WO2014024306A1 - Near-field optical device and system - Google Patents

Near-field optical device and system Download PDF

Info

Publication number
WO2014024306A1
WO2014024306A1 PCT/JP2012/070510 JP2012070510W WO2014024306A1 WO 2014024306 A1 WO2014024306 A1 WO 2014024306A1 JP 2012070510 W JP2012070510 W JP 2012070510W WO 2014024306 A1 WO2014024306 A1 WO 2014024306A1
Authority
WO
WIPO (PCT)
Prior art keywords
field light
distance
energy
dielectric layer
recording medium
Prior art date
Application number
PCT/JP2012/070510
Other languages
French (fr)
Japanese (ja)
Inventor
孝幸 糟谷
杉浦 聡
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2014529223A priority Critical patent/JPWO2014024306A1/en
Priority to PCT/JP2012/070510 priority patent/WO2014024306A1/en
Publication of WO2014024306A1 publication Critical patent/WO2014024306A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6088Optical waveguide in or on flying head

Definitions

  • the present invention relates to a technical field of a near-field light device that provides a minute spot in which energy is concentrated using, for example, near-field light, and a system in which the near-field light device is applied to, for example, a magnetic recording head.
  • the laser beam is condensed using an objective lens or an optical waveguide. It cannot be narrowed down to a size smaller than the wavelength of light.
  • the metal conductor which is a near-field light generating part has a size of, for example, several tens of nanometers or less and a wavelength of light or less. For this reason, most of the condensed laser light does not contribute to the generation of near-field light, and there is a technical problem that the light use efficiency is low.
  • the present invention has been made in view of the above problems, for example, and an object thereof is to provide a near-field light device and system capable of efficiently generating near-field light.
  • the near-field light device of the present invention includes a first member and a second member. Between the first member and the second member, the first member and the second member When a medium made of a material different from the second member is interposed, and the second member is a member that receives energy via near-field light generated in the first member, the second member is: The first member is disposed away from the first member by a distance at which the energy related to the near-field light propagating in the medium becomes a local maximum, and the second member does not receive energy via the near-field light. In the case of a member, the second member is disposed away from the first member by a distance at which the energy of the near-field light propagating in the medium becomes a minimum.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of a near-field light device according to the embodiment.
  • FIG. 2 is a conceptual diagram showing the concept of energy fluctuation of near-field light propagating in the medium.
  • the scale of each layer and each member is different in order to make each layer and each member recognizable on the drawing.
  • the near-field light device includes a part A and a part B. Between parts A and B, a medium made of a material different from parts A and B, such as air, a lubricant, and a dielectric, is interposed.
  • part B is a member that receives energy via the near-field light generated in the part A
  • the distance L is set so that the intensity of the propagation energy becomes a mountain at the position of the part B
  • the part A Therefore, energy can be appropriately propagated to part B.
  • part B is a member that does not receive energy through near-field light generated in part A
  • the distance L is set so that the intensity of propagation energy is a valley at the position of part B
  • the part It is possible to prevent unintended energy from being propagated from A to part B.
  • the “part A” and “part B” according to the present embodiment are examples of the “first member” and the “second member” according to the present invention, respectively.
  • FIG. 3 is a schematic configuration diagram illustrating a configuration of a system using the near-field light device according to the first embodiment.
  • a system 400 includes a near-field light device 200 and a recording medium 300.
  • the near-field optical device 200 is laminated on the mesa-shaped semiconductor layer 15 made of, for example, Si (silicon), GaN (gallium nitride), GaAs (gallium arsenide), etc., and is made of, for example, SiO (silicon oxide).
  • the near-field light device 200 when light is incident on the near-field light device 200, energy resulting from the incident light is collected on the metal film 13. The energy collected on the metal film 13 propagates to the metal particles 11.
  • the recording of information on the recording medium 300 uses, for example, that at least a part of the energy propagated to the metal particles 11 raises the temperature of a part of the recording medium 300 facing the metal particles 11 as near-field light. Done.
  • the distance between the metal particles 11 and the recording medium 300 is set to a distance A.
  • a distance between the upper surface of the dielectric layer 12 and the recording medium 300 is set to a distance B.
  • the distance between the upper surface and the lower surface of the dielectric layer 12 (that is, the thickness of the dielectric layer 12) is set to the distance C.
  • the distance between the upper surface of the dielectric layer 14 and the recording medium 300 is set to the distance D.
  • the distance A is a near-field propagating in the air interposed between the metal particles 11 and the recording medium 300.
  • the light energy intensity is set to be a mountain (see FIG. 2) at the position of the recording medium 300.
  • the distance C is determined by the energy intensity of the near-field light propagating in the dielectric layer 12 at the position of the metal particles 11. Is set to be a mountain.
  • the distance B has a trough (see FIG. Reference) is set.
  • the energy intensity of the near-field light propagating in the air becomes a valley at the position of the recording medium 300. Is set as follows.
  • the “distance A” and the “distance B” according to the present embodiment are the “first distance” according to the present invention, respectively. And “second distance”.
  • FIG. 4 is a schematic configuration diagram showing a configuration of a system using the near-field light device according to the second embodiment.
  • 2nd Example while omitting the description which overlaps with 1st Example suitably, the same code
  • the system 410 includes a near-field light device 210 and a recording medium 300.
  • the near-field light device 210 includes a mesa-shaped semiconductor layer 15 made of, for example, Si, GaN, GaAs, and the like, and a dielectric layer 12 made of a dielectric such as SiO, VaO, etc., stacked on the semiconductor layer 15;
  • the metal particles 11 are stacked on the dielectric layer 12 and made of, for example, Au, Ag, or the like.
  • the near-field light device 210 when light is incident on the near-field light device 210, energy caused by the incident light propagates to the metal particles 11.
  • the recording of information on the recording medium 300 uses, for example, that at least a part of the energy propagated to the metal particles 11 raises the temperature of a part of the recording medium 300 facing the metal particles 11 as near-field light. Done.
  • FIG. 5 is a schematic configuration diagram showing a configuration of a system using the near-field light device according to the third embodiment.
  • 3rd Example while overlapping with 1st Example is abbreviate
  • the system 420 includes a near-field light device 220 and a recording medium 300.
  • the near-field light device 220 includes a mesa-shaped semiconductor layer 15 made of, for example, Si, GaN, GaAs, and the like, and a dielectric layer 12 made of a dielectric such as SiO, VaO, etc., stacked on the semiconductor layer 15;
  • a metal particle 11 made of Au, Ag, or the like is provided.
  • the metal particles 11 are covered with a dielectric layer 12. If comprised in this way, the metal particle 11 can be protected and it is very advantageous practically.
  • FIG. 6 is a schematic configuration diagram showing a configuration of a system using a near-field light device according to a modification of the third embodiment.
  • the near-field light device 220 or 230 when light is incident on the near-field light device 220 or 230, energy caused by the incident light propagates to the metal particles 11.
  • the recording of information on the recording medium 300 uses, for example, that at least a part of the energy propagated to the metal particles 11 raises the temperature of a part of the recording medium 300 facing the metal particles 11 as near-field light. Done.
  • FIG. 7 is a schematic configuration diagram showing a configuration of a system using the near-field light device according to the fourth embodiment.
  • symbol is attached
  • the system 440 includes a near-field light device 240 and a recording medium 300.
  • the near-field light device 240 is laminated on a semiconductor layer 16 having a mesa shape having a plurality of quantum dots made of, for example, InAs (indium arsenide), for example, inside a semiconductor made of, for example, GaAs,
  • a dielectric layer 12 made of a dielectric material such as SiO or VaO and metal particles 11 made of Au or Ag, for example, are provided. If comprised in this way, the energy of the light which injected into the semiconductor layer 16 can be propagated to the metal particle 11 comparatively efficiently by the quantum dot.
  • the semiconductor layer 17 includes a plurality of quantum dot layers in which quantum dots are regularly arranged in a lattice shape. May be.
  • FIG. 8 is a schematic configuration diagram showing the configuration of a system using a near-field light device according to a modification of the fourth embodiment.
  • quantum dots for example, particles having a size that exhibits a quantum effect such as metal nanoparticles may be included in the semiconductor layer.
  • the band gap can be controlled freely by controlling the size of the quantum dots.
  • the semiconductor layer 16 can be designed so that light of an arbitrary wavelength can be efficiently absorbed and emitted.
  • white light from an LED (Light Emitting Diode) or the like is used as incident light, and the semiconductor layer 16 can absorb a wavelength suitable for the size of the quantum dots.
  • the near-field light device 240 or 250 when light is incident on the near-field light device 240 or 250, energy caused by the incident light propagates to the metal particles 11.
  • the recording of information on the recording medium 300 uses, for example, that at least a part of the energy propagated to the metal particles 11 raises the temperature of a part of the recording medium 300 facing the metal particles 11 as near-field light. Done.
  • FIG. 9 is a diagram illustrating an example of magnetic recording using the magnetic head according to the example.
  • the near-field light device 230 shown in FIG. 6 is used.
  • the present invention is not limited to the near-field light device 230, and various near-field light devices described above can be applied.
  • a light source such as a surface emitting laser is controlled so as to emit light according to an input signal.
  • the metal particles 11 and a part of the magnetic recording medium 310 facing the metal particles 11 are integrated to generate magnetism. Energy is applied to the recording medium 310.
  • the coercive force of the region of the magnetic recording medium 310 given energy by the near-field light is reduced, and magnetic recording by the writing magnetic pole can be easily performed.
  • the recording signal recorded on the magnetic recording medium 310 is read by the reading magnetic pole.
  • the recording density can be improved as the size of the metal particles 11 is reduced.
  • the distance between the metal particles 11 of the near-field light device and the magnetic recording medium 310 is such that the energy intensity of the near-field light propagating in the air is a peak at the position of the magnetic recording medium 310 (see FIG. 2). Is set to a distance A that is For this reason, energy is efficiently transmitted to the portion of the magnetic recording medium 310 that faces the metal particles 11, so that the portion can be efficiently heated.
  • the distance between the surface of the semiconductor layer facing the magnetic recording medium 310 in the near-field light device and the magnetic recording medium 310 is such that the energy intensity of the near-field light propagating in the air is such that the magnetic recording medium 310 Is set to a distance B which is a distance that becomes a valley (see FIG. 2).
  • the “distance B” according to the application example is another example of the “second distance” according to the present invention.
  • the magnetic head is attached to the tip of an arm not shown here.
  • the distance A and the distance B are realized by riding on the air flow generated by the rotation of the magnetic recording medium 310 and flying the magnetic head from the surface of the magnetic recording medium 310 at a certain height. Further, as a method of maintaining the distance A, a distance is measured by a photo sensor or the like (not shown), and a heater (not shown) provided at the tip of the arm is driven according to the measurement result to maintain the distance A. Also good.
  • the distance between the peaks and valleys should be adjusted according to the energy intensity of the near-field light propagating in the lubricant. , Distance A and distance B are set.
  • FIG. 10 is a perspective view showing a schematic configuration of an element having an optical circuit.
  • FIG. 11 is a diagram illustrating an example of a configuration of an optical waveguide inside the optical circuit.
  • FIG. 11 five optical waveguides Line1, Line2, Line3, Line4, and Line5 are provided in the optical circuit.
  • Fibers corresponding to input lines are connected to the input-side end portions In1, In2, In3, In4, and In5 of the optical waveguides Line1, Line2, Line3, Line4, and Line5.
  • output fibers corresponding to output lines are connected to the output-side ends Out1, Out2, and Out3 of the optical waveguides Line1, Line2, and Line5.
  • near-field light is used for optical connection between optical waveguides.
  • the distance between the optical waveguides to be optically connected is a distance at which the energy intensity of the near-field light propagating in the air becomes a mountain (see FIG. 2) in the optical waveguide to which the energy is to be propagated (see “Distance S see 1 "and” distance S 2 ").
  • the distance between the optical waveguides that are not desired to be optically connected is the distance at which the energy intensity of the near-field light propagating in the air becomes a valley in the adjacent optical waveguide (“distance W 1 ”, “distance W 2 ”). , “Distance W 3 ”, “Distance W 4 ”, “Distance W 5 ” and “Distance W 6 ”).
  • the optical waveguide Line2 and the optical waveguide Line3 are optically connected to each other at a portion that is a distance S 1.
  • the optical waveguide Line4 and the optical waveguide Line5, are optically connected to each other at a portion that is the distance S 2.

Abstract

A near-field optical device is provided with a first member and a second member. A medium made of a material that is different from the first and second members is interposed between the first member and the second member. When the second member is a member that receives energy by means of near-field light generated in the first member, the second member is placed apart from the first member by a distance where the energy associated with the near-field light propagating through the medium is near a maximum. When the second member is a member that does not receive energy by means of near-field light, the second member is placed apart from the first member by a distance where the energy associated with the near-field light propagating through the medium is near a minimum.

Description

近接場光デバイス及びシステムNear-field light device and system
 本発明は、例えば近接場光を用いエネルギーを集中させた微小スポットを提供する近接場光デバイス、及び、例えば磁気記録ヘッド等に、該近接場光デバイスを適用したシステムの技術分野に関する。 The present invention relates to a technical field of a near-field light device that provides a minute spot in which energy is concentrated using, for example, near-field light, and a system in which the near-field light device is applied to, for example, a magnetic recording head.
 近接場光を用い、光の回折限界を超えたナノスケールの微小光スポットの利用例として、例えば磁気記録媒体記録密度を向上させるための方式の一つである熱アシスト磁気記録が提案されている(特許文献1~4参照)。 As an example of using a nano-scale minute light spot that uses near-field light and exceeds the light diffraction limit, for example, heat-assisted magnetic recording, which is one of the methods for improving the recording density of magnetic recording media, has been proposed. (See Patent Documents 1 to 4).
特開2009-163834号公報JP 2009-163834 A 特開2010-146655号公報JP 2010-146655 A 特開2010-146663号公報JP 2010-146663 A 特開2003-045004号公報JP 2003-045004 A
 上記特許文献1~4に記載の熱アシスト磁気記録用の記録ヘッドの構成では、例えば対物レンズや光導波路を用いてレーザ光を集光させているが、集光された光のスポット径を、光の波長以下のサイズに絞り込むことはできない。他方、近接場光発生部である金属導体は、例えば数十ナノメートル以下と、光の波長以下のサイズである。このため、集光されたレーザ光の大部分は近接場光の発生に寄与せず、光の利用効率が低いという技術的問題点がある。 In the configuration of the recording head for heat-assisted magnetic recording described in Patent Documents 1 to 4, for example, the laser beam is condensed using an objective lens or an optical waveguide. It cannot be narrowed down to a size smaller than the wavelength of light. On the other hand, the metal conductor which is a near-field light generating part has a size of, for example, several tens of nanometers or less and a wavelength of light or less. For this reason, most of the condensed laser light does not contribute to the generation of near-field light, and there is a technical problem that the light use efficiency is low.
 本発明は、例えば上記問題点に鑑みてなされたものであり、効率良く近接場光を発生させることができる近接場光デバイス及びシステムを提供することを課題とする。 The present invention has been made in view of the above problems, for example, and an object thereof is to provide a near-field light device and system capable of efficiently generating near-field light.
 本発明の近接場光デバイスは、上記課題を解決するために、第1部材と、第2部材と、を備え、前記第1部材と前記第2部材との間には、前記第1部材及び前記第2部材とは異なる物質からなる媒体が介在しており、前記第2部材が、前記第1部材に生じた近接場光を介してエネルギーを受け取る部材である場合、前記第2部材は、前記第1部材から、前記媒体中を伝播する前記近接場光に係るエネルギーが極大近傍になる距離だけ離れて配置されており、前記第2部材が、前記近接場光を介してエネルギーを受け取らない部材である場合、前記第2部材は、前記第1部材から、前記媒体中を伝播する前記近接場光に係るエネルギーが極小近傍になる距離だけ離れて配置されている。 In order to solve the above-described problem, the near-field light device of the present invention includes a first member and a second member. Between the first member and the second member, the first member and the second member When a medium made of a material different from the second member is interposed, and the second member is a member that receives energy via near-field light generated in the first member, the second member is: The first member is disposed away from the first member by a distance at which the energy related to the near-field light propagating in the medium becomes a local maximum, and the second member does not receive energy via the near-field light. In the case of a member, the second member is disposed away from the first member by a distance at which the energy of the near-field light propagating in the medium becomes a minimum.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments to be described below.
実施形態に係る近接場光デバイスの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the near-field light device which concerns on embodiment. 媒体中を伝播する近接場光のエネルギー変動の概念を示す概念図である。It is a conceptual diagram which shows the concept of the energy fluctuation | variation of the near field light which propagates in the medium. 第1実施例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the system using the near-field light device which concerns on 1st Example. 第2実施例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the system using the near-field light device which concerns on 2nd Example. 第3実施例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the system using the near-field light device which concerns on 3rd Example. 第3実施例の変形例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the system using the near-field light device which concerns on the modification of 3rd Example. 第4実施例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the system using the near-field light device which concerns on 4th Example. 第4実施例の変形例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the system using the near-field light device which concerns on the modification of 4th Example. 実施例に係る磁気ヘッドを用いた磁気記録の一例を説明する図である。It is a figure explaining an example of the magnetic recording using the magnetic head which concerns on an Example. 光回路を有する素子の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the element which has an optical circuit. 光回路内部の光導波路の構成の一例を示す図である。It is a figure which shows an example of a structure of the optical waveguide inside an optical circuit.
 本発明の近接場光デバイスに係る実施形態を、図1及び図2を参照して説明する。図1は、実施形態に係る近接場光デバイスの構成を示す概略構成図である。図2は、媒体中を伝播する近接場光のエネルギー変動の概念を示す概念図である。尚、以下で参照する各図においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材ごとに縮尺を異ならしめてある。 Embodiments according to the near-field light device of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a schematic configuration diagram illustrating a configuration of a near-field light device according to the embodiment. FIG. 2 is a conceptual diagram showing the concept of energy fluctuation of near-field light propagating in the medium. In each of the drawings referred to below, the scale of each layer and each member is different in order to make each layer and each member recognizable on the drawing.
 図1において、本実施形態に係る近接場光デバイスは、パーツAとパーツBとを備えて構成されている。パーツAとパーツBとの間には、例えば空気、潤滑材、誘電体等の、パーツA及びパーツBとは異なる物質からなる媒体が介在している。 In FIG. 1, the near-field light device according to this embodiment includes a part A and a part B. Between parts A and B, a medium made of a material different from parts A and B, such as air, a lubricant, and a dielectric, is interposed.
 ここで、媒体中を近接場光が伝播する際、該伝播する近接場光のエネルギーは、図2に示すように、小刻みな変動を繰り返しながら減衰することが知られている(例えば、国立台湾大学Computer and Information Networking Center、Ding-wei Huang教授の資料:http://homepage.ntu.edu.tw/~dwhuang/courses/spp/spp_7_1.pdf参照)。 Here, when the near-field light propagates in the medium, it is known that the energy of the propagating near-field light attenuates while repeating small fluctuations as shown in FIG. University Computer andCompInformation Networking Center, Ding-wei Huang Prof .: http://homepage.ntu.edu.tw/~dwhuang/courses/spp/spp_7_1.pdf).
 この現象を利用して、図1におけるパーツAとパーツBとの間の距離Lを、パーツBの位置において伝播エネルギーの強度が山(即ち、極大)となるように設定すると、パーツAからパーツBへ近接場光を介してエネルギーを伝播させることができる。他方、距離LをパーツBの位置において伝播エネルギーの強度が谷(即ち、極小)となるように設定すると、パーツAからパーツBへはエネルギーが伝播されない。 Using this phenomenon, if the distance L between part A and part B in FIG. 1 is set so that the intensity of the propagation energy becomes a mountain (that is, maximum) at the position of part B, part A to part A Energy can be propagated to B via near-field light. On the other hand, if the distance L is set so that the intensity of the propagation energy becomes a trough (that is, a minimum) at the position of the part B, the energy is not propagated from the part A to the part B.
 従って、パーツBが、パーツAに生じた近接場光を介してエネルギーを受け取る部材である場合、距離Lを、パーツBの位置において伝播エネルギーの強度が山となるように設定すれば、パーツAからパーツBに適切にエネルギーを伝播させることができる。また、パーツBが、パーツAに生じた近接場光を介してエネルギーを受け取らない部材である場合、距離Lを、パーツBの位置において伝播エネルギーの強度が谷となるように設定すれば、パーツAからパーツBに意図しないエネルギーが伝播することを防止することができる。 Therefore, when the part B is a member that receives energy via the near-field light generated in the part A, if the distance L is set so that the intensity of the propagation energy becomes a mountain at the position of the part B, the part A Therefore, energy can be appropriately propagated to part B. In addition, when part B is a member that does not receive energy through near-field light generated in part A, if the distance L is set so that the intensity of propagation energy is a valley at the position of part B, the part It is possible to prevent unintended energy from being propagated from A to part B.
 尚、本実施形態に係る「パーツA」及び「パーツB」は、夫々、本発明に係る「第1部材」及び「第2部材」の一例である。 The “part A” and “part B” according to the present embodiment are examples of the “first member” and the “second member” according to the present invention, respectively.
 <第1実施例>
 本発明の近接場光デバイスを用いたシステムに係る第1実施例について、図3を参照して説明する。図3は、第1実施例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。
<First embodiment>
A first embodiment of the system using the near-field light device of the present invention will be described with reference to FIG. FIG. 3 is a schematic configuration diagram illustrating a configuration of a system using the near-field light device according to the first embodiment.
 図3において、システム400は、近接場光デバイス200と、記録媒体300とを備えて構成されている。近接場光デバイス200は、例えばSi(ケイ素)、GaN(窒化ガリウム)、GaAs(砒化ガリウム)等からなるメサ形状の半導体層15と、該半導体層15の上に積層され、例えばSiO(酸化ケイ素)、VaO等の誘電体からなる誘電体層14と、該誘電体層14の上に積層され、例えばAu(金)等からなる金属フィルム13と、該金属フィルム13の上に積層され、例えばSiO、VaO等の誘電体からなる誘電体層12と、該誘電体層12の上に積層され、例えばAu(金)、Ag(銀)等からなる金属粒子11と、を備えて構成されている。 In FIG. 3, a system 400 includes a near-field light device 200 and a recording medium 300. The near-field optical device 200 is laminated on the mesa-shaped semiconductor layer 15 made of, for example, Si (silicon), GaN (gallium nitride), GaAs (gallium arsenide), etc., and is made of, for example, SiO (silicon oxide). ), A dielectric layer 14 made of a dielectric such as VaO, and the like, laminated on the dielectric layer 14, for example, a metal film 13 made of Au (gold), etc., and laminated on the metal film 13, for example, A dielectric layer 12 made of a dielectric material such as SiO or VaO, and metal particles 11 laminated on the dielectric layer 12 and made of, for example, Au (gold), Ag (silver), or the like. Yes.
 動作時に、近接場光デバイス200に光が入射すると、該入射した光に起因するエネルギーが金属フィルム13に集められる。そして、該金属フィルム13に集められたエネルギーが金属粒子11に伝播する。記録媒体300への情報の記録は、例えば、金属粒子11に伝播したエネルギーの少なくとも一部が、近接場光として、金属粒子11に対向する記録媒体300の一部の温度を上昇させることを利用して行われる。 During operation, when light is incident on the near-field light device 200, energy resulting from the incident light is collected on the metal film 13. The energy collected on the metal film 13 propagates to the metal particles 11. The recording of information on the recording medium 300 uses, for example, that at least a part of the energy propagated to the metal particles 11 raises the temperature of a part of the recording medium 300 facing the metal particles 11 as near-field light. Done.
 図3に示すように、金属粒子11と記録媒体300との間の距離は、距離Aに設定されている。誘電体層12の上面と記録媒体300との間の距離は、距離Bに設定されている。誘電体層12の上面及び下面間の距離(即ち、誘電体層12の厚さ)は、距離Cに設定されている。誘電体層14の上面と記録媒体300との間の距離は、距離Dに設定されている。 3, the distance between the metal particles 11 and the recording medium 300 is set to a distance A. A distance between the upper surface of the dielectric layer 12 and the recording medium 300 is set to a distance B. The distance between the upper surface and the lower surface of the dielectric layer 12 (that is, the thickness of the dielectric layer 12) is set to the distance C. The distance between the upper surface of the dielectric layer 14 and the recording medium 300 is set to the distance D.
 ここで、金属粒子11から記録媒体300へは、近接場光を介してエネルギーを伝播させたいので、距離Aは、金属粒子11と記録媒体300との間に介在する空気中を伝播する近接場光のエネルギー強度が、記録媒体300の位置において山(図2参照)となるように設定される。 Here, since it is desired to propagate energy from the metal particles 11 to the recording medium 300 via near-field light, the distance A is a near-field propagating in the air interposed between the metal particles 11 and the recording medium 300. The light energy intensity is set to be a mountain (see FIG. 2) at the position of the recording medium 300.
 また、金属フィルム13から金属粒子11へも、近接場光を介してエネルギーを伝播させたいので、距離Cは、誘電体層12中を伝播する近接場光のエネルギー強度が、金属粒子11の位置において山となるように設定される。 Further, since it is desired to propagate energy from the metal film 13 to the metal particles 11 via near-field light, the distance C is determined by the energy intensity of the near-field light propagating in the dielectric layer 12 at the position of the metal particles 11. Is set to be a mountain.
 他方、誘電体層12の上面から記録媒体300へは、エネルギーを伝播させたくないので、距離Bは、空気中を伝播する近接場光のエネルギー強度が、記録媒体300の位置において谷(図2参照)となるように設定される。 On the other hand, since it is not desired to propagate energy from the upper surface of the dielectric layer 12 to the recording medium 300, the distance B has a trough (see FIG. Reference) is set.
 同様に、誘電体層14の上面から記録媒体300へは、エネルギーを伝播させたくないので、距離Dは、空気中を伝播する近接場光のエネルギー強度が、記録媒体300の位置において谷となるように設定される。 Similarly, since it is not desired to propagate energy from the upper surface of the dielectric layer 14 to the recording medium 300, the energy intensity of the near-field light propagating in the air becomes a valley at the position of the recording medium 300. Is set as follows.
 尚、本実施例に係る「距離A」及び「距離B」は、夫々、本発明に係る「第1の距離」
及び「第2の距離」の一例である。
The “distance A” and the “distance B” according to the present embodiment are the “first distance” according to the present invention, respectively.
And “second distance”.
 <第2実施例>
 本発明の近接場光デバイスを用いたシステムに係る第2実施例について、図4を参照して説明する。図4は、第2実施例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。尚、第2実施例について、第1実施例と重複する説明を適宜省略すると共に、図面上における共通箇所には同一符号を付して示す。
<Second embodiment>
A second embodiment of the system using the near-field light device of the present invention will be described with reference to FIG. FIG. 4 is a schematic configuration diagram showing a configuration of a system using the near-field light device according to the second embodiment. In addition, about 2nd Example, while omitting the description which overlaps with 1st Example suitably, the same code | symbol is attached | subjected and shown to a common location on drawing.
 図4において、システム410は、近接場光デバイス210と、記録媒体300とを備えて構成されている。近接場光デバイス210は、例えばSi、GaN、GaAs等からなるメサ形状の半導体層15と、該半導体層15の上に積層され、例えばSiO、VaO等の誘電体からなる誘電体層12と、該誘電体層12の上に積層され、例えばAu、Ag等からなる金属粒子11と、を備えて構成されている。 4, the system 410 includes a near-field light device 210 and a recording medium 300. The near-field light device 210 includes a mesa-shaped semiconductor layer 15 made of, for example, Si, GaN, GaAs, and the like, and a dielectric layer 12 made of a dielectric such as SiO, VaO, etc., stacked on the semiconductor layer 15; The metal particles 11 are stacked on the dielectric layer 12 and made of, for example, Au, Ag, or the like.
 動作時に、近接場光デバイス210に光が入射すると、該入射した光に起因するエネルギーが金属粒子11に伝播する。記録媒体300への情報の記録は、例えば、金属粒子11に伝播したエネルギーの少なくとも一部が、近接場光として、金属粒子11に対向する記録媒体300の一部の温度を上昇させることを利用して行われる。 During operation, when light is incident on the near-field light device 210, energy caused by the incident light propagates to the metal particles 11. The recording of information on the recording medium 300 uses, for example, that at least a part of the energy propagated to the metal particles 11 raises the temperature of a part of the recording medium 300 facing the metal particles 11 as near-field light. Done.
 <第3実施例>
 本発明の近接場光デバイスを用いたシステムに係る第3実施例について、図5を参照して説明する。図5は、第3実施例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。尚、第3実施例について、第1実施例と重複する説明を適宜省略すると共に、図面上における共通箇所には同一符号を付して示す。
<Third embodiment>
A third embodiment of the system using the near-field light device of the present invention will be described with reference to FIG. FIG. 5 is a schematic configuration diagram showing a configuration of a system using the near-field light device according to the third embodiment. In addition, about 3rd Example, while overlapping with 1st Example is abbreviate | omitted suitably, the common code | symbol is attached | subjected and shown in drawing.
 図5において、システム420は、近接場光デバイス220と、記録媒体300とを備えて構成されている。近接場光デバイス220は、例えばSi、GaN、GaAs等からなるメサ形状の半導体層15と、該半導体層15の上に積層され、例えばSiO、VaO等の誘電体からなる誘電体層12と、例えばAu、Ag等からなる金属粒子11と、を備えて構成されている。ここでは特に、金属粒子11が、誘電体層12により覆われている。このように構成すれば、金属粒子11を保護することができ、実用上非常に有利である。 In FIG. 5, the system 420 includes a near-field light device 220 and a recording medium 300. The near-field light device 220 includes a mesa-shaped semiconductor layer 15 made of, for example, Si, GaN, GaAs, and the like, and a dielectric layer 12 made of a dielectric such as SiO, VaO, etc., stacked on the semiconductor layer 15; For example, a metal particle 11 made of Au, Ag, or the like is provided. Here, in particular, the metal particles 11 are covered with a dielectric layer 12. If comprised in this way, the metal particle 11 can be protected and it is very advantageous practically.
 尚、図6に示すシステム430の近接場光デバイス230のように、誘電体層12により、金属粒子11及び半導体層15が覆われていてもよい。図6は、第3実施例の変形例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。 In addition, the metal particle 11 and the semiconductor layer 15 may be covered with the dielectric layer 12 like the near-field light device 230 of the system 430 shown in FIG. FIG. 6 is a schematic configuration diagram showing a configuration of a system using a near-field light device according to a modification of the third embodiment.
 動作時に、近接場光デバイス220或いは230に光が入射すると、該入射した光に起因するエネルギーが金属粒子11に伝播する。記録媒体300への情報の記録は、例えば、金属粒子11に伝播したエネルギーの少なくとも一部が、近接場光として、金属粒子11に対向する記録媒体300の一部の温度を上昇させることを利用して行われる。 During operation, when light is incident on the near-field light device 220 or 230, energy caused by the incident light propagates to the metal particles 11. The recording of information on the recording medium 300 uses, for example, that at least a part of the energy propagated to the metal particles 11 raises the temperature of a part of the recording medium 300 facing the metal particles 11 as near-field light. Done.
 <第4実施例>
 本発明の近接場光デバイスを用いたシステムに係る第4実施例について、図7を参照して説明する。図7は、第4実施例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。尚、第4実施例について、第1実施例と重複する説明を適宜省略すると共に、図面上における共通箇所には同一符号を付して示す。
<Fourth embodiment>
A fourth embodiment of the system using the near-field light device of the present invention will be described with reference to FIG. FIG. 7 is a schematic configuration diagram showing a configuration of a system using the near-field light device according to the fourth embodiment. In addition, about 4th Example, while overlapping with the 1st Example is abbreviate | omitted suitably, the common code | symbol is attached | subjected and shown in drawing.
 図7において、システム440は、近接場光デバイス240と、記録媒体300とを備えて構成されている。近接場光デバイス240は、例えばGaAs等からなる半導体の内部に、例えばInAs(砒化インジウム)等からなる複数の量子ドットを有するメサ形状の半導体層16と、該半導体層16の上に積層され、例えばSiO、VaO等の誘電体からなる誘電体層12と、例えばAu、Ag等からなる金属粒子11と、を備えて構成されている。このように構成すれば、量子ドットにより、半導体層16に入射した光のエネルギーを比較的効率良く金属粒子11に伝播させることができる。 7, the system 440 includes a near-field light device 240 and a recording medium 300. The near-field light device 240 is laminated on a semiconductor layer 16 having a mesa shape having a plurality of quantum dots made of, for example, InAs (indium arsenide), for example, inside a semiconductor made of, for example, GaAs, For example, a dielectric layer 12 made of a dielectric material such as SiO or VaO and metal particles 11 made of Au or Ag, for example, are provided. If comprised in this way, the energy of the light which injected into the semiconductor layer 16 can be propagated to the metal particle 11 comparatively efficiently by the quantum dot.
 尚、図8に示すシステム450の近接場光デバイス250のように、半導体の内部に、量子ドットが格子状に規則正しく配列した複数の量子ドット層が形成された半導体層17を備えて構成されていてもよい。図8は、第4実施例の変形例に係る近接場光デバイスを用いたシステムの構成を示す概略構成図である。また、量子ドットに代えて、例えば金属ナノ粒子等量子効果が現れるサイズの粒子が半導体層に含まれるようにしてもよい。 In addition, like the near-field light device 250 of the system 450 shown in FIG. 8, the semiconductor layer 17 includes a plurality of quantum dot layers in which quantum dots are regularly arranged in a lattice shape. May be. FIG. 8 is a schematic configuration diagram showing the configuration of a system using a near-field light device according to a modification of the fourth embodiment. Further, instead of quantum dots, for example, particles having a size that exhibits a quantum effect such as metal nanoparticles may be included in the semiconductor layer.
 量子ドットのサイズを制御することにより、自由にバンドギャップを制御可能である。これにより任意の波長の光を効率的に吸収・発光可能に半導体層16を設計することができる。例えば入射光にLED(Light Emitting Diode)等からの白色光を用い、量子ドットのサイズに合った波長を半導体層16に吸収させることが可能である。 The band gap can be controlled freely by controlling the size of the quantum dots. Thereby, the semiconductor layer 16 can be designed so that light of an arbitrary wavelength can be efficiently absorbed and emitted. For example, white light from an LED (Light Emitting Diode) or the like is used as incident light, and the semiconductor layer 16 can absorb a wavelength suitable for the size of the quantum dots.
 動作時に、近接場光デバイス240或いは250に光が入射すると、該入射した光に起因するエネルギーが金属粒子11に伝播する。記録媒体300への情報の記録は、例えば、金属粒子11に伝播したエネルギーの少なくとも一部が、近接場光として、金属粒子11に対向する記録媒体300の一部の温度を上昇させることを利用して行われる。 During operation, when light is incident on the near-field light device 240 or 250, energy caused by the incident light propagates to the metal particles 11. The recording of information on the recording medium 300 uses, for example, that at least a part of the energy propagated to the metal particles 11 raises the temperature of a part of the recording medium 300 facing the metal particles 11 as near-field light. Done.
 <応用例>
 次に、実施例に係る近接場光デバイスを磁気ヘッドに用いた磁気記録について、図9を参照して説明する。図9は、実施例に係る磁気ヘッドを用いた磁気記録の一例を説明する図である。尚、図9では、図6に示した近接場光デバイス230を用いているが、該近接場光デバイス230に限らず、上述した各種近接場光デバイスを適用可能である。
<Application example>
Next, magnetic recording using the near-field light device according to the example for a magnetic head will be described with reference to FIG. FIG. 9 is a diagram illustrating an example of magnetic recording using the magnetic head according to the example. In FIG. 9, the near-field light device 230 shown in FIG. 6 is used. However, the present invention is not limited to the near-field light device 230, and various near-field light devices described above can be applied.
 動作時には、入力信号に応じて光を出射するように、例えば面発光レーザ等の光源が制御される。近接場光デバイスに入射した光に起因するエネルギーが金属粒子11に伝播すると、金属粒子11と、該金属粒子11と対向する磁気記録媒体310の一部とが一体となり発生する近接場光により磁気記録媒体310にエネルギーが与えられる。この結果、近接場光によりエネルギーを与えられた磁気記録媒体310の領域の保磁力が下がり、書き込み磁極による磁気記録を容易に行うことが可能となる。他方、磁気記録媒体310に記録された記録信号の読み出しは、読み取り磁極により行われる。尚、金属粒子11のサイズを小さくするほど、記録密度を向上させることができる。 During operation, a light source such as a surface emitting laser is controlled so as to emit light according to an input signal. When energy caused by light incident on the near-field light device propagates to the metal particles 11, the metal particles 11 and a part of the magnetic recording medium 310 facing the metal particles 11 are integrated to generate magnetism. Energy is applied to the recording medium 310. As a result, the coercive force of the region of the magnetic recording medium 310 given energy by the near-field light is reduced, and magnetic recording by the writing magnetic pole can be easily performed. On the other hand, the recording signal recorded on the magnetic recording medium 310 is read by the reading magnetic pole. The recording density can be improved as the size of the metal particles 11 is reduced.
 ここで特に、近接場光デバイスの金属粒子11と磁気記録媒体310との間の距離は、空気中を伝播する近接場光のエネルギー強度が、磁気記録媒体310の位置において山(図2参照)となる距離である距離Aに設定されている。このため、磁気記録媒体310のうち金属粒子11に対向する部分に効率的にエネルギーが伝達されるので、該部分を効率的に熱することができる。 Here, in particular, the distance between the metal particles 11 of the near-field light device and the magnetic recording medium 310 is such that the energy intensity of the near-field light propagating in the air is a peak at the position of the magnetic recording medium 310 (see FIG. 2). Is set to a distance A that is For this reason, energy is efficiently transmitted to the portion of the magnetic recording medium 310 that faces the metal particles 11, so that the portion can be efficiently heated.
 また、近接場光デバイスにおける半導体層の磁気記録媒体310に対向する側の面と、磁気記録媒体310との間の距離は、空気中を伝播する近接場光のエネルギー強度が、磁気記録媒体310の位置において谷(図2参照)となる距離である距離Bに設定されている。応用例に係る「距離B」は、本発明に係る「第2の距離」の他の例である。 Also, the distance between the surface of the semiconductor layer facing the magnetic recording medium 310 in the near-field light device and the magnetic recording medium 310 is such that the energy intensity of the near-field light propagating in the air is such that the magnetic recording medium 310 Is set to a distance B which is a distance that becomes a valley (see FIG. 2). The “distance B” according to the application example is another example of the “second distance” according to the present invention.
 尚、磁気ヘッドは、ここでは図示しないアームの先に取り付けられている。距離A及び距離Bは、磁気記録媒体310が回転することにより発生する空気流に乗って、該磁気記録媒体310の表面から磁気ヘッドが一定の高さで浮上することにより実現される。また、距離Aを保つ手法として、図示しないフォトセンサ等により距離を測定し、測定結果に応じてアームの先端に設けられているヒータ(図示せず)を駆動し、距離Aを保つようにしてもよい。また、空気中でなく潤滑剤の中をアームの先端が移動するようなシステムの使用の場合は、潤滑剤中を伝播する近接場光のエネルギー強度に応じた山や谷の距離となるように、距離A及び距離Bが設定される。 The magnetic head is attached to the tip of an arm not shown here. The distance A and the distance B are realized by riding on the air flow generated by the rotation of the magnetic recording medium 310 and flying the magnetic head from the surface of the magnetic recording medium 310 at a certain height. Further, as a method of maintaining the distance A, a distance is measured by a photo sensor or the like (not shown), and a heater (not shown) provided at the tip of the arm is driven according to the measurement result to maintain the distance A. Also good. In addition, when using a system in which the tip of the arm moves in the lubricant instead of in the air, the distance between the peaks and valleys should be adjusted according to the energy intensity of the near-field light propagating in the lubricant. , Distance A and distance B are set.
 次に、本願発明の技術的思想を光回路に適用した、他の応用例について、図10及び図11を参照して説明する。図10は、光回路を有する素子の概略構成を示す斜視図である。図11は、光回路内部の光導波路の構成の一例を示す図である。 Next, another application example in which the technical idea of the present invention is applied to an optical circuit will be described with reference to FIGS. FIG. 10 is a perspective view showing a schematic configuration of an element having an optical circuit. FIG. 11 is a diagram illustrating an example of a configuration of an optical waveguide inside the optical circuit.
 図11において、光回路内には、5本の光導波路Line1、Line2、Line3、Line4及びLine5が設けられている。光導波路Line1、Line2、Line3、Line4及びLine5各々の入力側の端部In1、In2、In3、In4及びIn5には、入力ラインに相当するファイバ(図10参照)が接続されている。他方、光導波路Line1、Line2及びLine5各々の出力側の端部Out1、Out2及びOut3には、出力ラインに相当する出力ファイバ(図10参照)が接続されている。ここで、該光回路では、光導波路間の光接続に近接場光を利用している。 In FIG. 11, five optical waveguides Line1, Line2, Line3, Line4, and Line5 are provided in the optical circuit. Fibers corresponding to input lines (see FIG. 10) are connected to the input-side end portions In1, In2, In3, In4, and In5 of the optical waveguides Line1, Line2, Line3, Line4, and Line5. On the other hand, output fibers corresponding to output lines (see FIG. 10) are connected to the output-side ends Out1, Out2, and Out3 of the optical waveguides Line1, Line2, and Line5. Here, in the optical circuit, near-field light is used for optical connection between optical waveguides.
 ここで、光接続させたい光導波路間の距離は、空気中を伝播する近接場光のエネルギー強度が、エネルギーを伝播させるべき光導波路において山(図2参照)となる距離とする(“距離S”及び“距離S”参照)。他方、光接続させたくない光導波路間の距離は、空気中を伝播する近接場光のエネルギー強度が、隣接する光導波路において谷となる距離とする(“距離W”、“距離W”、“距離W”、“距離W”、“距離W”及び“距離W”参照)。この結果、光導波路Line2と光導波路Line3とは、距離Sとなっている部分で互いに光接続される。同様に、光導波路Line4と光導波路Line5とは、距離Sとなっている部分で互いに光接続される。 Here, the distance between the optical waveguides to be optically connected is a distance at which the energy intensity of the near-field light propagating in the air becomes a mountain (see FIG. 2) in the optical waveguide to which the energy is to be propagated (see “Distance S see 1 "and" distance S 2 "). On the other hand, the distance between the optical waveguides that are not desired to be optically connected is the distance at which the energy intensity of the near-field light propagating in the air becomes a valley in the adjacent optical waveguide (“distance W 1 ”, “distance W 2 ”). , “Distance W 3 ”, “Distance W 4 ”, “Distance W 5 ” and “Distance W 6 ”). As a result, the optical waveguide Line2 and the optical waveguide Line3, are optically connected to each other at a portion that is a distance S 1. Similarly, the optical waveguide Line4 and the optical waveguide Line5, are optically connected to each other at a portion that is the distance S 2.
 端部In1、In2、In3、In4及びIn5の入力に応じて、光回路で演算がなされ、端部Out1、Out2及びOut3から出力が得られる。 In accordance with the inputs of the end portions In1, In2, In3, In4 and In5, an operation is performed in the optical circuit, and outputs are obtained from the end portions Out1, Out2 and Out3.
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う近接場光デバイス及びシステムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and the near-field light device with such a change And the system are also included in the technical scope of the present invention.
 11…金属粒子、12、14…誘電体層、13…金属フィルム、15、16、17…半導体層、200、210、220、230、240、250…近接場光デバイス、300…記録媒体、310…磁気記録媒体、400、410、420、430、440、450…システム DESCRIPTION OF SYMBOLS 11 ... Metal particle, 12, 14 ... Dielectric layer, 13 ... Metal film, 15, 16, 17 ... Semiconductor layer, 200, 210, 220, 230, 240, 250 ... Near field optical device, 300 ... Recording medium, 310 ... magnetic recording medium, 400, 410, 420, 430, 440, 450 ... system

Claims (8)

  1.  第1部材と、
     第2部材と、
     を備え、
     前記第1部材と前記第2部材との間には、前記第1部材及び前記第2部材とは異なる物質からなる媒体が介在しており、
     前記第2部材が、前記第1部材に生じた近接場光を介してエネルギーを受け取る部材である場合、前記第2部材は、前記第1部材から、前記媒体中を伝播する前記近接場光に係るエネルギーが極大近傍になる距離だけ離れて配置されており、
     前記第2部材が、前記近接場光を介してエネルギーを受け取らない部材である場合、前記第2部材は、前記第1部材から、前記媒体中を伝播する前記近接場光に係るエネルギーが極小近傍になる距離だけ離れて配置されている
     ことを特徴とする近接場光デバイス。
    A first member;
    A second member;
    With
    A medium made of a material different from the first member and the second member is interposed between the first member and the second member,
    When the second member is a member that receives energy via near-field light generated in the first member, the second member transmits the near-field light propagating in the medium from the first member. It is located at a distance where the energy concerned is close to the maximum,
    When the second member is a member that does not receive energy via the near-field light, the second member is in the vicinity of a minimum energy related to the near-field light propagating in the medium from the first member. The near-field light device is characterized by being arranged at a distance of
  2.  半導体からなる半導体層と、
     前記半導体層の上方に積層され、金属からなる金属層と、
     前記金属層の直上に積層され、誘電体からなる誘電体層と、
     前記誘電体層の直上に配置され、前記金属層に生じた近接場光のエネルギーの少なくとも一部を外部へ出力可能な出力端と、
     を備え、
     前記誘電体層の下面と前記誘電体層の上面との間の距離は、前記誘電体層を前記金属層に生じた近接場光が伝播する際に、前記誘電体層の上面において前記伝播する近接場光に係るエネルギーが極大近傍になる距離である
     ことを特徴とする近接場光デバイス。
    A semiconductor layer made of a semiconductor;
    A metal layer made of metal and laminated above the semiconductor layer;
    A dielectric layer that is laminated immediately above the metal layer and is made of a dielectric;
    An output end disposed immediately above the dielectric layer and capable of outputting at least part of the energy of near-field light generated in the metal layer to the outside;
    With
    The distance between the lower surface of the dielectric layer and the upper surface of the dielectric layer propagates on the upper surface of the dielectric layer when near-field light generated in the metal layer propagates through the dielectric layer. A near-field light device characterized in that the energy associated with near-field light is a distance near the maximum.
  3.  近接場光デバイスと、前記近接場光デバイスに対向して配置された記録媒体と、を備えるシステムであって、
     前記近接場光デバイスは、前記記録媒体と対向する側に、前記近接場光デバイス内に生じた近接場光のエネルギーの少なくとも一部を外部へ出力可能な出力端を有し、
     前記出力端と前記記録媒体の前記出力端に対向する面である記録面との間の距離は、前記記録媒体と前記出力端との間に介在する媒体中を前記出力端に生じた近接場光が伝播する際に、前記記録面において前記伝播する近接場光に係るエネルギーが極大近傍になる距離である
     ことを特徴とするシステム。
    A system comprising a near-field light device and a recording medium disposed to face the near-field light device,
    The near-field light device has an output end capable of outputting at least part of the energy of the near-field light generated in the near-field light device to the outside on the side facing the recording medium,
    The distance between the output end and the recording surface, which is the surface facing the output end of the recording medium, is a near field generated at the output end in the medium interposed between the recording medium and the output end. When light propagates, the recording surface is a distance at which the energy associated with the propagating near-field light is near the maximum.
  4.  前記近接場光デバイスは、更に、前記出力端の直下に積層され、誘電体からなる第1誘電体層を有し、
     前記第1誘電体層の上面と前記記録面との間の距離は、前記媒体中を前記出力端に生じた近接場光が伝播する際に、前記記録面において前記伝播する近接場光に係るエネルギーが極小近傍になる距離である
     ことを特徴とする請求項3に記載のシステム。
    The near-field light device further includes a first dielectric layer that is laminated immediately below the output end and made of a dielectric,
    The distance between the upper surface of the first dielectric layer and the recording surface is related to the near-field light propagating on the recording surface when the near-field light generated at the output end propagates in the medium. The system according to claim 3, wherein the distance is a distance at which energy becomes a minimum.
  5.  前記近接場光デバイスは、更に、前記第1誘電体層の直下に積層され、金属からなる金属層と、前記金属層の直下に積層され、誘電体からなる第2誘電体層と、を有し、
     前記第1誘電体層の下面と前記第1誘電体層の上面との間の距離は、前記第1誘電体層を前記金属層に生じた近接場光が伝播する際に、前記第1誘電体層の上面において前記金属層に生じた近接場光に係るエネルギーが極大近傍になる距離であり、
     前記第2誘電体層の上面と前記記録面との間の距離は、前記媒体中を前記出力端に生じた近接場光が伝播する際に、前記記録面において前記伝播する近接場光に係るエネルギーが極小近傍になる距離である
     ことを特徴とする請求項4に記載のシステム。
    The near-field light device further includes a metal layer made of a metal, which is laminated immediately below the first dielectric layer, and a second dielectric layer made of a dielectric, which is laminated immediately below the metal layer. And
    The distance between the lower surface of the first dielectric layer and the upper surface of the first dielectric layer is such that near-field light generated in the metal layer propagates through the first dielectric layer. A distance at which the energy associated with near-field light generated in the metal layer on the upper surface of the body layer is in the vicinity of the maximum,
    The distance between the upper surface of the second dielectric layer and the recording surface is related to the near-field light propagating on the recording surface when the near-field light generated at the output end propagates in the medium. The system according to claim 4, wherein the energy is a distance at which the energy becomes a minimum.
  6.  前記近接場光デバイスは、更に、前記出力端の下方に積層され、複数の量子ドットを含んでなる量子ドット層を有していることを特徴とする請求項3に記載のシステム。 The system according to claim 3, wherein the near-field light device further includes a quantum dot layer that is stacked below the output end and includes a plurality of quantum dots.
  7.  半導体基板と、前記半導体基板上に形成された誘電体層と、前記誘電体層上に形成された金属粒子と、を備え、前記半導体基板に入射した光のエネルギーが、前記誘電体層及び前記金属粒子を介して、前記金属粒子と対向して配置された記録媒体に伝播し、前記記録媒体上の微小領域を昇温させる近接場光デバイスであって、
     前記金属粒子と前記記録媒体の前記金属粒子側の面との間の距離は、前記エネルギーが伝播する量が多い第1の距離であり、
     前記誘電体層の前記記録媒体側の面と前記記録媒体の前記金属粒子側の面との間の距離は、前記エネルギーが伝播する量が少ない第2の距離であり、
     前記第1の距離と前記第2の距離とは互いに異なる
     ことを特徴とする近接場光デバイス。
    A semiconductor substrate; a dielectric layer formed on the semiconductor substrate; and metal particles formed on the dielectric layer, wherein energy of light incident on the semiconductor substrate is the dielectric layer and the A near-field light device that propagates through a metal particle to a recording medium disposed opposite to the metal particle and raises the temperature of a minute region on the recording medium,
    The distance between the metal particle and the surface of the recording medium on the metal particle side is a first distance in which the amount of energy propagated is large.
    The distance between the surface on the recording medium side of the dielectric layer and the surface on the metal particle side of the recording medium is a second distance with a small amount of the energy to propagate,
    The near-field light device, wherein the first distance and the second distance are different from each other.
  8.  半導体層と、前記半導体層の上方に形成された金属粒子と、を備え、前記半導体層に入射した光のエネルギーが、前記金属粒子を介して、前記金属粒子と対向して配置された記録媒体に伝播し、前記記録媒体上の微小領域を昇温させる近接場光デバイスであって、
     前記金属粒子と前記記録媒体の前記金属粒子側の面との間の距離は、前記エネルギーが伝播する量が多い第1の距離であり、
     前記半導体層の前記記録媒体側の面と前記記録媒体の前記金属粒子側の面との間の距離は、前記エネルギーが伝播する量が少ない第2の距離であり、
     前記第1の距離と前記第2の距離とは互いに異なる
     ことを特徴とする近接場光デバイス。
    A recording medium comprising: a semiconductor layer; and metal particles formed above the semiconductor layer, wherein the energy of light incident on the semiconductor layer is disposed to face the metal particles through the metal particles A near-field light device that propagates to raise the temperature of a minute region on the recording medium,
    The distance between the metal particle and the surface of the recording medium on the metal particle side is a first distance in which the amount of energy propagated is large.
    The distance between the surface on the recording medium side of the semiconductor layer and the surface on the metal particle side of the recording medium is a second distance with a small amount of the energy to propagate,
    The near-field light device, wherein the first distance and the second distance are different from each other.
PCT/JP2012/070510 2012-08-10 2012-08-10 Near-field optical device and system WO2014024306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014529223A JPWO2014024306A1 (en) 2012-08-10 2012-08-10 Near-field light device and system
PCT/JP2012/070510 WO2014024306A1 (en) 2012-08-10 2012-08-10 Near-field optical device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070510 WO2014024306A1 (en) 2012-08-10 2012-08-10 Near-field optical device and system

Publications (1)

Publication Number Publication Date
WO2014024306A1 true WO2014024306A1 (en) 2014-02-13

Family

ID=50067587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070510 WO2014024306A1 (en) 2012-08-10 2012-08-10 Near-field optical device and system

Country Status (2)

Country Link
JP (1) JPWO2014024306A1 (en)
WO (1) WO2014024306A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186240A1 (en) * 2014-06-06 2015-12-10 パイオニア株式会社 Device and recording apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080459A (en) * 2004-09-13 2006-03-23 Japan Science & Technology Agency Nano photonics device
JP2007334936A (en) * 2006-06-12 2007-12-27 Hitachi Ltd Near-field light generator, and recording and reproducing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231601A (en) * 2008-03-24 2009-10-08 Pioneer Electronic Corp Forming method of quantum dot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080459A (en) * 2004-09-13 2006-03-23 Japan Science & Technology Agency Nano photonics device
JP2007334936A (en) * 2006-06-12 2007-12-27 Hitachi Ltd Near-field light generator, and recording and reproducing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186240A1 (en) * 2014-06-06 2015-12-10 パイオニア株式会社 Device and recording apparatus
JPWO2015186240A1 (en) * 2014-06-06 2017-04-20 パイオニア株式会社 Device and recording apparatus
US10079032B2 (en) 2014-06-06 2018-09-18 Innovastella Co., Ltd Device and recording apparatus

Also Published As

Publication number Publication date
JPWO2014024306A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6362309B2 (en) Magnetic head and manufacturing method
US8848756B2 (en) Surface plasmon laser
JP5025708B2 (en) Thermal assist recording head, thermal assist recording apparatus, and near-field light generating apparatus
JP5001413B2 (en) Thermally assisted magnetic recording head with near-field light generating element
JP4642738B2 (en) Heat-assisted magnetic recording head
US8830801B2 (en) Near-field light device, recording apparatus using the same, and recording method
JP5007651B2 (en) Near-field light generating apparatus, near-field light generating method, and information recording / reproducing apparatus
JP5145443B2 (en) Magnetic head for thermal assist recording and magnetic recording apparatus
US8509037B1 (en) Layered optical waveguide and near field transducer
JP5587883B2 (en) Thermal assist recording head and thermal assist recording apparatus
WO2010095333A1 (en) Near-field light emitting device, optical recording head and optical recorder
WO2011162042A1 (en) Heat-assisted recording-use magnetic head and magnetic recording device equipped with same
US10170140B2 (en) Waveguide having mode converter for heat-assisted magnetic recording device
JP4835746B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk drive.
JP2017532589A (en) Photo diode
JP5975331B2 (en) Optical device and optical isolator using plasmonic waveguide
WO2014024306A1 (en) Near-field optical device and system
JP4601867B2 (en) Near-field optical head
WO2014174866A1 (en) Light detector
JP4004978B2 (en) Information recording / reproducing head and information recording / reproducing apparatus
US20140254333A1 (en) Polarization converter including a jagged diagonal line in plane orthogonal to propagation direction of electromagnetic wave
JP4509941B2 (en) Optical assist magnetic head and magnetic recording apparatus using the same
JPWO2011033926A1 (en) Near-field light generator, optically assisted magnetic recording head, and optically assisted magnetic recording apparatus
JP2013038227A (en) Near-field optical device
JP2011181163A (en) Manufacturing method of near-field light generating element, and manufacturing method of thermally assisted magnetic recording head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014529223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12882683

Country of ref document: EP

Kind code of ref document: A1