WO2014023067A1 - 发光装置及相关投影系统 - Google Patents

发光装置及相关投影系统 Download PDF

Info

Publication number
WO2014023067A1
WO2014023067A1 PCT/CN2012/084931 CN2012084931W WO2014023067A1 WO 2014023067 A1 WO2014023067 A1 WO 2014023067A1 CN 2012084931 W CN2012084931 W CN 2012084931W WO 2014023067 A1 WO2014023067 A1 WO 2014023067A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
filter
wavelength
laser
wavelength conversion
Prior art date
Application number
PCT/CN2012/084931
Other languages
English (en)
French (fr)
Inventor
胡飞
杨佳翼
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2014023067A1 publication Critical patent/WO2014023067A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the utility model relates to the field of illumination and projection display, in particular to a light-emitting device and an associated projection system. Background technique
  • solid state light sources are increasingly used in the field of lighting and display.
  • the use of solid-state light sources to excite phosphors to produce lasers as projection sources has also become an increasingly common technical solution.
  • a solid-state light source such as a laser has a high energy density, so that the excitation light generated by the excitation phosphor has a high luminance.
  • the blue laser itself emits a blue light having a wavelength between 440 nm and 460 nm and a color coordinate of about (0.15, 0.016).
  • the pure blue light has a color coordinate of (0.15, 0.06) and a dominant wavelength of 462 nm. Therefore, when the blue laser light source is used as the primary light of the projection for display, the color coordinates thereof are different from the color coordinates required for the projection display, and thus the visual effect produced by the projection system is easily affected.
  • Utility model content such as a laser has a high energy density, so that the excitation light generated by the excitation phosphor has a high luminance.
  • the main technical problem solved by the utility model is to improve a light-emitting device for the projection light source to be closer to a predetermined color coordinate and to utilize the remaining laser light.
  • the utility model provides a light-emitting device, which comprises:
  • a blue laser source for emitting a blue laser
  • a wavelength conversion device comprising a wavelength conversion layer, the wavelength conversion layer comprising a first conversion region comprising a yellow wavelength conversion material or/and a green wavelength conversion material, the first conversion region being used for Receiving a blue laser and converting the blue laser portion into a laser light to emit the laser light and the unconverted blue laser light; a first filter for receiving the laser light emitted from the first conversion region The unconverted blue laser light, and the blue laser light and the partially received laser light and the remaining laser light are respectively emitted into the two outgoing light of the light emitting device in two directions, so that the color coordinates of the mixed light of the blue laser and the partially received laser light Closer to the color coordinates of the predetermined blue light.
  • the present invention also provides a projection system characterized by comprising the above-described illumination device.
  • the present invention utilizes a blue laser source to excite a wavelength converting material to generate a mixed light of laser light and blue light, and splits the mixed light by a first filter to make a mixed light of blue light and a part of the laser light. All the way out, and the remaining laser is emitted from the other way, wherein the first filter can make the color coordinates of the mixed light of the blue light and the partially laser light closer to the predetermined blue color coordinate, and the remaining laser part can also be used. Yu Projection, will not cause waste of light source energy
  • Figure 1a is a front elevational view showing the structure of a light-emitting device in an embodiment of the present invention
  • Figure lb is a right side view and a front view of the wavelength conversion layer structure in the embodiment shown in Figure la;
  • Figure lc is a schematic flow chart of a method for selecting a cutoff point of the first filter in the embodiment shown in Figure la;
  • Figure Id is a photogram of light emitted from the wavelength conversion layer in the embodiment shown in Figure la;
  • Figure 2a is a front elevational view showing the structure of a light-emitting device in still another embodiment of the present invention.
  • Figure 2b is a left side view of the wavelength conversion layer structure of the embodiment of Figure 2a. detailed description
  • Figure la is a front view of a structure of a light-emitting device in an embodiment of the present invention
  • Figure 1b is a right side view and a front view of the wavelength conversion layer 121 shown in Figure la.
  • the light-emitting device includes a blue laser light source. 110.
  • a blue laser source 110 is used to emit the blue laser 151.
  • the wavelength conversion device 120 includes a wavelength conversion layer 121, as shown in FIG.
  • the wavelength conversion layer 121 includes an opposite first surface 121a that receives the blue laser light 151 and converts a portion thereof into a laser light, and a second surface that mixes the laser light with the unconverted blue laser light.
  • Light 152 exits to first filter 130.
  • the wavelength conversion layer 121 includes only one region of the first conversion region, and is provided with a yellow wavelength conversion material.
  • the most commonly used wavelength converting materials are phosphors, such as YAG phosphors, which absorb blue laser light and are excited to produce a yellow laser.
  • the wavelength converting material may also be a material having wavelength conversion capability such as a quantum dot or a fluorescent dye, and is not limited to a phosphor.
  • the first conversion region 121 may also include a green light wavelength conversion material or a mixed material of a green light wavelength conversion material and a yellow light wavelength conversion material.
  • the wavelength converting layer 121 comprises a scattering material. Since the laser is coherent, if it is directly projected onto the screen without eliminating its coherence, it will produce bright spots on the screen, resulting in uneven brightness of the screen. Although the phosphor itself has a certain scattering effect and eliminates the coherence of a part of the blue laser 151, it has a limited effect and does not have a good decoherence effect. Therefore, the scattering material is disposed in the wavelength conversion layer 121, which can be better eliminated. The coherence of the blue laser 151 ensures the brightness of the projection. Preferably, the scattering material is uniformly distributed in the wavelength conversion layer 121 to provide better decoherence.
  • the first filter 130 receives the mixed light 152 of the yellow laser light and the unconverted blue laser light and reflects the blue light laser and the partial yellow laser light mixed light 153 to transmit the residual light 154, and the blue laser light and the partial yellow laser light
  • the mixed light and the remaining laser light are respectively emitted into the two light sources of the light emitting device in two directions, so that the blue laser light Part of the yellow light is more closely related to the color coordinates of the predetermined blue light by the mixed light 153 color coordinates of the laser.
  • the first filter 130 may also be a transmissive portion of a yellow laser that reflects a blue laser and other portions of the yellow laser, and does not affect the effect of the emitted light.
  • the cutoff point of the first filter has a wavelength greater than or equal to 490 nm and less than or equal to 520 nm.
  • the cutoff wavelength is the wavelength position corresponding to the 50% transmittance of the rising edge or the falling edge in the relationship between the transmittance of the first filter and the wavelength.
  • the wavelength range of the general blue laser is 440nm - 460nm, and its color coordinate is about (0.15, 0.016).
  • the wavelength of the cutoff point of the first filter 130 is set in the range of 490nm-520nm, which can make the blue laser
  • the color coordinates of the mixed light with the partial yellow light by the laser are closer to the predetermined blue color coordinate.
  • the wavelength of the cutoff point of the first filter 130 is set at 490 nm
  • the color coordinates of the mixed light of the blue laser and the partially yellow laser are (0.1582, 0.0182), which is closer to the digital television standard Rec. 709.
  • the color coordinates of the blue light (0.152, 0.061).
  • the predetermined dominant wavelength of the blue light is larger than the dominant wavelength of the blue laser, and since the wavelength of the range covered by the optical light of the yellow light is larger than the wavelength of the optical range of the blue laser, it is obvious that the main light of the mixed light of the blue laser and the partial yellow light The wavelength will be greater than the dominant wavelength of the blue laser.
  • the cutoff position of the first filter 130 is obtained by the following method:
  • the wavelength of the ith cutoff point of the first filter 130 can be selected to be larger than the wavelength range of the blue laser.
  • the step size is the difference between the wavelength corresponding to each selected cutoff point and the wavelength corresponding to the last selected cutoff point. The step size can be selected according to the actual situation.
  • the blue laser light-excited yellow light phosphor in this embodiment is taken as an example for specific analysis:
  • the optical language of the mixed light 151 of the blue laser light and the yellow excitation light emitted from the wavelength conversion layer 121 is obtained.
  • Figure Id is the pupil of the outgoing light of the wavelength conversion layer 121 shown in Fig. la.
  • the spectrum of the blue laser is distributed in the range of 440 nm to 455 nm, and the optical translation of the xanthine is about 70 nm to 730 nm.
  • step B the wavelength of the first cutoff point of the first filter 130 is selected.
  • the wavelength of the starting point of the gamma of the pupil range of the yellow laser to be the starting cutoff wavelength
  • the intercepted light transmission corresponds to
  • the color coordinate ( xi, yi ) in the chromaticity diagram CIE1931 is (0.1598, 0.0150.
  • the position of the first cutoff point wavelength can be selected according to the actual situation.
  • step C we select the color coordinates (0.152, 0.061) of the blue light in the digital television standard Rec. 709 as the color coordinates ( ⁇ , ⁇ ) of the predetermined blue light, and then the blue laser light and the partial yellow excitation light intercepted by the first cutoff point.
  • the color of the mixed light sits at a predetermined distance between the blue color coordinates:
  • step D the second cutoff wavelength of the first filter 130 is selected.
  • the second cutoff wavelength point selected by us is 471 nm, and the color coordinate corresponding to the intercepted light transmission is (0.1598, 0.0150).
  • the step size in this embodiment is taken as 1 nm.
  • the step size between the first cutoff point and the second cutoff point may be selected according to actual needs, and is not limited to the examples herein, for other cutoff points. The same is true for the selection of wavelengths, and the step sizes between different cutoff wavelengths can be different.
  • step E similarly, the distance between the color coordinates of the mixed light of the blue laser light and the partial yellow excitation light after the second cutoff point wavelength and the predetermined blue color coordinate can be obtained:
  • step F the comparison is with the size of 01 2 , where it is obvious that dd therefore needs to continue to select the cutoff wavelength.
  • step G continue to select the third cutoff wavelength, and loop step F.
  • the data corresponding to the cutoff point wavelength obtained as shown in Table 1 can be found when When nm, di ⁇ d i+1 .
  • the wavelength position of the optimal cut-off point of the first filter 130 in this embodiment is 507 nm, and the color coordinates of the obtained blue light laser and the partial yellow laser-mixed light 153 are the closest to the blue color. coordinate.
  • the wavelength conversion layer can be divided into two parts by transmission and reflection, and the unabsorbed blue laser is mixed with the short-wavelength part to be emitted from one way, split into two ways, and the emitted light has better display effect. .
  • the part of the yellow-receiving laser that is intercepted by the cut-off point and emitted in the same direction as the blue laser is generally the short-wavelength portion of the yellow-receiving laser, that is, the cut-off point wavelength is smaller than the wavelength at which the yellow laser is subjected to the peak position of the laser.
  • the cutoff point wavelength of the first filter 130 is selected from a position where the wavelength of the yellow laser light is shorter, but may actually be selected from a longer wavelength position.
  • the wavelength corresponding to the cutoff point of each re-selection is gradually reduced, and the optimal cut-off point can also be obtained.
  • the color coordinates are calculated correspondingly using the corresponding color coordinates in the CIE 1976 chromaticity diagram.
  • the liver CIE1976 chromaticity diagram uniformity is better than the CIE1931 chromaticity diagram, so the color coordinates can be converted to the coordinates in the CIE1976 chromaticity diagram for calculation to obtain higher accuracy.
  • the optimal cutoff position of the first filter 130 can also be obtained by other methods. For example, converting the color coordinates in the above method to the corresponding dominant wavelength, and selecting the optimal cutoff wavelength of the first filter by the difference between the dominant wavelengths of the optical words intercepted by different cutoff wavelengths, The difference between the dominant wavelength of the intercepted optical term and the dominant wavelength of the predetermined blue light is minimized.
  • the wavelength conversion device 120 also includes a drive device 123.
  • the driving device 123 is configured to drive the wavelength conversion layer 121 to move, so that the light spot formed by the blue laser light source 110 on the wavelength conversion layer 121 acts on the wavelength conversion layer along a predetermined path to prevent the laser from acting on the same wavelength conversion layer for a long time.
  • the position causes a problem that the temperature of the wavelength conversion layer 121 rises.
  • the driving device 123 is configured to drive the wavelength conversion layer 121 to periodically rotate, so that the light spot formed by the blue laser light source 110 on the wavelength conversion layer 121 acts on the wavelength conversion layer along a predetermined circular path. 121.
  • the driving device 123 can also drive the wavelength conversion layer. 121 moves in other ways, such as horizontal reciprocating motion. In the case where the wavelength converting material of the wavelength converting layer 121 can withstand a higher temperature, the wavelength converting device 120 may not be provided with a driving device.
  • the wavelength conversion device 120 further includes a substrate 122, here specifically a transparent glass, which is disposed on the first surface of the first conversion region 121 for fixing the wavelength conversion layer 121.
  • the excitation light is incident on the substrate 122 and transmitted to the wavelength conversion layer 121.
  • the surface of the substrate 122 is provided with a filter film, which can transmit a blue laser and reflect a yellow laser, which can improve the utilization of the laser; further, the filter can transmit blue light incident at a small angle. Reflecting yellow by laser and large angle of blue light can simultaneously increase excitation light and laser utilization.
  • the substrate can be omitted, and the filter film can be plated on the wavelength conversion layer.
  • the surface of 121 has the same effect.
  • the illuminating device 100 further includes a second filter 140.
  • the second filter 140 is located on the optical path of the light emitted by the wavelength conversion layer 121, and receives the remaining light 154 transmitted by the first filter 130.
  • the green light 156 transmitted therein reflects the red light 155, and the red light in the remaining light 154 is emitted from the other path and the green light is emitted along the original light path.
  • the wavelength of the cutoff point of the commonly used second filter 140 is set at 590 nm. It is found through experiments that in the present embodiment, by the interception of the first filter 130, the wavelength corresponding to the cutoff point is set at 590 nm.
  • the color coordinate of the green light 156 after the transmission of the second filter 140 is (0.34, 0.64), and the green color coordinate (0.33, 0.63) when the yellow filter is not intercepted by the first filter 130,
  • the color gamut of the final light emitted by the illuminating device is slightly increased: the projection effect is slightly improved.
  • the light-emitting device 100 in this embodiment will emit red light 155, ⁇ 3 ⁇ 4 156, and mixed light 153 of the blue laser and part of the yellow light, which can be used as a light source of the projection system, in the projection system.
  • the red light 155, the green light 156, and the mixed light 153 of the blue laser and the partial yellow light are respectively incident on the three light widths, and are finally projected onto the same screen for projection.
  • the second filter 140 can also transmit red light and reflect green light.
  • the position of the second filter 140 is not limited to being placed on the first filter 130.
  • the optical path can also be placed on the optical path before the first filter 130, and the second filter 130 receives the outgoing light of the first conversion region 121, and the red light and the remaining light in the outgoing light are respectively along two The direction is emitted, and the remaining light is emitted to the first filter 130.
  • the remaining light here is a mixture of a blue laser and a green light component in the laser.
  • the second filter 130 may be disposed in parallel with the first filter 140 or may form a cross-shaped beam splitting device with the first filter 140. This is a well-known technique and will not be described herein.
  • the light emitting device 100 further includes a light adjusting device 160 that collects the emitted light of the wavelength conversion layer 121 and reduces the divergence angle thereof, and then exits to the first filter 130.
  • the angle adjusting device 160 in this embodiment is a tapered square bar, and the tapered square bar 160 collects the outgoing light of the wavelength conversion layer 121, and then adjusts to be incident on the first filter 130 to reduce the emitted light.
  • the divergence angle causes a portion of the incident light that is originally reflected to be reflected from the first filter 130 to reduce the light loss caused by the angular drift characteristic of the first filter 130.
  • the light adjustment device 160 can also be a CPC (Compound Parabolic Concentrator) or other forms of integrator rods, and can also be used in other forms such as lenses to reduce beam divergence. Angle optics.
  • CPC Compound Parabolic Concentrator
  • the light-emitting device may not be provided with the light adjustment device.
  • the light-emitting device 200 includes a blue laser light source 210, a wavelength conversion device 220, a first filter 230, and a light adjustment device 250.
  • the light-emitting device 200 in this embodiment is different from the light-emitting device shown in FIG. la in:
  • the wavelength conversion device 220 includes a wavelength conversion layer 221, a reflection layer 222, and a driving device 223.
  • the wavelength conversion layer 221 includes opposing first and second surfaces, and the reflective layer 222 is disposed on a side of the second surface of the wavelength conversion layer 221.
  • the reflective layer 222 is specifically a high-anti-aluminum sheet 222 that reflects the excitation light incident on the high-reverse aluminum sheet 222 and is reflected by the laser.
  • the high anti-aluminum sheet 222 here also has the function of supporting the wavelength conversion layer 221, and it can also be replaced by a device having a reflection function such as a mirror.
  • the reflective layer 222 may not be provided.
  • the wavelength conversion layer 221 includes a first conversion region 221a and a second conversion region 221b, respectively, including a green phosphor and a red phosphor, the first conversion The region 221a receives the blue laser light and converts it partially into a green laser light and emits it together with the unconverted blue laser light, and the second conversion region 221b receives the blue laser light and converts it into a red laser light and emits it.
  • the wavelength conversion layer 221 is periodically moved by the driving means 223 such that the first conversion area 221a and the first conversion area 221b are periodically positioned on the outgoing light path of the blue laser.
  • the first filter 230 receives the outgoing light of the first conversion region 221a, and transmits the blue laser light and part of the green light to reflect the remaining light, when the second conversion region 221b is located on the optical path. At this time, the first filter 230 receives the outgoing light of the first wavelength conversion region 221b and emits red light and transmits the blue laser light in two directions, respectively.
  • the second conversion region may be other wavelength conversion materials, and is not limited to the red wavelength conversion material in this embodiment.
  • the wavelength of the cutoff point of the first filter is greater than or equal to 480 nm and less than or equal to 510 nm, which is experimentally verified.
  • the wavelength of the cutoff point of the first filter is set in the range of 480 nm to 510 nm, so that the blue laser light and the partial green light emitted from the first conversion region 221a can be closer to the predetermined blue color coordinate by the color coordinates of the laser light. Since the red wavelength converting material of the second conversion region 221b cannot completely absorb the blue laser light, the second conversion region 221b emits a mixture of blue light and red excitation light.
  • the blue laser light emitted from the second conversion region 221b is superimposed with the mixed light of the blue light and the partial green light in the mixed light emitted from the first conversion region 221a to form a final blue light effect, but the blue light is mixed in the first conversion region 221a.
  • the color coordinates with part of the green light have been improved relative to the color coordinates of the blue laser, so the final blue light effect will also be improved.
  • the optimal cutoff position of the first filter 230 can be determined by a method similar to that in the embodiment shown in FIG. 1a, where the first filter region 221a and the second filter region can be used.
  • the optical language of the emitted light of 221b is superimposed as a light language to be considered, and the color coordinates are determined to be calculated.
  • the wavelength conversion layer 221 emits the mixed light of the blue laser light and the green excitation light and the red excitation light in a time series, and the blue laser light and the green excitation light are divided into the blue laser light and the partial green laser light by the first color filter 230.
  • the mixed light and the remaining portion of the green excitation light, the red received laser light will be reflected by the first filter 230 and partially green excitation light
  • the light-emitting device 200 can be used as a light source of a double-light projection system, in which one light modulates blue light and the other light modulates a sequence light of green light and red light.
  • the wavelength conversion layer may further include more than three regions, regardless of the number of regions of the wavelength conversion layer, as long as the first conversion region includes green wavelength conversion material or yellow light.
  • the wavelength converting material or a mixture of the two can improve the blue laser color coordinate by adding part of green or yellow light to the blue laser by the splitting action of the first filter.
  • the light emitting device 200 further includes a light collecting device 240.
  • the light collecting device 240 is a curved surface reflecting device including a light transmitting hole and a reflecting surface outside the light transmitting hole.
  • the blue laser light is incident on the first surface of the wavelength conversion layer 221 through the light transmitting hole, and the light emitted from the wavelength conversion layer 221 is large.
  • a portion is reflected by the reflecting surface of the curved reflecting device 240 and collected by the light adjusting device 260 to the first filter 230, and a small portion leaks from the light transmitting hole.
  • the camber reflecting device 240 is a part of a semi-ellipsoidal or semi-ellipsoidal shape, and the wavelength converting layer 221 is disposed at a focus of the ellipsoid, so that most of the light emitted by the wavelength converting layer 221 passes through the curved reflecting device.
  • the reflecting surface is reflected to another focus of the ellipsoid; or, the curved reflecting device 240 is a hemispherical or hemispherical portion, and the wavelength converting layer 221 is disposed at a point close to the spherical center, so that the wavelength converting layer 221 is emitted.
  • the light collecting device 240 is not limited to the arc reflecting device with the light transmission hole in the embodiment, and may be a lens, a reflective device with other shapes with holes, and a curved surface reflection without holes in other embodiments. Devices such as devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

一种发光装置(100),包括:出射蓝光激光(151)的蓝光激光光源(110);包括波长转换层(121)的波长转换装置(120),波长转换层(121)包括第一转换区,该第一转换区包括黄光波长转换材料或/和绿光波长转换材料并用于接收蓝光激光(151)并将其部分转换为受激光,以出射受激光与未被转换的蓝光激光(152);第一滤光片(130),用于接收第一转换区出射的受激光与未被转换的蓝光激光(152),并将蓝光激光与部分受激光的混合光(153)及剩余受激光(154)分别沿两个方向出射为发光装置(100)的两路出射光,使得该混合光的色坐标更接近于预定的蓝光的色坐标。还提供包括该发光装置(100)的投影装置。由此改善蓝光的色坐标并对剩余受激光进行利用。

Description

说 明 书 发光装置以及投影系统
技术领域
本实用新型涉及照明和投影显示领域, 特别是涉及发光装置及相关投影系统。 背景技术
目前, 固态光源越来越广泛地应用于照明和显示领域。 利用固态光源来激发荧光粉 来产生受激光作为投影光源也成为一种越来越普遍的技术方案。激光等固态光源的能量 密度高, 因此其激发荧光粉产生的激发光亮度高。 但是,一般蓝光激光本身所发出的蓝 光波长是在 440nm - 460nm之间, 其色坐标约为(0.15 , 0.016)。 在国际通用的数字电视 标准 Rec709中, 纯蓝光的色坐标为(0.15 , 0.06), 其主波长为 462nm。 因此, 蓝光激光 光源作为投影的基色光用于显示时, 其色坐标与投影显示要求的色坐标有一定差距, 因 而容易影响投影系统所产生的视觉效果。 实用新型内容
本实用新型解决的主要技术问题是为投影光源提高一种蓝光色坐标更接近于预定 色坐标, 并对剩余受激光进行利用的发光装置。
本实用新型提供了一种发光装置, 其特征在于, 包括:
蓝光激光光源, 该蓝光激光光源用于出射蓝光激光;
波长转换装置, 该波长转换装置包括波长转换层, 该波长转换层包括第一转换区, 该第一转换区包括黄光波长转换材料或 /和绿光波长转换材料,该第一转换区用于接收蓝 光激光并将该蓝光激光部分转换为受激光, 以出射受激光与未被转换的蓝光激光; 第一滤光片, 该第一滤光片用于接收第一转换区出射的受激光与未被转换的蓝光激 光,并将蓝光激光与部分受激光的混合光及剩余受激光分别沿两个方向出射为发光装置 的两路出射光,使得蓝光激光和部分受激光的混合光的色坐标更接近于预定蓝光的色坐 标。
本实用新型还提供了一种投影系统, 其特征在于包括上述发光装置。
相对于现有技术, 本实用新型利用蓝光激光光源来激发波长转换材料产生受激光与 蓝光的混合光, 并利用第一滤光片对该混合光进行分光, 使得蓝光与部分受激光的混合 光一路出射, 而剩余受激光从另一路出射, 其中通过第一滤光片可以使得蓝光与部分受 激光的混合光的色坐标更接近于预定的蓝光色坐标, 同时剩余的受激光部分也可以用于 投影, 不会造成光源能量的浪费 附图说明
图 1 a是本实用新型的一个实施例中发光装置结构的主视图;
图 lb是图 la所示实施例中波长转换层结构的右视图和主视图;
图 lc是图 la所示实施例中第一滤光片的截止点选择方法流程示意图;
图 Id是图 la所示实施例中波长转换层出射光的光语图;
图 2a是本实用新型的又一个实施例中发光装置结构的主视图;
图 2b是图 2a所示实施例中波长转换层结构的左视图。 具体实施方式
下面结合附图和实施方式对本实用新型实施例进行详细说明。
实施例一
图 la为本实用新型的一个实施例中发光装置结构的主视图, 图 lb为图 la中所示 的波长转换层 121的右视图与主视图, 如图 la所示, 发光装置包括蓝光激光光源 110 , 波长转换装置 120, 第一滤光片 130, 第二滤光片 140。
蓝光激光光源 110用于出射蓝光激光 151。 ¾ la与图 lb所示,波长转换装置 120 包括波长转换层 121。 波长转换层 121 包括相对的第一表面 121a和第二表面 121b, 第 一表面 121a接收蓝光激光 151并将其部分转换为受激光, 第二表面将该受激光与未被 转换的蓝光激光的混合光 152 出射至第一滤光片 130。 如图 lb所示, 波长转换层 121 只包括第一转换区一个区域, 设置有黄光波长转换材料。 最常用的波长转换材料为荧光 粉, 如 YAG荧光粉, 可以吸收蓝光激光并受激产生黄色受激光。 波长转换材料还可能 是量子点、 荧光染料等具有波长转换能力的材料, 并不限于荧光粉。 在本实用新型其它 实施例中, 第一转换区 121也可以包括绿光波长转换材料或者绿光波长转换材料与黄光 波长转换材料的混合材料。
优选地, 波长转换层 121包括散射材料。 由于激光具有相干性, 若不消除其相干性 而直接投影到屏幕上, 会在屏幕上产生亮点, 造成屏幕的亮度不均匀。 虽然荧光粉本身 具有一定的散射作用而消除部分蓝光激光 151的相干性, 但是其作用有限, 并不能具有 很好的消相干效果, 因此, 波长转换层 121中设置散射材料, 可以更好地消除蓝光激光 151的相干性, 从而保证投影的亮度均勾性。 优选地, 散射材料均勾地分布在波长转换 层 121中, 可以起到更好的消相干作用。
第一滤光片 130接收黄色受激光与未被转换的蓝光激光的混合光 152并反射蓝光激 光和部分黄色受激光的混合光 153而透射剩余光 154, 并将蓝光激光与部分黄色受激光 的混合光及剩余受激光分别沿两个方向出射为发光装置的两路出射光,使得蓝光激光和 部分黄光受激光的混合光 153色坐标更接近于预定蓝光的色坐标。在本实用新型其它实 施方式中, 第一滤光片 130也可以是透射部分黄色受激光而反射蓝光激光和其它部分黄 色受激光, 并不影响出射光的效果。
蓝光激光与部分黄光受激光的色坐标更接近预定蓝光色坐标的方法有很多种。优选 地, 第一滤光片的截止点的波长大于等于 490nm而小于等于 520nm范围内。 这里的截 止点波长为第一滤光片的透过率与波长的关系曲线中,上升沿或者下降沿的 50%透过率 处所对应的波长位置。 目前, 一般蓝光激光的波长范围为 440nm - 460nm, 其色坐标约 为 (0.15 , 0.016), 经实验验证, 第一滤波片 130的截止点的波长设置在 490nm-520nm范 围内, 可以使得蓝光激光与部分黄光受激光的混合光的色坐标更接近预定蓝光色坐标。 例如, 经实验验证, 当第一滤波片 130的截止点的波长设置在 490nm时, 蓝光激光与部 分黄色受激光的混合光的色坐标为 (0.1582, 0.0182 ), 更加接近数字电视标准 Rec. 709 中蓝光的色坐标( 0.152 , 0.061 )。 这里的预定的蓝光的主波长大于蓝光激光的主波长, 由于黄光的光语覆盖的范围的波长要大于蓝光激光的光语范围的波长,很显然蓝光激光 与部分黄光的混合光的主波长将大于蓝光激光的主波长。
为了更加精确的改善蓝光激光的色坐标, 如图 lc所示, 优选地, 第一滤光片 130 的截止点位置通过以下方法得到:
A )获得波长转换层 121的第一转换区的出射光的光语;
B )选择第一滤光片 130的第 i截止点的波长 , 并且获得截取后蓝光激光与部分 受激光的混合光 154的光语对应的色坐标(Xl, 其中 i为大于等于 1的;
C )根据预定的蓝光的色坐标(XQ , y0 ), 获得色坐标(Xl, Yl ) 与色坐标(Xl, Yl ) 之间的 3巨离 di;
D )在第 i截止点的波长基材增加一个步长, 得到第一滤光片 130的第 i+1截止点 的波长 并获得截取后蓝光激光与部分受激光的混合光 154的光语对应的色坐标( X i+i ' yi+i );
E )获得色坐标(x 1+1 , y1+!) 与色坐标为 (x0, y0 )之间的距离 d1+1
F ) 比较 di与 di+i大小 , 若 di+i > di, 则选择截止点的波长为 λ;的第一滤光片 130为 所需滤光片; 若 d1+1 < d 本步骤之后还包括:
重复步骤 D, E, 直到 d^ dw , 选择截止点的波长为 的第一滤光片 130为所需滤 光片。
i = 1时, 第一滤光片 130的第 i截止点的波长 可以选取大于蓝光激光波长范围。 这里的步长为每一次选择的截止点对应的波长与上一次选择的截止点对应的波长之间 的差值。 步长可以根据实际情况进行选择。
下面以本实施例中蓝光激光激发黄光荧光粉为例进行具体分析:
步骤 A中,获得波长转换层 121出射的蓝光激光与黄色激发光的混合光 151的光语, 图 Id 为图 la 所示波长转换层 121 的出射光的光谙, 蓝光激光的光谱大约分布在 440nm-455nm泼长范围內, 黄邑受激光的光译大约分布莅 70nm-730nm波长范 ¾。
步骤 B中, 选择第一滤光片 130的第一截止点的波长 ^, 这里我们选择黄色受激光 的光奄范围的起始位置 470nm 波长为起始截止点波长, 此时截取的光傳对应在色度图 CIE1931中的色坐标 ( xi, yi ) 为 ( 0.1598, 0.0150 在实际应用中, 第一截止点波长的 位置可以根据实际情况进行选择。
步骤 C中, 我们选择数字电视标准 Rec. 709中蓝光的色坐标( 0.152, 0.061 )为预定 蓝光的色坐标(χο, γο ), 则第一截止点截取后的蓝光激光和部分黄色激发光的混合光的 色坐 预定蓝光色坐标之间的距离:
dt
Figure imgf000006_0001
=0.1171►
步骤 D, 选择第一滤光片 130的第二截止点波长, 这里, 我们选取的第二截止波长 点为 471nm位置, 其截取的光傳对应的色坐标为 (0.1598, 0.0150 )。 本实施例中的步长 取为 l nm, 在其它实施方式中, 第一截止点与第二截止点之间的步长可以根据实际需要 进行选择, 并不限于这里的举例, 对于其它截止点波长的选取也同样如此, 而且不同截 止点波长之间的步长可以不相同。
步骤 E 中, 类似地, 可以得到第二截止点波长截取后的蓝光激光和部分黄色激发光 的混合光的色坐标与预定蓝光色坐标之间的距离:
Figure imgf000006_0002
=0.1171^
步骤 F中, 比较 与 012大小, 这里明显, d d 因此需要继续选择截止点波长。 步骤 G 中, 继续选取第三截止点波长, 循环步骤 F。 最终获得的截止点波长对应的 数据如表 1所示, 可以发现当
Figure imgf000006_0003
nm时, di < di+1
Figure imgf000006_0004
替换页 (细则第 26条) 479 0.1595 0.0154 0.1 157 500 0.1541 0.0305 0.0703
480 0.1594 0.0155 0.1 153 501 0.1534 0.0330 0.0635
481 0.1594 0.0156 0.1 150 502 0.1526 0.0358 0.0562
482 0.1593 0.0158 0.1 144 503 0.1518 0.0391 0.0478
483 0.1592 0.0159 0.1 140 504 0.1508 0.0428 0.0389
484 0.1591 0.0161 0.1 134 505 0.1498 0.0469 0.0298
485 0.1590 0.0163 0.1 127 506 0.1487 0.0516 0.021 1
486 0.1589 0.0166 0.1 118 507 0.1475 0.0568 0.01610
487 0.1587 0.0169 0.1 108 508 0.1463 0.0625 0.0194
488 0.1586 0.0172 0.1098 509 0.1450 0.0689 0.0293
489 0.1584 0.0177 0.1082 510 0.1436 0.0758 0.0418
490 0.1582 0.0182 0.1066
表 1
从表 1 中可以得到本实施例中第一滤光片 130的最优截止点的波长位置为 507nm, 此时得到的蓝光激光与部分黄色受激光的混合光 153 的色坐标最近预定蓝光的色坐标。 根据上述方法,可以确定当蓝光激光与部分黄色受激光的混合光的色坐标最接近预定的 蓝光的色坐标时, 第一滤光片 130的截止点波长的位置, 此时第一滤光片 130可以将波 长转换层的出射的受激光以透射和反射的方式分成两部分, 未被吸收蓝光激光与短波长 部分混合从一路出射,分成两路出射,并实现出射光具有更好的显示效果。经实验验证, 一般情况下被截止点截取且与蓝光激光同方向出射的部分黄色受激光为黄色受激光的 短波长部分, 即截止点波长小于黄色受激光波峰位置的波长。
值得说明的是, 本实施例中, 第一滤光片 130的截止点波长是从黄色受激光光语的 波长较短的位置选取的, 而实际上也可以从波长较长的位置选取, 此时每次重新选取的 截止点对应的波长逐渐减小, 同样可以获得最优的截止点。
另外, 优选地, 第一滤光片 130截止点位置的获得方法中, 色坐标釆用 CIE1976色 度图里对应的色坐标在进行相应计算。肝 CIE1976色度图均匀性要优于 CIE1931色度 图, 因此将色坐标转换为 CIE1976色度图中坐标进行计算可以获得更高的准确性。
在本实用新型的其它实施方式中, 第一滤光片 130最优截止点位置也可以利用其它 方法获得。 例如, 将上述方法中的色坐标转换为对应的主波长, 并通过不同截止点波长 所截取的光语的主波长之间的差值大小来选择第一滤光片最优的截止点波长,使得截取 的光语的主波长与预定蓝光的主波长差值最小。
波长转换装置 120还包括驱动装置 123。 驱动装置 123用于驱动波长转换层 121运 动, 以使蓝光激光光源 110在该波长转换层 121上形成的光斑沿预定路径作用于该波长 转换层, 以避免激光长时间作用于波长转换层的同一位置导致该波长转换层 121温度升 高的问题。 具体地, 本实施例中, 驱动装置 123用于驱动波长转换层 121周期性转动, 以使得蓝光激光光源 110在该波长转换层 121上形成的光斑沿预定的圆形路径作用于该 波长转换层 121。 在本实用新型其它实施方式中, 驱动装置 123也可以驱动波长转换层 121以其它方式运动, 例如水平往复运动等。 在波长转换层 121的波长转换材料可以耐 受较高温度的情况下, 波长转换装置 120也可以不设置驱动装置。
波长转换装置 120还包括基板 122, 这里具体为透明玻璃, 该基板 122设置在第一 转换区 121的第一表面上, 用于固定波长转换层 121。 激发光入射到该基板 122并透射 至波长转换层 121上。 优选地, 基板 122的表面设置有一层滤光膜, 该滤光膜可以透射 蓝光激光而反射黄色受激光, 可以提高受激光的利用率; 进一步地, 滤光膜可以透射小 角度入射的蓝光而反射黄色受激光和大角度的蓝光,可以同时提高激发光和受激光利用 率。 但是在波长转换层本身刚性足够的情况下(例如波长转换层 121是通过将荧光粉掺 杂在透明玻璃中形成的), 基板是可以省略的, 此时可以将滤光膜镀在波长转换层 121 的表面, 同样具有相同的效果。
本实施例中, 发光装置 100还包括第二滤光片 140, 该第二滤光片 140位于波长转 换层 121出射光的光路上, 接收第一滤光片 130透射的剩余光 154, 并通过透射其中的 绿光 156反射红光 155将剩余光 154中红光从另一路出射而绿光沿原光路出射。现有技 术中, 常用的第二滤光片 140的截止点对应的波长设置在 590nm, 通过实验发现, 本实 施例中, 通过第一滤光片 130的截取, 截止点对应的波长设置在 590nm的第二滤光片 140透射后绿光 156的色坐标为 (0.34, 0.64 ), 相对于第一滤光片 130不对黄色受激光 进行截取的情况时的绿光色坐标(0.33 , 0.63 ), 发光装置最终出射光的色域范围略 ^:增 大, 投影效果也会有略微的改善。 通过第二滤光片 140的设置, 本实施例中的发光装置 100将出射红光 155、 ^¾ 156以及蓝光激光与部分黄光的混合光 153 , 可以作为投影系 统的光源,在该投影系统中,红光 155、绿光 156以及蓝光激光与部分黄光的混合光 153 分别入射三个光阔同时进行调制, 并最终投影到同一屏幕上进行投影。 另外, 在本实用 新型其它实施方式中, 第二滤光片 140还可以透射红光并反射绿光, 另一方面, 第二滤 光片 140的位置并不限于放在第一滤光片 130之后光路上,也可以放置在第一滤光片 130 之前的光路上, 第二滤光片 130接收第一转换区 121的出射光, 将该出射光中的红光与 剩余光分别沿两个方向出射, 并将该剩余光出射至第一滤光片 130。 这里的剩余光为蓝 光激光与受激光中的绿光成分的混合光。第二滤光片 130可以与第一滤光片 140平行设 置, 也可以与第一滤光片 140组成十字形分光装置, 这是公知技术, 在此不再赘述。
优选地, 发光装置 100还包括光调整装置 160, 该光调整装置 160收集波长转换层 121 的出射光并减小其发散角度后出射至第一滤光片 130。 具体地, 本实施例中的角度 调整装置 160为锥形方棒, 该锥形方棒 160收集波长转换层 121的出射光, 调整后入射 至第一滤光片 130, 以减小出射光的发散角度, 使得部分原来会被反射的大角度的入射 光从第一滤光片 130透射, 以减小因第一滤光片 130的角度漂移特性引起的光损失。 在 其它实施方式中, 光调整装置 160也可以为 CPC ( Compound Parabolic Concentrator, 复 合抛物面收集器)或其它形式的积分棒, 还可以为透镜等其它形式的能够减小光束发散 角度的光学器件。 但是对于第一滤光片的光透过效率要求不高的情况下, 发光装置也可 以不设置光调整装置。
实施例二
图 2a为本实用新型的又一个实施例发光装置结构的主视图, 如图 2a所示, 发光装 置 200包括蓝光激光光源 210 , 波长转换装置 220 , 第一滤光片 230, 光调整装置 250。
本实施例中发光装置 200与图 la中所示发光装置的不同之处在于:
1 )本实施例中,波长转换装置 220包括波长转换层 221 ,反射层 222,驱动装置 223。 波长转换层 221包括相对的第一表面与第二表面,反射层 222设置在波长转换层 221的 第二表面一侧。 反射层 222具体为高反铝片, 该高反铝片 222可以将入射到该高反铝片 222的激发光以及受激光反射出去。 这里的高反铝片 222还具有支撑波长转换层 221的 作用, 它还可以用反射镜等具有反射功能的装置代替。 在本实用新型其它实施方式中, 当波长转换层 221的波长转换材料的厚度足够的情况下, 也可以不设置反射层 222。
图 2b为波长转换层 221结构的左视图, 如图 2b所示, 波长转换层 221包括第一转 换区 221a和第二转换区 221b, 分别包括绿光荧光粉和红光荧光粉, 第一转换区 221a接 收蓝光激光并将其部分转换为绿色受激光并与未被转换的蓝光激光一同出射, 第二转换 区 221b接收蓝光激光并将其转换为红色受激光并出射。波长转换层 221在驱动装置 223 的驱动下周期性运动, 使得第一转换区 221a和第一转换区 221b周期性地位于蓝光激光 的出射光路上。,当第一转换区 221a位于光路上时,第一滤光片 230接收第一转换区 221a 的出射光, 并透射蓝光激光与部分绿光而反射剩余光, 当第二转换区 221b位于光路上 时, 第一滤光片 230接收第波长转换区 221b的出射光并将反射红光而透射蓝光激光分 别沿两个方向出射。 在本实用新型的其它实施方式中, 第二转换区可以是其它的波长转 换材料, 并不一限于本实施例中的红光波长转换材料。
与图 la所示的实施例中类似地, 优选地, 由于第一转换区 221a设置有绿光波长转 换材料, 第一滤光片的截止点的波长大于等于 480nm小于等于 510nm, 经实验验证, 第一滤波片的截止点的波长设置在 480nm-510nm范围内, 可以使得第一转换区 221a出 射的蓝光激光与部分绿光受激光的色坐标更接近预定蓝光色坐标。由于第二转换区 221b 的红光波长转换材料不能完全吸收蓝光激光, 第二转换区 221b会出射蓝光与红色受激 光的混合光。 因此第二转换区 221b出射的蓝光激光会与第一转换区 221a出射的混合光 中蓝光与部分绿光的混合光叠加, 形成最终的蓝光效果, 但是第一转换区 221a 出射的 混合光中蓝光与部分绿光的色坐标已经相对于蓝光激光的色坐标有所改善,所以最终的 蓝光效果也会改善的。 当然, 同样地, 可以利用与图 la所示的实施例中类似的方法, 确定第一滤光片 230的最优截止点位置, 这里的可以将第一滤光区 221a与第二滤光区 221b的出射光的光语进行叠加作为一个光语来进行考虑, 来确定色坐标来进行计算。
本实施例中, 波长转换层 221将时序出射蓝光激光与绿色激发光的混合光和红色激 发光,蓝光激光与绿色激发光将被第一滤光片 230分成蓝色激光与部分绿色受激光的混 合光和剩余部分绿色激发光, 红色受激光将被第一滤光片 230反射并与部分绿色激发光 同一光路时序出射。 因此, 该发光装置 200可以用作双光阔投影系统的光源, 其中一个 光阔调制蓝光, 另一个光阔调制绿光与红光的序列光。
值得说明的是, 本实用新型的其它实施方式中, 波长转换层还可以包括 3个以上的 区域, 无论波长转换层的区域的数量是多少, 只要第一转换区域包括绿色波长转换材料 或者黄光波长转换材料或者两者的混合物,都可以通过第一滤光片的分光作用在蓝光激 光中加入部分绿光或者黄光来改善蓝光激光色坐标。
2 )本实施例中, 发光装置 200还包括光收集装置 240。 光收集装置 240为包括透光 孔与透光孔外部的反射面的弧面反射装置, 蓝光激光经过透光孔入射至波长转换层 221 的第一表面上, 波长转换层 221的出射光的大部分被弧面反射装置 240的反射面反射并 被光调整装置 260收集至第一滤光片 230, 小部分从透光孔泄漏。 优选地, 弧面反射装 置 240呈半椭球形或半椭球形的一部分,且波长转换层 221被设置于该椭球的一个焦点, 从而波长转换层 221出射的大部分光经弧面反射装置的反射面反射至该椭球的另一焦点; 或者, 弧面反射装置 240呈半球形或半球形的一部分, 且波长转换层 221被设置于靠近 该球形球心的一点,从而波长转换层 221出射的大部分光经弧面反射装置的反射面反射 至与该点关于球心对称的另一点, 以便于进行光收集。 另外, 光收集装置 240并不仅限 于本实施例中的带透光孔的弧面反射装置, 在其它实施方式中也可以是透镜、 带孔的其 它形状的反射装置、 不带孔的弧面反射装置等装置。
以上所述仅为本实用新型的实施例, 并非因此限制本实用新型的专利范围, 凡是利 用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在 其他相关的技术领域, 均同理包括在本实用新型的专利保护范围内。

Claims

权 利 要 求 书
1、 一种发光装置, 其特征在于, 包括:
蓝光激光光源, 该蓝光激光光源用于出射蓝光激光;
波长转换装置, 该波长转换装置包括波长转换层, 该波长转换层包括第一转换 区, 该第一转换区包括黄光波长转换材料或 /和绿光波长转换材料, 该第一转换区用 于接收所述蓝光激光并将该蓝光激光部分转换为受激光, 以出射所述受激光与未被 转换的蓝光激光;
第一滤光片, 该第一滤光片用于接收所述第一转换区出射的受激光与未被转换 的蓝光激光, 并将蓝光激光与部分受激光的混合光及剩余受激光分别沿两个方向出 射为所述发光装置的两路出射光, 使得所述蓝光激光和部分受激光的混合光的色坐 标更接近于预定蓝光的色坐标。
2、 根据权利要求 1所述的发光装置, 其特征在于: 所述第一转换区包括相对的 第一表面与第二表面, 该第一表面用于接收来自所述蓝光激光光源的蓝光激光, 该 第二表面用于将所述受激光与未被转换的蓝光激光的混合光出射至第一滤光片。
3、 根据权利要求 2所述的发光装置, 其特征在于: 所述波长转换装置还包括设 置在第一转换区的第一表面一侧的基板, 该基板表面设置有滤光膜, 该滤光膜用于 透射所述蓝光激光并反射所述受激光。
4、 根据权利要求 1所述的发光装置, 其特征在于: 第一转换区包括相对的第一 表面与第二表面, 所述波长转换装置还包括设置在第一转换区的第二表面一侧的反 射层;
所述发光装置还包括光收集装置, 该光收集装置包括透光孔与透光孔外部的反 射面的反射装置, 该透光孔用于将所述蓝光激光透射至第一表面, 该反射面用于将 来自第一转换区的受激光与未被转换的蓝光激光的混合光反射至第一滤光片。
5、 根据权利要求 1所述的发光装置, 其特征在于: 所述第一转换区只包括黄光 波长转换材料,所述第一滤光片的截止点的波长大于等于 490nm且小于等于 520nm。
6、 根据权利要求 1所述的发光装置, 其特征在于: 所述第一转换区只包括绿光 波长转换材料,所述第一滤光片的截止点的波长大于等于 480nm且小于等于 510nm。
7、 根据权利要求 5所述的发光装置, 其特征在于: 所述第一转换区包括黄光波 长转换材料, 所述发光装置还包括第二滤光片;
第二滤光片接收所述第一滤光片出射的部分黄色受激光,并透射绿光反射红光或 者透射红光反射绿光,或者接收所述第一转换区的出射光,将该出射光中的红光与剩 余光分别沿两个方向出射, 并将该剩余光出射至所述第一滤光片。
8、 根据权利要求 1所述的发光装置, 其特征在于: 所述波长转换层还包括第二 转换区,该第二转换区包括不同于所述第一转换区的波长转换材料,接收所述蓝光激 光并将其至少部分转换为受激光, 所述波长转换装置还包括驱动装置, 所述波长转换 层在所述驱动装置的驱动下周期性运动,使得所述第一转换区和第一转换区周期性地 位于蓝光激光的出射光路上。
9、 根据权利要求 8所述的发光装置, 其特征在于: 所述第一转换区包括绿光波 长转换材料, 所述第二转换区包括红光波长转换材料, 所述第一滤光片还用于接收所 述第二转换区的出射光, 并将该出射光中的红光与蓝光分别沿两个方向出射。
10、一种投影装置, 其特征在于, 包括权利要求 1至 9中所述的任一项的发光装 置。
PCT/CN2012/084931 2012-08-05 2012-11-21 发光装置及相关投影系统 WO2014023067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220385950.7 2012-08-05
CN2012203859507U CN203025471U (zh) 2012-08-05 2012-08-05 发光装置以及投影系统

Publications (1)

Publication Number Publication Date
WO2014023067A1 true WO2014023067A1 (zh) 2014-02-13

Family

ID=48649442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084931 WO2014023067A1 (zh) 2012-08-05 2012-11-21 发光装置及相关投影系统

Country Status (2)

Country Link
CN (1) CN203025471U (zh)
WO (1) WO2014023067A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536212B2 (ja) * 2015-06-23 2019-07-03 セイコーエプソン株式会社 波長変換素子、光源装置およびプロジェクター
CN105676577A (zh) * 2016-03-07 2016-06-15 海信集团有限公司 光源装置和激光投影显示设备
CN109991800B (zh) * 2018-01-03 2022-11-11 深圳光峰科技股份有限公司 光源装置及投影系统
WO2020024610A1 (zh) * 2018-08-01 2020-02-06 深圳市绎立锐光科技开发有限公司 光源系统及发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128521A (ja) * 2009-12-21 2011-06-30 Casio Computer Co Ltd 光源装置及びプロジェクタ
CN102141210A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 高显色指数高亮度照明设备及其实现多色温调节的方法
CN102185076A (zh) * 2009-12-29 2011-09-14 三星电子株式会社 发光装置和具有该发光装置的显示设备
CN102393598A (zh) * 2011-11-03 2012-03-28 海信集团有限公司 光源装置及应用其的投影机
CN102563410A (zh) * 2011-12-04 2012-07-11 深圳市光峰光电技术有限公司 发光装置、投影装置和照明装置
CN102707551A (zh) * 2011-08-04 2012-10-03 深圳市光峰光电技术有限公司 照明装置和投影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128521A (ja) * 2009-12-21 2011-06-30 Casio Computer Co Ltd 光源装置及びプロジェクタ
CN102185076A (zh) * 2009-12-29 2011-09-14 三星电子株式会社 发光装置和具有该发光装置的显示设备
CN102141210A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 高显色指数高亮度照明设备及其实现多色温调节的方法
CN102707551A (zh) * 2011-08-04 2012-10-03 深圳市光峰光电技术有限公司 照明装置和投影装置
CN102393598A (zh) * 2011-11-03 2012-03-28 海信集团有限公司 光源装置及应用其的投影机
CN102563410A (zh) * 2011-12-04 2012-07-11 深圳市光峰光电技术有限公司 发光装置、投影装置和照明装置

Also Published As

Publication number Publication date
CN203025471U (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
US10379431B2 (en) Projection apparatus and illumination system having wavelength conversion modules
US9599882B2 (en) Illumination system and projection apparatus
US9910346B2 (en) Illumination system and projection apparatus
US8789957B2 (en) Light source module and projection apparatus
US10331022B2 (en) Light source module and projection apparatus
US9429829B2 (en) Illumination system and projection apparatus
US10599026B2 (en) Wavelength conversion module, forming method of wavelength conversion module, and projection device
US11520223B2 (en) Illumination system and projection apparatus
US11112684B2 (en) Projection apparatus with illumination system having plurality of laser modules
US11336873B2 (en) Illumination system and projection apparatus
CN1457446A (zh) 照明光学系统及使用它的投影仪
WO2014023067A1 (zh) 发光装置及相关投影系统
CN1945380A (zh) 照明光学系统以及图像投射装置
US10838291B2 (en) Illumination system and projection device
US10409149B2 (en) Phosphor wheel, light-emitting unit, and projector using same
US11947251B2 (en) Illumination system and projection apparatus
TWI730146B (zh) 光學系統
US11714343B2 (en) Illumination system and projection apparatus
US11543741B2 (en) Illumination system and projection device
US20220075252A1 (en) Illumination system and projection apparatus
JP2019028120A (ja) 照明装置及びプロジェクター
CN107688275B (zh) 照明装置及显示系统
US20240069425A1 (en) Illumination system and projection apparatus
US11841612B2 (en) Illumination system and projection device
US11320727B2 (en) Light source module and projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/09/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12882591

Country of ref document: EP

Kind code of ref document: A1