置する過給機と、該過給機よりも上流側から排気の一部をEGRとして還流するEGR通路と、上記EGR通路の途中に配置されたEGR制御弁と、上記EGR制御弁を通過する実EGR量を検知するEGR量検知手段と、を有し、EGR率に対応する上記EGR制御弁の開口面積が予め設定されている内燃機関の制御装置において、
     目標EGR量に対して上記実EGR量が乖離した場合には、上記内燃機関の吸排気系に圧力損失の変化が生じたと判定し、実EGR量が目標EGR量と一致するようにEGR率に対応する上記EGR制御弁の開口面積を補正する内燃機関の制御装置。
    A turbocharger located upstream of the throttle valve, an EGR passage that recirculates part of the exhaust as EGR from the upstream side of the turbocharger, an EGR control valve disposed in the middle of the EGR passage, An internal combustion engine control device having an EGR amount detection means for detecting an actual EGR amount passing through the EGR control valve, wherein an opening area of the EGR control valve corresponding to an EGR rate is preset.
    When the actual EGR amount deviates from the target EGR amount, it is determined that a change in pressure loss has occurred in the intake and exhaust systems of the internal combustion engine, and the EGR rate is adjusted so that the actual EGR amount matches the target EGR amount. A control apparatus for an internal combustion engine that corrects the opening area of the corresponding EGR control valve.
  2.  上記目標EGR量を実現するために必要な上記EGR制御弁の開口面積の過不足の割合として、上記目標EGR量と上記実RGR量との比である開口面積補正値を算出し、該開口面積補正値に基づいて、EGR率に対応して設定された上記EGR制御弁の開口面積を補正する請求項1に記載の内燃機関の制御装置。 An opening area correction value, which is a ratio of the target EGR amount and the actual RGR amount, is calculated as a ratio of excess and deficiency of the opening area of the EGR control valve necessary for realizing the target EGR amount, and the opening area is calculated. 2. The control device for an internal combustion engine according to claim 1, wherein an opening area of the EGR control valve set corresponding to an EGR rate is corrected based on a correction value.
  3.  上記EGR制御弁が任意の開度のときの上記開口面積補正値を用い、EGR率と上記EGR制御弁の開口面積との相関関係を一律に補正する請求項2に記載の内燃機関の制御装置。 3. The control device for an internal combustion engine according to claim 2, wherein the correlation between the EGR rate and the opening area of the EGR control valve is uniformly corrected using the opening area correction value when the EGR control valve has an arbitrary opening degree. .
  4.  上記EGR制御弁の開度毎に上記開口面積補正値を算出し、上記EGR制御弁の開度毎にEGR率に対応する上記EGR制御弁の開口面積を補正する請求項2に記載の内燃機関の制御装置。 The internal combustion engine according to claim 2, wherein the opening area correction value is calculated for each opening degree of the EGR control valve, and the opening area of the EGR control valve corresponding to an EGR rate is corrected for each opening degree of the EGR control valve. Control device.
  5.  上記EGR制御弁が任意の開度のときの上記開口面積補正値を用い、設定可能なEGR率の全域にわたってEGR率に対応する上記EGR制御弁の開口面積の相関関係を一律に補正する第1補正手段と、
     上記EGR制御弁の開度毎に上記開口面積補正値を算出し、上記EGR制御弁の開度毎にEGR率に対応する上記EGR制御弁の開口面積を補正する第2補正手段と、を有し、
     状況に応じて上記第1補正手段と上記第2補正手段とを切り替えて使用可能な請求項2に記載の内燃機関の制御装置。
    A first correction that uniformly corrects the correlation of the opening area of the EGR control valve corresponding to the EGR rate over the entire settable EGR rate using the opening area correction value when the EGR control valve has an arbitrary opening degree. Correction means;
    Second correction means for calculating the opening area correction value for each opening degree of the EGR control valve and correcting the opening area of the EGR control valve corresponding to the EGR rate for each opening degree of the EGR control valve; And
    The control apparatus for an internal combustion engine according to claim 2, wherein the first correction means and the second correction means can be switched and used in accordance with a situation.
  6.  上記EGR制御弁の開度毎に上記開口面積補正値を算出し、上記EGR制御弁の開度毎にEGR率に対応する該EGR制御弁の開口面積を補正する場合、
     初回に算出された上記開口面積補正値を初回学習値として、設定可能なEGR率の全域にわたってEGR率に対応する上記EGR制御弁の開口面積の補正に反映させ、
     次回以降に算出された上記開口面積補正値は、上記EGR制御弁の開度毎の学習値として、EGR率に対応する上記EGR制御弁の開口面積を補正すると共に、上記EGR制御弁の開度毎に順次更新される請求項4または5に記載の内燃機関の制御装置。
    When calculating the opening area correction value for each opening degree of the EGR control valve and correcting the opening area of the EGR control valve corresponding to the EGR rate for each opening degree of the EGR control valve,
    The opening area correction value calculated for the first time is used as an initial learning value to reflect the correction of the opening area of the EGR control valve corresponding to the EGR ratio over the entire settable EGR ratio.
    The opening area correction value calculated after the next time is used as a learning value for each opening degree of the EGR control valve to correct the opening area of the EGR control valve corresponding to the EGR rate, and the opening degree of the EGR control valve. The control apparatus for an internal combustion engine according to claim 4 or 5, wherein the control apparatus is sequentially updated every time.
  7.  上記開口面積補正値を学習値として上記EGR制御弁の開度毎に割り付けて記憶する場合、上記開口面積補正値が算出されていない未学習領域では、上記開口面積補正値が算出されている既学習領域の学習値を用いて補間により仮学習値を割り付ける請求項4または5に記載の内燃機関の制御装置。 When the opening area correction value is assigned and stored as a learning value for each opening of the EGR control valve, the opening area correction value is calculated in an unlearned region where the opening area correction value is not calculated. The control device for an internal combustion engine according to claim 4 or 5, wherein the temporary learning value is assigned by interpolation using the learning value of the learning region.
  8.  上記開口面積補正値を学習値として上記EGR制御弁の開度毎に割り付けて記憶する場合、上記開口面積補正値が算出されていない未学習領域では、上記開口面積補正値が算出れている既学習領域のうち隣接する既学習領域の学習値を仮学習値として割り付ける請求項4または5に記載の内燃機関の制御装置。 When the opening area correction value is assigned and stored as a learning value for each opening of the EGR control valve, the opening area correction value is calculated in an unlearned region where the opening area correction value is not calculated. The control apparatus for an internal combustion engine according to claim 4 or 5, wherein learning values in adjacent learning areas among learning areas are assigned as temporary learning values.
  9.  スロットル弁の上流側に位置する過給機よりもさらに上流側から排気の一部をEGRとして還流するEGR通路に配置されたEGR制御弁を通過する実EGR量を検知し、
     EGR率に対応する上記EGR制御弁の開口面積が予め設定され、
     目標EGR量に対して上記実EGR量が乖離した場合には、内燃機関の吸排気系に圧力損失の変化が生じたと判定し、上記実EGR量が上記目標EGR量と一致するようにEGR率に対応する上記EGR制御弁の開口面積を補正する内燃機関の制御方法。
    Detecting the actual EGR amount passing through the EGR control valve arranged in the EGR passage that recirculates a part of the exhaust as EGR from the upstream side of the turbocharger located on the upstream side of the throttle valve,
    The opening area of the EGR control valve corresponding to the EGR rate is preset,
    When the actual EGR amount deviates from the target EGR amount, it is determined that a change in pressure loss has occurred in the intake and exhaust systems of the internal combustion engine, and the EGR rate is adjusted so that the actual EGR amount matches the target EGR amount. A control method for an internal combustion engine that corrects the opening area of the EGR control valve corresponding to the above.
PCT/JP2013/068340 2012-08-07 2013-07-04 Control device and control method for internal combustion engine WO2014024609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012174497 2012-08-07
JP2012-174497 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024609A1 true WO2014024609A1 (en) 2014-02-13

Family

ID=50067849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068340 WO2014024609A1 (en) 2012-08-07 2013-07-04 Control device and control method for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2014024609A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056734A (en) * 2014-09-10 2016-04-21 三菱電機株式会社 Egr flow rate estimation device for internal combustion engine and control device of internal combustion engine
EP3081803A1 (en) * 2015-04-13 2016-10-19 Kamtec, Inc. Exhaust gas recirculation (egr) valve of which opening extent is precisely controllable in early open period thereof
JP2017048754A (en) * 2015-09-03 2017-03-09 日産自動車株式会社 Internal combustion engine control method and internal combustion engine control device
US20170328291A1 (en) * 2016-05-11 2017-11-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN109882301A (en) * 2019-03-26 2019-06-14 中国第一汽车股份有限公司 A kind of small-displacement gasoline engine waste gas and recycles control system
CN111749805A (en) * 2019-03-26 2020-10-09 丰田自动车株式会社 Hybrid vehicle and engine control method for hybrid vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141147A (en) * 1996-11-14 1998-05-26 Toyota Motor Corp Internal combustion engine with egr device
JP2001082260A (en) * 1999-07-12 2001-03-27 Toyota Motor Corp Exhaust gas recirculation controller for internal combustion engine
JP2008303825A (en) * 2007-06-08 2008-12-18 Toyota Motor Corp Exhaust gas recirculating device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141147A (en) * 1996-11-14 1998-05-26 Toyota Motor Corp Internal combustion engine with egr device
JP2001082260A (en) * 1999-07-12 2001-03-27 Toyota Motor Corp Exhaust gas recirculation controller for internal combustion engine
JP2008303825A (en) * 2007-06-08 2008-12-18 Toyota Motor Corp Exhaust gas recirculating device of internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056734A (en) * 2014-09-10 2016-04-21 三菱電機株式会社 Egr flow rate estimation device for internal combustion engine and control device of internal combustion engine
EP3081803A1 (en) * 2015-04-13 2016-10-19 Kamtec, Inc. Exhaust gas recirculation (egr) valve of which opening extent is precisely controllable in early open period thereof
JP2017048754A (en) * 2015-09-03 2017-03-09 日産自動車株式会社 Internal combustion engine control method and internal combustion engine control device
US20170328291A1 (en) * 2016-05-11 2017-11-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2017203413A (en) * 2016-05-11 2017-11-16 トヨタ自動車株式会社 Control device of internal combustion engine
CN107366589A (en) * 2016-05-11 2017-11-21 丰田自动车株式会社 The control device of internal combustion engine
CN109882301A (en) * 2019-03-26 2019-06-14 中国第一汽车股份有限公司 A kind of small-displacement gasoline engine waste gas and recycles control system
CN111749805A (en) * 2019-03-26 2020-10-09 丰田自动车株式会社 Hybrid vehicle and engine control method for hybrid vehicle
CN111749805B (en) * 2019-03-26 2023-03-31 丰田自动车株式会社 Hybrid vehicle and engine control method for hybrid vehicle

Similar Documents

Publication Publication Date Title
JP5929015B2 (en) Exhaust gas recirculation device for internal combustion engine
WO2014024609A1 (en) Control device and control method for internal combustion engine
US9759165B2 (en) Internal combustion engine
EP1870584B1 (en) Exhaust gas recirculation device of internal combustion engine, and control method of the device
WO2011092823A1 (en) CONTROLLER OF INTERNAL COMBUSTION ENGINE, AND DEVICE FOR MEASURING MASS FLOW OF NOx REFLUXED BACK TO INTAKE PASSAGE ALONG WITH BLOW-BY GAS
US7219002B2 (en) Control apparatus for internal combustion engine
JP2012251535A (en) Internal combustion engine
EP3029307B1 (en) Control device for internal combustion engine
US8751137B2 (en) Apparatus for estimating exhaust gas recirculation quantity
JP4858289B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2013256895A (en) Failure diagnosis device for air bypass valve
WO2015182107A1 (en) Air quantity calculation device for internal combustion engine
WO2014080523A1 (en) Control device of internal combustion engine
JP2019039330A (en) Internal combustion engine control device
WO2013190933A1 (en) Exhaust gas recirculation apparatus for internal combustion engine and egr calculation method for exhaust gas recirculation apparatus
KR101406636B1 (en) Egr system
JP2010106734A (en) Egr control method for internal combustion engine, and internal combustion engine
JP2010025059A (en) Exhaust recirculation device for internal combustion engine
WO2015060068A1 (en) Control device for internal combustion engine
JP2006090212A (en) Control device for internal combustion engine
JP2019116864A (en) Exhaust gas recirculation device of internal combustion engine
JP5305041B2 (en) Control device for internal combustion engine
JP4985005B2 (en) Control device for internal combustion engine
JP2015190397A (en) Internal combustion engine soot emission estimation device
JP2019152122A (en) Internal combustion engine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP