WO2014021396A1 - Polyester film and method for producing same - Google Patents

Polyester film and method for producing same Download PDF

Info

Publication number
WO2014021396A1
WO2014021396A1 PCT/JP2013/070797 JP2013070797W WO2014021396A1 WO 2014021396 A1 WO2014021396 A1 WO 2014021396A1 JP 2013070797 W JP2013070797 W JP 2013070797W WO 2014021396 A1 WO2014021396 A1 WO 2014021396A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester resin
polyester
temperature
rate
Prior art date
Application number
PCT/JP2013/070797
Other languages
French (fr)
Japanese (ja)
Inventor
清水 敏之
中谷 伊志
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2014021396A1 publication Critical patent/WO2014021396A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to an easily adhesive polyester film. More specifically, the present invention relates to a polyester film exhibiting excellent adhesion in various laminating and printing applications and a method for producing the same.
  • Biaxially stretched polyester films represented by polyethylene terephthalate (PET) films are magnetic tapes and insulating tapes due to their excellent transparency, dimensional stability, mechanical properties, electrical properties, chemical resistance, etc. It is used in a wide range of fields such as photographic film, tracing film, packaging material, electrical insulating material, information recording material, and various process papers.
  • PET polyethylene terephthalate
  • the biaxially stretched polyester film has a high crystal orientation, the film surface has poor adhesion to various adhesives, paints, inks, photosensitizers, magnetic paints, matte agents, and the like.
  • JP 51-90346 A Japanese Patent Publication No.41-8470 Japanese Patent Publication No.58-25331
  • an object of the present invention is to provide a biaxially stretched polyester film having both film strength and easy adhesion by a simple method such as easy adhesion treatment such as corona discharge treatment.
  • the present invention 1. Polyester resin obtained by DSC, wherein the difference between the recrystallization temperature observed when cooled from the molten state at a rate of 40 ° C./min and the recrystallization temperature at a rate of 20 ° C./min is 0 to 15 ° C.
  • the surface crystallinity obtained by ATR-IR is 1.10 to 1.35 on the easy adhesion treated surface side.
  • the value obtained by subtracting the surface crystallinity of the other side of the film from the surface crystallinity of one side of the film is in the range of ⁇ 0.1 to 0. 2.
  • the biaxially stretched polyester film according to 1 above, wherein the polyester resin comprises a polyester resin polymerized from a plant-derived ethylene glycol component.
  • the present invention makes it possible to reduce the crystallinity and orientation of the surface of one surface while maintaining the strength of the film by making each surface of the biaxially stretched polyester film into a specific surface state. Adhesion can be improved.
  • the polyester resin used in the present invention is a polyester (A) obtained by using terephthalic acid (TPA) and ethylene glycol (EG) as main constituent components, and the TPA content is preferably 60% by mass or more, and more preferably 70% by mass. Above, especially 75 mass% or more is preferable, Most preferably, it is 80 mass% or more. If it is less than 60% by mass, the crystallinity is lowered and the film properties are not sufficient.
  • the TPA is preferably 90 mol% or more, more preferably 95 mol% or more, and still more preferably 98 mol% or more as the dicarboxylic acid component.
  • EG is 90 mol% or more as a glycol component, More preferably, it is 95 mol% or more, More preferably, it is 97 mol% or more.
  • impurities other than by-products generated by an ether bond during polymerization are not contained. Even if these impurities are very small, it is not preferable because the melting point of the polyester resin is greatly lowered.
  • the polyester may be a copolymer.
  • the dicarboxylic acid component that may be copolymerized with the polyester include isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, and sebacic acid.
  • the copolymerization of these components has the effect of lowering the crystallinity and ease of crystallization of polyethylene terephthalate, and the oriented crystals on the surface are easily relaxed by heat during treatment such as corona discharge treatment. This is a highly preferred method for the purposes of the invention.
  • polyester (A) such as polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT).
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • PPT polypropylene terephthalate
  • additives polyester-based and polyamide-based elastomers, polyolefin-based elastomers, etc., which are copolymerized with at least one of a flexible polyether component, polycarbonate component, and polyester component to improve pinhole resistance during bending Can be added.
  • the lower limit of the amount of these additives is 0% by weight, and the upper limit is preferably 20% by weight. If it exceeds 20% by weight, the effect is saturated and other problems such as a decrease in transparency of the film may occur.
  • the polyester film can contain a lubricant.
  • a lubricant such as silica, calcium carbonate, and alumina
  • organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica is particularly preferable.
  • the lower limit of the concentration (ppm) of the lubricant in the polyester film is preferably 10, more preferably 30, and further preferably 50. If it is less than the above, the practicality may be lowered in terms of slipperiness.
  • the upper limit of the lubricant concentration (ppm) is preferably 10,000, more preferably 9000, and still more preferably 8000. When the above is exceeded, the transparency of the film may decrease.
  • the lower limit of the primary particle size is 0.005 ⁇ m, preferably 0.010 ⁇ m, more preferably 0.015 ⁇ m. If it is 0.005 ⁇ m or less, an increase in viscosity at the time of melting is observed, which is not preferable.
  • the upper limit of the primary particle size is 50 ⁇ m, preferably 40 ⁇ m, more preferably 30 ⁇ m. When the thickness is 50 ⁇ m or more, transparency is deteriorated or dropped, which is not preferable.
  • the polyester resin may contain conventionally known additives such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber as necessary.
  • the characteristics of the polyester resin in the present invention are obtained by DSC and the recrystallization temperature (hereinafter referred to as Tc (A)) observed when cooled from the molten state at a rate of ⁇ 20 ° C./min.
  • the difference in recrystallization temperature (hereinafter referred to as Tc (B)) at a rate of ⁇ 40 ° C./minute (hereinafter referred to as Tc (A) ⁇ Tc (B)) is within a specific range. Is a feature.
  • the lower limit of Tc (A) -Tc (B) is preferably 0. More preferably, it is 0.5, More preferably, it is 1.
  • Tc (A) -Tc (B) is preferably 15, more preferably 14.5, still more preferably 14, particularly preferably 13.5, most preferably 13.3. is there.
  • Exceeding the above is not preferable because it is very stable against heat such as corona discharge treatment and the effect of improving various adhesive properties is small. The reason for this is presumed to be that the crystallizing speed is high, crystals having a strong surface are formed at a lower temperature, and are not easily melted by heat such as corona discharge treatment.
  • Tc (A) -Tc (B) can be controlled by the type of lubricant in the polyester resin, the amount of impurities in the resin, the type of copolymerization component, and the addition of an additive having a crystallization retardation effect.
  • the lower limit of Tc (A) is preferably 140, more preferably 141, and still more preferably 143. If it is less than the above, the crystallization rate may be too low and the heat resistance of the film may be lowered.
  • the upper limit of Tc (A) is preferably 175, more preferably 170, and even more preferably 168. When the above is exceeded, the difference between the crystallization temperature and the melting temperature becomes too small, and the stretchability may be lowered.
  • the lower limit of Tc (B) is preferably 130, more preferably 131, and still more preferably 133. If it is less than the above, the crystallization rate may be too low and the heat resistance of the film may be lowered.
  • the upper limit of Tc (B) is preferably 165, more preferably 155, and even more preferably 155. If it exceeds the above, adhesiveness may not be obtained.
  • the upper limit of the amount of the crystal nucleating agent contained in the polyester resin is 100 ppm, preferably 10 ppm, most preferably Is 5 ppm or less.
  • the impurities refer to impurities mixed during polymerization or melt extrusion, and the upper limit of the amount mixed is preferably 1 ppm or less, more preferably 0. 0.5 ppm or less, most preferably 0.1 ppm or less.
  • the upper limit is exceeded, the change of the crystallinity degree by a corona discharge process is small, and the effect of easy adhesion becomes small.
  • the polyester film of the present invention can use a polyester resin obtained using a plant-derived raw material in addition to a polyester resin obtained using a conventional fossil fuel-derived raw material. It is preferable to use plant-derived raw materials from the aspect of reducing the environmental load in recent years. Specific examples include plant-derived TPA, EG, BD, adipic acid, sebacic acid, dimer acid, hydrogenated dimer acid, isosorbide, and furandicarboxylic acid, but are not limited thereto.
  • polyester resins obtained using plant-derived materials have limitations in removing impurities during the purification process, and there are problems such as remaining nitrogen compounds. However, polyester resins obtained using these plant-derived materials can be obtained. Since the polyester resin contributes to the promotion of crystallization of the film and forms strong oriented crystals, the crystal relaxation of the surface layer due to heat during processing is reduced, causing a decrease in adhesiveness. It is important to.
  • the polyester film of the present invention can be obtained only from virgin raw materials, but it is also possible to use recycled raw materials.
  • the use of recycled PET resin obtained by collecting PET bottles can contribute to the recent reduction of environmental burden.
  • the lower limit of IV (inherent viscosity, unit [dL / g]) of the recycled PET resin needs to be 0.5, and more preferably 0.55. If it is less than 0.5, it is not preferable because problems such as a decrease in mechanical properties, a decrease in molecular weight, and an increase in crystallization speed and a decrease in film forming property occur.
  • the upper limit of IV needs to be in the range of 0.8, preferably 0.75. When IV exceeds 0.8, the melt viscosity is too high, the discharge amount in the extruder is lowered, and the productivity is lowered.
  • the addition amount of the recycled raw material such as recycled PET resin is not particularly limited, but is determined in consideration of the color tone and IV of the film. Even if the total amount is a recycled PET resin, there is no problem, but the color tone is preferably within a range where the Co-b value is 10 or less, specifically, 0 to 95%.
  • the copolymerization amount of the isophthalic acid in the polyester resin of the film with respect to the acid component is preferably 0.5 to 2.5 mol%, more preferably 1.0 to 2.5 mol%.
  • an additive for adjusting the melt specific resistance in order to impart electrostatic adhesion during casting.
  • Known compounds can be used as additives. Specifically, Mg-based compounds, P-based compounds, Na-based compounds, K-based compounds, and the like can be used. Etc. are determined.
  • the stretched film of the present invention may be a uniaxially stretched film in the longitudinal direction (MD direction) or the transverse direction (TD direction), but is preferably a biaxially stretched film.
  • biaxial stretching sequential biaxial stretching or simultaneous biaxial stretching may be used, but sequential biaxial stretching is more preferable.
  • the polyester resin is heated and melted with a single or biaxial extruder and extruded onto a chill roll to obtain an unstretched film.
  • the lower limit of the resin melting temperature (° C.) is preferably 220, more preferably 240, and even more preferably 260. If it is less than the above, the melt viscosity is high, and it may be difficult to discharge.
  • the upper limit of the resin melting temperature (° C.) is preferably 350, more preferably 340, and even more preferably 330. Exceeding the above is not preferable because molecular weight reduction or coloring due to thermal decomposition is observed.
  • the lower limit of the extrusion die temperature is preferably 220, more preferably 240, and even more preferably 260. If it is less than the above, the melt viscosity is high, and it may be difficult to discharge.
  • the upper limit of the extrusion die temperature (° C.) is preferably 350, more preferably 340, and even more preferably 330. Exceeding the above is not preferable because molecular weight reduction or coloring due to thermal decomposition is observed.
  • the lower limit of the chill roll temperature (° C.) is preferably 0, more preferably 2, and even more preferably 5. If the chill roll temperature is too low as described above, the chill roll may condense and the quality stability is lowered, which is not preferable.
  • the upper limit of the chill roll temperature (° C.) is preferably 80, more preferably 50, and further preferably 40. When the above is exceeded, cooling may be insufficient, resulting in a decrease in stretchability and poor thickness.
  • the lower limit of the casting speed (m / min) is preferably 2, more preferably 5, even more preferably 10, and particularly preferably 20. If it is less than the above, productivity may be lowered.
  • the upper limit of the casting speed (m / min) is preferably 120, more preferably 110, and even more preferably 100. If the above is exceeded, casting may become unstable.
  • the lower limit of the cast thickness ( ⁇ m) is preferably 10, more preferably 15, and further preferably 20. If it is less than the above, the cast thickness may be too thin, making biaxial stretching difficult.
  • the upper limit of the cast thickness ( ⁇ m) is preferably 1250, more preferably 1000, and still more preferably 800. When it exceeds the above, cooling becomes insufficient, and it may be difficult to obtain stable stretchability.
  • multi-stage stretching such as two-stage stretching is preferable.
  • multi-stage stretching such as two-stage stretching is preferred in order not to increase the plane orientation after biaxial stretching or to reduce strain after biaxial stretching.
  • a roll heating method and an infrared heating method are preferable.
  • the lower limit of the MD draw ratio (times) is preferably 3, more preferably 3.1, and still more preferably 3.2. If it is less than the above, the mechanical properties such as puncture strength may be lowered.
  • the upper limit of the MD draw ratio (times) is preferably 4.5, more preferably 4.4, and still more preferably 4.3. When the above is exceeded, breakage and the like may be observed at the time of film formation, and productivity may be lowered.
  • the lower limit of the MD preheating temperature (° C.) is preferably 30, more preferably 35, and still more preferably 40. If it is less than the above, preheating may be insufficient and stretching may be difficult.
  • the upper limit of the MD preheating temperature is preferably 200, more preferably 180, and even more preferably 150. When the above is exceeded, it may crystallize and it may become difficult to stretch.
  • the lower limit of the MD stretching temperature (° C.) is preferably 50, more preferably 60, still more preferably 70, and particularly preferably 80. If it is less than the above, the resin may not be softened and stretching may be difficult.
  • the upper limit of the MD stretching temperature (° C.) is preferably 150, more preferably 145, and still more preferably 140. When the above is exceeded, it may crystallize and it may become difficult to stretch.
  • the stretching temperature in the case of the infrared heating method can be appropriately adjusted from the film forming conditions, but the film temperature during stretching is preferably in the above range.
  • the lower limit of the MD stretching rate (% / min) is preferably 100, more preferably 150, and even more preferably 200. If it is less than the above, productivity may be lowered.
  • the upper limit of the MD stretching rate (% / min) is preferably 100,000, more preferably 90000, and further preferably 80000. When the above is exceeded, the film-forming stability may be lowered.
  • the lower limit of the MD draw ratio is preferably 2.5, more preferably 2.6, and even more preferably 2.7. If it is less than the above, the degree of crystallinity of the surface layer is low, the peel force changes when the extrusion lamination conditions are changed, and the piercing strength may be lowered.
  • the upper limit of the MD draw ratio is preferably 4.5, more preferably 4.4, and still more preferably 4.35. Exceeding the above may result in a decrease in productivity during film formation.
  • the lower limit of the thickness ( ⁇ m) after MD stretching is preferably 5, more preferably 10, and further preferably 15. If it is less than the above, transverse stretching may be difficult.
  • the upper limit of the thickness ( ⁇ m) after MD stretching is preferably 250, more preferably 240, and still more preferably 230. When the above is exceeded, the thickness after biaxial stretching may be too thick and may be unsuitable for the purpose of the present invention.
  • the lower limit of the TD stretch ratio (times) is preferably 3.5, more preferably 3.6, and still more preferably 3.7. If it is less than the above, productivity at the time of film formation may be reduced, and uniformity of thickness may be reduced.
  • the upper limit of the TD stretch ratio (times) is preferably 5, more preferably 4.8, and even more preferably 4.5. When the above is exceeded, breakage and the like may be observed at the time of film formation, and productivity may be lowered.
  • the lower limit of the TD preheating temperature (° C.) is preferably 30, more preferably 40, still more preferably 50, and particularly preferably 60. If it is less than the above, preheating may be insufficient and stretching may be difficult.
  • the upper limit of the TD preheating temperature (° C.) is preferably 150, more preferably 145, and still more preferably 140. When the above is exceeded, it may crystallize and it may become difficult to stretch.
  • the lower limit of the TD stretching temperature (° C.) is preferably 50, more preferably 60, still more preferably 70, particularly preferably 80, and most preferably 100. If it is less than the above, the resin may not be softened and stretching may be difficult.
  • the upper limit of the TD stretching temperature (° C.) is preferably 180, more preferably 175, still more preferably 170, particularly preferably 165, and most preferably 160. When the above is exceeded, it may crystallize and it may become difficult to stretch.
  • the setting of heat setting conditions is the most important point in the present invention.
  • it in order to develop adhesiveness, it is necessary to set heat setting conditions so that the crystal on the film surface is relaxed by heat during treatment such as corona discharge treatment. If the crystal on the surface is strong before the corona discharge treatment, the structure is less likely to relax, such as melting of the crystal, and the effect of improving the adhesion by the corona discharge treatment is reduced. Therefore, it is necessary to set heat setting conditions according to the state before heat setting immediately after biaxial stretching.
  • the film forming conditions (stretching ratio) and the heat setting conditions are adjusted so that the surface crystallinity is within the range described later, and the adhesive properties are adjusted by adjusting the surface before and after the corona discharge treatment.
  • improvements could be obtained. From these points, the conditions need to be adjusted as appropriate, and are exemplified below, but are not limited to these methods and conditions. In the following description, it is assumed that there are one or more heat setting zones (the first half is zone 1 and the second half is zone 2).
  • the lower limit of the heat setting temperature (° C.) of each zone is preferably 150, more preferably 160, and even more preferably 170. If it is less than the above, the thermal shrinkage rate becomes too large, which may result in poor dimensional stability in various processing steps.
  • the upper limit of the heat setting temperature (° C.) of each zone is preferably 280, more preferably 270, and even more preferably 260. When the above is exceeded, not only the crystals on the surface layer but also the orientation of the entire film may be collapsed, and the mechanical properties may be deteriorated.
  • the lower limit of the heat setting time (seconds) is preferably 0.5, more preferably 1, more preferably 1.2, particularly preferably 1.5, and most preferably 2.5. . Productivity may fall that it is less than the above.
  • the upper limit of the heat setting time (second) is preferably 50, more preferably 15, more preferably 10, particularly preferably 7, and most preferably 5. When the above is exceeded, productivity may be lowered.
  • the lower limit of the TD relaxation rate (%) is preferably 0, more preferably 0.5, and still more preferably 0.8. If it is less than the above, it tends to break and productivity may be lowered.
  • the upper limit of the TD relaxation rate (%) is preferably 20, more preferably 15, and still more preferably 10. When the above is exceeded, sagging may occur, and the thickness accuracy in the width direction may decrease.
  • the lower limit of the film forming speed (m / min) at the TD outlet is preferably 3, more preferably 5, still more preferably 10, and particularly preferably 20. If it is less than the above, the productivity is low, which is unsuitable from an industrial viewpoint.
  • the upper limit of the film formation rate (m / min) at the TD outlet is preferably 500, more preferably 400, and even more preferably 300. If the above is exceeded, distortion may increase.
  • the lower limit of the thickness ( ⁇ m) after biaxial stretching is preferably 3, more preferably 4, and further preferably 5. If it is less than the above, it may be too thin and workability may be reduced.
  • the upper limit of the thickness ( ⁇ m) after biaxial stretching is preferably 50, more preferably 45, and even more preferably 40. If it exceeds the above, it is too thick and the workability is lowered, and when used as a packaging material, the flexibility may be lowered.
  • the lower limit of the heat shrinkage rate (%) in the MD direction at 150 ° C. for 15 minutes of the present invention is preferably 0.5, more preferably 0.6, and even more preferably 0.7. If it is less than the above, the practical effect by improving the dimensional stability is saturated.
  • the upper limit of the heat shrinkage rate (%) in the MD direction at 150 ° C. ⁇ 15 minutes is preferably 10, more preferably 8, and further preferably 5. Exceeding the above may cause a pitch shift or the like in various processing steps, which may deteriorate the appearance.
  • the lower limit of the surface crystallinity of the easy-adhesion treated surface of the present invention is preferably 1.1, more preferably 1.15, still more preferably 1.2, and most preferably 1.25. If it is less than the above, the change in crystallinity of the film surface layer due to heat is large, and various adhesiveness may be changed by heat treatment after processing.
  • the upper limit of the surface crystallinity of the easy adhesion treated surface is preferably 1.35, more preferably 1.34, still more preferably 1.33, particularly preferably 1.3, and most preferably 1.28. If it exceeds the above, the crystallinity of the film surface layer may be too high, resulting in a decrease in adhesiveness.
  • the lower limit of the surface crystallinity of the non-treated surface of the present invention is preferably 1.1, more preferably 1.15, still more preferably 1.2, and most preferably 1.25.
  • the surface crystallinity of the non-treated surface is the same as the surface before treatment such as corona discharge treatment, but if it is less than the above, the crystallinity of the film surface layer is too low and various adhesion properties may change.
  • the upper limit of the surface crystallinity of the non-treated surface is preferably 1.5, more preferably 1.45, and still more preferably 1.4. As described above, the non-treated surface is almost the same as the treated surface before various treatments. However, exceeding the above is not preferable because the degree of crystallinity of the film surface layer is too high and the adhesion on the easy adhesion treated surface side is not improved.
  • the lower limit of the value obtained by subtracting the crystallinity of the other surface of the film from the surface crystallinity of one surface of the film of the present invention is preferably ⁇ 0.1, more preferably ⁇ 0.08, Preferably it is -0.05. If it is less than the above, the effect of improving adhesiveness is saturated.
  • the upper limit of the value obtained by subtracting the crystallinity of the other surface of the film from the surface crystallinity of one surface of the film is preferably 0, more preferably -0.001, and still more preferably -0.004. And most preferably -0.008. If it exceeds the above, the crystallinity of the surface is increased by easy adhesion treatment such as corona discharge treatment, and the adhesion is not improved. More specifically, a value obtained by subtracting the crystallinity of the non-treated surface from the crystallinity of the easy-adhesion-treated surface of the film is preferably within the above range.
  • the lower limit of the piercing strength (N) of the film of the present invention is preferably 5, more preferably 6, and further preferably 7. If it is less than the above, breakage during processing may easily occur.
  • the upper limit of the piercing strength (N) is preferably 20, more preferably 18, and further preferably 17. If the above is exceeded, the effect may be saturated.
  • the “easy adhesion treatment surface” refers to a surface subjected to the following easy adhesion treatment.
  • chemical treatment such as alkali treatment and primer treatment can be used as the easy adhesion treatment method in the present invention.
  • Preferable is a physical method that can be processed in a dry process, more preferably ultraviolet irradiation treatment, corona discharge treatment, plasma discharge treatment, and flame treatment, and more preferably ultraviolet irradiation treatment, corona discharge treatment, plasma discharge. Treatment, most preferably corona discharge treatment.
  • a known method can be used for the corona discharge treatment (see, for example, Japanese Patent Application Laid-Open No.
  • the lower limit of the preferable discharge amount (W ⁇ min / m 2 ) is 1, more preferably 5, and still more preferably 10. If it is less than the above, the effect of the treatment is small, and the effect of improving the adhesiveness is not seen.
  • the upper limit of the preferable discharge amount (W ⁇ min / m 2 ) is 200, more preferably 180, and still more preferably 150. When the above is exceeded, the oxidation of the surface proceeds so much that the effect of improving the adhesiveness is not seen.
  • the lower limit of the laminate strength is preferably 3, more preferably 3.5, and even more preferably 4. If it is less than the above, when used as a bag or lid, there may be problems such as easy breakage when a strong impact is applied.
  • the upper limit of the laminate strength is preferably 15, more preferably 13, and still more preferably 10. If the above is exceeded, the effect may be saturated.
  • FT-IR ATR measurement was performed on both the easy-adhesion treated surface and the non-treated surface of the sample under the following conditions.
  • FT-IR apparatus FTS-60A / 896 manufactured by Bio Rad DIGILAB Single reflection ATR attachment: golden gate MKII (manufactured by SPECAC) Internal reflection element: Diamond incident angle: 45 ° Resolution: 4cm -1 Number of integration: 128 times crystallinity was calculated by the intensity ratio of absorption appearing near the absorption and 1410 cm -1 appearing near 1340cm -1 (1340cm -1 / 1410cm -1 ).
  • 1340 cm ⁇ 1 is absorption due to the bending vibration of CH 2 (trans structure) of ethylene glycol
  • 1410 cm ⁇ 1 is absorption independent of crystal and orientation.
  • the value obtained by subtracting the surface crystallinity of the other surface of the film from the surface crystallinity of the one surface of the film is “the surface crystallinity of the easy-adhesion treated surface of the film and the surface of the non-treated surface”.
  • the value obtained by subtracting the crystallinity was used.
  • the reaction product was transferred to the polycondensation reaction layer, and an ethylene glycol slurry of silica particles having an average particle size of 2.3 ⁇ m was added so that the silica was 1000 ppm in the polyester, and then the reaction was performed while heating and heating.
  • the obtained polyester resin has a recrystallization temperature [Tc (A)] observed when cooled from a molten state at a rate of 20 ° C./min obtained by DSC at 161 ° C. and 40 ° C./min.
  • the recrystallization temperature [Tc (B)] at the rate was 157 ° C. and Tc (A) -Tc (B) was 4 ° C.
  • Example 1 The polyester resin 1 was dried under reduced pressure (1.3 hPa) for 24 hours at 120 ° C. and melted at 280 ° C. using a single screw extruder, and then cooled from a 30 cm wide T-die (280 ° C.) (surface temperature 10 C.) cast upward (applying a voltage of 7.2 kV from a tungsten wire electrode with a diameter of 30 ⁇ m installed so as to face the circumferential surface of the cooling roll, and applying a 0.2 mA current for electrostatic contact) An unstretched sheet having a central thickness of 170 ⁇ m was obtained.
  • the unstretched sheet is preheated at a roll temperature of 95 ° C., stretched 3.5 times in the longitudinal direction at a stretching temperature of 100 ° C., then stretched 4.0 times in the transverse direction at 100 ° C., and then a relaxation rate of 3.0%
  • heat setting was performed at 230 ° C. to obtain a polyester film having a thickness of 12 ⁇ m.
  • the speed at the TD outlet was 50 m / min, and the residence time in the heat setting zone was 2 seconds.
  • the corona discharge process was performed to the one surface side of the film.
  • the corona discharge treatment was performed at 90 W ⁇ min / m 2 . Thereafter, it was wound around a paper tube to obtain a polyester film 1.
  • Table 1 The properties of the obtained film are shown in Table 1.
  • Example 2 Films were obtained under the conditions described in Table 1.
  • Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
  • Example 3 As a raw material, the PET bottle was washed and then re-pelletized to obtain a recycled PET resin (IV: 0.68, Co-b: 8, isophthalic acid copolymerization amount 2.0 mol%) 60% average particle size 1 A film was obtained under the conditions shown in Table 1 using 40% polyester resin containing 3 ⁇ m of agglomerated silica and a silica concentration of 700 ppm. Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
  • the recrystallization temperature [Tc (A)] observed when cooled from the molten state at a rate of 20 ° C./min obtained by DSC is 151 ° C., a rate of 40 ° C./min.
  • the recrystallization temperature [Tc (B)] was 144 ° C. and Tc (A) -Tc (B) was 7 ° C.
  • ethylene glycol of polyester resin 1 is made from plant-derived ethylene glycol, 80% polyester resin (IV: 0.65) obtained without adding aggregated silica, aggregated silica having an average particle size of 2.3 ⁇ m at 3500 ppm
  • a film was obtained under the conditions described in Table 1 by using 20% PET resin and mixing it with a silica concentration of 700 ppm.
  • Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
  • the recrystallization temperature [Tc (A)] observed when cooled from the molten state at a rate of 20 ° C./min obtained by DSC is 168 ° C., a rate of 40 ° C./min.
  • the recrystallization temperature [Tc (B)] was 155 ° C. and Tc (A) -Tc (B) was 13 ° C.
  • the amount of nitrogen compound obtained by the oxygen-circulating chemiluminescence method in the plant-derived ethylene glycol used was in the range of 0 to 1 ppm.
  • the recrystallization temperature [Tc (A)] observed when cooled from the molten state at a rate of 20 ° C./min obtained by DSC is 175 ° C., a rate of 40 ° C./min.
  • the recrystallization temperature [Tc (B)] was 155 ° C. and Tc (A) -Tc (B) was 20 ° C.
  • the polyester film of the present invention can be widely used in a wide range of fields such as magnetic tape, insulating tape, photographic film, tracing film, packaging material, electrical insulating material, information recording material, and various process papers. Suitable for printing because of its excellent properties and dimensional stability. In addition, since it has high heat resistance, it can be dried at a high temperature when drying a coating or printing, and it is possible to use a coating agent, an ink, a laminating adhesive, or the like, which has been difficult to be used in production, or has been conventionally used. Furthermore, it is also suitable for insulating films such as capacitors and motors, solar cell backsheets, inorganic oxide barrier films, and transparent conductive film base films such as ITO.
  • insulating films such as capacitors and motors, solar cell backsheets, inorganic oxide barrier films, and transparent conductive film base films such as ITO.

Abstract

The present application addresses the problem of providing a biaxially stretched polyester film which can be produced in a simple manner by a treatment for imparting easy adhesion properties such as a corona discharge treatment and which has both film strength and easiness of adhesion. The problem can be solved by a biaxially stretched polyester film which comprises a polyester resin and has a thickness of 3 to 50 μm and of which one surface is subjected to any one of various treatments for imparting easy adhesion properties such as a corona discharge treatment, wherein the polyester resin has such a property that the difference between a recrystallization temperature of the polyester resin which is measured by DSC and is observed upon the cooling of a melted product of the polyester resin at a rate of 40˚C/min and a recrystallization temperature of the polyester resin which is measured by DSC and is observed upon the cooling of a melted product of the polyester resin at a rate of 20˚C/min is 0 to 15˚C.

Description

ポリエステルフィルムおよびその製造方法Polyester film and method for producing the same
 本発明は、易接着性ポリエステルフィルムに関する。更に詳しくは、各種ラミ用途、印刷用途において優れた接着性を示すポリエステルフィルムとその製造方法に関する。 The present invention relates to an easily adhesive polyester film. More specifically, the present invention relates to a polyester film exhibiting excellent adhesion in various laminating and printing applications and a method for producing the same.
 ポリエチレンテレフタレ-ト(PET)フィルムに代表される二軸延伸ポリエステルフィルムは、その優れた透明性、寸法安定性、機械的性質、電気的性質、耐薬品性等から磁気テ-プ、絶縁テープ、写真フィルム、トレーシングフィルム、包装材料、電気絶縁材料、情報記録材料、各種工程紙などの幅広い分野で利用されている。しかしながら、二軸延伸ポリエステルフィルムは高度に結晶配向しているため、フィルム表面は各種接着剤、塗料、インキ、感光剤、磁性塗料、マット剤等に対する接着性が乏しい。そこで、簡便な方法としては、フィルムを高温でアニール処理するほか、製膜工程中の熱固定時に高温での処理を実施することで、フィルム全体の配向を下げて易接着化する方法が採られていたが、かかる従来技術ではフィルムが脆化するという問題点があった。 Biaxially stretched polyester films represented by polyethylene terephthalate (PET) films are magnetic tapes and insulating tapes due to their excellent transparency, dimensional stability, mechanical properties, electrical properties, chemical resistance, etc. It is used in a wide range of fields such as photographic film, tracing film, packaging material, electrical insulating material, information recording material, and various process papers. However, since the biaxially stretched polyester film has a high crystal orientation, the film surface has poor adhesion to various adhesives, paints, inks, photosensitizers, magnetic paints, matte agents, and the like. Therefore, as a simple method, in addition to annealing the film at a high temperature, a method of lowering the orientation of the whole film and making it easy to adhere by performing a treatment at a high temperature during heat setting during the film forming process is adopted. However, this conventional technique has a problem that the film becomes brittle.
 そこで、一般的な方法として、実際に各種工程で使用される場合にはポリエステルフィルム表面に何らかの易接着処理を施す必要がある場合が多い。以下に例示する。
 原料中に結晶融解熱量の小さい成分(例えばポリアルキレングリコールなど)を添加・共重合することにより、表面は融解しやすくなり、これによりインキ密着性、ラミネート強度は増加するという技術が知られている(例えば特許文献1等参照。)。しかし、かかる従来技術は表面の結晶化度が低くなることから、接着性は改善するが、基材側の面の接着性が高温では低下しやすい、ブロッキングしやすいという問題点があった。
Therefore, as a general method, when actually used in various processes, it is often necessary to perform some kind of easy adhesion treatment on the surface of the polyester film. Examples are given below.
A technique is known in which the surface is easily melted by adding / copolymerizing a component having a small crystal melting heat quantity (for example, polyalkylene glycol) into the raw material, thereby increasing ink adhesion and laminate strength. (See, for example, Patent Document 1). However, such conventional techniques improve the adhesion because the crystallinity of the surface is low, but there is a problem that the adhesion on the surface on the base material side tends to decrease at high temperatures and is easy to block.
 また、インラインコートまたはオフラインコートにより表面に易接着性のコート層を積層により、形成される樹脂層によりインキ密着性、ラミネート強度が増加するという技術が知られている(例えば特許文献2等参照。)。しかし、かかる従来技術は製造工程が複雑化する、製品として使用されないフィルム端部を回収時に表層成分が混入するという問題点があった。 In addition, a technique is known in which ink adhesion and laminate strength are increased by a resin layer formed by laminating an easily adhesive coat layer on the surface by in-line coating or offline coating (see, for example, Patent Document 2). ). However, such a conventional technique has a problem that the manufacturing process is complicated, and a surface layer component is mixed at the time of recovery of a film end portion that is not used as a product.
 一方、印刷時やラミネート時において、インキ密着性、ラミネート強度などの接着性を増加させるために、紫外線照射処理、コロナ放電処理、プラズマ放電処理、火炎処理などの物理的方法や、アルカリ処理、プライマー処理などの化学的処理などを実施することが知られている。例えば、表層に形成される極性基によりインキ密着性、ラミネート強度は増加するという技術が知られていた(例えば特許文献3参照)。しかし、コロナ処理によりフィルム表面の結晶化度も高くなるため、易接着化しにくくなるという問題点があった。 On the other hand, in printing and laminating, in order to increase adhesion such as ink adhesion and laminating strength, physical methods such as ultraviolet irradiation treatment, corona discharge treatment, plasma discharge treatment, flame treatment, alkali treatment, primer It is known to perform chemical treatment such as treatment. For example, a technique has been known in which ink adhesion and laminate strength increase due to polar groups formed on the surface layer (see, for example, Patent Document 3). However, since the crystallinity of the film surface is increased by corona treatment, there is a problem that it is difficult to easily adhere.
特開昭51-90346号公報JP 51-90346 A 特公昭41-8470号公報Japanese Patent Publication No.41-8470 特公昭58-25331号公報Japanese Patent Publication No.58-25331
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的はコロナ放電処理などの易接着処理など簡単な方法によりフィルム強度と易接着性を併せもつ二軸延伸ポリエステルフィルムを提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide a biaxially stretched polyester film having both film strength and easy adhesion by a simple method such as easy adhesion treatment such as corona discharge treatment.
 本発明者らは、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。すなわち本発明は、
1.DSCにより得られる40℃/分の速度で溶融状態から冷却される際に観察される再結晶化温度と20℃/分の速度での再結晶化温度の差が0~15℃であるポリエステル樹脂からなる、3~50μmの厚みを有し、下記要件(1)~(4)のフィルムの物性を満足することを特徴とする二軸延伸ポリエステルフィルム。
(1)MD方向の熱収縮率が0.5~10%である。
(2)突き刺し強度が5~20Nである。
(3)易接着処理面側について、ATR-IRにより求められる表面結晶化度が1.10~1.35である。
(4)フィルムの一方の面の表面結晶化度からフィルムの他方の面の表面結晶化度を引いた値が-0.1~0の範囲にある。
2.前記ポリエステル樹脂がイソフタル成分を有する上記1に記載の二軸延伸ポリエステルフィルム。
3.前記ポリエステル樹脂が植物由来のエチレングリコール成分から重合されたポリエステル樹脂を含む上記1に記載の二軸延伸ポリエステルフィルム。
 本発明は二軸延伸ポリエステルフィルムのそれぞれの面を特定の表面状態とすることで、フィルムの強度を保ちながら、一方の面の表面の結晶化度と配向が低下させることが可能となり、フィルムの接着性を向上できる。
The inventors of the present invention have intensively studied to achieve the object, and as a result, the present invention has been completed. That is, the present invention
1. Polyester resin obtained by DSC, wherein the difference between the recrystallization temperature observed when cooled from the molten state at a rate of 40 ° C./min and the recrystallization temperature at a rate of 20 ° C./min is 0 to 15 ° C. A biaxially stretched polyester film having a thickness of 3 to 50 μm and satisfying the physical properties of the following requirements (1) to (4):
(1) The thermal shrinkage in the MD direction is 0.5 to 10%.
(2) The piercing strength is 5 to 20N.
(3) The surface crystallinity obtained by ATR-IR is 1.10 to 1.35 on the easy adhesion treated surface side.
(4) The value obtained by subtracting the surface crystallinity of the other side of the film from the surface crystallinity of one side of the film is in the range of −0.1 to 0.
2. 2. The biaxially stretched polyester film as described in 1 above, wherein the polyester resin has an isophthalic component.
3. 2. The biaxially stretched polyester film according to 1 above, wherein the polyester resin comprises a polyester resin polymerized from a plant-derived ethylene glycol component.
The present invention makes it possible to reduce the crystallinity and orientation of the surface of one surface while maintaining the strength of the film by making each surface of the biaxially stretched polyester film into a specific surface state. Adhesion can be improved.
 本発明により、従来は両立が困難であった密着性と力学特性とのバランス化のほか、他の材料の混入もなく、表面層の耐熱性に優れた易接着性ポリエステルフィルムを提供することが可能となる。 According to the present invention, it is possible to provide an easily-adhesive polyester film excellent in heat resistance of a surface layer without being mixed with other materials in addition to balancing adhesion and mechanical properties, which has been difficult to achieve in the past. It becomes possible.
 以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に用いられるポリエステル樹脂は、テレフタル酸(TPA)とエチレングリコール(EG)を主たる構成成分として得られるポリエステル(A)であり、TPAの含有率60質量%以上が好ましく、さらには70質量%以上、特には75質量%以上が好ましく、最も好ましくは80質量%以上である。60質量%未満であると結晶性が低下してしまい、フィルム特性としては十分なものでなくなってしまう。
 主たる構成成分として用いるポリエステル(A)は、ジカルボン酸成分として、TPAが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上である。グリコール成分としてEGが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上である。このとき重合時にエーテル結合により生成する副生物以外の不純物は含まれないことが好ましい。これらの不純物は非常に少量であっても、ポリエステル樹脂の融点を大幅に低下させるため好ましくない。
The polyester resin used in the present invention is a polyester (A) obtained by using terephthalic acid (TPA) and ethylene glycol (EG) as main constituent components, and the TPA content is preferably 60% by mass or more, and more preferably 70% by mass. Above, especially 75 mass% or more is preferable, Most preferably, it is 80 mass% or more. If it is less than 60% by mass, the crystallinity is lowered and the film properties are not sufficient.
In the polyester (A) used as the main constituent component, the TPA is preferably 90 mol% or more, more preferably 95 mol% or more, and still more preferably 98 mol% or more as the dicarboxylic acid component. It is preferable that EG is 90 mol% or more as a glycol component, More preferably, it is 95 mol% or more, More preferably, it is 97 mol% or more. At this time, it is preferable that impurities other than by-products generated by an ether bond during polymerization are not contained. Even if these impurities are very small, it is not preferable because the melting point of the polyester resin is greatly lowered.
 ポリエステルは、共重合体であってもよい。ポリエステルに共重合されても良いジカルボン酸成分としては、例えば、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸など挙げられる。ポリエステルに共重合されても良いグリコール成分としては、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等が挙げられる。これらの成分の共重合はポリエチレンテレフタレートの結晶化のしやすさと結晶融点を低下させる効果があり、コロナ放電処理などの処理時の熱により容易に表面の配向結晶を緩和させることになるため、本発明の目的に対して非常に好ましい方法である。 The polyester may be a copolymer. Examples of the dicarboxylic acid component that may be copolymerized with the polyester include isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid, azelaic acid, and sebacic acid. Examples of the glycol component that may be copolymerized with the polyester include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, Examples include 1,6-hexanediol, diethylene glycol, cyclohexanediol, polyethylene glycol, polytetramethylene glycol, and polycarbonate diol. The copolymerization of these components has the effect of lowering the crystallinity and ease of crystallization of polyethylene terephthalate, and the oriented crystals on the surface are easily relaxed by heat during treatment such as corona discharge treatment. This is a highly preferred method for the purposes of the invention.
 また、ポリエステルの他の構成成分としては特に制限されないが、例えば、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)などのポリエステル(A)以外のポリエステル樹脂が挙げられる。加えて、添加剤として、屈曲時の耐ピンホール性を改善するために、柔軟なポリエーテル成分、ポリカーボネート成分、ポリエステル成分の少なくともいずれかを共重合したポリエステル系およびポリアミド系エラストマー、ポリオレフィン系エラストマー等が添加できる。これらの添加剤の量の下限は0重量%であり、上限は20重量%であることが好ましい。20重量%を超えると効果が飽和するほか、フィルムの透明性が低下するなどの不具合が起こることがある。 Further, other constituent components of the polyester are not particularly limited. For example, polyester (A) such as polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and polypropylene terephthalate (PPT). Other polyester resins. In addition, as additives, polyester-based and polyamide-based elastomers, polyolefin-based elastomers, etc., which are copolymerized with at least one of a flexible polyether component, polycarbonate component, and polyester component to improve pinhole resistance during bending Can be added. The lower limit of the amount of these additives is 0% by weight, and the upper limit is preferably 20% by weight. If it exceeds 20% by weight, the effect is saturated and other problems such as a decrease in transparency of the film may occur.
 ポリエステルフィルムには滑剤を含有することができる。滑剤の種類としてはシリカ、炭酸カルシウム、アルミナなどの無機系滑材のほか、有機系滑剤が好ましく、シリカ、炭酸カルシウムがより好ましく、特にシリカが好ましい。これら滑剤の添加により、フィルムに透明性と滑り性とを付与することができる。 The polyester film can contain a lubricant. In addition to inorganic lubricants such as silica, calcium carbonate, and alumina, organic lubricants are preferable, silica and calcium carbonate are more preferable, and silica is particularly preferable. By adding these lubricants, transparency and slipperiness can be imparted to the film.
 滑剤のポリエステルフィルム中での含有濃度(ppm)の下限は好ましくは10であり、より好ましくは30であり、さらに好ましくは50である。上記未満であると滑り性の面で実用性が低くとなることがある。滑剤濃度(ppm)の上限は好ましくは10000であり、より好ましくは9000であり、さらに好ましくは8000である。上記を超えるとフィルムの透明性が低下することがある。 The lower limit of the concentration (ppm) of the lubricant in the polyester film is preferably 10, more preferably 30, and further preferably 50. If it is less than the above, the practicality may be lowered in terms of slipperiness. The upper limit of the lubricant concentration (ppm) is preferably 10,000, more preferably 9000, and still more preferably 8000. When the above is exceeded, the transparency of the film may decrease.
 滑剤の粒子径については一次粒子径の下限が0.005μm、好ましくは0.010μm、更に好ましくは0.015μmである。0.005μm以下では溶融時の粘度上昇が見られるため好ましくない。滑剤の粒子径については一次粒子径の上限が50μm、好ましくは40μm、更に好ましくは30μmである。50μm以上では透明性の低下や脱落が見られ好ましくない。 Regarding the particle size of the lubricant, the lower limit of the primary particle size is 0.005 μm, preferably 0.010 μm, more preferably 0.015 μm. If it is 0.005 μm or less, an increase in viscosity at the time of melting is observed, which is not preferable. Regarding the particle size of the lubricant, the upper limit of the primary particle size is 50 μm, preferably 40 μm, more preferably 30 μm. When the thickness is 50 μm or more, transparency is deteriorated or dropped, which is not preferable.
 前記ポリエステル樹脂は必要に応じて、従来公知の添加剤、例えば、滑剤、安定剤、着色剤、酸化防止剤、静電防止剤、紫外線吸収剤等を含有していてもよい。 The polyester resin may contain conventionally known additives such as a lubricant, a stabilizer, a colorant, an antioxidant, an antistatic agent, and an ultraviolet absorber as necessary.
 これらの添加剤は、インパクト強度や突き刺し強度が満足できる範囲で調整する必要がある。 These additives need to be adjusted within a range where the impact strength and piercing strength can be satisfied.
 本発明におけるポリエステル樹脂の特徴は、DSCにより得られる-20℃/分の速度で溶融状態から冷却される際に観察される再結晶化温度(以下、Tc(A)とする)とDSCにより得られる-40℃/分の速度での再結晶化温度(以下、Tc(B)とする)の差(以下、Tc(A)-Tc(B)とする。)が特定の範囲内にあることが特徴である。
 Tc(A)-Tc(B)の下限は好ましくは0である。より好ましくは0.5であり、さらに好ましくは1である。0℃未満では結晶化速度が遅すぎて本発明に対して好ましくない。
 Tc(A)-Tc(B)の上限は好ましくは15であり、より好ましくは14.5であり、さらに好ましくは14であり、特に好ましくは13.5であり、最も好ましくは13.3である。上記を超えるとコロナ放電処理などの熱に対して非常に安定となるため、各種接着性の改善効果が小さいため好ましくない。この理由については、結晶化速度が速く、より低温で強固な表面の結晶が生成し、コロナ放電処理などの熱により容易に溶融しないためと推定される。
 Tc(A)-Tc(B)は、ポリエステル樹脂中の滑剤の種類や樹脂中の不純物の量、共重合成分の種類や結晶化遅延効果のある添加剤の添加によりコントロールできることがわかった。
The characteristics of the polyester resin in the present invention are obtained by DSC and the recrystallization temperature (hereinafter referred to as Tc (A)) observed when cooled from the molten state at a rate of −20 ° C./min. The difference in recrystallization temperature (hereinafter referred to as Tc (B)) at a rate of −40 ° C./minute (hereinafter referred to as Tc (A) −Tc (B)) is within a specific range. Is a feature.
The lower limit of Tc (A) -Tc (B) is preferably 0. More preferably, it is 0.5, More preferably, it is 1. If it is less than 0 ° C., the crystallization rate is too slow, which is not preferable for the present invention.
The upper limit of Tc (A) -Tc (B) is preferably 15, more preferably 14.5, still more preferably 14, particularly preferably 13.5, most preferably 13.3. is there. Exceeding the above is not preferable because it is very stable against heat such as corona discharge treatment and the effect of improving various adhesive properties is small. The reason for this is presumed to be that the crystallizing speed is high, crystals having a strong surface are formed at a lower temperature, and are not easily melted by heat such as corona discharge treatment.
It was found that Tc (A) -Tc (B) can be controlled by the type of lubricant in the polyester resin, the amount of impurities in the resin, the type of copolymerization component, and the addition of an additive having a crystallization retardation effect.
 Tc(A)の下限は好ましくは140であり、より好ましくは141であり、さらに好ましくは143である。上記未満であると結晶化速度が低すぎてフィルムの耐熱性が低くなることがある。
 Tc(A)の上限は好ましくは175であり、より好ましくは170であり、さらに好ましくは168である。上記を超えると結晶化温度と溶融温度の差が小さくなりすぎて延伸性が低下することがある。
The lower limit of Tc (A) is preferably 140, more preferably 141, and still more preferably 143. If it is less than the above, the crystallization rate may be too low and the heat resistance of the film may be lowered.
The upper limit of Tc (A) is preferably 175, more preferably 170, and even more preferably 168. When the above is exceeded, the difference between the crystallization temperature and the melting temperature becomes too small, and the stretchability may be lowered.
 Tc(B)の下限は好ましくは130であり、より好ましくは131であり、さらに好ましくは133である。上記未満であると結晶化速度が低すぎてフィルムの耐熱性が低くなることがある。
 Tc(B)の上限は好ましくは165であり、より好ましくは155であり、さらに好ましくは155である。上記を超えると接着性が得られないことがある。
The lower limit of Tc (B) is preferably 130, more preferably 131, and still more preferably 133. If it is less than the above, the crystallization rate may be too low and the heat resistance of the film may be lowered.
The upper limit of Tc (B) is preferably 165, more preferably 155, and even more preferably 155. If it exceeds the above, adhesiveness may not be obtained.
 本発明のフィルムにおいてポリエステル樹脂のTc(A)-Tc(B)を上記範囲にするには、ポリエステル樹脂に含まれる結晶核剤の量の上限は100ppmであり、好ましくは10ppmであり、最も好ましくは5ppm以下である。 In order to make Tc (A) -Tc (B) of the polyester resin in the above range in the film of the present invention, the upper limit of the amount of the crystal nucleating agent contained in the polyester resin is 100 ppm, preferably 10 ppm, most preferably Is 5 ppm or less.
 また、不純物としては、窒素系化合物、硫黄系化合物など原料に含まれる不純物のほか、重合中や溶融押出中に混入するものを指し、その混入量の上限は好ましくは1ppm以下、より好ましくは0.5ppm以下、最も好ましくは0.1ppm以下である。
 それぞれの上限を超えると、コロナ放電処理による結晶化度の変化が小さく易接着化の効果が小さくなる。理由は不明であるが、熱固定時の配向した結晶の前駆体が低温で強固な配向結晶を形成するようになり、この結果、二軸延伸後の表層の結晶の熱安定性が高くなり、本発明での目的である処理時の熱による結晶の溶融が起こりにくく、易接着化の効果が小さくなるものと推定される。
In addition to impurities contained in raw materials such as nitrogen compounds and sulfur compounds, the impurities refer to impurities mixed during polymerization or melt extrusion, and the upper limit of the amount mixed is preferably 1 ppm or less, more preferably 0. 0.5 ppm or less, most preferably 0.1 ppm or less.
When each upper limit is exceeded, the change of the crystallinity degree by a corona discharge process is small, and the effect of easy adhesion becomes small. The reason is unknown, but the precursor of the oriented crystal at the time of heat setting comes to form a strong oriented crystal at low temperature, and as a result, the thermal stability of the surface layer crystal after biaxial stretching becomes high, It is presumed that the melting of crystals due to heat at the time of treatment, which is the object of the present invention, hardly occurs and the effect of easy adhesion becomes small.
 本発明のポリエステルフィルムは、従来の化石燃料由来の原料を用いて得られたポリエステル樹脂以外に、植物由来の原料を用いて得られたポリエステル樹脂を使用することも可能である。昨今の環境負荷低減の側面からは、むしろ植物由来原料を使用することが好ましい。具体的には、植物由来のTPA、EG、BD、アジピン酸、セバシン酸、ダイマー酸、水添ダイマー酸、イソソルビド、フランジカルボン酸などが挙げられるがこれらに限定されない。
 特に植物由来の原料を用いて得られたポリエステル樹脂はその精製過程において不純物の除去に限界があり、窒素化合物などが残存するなどの問題があるが、これらの植物由来の原料を用いて得られたポリエステル樹脂はフィルムの結晶化促進に寄与し、強固な配向結晶を形成するため、処理時の熱による表層の結晶緩和が小さくなり接着性低下の要因となるため、精製度の高い原料を使用することが重要である。
The polyester film of the present invention can use a polyester resin obtained using a plant-derived raw material in addition to a polyester resin obtained using a conventional fossil fuel-derived raw material. It is preferable to use plant-derived raw materials from the aspect of reducing the environmental load in recent years. Specific examples include plant-derived TPA, EG, BD, adipic acid, sebacic acid, dimer acid, hydrogenated dimer acid, isosorbide, and furandicarboxylic acid, but are not limited thereto.
In particular, polyester resins obtained using plant-derived materials have limitations in removing impurities during the purification process, and there are problems such as remaining nitrogen compounds. However, polyester resins obtained using these plant-derived materials can be obtained. Since the polyester resin contributes to the promotion of crystallization of the film and forms strong oriented crystals, the crystal relaxation of the surface layer due to heat during processing is reduced, causing a decrease in adhesiveness. It is important to.
 本発明のポリエステルフィルムは、バージン原料のみからも得られることができるが、リサイクル原料を使用することも可能である。特にPETボトルを回収して得られる再生PETレジンなどを使用することで昨今の環境負荷低減に寄与できる。 The polyester film of the present invention can be obtained only from virgin raw materials, but it is also possible to use recycled raw materials. In particular, the use of recycled PET resin obtained by collecting PET bottles can contribute to the recent reduction of environmental burden.
 再生PETレジンのIV(固有粘度、単位[dL/g])の下限は0.5であることが必要であり、さらに好ましくは0.55である。0.5未満では力学特性低下のほか、分子量低下により結晶化速度が増加し製膜性が低下するなどの問題が起こるため好ましくない。IVの上限は0.8の範囲であることが必要であり、好ましくは0.75である。IVが0.8を超えると溶融粘度が高すぎて押出機での吐出量が低下し生産性が低下する。
 再生PETレジンなど再生原料の添加量については特に制限されないが、色調やフィルムのIVなどから勘案して決定される。全量が再生PETレジンであっても、差し支えないが、色調としてCo-b値が10以下となる範囲が好ましく、具体的には0~95%である。
The lower limit of IV (inherent viscosity, unit [dL / g]) of the recycled PET resin needs to be 0.5, and more preferably 0.55. If it is less than 0.5, it is not preferable because problems such as a decrease in mechanical properties, a decrease in molecular weight, and an increase in crystallization speed and a decrease in film forming property occur. The upper limit of IV needs to be in the range of 0.8, preferably 0.75. When IV exceeds 0.8, the melt viscosity is too high, the discharge amount in the extruder is lowered, and the productivity is lowered.
The addition amount of the recycled raw material such as recycled PET resin is not particularly limited, but is determined in consideration of the color tone and IV of the film. Even if the total amount is a recycled PET resin, there is no problem, but the color tone is preferably within a range where the Co-b value is 10 or less, specifically, 0 to 95%.
 再生PETレジンを使用する場合はフィルムのポリエステル樹脂中のイソフタル酸の酸成分に対する共重合量は0.5~2.5モル%が好ましく、1.0~2.5モル%がさらに好ましい。 When a recycled PET resin is used, the copolymerization amount of the isophthalic acid in the polyester resin of the film with respect to the acid component is preferably 0.5 to 2.5 mol%, more preferably 1.0 to 2.5 mol%.
 また、PETボトル用原料や再生PETレジンを使用する場合にはキャスト時の静電密着性の付与のため、溶融比抵抗を調整する添加剤を添加することが好ましい。添加剤としては公知の化合物が使用でき、具体的には、Mg系化合物、P系化合物、Na系化合物、K系化合物、などが使用可能で、その溶融比抵抗と色調などの面から添加量などは決定される。 In addition, when using a PET bottle raw material or a recycled PET resin, it is preferable to add an additive for adjusting the melt specific resistance in order to impart electrostatic adhesion during casting. Known compounds can be used as additives. Specifically, Mg-based compounds, P-based compounds, Na-based compounds, K-based compounds, and the like can be used. Etc. are determined.
 以下に、本発明の二軸延伸フィルムの製膜方法について、具体的に述べるが、これらに限定するものではない。
 本発明の延伸フィルムとしては長手方向(MD方向)もしくは横方向(TD方向)の一軸延伸フィルムでも良いが、二軸延伸フィルムであることが好ましい。二軸延伸の場合は逐次二軸延伸であっても同時二軸延伸であっても良いが、逐次二軸延伸がさらに好ましい。
 延伸フィルムとすることで、従来のポリプロピレンフィルムでは予想できなかった150℃でも熱収縮率が低いフィルムを得ることができる。
Although the film forming method of the biaxially stretched film of the present invention will be specifically described below, it is not limited to these.
The stretched film of the present invention may be a uniaxially stretched film in the longitudinal direction (MD direction) or the transverse direction (TD direction), but is preferably a biaxially stretched film. In the case of biaxial stretching, sequential biaxial stretching or simultaneous biaxial stretching may be used, but sequential biaxial stretching is more preferable.
By using a stretched film, a film having a low thermal shrinkage rate can be obtained even at 150 ° C., which could not be expected with a conventional polypropylene film.
 以下に最も好ましい例である縦延伸-横延伸の逐次二軸延伸のフィルムの製造方法を説明する。
 まず、ポリエステル樹脂を単軸または2軸の押し出し機で加熱溶融させ、チルロール上に押し出して未延伸フィルムを得る。
In the following, a method for producing a film of sequential biaxial stretching of longitudinal stretching and transverse stretching, which is the most preferable example, will be described.
First, the polyester resin is heated and melted with a single or biaxial extruder and extruded onto a chill roll to obtain an unstretched film.
 樹脂溶融温度(℃)の下限は好ましくは220であり、より好ましくは240であり、さらに好ましくは260である。上記未満であると溶融粘度が高く、吐出が困難となることがある。樹脂溶融温度(℃)の上限は好ましくは350であり、より好ましくは340であり、さらに好ましくは330である。上記を超えると熱分解による分子量低下や着色などが見られるため好ましくない。 The lower limit of the resin melting temperature (° C.) is preferably 220, more preferably 240, and even more preferably 260. If it is less than the above, the melt viscosity is high, and it may be difficult to discharge. The upper limit of the resin melting temperature (° C.) is preferably 350, more preferably 340, and even more preferably 330. Exceeding the above is not preferable because molecular weight reduction or coloring due to thermal decomposition is observed.
 押し出しダイス温度(℃)の下限は好ましくは220であり、より好ましくは240であり、さらに好ましくは260である。上記未満であると溶融粘度が高く、吐出が困難となることがある。押し出しダイス温度(℃)の上限は好ましくは350であり、より好ましくは340であり、さらに好ましくは330である。上記を超えると熱分解による分子量低下や着色などが見られるため好ましくない。 The lower limit of the extrusion die temperature (° C.) is preferably 220, more preferably 240, and even more preferably 260. If it is less than the above, the melt viscosity is high, and it may be difficult to discharge. The upper limit of the extrusion die temperature (° C.) is preferably 350, more preferably 340, and even more preferably 330. Exceeding the above is not preferable because molecular weight reduction or coloring due to thermal decomposition is observed.
 チルロール温度(℃)の下限は好ましくは0であり、より好ましくは2であり、さらに好ましくは5である。チルロール温度が上記未満のように低すぎるとチルロールが結露することがあり品質の安定性が低下するため好ましくない。チルロール温度(℃)の上限は好ましくは80であり、より好ましくは50であり、さらに好ましくは40である。上記を超えると冷却化が不足し、延伸性の低下や厚み不良となることがある。
 キャスト速度(m/min)の下限は好ましくは2であり、より好ましくは5であり、さらに好ましく10はであり、特に好ましくは20である。上記未満であると生産性が低くとなることがある。
The lower limit of the chill roll temperature (° C.) is preferably 0, more preferably 2, and even more preferably 5. If the chill roll temperature is too low as described above, the chill roll may condense and the quality stability is lowered, which is not preferable. The upper limit of the chill roll temperature (° C.) is preferably 80, more preferably 50, and further preferably 40. When the above is exceeded, cooling may be insufficient, resulting in a decrease in stretchability and poor thickness.
The lower limit of the casting speed (m / min) is preferably 2, more preferably 5, even more preferably 10, and particularly preferably 20. If it is less than the above, productivity may be lowered.
 キャスト速度(m/min)の上限は好ましくは120であり、より好ましくは110であり、さらに好ましくは100である。上記を超えるとキャストが不安定化となることがある。キャスト厚み(μm)の下限は好ましくは10であり、より好ましくは15であり、さらに好ましくは20である。上記未満であるとキャスト厚みが薄すぎて二軸延伸が困難となることがある。 The upper limit of the casting speed (m / min) is preferably 120, more preferably 110, and even more preferably 100. If the above is exceeded, casting may become unstable. The lower limit of the cast thickness (μm) is preferably 10, more preferably 15, and further preferably 20. If it is less than the above, the cast thickness may be too thin, making biaxial stretching difficult.
 キャスト厚み(μm)の上限は好ましくは1250であり、より好ましくは1000であり、さらに好ましくは800である。上記を超えると冷却が不十分となり、安定した延伸性を得ることが困難となることがある。 The upper limit of the cast thickness (μm) is preferably 1250, more preferably 1000, and still more preferably 800. When it exceeds the above, cooling becomes insufficient, and it may be difficult to obtain stable stretchability.
 MD延伸方法としては一段延伸のほか、二段延伸などの多段延伸が好ましい。特に二軸延伸後の面配向を高くさせないことや二軸延伸後の歪みの低減には二段延伸などの多段延伸が好ましい。MD延伸方法としてはロール加熱方式、赤外加熱方式が好ましい。 As the MD stretching method, in addition to single-stage stretching, multi-stage stretching such as two-stage stretching is preferable. In particular, multi-stage stretching such as two-stage stretching is preferred in order not to increase the plane orientation after biaxial stretching or to reduce strain after biaxial stretching. As the MD stretching method, a roll heating method and an infrared heating method are preferable.
 MD延伸倍率(倍)の下限は好ましくは3であり、より好ましくは3.1であり、さらに好ましくは3.2である。上記未満であると突き刺し強度などの力学特性の低下が見られることがある。MD延伸倍率(倍)の上限は好ましくは4.5であり、より好ましくは4.4であり、さらに好ましくは4.3である。上記を超えると製膜時に破断などが見られ生産性が低下することがある。
 MD予熱温度(℃)の下限は好ましくは30であり、より好ましくは35であり、さらに好ましくは40である。上記未満であると予熱が不十分で、延伸が困難となることがある。MD予熱温度(℃)の上限は好ましくは200であり、より好ましくは180であり、さらに好ましくは150である。上記を超えると結晶化してしまい、延伸が困難となることがある。
 MD延伸温度(℃)の下限は好ましくは50であり、より好ましくは60であり、さらに好ましくは70であり、特に好ましくは80である。上記未満であると樹脂が軟化せず、延伸が困難となることがある。MD延伸温度(℃)の上限は好ましくは150であり、より好ましくは145であり、さらに好ましくは140である。上記を超えると結晶化してしまい、延伸が困難となることがある。
 赤外加熱方式の場合での延伸温度はその製膜条件から適宜調整できるが、延伸時のフィルム温度が上記の範囲にあることが好ましい。
The lower limit of the MD draw ratio (times) is preferably 3, more preferably 3.1, and still more preferably 3.2. If it is less than the above, the mechanical properties such as puncture strength may be lowered. The upper limit of the MD draw ratio (times) is preferably 4.5, more preferably 4.4, and still more preferably 4.3. When the above is exceeded, breakage and the like may be observed at the time of film formation, and productivity may be lowered.
The lower limit of the MD preheating temperature (° C.) is preferably 30, more preferably 35, and still more preferably 40. If it is less than the above, preheating may be insufficient and stretching may be difficult. The upper limit of the MD preheating temperature (° C.) is preferably 200, more preferably 180, and even more preferably 150. When the above is exceeded, it may crystallize and it may become difficult to stretch.
The lower limit of the MD stretching temperature (° C.) is preferably 50, more preferably 60, still more preferably 70, and particularly preferably 80. If it is less than the above, the resin may not be softened and stretching may be difficult. The upper limit of the MD stretching temperature (° C.) is preferably 150, more preferably 145, and still more preferably 140. When the above is exceeded, it may crystallize and it may become difficult to stretch.
The stretching temperature in the case of the infrared heating method can be appropriately adjusted from the film forming conditions, but the film temperature during stretching is preferably in the above range.
 MD延伸速度(%/分)の下限は好ましくは100であり、より好ましくは150であり、さらに好ましくは200である。上記未満であると生産性が低くとなることがある。MD延伸速度(%/分)の上限は好ましくは100000であり、より好ましくは90000であり、さらに好ましくは80000である。上記を超えると製膜安定性が低下となることがある。 The lower limit of the MD stretching rate (% / min) is preferably 100, more preferably 150, and even more preferably 200. If it is less than the above, productivity may be lowered. The upper limit of the MD stretching rate (% / min) is preferably 100,000, more preferably 90000, and further preferably 80000. When the above is exceeded, the film-forming stability may be lowered.
 MD延伸倍率の下限は好ましくは2.5であり、より好ましくは2.6であり、さらに好ましくは2.7である。上記未満であると表層の結晶化度が低く、押出ラミ条件変更時に剥離力が変化となるほか、突き刺し強度が低下することがある。MD延伸倍率の上限は好ましくは4.5であり、より好ましくは4.4であり、さらに好ましくは4.35である。上記を超えると製膜時の生産性の低下となることがある。 The lower limit of the MD draw ratio is preferably 2.5, more preferably 2.6, and even more preferably 2.7. If it is less than the above, the degree of crystallinity of the surface layer is low, the peel force changes when the extrusion lamination conditions are changed, and the piercing strength may be lowered. The upper limit of the MD draw ratio is preferably 4.5, more preferably 4.4, and still more preferably 4.35. Exceeding the above may result in a decrease in productivity during film formation.
 MD延伸後の厚み(μm)の下限は好ましくは5であり、より好ましくは10であり、さらに好ましくは15である。上記未満であると横延伸が困難となることがある。
 MD延伸後の厚み(μm)の上限は好ましくは250であり、より好ましくは240であり、さらに好ましくは230である。上記を超えると二軸延伸後の厚みが厚すぎて本発明の目的に対して不適となることがある。
The lower limit of the thickness (μm) after MD stretching is preferably 5, more preferably 10, and further preferably 15. If it is less than the above, transverse stretching may be difficult.
The upper limit of the thickness (μm) after MD stretching is preferably 250, more preferably 240, and still more preferably 230. When the above is exceeded, the thickness after biaxial stretching may be too thick and may be unsuitable for the purpose of the present invention.
 TD延伸倍率(倍)の下限は好ましくは3.5であり、より好ましくは3.6であり、さらに好ましくは3.7である。上記未満であると製膜時の生産性が低下するほか、厚みの均一性が低下することがある。TD延伸倍率(倍)の上限は好ましくは5であり、より好ましくは4.8であり、さらに好ましくは4.5である。上記を超えると製膜時に破断などが見られ生産性が低下することがある。 The lower limit of the TD stretch ratio (times) is preferably 3.5, more preferably 3.6, and still more preferably 3.7. If it is less than the above, productivity at the time of film formation may be reduced, and uniformity of thickness may be reduced. The upper limit of the TD stretch ratio (times) is preferably 5, more preferably 4.8, and even more preferably 4.5. When the above is exceeded, breakage and the like may be observed at the time of film formation, and productivity may be lowered.
 TD予熱温度(℃)の下限は好ましくは30であり、より好ましくは40であり、さらに好ましくは50であり、特に好ましくは60である。上記未満であると予熱が不十分で、延伸が困難となることがある。TD予熱温度(℃)の上限は好ましくは150であり、より好ましくは145であり、さらに好ましくは140である。上記を超えると結晶化してしまい、延伸が困難となることがある。
 TD延伸温度(℃)の下限は好ましくは50であり、より好ましくは60であり、さらに好ましくは70であり、特に好ましくは80であり、最も好ましくは100である。上記未満であると樹脂が軟化せず、延伸が困難となることがある。
 TD延伸温度(℃)の上限は好ましくは180であり、より好ましくは175であり、さらに好ましくは170であり、特に好ましくは165であり、最も好ましくは160である。上記を超えると結晶化してしまい、延伸が困難となることがある。
The lower limit of the TD preheating temperature (° C.) is preferably 30, more preferably 40, still more preferably 50, and particularly preferably 60. If it is less than the above, preheating may be insufficient and stretching may be difficult. The upper limit of the TD preheating temperature (° C.) is preferably 150, more preferably 145, and still more preferably 140. When the above is exceeded, it may crystallize and it may become difficult to stretch.
The lower limit of the TD stretching temperature (° C.) is preferably 50, more preferably 60, still more preferably 70, particularly preferably 80, and most preferably 100. If it is less than the above, the resin may not be softened and stretching may be difficult.
The upper limit of the TD stretching temperature (° C.) is preferably 180, more preferably 175, still more preferably 170, particularly preferably 165, and most preferably 160. When the above is exceeded, it may crystallize and it may become difficult to stretch.
 熱固定条件の設定は本発明における最も重要な点である。本発明において、接着性の発現にはコロナ放電処理などの処理時の熱でフィルム表面の結晶が緩和するように、熱固定条件を設定する必要がある。コロナ放電処理前の状態で表面の結晶が強固なものであると、結晶の溶融など、構造の緩和が起こりにくくなり、コロナ放電処理による接着性の改善の効果が小さくなる。そのため、二軸延伸直後の熱固定前の状態に合わせて熱固定条件を設定する必要がある。 The setting of heat setting conditions is the most important point in the present invention. In the present invention, in order to develop adhesiveness, it is necessary to set heat setting conditions so that the crystal on the film surface is relaxed by heat during treatment such as corona discharge treatment. If the crystal on the surface is strong before the corona discharge treatment, the structure is less likely to relax, such as melting of the crystal, and the effect of improving the adhesion by the corona discharge treatment is reduced. Therefore, it is necessary to set heat setting conditions according to the state before heat setting immediately after biaxial stretching.
 大まかな指針として、
・結晶化速度の速い原料を用いた場合や二軸延伸後の配向が高い場合は、表面の結晶が強固なものとなっており、フィルム表面が到達する温度として高温の熱固定が必要であるが、長時間高温にさらすとフィルムの力学特性が低下する。このため、フィルムが到達する温度は高く、高温での処理時間は短くする必要がある。
・結晶化速度の遅い原料を用いた場合や二軸延伸後の配向が低い場合は、熱固定時の熱でフィルムの結晶化が起こりにくいため、高温での熱固定ではフィルムが溶融するなどが起こり、フィルムの力学特性が低下する。このため、低温かつ長時間での熱固定が必要であるが、あまりにも低温かつ長時間の処理ではフィルムの力学特性の改善や表面の結晶の溶融などが起こらず、コロナ放電処理などによる接着性の改善が起こらない。このため、フィルムの物性を確認した上で適宜熱固定温度を高めつつ高温での熱固定時間を短くする調整する必要がある。
As a rough guideline,
・ When raw materials with a high crystallization rate are used or when the orientation after biaxial stretching is high, the crystals on the surface are strong and high temperature heat setting is required as the temperature reached by the film surface However, when exposed to high temperature for a long time, the mechanical properties of the film deteriorate. For this reason, the temperature which a film reaches | attains is high and it is necessary to shorten the processing time at high temperature.
・ When raw materials with a slow crystallization rate are used, or when the orientation after biaxial stretching is low, crystallization of the film is unlikely to occur due to heat during heat setting. Occurs and the mechanical properties of the film are reduced. For this reason, it is necessary to fix the heat for a long time at a low temperature, but the processing at a low temperature for a long time does not improve the mechanical properties of the film or melt the crystals on the surface. No improvement occurs. For this reason, after confirming the physical properties of the film, it is necessary to adjust to shorten the heat setting time at a high temperature while appropriately increasing the heat setting temperature.
 これらの点について検討した結果、後述の表面結晶化度の範囲となるよう、製膜条件(延伸倍率)および熱固定条件を調整し、コロナ放電処理前後の表面に調整することで、接着性の改善が得られることを見出した。これらの点から適宜、条件を調整する必要があり、以下に例示するが、これらの方法や条件に限定されるものではない。
 以下には、熱固定ゾーンが一つまたは二つ以上ある場合(前半部をゾーン1、後半部をゾーン2とする)を想定して記載する。
As a result of examining these points, the film forming conditions (stretching ratio) and the heat setting conditions are adjusted so that the surface crystallinity is within the range described later, and the adhesive properties are adjusted by adjusting the surface before and after the corona discharge treatment. We found that improvements could be obtained. From these points, the conditions need to be adjusted as appropriate, and are exemplified below, but are not limited to these methods and conditions.
In the following description, it is assumed that there are one or more heat setting zones (the first half is zone 1 and the second half is zone 2).
 各ゾーンの熱固定温度(℃)の下限は好ましくは150であり、より好ましくは160であり、さらに好ましくは170である。上記未満であると熱収縮率が大きくなりすぎて、各種加工工程での寸法安定性不良となることがある。各ゾーンの熱固定温度(℃)の上限は好ましくは280であり、より好ましくは270であり、さらに好ましくは260である。上記を超えると表層の結晶のみならず、フィルム全体の配向が崩壊し、力学特性の低下が起こることがある。 The lower limit of the heat setting temperature (° C.) of each zone is preferably 150, more preferably 160, and even more preferably 170. If it is less than the above, the thermal shrinkage rate becomes too large, which may result in poor dimensional stability in various processing steps. The upper limit of the heat setting temperature (° C.) of each zone is preferably 280, more preferably 270, and even more preferably 260. When the above is exceeded, not only the crystals on the surface layer but also the orientation of the entire film may be collapsed, and the mechanical properties may be deteriorated.
 熱固定時間(秒)の下限は好ましくは0.5であり、より好ましくは1であり、さらに好ましくは1.2であり、特に好ましくは1.5であり、最も好ましくは2.5である。上記未満であると生産性が低下となることがある。熱固定時間(秒)の上限は好ましくは50であり、より好ましくは15であり、さらに好ましくは10であり、特に好ましくは7であり、最も好ましくは5である。上記を超えると生産性が低下となることがある。 The lower limit of the heat setting time (seconds) is preferably 0.5, more preferably 1, more preferably 1.2, particularly preferably 1.5, and most preferably 2.5. . Productivity may fall that it is less than the above. The upper limit of the heat setting time (second) is preferably 50, more preferably 15, more preferably 10, particularly preferably 7, and most preferably 5. When the above is exceeded, productivity may be lowered.
 TDリラックス率(%)の下限は好ましくは0であり、より好ましくは0.5であり、さらに好ましくは0.8である。上記未満であると破断しやすく、生産性が低下となることがある。TDリラックス率(%)の上限は好ましくは20であり、より好ましくは15であり、さらに好ましくは10である。上記を超えるとたるみが発生し、幅方向の厚み精度が低下となることがある。 The lower limit of the TD relaxation rate (%) is preferably 0, more preferably 0.5, and still more preferably 0.8. If it is less than the above, it tends to break and productivity may be lowered. The upper limit of the TD relaxation rate (%) is preferably 20, more preferably 15, and still more preferably 10. When the above is exceeded, sagging may occur, and the thickness accuracy in the width direction may decrease.
 TD出口での製膜速度(m/min)の下限は好ましくは3であり、より好ましくは5であり、さらに好ましくは10であり、特に好ましくは20である。上記未満であると生産性が低く、工業的な面から見て不適である。TD出口での製膜速度(m/min)の上限は好ましくは500であり、より好ましくは400であり、さらに好ましくは300である。上記を超えると歪みが大きくとなることがある。 The lower limit of the film forming speed (m / min) at the TD outlet is preferably 3, more preferably 5, still more preferably 10, and particularly preferably 20. If it is less than the above, the productivity is low, which is unsuitable from an industrial viewpoint. The upper limit of the film formation rate (m / min) at the TD outlet is preferably 500, more preferably 400, and even more preferably 300. If the above is exceeded, distortion may increase.
 二軸延伸後の厚み(μm)の下限は好ましくは3であり、より好ましくは4であり、さらに好ましくは5である。上記未満であると薄すぎて作業性が低下となることがある。二軸延伸後の厚み(μm)の上限は好ましくは50であり、より好ましくは45であり、さらに好ましくは40である。上記を超えると厚すぎて作業性が低下する以外にも、包装材料として用いると屈曲性が低下となることがある。 The lower limit of the thickness (μm) after biaxial stretching is preferably 3, more preferably 4, and further preferably 5. If it is less than the above, it may be too thin and workability may be reduced. The upper limit of the thickness (μm) after biaxial stretching is preferably 50, more preferably 45, and even more preferably 40. If it exceeds the above, it is too thick and the workability is lowered, and when used as a packaging material, the flexibility may be lowered.
(フィルム特性)
 本発明の150℃×15分でのMD方向の熱収縮率(%)の下限は好ましくは0.5であり、より好ましくは0.6であり、さらに好ましくは0.7である。上記未満であると寸法安定性向上による実用上の効果が飽和する。150℃×15分でのMD方向の熱収縮率(%)の上限は好ましくは10であり、より好ましくは8であり、さらに好ましくは5である。上記を超えると各種加工工程でのピッチずれなどが発生し、外観が低下することがある。
(Film characteristics)
The lower limit of the heat shrinkage rate (%) in the MD direction at 150 ° C. for 15 minutes of the present invention is preferably 0.5, more preferably 0.6, and even more preferably 0.7. If it is less than the above, the practical effect by improving the dimensional stability is saturated. The upper limit of the heat shrinkage rate (%) in the MD direction at 150 ° C. × 15 minutes is preferably 10, more preferably 8, and further preferably 5. Exceeding the above may cause a pitch shift or the like in various processing steps, which may deteriorate the appearance.
 本発明の易接着処理面の表面結晶化度の下限は好ましくは1.1であり、より好ましくは1.15であり、さらに好ましくは1.2であり、最も好ましくは1.25である。上記未満であると熱によるフィルム表層の結晶化度の変化が大きく、加工後の熱処理により各種密着性が変化することがある。易接着処理面の表面結晶化度の上限は好ましくは1.35であり、より好ましくは1.34であり、さらに好ましくは1.33であり、特に好ましくは1.3であり、最も好ましくは1.28である。上記を超えるとフィルム表層の結晶化度が高すぎて接着性の低下となることがある。 The lower limit of the surface crystallinity of the easy-adhesion treated surface of the present invention is preferably 1.1, more preferably 1.15, still more preferably 1.2, and most preferably 1.25. If it is less than the above, the change in crystallinity of the film surface layer due to heat is large, and various adhesiveness may be changed by heat treatment after processing. The upper limit of the surface crystallinity of the easy adhesion treated surface is preferably 1.35, more preferably 1.34, still more preferably 1.33, particularly preferably 1.3, and most preferably 1.28. If it exceeds the above, the crystallinity of the film surface layer may be too high, resulting in a decrease in adhesiveness.
 本発明の非処理面の表面結晶化度の下限は好ましくは1.1であり、より好ましくは1.15であり、さらに好ましくは1.2であり、最も好ましくは1.25である。非処理面の表面結晶化度はコロナ放電処理などの処理前の表面と同一であるが、上記未満であると、フィルム表層の結晶化度が低すぎて、各種密着性が変化することがある。非処理面の表面結晶化度の上限は好ましくは1.5であり、より好ましくは1.45であり、さらに好ましくは1.4である。上述のとおり、非処理面は各種処理前の処理面とほぼ同一であるが、上記を超えるとフィルム表層の結晶化度が高すぎて易接着処理面側の密着性が改善しないため好ましくない。 The lower limit of the surface crystallinity of the non-treated surface of the present invention is preferably 1.1, more preferably 1.15, still more preferably 1.2, and most preferably 1.25. The surface crystallinity of the non-treated surface is the same as the surface before treatment such as corona discharge treatment, but if it is less than the above, the crystallinity of the film surface layer is too low and various adhesion properties may change. . The upper limit of the surface crystallinity of the non-treated surface is preferably 1.5, more preferably 1.45, and still more preferably 1.4. As described above, the non-treated surface is almost the same as the treated surface before various treatments. However, exceeding the above is not preferable because the degree of crystallinity of the film surface layer is too high and the adhesion on the easy adhesion treated surface side is not improved.
 本発明のフィルムの一方の面の表面結晶化度からフィルムの他方の面の結晶化度を引いた値の下限は好ましくは-0.1であり、より好ましくは-0.08であり、さらに好ましくは-0.05である。上記未満であると接着性改善の効果が飽和する。フィルムの一方の面の表面結晶化度からフィルムの他方の面の結晶化度を引いた値の上限は好ましくは0であり、より好ましくは-0.001であり、さらに好ましくは-0.004であり、最も好ましくは-0.008である。上記を超えるとコロナ放電処理などの易接着処理により表面の結晶化度が増加していることになり、接着性が改善されない。
 より限定的にはフィルムの易接着処理面の結晶化度から非処理面の結晶化度を引いた値が上記範囲であるとよい。
The lower limit of the value obtained by subtracting the crystallinity of the other surface of the film from the surface crystallinity of one surface of the film of the present invention is preferably −0.1, more preferably −0.08, Preferably it is -0.05. If it is less than the above, the effect of improving adhesiveness is saturated. The upper limit of the value obtained by subtracting the crystallinity of the other surface of the film from the surface crystallinity of one surface of the film is preferably 0, more preferably -0.001, and still more preferably -0.004. And most preferably -0.008. If it exceeds the above, the crystallinity of the surface is increased by easy adhesion treatment such as corona discharge treatment, and the adhesion is not improved.
More specifically, a value obtained by subtracting the crystallinity of the non-treated surface from the crystallinity of the easy-adhesion-treated surface of the film is preferably within the above range.
 本発明のフィルムの突き刺し強度(N)の下限は好ましくは5であり、より好ましくは6であり、さらに好ましくは7である。上記未満であると加工時の破断などが起こりやすくなることとなることがある。突き刺し強度(N)の上限は好ましくは20であり、より好ましくは18であり、さらに好ましくは17である。上記を超えると効果が飽和することがある。 The lower limit of the piercing strength (N) of the film of the present invention is preferably 5, more preferably 6, and further preferably 7. If it is less than the above, breakage during processing may easily occur. The upper limit of the piercing strength (N) is preferably 20, more preferably 18, and further preferably 17. If the above is exceeded, the effect may be saturated.
 本願明細書において、「易接着処理面」とは、以下に示す易接着処理が施された面をいう。本発明における易接着処理方法として、紫外線照射処理、コロナ放電処理、プラズマ放電処理、火炎処理などの物理的な方法のほか、アルカリ処理、プライマー処理などの化学的処理などが使用できる。好ましいのは乾式で処理が可能な物理的な方法であり、より好ましくは紫外線照射処理、コロナ放電処理、プラズマ放電処理、火炎処理であり、更に好ましくは、紫外線照射処理、コロナ放電処理、プラズマ放電処理であり、最も好ましくはコロナ放電処理である。
 コロナ放電処理については公知の方法が利用できる(例えば特許文献特開昭62-106934号参照)。好ましい放電量(W・min/m2)の下限は1であり、より好ましくは5であり、更に好ましくは10である。上記未満であると、処理の効果が小さく、接着性の改善の効果が見られない。好ましい放電量(W・min/m2)の上限は200であり、より好ましくは180であり、更に好ましくは150である。上記を超えると、表面の酸化が進みすぎて逆に接着性の改善の効果が見られない。
In the present specification, the “easy adhesion treatment surface” refers to a surface subjected to the following easy adhesion treatment. In addition to physical methods such as ultraviolet irradiation treatment, corona discharge treatment, plasma discharge treatment and flame treatment, chemical treatment such as alkali treatment and primer treatment can be used as the easy adhesion treatment method in the present invention. Preferable is a physical method that can be processed in a dry process, more preferably ultraviolet irradiation treatment, corona discharge treatment, plasma discharge treatment, and flame treatment, and more preferably ultraviolet irradiation treatment, corona discharge treatment, plasma discharge. Treatment, most preferably corona discharge treatment.
A known method can be used for the corona discharge treatment (see, for example, Japanese Patent Application Laid-Open No. 62-106934). The lower limit of the preferable discharge amount (W · min / m 2 ) is 1, more preferably 5, and still more preferably 10. If it is less than the above, the effect of the treatment is small, and the effect of improving the adhesiveness is not seen. The upper limit of the preferable discharge amount (W · min / m 2 ) is 200, more preferably 180, and still more preferably 150. When the above is exceeded, the oxidation of the surface proceeds so much that the effect of improving the adhesiveness is not seen.
 本発明において、フィルムの各特性を本発明の範囲とすることにより、ラミネート加工した場合に非常に高い接着性(ラミネート強度)を付与できる。
 ラミネート強度の下限は好ましくは3であり、より好ましくは3.5であり、さらに好ましくは4である。上記未満であると袋や蓋材などとして使用した際に、強い衝撃が加わったときに破袋しやすいなどの不具合となることがある。ラミネート強度の上限は好ましくは15であり、より好ましくは13であり、さらに好ましくは10である。上記を超えると効果が飽和となることがある。
In the present invention, by setting each characteristic of the film within the range of the present invention, very high adhesiveness (laminate strength) can be imparted when laminated.
The lower limit of the laminate strength is preferably 3, more preferably 3.5, and even more preferably 4. If it is less than the above, when used as a bag or lid, there may be problems such as easy breakage when a strong impact is applied. The upper limit of the laminate strength is preferably 15, more preferably 13, and still more preferably 10. If the above is exceeded, the effect may be saturated.
 本願は、平成24年8月3日に出願された日本国特許出願第2012-172815号に基づく優先権の利益を主張するものである。平成24年8月3日に出願された日本国特許出願第2012-172815号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2012-172815 filed on August 3, 2012. The entire contents of the specification of Japanese Patent Application No. 2012-172815 filed on August 3, 2012 are incorporated herein by reference.
 次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. The film was evaluated by the following measurement method.
[ポリエステルの固有粘度]
 ポリエステル0.1gをフェノール/テトラクロロエタン(容積比:3/2)の混合溶媒25mL中に溶解させ、30℃でオストワルド粘度計を用いて測定した。
[Intrinsic viscosity of polyester]
0.1 g of polyester was dissolved in 25 mL of a mixed solvent of phenol / tetrachloroethane (volume ratio: 3/2) and measured at 30 ° C. using an Ostwald viscometer.
[ポリエステルの融点]
 SII製示差走査型熱量計(DSC)を用い、サンプル量10mg、昇温速度20℃/分で測定した。ここで検知された融解吸熱ピーク温度を融点とした。
[Melting point of polyester]
Using a differential scanning calorimeter (DSC) manufactured by SII, measurement was performed at a sample amount of 10 mg and a heating rate of 20 ° C./min. The melting endothermic peak temperature detected here was taken as the melting point.
[厚み]
 JIS-Z-1702準拠の方法で測定した。
[Thickness]
It was measured by a method according to JIS-Z-1702.
[表面結晶化度]
 試料の易接着処理面および非処理面の両面について、以下の条件でFT-IR ATR測定を行った。
FT-IR装置:Bio Rad DIGILAB社製 FTS-60A/896
1回反射ATRアタッチメント:golden gate MKII(SPECAC製)
内部反射エレメント:ダイヤモンド
入射角:45°
分解能:4cm-1
積算回数:128回
 結晶化度は1340cm-1付近に現れる吸収と1410cm-1付近に現れる吸収度の強度比(1340cm-1/1410cm-1)により算出した。ここで1340cm-1はエチレングリコールのCH2(トランス構造)の変角振動による吸収、1410cm-1は結晶、配向とは無関係の吸収である。
 なお、「フィルムの一方の面の表面結晶化度からフィルムの他方の面の表面結晶化度を引いた値」としては、「フィルムの易接着処理面の表面結晶化度から非処理面の表面結晶化度を引いた値」を用いた。
[Surface crystallinity]
FT-IR ATR measurement was performed on both the easy-adhesion treated surface and the non-treated surface of the sample under the following conditions.
FT-IR apparatus: FTS-60A / 896 manufactured by Bio Rad DIGILAB
Single reflection ATR attachment: golden gate MKII (manufactured by SPECAC)
Internal reflection element: Diamond incident angle: 45 °
Resolution: 4cm -1
Number of integration: 128 times crystallinity was calculated by the intensity ratio of absorption appearing near the absorption and 1410 cm -1 appearing near 1340cm -1 (1340cm -1 / 1410cm -1 ). Here, 1340 cm −1 is absorption due to the bending vibration of CH 2 (trans structure) of ethylene glycol, and 1410 cm −1 is absorption independent of crystal and orientation.
The value obtained by subtracting the surface crystallinity of the other surface of the film from the surface crystallinity of the one surface of the film is “the surface crystallinity of the easy-adhesion treated surface of the film and the surface of the non-treated surface”. The value obtained by subtracting the crystallinity ”was used.
[破断強度、破断伸度]
 JIS K 7113に準ずる。フィルムの長手方向および幅方向に幅10mm、長さ100mmの試料を、剃刀を用いて切り出して試料とした。23℃、35%RHの雰囲気下で12時間放置したあと、測定は23℃、35%RHの雰囲気下、チャック間距離40mm、引っ張り速度200mm/分の条件で行い、5回の測定結果の平均値を用いた。測定装置としては島津製作所社製オートグラフAG5000Aを用いた。
[Break strength, elongation at break]
According to JIS K 7113. A sample having a width of 10 mm and a length of 100 mm in the longitudinal direction and the width direction of the film was cut out using a razor as a sample. After being left for 12 hours in an atmosphere of 23 ° C. and 35% RH, the measurement was performed in an atmosphere of 23 ° C. and 35% RH under conditions of a distance between chucks of 40 mm and a pulling speed of 200 mm / min. Values were used. As a measuring device, an autograph AG5000A manufactured by Shimadzu Corporation was used.
[突き刺し強度]
 食品衛生法における「食品、添加物等の規格基準 第3:器具及び容器包装」(昭和57年厚生省告示第20号)の「2.強度等試験法」に準拠して測定した。先端部直径0.7mmの針を、突刺し速度50mm/分でフィルムに突き刺し、針がフィルムを貫通する際の強度を測定して、突き刺し強度とした。測定は常温(23℃)で行い、単位は[N]である。
[Puncture strength]
It was measured in accordance with “2. Test methods for strength, etc.” in “Standards for Foods, Additives, etc. 3: Equipment and Containers and Packaging” in the Food Sanitation Law (Ministry of Health and Welfare Notification No. 20 of 1982). A needle having a tip diameter of 0.7 mm was pierced into the film at a piercing speed of 50 mm / min, and the strength when the needle penetrated the film was measured to obtain the piercing strength. The measurement is performed at room temperature (23 ° C.), and the unit is [N].
[熱収縮率]
 試験温度150℃、加熱時間10分間とした以外は、JIS-C-2318記載の寸法変化試験法で測定した。
[Heat shrinkage]
The measurement was performed by the dimensional change test method described in JIS-C-2318 except that the test temperature was 150 ° C. and the heating time was 10 minutes.
[ラミネート強度]
 厚み40μmのポリオレフィンフィルムとラミネートした積層体を、幅15mm、長さ200mmに切り出して試験片とし、東洋ボールドウイン社製の「テンシロンUMT-II-500型」を用いて、温度23℃、相対湿度65%の条件下で、ポリエステルフィルム1の未処理面とポリオレフィン樹脂層との接合面での剥離強度を測定した。なお、引張速度は10cm/分、剥離角度は180度とした。
[Lamination strength]
A laminate laminated with a polyolefin film having a thickness of 40 μm was cut out to a width of 15 mm and a length of 200 mm to obtain a test piece, using “Tensilon UMT-II-500 type” manufactured by Toyo Baldwin Co., Ltd., temperature 23 ° C., relative humidity The peel strength at the joint surface between the untreated surface of the polyester film 1 and the polyolefin resin layer was measured under the condition of 65%. The tensile speed was 10 cm / min and the peeling angle was 180 degrees.
[インキ密着性]
 JIS-K5400に記載の碁盤目評価に準拠し、フィルムの易接着面にインキを印刷後、クロスカットガイドを用いて1mmマス目をカッター刃で100個作成した後、粘着テープ(ニチバン社製、セロハンテープ)を用いてマス目部分の密着力を評価した。
 用いたインキとして、溶剤型インキ(十條インキ社製、900シリーズテトロンインキ)を用い、フィルムの被覆層面(本発明の被覆層A)に#250のスクリーン印刷後24時間放置乾燥したものを用いた。
[Ink adhesion]
In accordance with the cross-cut evaluation described in JIS-K5400, after printing ink on the easy-adhesive surface of the film, 100 cross-cut guides were used to create 100 1 mm squares with a cutter blade, and then adhesive tape (manufactured by Nichiban Co., Ltd.) A cellophane tape was used to evaluate the adhesion of the squares.
As the ink used, a solvent-type ink (900 series Tetron ink, manufactured by Jujo Ink Co., Ltd.) was used, and the film was left to dry for 24 hours after screen printing of # 250 on the coating layer surface (coating layer A of the present invention). .
[ポリエステル樹脂1の製造例]
 テレフタル酸とエチレングリコールの混合物中に酢酸マグネシウム四水塩をポリエステル中にMg原子として60ppmとなるように加え常圧下にて温度255℃でエステル化反応させた。その後Sb原子としてポリエステル中に150ppmとなるような量の三酸化アンチモンおよびP原子としてポリエステル中に40ppmとなるような量のリン酸トリメチルを加え、さらに温度260℃で反応させた。
 引き続いて、反応生成物を重縮合反応層に移し、平均粒径2.3μmのシリカ粒子のエチレングリコールスラリーを、シリカがポリエステル中に1000ppmとなるように添加した後、次いで加熱昇温しながら反応系を徐々に減圧して133Pa(1mmHg)の減圧下、280℃で常法により重縮合を行い、IV=0.62のポリエステルチップを得た。なお、得られたポリエステル樹脂は、DSCにより得られる20℃/分の速度で溶融状態から冷却される際に観察される再結晶化温度[Tc(A)]が161℃、40℃/分の速度での再結晶化温度[Tc(B)]が157℃、Tc(A)-Tc(B)が4℃であった。
[Production Example of Polyester Resin 1]
Magnesium acetate tetrahydrate was added to the polyester in a mixture of terephthalic acid and ethylene glycol so as to be 60 ppm as Mg atoms in the polyester, and the mixture was esterified at a temperature of 255 ° C. under normal pressure. Thereafter, antimony trioxide in an amount of 150 ppm in the polyester as Sb atoms and trimethyl phosphate in an amount of 40 ppm in the polyester as P atoms were added, and further reacted at a temperature of 260 ° C.
Subsequently, the reaction product was transferred to the polycondensation reaction layer, and an ethylene glycol slurry of silica particles having an average particle size of 2.3 μm was added so that the silica was 1000 ppm in the polyester, and then the reaction was performed while heating and heating. The system was gradually depressurized, and polycondensation was performed at 280 ° C. under a reduced pressure of 133 Pa (1 mmHg) by a conventional method to obtain a polyester chip having IV = 0.62. The obtained polyester resin has a recrystallization temperature [Tc (A)] observed when cooled from a molten state at a rate of 20 ° C./min obtained by DSC at 161 ° C. and 40 ° C./min. The recrystallization temperature [Tc (B)] at the rate was 157 ° C. and Tc (A) -Tc (B) was 4 ° C.
[実施例1]
 ポリエステル樹脂1を、120℃で24時間減圧乾燥(1.3hPa)し、単軸押出機を用いて280℃で溶融させた後、30cm幅のTダイ(280℃)より冷却ロール(表面温度10℃)上へキャストして(冷却ロール周面に対向するように設置した直径が30μmのタングステンワイヤー電極から7.2kVの電圧を印加し、0.2mAの電流を流して静電密着させて)、中央部の厚みが170μmの未延伸シートを得た。
 該未延伸シートをロール温度95℃で予熱し、延伸温度100℃で長手方向に3.5倍延伸し、ついで100℃で横方向に4.0倍延伸し、次いで、リラックス率3.0%で、230℃で熱固定処理を行い、厚さ12μmのポリエステルフィルムを得た。TD出口での速度は50m/min、熱固定ゾーンでの滞留時間は2秒であった。その後、40℃に予熱後、フィルムの一方面側にコロナ放電処理を行った。コロナ放電処理は90W・min/m2で行った。その後、紙管に巻き取り、ポリエステルフィルム1とした。得られたフィルムの特性を表1に示す。
[Example 1]
The polyester resin 1 was dried under reduced pressure (1.3 hPa) for 24 hours at 120 ° C. and melted at 280 ° C. using a single screw extruder, and then cooled from a 30 cm wide T-die (280 ° C.) (surface temperature 10 C.) cast upward (applying a voltage of 7.2 kV from a tungsten wire electrode with a diameter of 30 μm installed so as to face the circumferential surface of the cooling roll, and applying a 0.2 mA current for electrostatic contact) An unstretched sheet having a central thickness of 170 μm was obtained.
The unstretched sheet is preheated at a roll temperature of 95 ° C., stretched 3.5 times in the longitudinal direction at a stretching temperature of 100 ° C., then stretched 4.0 times in the transverse direction at 100 ° C., and then a relaxation rate of 3.0% Then, heat setting was performed at 230 ° C. to obtain a polyester film having a thickness of 12 μm. The speed at the TD outlet was 50 m / min, and the residence time in the heat setting zone was 2 seconds. Then, after preheating to 40 degreeC, the corona discharge process was performed to the one surface side of the film. The corona discharge treatment was performed at 90 W · min / m 2 . Thereafter, it was wound around a paper tube to obtain a polyester film 1. The properties of the obtained film are shown in Table 1.
[実施例2]
 表1に記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
[Example 2]
Films were obtained under the conditions described in Table 1. Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
[実施例3]
 原料として、PETボトルを洗浄後、再ペレット化して得られた再生PET樹脂(IV:0.68、Co-b:8、イソフタル酸共重合量2.0モル%)60%に平均粒径1.3μmの凝集シリカを含むポリエステル樹脂40%を混合し、シリカ濃度を700ppmとしたものを用いて、表1に記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。なお、上記の原料処方において、DSCにより得られる20℃/分の速度で溶融状態から冷却される際に観察される再結晶化温度[Tc(A)]が151℃、40℃/分の速度での再結晶化温度[Tc(B)]が144℃、Tc(A)-Tc(B)が7℃であった。
[Example 3]
As a raw material, the PET bottle was washed and then re-pelletized to obtain a recycled PET resin (IV: 0.68, Co-b: 8, isophthalic acid copolymerization amount 2.0 mol%) 60% average particle size 1 A film was obtained under the conditions shown in Table 1 using 40% polyester resin containing 3 μm of agglomerated silica and a silica concentration of 700 ppm. Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film. In the above raw material formulation, the recrystallization temperature [Tc (A)] observed when cooled from the molten state at a rate of 20 ° C./min obtained by DSC is 151 ° C., a rate of 40 ° C./min. The recrystallization temperature [Tc (B)] was 144 ° C. and Tc (A) -Tc (B) was 7 ° C.
[実施例4]
 原料として、ポリエステル樹脂1のエチレングリコールを植物由来エチレングリコールとし、凝集シリカを添加せずに得られたポリエステル樹脂(IV:0.65)80%に平均粒径2.3μmの凝集シリカを3500ppmで含むPET樹脂20%を混合し、シリカ濃度を700ppmとしたものを用いて、表1に記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。なお、上記の原料処方において、DSCにより得られる20℃/分の速度で溶融状態から冷却される際に観察される再結晶化温度[Tc(A)]が168℃、40℃/分の速度での再結晶化温度[Tc(B)]が155℃、Tc(A)-Tc(B)が13℃であった。また、用いた植物由来エチレングリコール中の酸素循環式化学発光法により得られた窒素化合物量は0~1ppmの範囲であった。
[Example 4]
As raw material, ethylene glycol of polyester resin 1 is made from plant-derived ethylene glycol, 80% polyester resin (IV: 0.65) obtained without adding aggregated silica, aggregated silica having an average particle size of 2.3 μm at 3500 ppm A film was obtained under the conditions described in Table 1 by using 20% PET resin and mixing it with a silica concentration of 700 ppm. Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film. In the above raw material formulation, the recrystallization temperature [Tc (A)] observed when cooled from the molten state at a rate of 20 ° C./min obtained by DSC is 168 ° C., a rate of 40 ° C./min. The recrystallization temperature [Tc (B)] was 155 ° C. and Tc (A) -Tc (B) was 13 ° C. The amount of nitrogen compound obtained by the oxygen-circulating chemiluminescence method in the plant-derived ethylene glycol used was in the range of 0 to 1 ppm.
[比較例1~4]
 表1に記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。
[Comparative Examples 1 to 4]
Films were obtained under the conditions described in Table 1. Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film.
[比較例5~7]
 原料として、不純物として窒素系化合物を10ppm含む植物由来エチレングリコールを用いた以外は実施例4と同様にして得られたポリエステル樹脂(IV:0.65)80%に平均粒径1.3μmの凝集シリカを含むPET樹脂20%を混合し、シリカ濃度を1000ppmとしたものを用い、表1に記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。なお、上記の原料処方において、DSCにより得られる20℃/分の速度で溶融状態から冷却される際に観察される再結晶化温度[Tc(A)]が175℃、40℃/分の速度での再結晶化温度[Tc(B)]が155℃、Tc(A)-Tc(B)が20℃であった。
[Comparative Examples 5 to 7]
Aggregation with an average particle size of 1.3 μm in 80% of a polyester resin (IV: 0.65) obtained in the same manner as in Example 4 except that plant-derived ethylene glycol containing 10 ppm of a nitrogen compound as an impurity was used as a raw material. A 20% PET resin containing silica was mixed and a silica concentration of 1000 ppm was used to obtain a film under the conditions shown in Table 1. Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film. In the above raw material formulation, the recrystallization temperature [Tc (A)] observed when cooled from the molten state at a rate of 20 ° C./min obtained by DSC is 175 ° C., a rate of 40 ° C./min. The recrystallization temperature [Tc (B)] was 155 ° C. and Tc (A) -Tc (B) was 20 ° C.
[比較例8]
 ポリエステル樹脂1に結晶核剤(アデカ製アデカスタブNA-05)を1重量%添加した原料を用いて、表1に記載の条件によりフィルムを得た。得られたフィルムの製膜条件、物性および評価結果を表1に示した。なお、上記の原料処方において、DSCにより得られる20℃/分の速度で溶融状態から冷却される際に観察される再結晶化温度[Tc(A)]が185℃、40℃/分の速度での再結晶化温度[Tc(B)]が153℃、Tc(A)-Tc(B)が32℃であった。
[Comparative Example 8]
Using a raw material obtained by adding 1% by weight of a crystal nucleating agent (Adeka Stub NA-05 manufactured by Adeka) to polyester resin 1, a film was obtained under the conditions shown in Table 1. Table 1 shows the film forming conditions, physical properties, and evaluation results of the obtained film. In the above raw material formulation, the recrystallization temperature [Tc (A)] observed when cooled from the molten state at a rate of 20 ° C./min obtained by DSC is 185 ° C., a rate of 40 ° C./min. The recrystallization temperature [Tc (B)] was 153 ° C. and Tc (A) -Tc (B) was 32 ° C.
 上記結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明のポリエステルフィルムは磁気テ-プ、絶縁テープ、写真フィルム、トレーシングフィルム、包装材料、電気絶縁材料、情報記録材料、各種工程紙などの幅広い分野に広く使用することができるが、特に耐熱性、寸法安定性に優れるため印刷加工に適する。
 また、耐熱性が高いため、コートや印刷の乾燥時に高温乾燥か可能となり、生産の効率化や従来用いられにくかったコート剤やインキ、ラミネート接着剤などを用いることができる。
 さらには、コンデンサーやモーターなどの絶縁フィルム、太陽電池のバックシート、無機酸化物のバリアフィルム、ITOなどの透明導電フィルムのベースフィルムにも適する。
The polyester film of the present invention can be widely used in a wide range of fields such as magnetic tape, insulating tape, photographic film, tracing film, packaging material, electrical insulating material, information recording material, and various process papers. Suitable for printing because of its excellent properties and dimensional stability.
In addition, since it has high heat resistance, it can be dried at a high temperature when drying a coating or printing, and it is possible to use a coating agent, an ink, a laminating adhesive, or the like, which has been difficult to be used in production, or has been conventionally used.
Furthermore, it is also suitable for insulating films such as capacitors and motors, solar cell backsheets, inorganic oxide barrier films, and transparent conductive film base films such as ITO.

Claims (3)

  1.  DSCにより得られる40℃/分の速度で溶融状態から冷却される際に観察される再結晶化温度と20℃/分の速度での再結晶化温度の差が0~15℃であるポリエステル樹脂からなる、3~50μmの厚みを有し、下記要件(1)~(4)のフィルムの物性を満足することを特徴とする二軸延伸ポリエステルフィルム。
    (1)MD方向の熱収縮率が0.5~10%である。
    (2)突き刺し強度が5~20Nである。
    (3)易接着処理面側について、ATR-IRにより求められる表面結晶化度が1.10~1.35である。
    (4)フィルムの一方の面の表面結晶化度からフィルムの他方の面の表面結晶化度を引いた値が-0.1~0の範囲にある。
    Polyester resin obtained by DSC, wherein the difference between the recrystallization temperature observed when cooled from the molten state at a rate of 40 ° C./min and the recrystallization temperature at a rate of 20 ° C./min is 0 to 15 ° C. A biaxially stretched polyester film having a thickness of 3 to 50 μm and satisfying the physical properties of the following requirements (1) to (4):
    (1) The thermal shrinkage in the MD direction is 0.5 to 10%.
    (2) The piercing strength is 5 to 20N.
    (3) The surface crystallinity obtained by ATR-IR is 1.10 to 1.35 on the easy adhesion treated surface side.
    (4) The value obtained by subtracting the surface crystallinity of the other side of the film from the surface crystallinity of one side of the film is in the range of −0.1 to 0.
  2.  前記ポリエステル樹脂がイソフタル成分を有する請求項1に記載の二軸延伸ポリエステルフィルム。 The biaxially stretched polyester film according to claim 1, wherein the polyester resin has an isophthalic component.
  3.  前記ポリエステル樹脂が植物由来のエチレングリコール成分から重合されたポリエステル樹脂を含む請求項1に記載の二軸延伸ポリエステルフィルム。 The biaxially stretched polyester film according to claim 1, wherein the polyester resin comprises a polyester resin polymerized from a plant-derived ethylene glycol component.
PCT/JP2013/070797 2012-08-03 2013-07-31 Polyester film and method for producing same WO2014021396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012172815 2012-08-03
JP2012-172815 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021396A1 true WO2014021396A1 (en) 2014-02-06

Family

ID=50028066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070797 WO2014021396A1 (en) 2012-08-03 2013-07-31 Polyester film and method for producing same

Country Status (3)

Country Link
JP (9) JP6135373B2 (en)
TW (1) TWI607856B (en)
WO (1) WO2014021396A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082834A1 (en) * 2017-10-24 2019-05-02 東洋紡株式会社 Polyester film to be used as surface protection film of flexible display
WO2019089698A1 (en) * 2017-10-31 2019-05-09 Flex Films (Usa) Inc. Low carbon footprint thermoplastic films including recycled materials
CN114656755A (en) * 2020-12-22 2022-06-24 南亚塑胶工业股份有限公司 Biaxially oriented polyester film and method for producing same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3344687A1 (en) * 2015-09-02 2018-07-11 Toyobo Co., Ltd. Polyester film containing furandicarboxylate unit
JP6963760B2 (en) * 2015-09-18 2021-11-10 大日本印刷株式会社 Laminate
JP6706428B2 (en) * 2015-09-18 2020-06-10 大日本印刷株式会社 Laminate
JP6706427B2 (en) * 2015-09-18 2020-06-10 大日本印刷株式会社 Laminate
JP6963759B2 (en) * 2015-09-18 2021-11-10 大日本印刷株式会社 Laminate
TW201736141A (en) 2015-12-28 2017-10-16 東洋紡股份有限公司 Laminated polyester film
JP7009216B2 (en) 2015-12-28 2022-01-25 東洋紡株式会社 Laminated polyester film
TWI751868B (en) 2016-03-30 2022-01-01 日商東洋紡股份有限公司 Polyester film, manufacturing method thereof, and polyester film roll
WO2018159649A1 (en) 2017-03-01 2018-09-07 東洋紡株式会社 Laminate provided with heat-sealable resin layer and polyester film having furandicarboxylic acid unit, and packaging bag
KR102425314B1 (en) * 2017-03-01 2022-07-27 도요보 가부시키가이샤 Method for producing a polyester film having furandicarboxylic acid units
JP6997957B2 (en) * 2017-06-28 2022-02-10 大日本印刷株式会社 Laminate
JP7001989B2 (en) * 2017-07-10 2022-02-10 大日本印刷株式会社 Laminate
JP7103013B2 (en) 2018-07-20 2022-07-20 東洋紡株式会社 Cavity-containing polyester resin film
TWI762915B (en) * 2020-04-28 2022-05-01 南亞塑膠工業股份有限公司 Polyester film with laminated structure and method for manufacturing the same
TWI790460B (en) 2020-07-15 2023-01-21 南亞塑膠工業股份有限公司 Flame retardant polyester film and method for manufacturing the same
TWI747380B (en) * 2020-07-15 2021-11-21 南亞塑膠工業股份有限公司 Heat sealable polyester film and method for manufacturing the same
TWI828020B (en) * 2020-12-18 2024-01-01 日商東洋紡股份有限公司 Polyester film, label film, diffusion film for displays and lens film for displays
JP2023114009A (en) 2022-02-04 2023-08-17 株式会社日本製鋼所 Corona discharge treatment device, corona discharge treatment method, film manufacturing system, and film manufacturing method
WO2023188471A1 (en) * 2022-04-01 2023-10-05 タキロンシーアイ株式会社 Polyester-based resin composition and polyester-based shrink film
JP7266766B1 (en) * 2022-04-01 2023-04-28 タキロンシーアイ株式会社 Polyester resin composition and polyester shrink film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089590A (en) * 1999-09-27 2001-04-03 Toray Ind Inc Method for producing polyester film
JP2003026831A (en) * 2001-07-23 2003-01-29 Riken Technos Corp Printing sheet and decorative sheet
JP2005060617A (en) * 2003-08-19 2005-03-10 Toyobo Co Ltd Polyester film
JP2005272657A (en) * 2004-03-25 2005-10-06 Kanebo Ltd Manufacturing method of polyester resin and molded article made of the same
JP2008303232A (en) * 2007-06-05 2008-12-18 Mitsubishi Plastics Inc Polyester film

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210725A (en) * 1993-01-20 1994-08-02 Toray Ind Inc Easy bonding polyester film
US5718860A (en) * 1995-06-14 1998-02-17 Skc Limited Process for the preparation of polyester base film for magnetic recording media
JP2003113259A (en) * 2001-07-31 2003-04-18 Toray Ind Inc Biaxially oriented polyester film
JP2004106492A (en) * 2002-09-20 2004-04-08 Seiji Kagawa Manufacturing method of polybutylene terephthalate film, functional polybutylene terephthalate film and use thereof
JP4645019B2 (en) * 2003-11-07 2011-03-09 東洋紡績株式会社 Resin laminated film and package
JP2005298540A (en) * 2004-04-06 2005-10-27 Toray Ind Inc Polyester film and gas barrier polyester film by using the same
US20060135668A1 (en) * 2004-12-21 2006-06-22 Hayes Richard A Polyesters containing natural mineral materials, processes for producing such polyesters, and shaped articles produced therefrom
JP2006274113A (en) * 2005-03-30 2006-10-12 Toray Ind Inc Biaxially oriented polyester film
JP4967504B2 (en) * 2006-07-28 2012-07-04 東洋紡績株式会社 Biaxially stretched polyester film laminate
WO2009110337A1 (en) * 2008-03-05 2009-09-11 東レ株式会社 Polyester resin for thermoformed optical film and biaxially oriented polyester film obtained from the same
JP5428553B2 (en) * 2008-06-09 2014-02-26 東レ株式会社 Polyester film
JP5292943B2 (en) * 2008-06-26 2013-09-18 東洋紡株式会社 Easy tear polyester film
JP2010167769A (en) * 2008-12-22 2010-08-05 Toyobo Co Ltd Biaxially stretched polyethylene terephthalate-based resin film and method of manufacturing the same
JP2010174098A (en) * 2009-01-28 2010-08-12 Toray Ind Inc Polyester pellet, film and method for producing the film using the same
JP2010229289A (en) * 2009-03-27 2010-10-14 Toray Ind Inc Polyester film
JP5742023B2 (en) * 2010-08-11 2015-07-01 東洋紡株式会社 Surface protective film and method for producing the same
JP5757391B2 (en) * 2010-11-02 2015-07-29 大日本印刷株式会社 Barrier film and laminate using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089590A (en) * 1999-09-27 2001-04-03 Toray Ind Inc Method for producing polyester film
JP2003026831A (en) * 2001-07-23 2003-01-29 Riken Technos Corp Printing sheet and decorative sheet
JP2005060617A (en) * 2003-08-19 2005-03-10 Toyobo Co Ltd Polyester film
JP2005272657A (en) * 2004-03-25 2005-10-06 Kanebo Ltd Manufacturing method of polyester resin and molded article made of the same
JP2008303232A (en) * 2007-06-05 2008-12-18 Mitsubishi Plastics Inc Polyester film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082834A1 (en) * 2017-10-24 2019-05-02 東洋紡株式会社 Polyester film to be used as surface protection film of flexible display
WO2019089698A1 (en) * 2017-10-31 2019-05-09 Flex Films (Usa) Inc. Low carbon footprint thermoplastic films including recycled materials
US11780213B2 (en) 2017-10-31 2023-10-10 Flex Films (Usa) Inc. Low carbon footprint thermoplastic films including recycled materials
CN114656755A (en) * 2020-12-22 2022-06-24 南亚塑胶工业股份有限公司 Biaxially oriented polyester film and method for producing same
EP4019572A1 (en) * 2020-12-22 2022-06-29 Nan Ya Plastics Corporation Biaxially oriented polyester film and manufacturing method thereof
US11806909B2 (en) 2020-12-22 2023-11-07 Nan Ya Plastics Corporation Biaxially oriented polyester film and manufacturing method thereof

Also Published As

Publication number Publication date
JP6135373B2 (en) 2017-05-31
JP6981451B2 (en) 2021-12-15
JP6519605B2 (en) 2019-05-29
JP6358362B2 (en) 2018-07-18
JP6447658B2 (en) 2019-01-09
JP2017196898A (en) 2017-11-02
JP2017197760A (en) 2017-11-02
JP2017197758A (en) 2017-11-02
TW201408467A (en) 2014-03-01
JP6358361B2 (en) 2018-07-18
JP2014043571A (en) 2014-03-13
JP2017197766A (en) 2017-11-02
TWI607856B (en) 2017-12-11
JP6358360B2 (en) 2018-07-18
JP2017201028A (en) 2017-11-09
JP2019194339A (en) 2019-11-07
JP6610617B2 (en) 2019-11-27
JP2017197759A (en) 2017-11-02
JP2017214577A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6358360B2 (en) Polyester film
JP6202146B2 (en) Production method of polyester film
JP6874277B2 (en) Biaxially stretched polyester film and its manufacturing method
WO2018225559A1 (en) Biaxially oriented polyester film
JP2006009024A (en) Biaxially oriented polyester film and its production method
JPWO2019187694A1 (en) Polyester film roll
WO2018179726A1 (en) Biaxially oriented polyester film and method for manufacturing same
JP2019172812A (en) Polyester film and gas barrier laminate film
JP6759758B2 (en) Laminated film, laminate and packaging
JP2009292902A (en) Biaxially oriented polyarylene sulfide film and adhesive material using the same
WO2018225558A1 (en) Biaxially oriented polyester film
JP4799066B2 (en) Laminated polyester film
JP6231580B2 (en) Polyester film for solar cell and protective film for solar cell comprising the same
JP2010082953A (en) Successively biaxially oriented polyester film and method of manufacturing the same
JP2014226812A (en) Polyester film
JP2015071277A (en) Laminated film
JP2016055500A (en) Polyester film for molding
JP2019171587A (en) Polyester film and gas barrier laminate film
JP2011016899A (en) Polyester film for heat-resistant tape
JP2005335311A (en) Metal deposition polyester film for bending packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP