WO2014024468A1 - Noise source visualization system, noise source visualization device, program for noise source visualization, and noise source visualization method - Google Patents

Noise source visualization system, noise source visualization device, program for noise source visualization, and noise source visualization method Download PDF

Info

Publication number
WO2014024468A1
WO2014024468A1 PCT/JP2013/004734 JP2013004734W WO2014024468A1 WO 2014024468 A1 WO2014024468 A1 WO 2014024468A1 JP 2013004734 W JP2013004734 W JP 2013004734W WO 2014024468 A1 WO2014024468 A1 WO 2014024468A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
representative
circuit board
electric circuit
noise source
Prior art date
Application number
PCT/JP2013/004734
Other languages
French (fr)
Japanese (ja)
Inventor
水谷 研治
弘明 上野
大塚 信之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014529305A priority Critical patent/JP6152106B2/en
Publication of WO2014024468A1 publication Critical patent/WO2014024468A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Definitions

  • the present disclosure relates to a noise source visualization system, a noise source visualization device, a noise source visualization program, and a noise source visualization method that support specification of a generation location of an electromagnetic wave generated from an operating electric circuit board.
  • EMC Electro-Magnetic Compatibility
  • power electronics circuits such as DC-DC converters (hereinafter referred to as “power electronics circuits”)
  • the switching frequency is being increased. This is because the new power device has better switching characteristics than conventional power devices that use Si (silicon), and it is possible to reduce the passive components such as inductors and capacitors used in the circuit by increasing the frequency.
  • energy saving and cost reduction by DC power supply can be expected.
  • due to such a high frequency an increase in the cost of EMC countermeasures has become a problem for electromagnetic waves radiated from the circuit board.
  • Non-Patent Document 1 is a prior art for pseudo-visualizing such invisible physical phenomena in the real world.
  • AR Augmented Reality
  • the present disclosure has been made in consideration of the above circumstances, and its purpose is to compare the operation characteristics of the circuit by the circuit simulator and the electromagnetic field intensity observed by the spectrum analyzer, and to detect the electromagnetic waves generated from the operating electric circuit board.
  • the object of the present invention is to provide a noise source visualization system, a noise source visualization device, a noise source visualization program, and a noise source visualization method that assist the identification by visualizing each occurrence location.
  • a noise source visualization system includes: A circuit design database for storing circuit design data of an electric circuit board composed of a plurality of electronic components; A circuit simulator that outputs information indicating transient characteristics of electrical signals of a plurality of electronic components constituting the electrical circuit, using circuit design data stored in the circuit design database; A representative spectrum determining unit for determining a spectrum of a representative electrical signal having a different frequency spectrum from among the electrical signals of the plurality of electronic components; A spectrum analyzer for measuring the spectrum of the electromagnetic field around the electric circuit board; A representative spectrum component calculation unit that outputs information including the magnitude of the spectrum component of the representative electric signal included in the spectrum of the ambient electromagnetic field; An AR processing unit that outputs information indicating a three-dimensional positional relationship of the electric circuit board from position information of the AR tag held in advance using an image of the electric circuit board including the AR tag imaged by the imaging unit; A PCB design database for storing board design data of the electric circuit board; A representative spectrum position extraction unit that outputs information indicating a position of the spectrum of
  • the circuit designer since the intensity of the electromagnetic wave radiated from the noise source toward the spectrum analyzer is visualized in a pseudo manner from the noise source, the circuit designer can intuitively perceive the problematic noise source. It becomes possible.
  • FIG. 3 is a functional block diagram of the noise source visualization system in the first embodiment.
  • FIG. 5 is a diagram illustrating an example of circuit design data according to the first embodiment.
  • FIG. 3 is a circuit diagram illustrating an example of an electronic circuit in Embodiment 1; The figure which shows the character information contained in the circuit design data shown in FIG.
  • FIG. 3 is a diagram illustrating an example of a net list in the first embodiment.
  • FIG. 5 shows an example of substrate design data in the first embodiment.
  • FIG. 3 is a diagram illustrating a usage example of the noise source visualization system according to the first embodiment.
  • FIG. 13 is a diagram showing an example in which the representative spectrum determining unit in the first embodiment calculates a power spectrum for the time-varying waveform in FIG. 12.
  • FIG. 14 is a diagram illustrating an example in which the representative spectrum determination unit in the first embodiment performs clustering on the power spectrum of FIG. 13.
  • FIG. 6 is a diagram illustrating an equation of a dimensional compression process performed by the representative spectral component calculation unit according to the first embodiment.
  • FIG. 3 shows an example of a power spectrum measured by the spectrum analyzer in the first embodiment.
  • FIG. 5 is a diagram illustrating an equation of a process of calculating a cluster component content rate performed by a representative spectral component calculation unit according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example in which the representative spectrum position extraction unit according to Embodiment 1 determines the three-dimensional position of a node i.
  • a noise source visualization system includes a circuit design database that stores circuit design data of an electric circuit board including a plurality of electronic components, A circuit simulator that outputs information indicating transient characteristics of electrical signals of a plurality of electronic components constituting the electrical circuit, using circuit design data stored in the circuit design database; A representative spectrum determining unit for determining a spectrum of a representative electrical signal having a different frequency spectrum from among the electrical signals of the plurality of electronic components; A spectrum analyzer for measuring the spectrum of the electromagnetic field around the electric circuit board; A representative spectrum component calculation unit that outputs information including the magnitude of the spectrum component of the representative electric signal included in the spectrum of the ambient electromagnetic field; An AR processing unit that outputs information indicating a three-dimensional positional relationship of the electric circuit board from position information of the AR tag held in advance using an image of the electric circuit board including the AR tag imaged by the imaging unit; A PCB design database for storing board design data of the electric circuit board; A representative spectrum position extraction unit that outputs information indicating a position of the spectrum of
  • the noise source visualization system configured as described above automatically estimates the source of noise radiated from the power electronics circuit board. For the actual image (actual image) of the power electronics circuit board, the source of the noise is determined. By automatically displaying the automatically estimated information, the designer can directly observe the source of the invisible electromagnetic wave through the display unit, and can quickly perceive the source. Become.
  • the representative spectrum determination unit performs clustering by normalizing the spectrum of the electrical signal output from the circuit simulator, and averages the clusters. You may comprise so that a spectrum with the largest power may be output as a representative spectrum.
  • the representative spectrum component calculation unit according to the first aspect is divided into a number of discrete frequencies with respect to a matrix in which the representative spectra output from the representative spectrum determination unit are arranged. You may comprise so that it may compress and convert to a square matrix.
  • the representative spectrum component calculation unit according to the first aspect is dimensionalized with respect to a matrix in which the representative spectra output from the representative spectrum determination unit are arranged.
  • dimensional compression may be performed using a singular value decomposition method.
  • the noise source visualization system is the same as the method in which the representative spectrum component calculation unit in the first aspect is dimensionally compressed with respect to the power spectrum observed by the spectrum analyzer. You may comprise so that dimension compression may be carried out by the method.
  • the representative spectrum component calculation unit uses a dimension to calculate a representative spectrum component included in the power spectrum observed by the spectrum analyzer.
  • a simultaneous linear equation of the compressed power spectrum and the dimensionally compressed representative spectrum matrix may be calculated.
  • the overlay image generation unit according to the first aspect has a length proportional to the magnitude of the component of the representative spectrum output by the representative spectrum component calculation unit.
  • the marker may be drawn so as to go from the node on the circuit board having the representative spectrum toward the spectrum analyzer.
  • the AR processing unit in the first aspect is imaged by the imaging unit with the AR tag silk-printed on the electric circuit board, and the three-dimensional positional relationship is obtained. You may comprise so that it may calculate.
  • a circuit simulator that outputs information indicating transient characteristics of electrical signals of a plurality of electronic components constituting the electrical circuit, using circuit design data of an electrical circuit board composed of a plurality of electronic components, and A representative spectrum determining unit for determining a spectrum of a representative electrical signal having a different frequency spectrum from among the electrical signals of the plurality of electronic components;
  • a representative spectrum component calculation unit that outputs information including the magnitude of the spectrum component of the representative electric signal included in the spectrum of the surrounding electromagnetic field of the electric circuit board measured by a spectrum analyzer;
  • An AR processing unit that outputs information indicating a three-dimensional positional relationship of the electric circuit board from position information of the AR tag held in advance using an image of the electric circuit board including the AR tag imaged by the imaging unit;
  • a representative spectrum that outputs information indicating the position of the spectrum of the representative electric signal on the electric circuit board using information indicating the three-dimensional positional relationship of the electric circuit board and board design data of the electric circuit board.
  • a position extractor According to the spectrum component of the representative electrical signal at the position on the electrical circuit board of the representative electrical signal output from the representative spectrum position extraction unit with respect to the image captured by the imaging unit.
  • An overlay image generation unit that superimposes a marker having a size, generates an image on which the marker is superimposed, and outputs the generated image to the outside of the apparatus.
  • the noise generation source radiated from the power electronics circuit board is automatically estimated, and the noise of the actual image (actual image) of the power electronics circuit board is estimated. It is possible to superimpose information that automatically estimates the generation source. Therefore, by using the noise source visualization device, the designer can directly observe the generation source of the invisible electromagnetic wave through the display unit, and can quickly perceive the generation source. .
  • the representative spectrum determination unit normalizes and clusters the spectrum of the electrical signal output from the circuit simulator, and average power in the cluster May be configured to output a spectrum having the maximum as a representative spectrum.
  • the representative spectrum component calculation unit performs dimension compression on the number of discrete frequencies for a matrix in which the representative spectra output from the representative spectrum determination unit are arranged. Then, it may be configured to convert to a square matrix.
  • the representative spectrum component calculation unit performs dimensional compression on the number of discrete frequencies for a matrix in which the representative spectra output from the representative spectrum determination unit are arranged.
  • dimensional compression may be performed using a singular value decomposition method.
  • the noise source visualization device is the same as the method in which the representative spectrum component calculation unit in the ninth aspect performs dimension compression on a matrix in which representative spectra are arranged for the power spectrum observed by the spectrum analyzer. You may comprise so that dimension compression may be carried out by the method.
  • the representative spectrum component calculation unit performs dimension compression so as to calculate a representative spectrum component included in a power spectrum observed by the spectrum analyzer.
  • the system may be configured to calculate simultaneous linear equations of the power spectrum and the dimensionally compressed representative spectrum matrix.
  • the overlay image generation unit according to the ninth aspect has a length proportional to the magnitude of a representative spectrum component output by the representative spectrum component calculation unit. You may comprise so that a marker may be drawn so that it may go to the direction of the said spectrum analyzer from the node on a circuit board with a representative spectrum.
  • the AR processing unit calculates a three-dimensional positional relationship by imaging the AR tag silk-printed on the electric circuit board with the imaging unit. You may comprise.
  • the program for noise source visualization is a program executed by a computer, A circuit simulation step of performing circuit simulation using circuit design data of the electric circuit board stored in the circuit design database, and outputting a transient characteristic of an electric signal of each electronic component constituting the electric circuit board; A representative spectrum determining step of selecting representative electrical signals having different frequency spectra among the electrical signals; A representative spectral component calculation step for outputting a component of a spectrum of the representative electric signal included in a spectrum of a surrounding electromagnetic field of the electric circuit board measured by a spectrum analyzer during operation of the electric circuit board; An AR processing step of outputting a three-dimensional positional relationship of the electric circuit board from an AR tag attached to the electric circuit board using an image of the electric circuit board imaged by the imaging unit; A representative spectral position extracting step of outputting a position of the representative electric signal on the electric circuit board using the board design data of the electric circuit board stored in a PCB design database;
  • the representative electrical signal has a size corresponding to a spectrum component
  • the noise generation source radiated from the power electronics circuit board is automatically estimated, and the noise on the actual image (actual image) of the power electronics circuit board is calculated. It is possible to superimpose information obtained by automatically estimating the generation source. Therefore, by using a program for visualizing the noise source, the designer can directly observe the invisible electromagnetic wave generation source through the display unit, and can quickly perceive the generation source. It becomes possible.
  • the noise source visualization method includes: A circuit simulation step of performing circuit simulation using circuit design data of the electric circuit board stored in the circuit design database, and outputting a transient characteristic of an electric signal of each electronic component constituting the electric circuit board; A representative spectrum determining step of selecting representative electrical signals having different frequency spectra among the electrical signals; A representative spectrum component calculation step of outputting a component of the spectrum of the representative electric signal included in the spectrum of the electromagnetic field around the electric circuit board measured by the spectrum analyzer during the operation of the electric circuit board; An AR processing step of outputting a three-dimensional positional relationship of the electric circuit board from an AR tag attached to the electric circuit board using an image of the electric circuit board imaged by the imaging unit; A representative spectral position extracting step of outputting a position of the representative electric signal on the electric circuit board using the board design data of the electric circuit board stored in a PCB design database; The representative electrical signal has a size corresponding to a spectrum component, and a marker is drawn at a position on the electrical circuit
  • the noise generation source radiated from the power electronics circuit board is automatically estimated, and the noise generation source for the actual image (actual image) of the power electronics circuit board is obtained. It is possible to superimpose information that is automatically estimated. Therefore, by using the noise source visualization method, the designer can directly observe the generation source of the invisible electromagnetic wave through the display unit, and can quickly perceive the generation source. .
  • FIG. 1 is a diagram illustrating a functional block configuration of the noise source visualization system 113 according to the first embodiment.
  • the noise source visualization system 113 includes a circuit design database 101, a spectrum analyzer (sparener) 104, an imaging unit 106, a PCB design database 108, a display unit 111, and noise.
  • a source visualization device 1130 includes a circuit design database 101, a spectrum analyzer (sparener) 104, an imaging unit 106, a PCB design database 108, a display unit 111, and noise.
  • a noise source visualization apparatus 1130 shown in FIG. 1 includes a circuit simulator 102, a representative spectrum determination unit 103, a representative spectrum component calculation unit 105, an AR processing unit 107, a representative spectrum position extraction unit 109, and an overlay image generation unit 110. And at least. 1 is connected to the circuit design database 101, the spectrum analyzer 104, the imaging unit 106, the PCB design database 108, and the display unit 111 by wire or wireless, respectively. , Configured to transmit and / or receive information.
  • the circuit design database 101 stores circuit design data of the electric circuit board 112 that is an inspection object.
  • the electric circuit of the electric circuit board 112 is composed of a plurality of electronic components.
  • the plurality of electronic components on the electric circuit board 112 are electrically connected to each other.
  • each of the plurality of electronic components on the electric circuit board 112 is also referred to as a “circuit node”.
  • the circuit design database 101 may hold the correspondence relationship between the circuit nodes on the electric circuit board 112 and the circuit nodes included in the circuit design data as data.
  • circuit design data examples include circuit node type information, circuit node information, circuit node characteristics, circuit node terminal connection information, and circuit node terminal connection information. is there.
  • FIG. 2 shows an example of circuit design data.
  • the information shown in the frame of the symbol X represents “Pin 1 of component R_R 46 is connected to net name OUTPUT and Pin 2 is connected to net name N16998050”.
  • the circuit design data will be described below with a specific example.
  • FIG. 3 is a circuit diagram showing an example of an electronic circuit.
  • the electronic circuit shown in FIG. 3 includes a power source Vin, a first resistor R1, a second resistor R2, and a capacitor C1.
  • the power source Vin is electrically connected to the ground and the first net name t1.
  • the first resistor R1 and the second resistor R2 are electrically connected to the first net name t1 and the second net name t2.
  • the capacitor C1 is electrically connected between the second net name t2 and the ground.
  • FIG. 4 is a diagram showing character information included in the circuit design data shown in FIG.
  • the circuit design data includes character information and diagram information.
  • “Character information” is circuit information in which electronic components and connection information between the electronic components are represented by character strings.
  • Figure information is information that schematically represents the electronic component and connection information between the electronic components.
  • the character information included in the circuit design data is also referred to as a “net list”.
  • connection information 903 between terminals of the electronic component.
  • information about one electronic component is described for each row.
  • (1) shown in FIG. 4 means that the first resistor R1 is connected between the first net name t1 and the second net name t2.
  • (2) shown in FIG. 4 means that the second resistor R2 is connected between the first net name t1 and the second net name t2.
  • (3) shown in FIG. 4 means that the capacitor C is connected between the second net name t2 and the ground (net name 0).
  • the value “0” shown in FIG. 4 means ground.
  • (4) shown in FIG. 4 means that the power source Vin is connected between the first net name t1 and the ground.
  • FIG. 5 is a diagram illustrating an example of the netlists 1201 and 1211.
  • the netlist 1201 as an example shown in FIG. 5 includes information for specifying an electronic component, a terminal of the electronic component, and a circuit node connected to the terminal.
  • the terminal of the electronic component is also referred to as “pin name”.
  • the circuit node connected to the terminal corresponds to “net ID”.
  • the net name 1202 in FIG. 5 means a circuit node to which the first terminal of the electronic component is connected. A net name exists for each terminal of an electronic component. Therefore, the number of net names corresponds to the number of terminals of the electronic component.
  • the netlist 1211 as an example illustrated in FIG. 5 includes a plurality of pieces of information. Specifically, the net list 1211 is similar to the above-described component ID, “component name” which is information on the type of electronic component, “pin name” which is information on the terminal of the electronic component, and the net ID. "Net name” indicating the meaning of.
  • the net list is created by, for example, an ASCII text file.
  • the part ID of resistance includes the initial “R” in the character string.
  • the characteristic of the electronic component may be included in the character string of the component ID.
  • the component ID includes a resistor size (1.6 mm), a resistor shape (square), a resistance value (100 ⁇ ), and the like in a character string.
  • the circuit simulator 102 simulates the transient characteristics of the voltage and current of the circuit node based on the circuit design data stored in the circuit design database 101, and outputs the information.
  • the circuit simulator 102 may be configured with a SPICE simulator.
  • the representative spectrum determination unit 103 selects and determines the spectrum of a representative electrical signal having a different frequency spectrum from the electrical signals of the circuit nodes that the circuit simulator 102 simulates.
  • the spectrum analyzer 104 measures the electromagnetic field around the electric circuit board 112 during the operation of the electric circuit board 112.
  • the spectrum analyzer 104 preferably measures the entire peripheral magnetic field of the electric circuit board 112.
  • the spectrum analyzer 104 records the positional relationship between the measured peripheral electromagnetic field and the main body (spectrum analyzer 104) at the time of measurement in association with each other.
  • the representative spectrum component calculation unit 105 outputs information including the magnitude of the spectrum component of the electrical signal included in the spectrum of the electromagnetic field measured by the spectrum analyzer 104.
  • the imaging unit 106 captures an image of the electric circuit board 112.
  • the imaging unit 106 is a camera, for example.
  • the imaging unit 106 records the captured image and the positional relationship of the imaging unit 106 at the time of imaging in association with each other.
  • the AR processing unit 107 outputs information indicating a three-dimensional positional relationship between the electric circuit board 112 and the spectrum analyzer 104 (sensor) from the AR tag attached to the electric circuit board 112.
  • board design data relating to the electric circuit board 112 is stored.
  • An example of the board design data of the electric circuit board 112 is information that associates information for specifying a circuit node with a positional relationship of each circuit node on the electric circuit board 112.
  • FIG. 6 is a diagram illustrating an example of the board design data.
  • the information shown in the frame of the symbol Y expresses “net name SIGN9 connects pin 1 of component R5 and pin 2 of component R6”.
  • the information shown in the frame of the symbol Z represents “the pattern shape of the net name SIGN 77 (coordinates and shapes of component points, line segment width, etc.)”.
  • the board design data will be described with specific examples.
  • FIG. 7 is a diagram showing an example in which a part of the electronic circuit shown in FIG. 3 is mounted on a substrate.
  • the first resistor R1 and the second resistor R2 are connected to the pattern of the first net name t1 and the pattern of the second net name t2, respectively.
  • FIG. 8 is a diagram showing an example of the board design data expressing the pattern of FIG.
  • the board design data is created by, for example, an ASCII text file.
  • the board design data is managed for each plane, and is managed by assigning a wiring layer ID to distinguish the plane.
  • E01 shown in FIG. 8 draws the wiring of the net name t1 in the wiring layer a1 with a straight line of width 3 from the coordinates (x1, y1) to (x2, y2) because the graphic indicator is line. Means. In addition to line, for example, a circle indicating a circular arc exists as a graphic indicator.
  • the wiring layer a1 is a wiring layer on the surface of the substrate shown in FIG.
  • the representative spectrum position extraction unit 109 extracts the position of the representative electric signal selected by the representative spectrum determination unit 103 on the electric circuit board 112 and uses the extracted information.
  • the overlay image generation unit 110 has a magnitude corresponding to the spectrum component of the electrical signal calculated by the representative spectrum component calculation unit 105, and a spectrum that is a sensor from the position on the electric circuit board 112 determined by the representative spectrum position extraction unit 109.
  • a marker for example, an arrow heading toward the analyzer 104 is drawn, and a two-dimensional image is generated by superimposing the marker on the actual image of the imaging unit 106.
  • the display unit 111 displays the two-dimensional image generated by the overlay image generation unit 110.
  • FIG. 9 shows a usage scene in which the electric circuit board 112 is observed by the noise source visualization system 113 according to the first embodiment.
  • the noise source visualization system 113 shown on the lower side shows a surface 113 ⁇ / b> A on the inspection object side that is the opposite side of the display unit 113. That is, on the surface 113A on the inspection object side of the noise source visualization system 113, the camera as the imaging unit 106 and the measurement unit (sensor) of the spectrum analyzer 104 are exposed.
  • the designer of the electric circuit board 112 uses the noise source visualization system 113 to observe the electric circuit board 112 that is the inspection object.
  • An AR tag 201 is silk-printed on the electric circuit board 112.
  • FIG. 9 shows a case where the AR tag 201 provided on the electric circuit board 112 is included in the imaging range of the imaging unit 106.
  • a marker (arrow) 202 representing an electromagnetic wave radiated from the electric circuit board 112 is superimposed on a real image of the electric circuit board 112 picked up by the imaging unit 106, and an image on which the marker 202 is superimposed is displayed on the display unit 111. Is done.
  • FIG. 10 shows an example of data stored in the circuit design database 101 (FIG. 10A) and the PCB design database 108 (FIG. 10B).
  • circuit design data of the electric circuit board 112 is recorded.
  • An example of the circuit design data of the electric circuit board 112 is a net list for the SPICE simulator.
  • the information of each node in the circuit design data recorded in the circuit design database 101 has a one-to-one correspondence with the position information of the copper foil pattern (wiring pattern) of the electric circuit board 112 recorded in the PCB design database 108.
  • the node 301 in the circuit design data shown in FIG. 10A corresponds to the pattern 302 in the copper foil pattern shown in FIG.
  • the circuit node 303 in the circuit design data shown in FIG. 10A corresponds to the circuit pattern 304 in the copper foil pattern shown in FIG.
  • the format of the netlist is disclosed by a known SPICE simulator and is widely used. The following are known documents describing the SPICE simulator. Nagel, L. W, and Pederson, D. O., SPICE (Simulation Program withIntegrated Circuit Emphasis), Memorandum No. ERL-M382, UniversityofCalifornia, ofBerkeley, Apr. 1973
  • FIG. 11 is a flowchart showing the processing of the noise source visualization system 113.
  • Step S1 The circuit simulator 102 acquires, from the circuit design database 101, information (circuit node information) on a plurality of circuit nodes constituting the electrical circuit board 112 that is the inspection target.
  • the circuit simulator 102 performs a transient analysis of the current of each circuit node based on the acquired plurality of circuit node information, and calculates a time change of the current.
  • Examples of multiple circuit node information include circuit node type information, circuit node identification information, circuit node characteristics, circuit node terminal connection information, and circuit node terminal connection information. Information.
  • FIG. 12 is a waveform diagram showing a result of simulating a time-varying waveform of current.
  • the vertical axis indicates the current value, and the horizontal axis indicates time.
  • Step S2 The representative spectrum determination unit 103 performs a discrete Fourier transform on the time change (xi (t)) of the current, and calculates a power spectrum Xi (f).
  • the frequency f is a discrete value.
  • FIG. 13 is a waveform diagram showing the result of calculating the power spectrum.
  • the vertical axis represents intensity
  • the horizontal axis represents frequency.
  • the representative spectrum determination unit 103 clusters power spectra. For example, a spectrum obtained by normalizing a plurality of Xi (f) with the maximum power value Xi (f_max) is obtained using a clustering method such as the k-means method. The degree of similarity between a plurality of spectra obtained by normalization is obtained, and spectra having a degree of similarity greater than or equal to a predetermined cluster are clustered and grouped into a plurality (m> 1) of clusters.
  • FIG. 14 is a diagram illustrating a result of the representative spectrum determination unit 103 determining the representative spectrum Cj (f). For example, the power spectra 501 and 503 shown in FIG. 13 are clustered into the first cluster 601, and the power spectra 502 and 504 shown in FIG. 13 are clustered into the second cluster 602.
  • the representative spectrum determination unit 103 determines X1 (f) as the cluster representative spectrum C1 (f) from the first cluster 601 and X4 (f) as the cluster representative spectrum C2 (f) from the second cluster 602. decide. For example, the power spectrum having the maximum maximum power among the power spectra included in the cluster is determined as the representative spectrum.
  • Step S4 The representative spectrum component calculation unit 105 performs dimension compression of f for each representative spectrum Cj (f) determined by the representative spectrum determination unit 103.
  • Cj (f) is composed of N / 2 elements as shown in Expression 701 in FIG.
  • the matrix C (f) in which all the representative spectra are arranged is an N / 2 ⁇ m matrix as shown in the equation 702 in FIG.
  • Dimensional compression can use a known method. For example, by applying a known matrix singular value decomposition method (SVD method, Singular Value Decompsition) to C (f), the frequency represented by N / 2 elements is expressed as shown in Expression 703 in FIG. Then, compression is performed up to the same number of elements as the number of clusters (m in the example of FIG. 15). The frequency compressed in this way is expressed as ff.
  • the dimension-compressed C (f) is defined as C (ff).
  • C (ff) is an m ⁇ m square matrix.
  • steps S11 and S12 may be performed in parallel with the processing of steps S1-S4.
  • Step S11 The power spectrum of the electromagnetic field of the electric circuit board 112 is measured by the spectrum analyzer 104.
  • FIG. 16 shows the measured power spectrum 801 (Po (f)).
  • Step S12 The representative spectrum component calculation unit 105 converts the power spectrum 801 into Po (ff) as shown by the equation 802 in FIG. 17 by the same dimension compression 703 as when C (ff) was generated.
  • the representative spectrum component calculation unit 105 uses the information obtained by dimensional compression of each representative spectrum obtained in step S4 and the information obtained by dimensional compression of the power spectrum obtained in step S12. Determine the size (eg, ratio).
  • the representative spectral component calculation unit 105 solves ⁇ of the m-dimensional simultaneous linear equation shown in the equation 803 in FIG. 17 with ⁇ i as the content ratio of Cj with respect to Po (ff) and outputs it.
  • the representative spectrum position extraction unit 109 refers to the PCB design database 108 and extracts the position on the electric circuit board 112 for each of the plurality of representative spectra determined by the representative spectrum determination unit 103. As a position to be extracted, a relative position with respect to a predetermined reference position on the electric circuit board 112 is extracted.
  • the predetermined reference position may be a position based on the position of an AR tag 201 described later, or may be one of the four corners of the electric circuit board 112.
  • the representative spectrum position extraction unit 109 refers to the information in the PCB design database 108 to obtain the three-dimensional position of the representative spectrum Cj determined by the representative spectrum determination unit 103 on the electric circuit board 112 as Pos (i).
  • the three-dimensional position Pos (i) of the circuit node i existing at the position 901 of the node i is a three-dimensional relative to the position of the AR tag 201 attached to the electric circuit board 112. It is expressed by coordinates 902 (x 0 — i , y 0 — i , z 0 — i ).
  • the AR processing unit 107 acquires image data captured by the imaging unit 106.
  • the AR processing unit 107 acquires a predetermined reference position (for example, the position of the AR tag 201) from the image data in advance. Based on the acquired predetermined reference position in the image data, a position corresponding to the position of the representative spectrum acquired by the representative spectrum position extraction unit 109 is determined.
  • the AR processing unit 107 gives the data of the three-dimensional positional relationship relative to the imaging unit 106 to the image data of the electric circuit board 112 including the AR tag 201 imaged by the imaging unit 106.
  • the calculation of the three-dimensional positional relationship by the AR processing unit 107 is performed by the following known technique, for example. Kato, H., Billinghurst, M. (1999) Marker Tracking and HMD Calibration for a video-based Augmented Reality Conferencing System.InProceedings of the 2nd International Workshop on Augmented Reality (IWAR 99) .October, San Francisco, USA.
  • Step S32 The overlay image generation unit 110 displays a noise source in the image captured by the imaging unit 106 based on the information calculated by the representative spectrum component calculation unit 105 and the position information determined by the AR processing unit 107.
  • the overlay image generation unit 110 Based on the three-dimensional positional relationship between the spectrum analyzer 104 and the imaging unit 106 that the AR processing unit 107 holds in advance, the overlay image generation unit 110 outputs the three-dimensional position Pos ( Using i) as a starting point, three-dimensional drawing data is formed by using an arrow of length ⁇ i as a marker toward the three-dimensional position of the spectrum analyzer 104. The three-dimensional drawing data formed as the marker is two-dimensionally projected on the actual image of the imaging unit 106 and output to the display unit 111.
  • the arrows are three-dimensionally drawn from the positions Pos (1) and Pos (4) like the marker 1001 of the node 1 and the marker 1002 of the node 2.
  • the arrows of the markers 1001 and 1002 are displayed so as to face the spectrum analyzer 104.
  • the “marker” means information indicating the position (starting point of an arrow) and the size (length of an arrow) of a noise source.
  • the output image is displayed on the display unit 111 and displayed on the display unit 111 as shown in FIGS.
  • steps S1 to S22 shown in FIG. 11 may be performed in advance, and the information on the representative spectrum and the information on the position of the representative spectrum may be held in a recording unit (not shown) in the noise source visualization device.
  • the noise source visualization system 113 and the noise source visualization device 1130 according to the first embodiment configured as described above, when the observer or the designer moves the noise source visualization system 113 (noise source visualization device 1130), The display of the marker on the inspection object is also updated and moved according to the movement. Therefore, it is possible to easily and sensibly perceive the generation source and the magnitude of the electromagnetic wave radiated from the inspection object (for example, the electric circuit board 112). In addition, when there is a wiring on the upper part of the electric circuit board as the inspection object and the influence on the wiring is a problem, the marker is superimposed on the electric circuit board in that situation. It is possible to visually guess the noise source.
  • EMC measures are indispensable for the development of energy-saving equipment using new power devices, and the effect that enables ordinary designers to implement EMC measures that have been relied on intuition and experience by experienced designers of power electronics circuits. There is a possibility that it will be widely used in development sites for energy-saving equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

A noise source visualization system comprises: a circuit simulator which, using design data, outputs information which denotes transient characteristics of electrical signals of a plurality of electronic components which configure an electrical circuit; a representative spectrum determination unit which determines a spectrum of a representative electrical signal from among the electrical signals of the plurality of electronic components; a representative spectrum component calculation unit which outputs information including a size of a component of a spectrum of a representative electrical signal which is included in a peripheral electromagnetic field spectrum; a representative spectrum location extraction unit which outputs a location upon the electrical circuit substrate of the spectrum of the representative electrical signal; an overlay image generation unit which, with respect to an image which is captured by an image capture unit, in the location of the representative electrical signal upon the electrical circuit substrate, superpositions a marker having a size corresponding to the component of the spectrum of the representative electrical signal: and a display unit which displays the image with the marker superpositioned thereupon.

Description

ノイズ源可視化システム、ノイズ源可視化装置、ノイズ源可視化のためのプログラム、およびノイズ源可視化方法Noise source visualization system, noise source visualization device, noise source visualization program, and noise source visualization method
 本開示は、動作中の電気回路基板から発生する電磁波の発生場所の特定を支援するノイズ源可視化システム、ノイズ源可視化装置、ノイズ源可視化のためのプログラム、およびノイズ源可視化方法に関する。 The present disclosure relates to a noise source visualization system, a noise source visualization device, a noise source visualization program, and a noise source visualization method that support specification of a generation location of an electromagnetic wave generated from an operating electric circuit board.
 電子機器の製造販売においては、EMC(Electro-Magnetic Compatibility)対策が不可欠であり、国内ではVCCI協会で規定される、周波数毎の電磁界強度の規制ガイドラインを満たし、世界ではCISPRで規定されるガイドラインを満たしてから、市場へ出荷しなければならない。 In manufacturing and sales of electronic equipment, EMC (Electro-Magnetic Compatibility) measures are indispensable, satisfying the electromagnetic field strength regulation guidelines for each frequency prescribed by the VCCI Association in Japan, and the guidelines prescribed by CISPR worldwide. Must be met before shipping to market.
 回路基板の設計時点で、問題となる電磁波が放射されることを的確に予測することは、電磁界シミュレータの計算時間が開発期間に対して相対的に膨大であることと、シミュレーションモデルを十分精密に準備しなければ実際の放射現象と一致しないことから、実質的には不可能に近い。一般的には、回路基板の試作を行い、電波暗室などで回路基板を動作させて、スペクトラムアナライザで周辺の電磁界強度スペクトルを観察し、EMC規制ガイドラインを満足するか否かの検証を行う(例えば、特許文献1参照)。 Accurately predicting that the electromagnetic waves in question will be emitted at the time of circuit board design means that the calculation time of the electromagnetic simulator is relatively large with respect to the development period, and the simulation model is sufficiently accurate. Since it does not agree with the actual radiation phenomenon unless it is prepared, it is practically impossible. In general, a circuit board is prototyped, the circuit board is operated in an anechoic chamber, the surrounding electromagnetic field intensity spectrum is observed with a spectrum analyzer, and it is verified whether or not EMC regulatory guidelines are satisfied ( For example, see Patent Document 1).
 ところで、GaN(窒化ガリウム)やSiC(シリコンカーバイド)などの材料を使用するトランジスタやダイオードなどの新型パワーデバイスの出現に伴い、DC-DCコンバータなどのパワーエレクトロニクス回路(以下「パワエレ回路」と略す)において、スイッチング周波数の高周波化が進められつつある。これは、新型パワーデバイスが、Si(シリコン)を使用する従来型のパワーデバイスよりもスイッチング特性が良好であり、高周波化によって回路に使用するインダクタやキャパシタなどの受動部品を小型化することが可能であり、同時に、DC給電による省エネ化、コストダウンも見込めるからである。しかしながら、このような高周波化によって、回路基板から放射される電磁波についてEMC対策のコスト増加が問題となっている。パワエレ回路は、デジタル回路とは異なるため、回路の一部だけを部分的に動作させながら電磁波の発生源を探索することは困難である。また、パワエレ回路に接続されるモータなどの負荷の変動によって、放射の様相は変化する。最終的には、電磁波は不可視であるため、スペクトラムアナライザで観測される電磁界強度スペクトルを手掛かりに、試作に手を加えながら回路基板上の発生源を推定しなければならない。このような実世界で不可視の物理現象を擬似的に可視化する先行技術としては、例えば、非特許文献1がある。 By the way, with the advent of new power devices such as transistors and diodes using materials such as GaN (gallium nitride) and SiC (silicon carbide), power electronics circuits such as DC-DC converters (hereinafter referred to as “power electronics circuits”) However, the switching frequency is being increased. This is because the new power device has better switching characteristics than conventional power devices that use Si (silicon), and it is possible to reduce the passive components such as inductors and capacitors used in the circuit by increasing the frequency. At the same time, energy saving and cost reduction by DC power supply can be expected. However, due to such a high frequency, an increase in the cost of EMC countermeasures has become a problem for electromagnetic waves radiated from the circuit board. Since a power electronics circuit is different from a digital circuit, it is difficult to search for a source of electromagnetic waves while partially operating only a part of the circuit. In addition, the radiation pattern changes due to fluctuations in the load of a motor or the like connected to the power electronics circuit. Eventually, the electromagnetic wave is invisible, so the source on the circuit board must be estimated while modifying the prototype using the electromagnetic field intensity spectrum observed by the spectrum analyzer. For example, Non-Patent Document 1 is a prior art for pseudo-visualizing such invisible physical phenomena in the real world.
特開2000-74969号公報JP 2000-74969 A
 しかしながら、先行技術においては、拡張現実(Augmented Reality、以下”AR”と略す)によって、実世界で不可視の空間の電磁界強度を擬似的に可視化するだけであり、回路基板上に複数のノイズ発生源が存在する場合は、それらを特定することは困難である。 However, in the prior art, Augmented Reality (hereinafter abbreviated as “AR”) simply visualizes the electromagnetic field strength in an invisible space in the real world and generates multiple noises on the circuit board. If sources exist, it is difficult to identify them.
 本開示は、上記事情を考慮してなされたもので、その目的は回路シミュレータによる回路の動作特性とスペクトラムアナライザで観測される電磁界強度を比較し、動作中の電気回路基板から発生する電磁波を発生場所毎に可視化することで、その特定を支援するノイズ源可視化システム、ノイズ源可視化装置、ノイズ源可視化のためのプログラム、およびノイズ源可視化方法を提供することにある。 The present disclosure has been made in consideration of the above circumstances, and its purpose is to compare the operation characteristics of the circuit by the circuit simulator and the electromagnetic field intensity observed by the spectrum analyzer, and to detect the electromagnetic waves generated from the operating electric circuit board. The object of the present invention is to provide a noise source visualization system, a noise source visualization device, a noise source visualization program, and a noise source visualization method that assist the identification by visualizing each occurrence location.
 本開示の一態様であるノイズ源可視化システムは、
 複数の電子部品で構成される電気回路基板の回路設計データを格納する回路設計データベースと、
 前記回路設計データベースに格納されている回路設計データを用いて、前記電気回路を構成する複数の電子部品の電気信号の過渡特性を示す情報を出力する回路シミュレータと、
 前記複数の電子部品の電気信号の中から、異なる周波数スペクトルを有する代表的な電気信号のスペクトルを決定する代表スペクトル決定部と、
 前記電気回路基板の周辺電磁場のスペクトルを測定するスペクトラムアナライザと、
 前記周辺電磁場のスペクトルに含まれる、前記代表的な電気信号のスペクトルの成分の大きさを含む情報を出力する代表スペクトル成分計算部と、
 撮像部により撮像されたARタグを含む前記電気回路基板の画像を用いて、予め保持する前記ARタグの位置情報から前記電気回路基板の三次元位置関係を示す情報を出力するAR処理部と、
 前記電気回路基板の基板設計データを格納するPCB設計データベースと、
 前記電気回路基板の三次元位置関係を示す情報と前記基板設計データとを用いて、前記代表的な電気信号のスペクトルの前記電気回路基板上の位置を示す情報を出力する代表スペクトル位置抽出部と、
 前記撮像部で撮像された画像に対して、前記代表スペクトル位置抽出部から出力された代表的な電気信号の前記電気回路基板上の位置において、前記代表的な電気信号のスペクトルの成分に応じた大きさを有するマーカを重畳して、前記マーカを重畳した画像を生成するオーバレイ画像生成部と、
 前記オーバレイ画像生成部から出力された前記マーカを重畳した画像を表示する表示部と、を備える。
A noise source visualization system according to an aspect of the present disclosure includes:
A circuit design database for storing circuit design data of an electric circuit board composed of a plurality of electronic components;
A circuit simulator that outputs information indicating transient characteristics of electrical signals of a plurality of electronic components constituting the electrical circuit, using circuit design data stored in the circuit design database;
A representative spectrum determining unit for determining a spectrum of a representative electrical signal having a different frequency spectrum from among the electrical signals of the plurality of electronic components;
A spectrum analyzer for measuring the spectrum of the electromagnetic field around the electric circuit board;
A representative spectrum component calculation unit that outputs information including the magnitude of the spectrum component of the representative electric signal included in the spectrum of the ambient electromagnetic field;
An AR processing unit that outputs information indicating a three-dimensional positional relationship of the electric circuit board from position information of the AR tag held in advance using an image of the electric circuit board including the AR tag imaged by the imaging unit;
A PCB design database for storing board design data of the electric circuit board;
A representative spectrum position extraction unit that outputs information indicating a position of the spectrum of the representative electric signal on the electric circuit board using the information indicating the three-dimensional positional relationship of the electric circuit board and the board design data; ,
According to the spectrum component of the representative electrical signal at the position on the electrical circuit board of the representative electrical signal output from the representative spectrum position extraction unit with respect to the image captured by the imaging unit. An overlay image generator that superimposes a marker having a size and generates an image in which the marker is superimposed;
A display unit that displays an image on which the marker output from the overlay image generation unit is superimposed.
 本開示によれば、ノイズ源からスペクトラムアナライザに向けて放射される電磁波の強度が、ノイズ源から擬似的に可視化されるため、回路設計者は直感的に問題となるノイズ源を知覚することが可能になる。 According to the present disclosure, since the intensity of the electromagnetic wave radiated from the noise source toward the spectrum analyzer is visualized in a pseudo manner from the noise source, the circuit designer can intuitively perceive the problematic noise source. It becomes possible.
実施の形態1におけるノイズ源可視化システムの機能ブロック図。FIG. 3 is a functional block diagram of the noise source visualization system in the first embodiment. 実施の形態1における回路設計データの一例を示す図。FIG. 5 is a diagram illustrating an example of circuit design data according to the first embodiment. 実施の形態1における電子回路の一例を示す回路図。FIG. 3 is a circuit diagram illustrating an example of an electronic circuit in Embodiment 1; 図2に示した回路設計データに含まれる文字情報を示す図。The figure which shows the character information contained in the circuit design data shown in FIG. 実施の形態1におけるネットリストの例を示す図。FIG. 3 is a diagram illustrating an example of a net list in the first embodiment. 実施の形態1における基板設計データの一例を示す図。FIG. 5 shows an example of substrate design data in the first embodiment. 図3に示した電子回路の一部を基板に実装した一例を示す図。The figure which shows an example which mounted a part of electronic circuit shown in FIG. 3 on the board | substrate. 図7のパターンを表現する基板設計データの一例を示す図。The figure which shows an example of the board | substrate design data expressing the pattern of FIG. 実施の形態1におけるノイズ源可視化システムの使用例を示す図。FIG. 3 is a diagram illustrating a usage example of the noise source visualization system according to the first embodiment. 実施の形態1における回路設計データベースおよびPCB設計データベースに格納された各データの一例とその対応関係を示す図。The figure which shows an example of each data stored in the circuit design database and PCB design database in Embodiment 1, and its correspondence. 実施形態1のノイズ源可視化システムにおける処理フローを示す図。The figure which shows the processing flow in the noise source visualization system of Embodiment 1. FIG. 実施の形態1における回路シミュレータが回路設計データベースのノードについて電流の時間変化波形を解析した一例を示す図。The circuit simulator in Embodiment 1 shows an example which analyzed the time change waveform of the current about the node of a circuit design database. 実施の形態1における代表スペクトル決定部が図12の時間変化波形についてパワースペクトルを計算した一例を示す図。FIG. 13 is a diagram showing an example in which the representative spectrum determining unit in the first embodiment calculates a power spectrum for the time-varying waveform in FIG. 12. 実施の形態1における代表スペクトル決定部が図13のパワースペクトルについてクラスタリングを行った一例を示す図。FIG. 14 is a diagram illustrating an example in which the representative spectrum determination unit in the first embodiment performs clustering on the power spectrum of FIG. 13. 実施の形態1における代表スペクトル成分計算部が行う次元圧縮の過程の式を示す図。FIG. 6 is a diagram illustrating an equation of a dimensional compression process performed by the representative spectral component calculation unit according to the first embodiment. 実施の形態1におけるスペクトルアナライザが測定したパワースペクトルの一例を示す図。FIG. 3 shows an example of a power spectrum measured by the spectrum analyzer in the first embodiment. 実施の形態1における代表スペクトル成分計算部が行うクラスタ成分の含有率を計算する過程の式を示す図。FIG. 5 is a diagram illustrating an equation of a process of calculating a cluster component content rate performed by a representative spectral component calculation unit according to the first embodiment. 実施の形態1における代表スペクトル位置抽出部がノードiの三次元位置を決定する一例を示す図。FIG. 6 is a diagram illustrating an example in which the representative spectrum position extraction unit according to Embodiment 1 determines the three-dimensional position of a node i. 実施の形態1におけるオーバレイ画像生成部がノード(i=1)およびノード(i=4)に対してマーカを描画する一例を示す図。The overlay image generation part in Embodiment 1 shows an example which draws a marker with respect to a node (i = 1) and a node (i = 4).
 本開示の第1の態様のノイズ源可視化システムは、複数の電子部品で構成される電気回路基板の回路設計データを格納する回路設計データベースと、
 前記回路設計データベースに格納されている回路設計データを用いて、前記電気回路を構成する複数の電子部品の電気信号の過渡特性を示す情報を出力する回路シミュレータと、
 前記複数の電子部品の電気信号の中から、異なる周波数スペクトルを有する代表的な電気信号のスペクトルを決定する代表スペクトル決定部と、
 前記電気回路基板の周辺電磁場のスペクトルを測定するスペクトラムアナライザと、
 前記周辺電磁場のスペクトルに含まれる、前記代表的な電気信号のスペクトルの成分の大きさを含む情報を出力する代表スペクトル成分計算部と、
 撮像部により撮像されたARタグを含む前記電気回路基板の画像を用いて、予め保持する前記ARタグの位置情報から前記電気回路基板の三次元位置関係を示す情報を出力するAR処理部と、
 前記電気回路基板の基板設計データを格納するPCB設計データベースと、
 前記電気回路基板の三次元位置関係を示す情報と前記基板設計データとを用いて、前記代表的な電気信号のスペクトルの前記電気回路基板上の位置を示す情報を出力する代表スペクトル位置抽出部と、
 前記撮像部で撮像された画像に対して、前記代表スペクトル位置抽出部から出力された代表的な電気信号の前記電気回路基板上の位置において、前記代表的な電気信号のスペクトルの成分に応じた大きさを有するマーカを重畳して、前記マーカを重畳した画像を生成するオーバレイ画像生成部と、
 前記オーバレイ画像生成部から出力された前記マーカを重畳した画像を表示する表示部と、
を備える。
A noise source visualization system according to a first aspect of the present disclosure includes a circuit design database that stores circuit design data of an electric circuit board including a plurality of electronic components,
A circuit simulator that outputs information indicating transient characteristics of electrical signals of a plurality of electronic components constituting the electrical circuit, using circuit design data stored in the circuit design database;
A representative spectrum determining unit for determining a spectrum of a representative electrical signal having a different frequency spectrum from among the electrical signals of the plurality of electronic components;
A spectrum analyzer for measuring the spectrum of the electromagnetic field around the electric circuit board;
A representative spectrum component calculation unit that outputs information including the magnitude of the spectrum component of the representative electric signal included in the spectrum of the ambient electromagnetic field;
An AR processing unit that outputs information indicating a three-dimensional positional relationship of the electric circuit board from position information of the AR tag held in advance using an image of the electric circuit board including the AR tag imaged by the imaging unit;
A PCB design database for storing board design data of the electric circuit board;
A representative spectrum position extraction unit that outputs information indicating a position of the spectrum of the representative electric signal on the electric circuit board using the information indicating the three-dimensional positional relationship of the electric circuit board and the board design data; ,
According to the spectrum component of the representative electrical signal at the position on the electrical circuit board of the representative electrical signal output from the representative spectrum position extraction unit with respect to the image captured by the imaging unit. An overlay image generator that superimposes a marker having a size and generates an image in which the marker is superimposed;
A display unit for displaying an image on which the marker output from the overlay image generation unit is superimposed;
Is provided.
 上記のように構成されたノイズ源可視化システムによって、パワエレ回路基板から放射されるノイズの発生源が自動推定され、パワエレ回路基板の現物の画像(実画像)に対して、そのノイズの発生源を自動推定した情報が重畳表示されることにより、設計者は表示部を通して、不可視である電磁波の発生源を擬似的に直接観察することが可能になり、発生源を速やかに知覚することが可能となる。 The noise source visualization system configured as described above automatically estimates the source of noise radiated from the power electronics circuit board. For the actual image (actual image) of the power electronics circuit board, the source of the noise is determined. By automatically displaying the automatically estimated information, the designer can directly observe the source of the invisible electromagnetic wave through the display unit, and can quickly perceive the source. Become.
 本開示の第2の態様のノイズ源可視化システムにおいては、第1の態様における前記代表スペクトル決定部を、前記回路シミュレータが出力する電気信号のスペクトルを正規化してクラスタリングし、前記クラスタの中で平均パワーが最大のスペクトルを代表スペクトルとして出力するよう構成してもよい。 In the noise source visualization system according to the second aspect of the present disclosure, the representative spectrum determination unit according to the first aspect performs clustering by normalizing the spectrum of the electrical signal output from the circuit simulator, and averages the clusters. You may comprise so that a spectrum with the largest power may be output as a representative spectrum.
 本開示の第3の態様のノイズ源可視化システムにおいては、第1の態様における前記代表スペクトル成分計算部を、前記代表スペクトル決定部が出力する代表スペクトルを並べた行列について、離散周波数の数を次元圧縮して正方行列へ変換するよう構成してもよい。 In the noise source visualization system according to the third aspect of the present disclosure, the representative spectrum component calculation unit according to the first aspect is divided into a number of discrete frequencies with respect to a matrix in which the representative spectra output from the representative spectrum determination unit are arranged. You may comprise so that it may compress and convert to a square matrix.
 本開示の第4の態様のノイズ源可視化システムにおいては、第1の態様における前記代表スペクトル成分計算部を、前記代表スペクトル決定部が出力する代表スペクトルを並べた行列について、離散周波数の数を次元圧縮して正方行列へ変換する際に、特異値分解法を使用して次元圧縮を行うよう構成してもよい。 In the noise source visualization system according to the fourth aspect of the present disclosure, the representative spectrum component calculation unit according to the first aspect is dimensionalized with respect to a matrix in which the representative spectra output from the representative spectrum determination unit are arranged. When compressing and converting to a square matrix, dimensional compression may be performed using a singular value decomposition method.
 本開示の第5の態様のノイズ源可視化システムは、第1の態様における前記代表スペクトル成分計算部を、前記スペクトラムアナライザが観察したパワースペクトルについて、代表スペクトルを並べた行列を次元圧縮した方法と同じ方法で次元圧縮をするよう構成してもよい。 The noise source visualization system according to the fifth aspect of the present disclosure is the same as the method in which the representative spectrum component calculation unit in the first aspect is dimensionally compressed with respect to the power spectrum observed by the spectrum analyzer. You may comprise so that dimension compression may be carried out by the method.
 本開示の第6の態様のノイズ源可視化システムにおいては、第1の態様における前記代表スペクトル成分計算部を、前記スペクトラムアナライザが観察したパワースペクトルに含まれる代表スペクトルの成分を計算するために、次元圧縮したパワースペクトルと次元圧縮した代表スペクトル行列の連立一次方程式を計算するよう構成してもよい。 In the noise source visualization system according to the sixth aspect of the present disclosure, the representative spectrum component calculation unit according to the first aspect uses a dimension to calculate a representative spectrum component included in the power spectrum observed by the spectrum analyzer. A simultaneous linear equation of the compressed power spectrum and the dimensionally compressed representative spectrum matrix may be calculated.
 本開示の第7の態様のノイズ源可視化システムにおいては、第1の態様における前記オーバレイ画像生成部を、前記代表スペクトル成分計算部が出力する代表スペクトルの成分の大きさに比例する長さで、前記代表スペクトルを持つ回路基板上のノードから前記スペクトラムアナライザの方向へ向かうようにマーカを描画するよう構成してもよい。 In the noise source visualization system according to the seventh aspect of the present disclosure, the overlay image generation unit according to the first aspect has a length proportional to the magnitude of the component of the representative spectrum output by the representative spectrum component calculation unit. The marker may be drawn so as to go from the node on the circuit board having the representative spectrum toward the spectrum analyzer.
 本開示の第8の態様のノイズ源可視化システムにおいては、第1の態様における前記AR処理部を、前記電気回路基板にシルク印刷されたARタグを前記撮像部で撮像して三次元位置関係を算出するよう構成してもよい。 In the noise source visualization system according to the eighth aspect of the present disclosure, the AR processing unit in the first aspect is imaged by the imaging unit with the AR tag silk-printed on the electric circuit board, and the three-dimensional positional relationship is obtained. You may comprise so that it may calculate.
 本開示の第9の態様のノイズ源可視化装置においては、
 複数の電子部品で構成される電気回路基板の回路設計データを用いて、前記電気回路を構成する複数の電子部品の電気信号の過渡特性を示す情報を出力する回路シミュレータと、
 前記複数の電子部品の電気信号の中から、異なる周波数スペクトルを有する代表的な電気信号のスペクトルを決定する代表スペクトル決定部と、
 スペクトラムアナライザにより測定された前記電気回路基板の周辺電磁場のスペクトルに含まれる、前記代表的な電気信号のスペクトルの成分の大きさを含む情報を出力する代表スペクトル成分計算部と、
 撮像部により撮像されたARタグを含む前記電気回路基板の画像を用いて、予め保持する前記ARタグの位置情報から前記電気回路基板の三次元位置関係を示す情報を出力するAR処理部と、
 前記電気回路基板の三次元位置関係を示す情報と前記電気回路基板の基板設計データとを用いて、前記代表的な電気信号のスペクトルの前記電気回路基板上の位置を示す情報を出力する代表スペクトル位置抽出部と、
 前記撮像部により撮像された画像に対して、前記代表スペクトル位置抽出部から出力された代表的な電気信号の前記電気回路基板上の位置において、前記代表的な電気信号のスペクトルの成分に応じた大きさを有するマーカを重畳して、前記マーカを重畳した画像を生成して装置外部に出力するオーバレイ画像生成部と、を備える。
In the noise source visualization device according to the ninth aspect of the present disclosure,
A circuit simulator that outputs information indicating transient characteristics of electrical signals of a plurality of electronic components constituting the electrical circuit, using circuit design data of an electrical circuit board composed of a plurality of electronic components, and
A representative spectrum determining unit for determining a spectrum of a representative electrical signal having a different frequency spectrum from among the electrical signals of the plurality of electronic components;
A representative spectrum component calculation unit that outputs information including the magnitude of the spectrum component of the representative electric signal included in the spectrum of the surrounding electromagnetic field of the electric circuit board measured by a spectrum analyzer;
An AR processing unit that outputs information indicating a three-dimensional positional relationship of the electric circuit board from position information of the AR tag held in advance using an image of the electric circuit board including the AR tag imaged by the imaging unit;
A representative spectrum that outputs information indicating the position of the spectrum of the representative electric signal on the electric circuit board using information indicating the three-dimensional positional relationship of the electric circuit board and board design data of the electric circuit board. A position extractor;
According to the spectrum component of the representative electrical signal at the position on the electrical circuit board of the representative electrical signal output from the representative spectrum position extraction unit with respect to the image captured by the imaging unit. An overlay image generation unit that superimposes a marker having a size, generates an image on which the marker is superimposed, and outputs the generated image to the outside of the apparatus.
 上記のように構成されたノイズ源可視化装置によれば、パワエレ回路基板から放射されるノイズの発生源を自動推定して、パワエレ回路基板の現物の画像(実画像)に対して、そのノイズの発生源を自動推定した情報が重畳することが可能となる。そのため、ノイズ源可視化装置を用いることにより、設計者は表示部を通して、不可視である電磁波の発生源を擬似的に直接観察することが可能になり、発生源を速やかに知覚することが可能となる。 According to the noise source visualization apparatus configured as described above, the noise generation source radiated from the power electronics circuit board is automatically estimated, and the noise of the actual image (actual image) of the power electronics circuit board is estimated. It is possible to superimpose information that automatically estimates the generation source. Therefore, by using the noise source visualization device, the designer can directly observe the generation source of the invisible electromagnetic wave through the display unit, and can quickly perceive the generation source. .
 本開示の第10の態様のノイズ源可視化装置は、第9の態様における前記代表スペクトル決定部が、前記回路シミュレータが出力する電気信号のスペクトルを正規化してクラスタリングし、前記クラスタの中で平均パワーが最大のスペクトルを代表スペクトルとして出力するよう構成してもよい。 In the noise source visualization device according to the tenth aspect of the present disclosure, the representative spectrum determination unit according to the ninth aspect normalizes and clusters the spectrum of the electrical signal output from the circuit simulator, and average power in the cluster May be configured to output a spectrum having the maximum as a representative spectrum.
 本開示の第11の態様のノイズ源可視化装置は、第9の態様における前記代表スペクトル成分計算部が、前記代表スペクトル決定部が出力する代表スペクトルを並べた行列について、離散周波数の数を次元圧縮して正方行列へ変換するよう構成してもよい。 In the noise source visualization device according to the eleventh aspect of the present disclosure, the representative spectrum component calculation unit according to the ninth aspect performs dimension compression on the number of discrete frequencies for a matrix in which the representative spectra output from the representative spectrum determination unit are arranged. Then, it may be configured to convert to a square matrix.
 本開示の第12の態様のノイズ源可視化装置は、第9の態様における前記代表スペクトル成分計算部が、前記代表スペクトル決定部が出力する代表スペクトルを並べた行列について、離散周波数の数を次元圧縮して正方行列へ変換する際に、特異値分解法を使用して次元圧縮を行うよう構成してもよい。 In the noise source visualization device according to the twelfth aspect of the present disclosure, the representative spectrum component calculation unit according to the ninth aspect performs dimensional compression on the number of discrete frequencies for a matrix in which the representative spectra output from the representative spectrum determination unit are arranged. When converting to a square matrix, dimensional compression may be performed using a singular value decomposition method.
 本開示の第13の態様のノイズ源可視化装置は、第9の態様における前記代表スペクトル成分計算部が、前記スペクトラムアナライザが観察したパワースペクトルについて、代表スペクトルを並べた行列を次元圧縮した方法と同じ方法で次元圧縮をするよう構成してもよい。 The noise source visualization device according to the thirteenth aspect of the present disclosure is the same as the method in which the representative spectrum component calculation unit in the ninth aspect performs dimension compression on a matrix in which representative spectra are arranged for the power spectrum observed by the spectrum analyzer. You may comprise so that dimension compression may be carried out by the method.
 本開示の第14の態様のノイズ源可視化装置は、第9の態様における前記代表スペクトル成分計算部が、前記スペクトラムアナライザが観察したパワースペクトルに含まれる代表スペクトルの成分を計算するために、次元圧縮したパワースペクトルと次元圧縮した代表スペクトル行列の連立一次方程式を計算するよう構成してもよい。 In a noise source visualization device according to a fourteenth aspect of the present disclosure, the representative spectrum component calculation unit according to the ninth aspect performs dimension compression so as to calculate a representative spectrum component included in a power spectrum observed by the spectrum analyzer. The system may be configured to calculate simultaneous linear equations of the power spectrum and the dimensionally compressed representative spectrum matrix.
 本開示の第15の態様のノイズ源可視化装置は、第9の態様における前記オーバレイ画像生成部が、前記代表スペクトル成分計算部が出力する代表スペクトルの成分の大きさに比例する長さで、前記代表スペクトルを持つ回路基板上のノードから前記スペクトラムアナライザの方向へ向かうようにマーカを描画するよう構成してもよい。 In a noise source visualization device according to a fifteenth aspect of the present disclosure, the overlay image generation unit according to the ninth aspect has a length proportional to the magnitude of a representative spectrum component output by the representative spectrum component calculation unit. You may comprise so that a marker may be drawn so that it may go to the direction of the said spectrum analyzer from the node on a circuit board with a representative spectrum.
 本開示の第16の態様のノイズ源可視化装置は、第9の態様における前記AR処理部が、前記電気回路基板にシルク印刷されたARタグを前記撮像部で撮像して三次元位置関係を算出するよう構成してもよい。 In a noise source visualization device according to a sixteenth aspect of the present disclosure, the AR processing unit according to the ninth aspect calculates a three-dimensional positional relationship by imaging the AR tag silk-printed on the electric circuit board with the imaging unit. You may comprise.
 本開示の第17の態様のノイズ源可視化のためのプログラムは、コンピュータにより実行されるプログラムであって、
 回路設計データベースに格納された電気回路基板の回路設計データを用いて回路シミュレーションを行い、前記電気回路基板を構成する各電子部品の電気信号の過渡特性を出力する回路シミュレーションステップと、
 前記電気信号の中で異なる周波数スペクトルを持つ代表的な電気信号を選択する代表スペクトル決定ステップと、
 スペクトラムアナライザにより、電気回路基板の動作中に測定した、前記電気回路基板の周辺電磁場のスペクトルに含まれる前記代表的な電気信号のスペクトルの成分を出力する代表スペクトル成分計算ステップと、
 撮像部により撮像された前記電気回路基板の画像を用いて、前記電気回路基板に付けられたARタグから前記電気回路基板の三次元位置関係を出力するAR処理ステップと、
 PCB設計データベースに格納された前記電気回路基板の基板設計データを用いて、前記代表的な電気信号の前記電気回路基板上の位置を出力する代表スペクトル位置抽出ステップと、
 前記代表的な電気信号のスペクトルの成分に応じた大きさを有し、前記代表的な電気信号の前記電気回路基板上の位置において、前記スペクトラムアナライザの方向へ向かうようにマーカを描画し、前記撮像部の実画像に重畳して二次元画像として投射するオーバレイ画像生成ステップと、
 前記実画像に前記マーカが重畳されて投射された二次元画像を表示する表示ステップと、を含む。
The program for noise source visualization according to the seventeenth aspect of the present disclosure is a program executed by a computer,
A circuit simulation step of performing circuit simulation using circuit design data of the electric circuit board stored in the circuit design database, and outputting a transient characteristic of an electric signal of each electronic component constituting the electric circuit board;
A representative spectrum determining step of selecting representative electrical signals having different frequency spectra among the electrical signals;
A representative spectral component calculation step for outputting a component of a spectrum of the representative electric signal included in a spectrum of a surrounding electromagnetic field of the electric circuit board measured by a spectrum analyzer during operation of the electric circuit board;
An AR processing step of outputting a three-dimensional positional relationship of the electric circuit board from an AR tag attached to the electric circuit board using an image of the electric circuit board imaged by the imaging unit;
A representative spectral position extracting step of outputting a position of the representative electric signal on the electric circuit board using the board design data of the electric circuit board stored in a PCB design database;
The representative electrical signal has a size corresponding to a spectrum component, and a marker is drawn at a position on the electrical circuit board of the representative electrical signal so as to face the spectrum analyzer, Overlay image generation step of projecting as a two-dimensional image superimposed on the actual image of the imaging unit;
Displaying a two-dimensional image projected with the marker superimposed on the real image.
 上記のステップを含むノイズ源可視化のためのプログラムによれば、パワエレ回路基板から放射されるノイズの発生源を自動推定して、パワエレ回路基板の現物の画像(実画像)に対して、そのノイズの発生源を自動推定した情報が重畳することが可能となる。そのため、ノイズ源可視化のためのプログラムを用いることにより、設計者は表示部を通して、不可視である電磁波の発生源を擬似的に直接観察することが可能になり、発生源を速やかに知覚することが可能となる。 According to the noise source visualization program including the above steps, the noise generation source radiated from the power electronics circuit board is automatically estimated, and the noise on the actual image (actual image) of the power electronics circuit board is calculated. It is possible to superimpose information obtained by automatically estimating the generation source. Therefore, by using a program for visualizing the noise source, the designer can directly observe the invisible electromagnetic wave generation source through the display unit, and can quickly perceive the generation source. It becomes possible.
 本開示の第18の態様のノイズ源可視化方法は、
 回路設計データベースに格納された電気回路基板の回路設計データ用いて回路シミュレーションを行い、前記電気回路基板を構成する各電子部品の電気信号の過渡特性を出力する回路シミュレーションステップと、
 前記電気信号の中で異なる周波数スペクトルを持つ代表的な電気信号を選択する代表スペクトル決定ステップと、
 スペクトラムアナライザにより、前記電気回路基板の動作中に測定した、前記電気回路基板の周辺電磁場のスペクトルに含まれる前記代表的な電気信号のスペクトルの成分を出力する代表スペクトル成分計算ステップと、
 撮像部により撮像された前記電気回路基板の画像を用いて、前記電気回路基板に付けられたARタグから前記電気回路基板の三次元位置関係を出力するAR処理ステップと、
 PCB設計データベースに格納された前記電気回路基板の基板設計データを用いて、前記代表的な電気信号の前記電気回路基板上の位置を出力する代表スペクトル位置抽出ステップと、
 前記代表的な電気信号のスペクトルの成分に応じた大きさを有し、前記代表的な電気信号の前記電気回路基板上の位置において、前記スペクトラムアナライザの方向へ向かうようにマーカを描画し、前記撮像部の実画像に重畳して二次元画像として投射するオーバレイ画像生成ステップと、
 前記実画像に前記マーカが重畳されて投射された二次元画像を表示する表示ステップと、を含む。
The noise source visualization method according to the eighteenth aspect of the present disclosure includes:
A circuit simulation step of performing circuit simulation using circuit design data of the electric circuit board stored in the circuit design database, and outputting a transient characteristic of an electric signal of each electronic component constituting the electric circuit board;
A representative spectrum determining step of selecting representative electrical signals having different frequency spectra among the electrical signals;
A representative spectrum component calculation step of outputting a component of the spectrum of the representative electric signal included in the spectrum of the electromagnetic field around the electric circuit board measured by the spectrum analyzer during the operation of the electric circuit board;
An AR processing step of outputting a three-dimensional positional relationship of the electric circuit board from an AR tag attached to the electric circuit board using an image of the electric circuit board imaged by the imaging unit;
A representative spectral position extracting step of outputting a position of the representative electric signal on the electric circuit board using the board design data of the electric circuit board stored in a PCB design database;
The representative electrical signal has a size corresponding to a spectrum component, and a marker is drawn at a position on the electrical circuit board of the representative electrical signal so as to face the spectrum analyzer, Overlay image generation step of projecting as a two-dimensional image superimposed on the actual image of the imaging unit;
Displaying a two-dimensional image projected with the marker superimposed on the real image.
 上記のステップを含むノイズ源可視化方法によれば、パワエレ回路基板から放射されるノイズの発生源を自動推定して、パワエレ回路基板の現物の画像(実画像)に対して、そのノイズの発生源を自動推定した情報が重畳することが可能となる。そのため、ノイズ源可視化方法を用いることにより、設計者は表示部を通して、不可視である電磁波の発生源を擬似的に直接観察することが可能になり、発生源を速やかに知覚することが可能となる。 According to the noise source visualization method including the above-described steps, the noise generation source radiated from the power electronics circuit board is automatically estimated, and the noise generation source for the actual image (actual image) of the power electronics circuit board is obtained. It is possible to superimpose information that is automatically estimated. Therefore, by using the noise source visualization method, the designer can directly observe the generation source of the invisible electromagnetic wave through the display unit, and can quickly perceive the generation source. .
 以下、適宜図面を参照しながら、本開示にかかる実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
 なお、発明者(ら)は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するものであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。 The inventor (s) provides the accompanying drawings and the following description in order for those skilled in the art to fully understand the present disclosure, and is intended to limit the subject matter described in the claims. Not intended.
 (実施の形態1)
 図1は、実施の形態1のノイズ源可視化システム113の機能ブロックの構成を示す図である。
(Embodiment 1)
FIG. 1 is a diagram illustrating a functional block configuration of the noise source visualization system 113 according to the first embodiment.
 図1に示すように、実施の形態1のノイズ源可視化システム113は、回路設計データベース101と、スペクトラムアナライザ(スペアナ)104と、撮像部106と、PCB設計データベース108と、表示部111と、ノイズ源可視化装置1130とを備える。 As shown in FIG. 1, the noise source visualization system 113 according to the first embodiment includes a circuit design database 101, a spectrum analyzer (sparener) 104, an imaging unit 106, a PCB design database 108, a display unit 111, and noise. A source visualization device 1130.
 図1に示すノイズ源可視化装置1130は、回路シミュレータ102と、代表スペクトル決定部103と、代表スペクトル成分計算部105と、AR処理部107と、代表スペクトル位置抽出部109と、オーバレイ画像生成部110とを少なくとも備える。図1に示すノイズ源可視化装置1130は、回路設計データベース101と、スペクトラムアナライザ104と、撮像部106と、PCB設計データベース108と、表示部111とに対して、有線又は無線によりそれぞれ接続されており、情報を送信及び/又は受信できるよう構成されている。 A noise source visualization apparatus 1130 shown in FIG. 1 includes a circuit simulator 102, a representative spectrum determination unit 103, a representative spectrum component calculation unit 105, an AR processing unit 107, a representative spectrum position extraction unit 109, and an overlay image generation unit 110. And at least. 1 is connected to the circuit design database 101, the spectrum analyzer 104, the imaging unit 106, the PCB design database 108, and the display unit 111 by wire or wireless, respectively. , Configured to transmit and / or receive information.
 以下、実施の形態1のノイズ源可視化システム113における各構成要素について説明する。 Hereinafter, each component in the noise source visualization system 113 of Embodiment 1 will be described.
 回路設計データベース101には、検査対象物である電気回路基板112の回路設計データなどが格納されている。電気回路基板112の電気回路は、複数の電子部品で構成されている。電気回路基板112における複数の電子部品はそれぞれ、電気的に接続されている。以下、電気回路基板112における複数の電子部品のそれぞれを「回路ノード」とも称する。なお、回路設計データベース101は、電気回路基板112上の回路ノードと、回路設計データに含まれる回路ノードとの対応関係をデータとして保持していてもよい。 The circuit design database 101 stores circuit design data of the electric circuit board 112 that is an inspection object. The electric circuit of the electric circuit board 112 is composed of a plurality of electronic components. The plurality of electronic components on the electric circuit board 112 are electrically connected to each other. Hereinafter, each of the plurality of electronic components on the electric circuit board 112 is also referred to as a “circuit node”. Note that the circuit design database 101 may hold the correspondence relationship between the circuit nodes on the electric circuit board 112 and the circuit nodes included in the circuit design data as data.
 回路設計データの例としては、回路ノードの種類の情報、回路ノードを特定する情報、回路ノードの特性、回路ノードの端子間の接続情報、および回路ノードの端子間の接続情報を特定する情報である。 Examples of circuit design data include circuit node type information, circuit node information, circuit node characteristics, circuit node terminal connection information, and circuit node terminal connection information. is there.
 <回路設計データの具体例>
 図2に、回路設計データの一例を示す。図2において、符号Xの枠内に示す情報は、「部品R_R46のピン1はネット名OUTPUTに接続し、ピン2はネット名N1698050に接続する」を表現する。以下、具体例を挙げて、回路設計データを説明する。
<Specific examples of circuit design data>
FIG. 2 shows an example of circuit design data. In FIG. 2, the information shown in the frame of the symbol X represents “Pin 1 of component R_R 46 is connected to net name OUTPUT and Pin 2 is connected to net name N16998050”. The circuit design data will be described below with a specific example.
 図3は、電子回路の一例を示す回路図である。図3に示す電子回路は、電源Vinと、第1の抵抗R1と、第2の抵抗R2と、コンデンサC1とを備える。電源Vinは、アースおよび第1のネット名t1と電気的に接続されている。第1の抵抗R1および第2の抵抗R2は第1のネット名t1、第2のネット名t2と電気的に接続されている。コンデンサC1は第2のネット名t2とアースとの間に電気的に接続されている。 FIG. 3 is a circuit diagram showing an example of an electronic circuit. The electronic circuit shown in FIG. 3 includes a power source Vin, a first resistor R1, a second resistor R2, and a capacitor C1. The power source Vin is electrically connected to the ground and the first net name t1. The first resistor R1 and the second resistor R2 are electrically connected to the first net name t1 and the second net name t2. The capacitor C1 is electrically connected between the second net name t2 and the ground.
 図4は、図2に示した回路設計データに含まれる文字情報を示す図である。本開示において、回路設計データは、文字情報と図情報とを含む。「文字情報」とは、電子部品及びその電子部品間の接続情報を、文字列で表されている回路情報である。「図情報」とは、電子部品及びその電子部品間の接続情報を、模式的に表した情報である。以下、回路設計データに含まれる文字情報を、「ネットリスト」とも表記する。 FIG. 4 is a diagram showing character information included in the circuit design data shown in FIG. In the present disclosure, the circuit design data includes character information and diagram information. “Character information” is circuit information in which electronic components and connection information between the electronic components are represented by character strings. “Figure information” is information that schematically represents the electronic component and connection information between the electronic components. Hereinafter, the character information included in the circuit design data is also referred to as a “net list”.
 図4に示すネットリストは、電子部品の種類の情報901と、電子部品を特定する情報902と、電子部品の端子間の接続情報903とを有する。ネットリストでは、行毎に、1つの電子部品に関する情報が記載されている。 4 includes electronic component type information 901, information 902 for specifying the electronic component, and connection information 903 between terminals of the electronic component. In the net list, information about one electronic component is described for each row.
 図4に示す(1)は、第1の抵抗R1が第1のネット名t1と第2のネット名t2との間に接続されていることを意味する。図4に示す(2)は、第2の抵抗R2が第1のネット名t1と第2のネット名t2との間に接続されていることを意味する。図4に示す(3)は、コンデンサCが第2のネット名t2とアース(ネット名0)との間に接続されていることを意味する。図4に示す値「0」は、アースを意味している。図4に示す(4)は、電源Vinが第1のネット名t1とアースとの間に接続されていることを意味する。 (1) shown in FIG. 4 means that the first resistor R1 is connected between the first net name t1 and the second net name t2. (2) shown in FIG. 4 means that the second resistor R2 is connected between the first net name t1 and the second net name t2. (3) shown in FIG. 4 means that the capacitor C is connected between the second net name t2 and the ground (net name 0). The value “0” shown in FIG. 4 means ground. (4) shown in FIG. 4 means that the power source Vin is connected between the first net name t1 and the ground.
 図5は、ネットリスト1201、1211の例を示す図である。
 図5に示した一例としてのネットリスト1201は、電子部品を特定する情報と、電子部品の端子及びその端子と接続されている回路ノードとを含む。以下、電子部品の端子を「ピン名」とも表記する。端子と接続されている回路ノードは「ネットID」に対応する。
FIG. 5 is a diagram illustrating an example of the netlists 1201 and 1211.
The netlist 1201 as an example shown in FIG. 5 includes information for specifying an electronic component, a terminal of the electronic component, and a circuit node connected to the terminal. Hereinafter, the terminal of the electronic component is also referred to as “pin name”. The circuit node connected to the terminal corresponds to “net ID”.
 図5のネット名1202は、電子部品の第1の端子が接続されている回路ノードを意味する。電子部品の端子毎にネット名が存在する。よって、ネット名の数は、電子部品の端子の数に対応する。 The net name 1202 in FIG. 5 means a circuit node to which the first terminal of the electronic component is connected. A net name exists for each terminal of an electronic component. Therefore, the number of net names corresponds to the number of terminals of the electronic component.
 図5に示した一例としてのネットリスト1211は、複数の情報を含む。具体的には、ネットリスト1211は、前述の部品IDに加えて、電子部品の種類の情報である「部品名」と、電子部品の端子の情報である「ピン名」と、ネットIDと同様の意味を示す「ネット名」とを含む。
 ネットリストは、例えば、ASCIIテキストファイルで作成される。
The netlist 1211 as an example illustrated in FIG. 5 includes a plurality of pieces of information. Specifically, the net list 1211 is similar to the above-described component ID, “component name” which is information on the type of electronic component, “pin name” which is information on the terminal of the electronic component, and the net ID. "Net name" indicating the meaning of.
The net list is created by, for example, an ASCII text file.
 また、部品IDの文字列に、電子部品の種類の情報を含めても良い。例えば、抵抗(Resistance)の部品IDは、その頭文字の「R」を文字列に含む。
 また、部品IDの文字列に、電子部品の特性を含めても良い。例えば、部品IDは、抵抗のサイズ(1.6mm)、抵抗の形(角型)、抵抗値(100Ω)等を文字列に含む。
In addition, information on the type of electronic component may be included in the character string of the component ID. For example, the part ID of resistance includes the initial “R” in the character string.
Further, the characteristic of the electronic component may be included in the character string of the component ID. For example, the component ID includes a resistor size (1.6 mm), a resistor shape (square), a resistance value (100Ω), and the like in a character string.
 回路シミュレータ102は、回路設計データベース101に格納されている回路設計データに基づいて、回路ノードの電圧および電流の過渡特性をシミュレーションして、その情報を出力する。例えば、回路シミュレータ102をSPICEシミュレータで構成してもよい。 The circuit simulator 102 simulates the transient characteristics of the voltage and current of the circuit node based on the circuit design data stored in the circuit design database 101, and outputs the information. For example, the circuit simulator 102 may be configured with a SPICE simulator.
 代表スペクトル決定部103は、回路シミュレータ102がシミュレーションする回路ノードの電気信号の中から、異なる周波数スペクトルを持つ代表的な電気信号のスペクトルを選択して決定する。 The representative spectrum determination unit 103 selects and determines the spectrum of a representative electrical signal having a different frequency spectrum from the electrical signals of the circuit nodes that the circuit simulator 102 simulates.
 スペクトラムアナライザ104は、電気回路基板112の動作中に、電気回路基板112の周辺電磁場を測定する。スペクトラムアナライザ104は、電気回路基板112の全体の周辺磁場を測定することが望ましい。スペクトラムアナライザ104は、測定した周辺電磁場と、測定時の本体(スペクトラムアナライザ104)との位置関係を対応付けて記録する。 The spectrum analyzer 104 measures the electromagnetic field around the electric circuit board 112 during the operation of the electric circuit board 112. The spectrum analyzer 104 preferably measures the entire peripheral magnetic field of the electric circuit board 112. The spectrum analyzer 104 records the positional relationship between the measured peripheral electromagnetic field and the main body (spectrum analyzer 104) at the time of measurement in association with each other.
 代表スペクトル成分計算部105は、スペクトラムアナライザ104が計測した電磁場のスペクトルに含まれる電気信号のスペクトルの成分の大きさを含む情報を出力する。 The representative spectrum component calculation unit 105 outputs information including the magnitude of the spectrum component of the electrical signal included in the spectrum of the electromagnetic field measured by the spectrum analyzer 104.
 撮像部106は、電気回路基板112の画像を撮像する。撮像部106は、例えば、カメラである。撮像部106は、撮像した画像と、撮像時の撮像部106の位置関係とを対応付けて記録する。 The imaging unit 106 captures an image of the electric circuit board 112. The imaging unit 106 is a camera, for example. The imaging unit 106 records the captured image and the positional relationship of the imaging unit 106 at the time of imaging in association with each other.
 AR処理部107は、電気回路基板112に付けられたARタグから、電気回路基板112と、スペクトラムアナライザ104(センサ)との三次元の位置関係を示す情報を出力する。 The AR processing unit 107 outputs information indicating a three-dimensional positional relationship between the electric circuit board 112 and the spectrum analyzer 104 (sensor) from the AR tag attached to the electric circuit board 112.
 PCB設計データベース108(PCB:PrintedCircuit Board)には、電気回路基板112に関する基板設計データが格納されている。電気回路基板112の基板設計データの例としては、回路ノードを特定する情報と、電気回路基板112の上での各回路ノードの位置関係とを対応付けた情報である。 In the PCB design database 108 (PCB: Printed Circuit Board), board design data relating to the electric circuit board 112 is stored. An example of the board design data of the electric circuit board 112 is information that associates information for specifying a circuit node with a positional relationship of each circuit node on the electric circuit board 112.
 <基板設計データの具体例>
 図6は、基板設計データの一例を示す図である。図6において、符号Yの枠内に示す情報は、「ネット名SIGN9は部品R5のピン1と部品R6のピン2を接続する」を表現する。また、図6において、符号Zの枠内に示す情報は、「ネット名SIGN77のパターン形状(構成点の座標と形状、線分の幅など)」を表現する。以下、具体例を挙げて、基板設計データを説明する。
<Specific examples of board design data>
FIG. 6 is a diagram illustrating an example of the board design data. In FIG. 6, the information shown in the frame of the symbol Y expresses “net name SIGN9 connects pin 1 of component R5 and pin 2 of component R6”. Further, in FIG. 6, the information shown in the frame of the symbol Z represents “the pattern shape of the net name SIGN 77 (coordinates and shapes of component points, line segment width, etc.)”. Hereinafter, the board design data will be described with specific examples.
 図7は、図3に示した電子回路の一部を基板に実装した一例を示す図である。第1の抵抗R1および第2の抵抗R2は、それぞれ第1のネット名t1のパターンと第2のネット名t2のパターンへ接続される。 FIG. 7 is a diagram showing an example in which a part of the electronic circuit shown in FIG. 3 is mounted on a substrate. The first resistor R1 and the second resistor R2 are connected to the pattern of the first net name t1 and the pattern of the second net name t2, respectively.
 図8は、図7のパターンを表現する基板設計データの一例を示す図である。基板設計データは、例えば、ASCIIテキストファイルで作成される。 FIG. 8 is a diagram showing an example of the board design data expressing the pattern of FIG. The board design data is created by, for example, an ASCII text file.
 基板設計データは平面毎に管理され、平面を区別するために配線レイヤIDを付与して管理する。例えば、図8に示すE01は、配線レイヤa1において、ネット名t1の配線を、図形指示子がlineであるため、座標(x1,y1)から(x2,y2)まで幅3の直線で引くことを意味する。図形指示子としては、lineの他に、例えば、円弧を指示するcircleなどが存在する。なお、配線レイヤa1とは、図7に示した基板の面における配線レイヤである。 The board design data is managed for each plane, and is managed by assigning a wiring layer ID to distinguish the plane. For example, E01 shown in FIG. 8 draws the wiring of the net name t1 in the wiring layer a1 with a straight line of width 3 from the coordinates (x1, y1) to (x2, y2) because the graphic indicator is line. Means. In addition to line, for example, a circle indicating a circular arc exists as a graphic indicator. The wiring layer a1 is a wiring layer on the surface of the substrate shown in FIG.
 代表スペクトル位置抽出部109は、代表スペクトル決定部103が選択した代表的な電気信号の電気回路基板112上の位置を抽出して、その抽出された情報をする。 The representative spectrum position extraction unit 109 extracts the position of the representative electric signal selected by the representative spectrum determination unit 103 on the electric circuit board 112 and uses the extracted information.
 オーバレイ画像生成部110は、代表スペクトル成分計算部105が計算した電気信号のスペクトルの成分に応じた大きさで、代表スペクトル位置抽出部109が決定した電気回路基板112上の位置からセンサであるスペクトラムアナライザ104の方向へ向かうマーカ(例えば、矢印)を描画し、撮像部106の実画像に重ねて二次元画像を生成する。 The overlay image generation unit 110 has a magnitude corresponding to the spectrum component of the electrical signal calculated by the representative spectrum component calculation unit 105, and a spectrum that is a sensor from the position on the electric circuit board 112 determined by the representative spectrum position extraction unit 109. A marker (for example, an arrow) heading toward the analyzer 104 is drawn, and a two-dimensional image is generated by superimposing the marker on the actual image of the imaging unit 106.
 表示部111は、オーバレイ画像生成部110が生成した二次元画像を表示する。 The display unit 111 displays the two-dimensional image generated by the overlay image generation unit 110.
 <ノイズ源可視化システム113の利用シーン>
 図9は、実施の形態1のノイズ源可視化システム113により電気回路基板112を観察する利用シーンを示す。なお、図9において、下側に示すノイズ源可視化システム113は、表示部113の反対側となる、検査対象物側の面113Aを示している。即ち、イズ源可視化システム113の検査対象物側の面113Aには、撮像部106であるカメラおよびスペクトルアナライザ104の測定部(センサ)が表出している。
<Use scene of noise source visualization system 113>
FIG. 9 shows a usage scene in which the electric circuit board 112 is observed by the noise source visualization system 113 according to the first embodiment. In FIG. 9, the noise source visualization system 113 shown on the lower side shows a surface 113 </ b> A on the inspection object side that is the opposite side of the display unit 113. That is, on the surface 113A on the inspection object side of the noise source visualization system 113, the camera as the imaging unit 106 and the measurement unit (sensor) of the spectrum analyzer 104 are exposed.
 電気回路基板112の設計者は、ノイズ源可視化システム113を用いて、検査対象物である電気回路基板112を観察する。電気回路基板112には、ARタグ201がシルク印刷されている。 The designer of the electric circuit board 112 uses the noise source visualization system 113 to observe the electric circuit board 112 that is the inspection object. An AR tag 201 is silk-printed on the electric circuit board 112.
 図9においては、撮像部106の撮像範囲内に、電気回路基板112に設けられているARタグ201に含まれている場合を示している。 FIG. 9 shows a case where the AR tag 201 provided on the electric circuit board 112 is included in the imaging range of the imaging unit 106.
 撮像部106が撮像する電気回路基板112の実画像に、電気回路基板112から放射される電磁波を表すマーカ(矢印)202が重畳されて、そのマーカ202が重畳された画像が表示部111に表示される。 A marker (arrow) 202 representing an electromagnetic wave radiated from the electric circuit board 112 is superimposed on a real image of the electric circuit board 112 picked up by the imaging unit 106, and an image on which the marker 202 is superimposed is displayed on the display unit 111. Is done.
 <回路設計データベース101およびPCB設計データベース108の一例>
 図10は、回路設計データベース101(図10(a))およびPCB設計データベース108(図10(b))に格納されるデータの一例を示す。
<Example of Circuit Design Database 101 and PCB Design Database 108>
FIG. 10 shows an example of data stored in the circuit design database 101 (FIG. 10A) and the PCB design database 108 (FIG. 10B).
 回路設計データベース101には、電気回路基板112の回路設計データが記録されている。電気回路基板112の回路設計データの一例としては、SPICEシミュレータ用のネットリストである。 In the circuit design database 101, circuit design data of the electric circuit board 112 is recorded. An example of the circuit design data of the electric circuit board 112 is a net list for the SPICE simulator.
 回路設計データベース101に記録されている回路設計データにおける各ノードの情報は、PCB設計データベース108に記録されている電気回路基板112の銅箔パターン(配線パターン)の位置情報と一対一で対応する。 The information of each node in the circuit design data recorded in the circuit design database 101 has a one-to-one correspondence with the position information of the copper foil pattern (wiring pattern) of the electric circuit board 112 recorded in the PCB design database 108.
 例えば、図10の(a)に示した回路設計データにおけるノード301は、図10の(b)に示した銅箔パターンにおけるパターン302に対応する。また、図10の(a)に示した回路設計データにおける回路ノード303は、図10の(b)に示した銅箔パターンにおける回路パターン304に対応している。ネットリストの形式は、公知技術であるSPICEシミュレータで開示され、広く利用されている。以下は、SPICEシミュレータについて記述された公知文献である。Nagel, L. W, and Pederson, D. O., SPICE (Simulation Program withIntegrated Circuit Emphasis), Memorandum No. ERL-M382, UniversityofCalifornia, Berkeley, Apr. 1973 For example, the node 301 in the circuit design data shown in FIG. 10A corresponds to the pattern 302 in the copper foil pattern shown in FIG. Further, the circuit node 303 in the circuit design data shown in FIG. 10A corresponds to the circuit pattern 304 in the copper foil pattern shown in FIG. The format of the netlist is disclosed by a known SPICE simulator and is widely used. The following are known documents describing the SPICE simulator. Nagel, L. W, and Pederson, D. O., SPICE (Simulation Program withIntegrated Circuit Emphasis), Memorandum No. ERL-M382, UniversityofCalifornia, ofBerkeley, Apr. 1973
 <ノイズ源可視化システム113の処理>
 図11は、ノイズ源可視化システム113の処理を示すフローチャートである。
<Processing of noise source visualization system 113>
FIG. 11 is a flowchart showing the processing of the noise source visualization system 113.
 (ステップS1)
 回路シミュレータ102は、回路設計データベース101から、検査対象物である電気回路基板112を構成する複数の回路ノードの情報(回路ノード情報)を取得する。回路シミュレータ102は、取得した複数の回路ノード情報に基づいて、各回路ノードの電流の過渡解析を行い、電流の時間変化を算出する。複数の回路ノード情報の例としては、回路ノードの種類の情報、回路ノードを特定する情報、回路ノードの特性、回路ノードの端子間の接続情報、および回路ノードの端子間の接続情報を特定する情報などである。
(Step S1)
The circuit simulator 102 acquires, from the circuit design database 101, information (circuit node information) on a plurality of circuit nodes constituting the electrical circuit board 112 that is the inspection target. The circuit simulator 102 performs a transient analysis of the current of each circuit node based on the acquired plurality of circuit node information, and calculates a time change of the current. Examples of multiple circuit node information include circuit node type information, circuit node identification information, circuit node characteristics, circuit node terminal connection information, and circuit node terminal connection information. Information.
 回路シミュレータ102は、回路ノードi(i=1、2、・・・、n)の電流の時間変化波形をxi(t)として出力する。 The circuit simulator 102 outputs the time-varying waveform of the current of the circuit node i (i = 1, 2,..., N) as xi (t).
 図12は、電流の時間変化波形をシミュレーションした結果を示す波形図である。図12において、縦軸は電流値、横軸は時間を示す。図12に示すシミュレーション結果は、波形401(i=1)、波形402(i=2)、波形403(i=3)、波形404(i=4)を含む。 FIG. 12 is a waveform diagram showing a result of simulating a time-varying waveform of current. In FIG. 12, the vertical axis indicates the current value, and the horizontal axis indicates time. The simulation result shown in FIG. 12 includes a waveform 401 (i = 1), a waveform 402 (i = 2), a waveform 403 (i = 3), and a waveform 404 (i = 4).
 (ステップS2)
 代表スペクトル決定部103は、電流の時間変化(xi(t))を離散フーリエ変換し、パワースペクトルXi(f)を計算する。ここで、周波数fは離散値である。
(Step S2)
The representative spectrum determination unit 103 performs a discrete Fourier transform on the time change (xi (t)) of the current, and calculates a power spectrum Xi (f). Here, the frequency f is a discrete value.
 図13は、パワースペクトルを計算した結果を示す波形図である。図13において、縦軸は強度であり、横軸は周波数を示す。図13に示すパワースペクトル波形501、波形502、波形503、波形504は、図12に示した波形401(i=1)、波形402(i=2)、波形403(i=3)、波形404(i=4)のそれぞれを計算した結果である。 FIG. 13 is a waveform diagram showing the result of calculating the power spectrum. In FIG. 13, the vertical axis represents intensity, and the horizontal axis represents frequency. The power spectrum waveform 501, the waveform 502, the waveform 503, and the waveform 504 illustrated in FIG. 13 are the waveform 401 (i = 1), the waveform 402 (i = 2), the waveform 403 (i = 3), and the waveform 404 illustrated in FIG. It is the result of calculating each of (i = 4).
 (ステップS3)
 代表スペクトル決定部103は、パワースペクトルをクラスタリングする。例えば、k-means法などのクラスタリング手法を用いて、複数のXi(f)を、最大のパワー値Xi(f_max)で正規化したスペクトルを求める。正規化して求めた複数スペクトル間の類似度を求め、所定以上の類似度を有するスペクトルをクラスタリングし、複数(m>1)のクラスタにまとめる。
(Step S3)
The representative spectrum determination unit 103 clusters power spectra. For example, a spectrum obtained by normalizing a plurality of Xi (f) with the maximum power value Xi (f_max) is obtained using a clustering method such as the k-means method. The degree of similarity between a plurality of spectra obtained by normalization is obtained, and spectra having a degree of similarity greater than or equal to a predetermined cluster are clustered and grouped into a plurality (m> 1) of clusters.
 代表スペクトル決定部103は、クラスタ毎に、代表スペクトルを決定する。例えば、各クラスタにおいて、最大のΣXi(f)を有するパワースペクトルを決定し、決定したパワースペクトルをクラスタの代表スペクトルCj(f)(j=1、2、・・・、n)として出力する。各代表スペクトルは、それぞれ他の代表スペクトルと異なる周波数スペクトルを有する。 The representative spectrum determination unit 103 determines a representative spectrum for each cluster. For example, in each cluster, the power spectrum having the maximum ΣXi (f) is determined, and the determined power spectrum is output as the cluster representative spectrum Cj (f) (j = 1, 2,..., N). Each representative spectrum has a frequency spectrum different from the other representative spectra.
 図14は、代表スペクトル決定部103が代表スペクトルCj(f)を決定した結果を示す図である。例えば、図13に示したパワースペクトル501および503を第1のクラスタ601に、図13に示したパワースペクトル502および504を第2のクラスタ602にクラスタリングする。代表スペクトル決定部103は、第1のクラスタ601からクラスタの代表スペクトルC1(f)としてX1(f)を決定し、第2のクラスタ602からクラスタの代表スペクトルC2(f)としてX4(f)を決定する。例えば、クラスタに含まれるパワースペクトルのうち、最も大きいパワーの最大値を有するパワースペクトルを代表スペクトルと決定する。 FIG. 14 is a diagram illustrating a result of the representative spectrum determination unit 103 determining the representative spectrum Cj (f). For example, the power spectra 501 and 503 shown in FIG. 13 are clustered into the first cluster 601, and the power spectra 502 and 504 shown in FIG. 13 are clustered into the second cluster 602. The representative spectrum determination unit 103 determines X1 (f) as the cluster representative spectrum C1 (f) from the first cluster 601 and X4 (f) as the cluster representative spectrum C2 (f) from the second cluster 602. decide. For example, the power spectrum having the maximum maximum power among the power spectra included in the cluster is determined as the representative spectrum.
 (ステップS4)
 代表スペクトル成分計算部105は、代表スペクトル決定部103が決定した代表スペクトルCj(f)毎に、fの次元圧縮を行う。
(Step S4)
The representative spectrum component calculation unit 105 performs dimension compression of f for each representative spectrum Cj (f) determined by the representative spectrum determination unit 103.
 ここで、fを構成する離散周波数の数をN/2とすると、図15における式701に示すように、Cj(f)はN/2個の要素で構成される。 Here, if the number of discrete frequencies constituting f is N / 2, Cj (f) is composed of N / 2 elements as shown in Expression 701 in FIG.
 すべての代表スペクトルを並べた行列C(f)は、図15における式702に示すように、N/2×mの行列になる。 The matrix C (f) in which all the representative spectra are arranged is an N / 2 × m matrix as shown in the equation 702 in FIG.
 次元圧縮は、公知の方法を用いることができる。例えば、公知の行列の特異値分解法(SVD法、Singular Value Decompsition)をC(f)に適用して、図15における式703に示すように、N/2個の要素で表現される周波数を、クラスタ数と同じ個数(図15の例ではm個)の要素まで圧縮する。このようにして圧縮した周波数をffと表現する。また、次元圧縮されたC(f)をC(ff)とする。図15における式704に示すように、C(ff)はm×mの正方行列である。 Dimensional compression can use a known method. For example, by applying a known matrix singular value decomposition method (SVD method, Singular Value Decompsition) to C (f), the frequency represented by N / 2 elements is expressed as shown in Expression 703 in FIG. Then, compression is performed up to the same number of elements as the number of clusters (m in the example of FIG. 15). The frequency compressed in this way is expressed as ff. The dimension-compressed C (f) is defined as C (ff). As shown in Expression 704 in FIG. 15, C (ff) is an m × m square matrix.
 なお、ステップS1-S4の処理とは並行して、以下のステップS11およびステップS12の処理を行っても良い。 In addition, the following steps S11 and S12 may be performed in parallel with the processing of steps S1-S4.
 (ステップS11)
 スペクトラムアナライザ104によって、電気回路基板112の電磁場のパワースペクトルを測定する。図16に、測定したパワースペクトル801(Po(f))を示す。
(Step S11)
The power spectrum of the electromagnetic field of the electric circuit board 112 is measured by the spectrum analyzer 104. FIG. 16 shows the measured power spectrum 801 (Po (f)).
 (ステップS12)
 代表スペクトル成分計算部105は、C(ff)を生成したときと同様の次元圧縮703によって、図17における式802に示すように、パワースペクトル801をPo(ff)へ変換する。
(Step S12)
The representative spectrum component calculation unit 105 converts the power spectrum 801 into Po (ff) as shown by the equation 802 in FIG. 17 by the same dimension compression 703 as when C (ff) was generated.
 (ステップS21)
 代表スペクトル成分計算部105は、ステップS4で求めた各代表スペクトルを次元圧縮した情報と、ステップS12で求めたパワースペクトルを次元圧縮した情報とを用いて、測定したパワースペクトルに対する、各代表スペクトルの大きさ(例えば、比率)を求める。
(Step S21)
The representative spectrum component calculation unit 105 uses the information obtained by dimensional compression of each representative spectrum obtained in step S4 and the information obtained by dimensional compression of the power spectrum obtained in step S12. Determine the size (eg, ratio).
 具体的には、代表スペクトル成分計算部105は、Po(ff)に対するCjの含有率をαiとして、図17における式803に示すm次元の連立一次方程式のαを解き、出力する。 Specifically, the representative spectral component calculation unit 105 solves α of the m-dimensional simultaneous linear equation shown in the equation 803 in FIG. 17 with αi as the content ratio of Cj with respect to Po (ff) and outputs it.
 (ステップS22)
 代表スペクトル位置抽出部109は、PCB設計データベース108を参照して、代表スペクトル決定部103が決定した複数の代表スペクトルのそれぞれについて、電気回路基板112上の位置を抽出する。抽出する位置としては、電気回路基板112における所定の基準位置に対する相対位置を抽出する。所定の基準位置とは、後述するARタグ201の位置を基準とした位置でも良いし、電気回路基板112の四隅のうちの1つの位置でも良い。
(Step S22)
The representative spectrum position extraction unit 109 refers to the PCB design database 108 and extracts the position on the electric circuit board 112 for each of the plurality of representative spectra determined by the representative spectrum determination unit 103. As a position to be extracted, a relative position with respect to a predetermined reference position on the electric circuit board 112 is extracted. The predetermined reference position may be a position based on the position of an AR tag 201 described later, or may be one of the four corners of the electric circuit board 112.
 例えば、代表スペクトル位置抽出部109がPCB設計データベース108の情報を参照して、代表スペクトル決定部103で決定された代表スペクトルCjの電気回路基板112における三次元位置をPos(i)として得る。 For example, the representative spectrum position extraction unit 109 refers to the information in the PCB design database 108 to obtain the three-dimensional position of the representative spectrum Cj determined by the representative spectrum determination unit 103 on the electric circuit board 112 as Pos (i).
 例えば、図18に示すように、ノードiの位置901に存在する回路ノードiの三次元位置Pos(i)は、電気回路基板112に付けられたARタグ201の位置からの相対的な三次元座標902(x0_i、y0_i、z0_i)で表現される。 For example, as illustrated in FIG. 18, the three-dimensional position Pos (i) of the circuit node i existing at the position 901 of the node i is a three-dimensional relative to the position of the AR tag 201 attached to the electric circuit board 112. It is expressed by coordinates 902 (x 0 — i , y 0 — i , z 0 — i ).
 (ステップS31)
 AR処理部107は、撮像部106が撮像した画像データを取得する。AR処理部107は、予め所定の基準位置(例えば、ARタグ201の位置)を画像データから取得する。画像データ中の取得した所定の基準位置に基づいて、代表スペクトル位置抽出部109が取得した代表スペクトルの位置と対応する位置を決定する。
(Step S31)
The AR processing unit 107 acquires image data captured by the imaging unit 106. The AR processing unit 107 acquires a predetermined reference position (for example, the position of the AR tag 201) from the image data in advance. Based on the acquired predetermined reference position in the image data, a position corresponding to the position of the representative spectrum acquired by the representative spectrum position extraction unit 109 is determined.
 撮像部106によって撮像されたARタグ201を含む電気回路基板112の画像データには、AR処理部107によって、撮像部106との相対的な三次元位置関係のデータが付与される。AR処理部107による三次元位置関係の計算は、例えば、以下の公知の技術によって行う。
Kato, H., Billinghurst, M. (1999) Marker Tracking andHMD Calibration for a video-based Augmented Reality Conferencing System. InProceedings of the 2nd International Workshop on Augmented Reality (IWAR 99).October, San Francisco, USA.
The AR processing unit 107 gives the data of the three-dimensional positional relationship relative to the imaging unit 106 to the image data of the electric circuit board 112 including the AR tag 201 imaged by the imaging unit 106. The calculation of the three-dimensional positional relationship by the AR processing unit 107 is performed by the following known technique, for example.
Kato, H., Billinghurst, M. (1999) Marker Tracking and HMD Calibration for a video-based Augmented Reality Conferencing System.InProceedings of the 2nd International Workshop on Augmented Reality (IWAR 99) .October, San Francisco, USA.
 (ステップS32)
 オーバレイ画像生成部110は、撮像部106が撮像した画像中に、代表スペクトル成分計算部105が計算した情報と、AR処理部107が決定した位置情報とに基づいて、ノイズ源を表示する。
(Step S32)
The overlay image generation unit 110 displays a noise source in the image captured by the imaging unit 106 based on the information calculated by the representative spectrum component calculation unit 105 and the position information determined by the AR processing unit 107.
 オーバレイ画像生成部110は、AR処理部107が予め保持しているスペクトラムアナライザ104と撮像部106との間の三次元位置関係に基づいて、代表スペクトル位置抽出部109が出力する三次元位置Pos(i)を始点として、スペクトラムアナライザ104の三次元位置に向かって長さαiの矢印をマーカとして三次元描画のデータを形成する。マーカとして形成された三次元描画のデータは、撮像部106の実画像に二次元投射されて、表示部111に出力される。 Based on the three-dimensional positional relationship between the spectrum analyzer 104 and the imaging unit 106 that the AR processing unit 107 holds in advance, the overlay image generation unit 110 outputs the three-dimensional position Pos ( Using i) as a starting point, three-dimensional drawing data is formed by using an arrow of length αi as a marker toward the three-dimensional position of the spectrum analyzer 104. The three-dimensional drawing data formed as the marker is two-dimensionally projected on the actual image of the imaging unit 106 and output to the display unit 111.
 例えば、図16に示したパワースペクトル801に対して、代表スペクトル成分計算部105によって、α1=0.3、α2=0.6の値が得られた場合、図19に示すように、三次元位置Pos(1)およびPos(4)からノード1のマーカ1001およびノード2のマーカ1002のように、矢印が三次元描画される。例えば、スペクトラムアナライザ104の方向に向かうように、マーカ1001、1002の矢印が表示される。本開示において、「マーカ」とは、ノイズ源の位置(矢印の起点)および大きさ(矢印の長さ)を示す情報を意味する。 For example, when the representative spectrum component calculation unit 105 obtains values of α1 = 0.3 and α2 = 0.6 for the power spectrum 801 shown in FIG. 16, as shown in FIG. The arrows are three-dimensionally drawn from the positions Pos (1) and Pos (4) like the marker 1001 of the node 1 and the marker 1002 of the node 2. For example, the arrows of the markers 1001 and 1002 are displayed so as to face the spectrum analyzer 104. In the present disclosure, the “marker” means information indicating the position (starting point of an arrow) and the size (length of an arrow) of a noise source.
 出力された画像は表示部111によって表示され、図9および図19のように、表示部111において表示される。 The output image is displayed on the display unit 111 and displayed on the display unit 111 as shown in FIGS.
 なお、図11に示すステップS1からステップS22を予め行い、代表スペクトルの情報と代表スペクトルの位置の情報とを、当該ノイズ源可視化装置における記録部(図示省略)に保持しておいても良い。 Note that steps S1 to S22 shown in FIG. 11 may be performed in advance, and the information on the representative spectrum and the information on the position of the representative spectrum may be held in a recording unit (not shown) in the noise source visualization device.
 上記のように構成された実施の形態1のノイズ源可視化システム113およびノイズ源可視化装置1130においては、当該ノイズ源可視化システム113(ノイズ源可視化装置1130)を観察者や設計者が移動させると、検査対象物におけるマーカの表示もその移動に応じて更新されて移動する。従って、検査対象物(例えば、電気回路基板112)から放射される電磁波の発生源およびその大きさを容易に、且つ感覚的に知覚することが可能になる。さらに、検査対象物としての電気回路基板の上部に配線が存在し、その配線への影響が問題になっている場合において、その状況における電気回路基板に対してマーカが重畳表示されるので、原因となっているノイズ源を視覚的に推測することが可能になる。 In the noise source visualization system 113 and the noise source visualization device 1130 according to the first embodiment configured as described above, when the observer or the designer moves the noise source visualization system 113 (noise source visualization device 1130), The display of the marker on the inspection object is also updated and moved according to the movement. Therefore, it is possible to easily and sensibly perceive the generation source and the magnitude of the electromagnetic wave radiated from the inspection object (for example, the electric circuit board 112). In addition, when there is a wiring on the upper part of the electric circuit board as the inspection object and the influence on the wiring is a problem, the marker is superimposed on the electric circuit board in that situation. It is possible to visually guess the noise source.
 なお、本実施の形態において、あらかじめ選択した周波数の強度をαiに積算してマーカを描画することで、特定の周波数の発生源のみを観察することも可能である。さらに、EMC規制値のような各周波数の上限値と、電気回路基板からの測定距離をオフセット設定しておくことによって、特定の周波数の強度からオフセット値を引いてαiに積算し、さらにスペクトラムアナライザと電気回路基板の距離が所定の測定距離の範囲外のときにマーカを描画することにより、EMC規制値に対する逸脱度を直感的に知覚することが可能になる。 In this embodiment, it is also possible to observe only the generation source of a specific frequency by drawing the marker by adding the intensity of the preselected frequency to αi. Furthermore, by setting the upper limit value of each frequency such as the EMC regulation value and the measurement distance from the electric circuit board as an offset, the offset value is subtracted from the intensity of the specific frequency and added to αi, and further the spectrum analyzer By drawing a marker when the distance between the electric circuit board and the electric circuit board is out of the predetermined measurement distance, it is possible to intuitively perceive the degree of deviation from the EMC regulation value.
 新型パワーデバイスによる省エネ機器の開発には、EMC対策が不可欠であり、これまでパワエレ回路の熟練設計者が、勘と経験に頼って行ってきたEMC対策を、一般の設計者でも可能にする効果があり、省エネ機器の開発現場において広く利用される可能性がある。 EMC measures are indispensable for the development of energy-saving equipment using new power devices, and the effect that enables ordinary designers to implement EMC measures that have been relied on intuition and experience by experienced designers of power electronics circuits. There is a possibility that it will be widely used in development sites for energy-saving equipment.
 101 回路設計データベース
 102 回路シミュレータ
 103 代表スペクトル決定部
 104 スペクトラムアナライザ
 105 代表スペクトル成分計算部
 106 撮像部
 107 AR処理部
 108 PCB設計データベース
 109 代表スペクトル位置抽出部
 110 オーバレイ画像生成部
 111 表示部
 112 電気回路基板
 113 ノイズ源可視化システム
 201 ARタグ
 202 マーカ
 1001 ノード1のマーカ
 1002 ノード2のマーカ
DESCRIPTION OF SYMBOLS 101 Circuit design database 102 Circuit simulator 103 Representative spectrum determination part 104 Spectrum analyzer 105 Representative spectrum component calculation part 106 Imaging part 107 AR processing part 108 PCB design database 109 Representative spectrum position extraction part 110 Overlay image generation part 111 Display part 112 Electric circuit board 113 Noise source visualization system 201 AR tag 202 Marker 1001 Node 1 marker 1002 Node 2 marker

Claims (18)

  1.  複数の電子部品で構成される電気回路基板の回路設計データを格納する回路設計データベースと、
     前記回路設計データベースに格納されている回路設計データを用いて、前記電気回路を構成する複数の電子部品の電気信号の過渡特性を示す情報を出力する回路シミュレータと、
     前記複数の電子部品の電気信号の中から、異なる周波数スペクトルを有する代表的な電気信号のスペクトルを決定する代表スペクトル決定部と、
     前記電気回路基板の周辺電磁場のスペクトルを測定するスペクトラムアナライザと、
     前記周辺電磁場のスペクトルに含まれる、前記代表的な電気信号のスペクトルの成分の大きさを含む情報を出力する代表スペクトル成分計算部と、
     撮像部により撮像されたARタグを含む前記電気回路基板の画像を用いて、予め保持する前記ARタグの位置情報から前記電気回路基板の三次元位置関係を示す情報を出力するAR処理部と、
     前記電気回路基板の基板設計データを格納するPCB設計データベースと、
     前記電気回路基板の三次元位置関係を示す情報と前記基板設計データとを用いて、前記代表的な電気信号のスペクトルの前記電気回路基板上の位置を示す情報を出力する代表スペクトル位置抽出部と、
     前記撮像部で撮像された画像に対して、前記代表スペクトル位置抽出部から出力された代表的な電気信号の前記電気回路基板上の位置において、前記代表的な電気信号のスペクトルの成分に応じた大きさを有するマーカを重畳して、前記マーカを重畳した画像を生成するオーバレイ画像生成部と、
     前記オーバレイ画像生成部から出力された前記マーカを重畳した画像を表示する表示部と、
    を備えるノイズ源可視化システム。
    A circuit design database for storing circuit design data of an electric circuit board composed of a plurality of electronic components;
    A circuit simulator that outputs information indicating transient characteristics of electrical signals of a plurality of electronic components constituting the electrical circuit, using circuit design data stored in the circuit design database;
    A representative spectrum determining unit for determining a spectrum of a representative electrical signal having a different frequency spectrum from among the electrical signals of the plurality of electronic components;
    A spectrum analyzer for measuring the spectrum of the electromagnetic field around the electric circuit board;
    A representative spectrum component calculation unit that outputs information including the magnitude of the spectrum component of the representative electric signal included in the spectrum of the ambient electromagnetic field;
    An AR processing unit that outputs information indicating a three-dimensional positional relationship of the electric circuit board from position information of the AR tag held in advance using an image of the electric circuit board including the AR tag imaged by the imaging unit;
    A PCB design database for storing board design data of the electric circuit board;
    A representative spectrum position extraction unit that outputs information indicating a position of the spectrum of the representative electric signal on the electric circuit board using the information indicating the three-dimensional positional relationship of the electric circuit board and the board design data; ,
    According to the spectrum component of the representative electrical signal at the position on the electrical circuit board of the representative electrical signal output from the representative spectrum position extraction unit with respect to the image captured by the imaging unit. An overlay image generator that superimposes a marker having a size and generates an image in which the marker is superimposed;
    A display unit for displaying an image on which the marker output from the overlay image generation unit is superimposed;
    Noise source visualization system with
  2.  前記代表スペクトル決定部は、前記回路シミュレータが出力する電気信号のスペクトルを正規化してクラスタリングし、前記クラスタの中で平均パワーが最大のスペクトルを代表スペクトルとして出力するよう構成された、請求項1記載のノイズ源可視化システム。 The representative spectrum determination unit is configured to normalize and cluster the spectrum of an electrical signal output from the circuit simulator, and output a spectrum having the maximum average power among the clusters as a representative spectrum. Noise source visualization system.
  3.  前記代表スペクトル成分計算部は、前記代表スペクトル決定部が出力する代表スペクトルを並べた行列について、離散周波数の数を次元圧縮して正方行列へ変換するよう構成された、請求項1記載のノイズ源可視化システム。 The noise source according to claim 1, wherein the representative spectrum component calculation unit is configured to dimensionally compress the number of discrete frequencies and convert the matrix into a square matrix with respect to a matrix in which representative spectra output from the representative spectrum determination unit are arranged. Visualization system.
  4.  前記代表スペクトル成分計算部は、前記代表スペクトル決定部が出力する代表スペクトルを並べた行列について、離散周波数の数を次元圧縮して正方行列へ変換する際に、特異値分解法を使用して次元圧縮を行うよう構成された、請求項1記載のノイズ源可視化システム。 The representative spectrum component calculation unit uses a singular value decomposition method to convert the number of discrete frequencies into a square matrix by dimensionally compressing the number of discrete frequencies for the matrix in which the representative spectra output from the representative spectrum determination unit are arranged. The noise source visualization system of claim 1, wherein the noise source visualization system is configured to perform compression.
  5.  前記代表スペクトル成分計算部は、前記スペクトラムアナライザが観察したパワースペクトルについて、代表スペクトルを並べた行列を次元圧縮した方法と同じ方法で次元圧縮をするよう構成された、請求項1記載のノイズ源可視化システム。 2. The noise source visualization according to claim 1, wherein the representative spectrum component calculation unit is configured to perform dimensional compression on a power spectrum observed by the spectrum analyzer in the same manner as a dimensional compression method of a matrix in which representative spectra are arranged. system.
  6.  前記代表スペクトル成分計算部は、前記スペクトラムアナライザが観察したパワースペクトルに含まれる代表スペクトルの成分を計算するために、次元圧縮したパワースペクトルと次元圧縮した代表スペクトル行列の連立一次方程式を計算するよう構成された、請求項1記載のノイズ源可視化システム。 The representative spectrum component calculation unit is configured to calculate simultaneous linear equations of a dimensionally compressed power spectrum and a dimensionally compressed representative spectrum matrix in order to calculate a representative spectrum component included in a power spectrum observed by the spectrum analyzer. The noise source visualization system according to claim 1.
  7.  前記オーバレイ画像生成部は、前記代表スペクトル成分計算部が出力する代表スペクトルの成分の大きさに比例する長さで、前記代表スペクトルを持つ回路基板上のノードから前記スペクトラムアナライザの方向へ向かうようにマーカを描画するよう構成された、請求項1記載のノイズ源可視化システム。 The overlay image generation unit has a length proportional to the magnitude of the component of the representative spectrum output from the representative spectrum component calculation unit, and is directed from the node on the circuit board having the representative spectrum toward the spectrum analyzer. The noise source visualization system of claim 1, configured to draw a marker.
  8.  前記AR処理部は、前記電気回路基板にシルク印刷されたARタグを前記撮像部で撮像して三次元位置関係を算出するよう構成された、請求項1記載のノイズ源可視化システム。 The noise source visualization system according to claim 1, wherein the AR processing unit is configured to calculate a three-dimensional positional relationship by imaging an AR tag silk-printed on the electric circuit board by the imaging unit.
  9.  複数の電子部品で構成される電気回路基板の回路設計データを用いて、前記電気回路を構成する複数の電子部品の電気信号の過渡特性を示す情報を出力する回路シミュレータと、
     前記複数の電子部品の電気信号の中から、異なる周波数スペクトルを有する代表的な電気信号のスペクトルを決定する代表スペクトル決定部と、
     スペクトラムアナライザにより測定された前記電気回路基板の周辺電磁場のスペクトルに含まれる、前記代表的な電気信号のスペクトルの成分の大きさを含む情報を出力する代表スペクトル成分計算部と、
     撮像部により撮像されたARタグを含む前記電気回路基板の画像を用いて、予め保持する前記ARタグの位置情報から前記電気回路基板の三次元位置関係を示す情報を出力するAR処理部と、
     前記電気回路基板の三次元位置関係を示す情報と前記電気回路基板の基板設計データとを用いて、前記代表的な電気信号のスペクトルの前記電気回路基板上の位置を示す情報を出力する代表スペクトル位置抽出部と、
     前記撮像部により撮像された画像に対して、前記代表スペクトル位置抽出部から出力された代表的な電気信号の前記電気回路基板上の位置において、前記代表的な電気信号のスペクトルの成分に応じた大きさを有するマーカを重畳して、前記マーカを重畳した画像を生成して装置外部に出力するオーバレイ画像生成部と、
    を備えるノイズ源可視化装置。
    A circuit simulator that outputs information indicating transient characteristics of electrical signals of a plurality of electronic components constituting the electrical circuit, using circuit design data of an electrical circuit board composed of a plurality of electronic components, and
    A representative spectrum determining unit for determining a spectrum of a representative electrical signal having a different frequency spectrum from among the electrical signals of the plurality of electronic components;
    A representative spectrum component calculation unit that outputs information including the magnitude of the spectrum component of the representative electric signal included in the spectrum of the surrounding electromagnetic field of the electric circuit board measured by a spectrum analyzer;
    An AR processing unit that outputs information indicating a three-dimensional positional relationship of the electric circuit board from position information of the AR tag held in advance using an image of the electric circuit board including the AR tag imaged by the imaging unit;
    A representative spectrum that outputs information indicating the position of the spectrum of the representative electric signal on the electric circuit board using information indicating the three-dimensional positional relationship of the electric circuit board and board design data of the electric circuit board. A position extractor;
    According to the spectrum component of the representative electrical signal at the position on the electrical circuit board of the representative electrical signal output from the representative spectrum position extraction unit with respect to the image captured by the imaging unit. An overlay image generation unit that superimposes a marker having a size, generates an image on which the marker is superimposed, and outputs the generated image to the outside of the apparatus;
    Noise source visualization device comprising:
  10.  前記代表スペクトル決定部は、前記回路シミュレータが出力する電気信号のスペクトルを正規化してクラスタリングし、前記クラスタの中で平均パワーが最大のスペクトルを代表スペクトルとして出力するよう構成された、請求項9記載のノイズ源可視化装置。 The said representative spectrum determination part is comprised so that the spectrum of the electric signal which the said circuit simulator outputs may be normalized and clustered, and the spectrum with the largest average power in the said cluster is output as a representative spectrum. Noise source visualization device.
  11.  前記代表スペクトル成分計算部は、前記代表スペクトル決定部が出力する代表スペクトルを並べた行列について、離散周波数の数を次元圧縮して正方行列へ変換するよう構成された、請求項9記載のノイズ源可視化装置。 The noise source according to claim 9, wherein the representative spectrum component calculation unit is configured to dimensionally compress the number of discrete frequencies and convert the matrix into a square matrix with respect to a matrix in which representative spectra output from the representative spectrum determination unit are arranged. Visualization device.
  12.  前記代表スペクトル成分計算部は、前記代表スペクトル決定部が出力する代表スペクトルを並べた行列について、離散周波数の数を次元圧縮して正方行列へ変換する際に、特異値分解法を使用して次元圧縮を行うよう構成された、請求項9記載のノイズ源可視化装置。 The representative spectrum component calculation unit uses a singular value decomposition method to convert the number of discrete frequencies into a square matrix by dimensionally compressing the number of discrete frequencies for the matrix in which the representative spectra output from the representative spectrum determination unit are arranged. The noise source visualization apparatus according to claim 9, wherein the noise source visualization apparatus is configured to perform compression.
  13.  前記代表スペクトル成分計算部は、前記スペクトラムアナライザが観察したパワースペクトルについて、代表スペクトルを並べた行列を次元圧縮した方法と同じ方法で次元圧縮をするよう構成された、請求項9記載のノイズ源可視化装置。 The noise source visualization according to claim 9, wherein the representative spectrum component calculation unit is configured to perform dimensional compression on the power spectrum observed by the spectrum analyzer in the same manner as a dimensional compression method of a matrix in which representative spectra are arranged. apparatus.
  14.  前記代表スペクトル成分計算部は、前記スペクトラムアナライザが観察したパワースペクトルに含まれる代表スペクトルの成分を計算するために、次元圧縮したパワースペクトルと次元圧縮した代表スペクトル行列の連立一次方程式を計算するよう構成された、請求項9記載のノイズ源可視化装置。 The representative spectrum component calculation unit is configured to calculate simultaneous linear equations of a dimensionally compressed power spectrum and a dimensionally compressed representative spectrum matrix in order to calculate a representative spectrum component included in a power spectrum observed by the spectrum analyzer. The noise source visualization apparatus according to claim 9.
  15.  前記オーバレイ画像生成部は、前記代表スペクトル成分計算部が出力する代表スペクトルの成分の大きさに比例する長さで、前記代表スペクトルを持つ回路基板上のノードから前記スペクトラムアナライザの方向へ向かうようにマーカを描画するよう構成された、請求項9記載のノイズ源可視化装置。 The overlay image generation unit has a length proportional to the magnitude of the component of the representative spectrum output from the representative spectrum component calculation unit, and is directed from the node on the circuit board having the representative spectrum toward the spectrum analyzer. The noise source visualization device according to claim 9, configured to draw a marker.
  16.  前記AR処理部は、前記電気回路基板にシルク印刷されたARタグを前記撮像部で撮像して三次元位置関係を算出するよう構成された、請求項9記載のノイズ源可視化装置。 10. The noise source visualization device according to claim 9, wherein the AR processing unit is configured to calculate a three-dimensional positional relationship by imaging an AR tag silk-printed on the electric circuit board by the imaging unit.
  17.  コンピュータにより実行されるノイズ源可視化のためのプログラムであって、
     回路設計データベースに格納された電気回路基板の回路設計データを用いて回路シミュレーションを行い、前記電気回路基板を構成する各電子部品の電気信号の過渡特性を出力する回路シミュレーションステップと、
     前記電気信号の中で異なる周波数スペクトルを持つ代表的な電気信号を選択する代表スペクトル決定ステップと、
     スペクトラムアナライザにより、電気回路基板の動作中に測定した、前記電気回路基板の周辺電磁場のスペクトルに含まれる前記代表的な電気信号のスペクトルの成分を出力する代表スペクトル成分計算ステップと、
     撮像部により撮像された前記電気回路基板の画像を用いて、前記電気回路基板に付けられたARタグから前記電気回路基板の三次元位置関係を出力するAR処理ステップと、
     PCB設計データベースに格納された前記電気回路基板の基板設計データを用いて、前記代表的な電気信号の前記電気回路基板上の位置を出力する代表スペクトル位置抽出ステップと、
     前記代表的な電気信号のスペクトルの成分に応じた大きさを有し、前記代表的な電気信号の前記電気回路基板上の位置において、前記スペクトラムアナライザの方向へ向かうようにマーカを描画し、前記撮像部の実画像に重畳して二次元画像として投射するオーバレイ画像生成ステップと、
     前記実画像に前記マーカが重畳されて投射された二次元画像を表示する表示ステップと、
    を含むノイズ源可視化のためのプログラム。
    A noise source visualization program executed by a computer,
    A circuit simulation step of performing circuit simulation using circuit design data of the electric circuit board stored in the circuit design database, and outputting a transient characteristic of an electric signal of each electronic component constituting the electric circuit board;
    A representative spectrum determining step of selecting representative electrical signals having different frequency spectra among the electrical signals;
    A representative spectral component calculation step for outputting a component of a spectrum of the representative electric signal included in a spectrum of a surrounding electromagnetic field of the electric circuit board measured by a spectrum analyzer during operation of the electric circuit board;
    An AR processing step of outputting a three-dimensional positional relationship of the electric circuit board from an AR tag attached to the electric circuit board using an image of the electric circuit board imaged by the imaging unit;
    A representative spectral position extracting step of outputting a position of the representative electric signal on the electric circuit board using the board design data of the electric circuit board stored in a PCB design database;
    The representative electrical signal has a size corresponding to a spectrum component, and a marker is drawn at a position on the electrical circuit board of the representative electrical signal so as to face the spectrum analyzer, Overlay image generation step of projecting as a two-dimensional image superimposed on the actual image of the imaging unit;
    A display step of displaying a two-dimensional image projected with the marker superimposed on the real image;
    A program for visualizing noise sources.
  18.  回路設計データベースに格納された電気回路基板の回路設計データ用いて回路シミュレーションを行い、前記電気回路基板を構成する各電子部品の電気信号の過渡特性を出力する回路シミュレーションステップと、
     前記電気信号の中で異なる周波数スペクトルを持つ代表的な電気信号を選択する代表スペクトル決定ステップと、
     スペクトラムアナライザにより、前記電気回路基板の動作中に測定した、前記電気回路基板の周辺電磁場のスペクトルに含まれる前記代表的な電気信号のスペクトルの成分を出力する代表スペクトル成分計算ステップと、
     撮像部により撮像された前記電気回路基板の画像を用いて、前記電気回路基板に付けられたARタグから前記電気回路基板の三次元位置関係を出力するAR処理ステップと、
     PCB設計データベースに格納された前記電気回路基板の基板設計データを用いて、前記代表的な電気信号の前記電気回路基板上の位置を出力する代表スペクトル位置抽出ステップと、
     前記代表的な電気信号のスペクトルの成分に応じた大きさを有し、前記代表的な電気信号の前記電気回路基板上の位置において、前記スペクトラムアナライザの方向へ向かうようにマーカを描画し、前記撮像部の実画像に重畳して二次元画像として投射するオーバレイ画像生成ステップと、
     前記実画像に前記マーカが重畳されて投射された二次元画像を表示する表示ステップと、
    を含むノイズ源可視化方法。
    A circuit simulation step of performing circuit simulation using circuit design data of the electric circuit board stored in the circuit design database, and outputting a transient characteristic of an electric signal of each electronic component constituting the electric circuit board;
    A representative spectrum determining step of selecting representative electrical signals having different frequency spectra among the electrical signals;
    A representative spectrum component calculation step of outputting a component of the spectrum of the representative electric signal included in the spectrum of the electromagnetic field around the electric circuit board measured by the spectrum analyzer during the operation of the electric circuit board;
    An AR processing step of outputting a three-dimensional positional relationship of the electric circuit board from an AR tag attached to the electric circuit board using an image of the electric circuit board imaged by the imaging unit;
    A representative spectral position extracting step of outputting a position of the representative electric signal on the electric circuit board using the board design data of the electric circuit board stored in a PCB design database;
    The representative electrical signal has a size corresponding to a spectrum component, and a marker is drawn at a position on the electrical circuit board of the representative electrical signal so as to face the spectrum analyzer, Overlay image generation step of projecting as a two-dimensional image superimposed on the actual image of the imaging unit;
    A display step of displaying a two-dimensional image projected with the marker superimposed on the real image;
    Noise source visualization method including:
PCT/JP2013/004734 2012-08-09 2013-08-06 Noise source visualization system, noise source visualization device, program for noise source visualization, and noise source visualization method WO2014024468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014529305A JP6152106B2 (en) 2012-08-09 2013-08-06 Noise source visualization system, noise source visualization device, noise source visualization program, and noise source visualization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-177017 2012-08-09
JP2012177017 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014024468A1 true WO2014024468A1 (en) 2014-02-13

Family

ID=50067721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004734 WO2014024468A1 (en) 2012-08-09 2013-08-06 Noise source visualization system, noise source visualization device, program for noise source visualization, and noise source visualization method

Country Status (2)

Country Link
JP (1) JP6152106B2 (en)
WO (1) WO2014024468A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039486A1 (en) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 Leakage electric field measurement device
WO2021039487A1 (en) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 Leakage electric field measurement device
EP4296691A1 (en) * 2022-06-22 2023-12-27 Rohde & Schwarz GmbH & Co. KG Method, system and probe for measuring and visualizing values of an electromagnetic parameter of a pcb

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084413A (en) * 2004-09-17 2006-03-30 Sony Corp Source identifying method for electromagnetic interference signal
WO2009028186A1 (en) * 2007-08-29 2009-03-05 Kanazawa University Electromagnetic field space distribution visualizing device, electromagnetic field space distribution visualizing method, and program thereof
JP2010146096A (en) * 2008-12-16 2010-07-01 Oki Electric Ind Co Ltd Electromagnetic field simulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006084413A (en) * 2004-09-17 2006-03-30 Sony Corp Source identifying method for electromagnetic interference signal
WO2009028186A1 (en) * 2007-08-29 2009-03-05 Kanazawa University Electromagnetic field space distribution visualizing device, electromagnetic field space distribution visualizing method, and program thereof
JP2010146096A (en) * 2008-12-16 2010-07-01 Oki Electric Ind Co Ltd Electromagnetic field simulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039486A1 (en) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 Leakage electric field measurement device
WO2021039487A1 (en) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 Leakage electric field measurement device
EP4296691A1 (en) * 2022-06-22 2023-12-27 Rohde & Schwarz GmbH & Co. KG Method, system and probe for measuring and visualizing values of an electromagnetic parameter of a pcb

Also Published As

Publication number Publication date
JP6152106B2 (en) 2017-06-21
JPWO2014024468A1 (en) 2016-07-25

Similar Documents

Publication Publication Date Title
US9933470B2 (en) Energy spectrum visualization system
US8352233B2 (en) Electromagnetic field simulation apparatus
CN104700962B (en) Method for manufacturing wirning harness
US10325057B2 (en) Using computer-aided design layout in scanning system
JP6688088B2 (en) Information processing apparatus and control method thereof
JP6152106B2 (en) Noise source visualization system, noise source visualization device, noise source visualization program, and noise source visualization method
JP4671173B2 (en) Printed circuit board design support apparatus, printed circuit board design support method, and printed circuit board design support program
JP2013210207A (en) Target identification device for radar image, target identification method, and target identification program
US10523522B2 (en) Environmental visualization system including computing architecture visualization to display a multidimensional layout
Chalhoub et al. Leveraging site survey points for mixed reality BIM visualization
CN117130264A (en) Method and device for controlling bonded silver wire equipment based on side time-frequency resource
CN117195752A (en) Modeling method of axial split-phase hybrid excitation type magnetic levitation motor
JP7042433B2 (en) How to operate the electromagnetic field simulator and the electromagnetic field simulator
JP4924380B2 (en) Simulation method and simulation apparatus
CN102819971A (en) Test experiment training simulation method of power equipment based on internet
JP6138373B2 (en) Compensation matrix generation method for substrate inspection
KR101850134B1 (en) Method and apparatus for generating 3d motion model
JP7474183B2 (en) Electromagnetic environment analysis system, electromagnetic environment analysis method, and program
JP4684188B2 (en) Circuit model creation program, computer-readable recording medium storing circuit model creation program, and circuit model creation device
JP2006302089A (en) Method of supporting design by three-dimensional cad
JP2010146096A (en) Electromagnetic field simulator
CN108572283A (en) One kind being directed to radiation EMI Noise Sources Identification method
WO2015133052A1 (en) Information processing device, information processing method, and storage medium wherein information processing program is stored
JP6586637B2 (en) Physical quantity distribution calculation program, physical quantity distribution calculation method, and information processing apparatus
WO2012157591A1 (en) Design assistance device, design assistance system, and design assistance method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828503

Country of ref document: EP

Kind code of ref document: A1