WO2014022943A1 - Aparato y método que simula la orientación espacial de estructuras respecto del sol - Google Patents

Aparato y método que simula la orientación espacial de estructuras respecto del sol Download PDF

Info

Publication number
WO2014022943A1
WO2014022943A1 PCT/CL2013/000037 CL2013000037W WO2014022943A1 WO 2014022943 A1 WO2014022943 A1 WO 2014022943A1 CL 2013000037 W CL2013000037 W CL 2013000037W WO 2014022943 A1 WO2014022943 A1 WO 2014022943A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
sun
arc
graduated
rotation platform
Prior art date
Application number
PCT/CL2013/000037
Other languages
English (en)
French (fr)
Inventor
Luis Felipe GONZALEZ BÖHME
Original Assignee
Universidad Tecnica Federico Santa Maria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Tecnica Federico Santa Maria filed Critical Universidad Tecnica Federico Santa Maria
Publication of WO2014022943A1 publication Critical patent/WO2014022943A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/04Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of buildings

Definitions

  • the present invention relates to an apparatus and method that simulates the spatial orientation of a building with respect to the sun and estimates the corresponding area of direct solar collection, under ideal conditions. More specifically to an apparatus to simulate and evaluate alternatives of solar orientation of physical models of buildings, according to the surface area exposed to the sun at any latitude, day and time.
  • specifying the orientation of a building is, in truth, specifying the position of the outer faces that delimit its volumetric configuration with respect to the sun, in general to capture as much direct sunlight as possible during winter days, especially in extreme latitudes where the longest and coldest winters, or the other way around in summer, to protect themselves from too intense radiation.
  • specifying the Northeast orientation with respect to the sun for a building or any space in the building means that at least one of its outer faces must be perpendicular (or as close as perpendicular) to the Northeast ordinal direction, or at least, that one of its outer faces must be perpendicular to the north cardinal direction and another face perpendicular to the east direction.
  • the most favorable orientations regarding the sun to capture daylight are towards the North and the South, since the sun remains high in the sky for most of the day.
  • the most unfavorable orientations to capture the daylight are to the East and the West, since the sun is low in its daily trajectory and there is no overhang or eaves capable of controlling the direct light of the incoming sun, which in general when putting the Sun can be quite overwhelming especially in summer.
  • the East and West orientations are also somewhat difficult to control exclusively through the volumetric configuration of the building, because the position of the sunrise and sunset varies according to the season, while the exterior walls and roofs of the building remain fixed in the space and in time.
  • a concave polygon for example, L-shaped buildings, T, S, U, X, H, or staggered
  • a simple polygon with holes for example, buildings with one or more inner courtyards
  • a regular polygon for example, symmetrical buildings with an equilateral or square triangular plan
  • solar path diagrams or charts
  • a device called Heliodón which, unlike the solar path diagram, allows to visualize in real time the shadows cast by the candidate building by means of solar exposure simulated by a light source on a model of the same building, during the day at one or several times of the year.
  • the solar path diagram requires the geometric construction of the shadow projection and does not require a physical model of the candidate building, while the Heliodon does require operating on a physical model and must necessarily be in a light-insulated space to run the simulation.
  • Heliodón it is a qualitative evaluation, with the possibility of recording generally visual evidence (not quantitative).
  • a tool is proposed for energy efficiency decisions regarding the basic geometry proposed for a building.
  • the simulation system for lighting a model includes: a light source that provides a first light radiation of said model, where said model is placed on a structure and said light source can be moved at least one with respect to the other by the movement device; controls of a first computer of the movement device serve to move said structure and said light source with respect to the other; at least one light sensitive sensor located in said model illuminated by said irradiation sends a signal proportional to the incident light to said first computer such that the structure and the light source in the predetermined positions such that said light source illuminates the model in a predetermined manner, said first computer receives said signal proportional to the incident light for each predetermined position and memorizes said signal; said first computer is connected to a second device to which it sends the memorized signals.
  • a first objective of the invention is to have an apparatus that simulates the spatial orientation of a building with respect to the sun to estimate the corresponding area of direct solar collection, under ideal conditions, comprising a rotation platform, which can be manual or automatic, which is automatically rotated by a first servo or stepper motor, where said rotating platform that is circular in shape, has a graduated ring on its outer edge, and supports a volumetric building model or the like for evaluation; a circular ring-shaped structure, which has a horizontal beam, located below its diameter, which holds said rotation platform with two ring supports; a graduated arc of length slightly greater than a semicircle, is perpendicularly connected to the circular ring-shaped structure at its bottom, finished at its top and protruding a few degrees; a concentric arch, with the graduated arch, which at its upper end has an image capturing unit directed towards the volumetric building model.
  • the first servo or stepper motor that moves the rotation platform is commanded by a microprocessor, which is located below said rotation platform, supported by a support containing a tray to contain the microprocessor that is connected to a First cable to the first servo or stepper motor.
  • a microprocessor which is located below said rotation platform, supported by a support containing a tray to contain the microprocessor that is connected to a First cable to the first servo or stepper motor.
  • both the graduated arc and the circular ring-shaped structure are supported by a rear support, a right support and a left support, where said supports form a tripod to keep the entire apparatus vertically.
  • the concentric arc moves parallel to the graduated arc driven by a roller that is connected to a second servo or stepper motor, which is attached by a plate to the graduated arc and connected by a second cable to a microprocessor;
  • the concentric arch remains integral with the graduated arch with a large U-shaped support connected in its open part to a wheel that rolls on the outer side of the graduated arc, and at the closed end of the large U-bracket is integral with the inner side of the concentric arc, the large U-support supports between its sides and between the separation of the graduated arc and the concentric arch a first small wheel, the support large U is near the upper end of the concentric arc and behind the position of the image capture unit and in the opposite position of the concentric arc and near its lower end, there is a small U-bracket that at its open end it has a second small wheel and the closed end of the small U-bracket is integral with the concentric arc, so that when the second servo or stepper motor moves said concentric
  • the microprocessor controls the second servo or stepper motor to move the concentric arc with the image capture unit a number of degrees indicated in the graduated arc, so as to look for a position value of elevation or solar altitude with respect to the model volumetric of the building located on the rotation platform, where said rotation platform is automatically oriented by the first servo or stepper motor, which is also controlled by the microprocessor, so as to look for an azimuth position value with respect to to the volumetric model of the building.
  • the graduated ring indicates the cardinal directions and is rotated manually, either to compare the orientation of the volumetric model of the building with respect to the Geographical North where the image capture unit that represents the sun is located or, alternatively, to compare the orientation of the volumetric model of the building with respect to the Magnetic North.
  • a second objective is to provide a method to simulate the spatial orientation of a building with respect to the sun to estimate the corresponding area of direct solar collection, under ideal conditions, comprising the steps of having an apparatus as described in the first objective of the invention; to choose a first functionality that consists in raising the image capture unit in a first plurality of elevation angles determined by the user and rotating the rotation platform in a second plurality of azimuth angles determined by the user (in 360 °), so to evaluate thoroughly the volumetric model of the building in a discrete amount of orientations determined by the user for each of the first plurality of elevation angles determined by the user, who enters the data through an interface to a related computer program, where he only chooses: latitude and date; then, the related computer program calculates the two-dimensional extent of the image of the volumetric model of the building captured by the image capture unit by means of an image segmentation technique, whose resulting value simulates the surface area of the building exposed to the sun at latitude and date previously specified by the user; in alternative to the first functionality, choose a second
  • the related computer program can compare and average the resulting values, providing the user with a range of orientations with similar surface area of direct solar collection for the building during the year.
  • the first functionality allows you to evaluate the surface area of solar exposure of the volumetric model of the building in different orientations for a latitude and date determined by the user, but exclusively from Solar Noon or 12: 00hrs., Without need of coordination between the movement of the image capture unit and the rotation of the rotation platform.
  • Figure 1 describes a main isometric view of the invention.
  • Figure 2 describes a rear isometric view of the invention.
  • Figure 3 describes a rear view of the invention.
  • Figure 4 describes a side view of the invention.
  • Figure 5 describes a plan view of the invention.
  • the sun is the main natural source of thermal, electrical and light energy for our planet.
  • Most of the buildings we inhabit are fixed on the surface of our planet and are therefore continuously exposed to the energy that comes from the sun.
  • the intensity with which this energy arrives at our planet varies according to latitude and period of the year, so that in winter it is less and in summer it is greater.
  • the immobility of the buildings and the variation in the intensity of the solar energy that bathes the buildings, the exterior shape and the orientation of each building with respect to the sun's rays fundamentally affect the energy consumption of each building Consequently, the energy efficiency of each building affects the environmental sustainability of the planet.
  • the orientation of a building refers to the two-dimensional alignment of its exterior form - composed of either space or matter (or mass) - with respect to the directions in which the sun appears to be positioned during the day and year, as a result of the rotation and orbit of our planet around the sun.
  • the apparent position of the sun is conventionally expressed based on four cardinal directions (ie, north, south, west and east) and four ordinal directions (ie, northwest, southeast, northeast and southwest). In that case, the geographical or true North that is located in the north pole of the planet is used.
  • the surface area exposed to the sun of a building is the main variable that determines its energy efficiency, in terms of energy consumption required for heating, cooling and lighting of its interior space.
  • the materiality of the envelope surface of a building is also a variable that affects its energy efficiency.
  • the shape and orientation of a building are fundamental variables that the designer must explore and fix before proceeding with the design. Therein lies the importance of having quantitative evaluation means that can support the early exploration of efficient architectural configurations in terms of energy consumption during their occupation.
  • the invention is described as an apparatus for simulating and evaluating solar orientation alternatives of physical models of buildings, according to the surface area exposed to the sun at any latitude, day and time.
  • the apparatus (10), shown in Figure 1, consists of a rotation platform (50), which can be manual or automatic, which is automatically rotated by a first servo or stepper motor (28), in wherein said rotation platform (50) which is circular in shape, has a graduated ring (55) on its outer edge.
  • the rotation platform (50) supports a volumetric building model (70) or similar for evaluation; In Figures 3 and 5, the volumetric building model (70) differs in appearance, but only to indicate that the volume can be any of interest.
  • the first servo or stepper motor (28) that moves to the rotation platform (50) is commanded by a microprocessor (25), which is located below said rotation platform (50), supported by a support (26) .
  • the rotation platform (50) with all the aforementioned means is supported by a ring-shaped circular structure (20), which has a horizontal beam (22), located below its diameter, which is attached to said platform of rotation (50) with two ring supports (21), also contains a tray (26) to contain the microprocessor (25) that is connected with a first cable (27) to the first servo or stepper motor (28).
  • the circular ring-shaped structure (20) is joined with a graduated arc (30) of length slightly greater than a semicircle, where the joint is perpendicular to the circular ring-shaped structure (20) at its bottom, finished in its upper part and protruding a few degrees, as shown in figures 1, 2 and 4.
  • Both the graduated arc (30) and the circular ring-shaped structure (20) are supported by a rear support (12 ), a right support (14) and a left support (16), wherein said supports form a tripod to hold the entire apparatus (10) vertically.
  • the graduated arc (30) supports a concentric arc (40) which at its upper end has an image capturing unit (60) directed towards the volumetric building model (70); the concentric arc (40) moves parallel to the graduated arc (30) driven by a roller (36) that is connected to a second servo or stepper motor (35), which is held by a plate (38) to the graduated arc (30) and connected by a second cable (24) to the microprocessor (25).
  • the concentric arc (40) remains integral with the graduated arc (30) with a large U-shaped support (41) connected in its open part to a wheel (42) that rolls on the outer side of the graduated arc (30), and at the closed end of the large U-shaped support (41) is integral with the inner side of the concentric arc (40), the large U-shaped support (41) supports between its sides and between the separation of the graduated arc (30) and the arc concentric (40) a first small wheel (43), the large U-shaped support (41) is near the upper end of the concentric arc (40) and behind the position of the image capture unit (60), and in the position opposite the concentric arc (40) and near its lower end, there is a small U-shaped support (44) that has a second small wheel (45) at its open end and the closed end of the small U-shaped support (44) it is integral with the concentric arc (40), so that when the second servo or stepper motor (35) moving said concentric arc (40) with the roller (36), the first
  • the movement is generated by the microprocessor (25) that controls the second servo or stepper motor (35) to move the concentric arc (40) with the image capture unit (60) a number of degrees indicated in the graduated arc ( 30), in order to find a position value of elevation or solar altitude with respect to the volumetric model of the building (70) located on the rotation platform (50), where said rotation platform (50) is oriented in shape automatic by the first servo or stepper motor (28), which is also controlled by the microprocessor (25), so as to look for an azimuth position value with respect to the volumetric model of the building (70).
  • the graduated ring (55) indicates the cardinal directions and is rotated manually, either to compare the orientation of the volumetric model of the building (70) with respect to the Geographical North where the image capture unit (60) representing the sun is located or, alternatively, to compare the orientation of the volumetric model of the building (70) with respect to the Magnetic North.
  • the apparatus (10) allows at least two functionalities, the first is to raise the image capture unit (60) in a first plurality of elevation angles determined by the user and rotate the rotation platform (50) in a second plurality of azimuth angles determined by the user (in 360 °), so as to thoroughly evaluate the volumetric model of the building (70) in a discrete amount of orientations determined by the user for each of the first plurality of elevation angles determined by the user.
  • the user enters the data through an interface to a computer program, where he only chooses: latitude and date.
  • the computer program calculates the two-dimensional extent of the image of the volumetric model of the building (70) captured by the image capture unit (60) by means of a Image segmentation technique, whose resulting value simulates the surface area of the building exposed to the sun at the latitude and date previously specified by the user.
  • the computer program can compare and average the resulting values, providing the user with a range of orientations with similar surface area of direct solar collection for the building during the year.
  • This functionality allows to evaluate the surface area of solar exposure of the volumetric model of the building (70) in different orientations for a latitude and date determined by the user, but exclusively from the Solar Noon or at 12: 00hrs. This mode does not require coordination between movement of the image capture unit (60) and rotation of the rotation platform (50).
  • the rotation of the rotation platform (50) is between the azimuth angles that correspond to the sun's apparent path for the latitude, date and times of the day specified by the user, supported either by the path diagram corresponding solar, or automatically by the computer program that operates on the apparatus (10) in one of its embodiments.
  • This functionality allows you to evaluate the surface area of solar exposure of the volumetric model of the building (70) for a full day, or also part of it, from sunrise to sunset, at a certain latitude and date and therefore with a fixed orientation of the volumetric model of the building (70).
  • Both movements that is, the displacement of the image capture unit (60) and rotation of the rotation platform (50), must be coordinated so as to simulate a plurality of points of the double curvature arc that describes the apparent path of the sun Through the celestial sphere.
  • This coordinated movement can be discrete or continuous, depending on the speed with which the image capture unit (60) captures each image.
  • the images obtained by the image capture unit (60) are stored in the microprocessor (25) and evaluated by the computer program that uses an image segmentation technique to calculate the two-dimensional extent of the image of the volumetric model of the building (70 ) captured in each orientation and whose resulting value simulates the surface area of the building exposed to the sun in every apparent position of the sun.
  • the volumetric model of the building (70) is placed on the rotation platform (50), matching the centroid of the volumetric model of the building (70) with the center of the rotation platform (50);
  • the image capture unit (60) is automatically or manually positioned at the solar elevation angle corresponding to the solar noon of the winter solstice at the indicated latitude and captures an image of said volumetric model of the building (70).
  • the rotation platform (50) orients the volumetric model of the building (70) automatically or manually at another azimuth angle and the image capture unit (60) captures again a next image that will be stored and evaluated in the same way as the previous one.
  • This method is repeated for the number of orientations that the user deems appropriate, for example, every 10th azimuth (that is 36 orientations). With the series of images evaluated and the resulting values, the user can easily identify that range of orientation between azimuth angles in which the volumetric configuration of the building has a greater, lesser or equivalent area of direct solar collection under the conditions described above.
  • the same method can be used to evaluate the volumetric configuration of the same building in different orientations with respect to solar noon (12:00 hrs.), In its highest position during the year (summer solstice), or in the vertical position and length of medium paths (equinox). Eventually all values can be compared and averaged to determine an average range of orientations for the building with respect to the sun during the year.
  • the graduated ring (55) can be turned manually in such a way that its degrees coincide with the cardinal directions with respect to the Geographical North or the Magnetic North with the corresponding magnetic declination (3 or 17 ' East, for the indicated latitude, in 2012).
  • the image capture unit (60) is automatically or manually positioned at different angles of solar elevation between sunrise and sunset for the indicated date and latitude, in coordination with the rotation of the rotation platform (50) thus simulating the apparent path of the sun through the celestial sphere.
  • the initial orientation of the volumetric model of the building (70) is considered as fixed, while each image represents the perspective of the sun on the building during the indicated day.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Aparato y método que Simula la orientación espacial de una estructura respecto del sol para estimar el área correspondiente de captación solar directa, en condiciones ideales, que comprende: una plataforma de rotación de forma circular, la cual es rotada automáticamente por un primer motor servo o paso a paso, en donde dicha plataforma de rotación tiene en su borde exterior un anillo graduado, y soporta una maqueta volumétrica; una estructura circular con forma de anillo, que tiene una viga horizontal, ubicada mas abajo de su diámetro, que sujeta a dicha plataforma de rotación con dos soportes de anillo; un arco graduado de longitud mayor que un semicirculo, unido perpendicularmente con la estructura circular con forma de anillo en su parte inferior, terminando en su parte superior; y un arco concéntrico, con el arco graduado, que en su extremo superior tiene una unidad captadora de imágenes dirigida hacia la maqueta volumétrica.

Description

APARATO Y MÉTODO QUE SIMULA LA ORIENTACIÓN ESPACIAL DE ESTRUCTURAS RESPECTO DEL SOL
CAMPO DE APLICACIÓN
La presente invención se refiere a un aparato y método que simula la orientación espacial de un edificio respecto del sol y estima el área correspondiente de captación solar directa, en condiciones ideales. Más específicamente a un aparato para simular y evaluar alternativas de orientación solar de maquetas físicas de edificios, según el área de superficie expuesta al sol en cualquier latitud, día y hora.
DESCRIPCIÓN DEL ARTE PREVIO
En las etapas tempranas del proceso de diseño arquitectónico se estudian potenciales configuraciones volumétricas de edificios, tomando en cuenta diversos factores que afectarán su desempeño futuro. La orientación de la configuración volumétrica del edificio respecto del sol, está entre aquellos factores que ejercerán mayor influencia sobre la eficiencia energética del edificio durante su ocupación. A pesar de que la orientación de un edificio respecto del sol es -a primera vista- asociada con la rotación del polígono que representa el contorno de dicho edificio visto en planta, en la práctica implica la organización espacial de sus muros exteriores y techos. En ese sentido, especificar la orientación de un edificio es, en verdad, especificar la posición de las caras exteriores que delimitan su configuración volumétrica con respeto al sol, en general para captar la mayor cantidad posible de radiación solar directa durante los días de invierno, especialmente en latitudes extremas donde los inviernos más largos y fríos, o al revés en verano, para resguardarse de una radiación demasiado intensa. Por ejemplo, especificar la orientación Noreste respecto del sol para un edificio o cualquier espacio del edificio, significa que al menos una de sus caras exteriores debe ser perpendicular (o lo más cercano a la perpendicular) a la dirección ordinal Noreste, o al menos, que una de sus caras exteriores debe ser perpendicular a la dirección cardinal Norte y otra cara perpendicular a la dirección Este. Las orientaciones respecto del sol más favorables para captar luz diurna son hacia el Norte y el Sur, ya que el sol permanece alto en el cielo durante la mayor parte del día. Las orientaciones más desfavorables para captar la luz diurna son hacia el Este y el Oeste, ya que el sol se encuentra bajo en su trayectoria diaria y no hay voladizo o alero capaz de controlar la luz directa del sol entrante, que en general al ponerse el sol puede resultar bastante agobiante sobre todo en verano. Las orientaciones Este y Oeste también son algo difíciles de controlar exclusivamente mediante la configuración volumétrica del edifico, debido a que la posición de la salida y puesta de sol varía según la temporada, mientras que los muros exteriores y techos del edificio permanecen fijos en el espacio y en el tiempo. En el Hemisferio Sur, una orientación adecuada respecto del sol sugiere distribuir los espacios habitables, de tal modo que cada uno tenga al menos una de sus caras exteriores orientadas hacia el Norte. Por consiguiente, aquellos edificios cuyo eje de elongación (o sea de mayor longitud) se encuentre en la dirección Oeste-Este, obtienen la mejor iluminación natural y también mejores oportunidades de rendir mayor eficiencia energética al maximizar el área de superficie expuesta al Norte y al Sur. La noción de orientación de un edificio, sin embargo, a menudo se presta para confusiones, incluso entre arquitectos y estudiantes. La literatura relacionada a la investigación en el campo de la automatización de generalización cartográfica aclara que existen al menos dos maneras de especificar la orientación de un edificio, una toma en cuenta la dirección del eje bidimensional de elongación del edificio, mientras que la otra considera la dirección (promedio) del mayor número de muros exteriores del edificio que sean paralelos entre sí. La confusión surge en al menos cuatro tipos de caso ejemplares, tales como cuando el contorno de la planta del edificio es (a) un polígono cóncavo (por ejemplo, edificios con forma de L, T, S, U, X, H, o escalonada), (b) un polígono simple con agujeros (por ejemplo, edificios con uno o más patios interiores), (c) un polígono regular (por ejemplo, edificios simétricos de planta triangular equilátera o cuadrada) e indudablemente también cuando se trata de (d) una planta de figura circular, curvada o sinuosa. Es así que, para simplificar el problema de la orientación de un edificio respecto del sol, generalmente solo se opera sobre la planta del edificio, descartando su configuración volumétrica durante las etapas tempranas del proceso diseño arquitectónico. Aunque en realidad la superficie que potencialmente está expuesta al sol no está representada por la planta del edificio. Para evaluar alternativas de orientación solar para la configuración volumétrica de un edificio, en la gran mayoría de los casos, se emplean diagramas (o cartas) de trayectoria solar, que deben corresponder a la latitud en donde se ubica el sitio de emplazamiento y que ayudan a graficar bidimensionalmente la proyección de sombras del edificio candidato y de su entorno sobre él, en cualquier día y hora para tal latitud. Muy excepcionalmente se emplea un dispositivo llamado Heliodón que, a diferencia del diagrama de trayectoria solar, permite visualizar en tiempo real las sombras que proyecta el edificio candidato mediante la exposición solar simulada por una fuente de luz sobre una maqueta del mismo edificio, durante el día en una o varias épocas del año. El diagrama de trayectoria solar exige la construcción geométrica de la proyección de sombras y no requiere maqueta física del edificio candidato, mientras que el Heliodón sí requiere operar sobre una maqueta física y necesariamente debe encontrarse en un espacio aislado lumínicamente para ejecutar la simulación. En el caso del Heliodón, se trata de una evaluación cualitativa, con posibilidad de registro de evidencia generalmente visual (no cuantitativa). Existen Heliodones que operan de manera manual y automatizada, aunque ambas variaciones generalmente solo permiten visualizar la proyección de sombras. Sin embargo, es necesario contar además con una perspectiva visual distinta, que combine métodos de evaluación cualitativos con cuantitativos y que permita registrar evidencia mensurable sobre el área efectiva de exposición directa de la configuración volumétrica del edificio a los rayos del sol, con este fin, se propone una herramienta para la toma de decisiones de eficiencia energética respecto de la geometría básica propuesta para un edificio. Actualmente existen varios programas de aplicación computacional que permiten modelar la configuración volumétrica de un edificio y someterla a distintas simulaciones y evaluaciones respecto de su asoleamiento con gran precisión cuantitativa. El principal inconveniente, común a casi todo ese tipo de aplicaciones es que exigen al usuario asignar valores alfanuméricos a una gran cantidad de variables que, por lo general, son desconocidas o simplemente irrelevantes para el arquitecto en dichas etapas tempranas del proceso de diseño. Contrariamente, dichas etapas del proceso diseño se caracterizan precisamente por el bajo nivel de compromiso de los arquitectos con cada instancia de configuración volumétrica en estudio y por el gran número de errores y cambios de opinión respecto a las condiciones de diseño. Es por esto que los arquitectos generalmente utilizan bocetos rápidos y maquetas de estudio sobre-simplificadas, con el objeto de reducir los costos de tiempo y esfuerzo invertidos durante las etapas tempranas del proceso de diseño arquitectónico. La invención propuesta permite emplear métodos de evaluación cualitativos y cuantitativos, registrando digitalmente evidencia mensurable de los resultados de la evaluación, opera sobre maquetas físicas, y no requiere encontrarse en un espacio aislado lumínicamente para ejecutar la simulación y evaluación.
La solicitud de patente de invención EP1536396, de fecha 21.10.2003, titulada "Simulation system for the illumination of a model", de Pdesta y Prati, describe un sistema y un método de simulación de iluminación y un fotogoniómetro. En una de sus realizaciones, el sistema de simulación para la iluminación de un modelo, incluye: una fuente de luz que proporciona una primera radiación de luz de dicho modelo, donde dicho modelo se coloca sobre una estructura y dicha fuente de luz puede ser movida al menos una respecto a la otra por el dispositivo de movimiento; unos controles de un primer ordenador del dispositivo de movimiento sirven para mover dicha estructura y dicha fuente de luz respecto a la otra; al menos un sensor sensible a la luz situado en dicho modelo iluminado por dicha irradiación envía una señal proporcional a la luz incidente a dicho primer ordenador de modo tal que la estructura y la fuente de luz en las posiciones predeterminadas de manera que dicha fuente de luz ilumina el modelo de una forma predeterminada, dicho primer ordenador recibe dicha señal proporcional a la luz incidente para cada posición predeterminada y memoriza dicha señal; dicho primer ordenador está conectado a un segundo equipo al que envía las señales memorizadas. Además, menciona la incorporación de una cámara de TV, que podría ir en cualquier parte, pero no se indica con exactitud donde se ubica, siendo un aspecto indefinido y no primordial en la invención. En conclusión, no existe en el estado de la técnica un dispositivo que capte imágenes desde una posición solar de una maqueta, obteniendo el área de superficie expuesta al sol de una configuración volumétrica en distintas orientaciones y elevación (o altitud) solar, como por ejemplo, los solsticios de invierno y verano en el mediodía solar, o sea, el instante en que el sol cruza el eje del Norte Geográfico o, alternativamente, simular y comparar el área de superficie expuesta al sol de distintas configuraciones volumétricas para una misma orientación respecto del sol. RESUMEN DE LA INVENCIÓN
Un primer objetivo de la invención es disponer de un aparato que simula la orientación espacial de un edificio respecto del sol para estimar el área correspondiente de captación solar directa, en condiciones ideales, que comprende una plataforma de rotación, que puede ser manual o automática, la cual es rotada automáticamente por un primer motor servo o paso a paso, en donde dicha plataforma de rotación que es de forma circular, tiene en su borde exterior un anillo graduado, y soporta una maqueta volumétrica de edificio o similar para su evaluación; una estructura circular con forma de anillo, que tiene una viga horizontal, ubicada más abajo de su diámetro, que sujeta a dicha plataforma de rotación con dos soportes de anillo; un arco graduado de longitud un poco mayor que un semicírculo, esta unido perpendicularmente con la estructura circular con forma de anillo en su parte inferior, terminado en su parte superior y sobresaliendo unos pocos grados; un arco concéntrico, con el arco graduado, que en su extremo superior tiene una unidad captadora de imágenes dirigida hacia la maqueta volumétrica de edificio. Además el primer motor servo o paso a paso que mueve a la plataforma de rotación es comandado por un microprocesador, que se ubica debajo de dicha plataforma de rotación, sostenido por un soporte que contiene a una bandeja para contener el microprocesador que está conectado con un primer cable al primer motor servo o paso a paso. Por otra parte, tanto el arco graduado como la estructura circular con forma de anillo, están sustentadas por un apoyo trasero, un apoyo derecho y un apoyo izquierdo, en donde dichos apoyos forman un trípode para mantener en forma vertical todo el aparato. El arco concéntrico se mueve en forma paralela al arco graduado impulsado por un rodillo que esta conectado a un segundo motor servo o paso a paso, que está sujetado mediante una pletina al arco graduado y conectado mediante un segundo cable a un microprocesador; el arco concéntrico se mantiene solidario con el arco graduado con un soporte grande en U conectado en su parte abierta a un rueda que rueda sobre el costado exterior del arco graduado, y en el extremo cerrado del soporte grande en U esta solidario con el lado interior del arco concéntrico, el soporte grande en U sostiene entre sus lados y entre la separación del arco graduado y el arco concéntrico una primera pequeña rueda, el soporte grande en U está cerca del extremo superior del arco concéntrico y detrás de la posición de la unidad captadora de imágenes y en la posición opuesta del arco concéntrico y cercano a su extremo inferior, se dispone de un soporte pequeño en U que en su extremo abierto tiene una segunda pequeña rueda y el extremo cerrado del soporte pequeño en U está solidario con el arco concéntrico, de modo que cuando el segundo motor servo o paso a paso mueve dicho arco concéntrico con el rodillo, la primera pequeña rueda y la segunda pequeña rueda permiten el desplazamiento paralelo del arco concéntrico con respecto al arco graduado. El microprocesador controla al segundo motor servo o paso a paso para desplazar el arco concéntrico con la unidad captadora de imágenes una cantidad de grados indicados en el arco graduado, de modo de buscar un valor de posición de elevación o altitud solar con respecto a la maqueta volumétrica del edificio ubicada sobre la plataforma de rotación, en donde dicha plataforma de rotación es orientada en forma automática por el primer motor servo o paso a paso, que también es controlado por el microprocesador, de modo de buscar un valor de posición azimut con respecto a la maqueta volumétrica del edificio. El anillo graduado indica las direcciones cardinales y se gira manualmente, ya sea para comparar la orientación de la maqueta volumétrica del edificio con respecto al Norte Geográfico donde se encuentra la unidad captadora de imágenes que representa al sol o, alternativamente, para comparar la orientación de la maqueta volumétrica del edificio con respecto al Norte Magnético.
Un segundo objetivo es proveer un método para simular la orientación espacial de un edificio respecto del sol para estimar el área correspondiente de captación solar directa, en condiciones ideales, que comprende los pasos de disponer de un aparato como se describe en el primer objetivo de la invención; elegir una primera funcionalidad que consiste en elevar la unidad captadora de imágenes en una primera pluralidad de ángulos de elevación determinada por el usuario y rotar la plataforma de rotación en una segunda pluralidad de ángulos azimut determinada por el usuario (en 360°), de modo de evaluar exhaustivamente la maqueta volumétrica del edificio en un cantidad discreta de orientaciones determinada por el usuario para cada una de la primera pluralidad de ángulos de elevación determinada por el usuario, quién ingresa los datos mediante una interfaz a un programa computacional afín, donde solo escoge: latitud y fecha; luego, el programa computacional afín calcula la extensión bidimensional de la imagen de la maqueta volumétrica del edificio capturada por la unidad captadora de imágenes mediante una técnica de segmentación de imagen, cuyo valor resultante simula el área de superficie del edificio expuesta al sol en la latitud y fecha previamente especificadas por el usuario; en alternativa a la primera funcionalidad, elegir una segunda funcionalidad, en donde la rotación de la plataforma de rotación es entre los ángulos azimut que correspondan a la trayectoria aparente del sol para la latitud, fecha y horas del día especificadas por el usuario, apoyado ya sea por el diagrama de trayectoria solar correspondiente, o automáticamente por el programa computacional afín, para evaluar el área de superficie de exposición solar de la maqueta volumétrica del edificio durante un día completo, o también parte de él, desde la salida hasta la puesta de sol, en una latitud y fecha determinadas y por lo tanto con una orientación fija de la maqueta volumétrica del edificio, ambos movimientos, o sea el desplazamiento de la unidad captadora de imágenes y rotación de la plataforma de rotación, deben ser coordinados de modo de simular una pluralidad de puntos del arco de doble curvatura que describe la trayectoria aparente del sol a través de la esfera celeste, en donde este movimiento coordinado puede ser discreto o continuo, dependiendo de la velocidad con que la unidad captadora de imágenes capture cada imagen; y almacenar las imágenes obtenidas por la unidad captadora de imágenes en el microprocesador y evaluadas por el programa computacional afín que utiliza una técnica de segmentación de imagen para calcular la extensión bidimensional de la imagen de la maqueta volumétrica del edificio capturada en cada orientación y cuyo valor resultante simula el área de superficie del edificio expuesta al sol en cada posición aparente del sol. Además, comprende el paso de evaluar aquellas fechas en que ocurren las trayectorias aparentes extremas del sol, más bajas y cortas y altas y largas, durante el año, es decir, el solsticio de invierno y el solsticio de verano o, en su defecto, la media entre ambas, es decir, el equinoccio. El programa computacional afín puede comparar y promediar los valores resultantes, proporcionándole al usuario un rango de orientaciones con similar área de superficie de captación solar directa para el edificio durante el año. Además, la primera funcionalidad permite evaluar el área de superficie de exposición solar de la maqueta volumétrica del edificio en distintas orientaciones para una latitud y fecha determinadas por el usuario, pero exclusivamente desde el Mediodía Solar o sea a las 12:00hrs., sin necesidad de coordinación entre el desplazamiento de la unidad captadora de imágenes y la rotación de la plataforma de rotación. BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 describe una vista isométrica principal de la invención.
La figura 2 describe una vista isométrica trasera de la invención.
La figura 3 describe una vista posterior de la invención.
La figura 4 describe una vista lateral de la invención.
La figura 5 describe una vista en planta de la invención.
DESCRIPCIÓN DETALLADA DE UNA REALIZACIÓN PREFERIDA
El sol es la principal fuente natural de energía térmica, eléctrica y lumínica para nuestro planeta. La mayoría de los edificios que habitamos se encuentran fijos sobre la superficie de nuestro planeta y están por lo tanto continuamente expuestos a la energía que proviene del sol. La intensidad con que dicha energía arriba a nuestro planeta varía según latitud y período del año, de modo tal que en invierno es menor y en verano es mayor. Teniendo en cuenta ambos factores, la inamovilidad de los edificios y la variación en la intensidad de la energía solar que baña los edificios, la forma exterior y la orientación de cada edificio respecto de los rayos del sol, afectan de manera fundamental el consumo energético de cada edificio. Consecuentemente, la eficiencia energética de cada edificio incide sobre la sustentabilidad ambiental del planeta.
La orientación de un edificio se refiere al alineamiento bidimensional de su forma exterior -compuesta ya sea de espacio o de materia (o masa)- con respecto a las direcciones en que el sol aparenta posicionarse durante el día y el año, por efecto de la rotación y órbita de nuestro planeta alrededor del sol. La aparente posición del sol es expresada convencionalmente en base a cuatro direcciones cardinales (i.e., norte, sur, oeste y este) y cuatro direcciones ordinales (i.e., noroeste, sureste, noreste y suroeste). En ese caso se utiliza el Norte Geográfico o verdadero que se ubica en el polo norte del planeta.
Alternativamente, existe el Norte Magnético, cuya posición varía del Norte
Geográfico según latitud y año. La dirección del Norte Magnético es fácil de encontrar mediante una brújula. Ambas convenciones sirven igualmente para orientar un edificio sobre el sitio de emplazamiento.
El área de superficie expuesta al sol de un edificio es la principal variable que determina su eficiencia energética, en términos de consumo energético requerido para calefacción, refrigeración e iluminación de su espacio interior.
La materialidad de la superficie envolvente de un edificio también es una variable que afecta su eficiencia energética. Sin embargo, en las etapas tempranas del proceso de diseño arquitectónico forma y orientación de un edificio son variables fundamentales que el diseñador debe explorar y fijar antes de proseguir con el diseño. Ahí radica la importancia de contar con medios de evaluación cuantitativa que puedan apoyar la exploración temprana de configuraciones arquitectónicas eficientes en términos del consumo energético durante su ocupación.
La invención se describe como un aparato para simular y evaluar alternativas de orientación solar de maquetas físicas de edificios, según el área de superficie expuesta al sol en cualquier latitud, día y hora.
El aparato (10), que se muestra en la figura 1 , consiste en una plataforma de rotación (50), que puede ser manual o automática, la cual es rotada automáticamente por un primer motor servo o paso a paso (28), en donde dicha plataforma de rotación (50) que es de forma circular, tiene en su borde exterior un anillo graduado (55). La plataforma de rotación (50) soporta una maqueta volumétrica de edificio (70) o similar para su evaluación; en las figuras 3 y 5, la maqueta volumétrica de edificio (70) difiere en su aspecto, pero solo para señalar que el volumen puede ser cualquiera de interés. El primer motor servo o paso a paso (28) que mueve a la plataforma de rotación (50) es comandado por un microprocesador (25), que se ubica debajo de dicha plataforma de rotación (50), sostenido por un soporte (26). La plataforma de rotación (50) con todos los medios antes referidos, esta sustentada por una estructura circular (20) con forma de anillo, que tiene una viga horizontal (22), ubicada más abajo de su diámetro, que sujeta a dicha plataforma de rotación (50) con dos soportes de anillo (21), además contiene a una bandeja (26) para contener el microprocesador (25) que está conectado con un primer cable (27) al primer motor servo o paso a paso (28).
La estructura circular (20) con forma de anillo está unida con un arco graduado (30) de longitud un poco mayor que un semicírculo, en donde la unión es perpendicular con la estructura circular (20) con forma de anillo en su parte inferior, terminado en su parte superior y sobresaliendo unos pocos grados, como se muestra en las figuras 1 , 2 y 4. Tanto el arco graduado (30) como la estructura circular (20) con forma de anillo, están sustentadas por un apoyo trasero (12), un apoyo derecho (14) y un apoyo izquierdo (16), en donde dichos apoyos forman un trípode para mantener en forma vertical todo el aparato (10).
El arco graduado (30) soporta un arco concéntrico (40) que en su extremo superior tiene una unidad captadora de imágenes (60) dirigida hacia la maqueta volumétrica de edificio (70); el arco concéntrico (40) se mueve en forma paralela al arco graduado (30) impulsado por un rodillo (36) que esta conectado a un segundo motor servo o paso a paso (35), que está sujetado mediante una pletina (38) al arco graduado (30) y conectado mediante un segundo cable (24) al microprocesador (25). El arco concéntrico (40) se mantiene solidario con el arco graduado (30) con un soporte grande en U (41) conectado en su parte abierta a un rueda (42) que rueda sobre el costado exterior del arco graduado (30), y en el extremo cerrado del soporte grande en U (41) esta solidario con el lado interior del arco concéntrico (40), el soporte grande en U (41) sostiene entre sus lados y entre la separación del arco graduado (30) y el arco concéntrico (40) una primera pequeña rueda (43), el soporte grande en U (41) está cerca del extremo superior del arco concéntrico (40) y detrás de la posición de la unidad captadora de imágenes (60), y en la posición opuesta del arco concéntrico (40) y cercano a su extremo inferior, se dispone de un soporte pequeño en U (44) que en su extremo abierto tiene una segunda pequeña rueda (45) y el extremo cerrado del soporte pequeño en U (44) está solidario con el arco concéntrico (40), de modo que cuando el segundo motor servo o paso a paso (35) mueve dicho arco concéntrico (40) con el rodillo (36), la primera pequeña rueda (43) y la segunda pequeña rueda (45) permiten el desplazamiento paralelo del arco concéntrico (40) con respecto al arco graduado (30). El movimiento es generado por el microprocesador (25) que controla al segundo motor servo o paso a paso (35) para desplazar el arco concéntrico (40) con la unidad captadora de imágenes (60) una cantidad de grados indicados en el arco graduado (30), de modo de buscar un valor de posición de elevación o altitud solar con respecto a la maqueta volumétrica del edificio (70) ubicada sobre la plataforma de rotación (50), en donde dicha plataforma de rotación (50) es orientada en forma automática por el primer motor servo o paso a paso (28), que también es controlado por el microprocesador (25), de modo de buscar un valor de posición azimut con respecto a la maqueta volumétrica del edificio (70). El anillo graduado (55) indica las direcciones cardinales y se gira manualmente, ya sea para comparar la orientación de la maqueta volumétrica del edificio (70) con respecto al Norte Geográfico donde se encuentra la unidad captadora de imágenes (60) que representa al sol o, alternativamente, para comparar la orientación de la maqueta volumétrica del edificio (70) con respecto al Norte Magnético.
El aparato (10) permite, a lo menos, dos funcionalidades, la primera es elevar la unidad captadora de imágenes (60) en una primera pluralidad de ángulos de elevación determinada por el usuario y rotar la plataforma de rotación (50) en una segunda pluralidad de ángulos azimut determinada por el usuario (en 360°), de modo de evaluar exhaustivamente la maqueta volumétrica del edificio (70) en un cantidad discreta de orientaciones determinada por el usuario para cada una de la primera pluralidad de ángulos de elevación determinada por el usuario. El usuario ingresa los datos mediante una interfaz a un programa computacional, donde solo escoge: latitud y fecha.
En la práctica conviene evaluar aquellas fechas en que ocurren las trayectorias aparentes extremas del sol (más bajas y cortas y altas y largas) durante el año, es decir, el solsticio de invierno y el solsticio de verano o, en su defecto, la media entre ambas, es decir, el equinoccio; luego, el programa computacional calcula la extensión bidimensional de la imagen de la maqueta volumétrica del edificio (70) capturada por la unidad captadora de imágenes (60) mediante una técnica de segmentación de imagen, cuyo valor resultante simula el área de superficie del edificio expuesta al sol en la latitud y fecha previamente especificadas por el usuario. En una de sus realizaciones, el programa computacional puede comparar y promediar los valores resultantes, proporcionándole al usuario un rango de orientaciones con similar área de superficie de captación solar directa para el edificio durante el año.
Esta funcionalidad permite evaluar el área de superficie de exposición solar de la maqueta volumétrica del edificio (70) en distintas orientaciones para una latitud y fecha determinadas por el usuario, pero exclusivamente desde el Mediodía Solar o sea a las 12:00hrs. Esta modalidad no requiere coordinación entre desplazamiento de la unidad captadora de imágenes (60) y rotación de la plataforma de rotación (50).
En la segunda funcionalidad, la rotación de la plataforma de rotación (50) es entre los ángulos azimut que correspondan a la trayectoria aparente del sol para la latitud, fecha y horas del día especificadas por el usuario, apoyado ya sea por el diagrama de trayectoria solar correspondiente, o automáticamente por el programa computacional que opera sobre el aparato (10) en una de sus realizaciones. Esta funcionalidad permite evaluar el área de superficie de exposición solar de la maqueta volumétrica del edificio (70) durante un día completo, o también parte de él, desde la salida hasta la puesta de sol, en una latitud y fecha determinadas y por lo tanto con una orientación fija de la maqueta volumétrica del edificio (70). Ambos movimientos, o sea el desplazamiento de la unidad captadora de imágenes (60) y rotación de la plataforma de rotación (50), deben ser coordinados de modo de simular una pluralidad de puntos del arco de doble curvatura que describe la trayectoria aparente del sol a través de la esfera celeste. Este movimiento coordinado puede ser discreto o continuo, dependiendo de la velocidad con que la unidad captadora de imágenes (60) capture cada imagen.
Las imágenes obtenidas por la unidad captadora de imágenes (60) son almacenadas en el microprocesador (25) y evaluadas por el programa computacional que utiliza una técnica de segmentación de imagen para calcular la extensión bidimensional de la imagen de la maqueta volumétrica del edificio (70) capturada en cada orientación y cuyo valor resultante simula el área de superficie del edificio expuesta al sol en cada posición aparente del sol.
En un primer ejemplo de aplicación, para evaluar el área de captación solar directa de la potencial configuración volumétrica de un edificio, por ejemplo, ubicado en Valparaíso, Chile (latitud 33° 2' 21.6" S, longitud 71 ° 37' 38.1" W), en distintas orientaciones respecto del mediodía solar (12:00 hrs.), en su posición más baja durante el año (solsticio de invierno), se coloca la maqueta volumétrica del edificio (70) sobre la plataforma de rotación (50), haciendo coincidir el centroide de la maqueta volumétrica del edificio (70) con el centro de la plataforma de rotación (50); a continuación, la unidad captadora de imágenes (60) se posiciona automática o manualmente en el ángulo de elevación solar que corresponda al mediodía solar del solsticio de invierno en la latitud indicada y captura una imagen de dicha maqueta volumétrica del edificio (70). A continuación, la plataforma de rotación (50) orienta la maqueta volumétrica del edificio (70) automática o manualmente en otro ángulo de azimut y la unidad captadora de imágenes (60) captura nuevamente una siguiente imagen que será almacenada y evaluada del mismo modo que la anterior. Este método se repite para el número de orientaciones que el usuario estime conveniente, por ejemplo, cada 10° azimut (o sea 36 orientaciones). Con la serie de imágenes evaluadas y los valores resultantes, el usuario puede identificar fácilmente aquel rango de orientación entre ángulos azimut en que la configuración volumétrica del edificio presente mayor, menor o equivalente área de captación solar directa bajo las condiciones descritas anteriormente. El mismo método se puede usar para evaluar la configuración volumétrica del mismo edificio en distintas orientaciones respecto del mediodía solar (12:00 hrs.), en su posición más alta durante el año (solsticio de verano), o en la posición vertical y longitud de trayectos medias (equinoccio). Eventualmente todos los valores se pueden comparar y promediar para determinar un rango promedio de orientaciones para el edificio respecto del sol durante el año. El anillo graduado (55) puede ser girado manualmente de tal modo que sus grados coincidan con las direcciones cardinales respecto del Norte Geográfico o el Norte Magnético con la correspondiente declinación magnética (3o 17' Este, para la latitud indicada, en 2012).
En un segundo ejemplo de aplicación, para evaluar el área de captación solar directa de la potencial configuración volumétrica de un edificio (70), ubicado en cualquier latitud, durante un día y fecha determinados, la unidad captadora de imágenes (60) se posiciona automática o manualmente en distintos ángulos de elevación solar entre la salida y la puesta del sol para la fecha y latitud indicadas, coordinadamente con la rotación de la plataforma de rotación (50) simulando de este modo la trayectoria aparente del sol a través de la esfera celeste. En tal caso se considera la orientación inicial de la maqueta volumétrica del edificio (70) como fija, mientras que cada imagen representa la perspectiva del sol sobre el edificio durante el día indicado.
En ambos métodos se pueden evaluar distintas configuraciones volumétricas de tal modo que tanto la forma exterior de un potencial edifico como su orientación puedan ser comparados cualitativa y cuantitativamente respecto de su potencial área de captación solar directa y por consiguiente tomar decisiones mejor informadas sobre el diseño de edificios, que conciernen a la sustentabilidad ambiental, lo antes posible durante el proceso de diseño arquitectónico.

Claims

REIVINDICACIONES
1. - Un aparato (10) que simula la orientación espacial de un edificio respecto del sol para estimar el área correspondiente de captación solar directa, en condiciones ideales, que comprende:
una plataforma de rotación (50), que puede ser manual o automática, la cual es rotada automáticamente por un primer motor servo o paso a paso (28), en donde dicha plataforma de rotación (50) que es de forma circular, tiene en su borde exterior un anillo graduado (55), y soporta una maqueta volumétrica de edificio (70) o similar para su evaluación;
una estructura circular (20) con forma de anillo, que tiene una viga horizontal (22), ubicada más abajo de su diámetro, que sujeta a dicha plataforma de rotación (50) con dos soportes de anillo (21);
un arco graduado (30) de longitud un poco mayor que un semicírculo, esta unido perpendicularmente con la estructura circular (20) con forma de anillo en su parte inferior, terminado en su parte superior y sobresaliendo unos pocos grados; y un arco concéntrico (40), con el arco graduado (30), que en su extremo superior tiene una unidad captadora de imágenes (60) dirigida hacia la maqueta volumétrica de edificio (70).
2. - El aparato (10) de acuerdo con la reivindicación 1 , donde el primer motor servo o paso a paso (28) que mueve a la plataforma de rotación (50) es comandado por un microprocesador (25), que se ubica debajo de dicha plataforma de rotación (50), sostenido por un soporte (26).
3. - El aparato (10) de acuerdo con la reivindicación 2, porque además contiene a una bandeja (26) para contener el microprocesador (25) que está conectado con un primer cable (27) al primer motor servo o paso a paso (28).
4.- El aparato (10) de acuerdo con la reivindicación 1 , porque tanto el arco graduado (30) como la estructura circular (20) con forma de anillo, están sustentadas por un apoyo trasero (12), un apoyo derecho (14) y un apoyo izquierdo (16), en donde dichos apoyos forman un trípode para mantener en forma vertical todo el aparato (10).
5.- El aparato (10) de acuerdo con la reivindicación 1 , porque el arco concéntrico (40) se mueve en forma paralela al arco graduado (30) impulsado por un rodillo (36) que está conectado a un segundo motor servo o paso a paso (35), que está sujetado mediante una pletina (38) al arco graduado (30) y conectado mediante un segundo cable (24) a un microprocesador (25).
6.- El aparato (10) de acuerdo con la reivindicación 5, porque el arco concéntrico
(40) se mantiene solidario con el arco graduado (30) con un soporte grande en U
(41 ) conectado en su parte abierta a un rueda (42) que rueda sobre el costado exterior del arco graduado (30), y en el extremo cerrado del soporte grande en U (41 ) esta solidario con el lado interior del arco concéntrico (40), el soporte grande en U (41 ) sostiene entre sus lados y entre la separación del arco graduado (30) y el arco concéntrico (40) una primera pequeña rueda (43), el soporte grande en U (41 ) está cerca del extremo superior del arco concéntrico (40) y detrás de la posición de la unidad captadora de imágenes (60), y en la posición opuesta del arco concéntrico (40) y cercano a su extremo inferior, se dispone de un soporte pequeño en U (44) que en su extremo abierto tiene una segunda pequeña rueda (45) y el extremo cerrado del soporte pequeño en U (44) está solidario con el arco concéntrico (40), de modo que cuando el segundo motor servo o paso a paso (35) mueve dicho arco concéntrico (40) con el rodillo (36), la primera pequeña rueda (43) y la segunda pequeña rueda (45) permiten el desplazamiento paralelo del arco concéntrico (40) con respecto al arco graduado (30).
7.- El aparato (10) de acuerdo con las reivindicaciones anteriores, porque el microprocesador (25) controla al segundo motor servo o paso a paso (35) para desplazar el arco concéntrico (40) con la unidad captadora de imágenes (60) una cantidad de grados indicados en el arco graduado (30), de modo de buscar un valor de posición de elevación o altitud solar con respecto a la maqueta volumétrica del edificio (70) ubicada sobre la plataforma de rotación (50), en donde dicha plataforma de rotación (50) es orientada en forma automática por el primer motor servo o paso a paso (28), que también es controlado por el microprocesador (25), de modo de buscar un valor de posición azimut con respecto a la maqueta volumétrica del edificio (70).
8. - El aparato (10) de acuerdo con las reivindicaciones anteriores, porque el anillo graduado (55) indica las direcciones cardinales y se gira manualmente, ya sea para comparar la orientación de la maqueta volumétrica del edificio (70) con respecto al Norte Geográfico donde se encuentra la unidad captadora de imágenes (60) que representa al sol o, alternativamente, para comparar la orientación de la maqueta volumétrica del edificio (70) con respecto al Norte Magnético.
9. - Un método para simular la orientación espacial de un edificio respecto del sol para estimar el área correspondiente de captación solar directa, en condiciones ideales, que comprende los pasos de:
disponer de un aparato (10) como se describe en las reivindicaciones 1 a 8; elegir una primera funcionalidad que consiste en elevar la unidad captadora de imágenes (60) en una primera pluralidad de ángulos de elevación determinada por el usuario y rotar la plataforma de rotación (50) en una segunda pluralidad de ángulos azimut determinada por el usuario (en 360°), de modo de evaluar exhaustivamente la maqueta volumétrica del edificio (70) en un cantidad discreta de orientaciones determinada por el usuario para cada una de la primera pluralidad de ángulos de elevación determinada por el usuario, quién ingresa los datos mediante una interfaz a un programa computacional afín, donde solo escoge: latitud y fecha; luego, el programa computacional afín calcula la extensión bidimensional de la imagen de la maqueta volumétrica del edificio (70) capturada por la unidad captadora de imágenes (60) mediante una técnica de segmentación de imagen, cuyo valor resultante simula el área de superficie del edificio expuesta al sol en la latitud y fecha previamente especificadas por el usuario;
en alternativa a la primera funcionalidad, elegir una segunda funcionalidad, en donde la rotación de la plataforma de rotación (50) es entre los ángulos azimut que correspondan a la trayectoria aparente del sol para la latitud, fecha y horas del día especificadas por el usuario, apoyado ya sea por el diagrama de trayectoria solar correspondiente, o automáticamente por el programa computacional afín, para evaluar el área de superficie de exposición solar de la maqueta volumétrica del edificio (70) durante un día completo, o también parte de él, desde la salida hasta la puesta de sol, en una latitud y fecha determinadas y por lo tanto con una orientación fija de la maqueta volumétrica del edificio (70), ambos movimientos, o sea el desplazamiento de la unidad captadora de imágenes (60) y rotación de la plataforma de rotación (50), deben ser coordinados de modo de simular una pluralidad de puntos del arco de doble curvatura que describe la trayectoria aparente del sol a través de la esfera celeste, en donde este movimiento coordinado puede ser discreto o continuo, dependiendo de la velocidad con que la unidad captadora de imágenes (60) capture cada imagen; y
almacenar las imágenes obtenidas por la unidad captadora de imágenes (60) en el microprocesador (25) y evaluadas por el programa computacional afín que utiliza una técnica de segmentación de imagen para calcular la extensión bidimensional de la imagen de la maqueta volumétrica del edificio (70) capturada en cada orientación y cuyo valor resultante simula el área de superficie del edificio expuesta al sol en cada posición aparente del sol.
10.- El método de acuerdo con la reivindicación 9, porque además, comprende el paso de evaluar aquellas fechas en que ocurren las trayectorias aparentes extremas del sol, más bajas y cortas y altas y largas, durante el año, es decir, el solsticio de invierno y el solsticio de verano o, en su defecto, la media entre ambas, es decir, el equinoccio.
11. - El método de acuerdo con la reivindicación 9, porque el programa computacional afín puede comparar y promediar los valores resultantes, proporcionándole al usuario un rango de orientaciones con similar área de superficie de captación solar directa para el edificio durante el año.
12. - El método de acuerdo con la reivindicación 9, porque la primera funcionalidad permite evaluar el área de superficie de exposición solar de la maqueta volumétrica del edificio (70) en distintas orientaciones para una latitud y fecha determinadas por el usuario, pero exclusivamente desde el Mediodía Solar o sea a las 12:00hrs., sin necesidad de coordinación entre el desplazamiento de la unidad captadora de imágenes (60) y la rotación de la plataforma de rotación (50).
PCT/CL2013/000037 2012-08-08 2013-06-24 Aparato y método que simula la orientación espacial de estructuras respecto del sol WO2014022943A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2199-2012 2012-08-08
CL2012002199A CL2012002199A1 (es) 2012-08-08 2012-08-08 Aparato que simula la orientación espacial de un edificio respecto del sol para estimar el area de captación solar directa, que comprende una plataforma con una maqueta de edificio, una estructura circular, un arco graduado, un arco con una unidad captadora de imagenes y un microprocesador para almacenarlas; y metodo asociado.

Publications (1)

Publication Number Publication Date
WO2014022943A1 true WO2014022943A1 (es) 2014-02-13

Family

ID=50067345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2013/000037 WO2014022943A1 (es) 2012-08-08 2013-06-24 Aparato y método que simula la orientación espacial de estructuras respecto del sol

Country Status (2)

Country Link
CL (1) CL2012002199A1 (es)
WO (1) WO2014022943A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409006A (zh) * 2014-12-17 2015-03-11 山东省计量科学研究院 一种仿太阳光照射沙盘装置
CN104517515A (zh) * 2014-12-23 2015-04-15 哈尔滨工业大学 一种仿真实验室沙盘红外照明系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111076947A (zh) * 2020-01-07 2020-04-28 重庆渝微电子技术研究院有限公司 一种太阳光模拟器装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032762A (en) * 1998-08-05 2000-03-07 Vertisys International, Inc. Door operator for elevators having curved doors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032762A (en) * 1998-08-05 2000-03-07 Vertisys International, Inc. Door operator for elevators having curved doors

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BETANIT.: "PRO ORANGE HELIODON.", BETANIT., 19 January 2012 (2012-01-19), Retrieved from the Internet <URL:https://web.archive.org/web/20120119034907/http://www.betanit.com/product/pro-orange-heliodon> *
R. OSSER ET AL.: "Development of two heliodon systems and recommendations for their use''.", PROCEEDINGS OF THE AMERICAN SOLAR ENERGY ASSOCIATION, 12 July 2007 (2007-07-12), Retrieved from the Internet <URL:http://infoscience.epfl.ch/record/153684/files/Development%20of%20Two%20Heliodon%20Systems.pdf> *
USM NOTICIAS.: "Sansanos construyen heliodon robótico", UNIVERSIDAD TECNICA FEDERICO SANTAMARÍA, 25 August 2011 (2011-08-25), Retrieved from the Internet <URL:https://web.archive.org/web/20110831140826/http://www.dgc.usm.cl/2011/08/25/sansanos-construyen-heliodon-robotico/> *
WIKIPEDIA.: "Heliodon''.", 27 May 2008 (2008-05-27), Retrieved from the Internet <URL:http://in.wikipedia.org/w/index.php?title=Heliodon&oldid=215346824> *
X. CHEN.: "Computerization of Ralph Knowles Heliodon", UNIVERSITY OF SOUTHERN CALIFORNIA, 31 July 2008 (2008-07-31), pages 17 - 102, Retrieved from the Internet <URL:http://digitallibrary.usc.edu/cdm/compoundobject/collection/p15799coll27/id/99140/rec/1> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409006A (zh) * 2014-12-17 2015-03-11 山东省计量科学研究院 一种仿太阳光照射沙盘装置
CN104517515A (zh) * 2014-12-23 2015-04-15 哈尔滨工业大学 一种仿真实验室沙盘红外照明系统

Also Published As

Publication number Publication date
CL2012002199A1 (es) 2012-12-07

Similar Documents

Publication Publication Date Title
US11748946B2 (en) Solar access measurement
US8386179B2 (en) Solar access measurement device
Prinsloo et al. Solar tracking
JP3871441B2 (ja) 住宅用日照シュミレーション装置
KR20180032905A (ko) 건물의 일조 특성 시뮬레이션 시스템 및 그 제어 방법
CN103632605A (zh) 一种用于日照投影模拟的实验装置
JP2017223594A (ja) 日射量計算システム、日射量計算方法、プログラム、及び日射量積算データ
WO2014022943A1 (es) Aparato y método que simula la orientación espacial de estructuras respecto del sol
Cellura et al. A photographic method to estimate the shading effect of obstructions
Paramita et al. Optimization of design and planing VHS building using chronolux
Salgado-Conrado et al. Review of heliodon developments and computational tools for building shadow analysis
JP4401377B2 (ja) 住宅用日照シミュレーション方法及び表示物
JP2011180125A (ja) 多軸式太陽軌跡追跡経緯儀
JPS58115388A (ja) 日照シミユレ−タ
CN205564085U (zh) 日照时间观测仪
JP2019163035A (ja) 飛行物体による一定の土地に対する日陰生成法
CN114299808B (zh) 一种虚拟天文台及展示方法
CN203588580U (zh) 一种用于日照投影模拟的实验装置
Prinsloo et al. Sun Tracking and Solar Renewable Energy Harvesting: Solar Energy Harvesting, Trough, Pinpointing and Heliostat Solar Collecting Systems
CN103075997A (zh) 实时测量地球受太阳光照射的装置及方法
KR101964982B1 (ko) 지구 계절변화 교육 기구
TR2022010254A2 (tr) Güneş ve rüzgar benzeti̇m ci̇hazi
Christensen Sun simulator at Copenhagen School of Architecture
Yıldırım et al. Experiential Learning in Daylighting Course through Performance Measurements
RU2559982C1 (ru) Солнечные часы

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827308

Country of ref document: EP

Kind code of ref document: A1