WO2014021924A1 - Appareil pour soulever et positionner un patient - Google Patents

Appareil pour soulever et positionner un patient Download PDF

Info

Publication number
WO2014021924A1
WO2014021924A1 PCT/US2013/000179 US2013000179W WO2014021924A1 WO 2014021924 A1 WO2014021924 A1 WO 2014021924A1 US 2013000179 W US2013000179 W US 2013000179W WO 2014021924 A1 WO2014021924 A1 WO 2014021924A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
lifting
subassembly
transfer table
patient support
Prior art date
Application number
PCT/US2013/000179
Other languages
English (en)
Inventor
Roger P. Jackson
Lawrence E. Guerra
Michael A. HERRON
Original Assignee
Jackson Roger P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jackson Roger P filed Critical Jackson Roger P
Publication of WO2014021924A1 publication Critical patent/WO2014021924A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/02Adjustable operating tables; Controls therefor
    • A61G13/04Adjustable operating tables; Controls therefor tiltable around transverse or longitudinal axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/0036Orthopaedic operating tables
    • A61G13/0054Orthopaedic operating tables specially adapted for back or spinal surgeries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/02Adjustable operating tables; Controls therefor
    • A61G13/08Adjustable operating tables; Controls therefor the table being divided into different adjustable sections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • A61G13/12Rests specially adapted therefor; Arrangements of patient-supporting surfaces
    • A61G13/1205Rests specially adapted therefor; Arrangements of patient-supporting surfaces for specific parts of the body
    • A61G13/122Upper body, e.g. chest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • A61G13/12Rests specially adapted therefor; Arrangements of patient-supporting surfaces
    • A61G13/1205Rests specially adapted therefor; Arrangements of patient-supporting surfaces for specific parts of the body
    • A61G13/123Lower body, e.g. pelvis, hip, buttocks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/02Adjustable operating tables; Controls therefor
    • A61G13/06Adjustable operating tables; Controls therefor raising or lowering of the whole table surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • A61G13/104Adaptations for table mobility, e.g. arrangement of wheels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2200/00Information related to the kind of patient or his position
    • A61G2200/30Specific positions of the patient
    • A61G2200/32Specific positions of the patient lying
    • A61G2200/325Specific positions of the patient lying prone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G2200/00Information related to the kind of patient or his position
    • A61G2200/30Specific positions of the patient
    • A61G2200/32Specific positions of the patient lying
    • A61G2200/327Specific positions of the patient lying supine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/10Devices for lifting patients or disabled persons, e.g. special adaptations of hoists thereto
    • A61G7/1013Lifting of patients by
    • A61G7/1019Vertical extending columns or mechanisms

Definitions

  • the present invention is directed to a patient positioning apparatus for positioning a patient on a patient support structure, such as a surgical table, for a medical procedure.
  • a patient support structure such as a surgical table
  • the present invention is directed to an apparatus for performing a "sandwich and roll" procedure while transferring a patient in a supine position from a bed, gurney or trolley to a prone position on the surgical table.
  • Certain surgical procedures require changing a patient's body position during said procedure. For example, spinal surgery may require turning the patient over from a prone position to a supine position, and vice versa.
  • spinal surgery may require turning the patient over from a prone position to a supine position, and vice versa.
  • a standard surgical table is used, turning the patient over, or taking a radiograph, often requires transferring the patient between the surgical table and another support, and then back again.
  • Such transfer procedures interrupt the surgical procedure, are cumbersome, and may compromise the surgical site .
  • Some modern surgical tables such as modular, multi- articulated patient support systems, have been developed for supporting the patient in a variety of positions and for moving the patient's body in various ways during a surgical procedure, including articulating the patient at the hips, placing the patient in Trendelenburg and reverse-Trendelenburg positions, tilting the patient, and turning the patient over.
  • Such patient support systems typically include a base with a pair of independently adjustable telescoping columns that are connected by and support an art iculatable patient support or table top.
  • the patient support may be raised and lowered, tilted and rotated about a longitudinal axis in horizontal and tilted orientations.
  • a traditional closed patient support is replaced with an open frame patient support that allows the patient's abdomen to depend
  • U.S. 7,152,261 to Jackson incorporated herein by reference in its entirety, describes a closed frame modular, mult i -articulated patient support system with independently adjustable head- and foot-end telescoping risers, which are connected by an adjustable cross-beam, and which support a patient support structure that may be raised, lowered and rotated about a longitudinal axis in various horizontal and tilted orientations.
  • a secondary elevator enables lowering of the foot-end of the patient support to near the floor.
  • a patient placed on the patient support can be rotated 180° after installation of a stationary riser and an imaging table that sandwiches the patient against the patient support.
  • U.S. 7,565,708 to Jackson incorporated herein by reference in its entirety, describes an infinitely adjustable open- frame patient support system, wherein the frame can be articulated near a middle thereof, as well as being raised, lowered and rotated about a longitudinal axis in various horizontal and tilted orientations.
  • An imaging table may be attached to and spaced from the patient support, for turning the patient 180°, however, the distance between the patient support and the imaging table must be adjusted manually.
  • a patient Prior to a surgical procedure, a patient is usually anaesthetized and then place of the patient support. Since the patient starts in a supine position on a gurney, also referred to as a trolley or a stretcher, and must be
  • a patient positioning apparatus for performing a "sandwich and roll" procedure while positioning a patient in a prone position on a patient support structure.
  • a patient support structure is as a surgical table having a base with spaced head-end and foot-end elevator subassemblies that removably supports an attached patient support frame that can be rotated about a longitudinal roll axis a distance of up to at least about ⁇ 180°.
  • the patient support frame includes either a traditional closed table top or an open frame that allows the patient's abdomen to depend therethrough.
  • the patient positioning apparatus includes head-end and foot-end lift subassemblies that are removably attached to the ends of a transfer table. The head-end and foot -end lift
  • Each lift apparatus includes a gear mechanism, with a lead nut that engages a lead screw, for moving the transfer table toward and away from the patient support frame.
  • An actuator synchronizes the lift subassemblies, so as to maintain the transfer table in a substantially level orientation, relative to the
  • the transfer table includes a frame joined with a tabletop member.
  • the frame includes a pair of spaced support beams joined by head-end and foot-end cross-beams, and crossbeam brackets for releasable hinged attachment to the head-end and foot-end lift subassemblies, respectively.
  • Quick-release pins hingedly join the brackets of the transfer table with the respective lift subassemblies.
  • additional quick release pins removably attach the head-end and foot-end lift subassemblies to the respective head-end and foot-end elevator subassemblies.
  • each of the lift subassemblies includes a pair of spaced support members; a lead screw spaced from and substantially parallel with the support members; first and second brace members, the first brace member joining a first end of each of the support members and the lead screw and the second brace member joining the second ends of each of the support members and the lead screw, the first brace member including an attachment structure for removable attachment to a respective elevator subassembly; and a carrier member slidably engaging the support members.
  • the carrier member includes a gear subassembly and a bracket. The gear
  • the bracket releasably hingeably attaches the carrier member and the associated lift
  • the lead screw is an ACME screw.
  • the gear subassembly includes a lead nut that rotatably engages the lead screw, and a motor
  • the carrier member includes a pair of sliding brackets, each of which is sized and shaped to
  • a bushing is located between each sliding bracket and a respective support member.
  • a method of transferring a patient to a medical patient support structure in a prone position wherein the patient support structure includes a base with spaced head-end and foot -end elevator subassemblies, a patient support frame removably- attached to and supported by the elevator subassemblies, and a rotation mechanism for rotating the patient support frame about a longitudinally extending roll axis a distance of up to at least 180°.
  • the method includes the steps of providing a patient positioning apparatus having head-end and foot-end lift subassemblies and a transfer table; releasably attaching the patient positioning apparatus to the patient support structure; orienting the patient positioning apparatus for patient transfer; placing a patient on the transfer table in a supine position; actuating the head-end and foot-end lift subassemblies so as to move the patient toward the patient support frame, such that the patient is snugly sandwiched between the transfer table and the patient support frame;
  • the step of releasably attaching the patient positioning apparatus to the patient support structure includes attaching the head-end lift subassembly to the head-end elevator
  • the step of orienting the patient positioning apparatus for patient transfer includes rotating the patient support structure from a first position about 180° about the roll axis such that the transfer table is located below the patient support frame.
  • the step of actuating the head-end and foot-end lift subassemblies includes actuating a gear subassembly so as to rotate a lead nut relative to a lead screw.
  • a lifting subassembly for a patient positioning apparatus having a base and a patient support structure includes a lifting subassembly that is reversibly attachable to the base and has first and second lifting positions with respect to the base.
  • the lifting subassembly is adapted to move the patient support structure from the first lifting position to the second lifting position in a vertical direction above a floor, and the lifting subassembly is also reversibly rotatably from a first vertical position to a second vertical position with respect to the base.
  • the lifting subassembly is removable when in the second vertical position .
  • the lifting subassembly includes a pair of spaced parallel elongate support members, wherein each support member has first and second ends; and spaced parallel first and second brace members.
  • the first brace member joins the first ends of the support members and the second brace member joins the second ends of the support members, so as to provide a frame structure.
  • the lifting subassembly also includes a carrier member that is located between the brace members and is reversibly movable along a length of the support members, whereby the patient support structure is slidingly moved between the first and second lifting positions.
  • the lifting subassembly includes a lifting
  • the lifting mechanisms includes a lead screw that is spaced from and parallel with the support members and joined with the brace members, and a gear subassembly that engages the lead screw so as to move the carrier member along the length of the support members.
  • the carrier member includes at least one engagement member that is adapted for reversibly engaging the patient support structure.
  • the carrier member includes a pair of spaced parallel ring members. Each of the ring members includes a through-bore that slidingly receives one of the elongate support members therethrough, such that the carrier member is movable between the brace members.
  • at least one of the brace members includes a connection portion adapted for reversible engagement of the base structure.
  • the lifting subassembly includes a pair of lifting subassemblies.
  • the lifting subassembly includes an actuator, in some embodiments.
  • a patient positioning apparatus for positioning a patient on a patient support structure for a medical procedure.
  • the patient support structure has a base that supports a removably
  • the patient positioning apparatus includes a lifting subassembly that is reversibly attachable to the base and has a connection portion that is slidingly movable between the first and second lifting positions with respect to a length of the lifting subassembly.
  • the patient positioning apparatus also includes a transfer table that is sized and shaped for receiving and supporting a patient thereon and that is reversibly attachable to the lifting subassembly.
  • the apparatus includes an actuator for actuating the lifting subassembly, so as to move the transfer table between the first and second lifting positions.
  • the transfer table includes a bracket for reversible
  • the transfer table includes radio- transparent tabletop member.
  • the lifting subassembly includes first and second lifting subassemblies.
  • the first and second lifting subassemblies are independently movable.
  • each of the lift subassemblies includes a pair of spaced apart and substantially parallel support members; a lead screw that is spaced from and substantially parallel with the support members; a first brace member that joins a first end of each of the support members and the lead screw, the first brace member includes an attachment structure for removable
  • the second brace member joins a second end of each of the support members and the jack screw; and a carrier member that slidably engages the support members.
  • the carrier member has a gear subassembly that operably engages the lead screw so as to reversibly move the carrier member toward and away from the first brace member, and a bracket for releasable hingeable attachment to the transfer table.
  • the gear subassembly includes a lead nut rotatably engaging the lead screw; and a motor connector for operable engagement of an external motor.
  • the carrier member includes a pair of sliding brackets.
  • Each of the sliding bracket is sized and shaped to slidably engage a support member.
  • the apparatus also includes an actuator that is adapted to synchronously actuate the first and second lifting
  • one of the first and second lifting positions is closer to the patient support structure than the other of the first and second lifting positions .
  • FIG. 1 is a perspective view of a patient
  • FIG. 2 is an enlarged perspective view of the outboard side of the head end of the patient positioning
  • FIG. 3 is a perspective view of the inboard side of the head end of the patient positioning apparatus of FIG. 2.
  • FIG. 4 is a perspective view of a portion of the apparatus of FIG. 2, with portions removed to show greater detail of the gear mechanism.
  • FIG. 5 is an enlarged perspective view of the outboard side of the foot end of the patient positioning apparatus of FIG. 1, with portions broken away.
  • FIG. 6 is an enlarged side view of the foot end of the patient positioning apparatus of FIG. 5, wherein the patient positioning apparatus is attached to a portion of a head end of a patient positioning structure.
  • FIG. 7 is an enlarged perspective view of the gear mechanism of the patient positioning apparatus of FIG. 5.
  • FIG. 8 is a perspective view of an exemplary patient support structure, or surgical table, for use with the patient positioning apparatus of FIG. 1.
  • FIG. 9 is a side view of the patient support
  • FIG. 10 is a side view of the patient support structure of FIG. 9, with a patient transfer table attached to the head-end and foot-end lift subassemblies, wherein the patient transfer table is spaced a maximum distance from the patient support structure.
  • FIG. 11 is a side view of the patient support structure of FIG. 10, wherein the frame of the patient support structure, and the attached patient positioning apparatus, have been rotated about 180° with respect to a longitudinal roll axis, which is denoted by the letter R, and with a patient positioned in a supine position on the patient
  • FIG. 12 is a side view of the patient support structure of FIG. 11, wherein the head-end and foot-end lift subassemblies have been synchronously actuated to raise the patient transfer table and the patient toward the frame of the patient support structure, until the patient is pressed against the frame.
  • FIG. 13 is a side view of the patient support structure of FIG. 10, wherein the frame and patient
  • a patient positioning apparatus of the present invention is generally denoted by the numeral 1.
  • the patient positioning apparatus is useful for positioning a patient 2 in a prone position on a patient support structure 4, or surgical table, such as for a medical procedure.
  • An exemplary patient support structure 4 is shown in FIGS . 8-13.
  • Numerous patient support structures 4 find use with the patient positioning apparatus 1 of the present invention, including those described in U.S. Patent Nos . 7, 152,261, 7,343,635, 7,565,708, and 7,739,762, and also U.S. Publication No. 2009-0282614, U.S. Patent Application No. 12/803,525, filed on June 22, 2010 and entitled “Surgery Table Apparatus," U.S. Patent Application No. 12/803,173, filed on June 21, 2010 and entitled "Patient Positioning Support Structure," U.S.
  • Patent Application No. 12/803,192 filed on September 9, 2010 and entitled “Patient Positioning Support Structure," and U.S. Patent Application No. 13/317,012, filed on October 6, 2011 and entitled “Patient Positioning Support Structure,” all of which are incorporated by reference herein in their entirety.
  • the exemplary patient support structure 4 depicted in FIG. 8 is a fully adjustable, multi -articulatable and rotatable surgical table that is used during a variety of surgical procedures that require one or more of : moving the patient between supine and prone positions, bending the patient at the hips, placing the patient in a Trendelenburg or reverse-Trendelenburg position, and moving the patient among various tilted and rotated positions.
  • Such surgical procedures that require one or more of : moving the patient between supine and prone positions, bending the patient at the hips, placing the patient in a Trendelenburg or reverse-Trendelenburg position, and moving the patient among various tilted and rotated positions.
  • the illustrated patient support structure 4 includes a base 6 with spaced head-end and foot- end elevator subassemblies 8 and 10, respectively, removably attached to and supporting a patient support frame 12.
  • the open patient support frame 12 may be replaced with a traditional closed table top or an imaging table top.
  • At least one of the illustrated patient support structure elevator subassemblies 8, 10 includes a rotation mechanism 14 for rotating the patient support frame 12 about a longitudinally extending roll axis R, which extends between rotational pivot points P of the patient support structure 4.
  • the rotational mechanism 14 advantageously enables infinitely adjustable rotation and tilting of the patient support frame 12 a distance or amount of up to at least ⁇ 180° from a first position. Such tilting provides improved access to the patient 2, and enables turning the patient 2 over between prone and supine positions, for surgical access to the
  • Some patient support structures 4 are
  • the patient support frame 12 is rotatable up to at least 360° in either direction.
  • the patient positioning apparatus 4 includes a transfer table 20, a pair of spaced lift subassemblies, such as head-end and foot-end lift
  • the head-end and foot-end lift subassemblies 22 and 24 are removably attachable to the head-end and foot-end elevator subassemblies 8 and 10, respectively, such as shown in FIG. 9.
  • the head-end and foot-end lift subassemblies 22, 24 are also removably attachable to the transfer table head and foot ends 30 and 32, respectively.
  • Each of the lift subassemblies 22 and 24 is adapted for moving the transfer table 20 in a direction selected from toward and away from the roll axis R. When being moved by the lift subassemblies 22 and 24, the transfer table 20 is maintained in a plane
  • the actuator 26 is adapted to synchronously actuate the lift subassemblies 22 and 24, which is discussed in greater detail below. It is foreseen that in some circumstances, the actuator 26 may actuate the lift subassemblies 22, 24 in a non-synchronous manner, such as but not limited to singularly, independently, at different rates, and in different directions.
  • the transfer table 20 includes a frame 34 supporting a tabletop member 35.
  • the frame 34 includes a pair of spaced, longitudinally
  • the support beams 36 are formed of a material with a high strength-to-weight ratio, with optional radio- transparent properties, such as but not limited to carbon fiber reinforced polymers.
  • Each support beam 36 has a rectangular or trapezoidal cross-section, the cross- section being taken perpendicular to a longitudinal axis of the support beam 36. Such a trapezoidal shape strengthens the support beams 36 and prevents twisting due to stresses applied thereto. However, it is foreseen that the support beams 36 may have a cross-section that is circular, ovular, or any other useful shape known in the art.
  • the head-end and foot-end cross-beams 38 join the head and foot ends 40, 42 of the spaced support beams 36.
  • Each cross-beam 38 includes a linkage bracket 44 with a substantially cylindrical horizontal channel 45 for releasable hinged attachment to the respective head-end and foot-end lift subassemblies 22, 24, such as described in greater detail below.
  • the linkage bracket 44 is a pair of spaced linkage brackets 44 that join the associated cross-beams 38 with the associated lift subassemblies 22, 24, such as is described below.
  • the linkage brackets 44 are spaced so as to be engageable by the lift subassemblies 22, 24. Accordingly, the linkage brackets 44 are aligned with engagement brackets 50 of the associated lift subassemblies 22, 24.
  • Each engagement bracket 50 includes a substantially cylindrical horizontal through-bore 51, which is most easily seen in FIGS. 3 and 6.
  • the horizontal through-bores 51 are sized and shaped to receiver a quick release pin 52 therethrough.
  • each linkage bracket 44 is hingeably attached to a respective aligned engagement bracket 50 by axial alignment of each horizontal channel 45 with an adjacent horizontal through-bore 51, followed by insertion of a spring- loaded quick release pin 52 through the aligned horizontal channel 45 and horizontal through-bore 51.
  • the quick release pins 52 enable the transfer table 20 to hingeably pivot with respect to the lift subassemblies 22, 24.
  • the tabletop member 35 has first and second sides, 56 and 58, respectively, and head- and foot-ends, which are generally denoted by the numerals 60 and 62, respectively.
  • the tabletop member 35 is attached to the support beams 36 and optionally to the cross-beams 38, generally on its second side 58, which may also be referred to as the bottom or lower side.
  • the patient 2 is placed upon the tabletop member first side 56, which may also be referred to as the top or upper side.
  • the tabletop member 35 may be fabricated from any suitable resilient material known in the art, which preferably is at least one of light weight and substantially radio-transparent .
  • the tabletop member 35 is an imaging table top. It is foreseen that an imaging table may be substituted for the transfer table 20.
  • subassemblies includes a pair of spaced cylindrical support members 64 joined by first and second, or upper and lower, brace members 66 and 68, respectively, a lead screw 70, a gear subassembly 72 that engages the lead screw 70, and a carrier member 74 that houses the gear subassembly 72 and includes the engagement brackets 50.
  • the cylindrical support members 64 are cylindrically shaped solid rods or hollow tubes that extend between the first and second brace members 66 and 68, respectively. As shown in FIGS. 2, 3, 5 and 6, the support members 64 are spaced apart so as to slidingly engage the carrier member 74, which in turn is sized so as to engage either the head end 30 or the foot end 32 of the transfer table 20.
  • the support members 64 are fabricated of a resilient and substantially rigid material that provides a substantially smooth surface 80, and preferably is also light weight, such as but not limited to carbon fiber-reinforced polymers.
  • the lead screw 70 is a power screw that translates turning motion of the gear subassembly 72 into the linear motion, such as upward and downward, of the transfer table 20.
  • the lead screw 70 extends between the first and second brace members 66 and 68, and is spaced from and parallel to the support members 64.
  • the lead screw 70 is an ACME screw with a trapezoidal thread form, which offers high strength and ease of manufacture.
  • the lead screw includes a non- trapezoidal thread form.
  • the lead screw is a metric screw.
  • the lead screw 70 engages the gear subassembly 72, which is housed within the carrier member 74.
  • the lead screw 70 is spaced equally from each of the support members 64, so as to balance lifting power
  • the first brace member 66 holds a first end of each of the support members 64 and of the lead screw 70 in spaced relation to one another. Additionally, the first brace member 66 joins the associated lift subassembly 22, 24 to a
  • Each first brace member 66 includes a pair of spaced connection portions 84 for attaching the lift subassembly 22, 24 to the patient support structure 4.
  • the connection portions 84 are generally
  • connection portions 84 may have other three-dimensional shapes with a cross-section such as but not limited to
  • connection portion 84 includes a substantially cylindrical through-bore 86 extending between its inboard and outboard sides 88, 90, respectively.
  • the through-bores 86 are sized and shaped to receiver a quick release pin 52' therethrough.
  • a quick release pin 52' extends from the outboard side 90 of each of the connection portion 84, through the associated through-bore 86 and outward to the inboard side 88.
  • each quick release pin 52 ' When attached to the patient support structure 4, each quick release pin 52 ' also engages an elevator subassembly attachment bracket 85 that is mated with the associated connection portion 84, so as to hold the mated bracket 85 and connection portion 84 together in a substantially rigid, non- hingeable configuration.
  • the pair of quick release pins 52 ' are replaced by a longer pin or rod that extends through both of the through-bores 86.
  • Other attachment structures for attaching the lift subassemblies 22, 24 to the patient support structure 4 are foreseen.
  • the second brace member 68 holds the second ends of the support members 64 and the lead screw 70 in substantially the same spaced relation to one another as does the first brace member 66, such that the support members 64 and the lead screw 70 are oriented, configured or run substantially
  • one or more of the support members 64 and the lead screw 70 extend through the second brace member 68. In other embodiments, one or more of the support members 64 and the lead screw 70 do not extend through the second brace member 68.
  • the lift subassemblies 22 and 24 are substantially similar in their appearance, components and construction.
  • the relative width of the lift subassemblies 22, 24, such as, for example the spacing between the support members 64, or the width of the brace members 66 and 68 may differ between the head and foot ends, so as to accommodate differences in spacing of the transfer table support beams 36 at their head and foot ends, or such differences between the head and foot ends of the patient support structure base 6.
  • the head-end linkage brackets 44 shown in FIG. 2, are spaced closer together than are the foot- end linkage brackets 44, shown in FIG. 5.
  • the head-end lift subassembly support members 64 are spaced closer together than the foot-end lift
  • the spacing between the support members 64 of both of the head-end and foot-end lift subassemblies 22 and 24 are substantially the same, and that these head-end and foot- end lift subassemblies 22 and 24 may be at least one of mirror images of each other and interchangeable .
  • the carrier member 74 extends between and slidingly engages both of the support members 64, such that movement of the carrier member 74 is guided by the support members 64.
  • the carrier member 74 is slidingly movable toward or away from the first brace ember 66, with respect to the support member 46.
  • the carrier member 74 includes a pair of ring members 94, wherein a ring member 94 is associated with each of the support members 64.
  • Each ring member 94 includes at least one ring .structure 96 with a through-bore 98 through which the associated support member 64 is slidingly received.
  • each ring member 94 includes a pair of ring structures 96 that are aligned so as to be coaxial with the associated support member 64.
  • a bushing 100 is located in each of the ring structure through-bores 96.
  • Each of the bushings 100 includes a through-bore that receives a support member 64 therethrough, such that the bushing through-bore and the support member 64 are coaxial .
  • the smooth inner surface of each bushing through-bore provides a bearing surface for linear motion of the associated support member 64.
  • Each carrier member 74 also includes a housing 104 for the gear subassembly 72 , which operably engages the associated lead screw 70. As shown in FIGS. 2, 4, 5 and 7, the housing 104 shrouds the gear subassembly 72 and includes at least one access port 106 for connecting, engaging, or plugging in, the actuator 26, and axially aligned upper and lower screw openings 107 that provide a passageway for the lead screw 70 to pass through, so as to enable the gear subassembly 72 to move upward and downward along the lead screw 70.
  • FIGS. 4 and 7 illustrate an exemplary gear subassembly 72 for use with the instant invention.
  • the illustrated gear subassembly 72 includes a gear drive 110 that engages a gear 112 that operably engages a lead nut 114, which is in operable engagement with the lead screw 70.
  • the gear assembly 72 may have any other useful configuration known in the art.
  • the gear drive 110 may be, but is not limited to, a spur, beveled, skewed, helical, hydroploid, double helical or crown gear drive.
  • the gear 112 is complementary to and cooperates with the gear drive 110, and may have any useful configuration known in the art, such as but not limited to a spur, beveled, skewed, helical, hydroploid, double helical and crown gears.
  • the lead nut 114 is operably engaged by or attached to the gear 112.
  • the lead nut 114 includes a thread (not shown) that is operably complementary to the thread of the lead screw 70.
  • the lead screw 70 is an ACME screw
  • Alternative screw and nut thread configurations are foreseen.
  • the drive gear 110 includes a gear engagement portion 116 that is associated with the housing access portion 106.
  • the actuator 26, such as but not limited to an external motor, operably connects with the gear engagement portion 116, so as to actuate, power or drive the gear subassembly 72.
  • the actuator 26 connects, or plugs, directly to the drive gear 110.
  • the actuator 26 connects indirectly to the gear engagement portion 116 such as but not limited to by a cord that can be plugged thereinto. Numerous alternative configurations known in the art are foreseen .
  • subassembly 72 engages the lead screw 70 by rotating the lead nut 114 in a clockwise or a counter clockwise direction, so as to rotatingly move the lead nut 114 along the length of the lead screw 70, such that, depending upon the direction of lead nut 114 rotation, the carrier member 74 is moved in a
  • the gear drive rotates, causing the rotatingly engaged gear to rotate, such as clockwise or counter clockwise, which in turn causes the lead nut 114 to rotate with respect to the lead screw 70.
  • the lead nut 114 rotates with respect to the lead screw 70, depending upon the direction of lead nut rotation 114 (e.g., clockwise or counter clockwise) .
  • the patient positioning apparatus 1 of the present invention is useful for transferring a patient 2 to a patient support structure 4, or surgical table, in a prone position. If the patient 2 is already on the patient support structure 4, the patient positioning apparatus 1 is useful for turning the patient 2 over from a prone position to a supine position, and vice vera .
  • the head-end lift subassembly 22 is attached, or installed, to the head-end elevator subassembly 8, and the foot-end lift subassembly 24 is attached, or installed, to the foot-end elevator subassembly 10.
  • These attachments are accomplished by engaging the connection portions 84 of the respective first brace members 66 with the attachment brackets 85 of the respective head-end and foot-end elevator subassemblies 8, 10, using quick release pins 52' to maintain said engagements. These engagements are fixed, such that substantially no hingeable pivoting occurs between the engaged attachment brackets 85 and elevator subassemblies 8, 10.
  • the transfer table 20 is attached, or installed, to the head-end and foot-end lift subassemblies 20, 24.
  • This is accomplished by hingeably attaching the linkage brackets 44 of the head end cross-beam 38 to the head-end engagement bracket of the head-end lift subassembly 22; and also hingeably attaching the linkage brackets 44 of the foot end cross-beam 38 to the foot-end engagement bracket of the head-end lift subassembly 24.
  • the horizontal channels 45 of linkage brackets 44 are axially aligned with the engagement bracket horizontal
  • the patient support frame 12 is then rotated, or rolled, about ⁇ 180° about the roll axis R, until the transfer table 20 is located below the patient support frame 12.
  • the patient 2 can then be moved to the transfer table 20 from an adjacent bed or gurney, such that the transfer table 20 supports the weight of the patient 2.
  • the patient 2 is in a supine position, or facing upward, on both the bed and the transfer table 20.
  • the patient 2 is lifted by the lift subassemblies 22, 24, until the patient 2 is firmly sandwiched between the transfer table 20 and the patient support frame 12.
  • lifting the patient 2 is accomplished by simultaneously actuating the two gear subassemblies 72, so as to move both the head and foot ends 30, 32 of the transfer table 20 toward the rotation axis R at substantially the same rate.
  • movement of the transfer table 20 toward the rotation axis R appears as movement away from the floor (not shown) that supports the patient support structure 4.
  • an external actuator 26, or motor is releasably attached to each of the gear engagement portions 116, and then the lift subassemblies 22, 24 are actuated simultaneously.
  • the gear subassemblies 72 each include an internal actuator 26.
  • an internal actuator 26 may be housed in each of the carrier members 74.
  • the gear subassemblies 72 are actuated by one or more actuators located in the patient support structure 4.
  • the patient support frame 12 is again rotated, or rolled, approximately ⁇ 180° with respect to, or about, the roll axis R, such as, for example, until the patient support frame 12 is located below the transfer table 20.
  • the weight of the patient 2 is transferred from the transfer table 20 to the patient support frame 12.
  • the patient 2 is in a prone, or downwardly facing, position on the patient support frame 12.
  • the patient positioning apparatus 1 may be removed from the patient support structure 4. Such removal is performed by reversing the installation steps described above.
  • the transfer table 20 is lifted a distance above the patient 2 by reversing the actuator 26 and rotating the lead nut 114 with respect to the lead screw 70, such that the patient 2 is no longer sandwiched between the transfer table 20 and the patient support frame 12. Then the quick release pins 52 are removed, and the transfer table 20 is removed from the lift subassemblies 22, 24. And then the lift
  • the transfer table 20 will then be lowered until the patient 2 is firmly sandwiched between the transfer table 20 and the patient support frame 4.
  • an imaging table is used instead of a transfer table 20, such that a radiological image of the patient can be taken at this point, or the patient 2 can be rotated over onto the imaging table for such an image.
  • the patient support frame 12 is rotated, or rolled, about ⁇ 180° with respect to the roll axis R, such as until the patient support frame 12 is located above the transfer table 20, such as is shown in FIG. 12.
  • the transfer table 20 can then be lowered, such that a radiological image of the patient can be taken or a surgical procedure can be performed on the patient 2 in a supine position, or the patient 2 can be transferred back to a bed or gurney.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

La présente invention concerne un appareil permettant de faire passer en position ventrale un patient couché sur le dos sur une structure de soutien de patient, et de faire pivoter ce patient en position ventrale de ladite position ventrale à une position dorsale sans le retirer de la structure de soutien de patient.
PCT/US2013/000179 2012-08-03 2013-07-31 Appareil pour soulever et positionner un patient WO2014021924A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261742167P 2012-08-03 2012-08-03
US61/742,167 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021924A1 true WO2014021924A1 (fr) 2014-02-06

Family

ID=50028409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/000179 WO2014021924A1 (fr) 2012-08-03 2013-07-31 Appareil pour soulever et positionner un patient

Country Status (1)

Country Link
WO (1) WO2014021924A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109820677A (zh) * 2019-03-25 2019-05-31 广州中医药大学第一附属医院 一种多功能手术床
WO2020227763A1 (fr) * 2019-05-10 2020-11-19 QOL Holdings Pty Ltd Ensemble de positionnement de pied

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937901A (en) * 1988-11-04 1990-07-03 Brennan Louis G Apparatus for turning a patient from a supine to a prone position and vice-versa
US7343635B2 (en) * 2005-02-22 2008-03-18 Jackson Roger P Modular multi-articulated patient support system
WO2011162803A1 (fr) * 2010-06-21 2011-12-29 Jackson Roger P Structure de support de positionnement de patient comportant un translateur de tronc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937901A (en) * 1988-11-04 1990-07-03 Brennan Louis G Apparatus for turning a patient from a supine to a prone position and vice-versa
US7343635B2 (en) * 2005-02-22 2008-03-18 Jackson Roger P Modular multi-articulated patient support system
WO2011162803A1 (fr) * 2010-06-21 2011-12-29 Jackson Roger P Structure de support de positionnement de patient comportant un translateur de tronc

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109820677A (zh) * 2019-03-25 2019-05-31 广州中医药大学第一附属医院 一种多功能手术床
WO2020227763A1 (fr) * 2019-05-10 2020-11-19 QOL Holdings Pty Ltd Ensemble de positionnement de pied
GB2596961A (en) * 2019-05-10 2022-01-12 QOL Holdings Pty Ltd Foot positioning assembly
GB2596961B (en) * 2019-05-10 2023-11-29 QOL Holdings Pty Ltd Foot positioning assembly

Similar Documents

Publication Publication Date Title
US11547622B2 (en) Synchronized patient elevation and positioning apparatus for use with patient positioning support systems
US8844077B2 (en) Syncronized patient elevation and positioning apparatus positioning support systems
US11874685B2 (en) Fail-safe release mechanisms for use with interchangeable patient positioning support structures
JP6327731B2 (ja) 患者の位置決め支持構造体
US7343635B2 (en) Modular multi-articulated patient support system
CA2481694C (fr) Fauteuil roulant convertible et module de levage separe destine a etre couple au fauteuil roulant et a elever ce dernier
CA2788233C (fr) Lit de soins de longue duree
WO2014021924A1 (fr) Appareil pour soulever et positionner un patient
EP2890351A1 (fr) Appareil de support de position de patient ayant des coussinets pelviens à déplacement en pivot virtuel, un mécanisme de stabilisation de la partie supérieure du corps et de fixation de table fiable
CN117338557A (zh) 一种手术床

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825618

Country of ref document: EP

Kind code of ref document: A1