WO2014021599A1 - Digester apparatus - Google Patents

Digester apparatus Download PDF

Info

Publication number
WO2014021599A1
WO2014021599A1 PCT/KR2013/006807 KR2013006807W WO2014021599A1 WO 2014021599 A1 WO2014021599 A1 WO 2014021599A1 KR 2013006807 W KR2013006807 W KR 2013006807W WO 2014021599 A1 WO2014021599 A1 WO 2014021599A1
Authority
WO
WIPO (PCT)
Prior art keywords
digester
pipe
gas pipe
extinguishing gas
extinguishing
Prior art date
Application number
PCT/KR2013/006807
Other languages
French (fr)
Korean (ko)
Inventor
장희현
Original Assignee
Jang Hee Hyun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jang Hee Hyun filed Critical Jang Hee Hyun
Publication of WO2014021599A1 publication Critical patent/WO2014021599A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/2873Particular arrangements for anaerobic reactors with internal draft tube circulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes

Definitions

  • the present invention relates to a digester, and more particularly, to promote nutrition of microorganisms in an anaerobic microbial reaction tank and to suppress the formation of scum layers or suspended solids deposits in the digester to prevent a reduction in the effective volume of the digester, thereby reducing the cost.
  • the present invention relates to a digester apparatus of a new structure that can increase the treatment efficiency of a digester.
  • a digester In general, a large amount of organic substances are contained in drinking water, manure or sewage, and a digester is used as a wastewater treatment apparatus for biological treatment in an anaerobic sealed atmosphere.
  • these digesters are arranged in multiple stages, and anaerobic microorganisms live in the state where the inflow of external air is completely blocked, and the wastewater flows in such a way that the organic matter contained in the wastewater is first biologically decomposed and then transferred to an adjacent digester to be decomposed again. The process is repeated.
  • such digesters have good biodegradation when microorganisms and organics are in smooth contact with each other. For this purpose, it is necessary to stir the microorganisms in contact with the introduced wastewater or sludge.
  • Such a conventional digester consists of a large tank whose diameter or height is several tens of meters, and thus the maintenance cost increases due to high power consumption when a large impeller is used to stir a large amount of wastewater or sludge contained in such a large tank. In addition, the stirring efficiency also does not meet expectations. In addition, there is also a method of injecting digestive gas into the digestive fluid to cause circulation, but it is difficult to effectively circulate a large amount of digestive fluid contained in a large tank.
  • the digestive fluid in the digester is lower than around 36 degrees, which is a temperature suitable for the bioreaction of anaerobic microorganisms, so that a heating device of the digester is required for a smooth biological reaction.
  • the device has a problem that the construction and maintenance is cumbersome due to the complicated structure.
  • the conventional digester is arranged in multiple stages, when the digester or sludge is pumped and transported to the digester of the next stage adjacent to the previous digester, the microbial colony is destroyed and this colony takes a considerable time to reduce the digestion efficiency. There was a problem.
  • the present invention is to solve the problems of the conventional digester as described above, the present invention is effective in suppressing the formation of scum layer or sedimentation layer in the digester in which wastewater is biologically treated and nutrition for anaerobic microorganisms at low maintenance cost It is to provide a digester device that can effectively agitate the extinguishing fluid or sludge to promote and increase the extinguishing efficiency.
  • the present invention is to provide a new digester apparatus that can maintain the digestion liquid in the digester at an appropriate temperature without occupying a separate space.
  • the present invention is to provide a digester apparatus of a new structure that can transfer the digestive fluid and sludge or the microbial colony from the previous digester to the next digestion tank without destroying the microbial colony without the use of power to reduce maintenance costs.
  • the digester (1) is connected to the inlet pipe (4), which is sealed from the outside air, inhabit anaerobic microorganisms, and the wastewater from the outside and the discharge pipe (5) from which the introduced wastewater is biologically treated and discharged.
  • the digester (1) of The inlet 13 is opened at the upper end, the air pump 14 is connected to the middle and the extinguishing gas pipe 12 and the discharge port 15 is opened at the lower end of each hopper 6, and the lower end 17 is the extinguishing Extinguishing gas discharged in close proximity to the discharge port (15) of the gas pipe 12 is provided with a digester apparatus comprising an air lift pipe (16) made of a tube extending upwardly.
  • the digester (1) is formed in a cylindrical shape
  • the hopper portion 6 is provided with a digester device characterized in that the digester bottom surface (2) to be concentrically and radially partitioned.
  • the hopper 6 of the digester 1 is installed on the bottom 2 of the digester 1, the space 7 formed between the bottom 2 and the hopper 6 ) Is provided with a digester device, characterized in that the heat medium 26 is filled and the heat exchanger 24 is installed.
  • At least a portion of the plurality of hoppers 6 of the digester 1 is provided with a second extinguishing gas pipe 32 in parallel with the extinguishing gas pipe 12, the second extinguishing gas pipe Extinguishing gas discharged in close proximity to the discharge port (35) of the 32 is provided with a digester tank characterized in that the digestion liquid transfer pipe 38 is further provided to be connected to the extinguishing tank 1B of the next stage adjacent.
  • a plurality of hoppers 6 having a circumferential portion connected to each other so as to divide the bottom surface into a plurality of cells is formed on the bottom of the digestion tank 1 in which anaerobic microorganisms inhabit and inflow of wastewater is biologically treated.
  • an inlet 13 is opened at the upper end of the digester 1, and a extinguishing gas pipe 12 is provided at the lower end of the hopper 6 at which the discharge port 15 is opened.
  • the air lift pipe 16 into which the extinguishing gas discharged from the inlet flows, the bottom surface of the digester 1 having a relatively large size is provided in the digester 1 through a plurality of hoppers 6 partitioned into a plurality of cells.
  • the sludge is dropped by self weight and collected, and the collected sludge is raised by an upward flow generated by the rise of the digestion gas in the digestion tank 1, thereby maintaining the anaerobic atmosphere without introducing an external air, while stirring the digestive liquid. It is possible to stir or circulate the sludge evenly and vigorously in a large area of the digester 1 without the need for a separate large impeller or a large capacity pump for digestion fluid circulation.
  • the digester 1 has a cylindrical shape, the cell of the bottom surface is divided in a concentric circle and a radial direction so that the size and shape of the hopper part 6 constituting the unit cell can be generally uniformly manufactured without a large difference. It is possible to make the production easy and uniform stirring operation.
  • the digester 1 when the recessed space 7 is formed between the hopper part 6 and the bottom face 2 of the digester 1, water or other heat medium is put into this space, and the several heat exchanger 24 is By installing, the digester 1 can be heated or cooled to a temperature suitable for bioreaction without taking up a separate space, and the wastewater treatment performance can be further improved.
  • At least a part of the hoppers 6 is provided with a second digested gas pipe 32 in parallel with the digested gas pipe 12 to raise the digested gas.
  • Digestion liquid transfer pipe 38 is provided to connect the extinguishing gas rising to the adjacent next digestion tank (1B) to minimize digestion and destroy the digestive fluid and sludge or microbial colony without destroying the microbial colony. It can be transferred to the digester, it is possible to achieve a digester with excellent extinguishing efficiency while maintaining the continuity of the system.
  • the gas supplied for the digestion liquid transfer is also introduced by the digestion gas of the next stage digester to be transported and is carried out by airlift, the optimum conditions are maintained without disturbing the microbial environment suitable for each digester stage. This allows for more efficient microbial treatment.
  • Figure 2 is a schematic plan view showing the arrangement of the hopper portion of the present invention
  • FIG. 3 is a view showing a digestive fluid delivery mechanism of the present invention
  • FIG. 4 is an enlarged view of a portion A of FIG.
  • FIG. 1 is a schematic configuration diagram of an embodiment of the present invention
  • Figure 2 is a schematic plan view showing the structure of the cell of the embodiment
  • Figures 3 and 4 is a conceptual diagram showing a digestive fluid delivery mechanism of the present invention.
  • a digester apparatus including a digester 1 sealed from outside air and inhabiting anaerobic microorganisms.
  • the digester 1 is connected to an inlet pipe 4 through which wastewater or digestion fluid is introduced from an extinguishing tank of an external or previous stage, and a discharge pipe 5 through which the treated wastewater or digestion solution is discharged.
  • the digester 1 is relatively large in size and reaches a diameter or height of several tens to several tens of meters.
  • such digester 1 is made of a cylindrical shape having a flat bottom face 2.
  • the bottom 2 of the digester 1 is divided into a plurality of cells.
  • a plurality of hoppers 6 having inclined surfaces in the form of cones or pyramids are arranged on the bottom face 2 of the digester 1.
  • the bottom face of the digester 1 arrange
  • This hopper part 6 manufactures the bottom face 2 of the digester 1 to an equal area or a standardized form as much as possible.
  • the digester 1 is cylindrical, as shown in FIG.
  • the cell formed by the hopper part 6 is divided into concentric and radial directions so as to be manufactured in several equivalent shapes and standards so as to be the hopper part 6. It is easy to manufacture, but to enable an even stirring action throughout the digester (1).
  • the sludge, suspended matter, and the like suspended in the digestion liquid are gradually collected by the hopper part 6 and collected along the inclined surface of each hopper part 6 to the concave lower end of the center part.
  • the upper end of the digester (1), the inlet 13 of the digestion gas pipe 12 is open on the water surface of the digestive fluid, the inhalation of anaerobic digestion gas in the upper part of the digester (1) through the air pump 14 to each hopper portion ( Extinguishing gas is discharged through the discharge port 15 disposed at the concave lower end of 6).
  • an air lift tube 16 is disposed to catch and introduce the extinguishing gas discharged by being disposed close to the upper portion of the discharge port 15 of the extinguishing gas tube 12.
  • a porous plate or diffuser 19 for dispersing the rising sludge is disposed at the upper end of the air lift pipe 16.
  • sludge or other precipitates collected in the hopper part 6 are formed by the rising airflow. It floats to the upper part of the digester 1 along the upward flow and circulates.
  • the falling flow is formed between the rising flow and the rise and fall of the digestive fluid occurs in the position evenly distributed in the digester 1 as a whole, the sludge or sediment is disturbed or stirred, thereby preventing the formation of scum layer or sedimentary layer.
  • the contact between anaerobic microorganisms and sludge is increased or maintained at a high level, thereby increasing the biological treatment efficiency.
  • a space 7 in which a plurality of recesses communicate with each other is formed between the bottom face 2 of the digester 1 and the plurality of hopper portions 6.
  • This space 7 is filled with water or other suitable heat medium, and a plurality of heat exchangers 24 are provided therein.
  • the heat exchanger 24 is preferably a hot water radiator for heating the digestion liquid in the digestion tank 1 to a temperature suitable for the reaction of anaerobic microorganisms, but in some cases, a heat exchanger capable of cooling the temperature of the digestion liquid may be used.
  • a tropical air flow blocking plate 25 is spaced apart from the lower part of the heat exchanger 24, which suppresses unnecessary convection of the water heated by the heat exchanger 24 and heats the upper hopper 6 more efficiently. It is to make it possible.
  • the plurality of hopper parts 6, for example, any one hopper part 6, is provided with a second extinguishing gas pipe 32 in parallel with the extinguishing gas pipe 12.
  • the extinguishing gas pipe 32 has a suction end 34 disposed above the extinguishing tank 1B of the next stage adjacent to the extinguishing gas supplied from the extinguishing tank 1B of the next stage through the second extinguishing gas pipe 32.
  • the hopper 6 is discharged to the lower end.
  • the suction end of the extinguishing liquid conveying pipe 38 is disposed at an upper position near the discharge port 35 of the extinguishing gas pipe 32, and the extinguishing liquid conveying pipe 38 is introduced into an adjacent extinguishing tank 1B. Feed and supply digestive fluid.
  • the gas supplied for the digestion liquid transfer is also introduced by the digestion gas of the next stage digester to be transported and is carried out by airlift, the optimum conditions are maintained without disturbing the microbial environment suitable for each digester stage. This allows for more efficient microbial treatment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

The present invention relates to a digester in which a supply of nutrients to microorganisms is accelerated and the formation of a layer of scum or a layer of sedimentation of suspended matter is suppressed in the digester such that a decrease in the effective volume of the digester is prevented and the treatment efficiency of the digester can be increased at low cost. According to the present invention, a digester (1) includes: an inlet pipe (4) which is sealed from outside air, inhabited by anaerobic microorganisms, and into which waste water flows; and a discharge pipe (5) from which the waste water flowing in is biologically treated and discharged. Provided is the digester that further includes: a plurality of hopper units (6) which are arranged on a bottom surface (2) within the digester (1) and the circumferential portions of which are interconnected such that a floor surface is divided into a plurality of cells; a digestion gas pipe (12) in which an intake inlet (13) is open at an upper end of the digester (1), an air pump (14) is connected to the middle, and a discharge port (15) is open to a lower end portion of each of the hopper units (6); and an air lift pipe (16), the lower end (17) of which is formed from an upwardly extending tubular body which is adjacent to the discharge port (15) of the digestion gas pipe (12) and into which the discharged digestion gas flows.

Description

소화조 장치Digester
본 발명은 소화조 장치에 관한 것으로서 좀 더 상세히는 혐기성 미생물 반응조인 소화조에서 미생물에 영양공급을 촉진하고 소화조 내의 스컴층이나 부유물질 퇴적층의 형성을 억제하여 소화조의 유효용적의 감소를 방지하여, 저렴한 비용으로 소화조의 처리효율을 증대시킬 수 있는 새로운 구조의 소화조 장치에 관한 것이다.The present invention relates to a digester, and more particularly, to promote nutrition of microorganisms in an anaerobic microbial reaction tank and to suppress the formation of scum layers or suspended solids deposits in the digester to prevent a reduction in the effective volume of the digester, thereby reducing the cost. The present invention relates to a digester apparatus of a new structure that can increase the treatment efficiency of a digester.
일반적으로 음폐수나 분뇨 또는 하수에는 유기물질이 대량 포함되어 있으며, 이를 혐기성의 밀폐된 분위기에서 생물학적으로 처리하기 위한 폐수처리장치로서 소화조가 사용된다. 그런데 이러한 소화조는 다단으로 배치되며, 외기의 유입이 철저히 차단된 상태에서 혐기성 미생물이 서식하며, 폐수가 유입되어 이 폐수에 함유된 유기물이 생물학적으로 일차 분해된 후, 인접하는 소화조로 이송되어 재차 분해되는 과정을 반복하게 된다. 그리고 이러한 소화조는 미생물과 유기물이 원활하게 접촉되어야 생물학적 분해가 잘 이루어지는데, 이를 위해서는 유입된 폐수 또는 슬러지와 미생물이 잘 접촉되도록 교반해주어야 한다. 그런데 종래의 이러한 소화조는 그 직경이나 높이가 수십미터에 달하는 대용량 탱크로 이루어지므로, 이러한 대용량 탱크에 담긴 대용량의 폐수 또는 슬러지를 교반하기 위해 대형의 임펠러를 사용하는 경우 사용전력이 높아 유지비용이 상승될 뿐만 아니라, 교반효율도 기대에 미치지 못한다. 또한 소화액 속에 소화가스를 주입하여 순환을 일으키는 방법도 있으나 대형 탱크에 담긴 대량의 소화액을 효과적으로 교반 순환시키지는 못하는 실정이다.In general, a large amount of organic substances are contained in drinking water, manure or sewage, and a digester is used as a wastewater treatment apparatus for biological treatment in an anaerobic sealed atmosphere. However, these digesters are arranged in multiple stages, and anaerobic microorganisms live in the state where the inflow of external air is completely blocked, and the wastewater flows in such a way that the organic matter contained in the wastewater is first biologically decomposed and then transferred to an adjacent digester to be decomposed again. The process is repeated. In addition, such digesters have good biodegradation when microorganisms and organics are in smooth contact with each other. For this purpose, it is necessary to stir the microorganisms in contact with the introduced wastewater or sludge. However, such a conventional digester consists of a large tank whose diameter or height is several tens of meters, and thus the maintenance cost increases due to high power consumption when a large impeller is used to stir a large amount of wastewater or sludge contained in such a large tank. In addition, the stirring efficiency also does not meet expectations. In addition, there is also a method of injecting digestive gas into the digestive fluid to cause circulation, but it is difficult to effectively circulate a large amount of digestive fluid contained in a large tank.
한편, 종래의 소화조 내의 온도는 자연상태에서는 상온에 머물기 때문에 소화조 내의 소화액이 혐기성 미생물의 생물반응에 적합한 온도인 36도 전후보다 낮아서, 원활한 생물학적 반응을 위해서는 소화조의 가열장치가 필요한데, 종래의 이러한 가열장치는 구조가 복잡하여 시공 및 유지관리가 번거롭다는 문제점이 있었다.On the other hand, since the temperature in the conventional digester stays at room temperature in nature, the digestive fluid in the digester is lower than around 36 degrees, which is a temperature suitable for the bioreaction of anaerobic microorganisms, so that a heating device of the digester is required for a smooth biological reaction. The device has a problem that the construction and maintenance is cumbersome due to the complicated structure.
또한, 종래의 소화조는 다단으로 배치되어 이전의 소화조에서 인접한 다음단계의 소화조로 소화액이나 슬러지를 펌프로 흡입하여 이송하는 경우 미생물 군체가 파괴되어 이 군체가 다시 형성되는데 상당한 시간이 걸려서 소화효율이 저하되는 문제점이 있었다.In addition, the conventional digester is arranged in multiple stages, when the digester or sludge is pumped and transported to the digester of the next stage adjacent to the previous digester, the microbial colony is destroyed and this colony takes a considerable time to reduce the digestion efficiency. There was a problem.
본 발명은 전술한 바와 같은 종래의 소화조의 문제점을 해결하기 위한 것으로, 본 발명은 폐수가 생물학적으로 처리되는 소화조에서, 스컴층이나 퇴적층의 형성을 효과적으로 억제하고 저렴한 유지비용으로 혐기성 미생물에 대한 영양공급을 촉진하고 소화효율을 증대시킬 수 있도록 효과적으로 소화액 또는 슬러지를 교반할 수 있는 소화조 장치를 제공하고자 하는 것이다.The present invention is to solve the problems of the conventional digester as described above, the present invention is effective in suppressing the formation of scum layer or sedimentation layer in the digester in which wastewater is biologically treated and nutrition for anaerobic microorganisms at low maintenance cost It is to provide a digester device that can effectively agitate the extinguishing fluid or sludge to promote and increase the extinguishing efficiency.
또한 본 발명은 별도의 공간을 점유하지 않으면서도 소화조 내의 소화액을 적정한 온도로 유지할 수 있는 새로운 소화조 장치를 제공하고자 하는 것이다. 또한 본 발명은, 사용전력이 없어서 유지비가 절감되면서도 미생물 군체의 파괴없이 이전의 소화조에서 다음단계의 소화조로 소화액과 슬러지 또는 미생물 군체를 이송할 수 있는 새로운 구조의 소화조 장치를 제공하고자 하는 것이다.In another aspect, the present invention is to provide a new digester apparatus that can maintain the digestion liquid in the digester at an appropriate temperature without occupying a separate space. In another aspect, the present invention is to provide a digester apparatus of a new structure that can transfer the digestive fluid and sludge or the microbial colony from the previous digester to the next digestion tank without destroying the microbial colony without the use of power to reduce maintenance costs.
본 발명의 한 특징에 따르면, 외기로부터 밀폐되고 혐기성 미생물이 서식하며 외부로부터 폐수가 유입되는 유입관(4)과 유입된 폐수가 생물학적으로 처리되어 배출되는 배출관(5)이 접속된 소화조(1)를 포함하는 소화조 장치에 있어서, 상기 소화조(1)의 내부 저면(2)에 배치되며 바닥면을 복수개의 셀로 구분하도록 둘레부가 서로 연결되는 복수개의 호퍼부(6)와, 상기 소화조(1)의 상단에 흡입구(13)가 개방되고 중간에 에어펌프(14)가 연결되고 각각의 호퍼부(6)의 하단부에 토출구(15)가 개방되는 소화가스관(12)과, 하단(17)은 상기 소화가스관(12)의 토출구(15)에 근접되어 토출된 소화가스가 유입되며 상향연장되는 관체로 이루어진 에어리프트관(16)을 포함하는 것을 특징으로 하는 소화조 장치가 제공된다.According to one feature of the invention, the digester (1) is connected to the inlet pipe (4), which is sealed from the outside air, inhabit anaerobic microorganisms, and the wastewater from the outside and the discharge pipe (5) from which the introduced wastewater is biologically treated and discharged. In the digester apparatus comprising a plurality of hoppers 6 and the circumferential portions are arranged on the inner bottom surface (2) of the digester (1) and connected to each other to divide the bottom surface into a plurality of cells, the digester (1) of The inlet 13 is opened at the upper end, the air pump 14 is connected to the middle and the extinguishing gas pipe 12 and the discharge port 15 is opened at the lower end of each hopper 6, and the lower end 17 is the extinguishing Extinguishing gas discharged in close proximity to the discharge port (15) of the gas pipe 12 is provided with a digester apparatus comprising an air lift pipe (16) made of a tube extending upwardly.
본 발명의 다른 특징에 따르면, 상기 소화조(1)는 원통형으로 형성되고, 상기 호퍼부(6)는 소화조 저면(2)을 동심원 및 방사방향으로 구획하도록 된 것을 특징으로 하는 소화조 장치가 제공된다.According to another feature of the invention, the digester (1) is formed in a cylindrical shape, the hopper portion 6 is provided with a digester device characterized in that the digester bottom surface (2) to be concentrically and radially partitioned.
본 발명의 다른 특징에 따르면, 상기 소화조(1)의 호퍼부(6)는 소화조(1)의 저면(2) 위에 설치되고, 상기 저면(2)과 호퍼부(6) 사이에 형성된 공간(7)에는 열매체(26)가 충전되고 열교환기(24)가 설치된 것을 특징으로 하는 소화조 장치가 제공된다.According to another feature of the invention, the hopper 6 of the digester 1 is installed on the bottom 2 of the digester 1, the space 7 formed between the bottom 2 and the hopper 6 ) Is provided with a digester device, characterized in that the heat medium 26 is filled and the heat exchanger 24 is installed.
본 발명의 다른 특징에 따르면, 상기 소화조(1)의 복수개의 호퍼부(6)의 적어도 일부에는 상기 소화가스관(12)과 병렬로 제2 소화가스관(32)이 설치되고, 이 제2 소화가스관(32)의 토출구(35)에 근접되어 토출된 소화가스가 유입되어 인접하는 다음단계의 소화조(1B)로 연결되는 소화액이송관(38)이 더 구비된 것을 특징으로 하는 소화조 장치가 제공된다.According to another feature of the invention, at least a portion of the plurality of hoppers 6 of the digester 1 is provided with a second extinguishing gas pipe 32 in parallel with the extinguishing gas pipe 12, the second extinguishing gas pipe Extinguishing gas discharged in close proximity to the discharge port (35) of the 32 is provided with a digester tank characterized in that the digestion liquid transfer pipe 38 is further provided to be connected to the extinguishing tank 1B of the next stage adjacent.
본 발명에 따르면, 혐기성 미생물이 서식하여 유입된 폐수가 생물학적으로 처리되는 소화조(1)의 저면에 바닥면을 복수개의 셀로 구분하도록 둘레부가 서로 연결되는 복수개의 호퍼부(6)를 형성하고, 이 호퍼부(6)에는 소화조(1)의 상단에 흡입구(13)가 개방되고 호퍼부(6)의 하단부에 토출구(15)가 개방되는 소화가스관(12)을 설치하고, 이 소화가스관(12)에서 토출된 소화가스가 유입되는 에어리프트관(16)을 포함하도록 구성함으로써, 비교적 넓은 크기의 소화조(1)의 바닥면 복수개의 셀로 구획하는 다수의 호퍼부(6)를 통해 소화조(1) 내의 슬러지가 자중에 의해 낙하되어 수집되도록 하고, 수집된 슬러지를 소화조(1) 내의 소화가스의 상승에 의해 발생되는 상승류에 의해 상승시킴으로써, 외기의 도입없이 혐기성 분위기를 유지시키면서도, 소화액의 교반을 위한 별도의 장대한 임펠러나 소화액 순환을 위한 대용량의 펌프가 없이도 넓은 면적의 소화조(1) 내의 슬러지를 균등하고 왕성하게 교반 또는 순환시킬 수 있다. 또한 이러한 소화조(1)가 원통형인 경우에는 저면의 셀을 동심원과 반경방향으로 구획함으로써, 단위셀을 구성하는 호퍼부(6)의 면적이 큰 차이가 없으면서도 그 규격이나 형태도 대체로 통일적으로 제작할 수 있어서, 제작이 용이하고 균일한 교반작동이 가능하게 된다.According to the present invention, a plurality of hoppers 6 having a circumferential portion connected to each other so as to divide the bottom surface into a plurality of cells is formed on the bottom of the digestion tank 1 in which anaerobic microorganisms inhabit and inflow of wastewater is biologically treated. In the hopper part 6, an inlet 13 is opened at the upper end of the digester 1, and a extinguishing gas pipe 12 is provided at the lower end of the hopper 6 at which the discharge port 15 is opened. By including the air lift pipe 16 into which the extinguishing gas discharged from the inlet flows, the bottom surface of the digester 1 having a relatively large size is provided in the digester 1 through a plurality of hoppers 6 partitioned into a plurality of cells. The sludge is dropped by self weight and collected, and the collected sludge is raised by an upward flow generated by the rise of the digestion gas in the digestion tank 1, thereby maintaining the anaerobic atmosphere without introducing an external air, while stirring the digestive liquid. It is possible to stir or circulate the sludge evenly and vigorously in a large area of the digester 1 without the need for a separate large impeller or a large capacity pump for digestion fluid circulation. In addition, when the digester 1 has a cylindrical shape, the cell of the bottom surface is divided in a concentric circle and a radial direction so that the size and shape of the hopper part 6 constituting the unit cell can be generally uniformly manufactured without a large difference. It is possible to make the production easy and uniform stirring operation.
또한, 소화조(1)의 호퍼부(6)와 저면(2) 사이에 오목한 공간(7)이 형성되는 경우에는 이 공간에 물이나 기타 열매체를 투입하고, 여기에 복수개의 열교환기(24)를 설치함으로써, 별도의 공간을 차지하지 않으면서도 소화조(1)를 생물반응에 적합한 온도로 가열 또는 냉각시킬 수 있어서, 폐수처리 성능이 더욱 개선될 수 있다.In addition, when the recessed space 7 is formed between the hopper part 6 and the bottom face 2 of the digester 1, water or other heat medium is put into this space, and the several heat exchanger 24 is By installing, the digester 1 can be heated or cooled to a temperature suitable for bioreaction without taking up a separate space, and the wastewater treatment performance can be further improved.
또한, 소화조(1)가 다단으로 배치되는 경우에는, 복수개의 호퍼부(6)의 적어도 일부에는 소화가스관(12)과 병렬로 제2소화가스관(32)을 설치하여 소화가스를 상승시키고, 이 상승되는 소화가스가 유입되어 인접하는 다음단계의 소화조(1B)로 연결시키는 소화액이송관(38)이 구비됨으로써 별도의 사용전력을 최소화하면서 미생물군체의 파괴없이 소화액과 슬러지 또는 미생물 군체를 다음단계의 소화조로 이송할 수 있어서, 시스템의 연속성을 유지하면서도 소화효율이 우수한 소화조를 달성할 수 있다. 아울러 소화액이송을 위해 공급되는 가스도 이송될 다음단계의 소화조의 소화가스를 도입하여 에어리프트를 수행하여 이송시키므로, 소화액의 이송시에 각 소화조 단계에 적합한 미생물환경을 교란시키지 않고 최적의 조건을 유지할 수 있어서 더욱 효율적인 미생물처리가 가능하게 된다.In the case where the digester 1 is arranged in multiple stages, at least a part of the hoppers 6 is provided with a second digested gas pipe 32 in parallel with the digested gas pipe 12 to raise the digested gas. Digestion liquid transfer pipe 38 is provided to connect the extinguishing gas rising to the adjacent next digestion tank (1B) to minimize digestion and destroy the digestive fluid and sludge or microbial colony without destroying the microbial colony. It can be transferred to the digester, it is possible to achieve a digester with excellent extinguishing efficiency while maintaining the continuity of the system. In addition, since the gas supplied for the digestion liquid transfer is also introduced by the digestion gas of the next stage digester to be transported and is carried out by airlift, the optimum conditions are maintained without disturbing the microbial environment suitable for each digester stage. This allows for more efficient microbial treatment.
도 1은 본 발명의 일실시예의 개략구성도1 is a schematic configuration diagram of an embodiment of the present invention
도 2는 본 발명의 호퍼부의 배치를 보여주는 개략 평면도Figure 2 is a schematic plan view showing the arrangement of the hopper portion of the present invention
도 3은 본 발명의 소화액 이송기구를 보여주는 도면3 is a view showing a digestive fluid delivery mechanism of the present invention
도 4는 도 3의 A부분 확대도4 is an enlarged view of a portion A of FIG.
이하에서 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다. 도 1은 본 발명의 일 실시예의 개략구성도이고, 도 2는 상기 실시예의 셀의 구조를 보여주는 개략평면도이고, 도 3과 도 4는 본 발명의 소화액 이송기구를 보여주는 개념도이다. 도시된 바와 같이 본 발명에 따르면, 외기로부터 밀폐되고 혐기성 미생물이 서식하는 소화조(1)를 포함하는 소화조 장치가 제공된다. 이 소화조(1)는 외부 또는 전단계의 소화조로부터 폐수 또는 소화액이 유입되는 유입관(4)이 연결되고, 처리된 폐수 또는 소화액이 배출되는 배출관(5)이 연결된다. 이러한 소화조(1)는 그 크기가 비교적 커서 직경이나 높이가 십여미터 내지 수십미터에 달하게 된다. 바람직하게는 이러한 소화조(1)는 평탄한 저면(2)을 가지는 원통형으로 제작된다. 그리고 소화조(1)의 저면(2)은 복수개의 셀로 구분된다. 구체적으로는 소화조(1)의 저면(2)에 원뿔 또는 각뿔형태의 경사면을 가진 호퍼부(6)가 복수개 배치된다. 이러한 호퍼부(6)에 의해 소화조(1)의 저면은 다수의 경사부를 가진 오목홈이 균일하게 배치된다. 이러한 호퍼부(6)는 소화조(1)의 저면(2)을 되도록이면 균등한 면적 또는 규격화된 형태로 제작한다. 소화조(1)가 원통형인 경우에는 도 2에 나타난 바와 같이 호퍼부(6)에 의해 이루어지는 셀은 동심원 및 방사방향으로 구획되어 호퍼부(6)가 되도록 몇 가지의 동등한 형태와 규격으로 제작되도록 하여, 제작이 용이하면서도 소화조(1) 전체에 걸쳐서 균등한 교반작용이 가능하도록 한다. 이러한 호퍼부(6)에 의해 소화액 속에 부유하던 슬러지나 부유물 등이 서서히 침전하면서 각각의 호퍼부(6)의 경사면을 따라 그 중앙부의 오목한 하단부로 수집된다.Hereinafter, with reference to the drawings will be described a preferred embodiment of the present invention. 1 is a schematic configuration diagram of an embodiment of the present invention, Figure 2 is a schematic plan view showing the structure of the cell of the embodiment, Figures 3 and 4 is a conceptual diagram showing a digestive fluid delivery mechanism of the present invention. As shown, according to the present invention, there is provided a digester apparatus including a digester 1 sealed from outside air and inhabiting anaerobic microorganisms. The digester 1 is connected to an inlet pipe 4 through which wastewater or digestion fluid is introduced from an extinguishing tank of an external or previous stage, and a discharge pipe 5 through which the treated wastewater or digestion solution is discharged. The digester 1 is relatively large in size and reaches a diameter or height of several tens to several tens of meters. Preferably such digester 1 is made of a cylindrical shape having a flat bottom face 2. And the bottom 2 of the digester 1 is divided into a plurality of cells. Specifically, a plurality of hoppers 6 having inclined surfaces in the form of cones or pyramids are arranged on the bottom face 2 of the digester 1. By this hopper part 6, the bottom face of the digester 1 arrange | positions the recessed groove which has many inclination parts uniformly. This hopper part 6 manufactures the bottom face 2 of the digester 1 to an equal area or a standardized form as much as possible. In the case where the digester 1 is cylindrical, as shown in FIG. 2, the cell formed by the hopper part 6 is divided into concentric and radial directions so as to be manufactured in several equivalent shapes and standards so as to be the hopper part 6. It is easy to manufacture, but to enable an even stirring action throughout the digester (1). The sludge, suspended matter, and the like suspended in the digestion liquid are gradually collected by the hopper part 6 and collected along the inclined surface of each hopper part 6 to the concave lower end of the center part.
한편, 소화조(1)의 상단, 소화액 수면 위에는 소화가스관(12)의 흡입구(13)가 개방되어, 에어펌프(14)를 통해 소화조(1) 상부의 혐기성 소화가스를 흡입하여각각의 호퍼부(6)의 오목한 하단부에 배치되는 토출구(15)를 통해 소화가스를 토출시킨다. 그리고 이러한 소화가스관(12)의 토출구(15)의 상부에 근접배치되어 토출되는 소화가스를 포획하여 유입시키는 에어리프트관(16)이 구비된다. 에어리프트관(16)의 상단에는 상승되는 슬러지를 분산시키기 위한 다공판 또는 디퓨저(19)가 배치된다. 이에 따라 소화가스관(12)의 토출구(15)에서 배출된 소화가스가 에어리프트관(16)을 통해 기포형태로 상승하면서 호퍼부(6)에 수집된 슬러지나 기타 침전물들이 상승기류에 의해 형성되는 상승흐름을 따라 소화조(1)의 상부로 부상되어 순환된다. 아울러 상승흐름의 사이에는 하강흐름이 형성되어 전체적으로 소화조(1) 내에서 균등하게 분포된 위치에서 소화액의 상승과 하강이 발생되어 슬러지나 침진물이 교란되거나 교반됨으로써, 스컴층이나 퇴적층의 형성이 방지되고 혐기성 미생물과 슬러지와의 접촉이 증대 또는 높은 수준으로 유지되므로 생물학적 처리효율이 증대된다.On the other hand, the upper end of the digester (1), the inlet 13 of the digestion gas pipe 12 is open on the water surface of the digestive fluid, the inhalation of anaerobic digestion gas in the upper part of the digester (1) through the air pump 14 to each hopper portion ( Extinguishing gas is discharged through the discharge port 15 disposed at the concave lower end of 6). In addition, an air lift tube 16 is disposed to catch and introduce the extinguishing gas discharged by being disposed close to the upper portion of the discharge port 15 of the extinguishing gas tube 12. At the upper end of the air lift pipe 16, a porous plate or diffuser 19 for dispersing the rising sludge is disposed. Accordingly, as the digested gas discharged from the discharge port 15 of the digestive gas pipe 12 rises in the form of bubbles through the air lift pipe 16, sludge or other precipitates collected in the hopper part 6 are formed by the rising airflow. It floats to the upper part of the digester 1 along the upward flow and circulates. In addition, the falling flow is formed between the rising flow and the rise and fall of the digestive fluid occurs in the position evenly distributed in the digester 1 as a whole, the sludge or sediment is disturbed or stirred, thereby preventing the formation of scum layer or sedimentary layer. And the contact between anaerobic microorganisms and sludge is increased or maintained at a high level, thereby increasing the biological treatment efficiency.
또한, 소화조(1)의 저면(2)과 복수개의 호퍼부(6) 사이에는 다수의 오목부가 서로 연통된 형태의 공간(7)이 형성된다. 이러한 공간(7)에는 물이나 기타 적절한 열매체가 충전되고, 여기는 복수개의 열교환기(24)가 설치된다. 이 열교환기(24)는 소화조(1) 내의 소화액을 혐기성 미생물이 반응하기에 적합한 온도로 가열하기 위한 고온수방열기를 사용하는 것이 바람직하지만 경우에 따라 소화액의 온도를 냉각할 수 있는 열교환기가 사용될 수도 있음은 물론이다. 이 열교환기(24)의 하부에 열대류차단판(25)이 이격배치되는데, 이것은 열교환기(24)에 의해 가열된 물의 불필요한 대류를 억제하여 상측의 호퍼부(6)가 좀 더 효율적으로 가열되도록 하기 위한 것이다.In addition, a space 7 in which a plurality of recesses communicate with each other is formed between the bottom face 2 of the digester 1 and the plurality of hopper portions 6. This space 7 is filled with water or other suitable heat medium, and a plurality of heat exchangers 24 are provided therein. The heat exchanger 24 is preferably a hot water radiator for heating the digestion liquid in the digestion tank 1 to a temperature suitable for the reaction of anaerobic microorganisms, but in some cases, a heat exchanger capable of cooling the temperature of the digestion liquid may be used. Of course. A tropical air flow blocking plate 25 is spaced apart from the lower part of the heat exchanger 24, which suppresses unnecessary convection of the water heated by the heat exchanger 24 and heats the upper hopper 6 more efficiently. It is to make it possible.
한편, 본 발명에 따르면, 복수개의 호퍼부(6) 중의 적어도 일부, 예를 들면 어느 하나의 호퍼부(6)에는 소화가스관(12)과 병렬로 제2 소화가스관(32)이 설치된다. 이 소화가스관(32)은 인접하는 다음단계의 소화조(1B)의 상부에 그 흡입단(34)이 배치되어 다음단계의 소화조(1B)로부터 공급되는 소화가스를 제2 소화가스관(32)을 통해 호퍼부(6) 하단부로 토출시킨다. 그리고 이 소화가스관(32)의 토출구(35)에 근접하는 상부 위치에는 소화액이송관(38)의 흡입단이 배치되고, 이 소화액이송관(38)은 인접하는 다음단계의 소화조(1B)로 도입되어 소화액을 이송공급한다. 이와 같은 제2 소화가스관(32)을 통해 다음 단계의 소화조(1B)의 소화가스를 도입하여 그 에어리프트에 의해 소화액을 다음 단계의 소화조(1)로 이송시킴으로써, 소화액 이송을 위한 대용량의 펌프의 사용이 필요없으며, 펌프사용시에 이송되는 미생물 군체의 파괴시에 적합한 미생물환경 조성에 시간이 걸리지 일이 방지되어 유지관리비가 적으면서도 효율적인 소화조를 달성할 수 있다. 아울러 소화액이송을 위해 공급되는 가스도 이송될 다음단계의 소화조의 소화가스를 도입하여 에어리프트를 수행하여 이송시키므로, 소화액의 이송시에 각 소화조 단계에 적합한 미생물환경을 교란시키지 않고 최적의 조건을 유지할 수 있어서 더욱 효율적인 미생물처리가 가능하게 된다.On the other hand, according to the present invention, at least some of the plurality of hopper parts 6, for example, any one hopper part 6, is provided with a second extinguishing gas pipe 32 in parallel with the extinguishing gas pipe 12. The extinguishing gas pipe 32 has a suction end 34 disposed above the extinguishing tank 1B of the next stage adjacent to the extinguishing gas supplied from the extinguishing tank 1B of the next stage through the second extinguishing gas pipe 32. The hopper 6 is discharged to the lower end. The suction end of the extinguishing liquid conveying pipe 38 is disposed at an upper position near the discharge port 35 of the extinguishing gas pipe 32, and the extinguishing liquid conveying pipe 38 is introduced into an adjacent extinguishing tank 1B. Feed and supply digestive fluid. By introducing the digestion gas of the digestion tank 1B of the next stage through the second digestion gas pipe 32 as described above and transferring the digestion liquid to the digester 1 of the next stage by the air lift, It is not necessary to use, and it is possible to achieve an efficient digester with low maintenance costs by preventing time from creating a suitable microbial environment when destroying a microbial colony transported when using a pump. In addition, since the gas supplied for the digestion liquid transfer is also introduced by the digestion gas of the next stage digester to be transported and is carried out by airlift, the optimum conditions are maintained without disturbing the microbial environment suitable for each digester stage. This allows for more efficient microbial treatment.

Claims (4)

  1. 외기로부터 밀폐되고 혐기성 미생물이 서식하며 외부로부터 폐수가 유입되는 유입관(4)과 유입된 폐수가 생물학적으로 처리되어 배출되는 배출관(5)이 접속되는 소화조(1)를 포함하는 소화조 장치에 있어서, 상기 소화조(1)의 내부 저면(2)에 배치되며 바닥면을 복수개의 셀로 구분하도록 둘레부가 서로 연결되는 복수개의 호퍼부(6)와, 상기 소화조(1)의 상단에 흡입구(13)가 개방되고 중간에 에어펌프(14)가 연결되고 각각의 호퍼부(6)의 하단부에 토출구(15)가 개방되는 소화가스관(12)과, 하단(17)은 상기 소화가스관(12)의 토출구(15)에 근접되어 토출된 소화가스가 유입되며 상향연장되는 관체로 이루어진 에어리프트관(16)을 포함하는 것을 특징으로 하는 소화조 장치.In the digester device comprising a digester (1) which is sealed from the outside air, inhabit anaerobic microorganisms, and the inlet pipe (4) through which the wastewater flows from the outside and the discharge pipe (5) through which the inflowed wastewater is biologically treated and discharged. A plurality of hoppers 6 disposed on the inner bottom surface 2 of the digester 1 and having a circumferential portion connected to each other so as to divide the bottom surface into a plurality of cells, and an inlet 13 is opened at an upper end of the digester 1. And an air pump 14 connected to the middle, and an extinguishing gas pipe 12 having an outlet 15 opened at a lower end of each hopper part 6, and a lower end 17 of which is an outlet 15 of the extinguishing gas pipe 12. Fire extinguisher device characterized in that it comprises an air lift pipe (16) made of a tubular body is introduced into the extinguishing gas discharged in proximity to the).
  2. 제 1 항에 있어서, 상기 소화조(1)는 원통형으로 형성되고, 상기 호퍼부(6)는 소화조 저면(2)을 동심원 및 방사방향으로 구획하도록 된 것을 특징으로 하는 소화조 장치.2. The digester apparatus according to claim 1, wherein the digester (1) is formed in a cylindrical shape, and the hopper portion (6) divides the digester bottom face (2) concentrically and radially.
  3. 제 1 항 또는 제 2 항에 있어서, 상기 소화조(1)의 호퍼부(6)는 소화조(1)의 저면(2) 위에 설치되고, 상기 저면(2)과 호퍼부(6) 사이의 오목한 공간(7)에는 열매체(26)가 충전되고 열교환기(24)가 설치된 것을 특징으로 하는 소화조 장치.The hopper part 6 of the said digester 1 is provided in the bottom face 2 of the digester 1, and is the recessed space between the bottom face 2 and the hopper part 6. The digester device (7), characterized in that the heat medium (26) is filled and the heat exchanger (24) is installed.
  4. 제 1 항 또는 제 2 항에 있어서, 상기 소화조(1)의 복수개의 호퍼부(6)의 적어도 일부에는 상기 소화가스관(12)과 병렬로 제2 소화가스관(32)이 설치되고, 이 제2 소화가스관(32)의 토출구(35)에 근접되어 토출된 소화가스가 유입되어 인접하는 다음단계의 소화조(1B)로 연결되는 소화액이송관(38)이 더 구비된 것을 특징으로 하는 소화조 장치.The second extinguishing gas pipe (32) according to claim 1 or 2, wherein at least a part of the hoppers (6) of the digester (1) is provided with a second extinguishing gas pipe (32) in parallel with the extinguishing gas pipe (12). A digester apparatus further comprising a digestive liquid conveying pipe (38) further connected to the extinguishing tank (1B) of the next stage in which the extinguished gas discharged in close proximity to the discharge port (35) of the digestive gas pipe (32) flows in.
PCT/KR2013/006807 2012-07-31 2013-07-30 Digester apparatus WO2014021599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0083770 2012-07-31
KR1020120083770A KR101503116B1 (en) 2012-07-31 2012-07-31 Digester

Publications (1)

Publication Number Publication Date
WO2014021599A1 true WO2014021599A1 (en) 2014-02-06

Family

ID=50028223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006807 WO2014021599A1 (en) 2012-07-31 2013-07-30 Digester apparatus

Country Status (2)

Country Link
KR (1) KR101503116B1 (en)
WO (1) WO2014021599A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452850B1 (en) * 2014-04-17 2014-10-22 주식회사 링콘테크놀로지 Sludge collection devices
EP3159315B1 (en) * 2015-10-22 2019-04-03 Gregor Anton Ulrich Device and method for gas injection in a sludge tank for sludge circulation
KR101679415B1 (en) 2016-03-15 2016-11-24 주식회사 주승 Anaerobic digestion tank system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780415A (en) * 1981-07-29 1988-10-25 Gilbert Ducellier Method of degrading organic products, by-products and scraps in an anaerobic medium
US6478963B1 (en) * 1998-04-07 2002-11-12 Usf Deuthschland Gmbh Gutling Method and device for anaerobic purification of waste water using the UASB method
US20030085171A1 (en) * 2001-11-05 2003-05-08 Khudenko Boris M Biological treatment process
US20100187187A1 (en) * 2007-07-20 2010-07-29 Ecodays Co., Ltd. Plant for aerobic and anaerobic digestion treatment by pfr
KR20120015061A (en) * 2010-08-11 2012-02-21 (주) 에코데이 Conversion of strong organic wastewater to methane through anaerobic digestion plant and process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780415A (en) * 1981-07-29 1988-10-25 Gilbert Ducellier Method of degrading organic products, by-products and scraps in an anaerobic medium
US6478963B1 (en) * 1998-04-07 2002-11-12 Usf Deuthschland Gmbh Gutling Method and device for anaerobic purification of waste water using the UASB method
US20030085171A1 (en) * 2001-11-05 2003-05-08 Khudenko Boris M Biological treatment process
US20100187187A1 (en) * 2007-07-20 2010-07-29 Ecodays Co., Ltd. Plant for aerobic and anaerobic digestion treatment by pfr
KR20120015061A (en) * 2010-08-11 2012-02-21 (주) 에코데이 Conversion of strong organic wastewater to methane through anaerobic digestion plant and process

Also Published As

Publication number Publication date
KR20140016697A (en) 2014-02-10
KR101503116B1 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5114780B2 (en) Anaerobic treatment method and apparatus
KR100907915B1 (en) A bio apparatus for high efficient bio wastes digesting system using complete stirring multi-stage reactor(csmsr)
CN103181362B (en) Closed-type constant-temperature multi-layer water circulation turtle cultivation system
EP2870112B1 (en) Apparatus and method for biological sewage treatment
WO2011087265A2 (en) Anaerobic digester
WO2014021599A1 (en) Digester apparatus
CN201908030U (en) Stirring system of sludge digestion tank
WO2022075830A1 (en) Multi-media anaerobic bioreactor with high biomass content and contact factor
CN102399683B (en) Novel upflow anaerobic reactor
CN103663886B (en) The box loach ecological treatment apparatus of a kind of domestic sewage in rural areas
US20160130158A1 (en) Ammonia stripper
US20200148567A1 (en) Induced sludge bed anaerobic reactor system
CA3085888A1 (en) Photo bioreactor
CN210065450U (en) Organic wastewater treatment system
JP6651555B2 (en) Heat exchanger
CN217377619U (en) Shaft type sewage treatment equipment
KR100988587B1 (en) Anaerobic disgestion tank
CN103981081A (en) A microalgae photobioreactor used for deep treatment of waste water
WO2021101359A1 (en) High-precision, high-efficiency recirculation system for preserving multiple-density biomass and attached biofilm in wastewater treatment bioreactors
JP2015104713A (en) Anaerobic digester and heat exchanger used for the same
CN105836878A (en) Membrane bioreactor with duplex decoupling function
CN102659241A (en) Air-lift circulation type membrane-bioreactor with membrane assembly unit capable of being independently cleaned
CN206660672U (en) A kind of activity zone effluent cycle system based on heat exchange station
CN105906041B (en) From air supporting efficient anaerobe reactor and its method
TWM587659U (en) Fast fermentation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825959

Country of ref document: EP

Kind code of ref document: A1