WO2014021249A1 - Semiconductor device and production method therefor - Google Patents

Semiconductor device and production method therefor Download PDF

Info

Publication number
WO2014021249A1
WO2014021249A1 PCT/JP2013/070442 JP2013070442W WO2014021249A1 WO 2014021249 A1 WO2014021249 A1 WO 2014021249A1 JP 2013070442 W JP2013070442 W JP 2013070442W WO 2014021249 A1 WO2014021249 A1 WO 2014021249A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating layer
layer
forming
pixel electrode
Prior art date
Application number
PCT/JP2013/070442
Other languages
French (fr)
Japanese (ja)
Inventor
安弘 小原
森永 潤一
原田 光徳
政行 山中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014021249A1 publication Critical patent/WO2014021249A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to an active matrix substrate of a liquid crystal display device or an organic EL display device and a manufacturing method thereof.
  • the semiconductor device includes an active matrix substrate and a display device including the active matrix substrate.
  • An active matrix substrate used in a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter referred to as “TFT”) for each pixel.
  • TFT thin film transistor
  • An active matrix substrate including TFTs as switching elements is called a TFT substrate.
  • amorphous silicon TFT amorphous silicon film as an active layer
  • polycrystalline silicon TFT a polycrystalline silicon film as an active layer
  • Patent Document 1 it has been proposed to use an oxide semiconductor instead of amorphous silicon or polycrystalline silicon as the material of the active layer of the TFT.
  • oxide semiconductor TFT An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT.
  • the oxide semiconductor film can be formed by a simpler process than the polycrystalline silicon film.
  • Patent Document 1 discloses an IPS (In-Plain Switching) type liquid crystal display device.
  • IPS In-Plain Switching
  • a pixel electrode and a drain electrode are connected in a contact hole formed in an interlayer insulating layer.
  • the step shape of the contact hole connecting the pixel electrode and the drain electrode affects the liquid crystal alignment of the liquid crystal layer, causing a display defect. Can be.
  • an embodiment of the present invention is mainly intended to provide a semiconductor device in which display defects are unlikely to occur and a method for manufacturing the same.
  • a semiconductor device includes a substrate, a gate electrode and a pixel electrode formed on the substrate, a first insulating layer formed on the gate electrode and the pixel electrode, and the first insulating layer. And a source electrode and a drain electrode electrically connected to the semiconductor layer, and the drain electrode is interposed through an insulating layer including the first insulating layer.
  • the pixel electrode is disposed on the pixel electrode and connected to the pixel electrode in an opening formed in the insulating layer.
  • the semiconductor device described above includes a conductive layer formed of the same conductive film as the pixel electrode, and the gate electrode is formed on the conductive layer.
  • the semiconductor device described above further includes a second insulating layer formed between the gate electrode and the first insulating layer, and the pixel electrode is formed of the second insulating layer. Formed on top.
  • the above-described semiconductor device further includes a base insulating layer formed on the substrate, and the gate electrode is formed on the base insulating layer.
  • the pixel electrode is formed on the base insulating layer.
  • the above-described semiconductor device further includes a protective layer formed on the source electrode and the drain electrode, and a common electrode that overlaps at least a part of the pixel electrode with the protective layer interposed therebetween.
  • each of the source electrode and the drain electrode has a lower layer and an upper layer formed on the lower layer, and the lower layer is made of a refractory metal nitride.
  • the semiconductor layer is an oxide semiconductor layer.
  • the oxide semiconductor layer contains In, Ga, and Zn.
  • the process of forming electrodes , Formed on the first insulating layer includes the step (f) comprising the step of forming the drain electrode connected to the pixel electrode in the opening.
  • a method of manufacturing a semiconductor device includes a step (a) of preparing a substrate, a step (b) of forming a gate electrode and a pixel electrode on the substrate, and the gate electrode and the pixel electrode.
  • Forming an insulating film on the insulating film, and forming a semiconductor film on the insulating film (c), and patterning the insulating film and the semiconductor film from one photomask by a halftone exposure method A first insulating layer is formed from the insulating film, an opening exposing a part of the pixel electrode is formed in the insulating layer including the first insulating layer, and the first insulating layer is formed from the semiconductor film.
  • Is includes the step (e) comprising the step of forming the drain electrode connected to the pixel electrode in the opening.
  • the step (b) includes a step (b1) of forming a second insulating layer on the gate electrode and a step (b2) of forming the pixel electrode on the second insulating layer. are further included.
  • the step (b) further includes a step (b3) of forming a base insulating layer on the substrate and a step (b4) of forming the gate electrode on the base insulating layer.
  • the step (b4) further includes a step (b5) of forming the pixel electrode on the base insulating layer.
  • a step (g) of forming a protective layer on the source electrode and the drain electrode overlaps at least a part of the pixel electrode with the protective layer interposed therebetween. And (h) forming a common electrode.
  • the semiconductor layer is an oxide semiconductor layer.
  • the oxide semiconductor layer contains In, Ga, and Zn.
  • a semiconductor device in which display defects are unlikely to occur and a manufacturing method thereof are provided.
  • FIG. 1 is a schematic plan view of a TFT substrate 100A according to an embodiment of the present invention
  • (b) is a schematic cross-sectional view of the TFT substrate 100A along the line AA ′ of (a)
  • (C) is a schematic cross-sectional view of the TFT substrate 100A along the BB ′ line in (a)
  • (d) is a schematic cross-sectional view of the TFT substrate 100A along the CC ′ line in (a).
  • FIG. It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100A.
  • (A)-(f) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100A, respectively. It is typical sectional drawing of TFT substrate 100B by other embodiment of this invention.
  • FIG. 100B It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100B.
  • A)-(e) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100B, respectively.
  • (A) And (b) is typical sectional drawing of TFT substrate 100C in further another embodiment of this invention. It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100C.
  • (A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100C, respectively.
  • (A) And (b) is typical sectional drawing of TFT substrate 100D in other embodiment of this invention. It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100D.
  • FIG. 1 is a schematic plan view of the TFT substrate 200 of the comparative example
  • FIG. 4A is a schematic cross-sectional view of the TFT substrate 200 taken along line BB ′ in FIG. 4A
  • FIG. 3D is a schematic cross-sectional view of the TFT substrate 200 taken along line CC ′ in FIG. It is.
  • the semiconductor device of this embodiment includes an active matrix substrate, various display devices, electronic devices, and the like.
  • the semiconductor device of the embodiment according to the present invention will be described by taking a semiconductor device (TFT substrate) used for a liquid crystal display device as an example.
  • FIG. 1A is a schematic plan view of a TFT substrate 100A according to an embodiment of the present invention.
  • FIG. 1B is a schematic cross-sectional view of the TFT substrate 100A taken along the line A-A ′ of FIG.
  • FIG. 1C is a schematic cross-sectional view of the TFT substrate 100A along the line B-B ′ of FIG.
  • FIG. 1D is a schematic cross-sectional view of the TFT substrate 100A along the line C-C ′ of FIG.
  • v shown in FIG. 1A is an effective opening area.
  • the TFT substrate 100A includes a substrate 2, a gate electrode 4 and a pixel electrode 3 formed on the substrate 2, and a gate electrode 4 and the pixel electrode 3.
  • the insulating layer 5 formed, the semiconductor layer 6 overlapping the gate electrode 4 with the insulating layer 5 interposed therebetween, and the source electrode 7s and the drain electrode 7d electrically connected to the semiconductor layer 6 are provided.
  • the drain electrode 7d is disposed on the pixel electrode 3 through an insulating layer including the insulating layer 5, and is connected to the pixel electrode 3 in an opening 5u formed in the insulating layer.
  • the insulating layer 5 functions as a gate insulating layer.
  • a contact hole (opening 5u) for connecting the drain electrode 7d and the pixel electrode 3 is formed in the insulating layer (gate insulating layer) 5, and for example, the protective layer 8 formed thereon is almost formed. It is formed flat.
  • a contact hole is formed in the interlayer insulating layer, and the vicinity of the contact hole is not flat. For this reason, in the liquid crystal display device disclosed in Patent Document 1, the shape of the contact hole affects the liquid crystal alignment of the liquid crystal layer, which may cause display defects.
  • the protective layer 8 on the contact hole (opening 5u) is formed almost flat, so that the shape of the contact hole affects the liquid crystal alignment. It is difficult to cause display defects.
  • the TFT substrate 100A has a protective layer 8 formed on the source electrode 7s and the drain electrode 7d, and a common electrode 9 that overlaps at least a part of the pixel electrode 3 with the protective layer 8 interposed therebetween.
  • a transparent electrode material for example, ITO (Indium Tin Oxide)
  • ITO Indium Tin Oxide
  • An auxiliary capacitor formed of a transparent material may be referred to as a transparent auxiliary capacitor. Note that the above-described opening 5u is closer to the substrate 2 than the common electrode 9 is.
  • the TFT substrate 100A has source wirings 7 (m) and 7 (m + 1) electrically connected to the source electrode 7s of the corresponding pixel.
  • Source wirings 7 (m) and 7 (m + 1) are formed on the insulating layer 5.
  • the gate wiring 14 is formed between the pixel electrodes 3 (m) and 3 (m + 1) of the adjacent pixels.
  • the pixel electrodes 3 (m) and 3 (m + 1) and the gate wiring 14 are all formed between the substrate 2 and the insulating layer 5. Furthermore, the common electrode 9 is not separated for each pixel.
  • the semiconductor layer 6 is preferably an oxide semiconductor layer.
  • a TFT including an oxide semiconductor layer has high mobility, can reduce the size of the TFT, and can suppress a decrease in the aperture ratio of the pixel.
  • FIG. 16A is a schematic plan view of a TFT substrate 200 of a comparative example.
  • FIG. 16B is a schematic cross-sectional view along the line A-A ′ of FIG.
  • FIG. 16C is a schematic cross-sectional view along the line B-B ′ in FIG.
  • FIG. 16D is a schematic cross-sectional view along the line C-C ′ in FIG.
  • the pixel electrode 3 (m) is formed on the insulating layer 5, and the drain electrode 7d is formed so as to be in contact with a part of the upper surface of the pixel electrode 3 (m).
  • the TFT substrate 200 does not have the opening 5u formed in the insulating layer 5, and the drain electrode 7d and the pixel electrode 3 (m) are not connected in the opening 5u.
  • the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 (m) are formed on the gate insulating layer 5, and the adjacent source wiring 7 A pixel electrode 3 (m) is formed between (m) and 7 (m + 1).
  • the pixel electrodes 3 (m) and 3 (m + 1) are formed on the insulating layer 5 formed on the gate wiring.
  • the distance between the gate wiring 14 and the pixel electrodes 3 (m) and 3 (m + 1) shown in FIG. 1D and the pixel electrode 3 and the source wirings 7 (m) and 7 (7) shown in FIG. m + 1) is 5 ⁇ m or more. This is because each electrode and wiring are formed in the same layer, and if this distance is not 5 ⁇ m or more, there is a possibility of short-circuiting between the electrodes.
  • the electrodes and the wirings are formed in different layers, even if the electrodes and the wirings are formed to overlap each other by about 1 ⁇ m at the maximum, the possibility of short-circuiting between the electrodes is low.
  • the gate wiring 14 and the pixel electrodes 3 (m) and 3 (3) are formed by forming each electrode and wiring so that the distance between the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 is small.
  • the effect of increasing the area of the effective opening region v of the pixel is greater than that of forming each electrode and wiring so that the distance to m + 1) is reduced, and the effect of improving the aperture ratio of the pixel is large.
  • the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 are formed in different layers, and the distance between each wiring and the electrode is large. Since each wiring and electrode can be formed so as not to become defective, the effective opening area v (see FIG. 1A) can be made larger than that of the TFT substrate 200, and the aperture ratio of the pixel can be increased.
  • the substrate 2 is typically a transparent substrate, for example, a glass substrate.
  • a plastic substrate can also be used.
  • the plastic substrate includes a substrate formed of a thermosetting resin or a thermoplastic resin, and a composite substrate of these resins and inorganic fibers (for example, glass fibers or glass fiber nonwoven fabrics).
  • the heat-resistant resin material include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), acrylic resin, and polyimide resin.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • acrylic resin acrylic resin
  • polyimide resin polyimide resin
  • the pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 are each formed of, for example, a transparent conductive film (for example, an ITO (Indium Tin Oxide) or IZO (registered trademark) (Indium Zinc Oxide) film).
  • the thicknesses of the pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 are preferably 20 nm or more and 200 nm or less, respectively.
  • Each of the pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 has a thickness of about 100 nm, for example.
  • the gate electrode 4 is electrically connected to the gate wiring 14.
  • the gate electrode 4 and the gate wiring 14 have, for example, a stacked structure in which an upper layer is a W (tungsten) layer and a lower layer is a TaN (tantalum nitride) layer.
  • the gate electrode 4 and the gate wiring 14 may have a laminated structure formed of Mo (molybdenum) / Al (aluminum) / Mo, and have a single-layer structure, a two-layer structure, a four-layer structure or more. You may have.
  • the gate electrode 4 and the gate wiring 14 are composed of an element selected from Cu (copper), Al, Cr (chromium), Ta (tantalum), Ti (titanium), Mo and W, or these elements.
  • each of the gate electrode 4 and the gate wiring 14 is preferably about 50 nm to 600 nm. Each thickness of the gate electrode 4 and the gate wiring 14 is, for example, about 420 nm.
  • the gate insulating layer 5 is made of, for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al A single layer or a laminate formed of 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used.
  • the thickness of the gate insulating layer 5 is, for example, not less than about 50 nm and not more than 600 nm.
  • the gate insulating layer 5 is preferably formed using a rare gas such as Ar (argon).
  • the semiconductor layer 6 is preferably an oxide semiconductor layer, for example.
  • the semiconductor layer 6 can be formed at a lower temperature than the silicon-based semiconductor layer. Therefore, the semiconductor layer 6 can be formed on a plastic substrate, for example, and can be applied to a flexible display.
  • the oxide semiconductor layer is formed of, for example, an In—Ga—Zn—O based semiconductor film containing In (indium), Ga (gallium), and Zn (zinc) at a ratio of 1: 1: 1. The ratio of In, G, and Zn can be selected as appropriate.
  • the semiconductor layer 6 may be formed using another oxide semiconductor film instead of the In—Ga—Zn—O-based semiconductor film.
  • Zn—O based semiconductor (ZnO) film Zn—O based semiconductor (ZnO) film, In—Zn—O based semiconductor (IZO) film, Zn—Ti—O based semiconductor (ZTO) film, Cd—Ge—O based semiconductor film, Cd—Pb—O based film
  • ZnO zinc oxide
  • ZTO zinc oxide
  • Cd—Ge—O based semiconductor film Cd—Pb—O based film
  • CdO (cadmium oxide), Mg—Zn—O based semiconductor film, or the like may be used.
  • an oxide semiconductor layer an amorphous ZnO film to which one or a plurality of impurity elements of Group 1 element, Group 13 element, Group 14 element, Group 15 element, Group 17 element and the like are added is added.
  • a state, a polycrystalline state, a microcrystalline state in which an amorphous state and a polycrystalline state are mixed, or a state in which no impurity element is added can be used.
  • the thickness of the semiconductor layer 6 is preferably about 30 nm to 100 nm, for example.
  • the thickness of the semiconductor layer 6 is about 50 nm, for example.
  • the semiconductor layer 6 may be a silicon-based semiconductor layer such as an amorphous silicon (a-Si) layer, a polysilicon (p-Si) layer, or a microcrystalline silicon ( ⁇ -Si) layer.
  • the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) have, for example, a stacked structure having a lower layer and an upper layer formed on the lower layer.
  • the lower layer and the upper layer are made of different metals.
  • the lower layer is made of, for example, MoN (molybdenum nitride), and the upper layer is made of, for example, Mo.
  • the pixel electrode 3 (m) is formed from a transparent conductive film (for example, an ITO film)
  • the lower layer in contact with the pixel electrode 3 (m) is preferably formed from a refractory metal nitride.
  • the adhesion between the pixel electrode 3 (m) formed from the transparent conductive film and the drain electrode 7d is improved, and the contact resistance between the pixel electrode 3 (m) and the drain electrode 7d can be reduced. Furthermore, it is possible to prevent a change in the state of the surface of the pixel electrode 3 (m) due to the influence of the manufacturing process after the formation of the pixel electrode 3 (m).
  • the source electrode 7s and the drain electrode 7d may have a laminated structure formed of Mo / Al / Mo, and may have a single-layer structure, a two-layer structure, or a laminated structure of four or more layers. .
  • the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) are composed of an element selected from Al, Cr, Ta, Ti, Mo, and W, or an alloy containing these elements as components. It may be formed from a metal nitride or the like.
  • the thicknesses of the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) are each preferably about 50 nm to 600 nm.
  • the thickness of the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) is, for example, about 350 nm.
  • the protective layer 8 is made of, for example, SiN x .
  • the protective layer 8 is formed on the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1).
  • the protective layer 8 is formed between the common electrode 9 and the pixel electrode 3 (m), for example.
  • an auxiliary capacitor is formed from the transparent common electrode 9 and the pixel electrode 3 (m) and the transparent protective layer 8, a display panel having a high aperture ratio can be manufactured when the TFT substrate 100A is used for the display panel.
  • the thickness of the protective layer 8 is preferably about 50 nm to 300 nm, for example.
  • the thickness of the protective layer 8 is about 200 nm, for example.
  • the protective layer 8 is made of, for example, SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al 2 O 3 (aluminum oxide) or Ta 2 O 5 ( Tantalum oxide).
  • the TFT substrate 100A is used, for example, in a fringe field switching (FFS) mode liquid crystal display device.
  • FFS fringe field switching
  • the display signal voltage is supplied to the lower pixel electrode, and the common voltage or the counter voltage is supplied to the upper common electrode 9.
  • the common electrode 9 is provided with at least one or more slits 19 (see FIGS. 1A and 1C).
  • FIG. 2 is a block diagram for explaining a manufacturing method of the TFT substrate 100A.
  • FIG. 3A to FIG. 3F are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100A.
  • the manufacturing method of the TFT substrate 100A includes a pixel electrode forming step PX, a gate electrode forming step GT, a gate insulating layer / semiconductor layer forming step GI / PS, a source / drain electrode forming step SD, and a protective layer forming.
  • a process PAS and a common electrode formation process CT are provided, and the process proceeds in this order.
  • a conductive film (for example, a transparent conductive film such as an ITO film) is formed on the substrate 2 by sputtering, for example, The conductive film is patterned by wet etching or the like to form the pixel electrode 3.
  • the resist (not shown) used for patterning is peeled off.
  • the gate electrode formation step GT after forming a conductive film on the substrate 2 by, for example, sputtering, the conductive film is formed by photolithography, wet or dry etching, or the like.
  • the gate electrode 4 is formed by patterning. Note that the gate electrode 4 is formed so as not to be electrically connected to the pixel electrode 3. Further, after the gate electrode 4 is patterned, the resist (not shown) used for patterning is peeled off.
  • an insulating film (not shown) is formed on the gate electrode 4 and the pixel electrode 3 by, for example, a CVD (Chemical Vapor Deposition) method.
  • the insulating layer 5 is formed by patterning the insulating film by a photolithography method, a dry etching method, or the like. In the insulating layer 5, an opening 5 u that exposes a part of the pixel electrode 3 is formed. Further, after the insulating layer 5 is patterned, the resist (not shown) used for patterning is peeled off.
  • a semiconductor film (for example, an In—Ga—Zn—O-based semiconductor film) is formed on the insulating layer 5 by, for example, a sputtering method, and this semiconductor film is formed by a photolithography method, a dry etching method, or the like.
  • the semiconductor layer 6 is formed by patterning.
  • the semiconductor layer 6 is formed so as to overlap the gate electrode 4 with the insulating layer 5 interposed therebetween. Further, after the semiconductor layer 6 is patterned, the resist (not shown) used for patterning is peeled off.
  • a conductive film (not shown) is formed on the semiconductor layer 6 by, for example, sputtering, and then by photolithography or wet etching.
  • the conductive film is patterned to form the source electrode 7s and the drain electrode 7d. Further, after the source electrode 7s and the drain electrode 7d are patterned, the resist (not shown) used for patterning is peeled off.
  • the source electrode 7s and the drain electrode 7d are electrically connected to the semiconductor layer 6. Further, the drain electrode 7d is connected to the pixel electrode 3 in the opening 5u.
  • an insulating film (not shown) is formed on the source electrode 7s and the drain electrode 7d by, for example, a CVD method, and a photolithography method, a dry etching method, or the like.
  • this insulating film is patterned to form the protective layer 8.
  • the resist (not shown) used for patterning is peeled off.
  • a conductive film (for example, a transparent conductive film) is formed on the protective layer 8 by sputtering, for example, and photolithography and wet processing are performed.
  • the conductive film is patterned by an etching method or the like to form the common electrode 9. Further, after the common electrode 9 is patterned, the resist (not shown) used for patterning is peeled off.
  • the common electrode 9 is formed so as to overlap a part of the pixel electrode 3 with the insulating layer 5 and the protective layer 8 interposed therebetween.
  • FIG. 1A a plan view of the TFT substrate 100B
  • FIG. 1C which is a cross-sectional view common to the TFT substrate 100B
  • FIG. 4 is a schematic cross-sectional view taken along the line A-A ′ of FIG.
  • Constituent elements common to the TFT substrate 100A are denoted by the same reference numerals to avoid duplication of description.
  • the TFT substrate 100B has a TFT substrate 100A in that a gate electrode 4 (and a gate wiring 14) is formed on a conductive layer 3a formed of the same conductive film as the pixel electrode 3. And different.
  • the gate electrode 4 and the pixel electrode 3 can be formed from one photomask, so the number of photomasks can be reduced and the manufacturing cost can be reduced. Can do.
  • the step (a) of preparing the substrate 2 the first conductive film is formed on the substrate 2, and the second conductive film is formed on the first conductive film.
  • the TFT substrate 100B is manufactured by patterning the first conductive film and the second conductive film from one photomask by a halftone exposure method, thereby forming the conductive layer 3a and the pixel electrode 3 from the first conductive film.
  • Forming (c) a step of forming the gate electrode 4 from the second conductive film on the conductive layer 3a.
  • the manufacturing method of the TFT substrate 100B includes a step (d) of forming an insulating layer 5 having an opening 5u exposing a part of the pixel electrode 3 on the gate electrode 4 and the pixel electrode 3, and the insulating layer 5 (E) forming a semiconductor layer 6 overlapping with the gate electrode 4 through the step.
  • the manufacturing method of the TFT substrate 100B is a step of forming a source electrode 7s and a drain electrode 7d that are electrically connected to the semiconductor layer 6, and is formed on the insulating layer 5 and within the opening 5u.
  • such a manufacturing method of the TFT substrate 100B can manufacture the TFT substrate 100B without increasing the manufacturing cost.
  • the manufacturing method of the TFT substrate 100B includes the step (g) of forming the protective layer 8 on the source electrode 7s and the drain electrode 7d, and the common electrode 9 that overlaps at least a part of the pixel electrode 3 with the protective layer 8 interposed therebetween. It is preferable to include the process (h) of forming.
  • FIG. 5 is a block diagram for explaining an example of a manufacturing method of the TFT substrate 100B.
  • 6A to 6E are schematic cross-sectional views for explaining an example of the manufacturing method of the TFT substrate 100B, and correspond to FIG.
  • the manufacturing method of the TFT substrate 100B includes the gate electrode / pixel electrode forming step GT / PX, the gate insulating layer / semiconductor layer forming step GI / PS, the source / drain electrode forming step SD, and the protective layer forming step. It has PAS and common electrode formation process CT, and the process proceeds in this order.
  • the gate electrode / pixel electrode formation step GT / PX will be described with reference to FIGS. 6 (a) to 6 (e).
  • a first conductive film (for example, a transparent conductive film) 3 ′ is formed on the substrate 2 by sputtering or the like, and a second conductive film is formed on the first conductive film 3 ′. 4 ′ is formed.
  • resist films R1 and R2 having different thicknesses are desired on the second conductive film 4 ′ from one photomask (halftone mask) by a halftone exposure method.
  • the pattern shape is formed. Note that the thickness of the resist film R2 is larger than the thickness of the resist film R1.
  • the first conductive film 3 'and the second conductive film 4' in the region not covered with the resist films R1 and R2 are patterned by a wet etching method.
  • the conductive layer 3a and the pixel electrode 3 are formed from the first conductive film 3 '.
  • the gate electrode 4 and the conductive layer 4 '' are formed from the second conductive film 4 '.
  • the resist film R1 is removed by a dry etching method.
  • a part of the resist film R2 is scraped to obtain a resist film R2 'having a smaller thickness than the resist film R2.
  • the conductive layer 4 ′′ is removed by a further dry etching method. The gate electrode 4 below the resist film R2 'remains.
  • the resist film R2 ' is removed by a known method.
  • the gate electrode 4 and the pixel electrode 3 can be formed from one photomask, the number of photomasks can be reduced, and the manufacturing cost can be reduced.
  • FIG. 1A is referred to for a plan view of the TFT substrate 100C.
  • FIG. 7A is a schematic cross-sectional view taken along the line A-A ′ of FIG.
  • FIG. 7B is a schematic cross-sectional view along the line B-B ′ of FIG.
  • the TFT substrate 100C further includes an insulating layer 5a formed between the gate electrode 4 and the insulating layer 5b, and the pixel electrode 3 (m) is insulated. It differs from the TFT substrate 100A in that it is formed on the layer 5a.
  • the gate insulating layer 5 is formed of the insulating layer 5a and the insulating layer 5b.
  • the insulating layer 5a and the insulating layer 5b are, for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y). ), Al 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ).
  • the lower insulating layer 5a is formed of SiN x or SiN x O y (silicon nitride oxide, x> y). Is preferred. Since the insulating layer formed from the silicon nitride film has a high etching rate, the processing time can be shortened.
  • the upper insulating layer 5b is preferably formed of SiO 2 or SiO x N y (silicon oxynitride, x> y) from the viewpoint of preventing deterioration of semiconductor characteristics.
  • FIG. 8 is a block diagram for explaining a manufacturing method of the TFT substrate 100C.
  • FIG. 9A to FIG. 9G are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100C. 9A to 9G correspond to FIG. 7A.
  • the manufacturing method of the TFT substrate 100C includes the gate electrode forming step GT, the first gate insulating layer step GI-1, the pixel electrode forming step PX, and the second gate insulating layer / semiconductor layer forming step GI-2. / PS, source / drain electrode formation step SD, protective layer formation step PAS, and common electrode formation step CT, and the process proceeds in this order.
  • the gate electrode 4 is formed by the method described above.
  • the first gate insulating layer step GI-1 after forming an insulating film (not shown) on the gate electrode 4 by, for example, CVD, photolithography and wet or This insulating film is patterned by a dry etching method or the like to form the insulating layer 5a. Further, after the insulating layer 5a is patterned, the resist (not shown) used for patterning is peeled off.
  • the pixel electrode 3 is formed on the insulating layer 5a by the method described above.
  • an insulating film (not shown) is formed on the insulating layer 5a and the pixel electrode 3 by, for example, a CVD method, and a photolithography method and dry etching are performed.
  • This insulating film is patterned by a method or the like to form the insulating layer 5b.
  • an opening 5u that exposes a part of the pixel electrode 3 is formed in the insulating layer 5b.
  • the resist (not shown) used for patterning is peeled off.
  • the semiconductor layer 6 is formed on the insulating layer 5b by the method described above.
  • the semiconductor layer 6 is formed so as to overlap the gate electrode 4 through the insulating layers 5a and 5b.
  • the source / drain electrode forming step SD, the protective layer forming step PAS and the common electrode forming step CT shown in FIGS. 9 (e) to 9 (f) are performed, and then the source electrode 7s, the drain electrode 7d, the protective layer 8 and The common electrode 9 is formed by the method described above, and the TFT substrate 100C is manufactured.
  • the manufacturing method of the TFT substrate 100C includes the step (a) of preparing the substrate 2, the step (b) of forming the gate electrode 4 and the pixel electrode 3 on the substrate 2, and the gate electrode 4 And a step (c) of forming an insulating film on the pixel electrode 3 and forming a semiconductor film on the insulating film. Further, the TFT substrate 100C is manufactured by patterning the insulating film and the semiconductor film from one photomask by halftone exposure, thereby forming the insulating layer 5b from the insulating film and including the insulating layer 5b.
  • the manufacturing method of the TFT substrate 100C is a step of forming the source electrode 7s and the drain electrode 7d that are electrically connected to the semiconductor layer 6, and is formed on the insulating layer 5b and is formed in the opening 5u.
  • the step (b) preferably further includes a step (b1) of forming the insulating layer 5a on the gate electrode 4 and a step (b2) of forming the pixel electrode 3 on the insulating layer 5a.
  • the step (g) of forming the protective layer 8 on the source electrode 7s and the drain electrode 7d and the common electrode 9 that overlaps at least part of the pixel electrode 3 through the protective layer 8 are formed. It is preferable to further include the step (h).
  • the main difference between the above-described manufacturing method of the TFT substrate 100C and the modified example of the manufacturing method of the TFT substrate 100C is that the semiconductor layer 6 and the insulating layer 5b shown in FIG.
  • the halftone mask is formed by a halftone exposure method.
  • an insulating film (not shown) is formed on the insulating layer 5a and the pixel electrode 3 by, for example, the CVD method.
  • a semiconductor film (not shown) is formed on the insulating film by sputtering, for example.
  • the insulating film and the semiconductor film are patterned.
  • An insulating layer 5b having an opening 5u exposing a part of the pixel electrode 3 from the insulating film is formed, and a semiconductor layer 6 overlapping the gate electrode 4 is formed from the semiconductor film via the insulating layers 5a and 5b.
  • the insulating layer 5b having the opening 5u and the semiconductor layer 6 can be formed from one photomask, the number of photomasks can be reduced, and the manufacturing cost can be reduced.
  • FIG. 10A is a schematic cross-sectional view along the line A-A ′ of FIG.
  • FIG. 10B is a schematic cross-sectional view along the line B-B ′ of FIG.
  • Constituent elements common to the TFT substrate 100A are denoted by the same reference numerals to avoid duplication of description.
  • the main difference between the TFT substrate 100D and the TFT substrate 100A is that a base insulating layer (buffer layer) 5c is formed on the substrate 2, and a gate electrode 4 and a pixel electrode 3 (m) are formed on the base insulating layer 5c. It is a point that has been.
  • the selectivity of the substrate 2 is increased.
  • a plastic substrate can be used as the substrate 2.
  • the base insulating layer 5c for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al
  • a single layer or a laminate formed of 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used.
  • the thickness of the base insulating layer 5c is, for example, not less than about 50 nm and not more than 600 nm.
  • FIG. 10 is a block diagram for explaining the TFT substrate 100D.
  • 12 (a) to 12 (g) are schematic cross-sectional views for explaining the manufacturing method of the TFT substrate 100D, and correspond to FIG. 10 (a).
  • the manufacturing method of the TFT substrate 100D includes a buffer layer forming step BU, a pixel electrode forming step PX, a gate electrode forming step GT, a gate insulating layer / semiconductor layer forming step GI / PS, a source / drain electrode forming step SD, and a protective layer forming step. It has PAS and common electrode formation process CT, and the process proceeds in this order.
  • the base insulating layer 5c is formed on the substrate 2 by, for example, the CVD method.
  • the pixel electrode 3, the gate electrode 4, the gate insulating layer 5, the semiconductor layer 6, the source electrode 7s, the drain electrode 7d, the protective layer 8 and the common electrode 9 are formed by the method described above.
  • the TFT substrate 100D is manufactured.
  • the insulating layer 5 and the semiconductor layer 6 may be formed from one photomask (halftone mask) by the above-described halftone exposure method.
  • the number of photomasks can be reduced and manufacturing costs can be reduced.
  • FIG. 13A is a schematic cross-sectional view along the line A-A ′ of FIG.
  • FIG. 13B is a schematic cross-sectional view along the line B-B ′ of FIG.
  • Constituent elements common to the TFT substrate 100A are denoted by the same reference numerals to avoid duplication of description.
  • the main difference between the TFT substrate 100E and the TFT substrate 100A is that it has a base insulating layer (buffer layer) 5c formed on the substrate 2, and the pixel electrode 3 (m) is formed under the base insulating layer 5c. It is a point.
  • FIG. 14 is a block diagram illustrating an example of a manufacturing method of the TFT substrate 100E.
  • FIGS. 15A to 15G are schematic cross-sectional views for explaining an example of a manufacturing method of the TFT substrate 100E. 15A to 15G correspond to FIG. 13A.
  • the manufacturing method of the TFT substrate 100E includes a pixel electrode formation step PX, a buffer layer formation step BU, a gate electrode formation step GT, a gate insulating layer / semiconductor layer formation step GI / PS, and source / drain electrode formation.
  • a process SD, a protective layer forming process PAS, and a common electrode forming process CT are provided, and the process proceeds in this order.
  • the pixel electrode 3 is formed on the substrate 2 by the method described above.
  • the base insulating layer 5c is formed on the pixel electrode 3 by the method described above.
  • the gate electrode 4 is formed on the base insulating layer 5c by the method described above.
  • the gate electrode 4 is formed so as not to overlap the pixel electrode 3 through the base insulating layer 5c.
  • the insulating layer 5 is formed on the gate electrode 4 by the method described above. At this time, an opening 5u exposing a part of the pixel electrode 3 is formed in the insulating layer 5 and the base insulating layer 5c.
  • the semiconductor layer 6 that overlaps the gate electrode 4 through the insulating layer 5 is formed on the insulating layer 5 by the method described above.
  • the insulating layer 5 and the semiconductor layer 6 may be formed from one photomask (halftone mask) by the above-described halftone exposure method.
  • the source / drain electrode forming step SD, the protective layer forming step PAS and the common electrode forming step CT shown in FIGS. 15 (e) to 15 (g) are performed, and then the source electrode 7s, the drain electrode 7d, the protective layer 8 and the common The electrode 9 is formed by the method described above, and the TFT substrate 100E is manufactured.
  • the common electrode 9 is a transparent electrode formed of a transparent conductive film (for example, an ITO film). Instead of functioning as a common electrode, a transparent auxiliary capacitor is simply formed.
  • the electrode may function as an electrode.
  • the above-described TFT substrates 100A to 100E have a two-layer electrode structure having the pixel electrode 3 (m) and the common electrode 9, but for example, a TFT for a liquid crystal display device in a VA (Vertical Alignment) mode.
  • the common electrode 9 may not be formed.
  • a semiconductor device in which display defects are unlikely to occur and a method for manufacturing the same are provided.
  • Embodiments of the present invention include a circuit board such as an active matrix substrate, a liquid crystal display device, a display device such as an organic electroluminescence (EL) display device and an inorganic electroluminescence display device, an imaging device such as an image sensor device, and an image input
  • a circuit board such as an active matrix substrate, a liquid crystal display device, a display device such as an organic electroluminescence (EL) display device and an inorganic electroluminescence display device, an imaging device such as an image sensor device, and an image input
  • EL organic electroluminescence
  • an imaging device such as an image sensor device
  • image input an image input
  • the present invention can be widely applied to devices including thin film transistors, such as electronic devices such as devices and fingerprint readers.

Abstract

The purpose of the present invention is to provide a semiconductor device that is less susceptible to display defects, and a production method therefor. The semiconductor device (100A) of the present invention comprises: a substrate (2), a gate electrode (4) and a pixel electrode (3(m)) that are formed on the substrate (2); a first insulating layer (5) that is formed on the gate electrode (4) and the pixel electrode (3(m)); a semiconductor layer (6) that overlaps with the first insulating layer (5) via the gate electrode (4); and a source electrode (7s) and a drain electrode (7d)that are electrically connected to the semiconductor layer (6). The drain electrode (7d) is arranged on the pixel electrode (3(m)) via an insulating layer that includes the first insulating layer (5), and is connected to the pixel electrode (3(m)) within an opening (5u) formed in the insulating layer.

Description

半導体装置およびその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置およびその製造方法に関し、特に、液晶表示装置や有機EL表示装置のアクティブマトリクス基板およびその製造方法に関する。ここで、半導体装置は、アクティブマトリクス基板やそれを備える表示装置を含む。 The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to an active matrix substrate of a liquid crystal display device or an organic EL display device and a manufacturing method thereof. Here, the semiconductor device includes an active matrix substrate and a display device including the active matrix substrate.
 液晶表示装置等に用いられるアクティブマトリクス基板は、画素毎に薄膜トランジスタ(Thin Film Transistor;以下、「TFT」)などのスイッチング素子を備えている。スイッチング素子としてTFTを備えるアクティブマトリクス基板はTFT基板と呼ばれる。 An active matrix substrate used in a liquid crystal display device or the like includes a switching element such as a thin film transistor (hereinafter referred to as “TFT”) for each pixel. An active matrix substrate including TFTs as switching elements is called a TFT substrate.
 TFTとしては、従来から、アモルファスシリコン膜を活性層とするTFT(以下、「アモルファスシリコンTFT」)や多結晶シリコン膜を活性層とするTFT(以下、「多結晶シリコンTFT」)が広く用いられている(例えば、特許文献1)。また、TFTの活性層の材料として、アモルファスシリコンや多結晶シリコンに代わって、酸化物半導体を用いることが提案されている。このようなTFTを「酸化物半導体TFT」と称する。酸化物半導体は、アモルファスシリコンよりも高い移動度を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作することが可能である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成できる。 Conventionally, TFTs using an amorphous silicon film as an active layer (hereinafter referred to as “amorphous silicon TFT”) and TFTs using a polycrystalline silicon film as an active layer (hereinafter referred to as “polycrystalline silicon TFT”) have been widely used as TFTs. (For example, Patent Document 1). Further, it has been proposed to use an oxide semiconductor instead of amorphous silicon or polycrystalline silicon as the material of the active layer of the TFT. Such a TFT is referred to as an “oxide semiconductor TFT”. An oxide semiconductor has higher mobility than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at a higher speed than the amorphous silicon TFT. The oxide semiconductor film can be formed by a simpler process than the polycrystalline silicon film.
 特許文献1は、IPS(In-Plain Switching)方式の液晶表示装置を開示している。特許文献1に開示されている液晶表示装置では、層間絶縁層に形成されたコンタクトホール内で画素電極とドレイン電極とを接続させている。 Patent Document 1 discloses an IPS (In-Plain Switching) type liquid crystal display device. In the liquid crystal display device disclosed in Patent Document 1, a pixel electrode and a drain electrode are connected in a contact hole formed in an interlayer insulating layer.
特開2007-328210号公報JP 2007-328210 A
 本願発明者が検討したところ、特許文献1に開示されている液晶表示装置では、画素電極とドレイン電極とを接続させるコンタクトホールの段差形状が液晶層の液晶配向に影響して、表示不良の原因となり得る。 As a result of investigation by the inventors of the present application, in the liquid crystal display device disclosed in Patent Document 1, the step shape of the contact hole connecting the pixel electrode and the drain electrode affects the liquid crystal alignment of the liquid crystal layer, causing a display defect. Can be.
 そこで、本発明の一実施形態は、表示不良が生じにくい半導体装置およびその製造方法を提供することを主な目的とする。 Therefore, an embodiment of the present invention is mainly intended to provide a semiconductor device in which display defects are unlikely to occur and a method for manufacturing the same.
 本発明の実施形態による半導体装置は、基板と、前記基板上に形成されたゲート電極および画素電極と前記ゲート電極および画素電極上に形成された第1の絶縁層と、前記第1の絶縁層を介して前記ゲート電極と重なる半導体層と、前記半導体層に電気的に接続されたソース電極およびドレイン電極とを有し、前記ドレイン電極は、前記第1の絶縁層を含む絶縁層を介して前記画素電極上に配置され、前記絶縁層に形成された開口部内で前記画素電極に接続されている。 A semiconductor device according to an embodiment of the present invention includes a substrate, a gate electrode and a pixel electrode formed on the substrate, a first insulating layer formed on the gate electrode and the pixel electrode, and the first insulating layer. And a source electrode and a drain electrode electrically connected to the semiconductor layer, and the drain electrode is interposed through an insulating layer including the first insulating layer. The pixel electrode is disposed on the pixel electrode and connected to the pixel electrode in an opening formed in the insulating layer.
 ある実施形態において、上述の半導体装置は、前記画素電極と同一の導電膜から形成された導電層を有し、前記ゲート電極は、前記導電層の上に形成されている。 In one embodiment, the semiconductor device described above includes a conductive layer formed of the same conductive film as the pixel electrode, and the gate electrode is formed on the conductive layer.
 ある実施形態において、上述の半導体装置は、前記ゲート電極と前記第1の絶縁層との間に形成された第2の絶縁層をさらに有し、前記画素電極は、前記第2の絶縁層の上に形成されている。 In one embodiment, the semiconductor device described above further includes a second insulating layer formed between the gate electrode and the first insulating layer, and the pixel electrode is formed of the second insulating layer. Formed on top.
 ある実施形態において、上述の半導体装置は、前記基板上に形成された下地絶縁層をさらに有し、前記ゲート電極は、前記下地絶縁層の上に形成されている。 In one embodiment, the above-described semiconductor device further includes a base insulating layer formed on the substrate, and the gate electrode is formed on the base insulating layer.
 ある実施形態において、前記画素電極は、前記下地絶縁層の上に形成されている。 In one embodiment, the pixel electrode is formed on the base insulating layer.
 ある実施形態において、上述の半導体装置は、前記ソース電極および前記ドレイン電極の上に形成された保護層と、前記保護層を介して前記画素電極の少なくとも一部と重なる共通電極とをさらに有する。 In one embodiment, the above-described semiconductor device further includes a protective layer formed on the source electrode and the drain electrode, and a common electrode that overlaps at least a part of the pixel electrode with the protective layer interposed therebetween.
 ある実施形態において、前記ソース電極および前記ドレイン電極は、それぞれ下層と前記下層の上に形成された上層とを有し、前記下層は高融点金属の窒化物から形成されている。 In one embodiment, each of the source electrode and the drain electrode has a lower layer and an upper layer formed on the lower layer, and the lower layer is made of a refractory metal nitride.
 ある実施形態において、前記半導体層は、酸化物半導体層である。 In one embodiment, the semiconductor layer is an oxide semiconductor layer.
 ある実施形態において、前記酸化物半導体層は、In、GaおよびZnを含む。 In one embodiment, the oxide semiconductor layer contains In, Ga, and Zn.
 本発明の実施形態による半導体装置の製造方法は、基板を用意する工程(a)と、前記基板上に第1導電膜を形成し、前記第1導電膜の上に第2導電膜を形成する工程(b)と、ハーフトーン露光法により、1つのフォトマスクから前記第1導電膜および前記第2導電膜をパターニングすることによって、前記第1導電膜から導電層と画素電極とを形成し、前記導電層の上に前記第2導電膜からゲート電極を形成する工程(c)と、前記ゲート電極および前記画素電極の上に、前記画素電極の一部を露出する開口部を有する第1の絶縁層を形成する工程(d)と、前記第1の絶縁層を介して前記ゲート電極と重なる半導体層を形成する工程(e)と、前記半導体層に電気的に接続されるソース電極およびドレイン電極を形成する工程であって、前記第1の絶縁層の上に形成され、前記開口部内で前記画素電極に接続される前記ドレイン電極を形成する工程を含む工程(f)とを包含する。 In a method for manufacturing a semiconductor device according to an embodiment of the present invention, a step (a) of preparing a substrate, a first conductive film is formed on the substrate, and a second conductive film is formed on the first conductive film. Forming a conductive layer and a pixel electrode from the first conductive film by patterning the first conductive film and the second conductive film from one photomask by a step (b) and a halftone exposure method; A step (c) of forming a gate electrode from the second conductive film on the conductive layer; and a first portion having an opening exposing a part of the pixel electrode on the gate electrode and the pixel electrode. A step (d) of forming an insulating layer, a step (e) of forming a semiconductor layer overlapping the gate electrode through the first insulating layer, and a source electrode and a drain electrically connected to the semiconductor layer The process of forming electrodes , Formed on the first insulating layer includes the step (f) comprising the step of forming the drain electrode connected to the pixel electrode in the opening.
 本発明の他の実施形態による半導体装置の製造方法は、基板を用意する工程(a)と、前記基板上にゲート電極および画素電極を形成する工程(b)と、前記ゲート電極および前記画素電極の上に絶縁膜を形成し、前記絶縁膜の上に半導体膜を形成する工程(c)と、ハーフトーン露光法により、1つのフォトマスクから前記絶縁膜および前記半導体膜をパターニングすることによって、前記絶縁膜から第1の絶縁層を形成するとともに、前記第1の絶縁層を含む絶縁層に前記画素電極の一部を露出する開口部を形成し、前記半導体膜から前記第1の絶縁層を介して前記ゲート電極と重なる半導体層を形成する工程(d)と、前記半導体層に電気的に接続されるソース電極およびドレイン電極を形成する工程であって、前記絶縁層の上に形成され、前記開口部内で前記画素電極に接続される前記ドレイン電極を形成する工程を含む工程(e)とを包含する。 A method of manufacturing a semiconductor device according to another embodiment of the present invention includes a step (a) of preparing a substrate, a step (b) of forming a gate electrode and a pixel electrode on the substrate, and the gate electrode and the pixel electrode. Forming an insulating film on the insulating film, and forming a semiconductor film on the insulating film (c), and patterning the insulating film and the semiconductor film from one photomask by a halftone exposure method, A first insulating layer is formed from the insulating film, an opening exposing a part of the pixel electrode is formed in the insulating layer including the first insulating layer, and the first insulating layer is formed from the semiconductor film. A step (d) of forming a semiconductor layer overlying the gate electrode through a step, and a step of forming a source electrode and a drain electrode electrically connected to the semiconductor layer, wherein the step is formed on the insulating layer. Is includes the step (e) comprising the step of forming the drain electrode connected to the pixel electrode in the opening.
 ある実施形態において、前記工程(b)は、前記ゲート電極上に第2の絶縁層を形成する工程(b1)と、前記第2の絶縁層の上に前記画素電極を形成する工程(b2)とをさらに包含する。 In one embodiment, the step (b) includes a step (b1) of forming a second insulating layer on the gate electrode and a step (b2) of forming the pixel electrode on the second insulating layer. Are further included.
 ある実施形態において、前記工程(b)は、前記基板上に下地絶縁層を形成する工程(b3)と、前記下地絶縁層の上に前記ゲート電極を形成する工程(b4)とをさらに包含する。 In one embodiment, the step (b) further includes a step (b3) of forming a base insulating layer on the substrate and a step (b4) of forming the gate electrode on the base insulating layer. .
 ある実施形態において、前記工程(b4)は、前記下地絶縁層の上に前記画素電極を形成する工程(b5)をさらに包含する。 In one embodiment, the step (b4) further includes a step (b5) of forming the pixel electrode on the base insulating layer.
 ある実施形態において、上述の半導体装置の製造方法は、前記ソース電極および前記ドレイン電極の上に保護層を形成する工程(g)と、前記保護層を介して前記画素電極の少なくとも一部と重なる共通電極を形成する工程(h)とをさらに包含する。 In one embodiment, in the above-described method for manufacturing a semiconductor device, a step (g) of forming a protective layer on the source electrode and the drain electrode overlaps at least a part of the pixel electrode with the protective layer interposed therebetween. And (h) forming a common electrode.
 ある実施形態において、前記半導体層は酸化物半導体層である。 In one embodiment, the semiconductor layer is an oxide semiconductor layer.
 ある実施形態において、前記酸化物半導体層は、In、GaおよびZnを含む。 In one embodiment, the oxide semiconductor layer contains In, Ga, and Zn.
 本発明の実施形態によると、表示不良が生じにくい半導体装置およびその製造方法が提供される。 According to the embodiment of the present invention, a semiconductor device in which display defects are unlikely to occur and a manufacturing method thereof are provided.
(a)は本発明の実施形態によるTFT基板100Aの模式的な平面図であり、(b)は(a)のA-A’線に沿ったTFT基板100Aの模式的な断面図であり、(c)は(a)のB-B’線に沿ったTFT基板100Aの模式的な断面図であり、(d)は(a)のC-C’線に沿ったTFT基板100Aの模式的な断面図である。(A) is a schematic plan view of a TFT substrate 100A according to an embodiment of the present invention, (b) is a schematic cross-sectional view of the TFT substrate 100A along the line AA ′ of (a), (C) is a schematic cross-sectional view of the TFT substrate 100A along the BB ′ line in (a), and (d) is a schematic cross-sectional view of the TFT substrate 100A along the CC ′ line in (a). FIG. TFT基板100Aの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100A. (a)~(f)は、それぞれTFT基板100Aの製造方法の一例を説明するための模式的な断面図である。(A)-(f) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100A, respectively. 本発明の他の実施形態によるTFT基板100Bの模式的な断面図である。It is typical sectional drawing of TFT substrate 100B by other embodiment of this invention. TFT基板100Bの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100B. (a)~(e)は、それぞれTFT基板100Bの製造方法の一例を説明するための模式的な断面図である。(A)-(e) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100B, respectively. (a)および(b)は本発明のさらに他の実施形態におけるTFT基板100Cの模式的な断面図である。(A) And (b) is typical sectional drawing of TFT substrate 100C in further another embodiment of this invention. TFT基板100Cの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100C. (a)~(g)は、それぞれTFT基板100Cの製造方法の一例を説明するための模式的な断面図である。(A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100C, respectively. (a)および(b)は本発明のさらに他の実施形態におけるTFT基板100Dの模式的な断面図である。(A) And (b) is typical sectional drawing of TFT substrate 100D in other embodiment of this invention. TFT基板100Dの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100D. (a)~(g)は、それぞれTFT基板100Dの製造方法の一例を説明するための模式的な断面図である。(A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100D, respectively. (a)および(b)は本発明のさらに他の実施形態におけるTFT基板100Eの模式的な断面図である。(A) And (b) is typical sectional drawing of TFT substrate 100E in other embodiment of this invention. TFT基板100Eの製造方法の一例を説明するためのブロック図である。It is a block diagram for demonstrating an example of the manufacturing method of TFT substrate 100E. (a)~(g)は、それぞれTFT基板100Eの製造方法の一例を説明するための模式的な断面図である。(A)-(g) is typical sectional drawing for demonstrating an example of the manufacturing method of TFT substrate 100E, respectively. (a)は比較例のTFT基板200の模式的な平面図であり、(b)は(a)のA-A’線に沿ったTFT基板200の模式的な断面図であり、(c)は(a)のB-B’線に沿ったTFT基板200の模式的な断面図であり、(d)は(a)のC-C’線に沿ったTFT基板200の模式的な断面図である。(A) is a schematic plan view of the TFT substrate 200 of the comparative example, (b) is a schematic cross-sectional view of the TFT substrate 200 along the line AA ′ of (a), (c) FIG. 4A is a schematic cross-sectional view of the TFT substrate 200 taken along line BB ′ in FIG. 4A, and FIG. 3D is a schematic cross-sectional view of the TFT substrate 200 taken along line CC ′ in FIG. It is.
 以下、図面を参照しながら、本発明の実施形態による半導体装置を説明する。なお、本実施形態の半導体装置は、アクティブマトリクス基板、各種表示装置、電子機器などを広く含む。ここでは、液晶表示装置に用いられる半導体装置(TFT基板)を例に本発明による実施形態の半導体装置を説明する。 Hereinafter, a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. Note that the semiconductor device of this embodiment includes an active matrix substrate, various display devices, electronic devices, and the like. Here, the semiconductor device of the embodiment according to the present invention will be described by taking a semiconductor device (TFT substrate) used for a liquid crystal display device as an example.
 図1(a)は本発明の実施形態によるTFT基板100Aの模式的な平面図である。図1(b)は図1(a)のA-A’線に沿ったTFT基板100Aの模式的な断面図である。図1(c)は図1(a)のB-B’線に沿ったTFT基板100Aの模式的な断面図である。図1(d)は図1(a)のC-C’線に沿ったTFT基板100Aの模式的な断面図である。また、図1(a)に示したvは有効開口領域である。 FIG. 1A is a schematic plan view of a TFT substrate 100A according to an embodiment of the present invention. FIG. 1B is a schematic cross-sectional view of the TFT substrate 100A taken along the line A-A ′ of FIG. FIG. 1C is a schematic cross-sectional view of the TFT substrate 100A along the line B-B ′ of FIG. FIG. 1D is a schematic cross-sectional view of the TFT substrate 100A along the line C-C ′ of FIG. Further, v shown in FIG. 1A is an effective opening area.
 図1(a)および図1(b)に示すように、TFT基板100Aは、基板2と、基板2上に形成されたゲート電極4および画素電極3と、ゲート電極4および画素電極3上に形成された絶縁層5と、絶縁層5を介してゲート電極4と重なる半導体層6と、半導体層6に電気的に接続されたソース電極7sおよびドレイン電極7dとを有する。ドレイン電極7dは、絶縁層5を含む絶縁層を介して画素電極3上に配置され、絶縁層に形成された開口部5u内で画素電極3に接続されている。なお、TFT基板100Aにおいて、絶縁層5はゲート絶縁層として機能する。 As shown in FIGS. 1A and 1B, the TFT substrate 100A includes a substrate 2, a gate electrode 4 and a pixel electrode 3 formed on the substrate 2, and a gate electrode 4 and the pixel electrode 3. The insulating layer 5 formed, the semiconductor layer 6 overlapping the gate electrode 4 with the insulating layer 5 interposed therebetween, and the source electrode 7s and the drain electrode 7d electrically connected to the semiconductor layer 6 are provided. The drain electrode 7d is disposed on the pixel electrode 3 through an insulating layer including the insulating layer 5, and is connected to the pixel electrode 3 in an opening 5u formed in the insulating layer. In the TFT substrate 100A, the insulating layer 5 functions as a gate insulating layer.
 TFT基板100Aでは、ドレイン電極7dと画素電極3とを接続させるコンタクトホール(開口部5u)を絶縁層(ゲート絶縁層)5に形成しており、その上に形成される例えば保護層8がほぼ平坦に形成される。一方、特許文献1に開示されている液晶表装置では、層間絶縁層にコンタクトホールが形成されており、このコンタクトホール付近は平坦ではない。このため、特許文献1に開示されている液晶表示装置では、コンタクトホールの形状が液晶層の液晶配向に影響し表示不良となり得る。これに対し、TFT基板100Aを用いて液晶表示装置を製造した場合、コンタクトホール(開口部5u)上の例えば保護層8がほぼ平坦に形成されるので、コンタクトホールの形状が液晶配向に影響しにくく、表示不良を起こしにくい。 In the TFT substrate 100A, a contact hole (opening 5u) for connecting the drain electrode 7d and the pixel electrode 3 is formed in the insulating layer (gate insulating layer) 5, and for example, the protective layer 8 formed thereon is almost formed. It is formed flat. On the other hand, in the liquid crystal surface device disclosed in Patent Document 1, a contact hole is formed in the interlayer insulating layer, and the vicinity of the contact hole is not flat. For this reason, in the liquid crystal display device disclosed in Patent Document 1, the shape of the contact hole affects the liquid crystal alignment of the liquid crystal layer, which may cause display defects. On the other hand, when a liquid crystal display device is manufactured using the TFT substrate 100A, for example, the protective layer 8 on the contact hole (opening 5u) is formed almost flat, so that the shape of the contact hole affects the liquid crystal alignment. It is difficult to cause display defects.
 さらに、TFT基板100Aは、ソース電極7sおよびドレイン電極7dの上に形成された保護層8と、保護層8を介して画素電極3の少なくとも一部と重なる共通電極9とを有する。これにより、補助容量を形成し得る。また、画素電極3および共通電極9は透明な電極材料(例えば、ITO(Indium Tin Oxide))から形成すると、画素の開口率の低下を抑制し得る。透明な材料から形成された補助容量を透明補助容量という場合がある。なお、上述した開口部5uは共通電極9よりも基板2側にある。 Furthermore, the TFT substrate 100A has a protective layer 8 formed on the source electrode 7s and the drain electrode 7d, and a common electrode 9 that overlaps at least a part of the pixel electrode 3 with the protective layer 8 interposed therebetween. Thereby, an auxiliary capacity can be formed. Further, when the pixel electrode 3 and the common electrode 9 are formed of a transparent electrode material (for example, ITO (Indium Tin Oxide)), it is possible to suppress a decrease in the aperture ratio of the pixel. An auxiliary capacitor formed of a transparent material may be referred to as a transparent auxiliary capacitor. Note that the above-described opening 5u is closer to the substrate 2 than the common electrode 9 is.
 図1(a)および図1(c)に示すように、TFT基板100Aは、対応する画素のソース電極7sに電気的に接続されたソース配線7(m)および7(m+1)を有する。ソース配線7(m)および7(m+1)は、絶縁層5の上に形成されている。 As shown in FIGS. 1A and 1C, the TFT substrate 100A has source wirings 7 (m) and 7 (m + 1) electrically connected to the source electrode 7s of the corresponding pixel. Source wirings 7 (m) and 7 (m + 1) are formed on the insulating layer 5.
 さらに、図1(a)および図1(d)に示すように、TFT基板100Aでは、隣接する画素の画素電極3(m)および3(m+1)の間にゲート配線14が形成されている。画素電極3(m)および3(m+1)ならびにゲート配線14はいずれも基板2と絶縁層5との間に形成されている。さらに、共通電極9は画素ごとに分離されていない。 Furthermore, as shown in FIGS. 1A and 1D, in the TFT substrate 100A, the gate wiring 14 is formed between the pixel electrodes 3 (m) and 3 (m + 1) of the adjacent pixels. The pixel electrodes 3 (m) and 3 (m + 1) and the gate wiring 14 are all formed between the substrate 2 and the insulating layer 5. Furthermore, the common electrode 9 is not separated for each pixel.
 半導体層6は酸化物半導体層であることが好ましい。上述したように酸化物半導体層を有するTFTは高い移動度を有し、TFTの大きさを小さくし得、画素の開口率の低下を抑制し得る。 The semiconductor layer 6 is preferably an oxide semiconductor layer. As described above, a TFT including an oxide semiconductor layer has high mobility, can reduce the size of the TFT, and can suppress a decrease in the aperture ratio of the pixel.
 次に、TFT基板100Aの他の利点を図16に示す比較例のTFT基板200と対比させながら説明する。比較例のTFT基板200において、TFT基板100Aと共通する構成要素には同じ参照符号を付し、説明の重複を避ける。図16(a)は比較例のTFT基板200の模式的な平面図である。図16(b)は図16(a)のA-A’線に沿った模式的な断面図である。図16(c)は図16(a)のB-B’線に沿った模式的な断面図である。図16(d)は図16(a)のC-C’線に沿った模式的な断面図である。 Next, another advantage of the TFT substrate 100A will be described in comparison with the TFT substrate 200 of the comparative example shown in FIG. In the TFT substrate 200 of the comparative example, the same reference numerals are assigned to the same components as those of the TFT substrate 100A to avoid duplication of description. FIG. 16A is a schematic plan view of a TFT substrate 200 of a comparative example. FIG. 16B is a schematic cross-sectional view along the line A-A ′ of FIG. FIG. 16C is a schematic cross-sectional view along the line B-B ′ in FIG. FIG. 16D is a schematic cross-sectional view along the line C-C ′ in FIG.
 以下に、TFT基板100AとTFT基板200との相違点を説明する。 Hereinafter, differences between the TFT substrate 100A and the TFT substrate 200 will be described.
 TFT基板200では、図16(b)に示すように絶縁層5の上に画素電極3(m)が形成され、画素電極3(m)の上面の一部と接するようにドレイン電極7dが形成されている。つまり、TFT基板200は、絶縁層5に形成された開口部5uを有しておらず、開口部5u内でドレイン電極7dと画素電極3(m)とが接続されていない。 In the TFT substrate 200, as shown in FIG. 16B, the pixel electrode 3 (m) is formed on the insulating layer 5, and the drain electrode 7d is formed so as to be in contact with a part of the upper surface of the pixel electrode 3 (m). Has been. That is, the TFT substrate 200 does not have the opening 5u formed in the insulating layer 5, and the drain electrode 7d and the pixel electrode 3 (m) are not connected in the opening 5u.
 さらに、図16(c)に示すように、TFT基板200では、ゲート絶縁層5上にソース配線7(m)および7(m+1)と画素電極3(m)とが形成され、隣接ソース配線7(m)および7(m+1)の間に画素電極3(m)が形成されている。 Further, as shown in FIG. 16C, in the TFT substrate 200, the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 (m) are formed on the gate insulating layer 5, and the adjacent source wiring 7 A pixel electrode 3 (m) is formed between (m) and 7 (m + 1).
 さらに、図16(d)に示すように、TFT基板200では、ゲート配線14上に形成された絶縁層5の上に画素電極3(m)および3(m+1)が形成されている。 Further, as shown in FIG. 16D, in the TFT substrate 200, the pixel electrodes 3 (m) and 3 (m + 1) are formed on the insulating layer 5 formed on the gate wiring.
 図1(d)に示したゲート配線14と画素電極3(m)および3(m+1)間の距離、ならびに、図16(c)に示した画素電極3とソース配線7(m)および7(m+1)との間の距離は、それぞれ5μm以上である。これは、各電極および配線が同一レイアー内に形成されているので、この間隔が5μm以上無いと各電極間で短絡する可能性があるからである。 The distance between the gate wiring 14 and the pixel electrodes 3 (m) and 3 (m + 1) shown in FIG. 1D and the pixel electrode 3 and the source wirings 7 (m) and 7 (7) shown in FIG. m + 1) is 5 μm or more. This is because each electrode and wiring are formed in the same layer, and if this distance is not 5 μm or more, there is a possibility of short-circuiting between the electrodes.
 一方、図1(c)に示した画素電極3とソース配線7(m)および7(m+1)や、図16(d)に示したゲート配線14と画素電極3(m)および3(m+1)のように、異なるレイヤーに各電極および配線が形成されている場合、各電極と配線とが最大約1μmぐらい重なって形成されても、各電極間で短絡する可能性は低い。 On the other hand, the pixel electrode 3 and source wirings 7 (m) and 7 (m + 1) shown in FIG. 1C and the gate wiring 14 and pixel electrodes 3 (m) and 3 (m + 1) shown in FIG. As described above, when the electrodes and the wirings are formed in different layers, even if the electrodes and the wirings are formed to overlap each other by about 1 μm at the maximum, the possibility of short-circuiting between the electrodes is low.
 つまり、電極および配線を異なるレイアー内に形成した方が、同一レイアー内に形成するよりも、電極および配線間の距離をあまり大きくすることなく形成できる。 That is, it is possible to form the electrodes and the wirings in different layers without making the distance between the electrodes and the wirings much larger than in the same layer.
 一般的に、例えば液晶表示装置の1画素は、ソース配線7(m)および7(m+1)の延設方向と平行な方向(列方向)の長さは、列方向と垂直な方向(行方向)の長さよりも長い(例えば、列方向の長さ:行方向の長さ=3:1)。 In general, for example, one pixel of a liquid crystal display device has a length in a direction (column direction) parallel to the extending direction of the source lines 7 (m) and 7 (m + 1) in a direction perpendicular to the column direction (row direction). ) (For example, length in the column direction: length in the row direction = 3: 1).
 従って、ソース配線7(m)および7(m+1)と画素電極3との間の距離が小さくなるように各電極および配線を形成した方が、ゲート配線14と画素電極3(m)および3(m+1)との間の距離が小さくなるように各電極および配線を形成するよりも、画素の有効開口領域vの面積を大きくすることに対する効果が大きく、画素の開口率の向上に対する効果が大きい。 Therefore, the gate wiring 14 and the pixel electrodes 3 (m) and 3 (3) are formed by forming each electrode and wiring so that the distance between the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 is small. The effect of increasing the area of the effective opening region v of the pixel is greater than that of forming each electrode and wiring so that the distance to m + 1) is reduced, and the effect of improving the aperture ratio of the pixel is large.
 図1(c)に示したように、TFT基板100Aでは、ソース配線7(m)および7(m+1)と画素電極3とが異なるレイアーに形成されており、各配線および電極間の距離が大きくならないように各配線および電極を形成できるので、TFT基板200よりも有効開口領域v(図1(a)参照)を大きくでき、画素の開口率を大きくできる。 As shown in FIG. 1C, in the TFT substrate 100A, the source wirings 7 (m) and 7 (m + 1) and the pixel electrode 3 are formed in different layers, and the distance between each wiring and the electrode is large. Since each wiring and electrode can be formed so as not to become defective, the effective opening area v (see FIG. 1A) can be made larger than that of the TFT substrate 200, and the aperture ratio of the pixel can be increased.
 次に、TFT基板100Aの各構成要素を詳細に説明する。 Next, each component of the TFT substrate 100A will be described in detail.
 基板2は、典型的には透明基板であり、例えばガラス基板である。ガラス基板の他、プラスチック基板を用いることもできる。プラスチック基板は、熱硬化性樹脂または熱可塑性樹脂で形成された基板、さらには、これらの樹脂と無機繊維(例えば、ガラス繊維、ガラス繊維の不織布)との複合基板を含む。耐熱性を有する樹脂材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、アクリル樹脂、ポリイミド樹脂を例示することができる。また、反射型液晶表示装置に用いる場合には、基板2として、シリコン基板を用いることもできる。 The substrate 2 is typically a transparent substrate, for example, a glass substrate. In addition to a glass substrate, a plastic substrate can also be used. The plastic substrate includes a substrate formed of a thermosetting resin or a thermoplastic resin, and a composite substrate of these resins and inorganic fibers (for example, glass fibers or glass fiber nonwoven fabrics). Examples of the heat-resistant resin material include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), acrylic resin, and polyimide resin. In addition, when used in a reflective liquid crystal display device, a silicon substrate can be used as the substrate 2.
 画素電極3(m)、3(m+1)および共通電極9は、それぞれ例えば透明導電膜(例えばITO(Indium Tin Oxide)、またはIZO(登録商標)(Indium Zinc Oxide)膜)から形成されている。画素電極3(m)、3(m+1)および共通電極9の厚さは、それぞれ例えば20nm以上200nm以下が好ましい。画素電極3(m)、3(m+1)および共通電極9の厚さはそれぞれ例えば約100nmである。 The pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 are each formed of, for example, a transparent conductive film (for example, an ITO (Indium Tin Oxide) or IZO (registered trademark) (Indium Zinc Oxide) film). The thicknesses of the pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 are preferably 20 nm or more and 200 nm or less, respectively. Each of the pixel electrodes 3 (m), 3 (m + 1) and the common electrode 9 has a thickness of about 100 nm, for example.
 ゲート電極4は、ゲート配線14に電気的に接続されている。ゲート電極4およびゲート配線14は、例えば、上層がW(タングステン)層であり、下層がTaN(窒化タンタル)層である積層構造を有する。このほか、ゲート電極4およびゲート配線14は、Mo(モリブデン)/Al(アルミニウム)/Moから形成された積層構造を有してもよく、単層構造、2層構造、4層以上の積層構造を有してもよい。さらに、ゲート電極4およびゲート配線14は、Cu(銅)、Al、Cr(クロム)、Ta(タンタル)、Ti(チタン)、MoおよびWから選ばれた元素、またはこれらの元素を成分とする合金もしくは金属窒化物などから形成されてもよい。ゲート電極4およびゲート配線14のそれぞれの厚さは約50nm以上600nm以下が好ましい。ゲート電極4、およびゲート配線14のそれぞれの厚さは例えば約420nmである。 The gate electrode 4 is electrically connected to the gate wiring 14. The gate electrode 4 and the gate wiring 14 have, for example, a stacked structure in which an upper layer is a W (tungsten) layer and a lower layer is a TaN (tantalum nitride) layer. In addition, the gate electrode 4 and the gate wiring 14 may have a laminated structure formed of Mo (molybdenum) / Al (aluminum) / Mo, and have a single-layer structure, a two-layer structure, a four-layer structure or more. You may have. Further, the gate electrode 4 and the gate wiring 14 are composed of an element selected from Cu (copper), Al, Cr (chromium), Ta (tantalum), Ti (titanium), Mo and W, or these elements. You may form from an alloy or metal nitride. The thickness of each of the gate electrode 4 and the gate wiring 14 is preferably about 50 nm to 600 nm. Each thickness of the gate electrode 4 and the gate wiring 14 is, for example, about 420 nm.
 ゲート絶縁層5は、例えばSiO2(酸化シリコン)、SiNx(窒化シリコン)、SiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23(酸化アルミニウム)または酸化タンタル(Ta25)から形成された単層または積層を用いることができる。ゲート絶縁層5の厚さは、例えば約50nm以上600nm以下である。なお、低い温度でゲートリーク電流の少ない緻密なゲート絶縁層5を形成させるには、Ar(アルゴン)などの希ガスを用いながらゲート絶縁層5を形成するとよい。 The gate insulating layer 5 is made of, for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al A single layer or a laminate formed of 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used. The thickness of the gate insulating layer 5 is, for example, not less than about 50 nm and not more than 600 nm. In order to form the dense gate insulating layer 5 with low gate leakage current at a low temperature, the gate insulating layer 5 is preferably formed using a rare gas such as Ar (argon).
 半導体層6は例えば酸化物半導体層であることが好ましい。半導体層6を酸化物半導体層から形成すると、シリコン系半導体層よりも低温で半導体層6を形成できるので、例えばプラスチック基板上にも半導体層6を形成でき、フレキシブルディスプレイなどに応用できる。酸化物半導体層は例えばIn(インジウム)、Ga(ガリウム)およびZn(亜鉛)を1:1:1の割合で含むIn-Ga-Zn-O系半導体膜から形成されている。In、GおよびZnの割合は適宜選択され得る。In-Ga-Zn-O系半導体膜の代わりに、他の酸化物半導体膜を用いて半導体層6を形成してもよい。例えばZn-O系半導体(ZnO)膜、In-Zn-O系半導体(IZO)膜、Zn-Ti-O系半導体(ZTO)膜、Cd-Ge-O系半導体膜、Cd-Pb-O系半導体膜、CdO(酸化カドニウム)、Mg-Zn-O系半導体膜などを用いてもよい。さらに、酸化物半導体層として、1族元素、13族元素、14族元素、15族元素および17族元素等のうち一種、又は複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態、多結晶状態又は非晶質状態と多結晶状態が混在する微結晶状態のもの、又は何も不純物元素が添加されていないものを用いることができる。半導体層6の厚さは、例えば約30nm以上100nm以下が好ましい。半導体層6の厚さは例えば約50nmである。なお、半導体層6は、アモルファスシリコン(a-Si)層、ポリシリコン(p-Si)層、微結晶シリコン(μ-Si)層などのシリコン系半導体層であってもよい。 The semiconductor layer 6 is preferably an oxide semiconductor layer, for example. When the semiconductor layer 6 is formed of an oxide semiconductor layer, the semiconductor layer 6 can be formed at a lower temperature than the silicon-based semiconductor layer. Therefore, the semiconductor layer 6 can be formed on a plastic substrate, for example, and can be applied to a flexible display. The oxide semiconductor layer is formed of, for example, an In—Ga—Zn—O based semiconductor film containing In (indium), Ga (gallium), and Zn (zinc) at a ratio of 1: 1: 1. The ratio of In, G, and Zn can be selected as appropriate. The semiconductor layer 6 may be formed using another oxide semiconductor film instead of the In—Ga—Zn—O-based semiconductor film. For example, Zn—O based semiconductor (ZnO) film, In—Zn—O based semiconductor (IZO) film, Zn—Ti—O based semiconductor (ZTO) film, Cd—Ge—O based semiconductor film, Cd—Pb—O based film A semiconductor film, CdO (cadmium oxide), Mg—Zn—O based semiconductor film, or the like may be used. Further, as an oxide semiconductor layer, an amorphous ZnO film to which one or a plurality of impurity elements of Group 1 element, Group 13 element, Group 14 element, Group 15 element, Group 17 element and the like are added is added. A state, a polycrystalline state, a microcrystalline state in which an amorphous state and a polycrystalline state are mixed, or a state in which no impurity element is added can be used. The thickness of the semiconductor layer 6 is preferably about 30 nm to 100 nm, for example. The thickness of the semiconductor layer 6 is about 50 nm, for example. The semiconductor layer 6 may be a silicon-based semiconductor layer such as an amorphous silicon (a-Si) layer, a polysilicon (p-Si) layer, or a microcrystalline silicon (μ-Si) layer.
 ソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)は、例えば、それぞれ下層と下層の上に形成された上層とを有する積層構造を有する。下層と上層とはそれぞれ異なる金属から形成されている。下層は例えばMoN(窒化モリブデン)から形成され、上層は例えばMoから形成されている。特に、画素電極3(m)が透明導電膜(例えば、ITO膜)から形成されている場合、画素電極3(m)と接する下層は高融点金属の窒化物から形成することが好ましい。これにより、例えば、透明導電膜から形成された画素電極3(m)とドレイン電極7dとの密着性が向上するとともに、画素電極3(m)とドレイン電極7dとの接触抵抗を小さくできる。さらに、画素電極3(m)形成後の製造工程の影響による画素電極3(m)表面の状態の変化を防ぎ得る。このほか、ソース電極7s、ドレイン電極7dは、Mo/Al/Moから形成された積層構造を有してもよく、単層構造、2層構造または4層以上の積層構造を有してもよい。さらに、ソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)は、Al、Cr、Ta、Ti、MoおよびWから選ばれた元素、またはこれらの元素を成分とする合金もしくは金属窒化物などから形成されてもよい。ソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)の厚さは、それぞれ約50nm以上600nm以下が好ましい。ソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)の厚さは例えば約350nmである。 The source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) have, for example, a stacked structure having a lower layer and an upper layer formed on the lower layer. The lower layer and the upper layer are made of different metals. The lower layer is made of, for example, MoN (molybdenum nitride), and the upper layer is made of, for example, Mo. In particular, when the pixel electrode 3 (m) is formed from a transparent conductive film (for example, an ITO film), the lower layer in contact with the pixel electrode 3 (m) is preferably formed from a refractory metal nitride. Thereby, for example, the adhesion between the pixel electrode 3 (m) formed from the transparent conductive film and the drain electrode 7d is improved, and the contact resistance between the pixel electrode 3 (m) and the drain electrode 7d can be reduced. Furthermore, it is possible to prevent a change in the state of the surface of the pixel electrode 3 (m) due to the influence of the manufacturing process after the formation of the pixel electrode 3 (m). In addition, the source electrode 7s and the drain electrode 7d may have a laminated structure formed of Mo / Al / Mo, and may have a single-layer structure, a two-layer structure, or a laminated structure of four or more layers. . Further, the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) are composed of an element selected from Al, Cr, Ta, Ti, Mo, and W, or an alloy containing these elements as components. It may be formed from a metal nitride or the like. The thicknesses of the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) are each preferably about 50 nm to 600 nm. The thickness of the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1) is, for example, about 350 nm.
 保護層8は、例えばSiNxから形成されている。保護層8はソース電極7s、ドレイン電極7d、ソース配線7(m)および7(m+1)の上に形成されている。保護層8は例えば共通電極9と画素電極3(m)との間に形成されている。透明な共通電極9および画素電極3(m)ならびに透明な保護層8から補助容量を形成すると、TFT基板100Aを表示パネルに用いたとき、高い開口率を有する表示パネルを製造できる。保護層8の厚さは、例えば約50nm以上300nm以下が好ましい。保護層8の厚さは例えば約200nmである。このほか保護層8は、例えばSiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23(酸化アルミニウム)またはTa25(酸化タンタル)から形成され得る。 The protective layer 8 is made of, for example, SiN x . The protective layer 8 is formed on the source electrode 7s, the drain electrode 7d, and the source wirings 7 (m) and 7 (m + 1). The protective layer 8 is formed between the common electrode 9 and the pixel electrode 3 (m), for example. When an auxiliary capacitor is formed from the transparent common electrode 9 and the pixel electrode 3 (m) and the transparent protective layer 8, a display panel having a high aperture ratio can be manufactured when the TFT substrate 100A is used for the display panel. The thickness of the protective layer 8 is preferably about 50 nm to 300 nm, for example. The thickness of the protective layer 8 is about 200 nm, for example. In addition, the protective layer 8 is made of, for example, SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al 2 O 3 (aluminum oxide) or Ta 2 O 5 ( Tantalum oxide).
 TFT基板100Aは、例えば、Fringe Field Switching(FFS)モードの液晶表示装置に用いられる。このとき、下層の画素電極には表示信号電圧が供給され、上層の共通電極9には共通電圧または対向電圧が供給される。共通電極9には、少なくとも1以上のスリット19が設けられる(図1(a)および図1(c)を参照)。 The TFT substrate 100A is used, for example, in a fringe field switching (FFS) mode liquid crystal display device. At this time, the display signal voltage is supplied to the lower pixel electrode, and the common voltage or the counter voltage is supplied to the upper common electrode 9. The common electrode 9 is provided with at least one or more slits 19 (see FIGS. 1A and 1C).
 次に、図2および図3を参照しながらTFT基板100Aの製造方法の一例を説明する。図2は、TFT基板100Aの製造方法を説明するためのブロック図である。図3(a)~図3(f)は、TFT基板100Aの製造方法を説明するための模式的な断面図である。 Next, an example of a manufacturing method of the TFT substrate 100A will be described with reference to FIGS. FIG. 2 is a block diagram for explaining a manufacturing method of the TFT substrate 100A. FIG. 3A to FIG. 3F are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100A.
 図2に示すように、TFT基板100Aの製造方法は、画素電極形成工程PX、ゲート電極形成工程GT、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 2, the manufacturing method of the TFT substrate 100A includes a pixel electrode forming step PX, a gate electrode forming step GT, a gate insulating layer / semiconductor layer forming step GI / PS, a source / drain electrode forming step SD, and a protective layer forming. A process PAS and a common electrode formation process CT are provided, and the process proceeds in this order.
 図3(a)~図3(f)を参照しながら具体的な製造工程を説明する。なお、図3(a)~図3(f)に示す断面図は、図1(b)に示した断面図に対応する。 A specific manufacturing process will be described with reference to FIGS. 3 (a) to 3 (f). Note that the cross-sectional views shown in FIGS. 3A to 3F correspond to the cross-sectional view shown in FIG.
 図3(a)に示すように、画素電極形成工程PXでは、基板2上に例えばスパッタ法で不図示の導電膜(例えば、ITO膜などの透明導電膜)を形成した後、フォトリソグラフィ法およびウェットエッチング法などでこの導電膜をパターニングして、画素電極3を形成する。なお、画素電極3がパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 As shown in FIG. 3A, in the pixel electrode formation step PX, a conductive film (not shown) (for example, a transparent conductive film such as an ITO film) is formed on the substrate 2 by sputtering, for example, The conductive film is patterned by wet etching or the like to form the pixel electrode 3. In addition, after the pixel electrode 3 is patterned, the resist (not shown) used for patterning is peeled off.
 次に、図3(b)に示すように、ゲート電極形成工程GTでは、基板2上に例えばスパッタ法で導電膜を形成した後、フォトリソグラフィ法およびウェットまたはドライエッチング法などでこの導電膜をパターニングして、ゲート電極4を形成する。なお、ゲート電極4は画素電極3と電気的に接続されないように形成される。また、ゲート電極4がパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 Next, as shown in FIG. 3B, in the gate electrode formation step GT, after forming a conductive film on the substrate 2 by, for example, sputtering, the conductive film is formed by photolithography, wet or dry etching, or the like. The gate electrode 4 is formed by patterning. Note that the gate electrode 4 is formed so as not to be electrically connected to the pixel electrode 3. Further, after the gate electrode 4 is patterned, the resist (not shown) used for patterning is peeled off.
 次に、図3(c)に示すように、ゲート絶縁層/半導体層形成工程GI/PSでは、ゲート電極4および画素電極3上に、不図示の絶縁膜を例えばCVD(Chemical Vapor Deposition)法などで形成し、フォトリソグラフィ法およびドライエッチング法などでこの絶縁膜をパターニングして、絶縁層5を形成する。絶縁層5には、画素電極3の一部を露出する開口部5uが形成される。また、絶縁層5がパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 Next, as shown in FIG. 3C, in the gate insulating layer / semiconductor layer forming step GI / PS, an insulating film (not shown) is formed on the gate electrode 4 and the pixel electrode 3 by, for example, a CVD (Chemical Vapor Deposition) method. The insulating layer 5 is formed by patterning the insulating film by a photolithography method, a dry etching method, or the like. In the insulating layer 5, an opening 5 u that exposes a part of the pixel electrode 3 is formed. Further, after the insulating layer 5 is patterned, the resist (not shown) used for patterning is peeled off.
 次に、絶縁層5上に、不図示の半導体膜(例えば、In-Ga-Zn-O系半導体膜)を例えばスパッタ法などで形成し、フォトリソグラフィ法およびドライエッチング法などでこの半導体膜をパターニングして、半導体層6を形成する。半導体層6は、絶縁層5を介してゲート電極4と重なるように形成される。また、半導体層6がパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 Next, a semiconductor film (not shown) (for example, an In—Ga—Zn—O-based semiconductor film) is formed on the insulating layer 5 by, for example, a sputtering method, and this semiconductor film is formed by a photolithography method, a dry etching method, or the like. The semiconductor layer 6 is formed by patterning. The semiconductor layer 6 is formed so as to overlap the gate electrode 4 with the insulating layer 5 interposed therebetween. Further, after the semiconductor layer 6 is patterned, the resist (not shown) used for patterning is peeled off.
 次に、図3(d)に示すように、ソース・ドレイン電極形成工程SDでは、半導体層6上に不図示の導電膜を例えばスパッタ法にて形成し、フォトリソグラフィ法およびウェットエッチング法などによりこの導電膜をパターニングして、ソース電極7sおよびドレイン電極7dを形成する。また、ソース電極7sおよびドレイン電極7dがパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 Next, as shown in FIG. 3D, in the source / drain electrode formation step SD, a conductive film (not shown) is formed on the semiconductor layer 6 by, for example, sputtering, and then by photolithography or wet etching. The conductive film is patterned to form the source electrode 7s and the drain electrode 7d. Further, after the source electrode 7s and the drain electrode 7d are patterned, the resist (not shown) used for patterning is peeled off.
 ソース電極7sおよびドレイン電極7dは、半導体層6に電気的に接続される。さらに、ドレイン電極7dは開口部5u内で画素電極3に接続される。 The source electrode 7s and the drain electrode 7d are electrically connected to the semiconductor layer 6. Further, the drain electrode 7d is connected to the pixel electrode 3 in the opening 5u.
 次に、図3(e)に示すように、保護層形成工程PASでは、ソース電極7sおよびドレイン電極7d上に例えばCVD法で不図示の絶縁膜を形成し、フォトリソグラフィ法およびドライエッチング法などによりこの絶縁膜をパターニングして、保護層8を形成する。また、保護層8がパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 Next, as shown in FIG. 3E, in the protective layer forming process PAS, an insulating film (not shown) is formed on the source electrode 7s and the drain electrode 7d by, for example, a CVD method, and a photolithography method, a dry etching method, or the like. Thus, this insulating film is patterned to form the protective layer 8. Moreover, after the protective layer 8 is patterned, the resist (not shown) used for patterning is peeled off.
 次に、図3(f)に示すように、共通電極形成工程CTでは、保護層8上に例えばスパッタ法で不図示の導電膜(例えば、透明導電膜)を形成し、フォトリソグラフィ法およびウェットエッチング法などによりこの導電膜をパターニングして、共通電極9を形成する。また、共通電極9がパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 Next, as shown in FIG. 3F, in the common electrode formation step CT, a conductive film (not shown) (for example, a transparent conductive film) is formed on the protective layer 8 by sputtering, for example, and photolithography and wet processing are performed. The conductive film is patterned by an etching method or the like to form the common electrode 9. Further, after the common electrode 9 is patterned, the resist (not shown) used for patterning is peeled off.
 共通電極9は、絶縁層5および保護層8を介して画素電極3の一部と重なるように形成される。 The common electrode 9 is formed so as to overlap a part of the pixel electrode 3 with the insulating layer 5 and the protective layer 8 interposed therebetween.
 次に、図4を参照しながら本発明の他の実施形態によるTFT基板100Bを説明する。TFT基板100Bの平面図は図1(a)を参照し、TFT基板100Bと共通する断面図である図1(c)も参照する。図4は図1(a)のA-A’線に沿った模式的な断面図である。TFT基板100Aと共通する構成要素には同じ参照符号を付し、説明の重複を避ける。 Next, a TFT substrate 100B according to another embodiment of the present invention will be described with reference to FIG. 1A is referred to for a plan view of the TFT substrate 100B, and FIG. 1C, which is a cross-sectional view common to the TFT substrate 100B, is also referred to. FIG. 4 is a schematic cross-sectional view taken along the line A-A ′ of FIG. Constituent elements common to the TFT substrate 100A are denoted by the same reference numerals to avoid duplication of description.
 図4に示すように、TFT基板100Bは、画素電極3と同一の導電膜から形成された導電層3aの上にゲート電極4(およびゲート配線14)が形成されている点で、TFT基板100Aと異なる。 As shown in FIG. 4, the TFT substrate 100B has a TFT substrate 100A in that a gate electrode 4 (and a gate wiring 14) is formed on a conductive layer 3a formed of the same conductive film as the pixel electrode 3. And different.
 詳細な説明は後述するが、TFT基板100Bのような構成とすると、ゲート電極4と画素電極3とを1つのフォトマスクから形成することができるので、フォトマスクの数を削減でき製造コストを削減し得る。 Although a detailed description will be given later, when the structure is the same as that of the TFT substrate 100B, the gate electrode 4 and the pixel electrode 3 can be formed from one photomask, so the number of photomasks can be reduced and the manufacturing cost can be reduced. Can do.
 次に、TFT基板100Bの製造方法を説明する。 Next, a method for manufacturing the TFT substrate 100B will be described.
 本発明の実施形態によるTFT基板100Bの製造方法は、基板2を用意する工程(a)と、基板2上に第1導電膜を形成し、この第1導電膜の上に第2導電膜を形成する工程(b)とを有する。さらに、TFT基板100Bの製造方法は、ハーフトーン露光法により、1つのフォトマスクから第1導電膜および第2導電膜をパターニングすることにより、第1導電膜から導電層3aと画素電極3とを形成し、導電層3aの上に第2導電膜からゲート電極4を形成する工程(c)を有する。さらに、TFT基板100Bの製造方法は、ゲート電極4および画素電極3の上に、画素電極3の一部を露出する開口部5uを有する絶縁層5を形成する工程(d)と、絶縁層5を介してゲート電極4と重なる半導体層6を形成する工程(e)とを有する。さらに、TFT基板100Bの製造方法は、半導体層6に電気的に接続されるソース電極7sおよびドレイン電極7dを形成する工程であって、絶縁層5の上に形成され、開口部5u内で画素電極3に接続されるドレイン電極7dを形成する工程を含む工程(f)とを包含する。 In the manufacturing method of the TFT substrate 100B according to the embodiment of the present invention, the step (a) of preparing the substrate 2, the first conductive film is formed on the substrate 2, and the second conductive film is formed on the first conductive film. Forming (b). Further, the TFT substrate 100B is manufactured by patterning the first conductive film and the second conductive film from one photomask by a halftone exposure method, thereby forming the conductive layer 3a and the pixel electrode 3 from the first conductive film. Forming (c) a step of forming the gate electrode 4 from the second conductive film on the conductive layer 3a. Further, the manufacturing method of the TFT substrate 100B includes a step (d) of forming an insulating layer 5 having an opening 5u exposing a part of the pixel electrode 3 on the gate electrode 4 and the pixel electrode 3, and the insulating layer 5 (E) forming a semiconductor layer 6 overlapping with the gate electrode 4 through the step. Further, the manufacturing method of the TFT substrate 100B is a step of forming a source electrode 7s and a drain electrode 7d that are electrically connected to the semiconductor layer 6, and is formed on the insulating layer 5 and within the opening 5u. And a step (f) including a step of forming a drain electrode 7d connected to the electrode 3.
 詳細な説明は後述するが、このようなTFT基板100Bの製造方法は、製造コストを増大させることなくTFT基板100Bを製造し得る。 Although detailed description will be given later, such a manufacturing method of the TFT substrate 100B can manufacture the TFT substrate 100B without increasing the manufacturing cost.
 さらに、TFT基板100Bの製造方法は、ソース電極7sおよびドレイン電極7dの上に保護層8を形成する工程(g)と、保護層8を介して画素電極3の少なくとも一部と重なる共通電極9を形成する工程(h)とを包含することが好ましい。 Furthermore, the manufacturing method of the TFT substrate 100B includes the step (g) of forming the protective layer 8 on the source electrode 7s and the drain electrode 7d, and the common electrode 9 that overlaps at least a part of the pixel electrode 3 with the protective layer 8 interposed therebetween. It is preferable to include the process (h) of forming.
 次に、図5および図6を参照しながら、TFT基板100Bの製造方法の一例を詳細に説明する。図5はTFT基板100Bの製造方法の一例を説明するためのブロック図である。図6(a)~図6(e)は、TFT基板100Bの製造方法の一例を説明するための模式的な断面図であり、図4に対応する。 Next, an example of a manufacturing method of the TFT substrate 100B will be described in detail with reference to FIGS. FIG. 5 is a block diagram for explaining an example of a manufacturing method of the TFT substrate 100B. 6A to 6E are schematic cross-sectional views for explaining an example of the manufacturing method of the TFT substrate 100B, and correspond to FIG.
 図5に示すように、TFT基板100Bの製造方法は、ゲート電極/画素電極形成工程GT/PX、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 5, the manufacturing method of the TFT substrate 100B includes the gate electrode / pixel electrode forming step GT / PX, the gate insulating layer / semiconductor layer forming step GI / PS, the source / drain electrode forming step SD, and the protective layer forming step. It has PAS and common electrode formation process CT, and the process proceeds in this order.
 ゲート電極/画素電極形成工程GT/PXを図6(a)~図6(e)を参照しながら説明する。 The gate electrode / pixel electrode formation step GT / PX will be described with reference to FIGS. 6 (a) to 6 (e).
 図6(a)に示すように、基板2上に、スパッタ法などで、第1導電膜(例えば、透明導電膜)3’を形成し、第1導電膜3’の上に第2導電膜4’を形成する。 As shown in FIG. 6A, a first conductive film (for example, a transparent conductive film) 3 ′ is formed on the substrate 2 by sputtering or the like, and a second conductive film is formed on the first conductive film 3 ′. 4 ′ is formed.
 次に、図6(b)に示すように、1つのフォトマスク(ハーフトーンマスク)からハーフトーン露光法により、第2導電膜4’上に、互いに厚さの異なるレジスト膜R1およびR2を所望のパターン形状に形成する。なお、レジスト膜R2の厚さはレジスト膜R1の厚さより大きい。 Next, as shown in FIG. 6B, resist films R1 and R2 having different thicknesses are desired on the second conductive film 4 ′ from one photomask (halftone mask) by a halftone exposure method. The pattern shape is formed. Note that the thickness of the resist film R2 is larger than the thickness of the resist film R1.
 次に、図6(c)に示すように、レジスト膜R1およびR2で覆われていない領域の第1導電膜3’および第2導電膜4’をウェットエッチング法でパターニングする。このパターニングにより、第1導電膜3’から導電層3aと画素電極3とが形成される。さらに、第2導電膜4’からゲート電極4と導電層4’’とが形成される。 Next, as shown in FIG. 6C, the first conductive film 3 'and the second conductive film 4' in the region not covered with the resist films R1 and R2 are patterned by a wet etching method. By this patterning, the conductive layer 3a and the pixel electrode 3 are formed from the first conductive film 3 '. Further, the gate electrode 4 and the conductive layer 4 '' are formed from the second conductive film 4 '.
 次に、図6(d)に示すように、ドライエッチング法によりレジスト膜R1を除去する。また、このドライエッチング法により、レジスト膜R2の一部が削られてレジスト膜R2よりも厚さの小さいレジスト膜R2’が得られる。次に、さらなるドライエッチング法により、導電層4’’を除去する。レジスト膜R2’下のゲート電極4は残ったままである。 Next, as shown in FIG. 6D, the resist film R1 is removed by a dry etching method. In addition, by this dry etching method, a part of the resist film R2 is scraped to obtain a resist film R2 'having a smaller thickness than the resist film R2. Next, the conductive layer 4 ″ is removed by a further dry etching method. The gate electrode 4 below the resist film R2 'remains.
 次に、図6(e)に示すように、レジスト膜R2’を公知の方法で除去する。 Next, as shown in FIG. 6E, the resist film R2 'is removed by a known method.
 この後、図3(c)~図3(f)を参照しながら説明したように、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを経て、図4に示したTFT基板100Bは製造される。 Thereafter, as described with reference to FIGS. 3C to 3F, the gate insulating layer / semiconductor layer forming step GI / PS, the source / drain electrode forming step SD, the protective layer forming step PAS, and the common Through the electrode formation process CT, the TFT substrate 100B shown in FIG. 4 is manufactured.
 上述したように、ゲート電極4と画素電極3とを1枚のフォトマスクから形成できるので、フォトマスクの数を削減でき、製造コストを削減し得る。 As described above, since the gate electrode 4 and the pixel electrode 3 can be formed from one photomask, the number of photomasks can be reduced, and the manufacturing cost can be reduced.
 次に、図7を参照しながら、本発明によるさらに他の実施形態によるTFT基板100Cを説明する。なお、TFT基板100Cの平面図は図1(a)を参照する。図7(a)は図1(a)のA-A’線に沿った模式的な断面図である。図7(b)は図1(b)のB-B’線に沿った模式的な断面図である。 Next, a TFT substrate 100C according to another embodiment of the present invention will be described with reference to FIG. Note that FIG. 1A is referred to for a plan view of the TFT substrate 100C. FIG. 7A is a schematic cross-sectional view taken along the line A-A ′ of FIG. FIG. 7B is a schematic cross-sectional view along the line B-B ′ of FIG.
 図7(a)および図7(b)に示すように、TFT基板100Cはゲート電極4と絶縁層5bとの間に形成された絶縁層5aをさらに有し、画素電極3(m)が絶縁層5aの上に形成されている点で、TFT基板100Aと異なる。なお、TFT基板100Cでは、絶縁層5aと絶縁層5bとでゲート絶縁層5を形成している。 As shown in FIGS. 7A and 7B, the TFT substrate 100C further includes an insulating layer 5a formed between the gate electrode 4 and the insulating layer 5b, and the pixel electrode 3 (m) is insulated. It differs from the TFT substrate 100A in that it is formed on the layer 5a. In the TFT substrate 100C, the gate insulating layer 5 is formed of the insulating layer 5a and the insulating layer 5b.
 絶縁層5aおよび絶縁層5bは、例えばSiO2(酸化シリコン)、SiNx(窒化シリコン)、SiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23(酸化アルミニウム)または酸化タンタル(Ta25)から形成され得る。 The insulating layer 5a and the insulating layer 5b are, for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y). ), Al 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ).
 また、基板2からの不純物などの拡散防止や製造プロセスの処理時間低減のため、下層の絶縁層5aは、SiNx、またはSiNxy(窒化酸化シリコン、x>y)から形成されることが好ましい。シリコン窒化膜から形成された絶縁層はエッチングレートが大きいので、処理時間を短くできる。半導体層6が酸化物半導体層の場合、上層の絶縁層5bは半導体特性の劣化防止の観点から、SiO2またはSiOxy(酸化窒化シリコン、x>y)から形成されることが好ましい。 Further, in order to prevent diffusion of impurities from the substrate 2 and reduce the processing time of the manufacturing process, the lower insulating layer 5a is formed of SiN x or SiN x O y (silicon nitride oxide, x> y). Is preferred. Since the insulating layer formed from the silicon nitride film has a high etching rate, the processing time can be shortened. When the semiconductor layer 6 is an oxide semiconductor layer, the upper insulating layer 5b is preferably formed of SiO 2 or SiO x N y (silicon oxynitride, x> y) from the viewpoint of preventing deterioration of semiconductor characteristics.
 次に、図8および図9を参照しながら、本発明の実施形態によるTFT基板100Cの製造方法の一例を説明する。 Next, an example of a method for manufacturing the TFT substrate 100C according to the embodiment of the present invention will be described with reference to FIGS.
 図8はTFT基板100Cの製造方法を説明するためのブロック図である。図9(a)~図9(g)はTFT基板100Cの製造方法を説明するための模式的な断面図である。なお、図9(a)~図9(g)は図7(a)に対応する。 FIG. 8 is a block diagram for explaining a manufacturing method of the TFT substrate 100C. FIG. 9A to FIG. 9G are schematic cross-sectional views for explaining a manufacturing method of the TFT substrate 100C. 9A to 9G correspond to FIG. 7A.
 図8に示すように、TFT基板100Cの製造方法は、ゲート電極形成工程GT、第1ゲート絶縁層工程GI-1、画素電極形成工程PX、第2ゲート絶縁層/半導体層形成工程GI-2/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 8, the manufacturing method of the TFT substrate 100C includes the gate electrode forming step GT, the first gate insulating layer step GI-1, the pixel electrode forming step PX, and the second gate insulating layer / semiconductor layer forming step GI-2. / PS, source / drain electrode formation step SD, protective layer formation step PAS, and common electrode formation step CT, and the process proceeds in this order.
 次に、図9(a)~図9(g)を参照しながら具体的な製造プロセスを説明する。 Next, a specific manufacturing process will be described with reference to FIGS. 9 (a) to 9 (g).
 図9(a)に示すように、ゲート電極形成工程GTでは、上述した方法でゲート電極4が形成される。 As shown in FIG. 9A, in the gate electrode formation step GT, the gate electrode 4 is formed by the method described above.
 次に、図9(b)に示すように、第1ゲート絶縁層工程GI-1では、ゲート電極4上に、例えばCVD法で不図示の絶縁膜を形成した後、フォトリソグラフィ法およびウェットまたはドライエッチング法などでこの絶縁膜をパターニングして、絶縁層5aを形成する。また、絶縁層5aがパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 Next, as shown in FIG. 9B, in the first gate insulating layer step GI-1, after forming an insulating film (not shown) on the gate electrode 4 by, for example, CVD, photolithography and wet or This insulating film is patterned by a dry etching method or the like to form the insulating layer 5a. Further, after the insulating layer 5a is patterned, the resist (not shown) used for patterning is peeled off.
 次に、図9(c)に示すように、画素電極形成工程PXでは、絶縁層5aの上に上述した方法で画素電極3を形成する。 Next, as shown in FIG. 9C, in the pixel electrode formation step PX, the pixel electrode 3 is formed on the insulating layer 5a by the method described above.
 次に、第2ゲート絶縁層/半導体層形成工程GI-2/PSでは、例えばCVD法などで、絶縁層5aおよび画素電極3上に不図示の絶縁膜を形成し、フォトリソグラフィ法およびドライエッチング法などによりこの絶縁膜をパターニングして、絶縁層5bを形成する。また、絶縁層5bには画素電極3の一部を露出する開口部5uが形成される。また、絶縁層5bがパターニングされた後、パターニングに用いられたレジスト(不図示)は剥離される。 Next, in the second gate insulating layer / semiconductor layer forming step GI-2 / PS, an insulating film (not shown) is formed on the insulating layer 5a and the pixel electrode 3 by, for example, a CVD method, and a photolithography method and dry etching are performed. This insulating film is patterned by a method or the like to form the insulating layer 5b. In addition, an opening 5u that exposes a part of the pixel electrode 3 is formed in the insulating layer 5b. Further, after the insulating layer 5b is patterned, the resist (not shown) used for patterning is peeled off.
 次に、絶縁層5b上に上述した方法で半導体層6を形成する。半導体層6は絶縁層5aおよび5bを介してゲート電極4と重なるように形成される。 Next, the semiconductor layer 6 is formed on the insulating layer 5b by the method described above. The semiconductor layer 6 is formed so as to overlap the gate electrode 4 through the insulating layers 5a and 5b.
 次に、図9(e)~図9(f)に示すソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを経て、ソース電極7s、ドレイン電極7d、保護層8および共通電極9が上述した方法で形成され、TFT基板100Cは製造される。 Next, the source / drain electrode forming step SD, the protective layer forming step PAS and the common electrode forming step CT shown in FIGS. 9 (e) to 9 (f) are performed, and then the source electrode 7s, the drain electrode 7d, the protective layer 8 and The common electrode 9 is formed by the method described above, and the TFT substrate 100C is manufactured.
 次に、TFT基板100Cの製造方法の改変例を説明する。 Next, a modified example of the manufacturing method of the TFT substrate 100C will be described.
 本発明による他の実施形態におけるTFT基板100Cの製造方法は、基板2を用意する工程(a)と、基板2上にゲート電極4および画素電極3を形成する工程(b)と、ゲート電極4および画素電極3の上に絶縁膜を形成し、この絶縁膜の上に半導体膜を形成する工程(c)とを包含する。さらに、TFT基板100Cの製造方法は、ハーフトーン露光法により、1つのフォトマスクから絶縁膜および半導体膜をパターニングすることにより、絶縁膜から絶縁層5bを形成するとともに、絶縁層5bを含む絶縁層に画素電極3の一部を露出する開口部5uを形成し、半導体膜から絶縁層5bを介してゲート電極4と重なる半導体層6を形成する工程(d)を包含する。さらに、TFT基板100Cの製造方法は、半導体層6に電気的に接続されるソース電極7sおよびドレイン電極7dを形成する工程であって、絶縁層5bの上に形成され、開口部5u内で画素電極3に接続されるドレイン電極7dを形成する工程を含む工程(e)とを包含する。 The manufacturing method of the TFT substrate 100C according to another embodiment of the present invention includes the step (a) of preparing the substrate 2, the step (b) of forming the gate electrode 4 and the pixel electrode 3 on the substrate 2, and the gate electrode 4 And a step (c) of forming an insulating film on the pixel electrode 3 and forming a semiconductor film on the insulating film. Further, the TFT substrate 100C is manufactured by patterning the insulating film and the semiconductor film from one photomask by halftone exposure, thereby forming the insulating layer 5b from the insulating film and including the insulating layer 5b. (D) including a step (d) of forming an opening 5u exposing a part of the pixel electrode 3 and forming a semiconductor layer 6 overlapping the gate electrode 4 from the semiconductor film through the insulating layer 5b. Further, the manufacturing method of the TFT substrate 100C is a step of forming the source electrode 7s and the drain electrode 7d that are electrically connected to the semiconductor layer 6, and is formed on the insulating layer 5b and is formed in the opening 5u. And a step (e) including a step of forming a drain electrode 7d connected to the electrode 3.
 工程(b)は、ゲート電極4上に絶縁層5aを形成する工程(b1)と、絶縁層5aの上に画素電極3を形成する工程(b2)とをさらに包含することが好ましい。 The step (b) preferably further includes a step (b1) of forming the insulating layer 5a on the gate electrode 4 and a step (b2) of forming the pixel electrode 3 on the insulating layer 5a.
 TFT基板100Cの製造方法は、ソース電極7sおよびドレイン電極7dの上に保護層8を形成する工程(g)と、保護層8を介して画素電極3の少なくとも一部と重なる共通電極9を形成する工程(h)とをさらに包含することが好ましい。 In the manufacturing method of the TFT substrate 100C, the step (g) of forming the protective layer 8 on the source electrode 7s and the drain electrode 7d and the common electrode 9 that overlaps at least part of the pixel electrode 3 through the protective layer 8 are formed. It is preferable to further include the step (h).
 TFT基板100Cの製造方法の改変例を再度図9(d)を参照しながら説明する。 A modified example of the manufacturing method of the TFT substrate 100C will be described again with reference to FIG.
 上述したTFT基板100Cの製造方法とTFT基板100Cの製造方法の改変例の主な相違点は、図9(d)に示した、半導体層6と絶縁層5bとを、1枚のフォトマスク(ハーフトーンマスク)からハーフトーン露光法により形成している点である。 The main difference between the above-described manufacturing method of the TFT substrate 100C and the modified example of the manufacturing method of the TFT substrate 100C is that the semiconductor layer 6 and the insulating layer 5b shown in FIG. The halftone mask is formed by a halftone exposure method.
 具体的には、図9(d)に示した第2ゲート絶縁層/半導体層形成工程GI-2/PSにおいて、絶縁層5aおよび画素電極3の上に不図示の絶縁膜を例えばCVD法により形成する。この絶縁膜の上に例えばスパッタ法などにより不図示の半導体膜を形成する。この後、図6(a)~図6(e)で説明したように、1枚のフォトマスク(ハーフトーンマスク)を用いたハーフトーン露光法により厚さの異なるレジスト膜を形成した後、上記絶縁膜および半導体膜をパターニングする。絶縁膜から画素電極3の一部を露出する開口部5uを有する絶縁層5bを形成し、半導体膜から絶縁層5aおよび5bを介してゲート電極4と重なる半導体層6を形成する。 Specifically, in the second gate insulating layer / semiconductor layer forming step GI-2 / PS shown in FIG. 9D, an insulating film (not shown) is formed on the insulating layer 5a and the pixel electrode 3 by, for example, the CVD method. Form. A semiconductor film (not shown) is formed on the insulating film by sputtering, for example. Thereafter, as described in FIGS. 6A to 6E, after forming resist films having different thicknesses by a halftone exposure method using one photomask (halftone mask), The insulating film and the semiconductor film are patterned. An insulating layer 5b having an opening 5u exposing a part of the pixel electrode 3 from the insulating film is formed, and a semiconductor layer 6 overlapping the gate electrode 4 is formed from the semiconductor film via the insulating layers 5a and 5b.
 このように、1枚のフォトマスクから、開口部5uを有する絶縁層5bと半導体層6とを形成できるのでフォトマスクの数の削減が可能であり、製造コストを削減し得る。 Thus, since the insulating layer 5b having the opening 5u and the semiconductor layer 6 can be formed from one photomask, the number of photomasks can be reduced, and the manufacturing cost can be reduced.
 次に、図10を参照しながら、本発明のさらに他の実施形態によるTFT基板100Dを説明する。TFT基板100Dの平面図は図1(a)を参照する。図10(a)は図1(a)のA-A’線に沿った模式的な断面図である。図10(b)は図1(b)のB-B’線に沿った模式的な断面図である。TFT基板100Aと共通する構成要素には同じ参照符号を付し、説明の重複を避ける。 Next, a TFT substrate 100D according to still another embodiment of the present invention will be described with reference to FIG. For a plan view of the TFT substrate 100D, refer to FIG. FIG. 10A is a schematic cross-sectional view along the line A-A ′ of FIG. FIG. 10B is a schematic cross-sectional view along the line B-B ′ of FIG. Constituent elements common to the TFT substrate 100A are denoted by the same reference numerals to avoid duplication of description.
 TFT基板100DとTFT基板100Aとの主な相違点は、基板2上に下地絶縁層(バッファ層)5cが形成され、下地絶縁層5cの上にゲート電極4および画素電極3(m)が形成されている点である。 The main difference between the TFT substrate 100D and the TFT substrate 100A is that a base insulating layer (buffer layer) 5c is formed on the substrate 2, and a gate electrode 4 and a pixel electrode 3 (m) are formed on the base insulating layer 5c. It is a point that has been.
 下地絶縁層5cを形成すると基板2の選択性が増し、例えば基板2としてプラスチック基板を用いることもできる。下地絶縁層5cとして、例えばSiO2(酸化シリコン)、SiNx(窒化シリコン)、SiOxy(酸化窒化シリコン、x>y)、SiNxy(窒化酸化シリコン、x>y)、Al23(酸化アルミニウム)または酸化タンタル(Ta25)から形成された単層または積層を用いることができる。下地絶縁層5cの厚さは例えば約50nm以上600nm以下である。 When the base insulating layer 5 c is formed, the selectivity of the substrate 2 is increased. For example, a plastic substrate can be used as the substrate 2. As the base insulating layer 5c, for example, SiO 2 (silicon oxide), SiN x (silicon nitride), SiO x N y (silicon oxynitride, x> y), SiN x O y (silicon nitride oxide, x> y), Al A single layer or a laminate formed of 2 O 3 (aluminum oxide) or tantalum oxide (Ta 2 O 5 ) can be used. The thickness of the base insulating layer 5c is, for example, not less than about 50 nm and not more than 600 nm.
 次に、図11および図12を参照しながら、本発明によるさらに他の実施形態によるTFT基板100Dの製造方法を説明する。図10はTFT基板100Dを説明するためのブロック図である。図12(a)~図12(g)はTFT基板100Dの製造方法を説明するための模式的な断面図であり、図10(a)に対応する。 Next, a manufacturing method of a TFT substrate 100D according to still another embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a block diagram for explaining the TFT substrate 100D. 12 (a) to 12 (g) are schematic cross-sectional views for explaining the manufacturing method of the TFT substrate 100D, and correspond to FIG. 10 (a).
 TFT基板100Dの製造方法は、バッファ層形成工程BU、画素電極形成工程PX、ゲート電極形成工程GT、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 The manufacturing method of the TFT substrate 100D includes a buffer layer forming step BU, a pixel electrode forming step PX, a gate electrode forming step GT, a gate insulating layer / semiconductor layer forming step GI / PS, a source / drain electrode forming step SD, and a protective layer forming step. It has PAS and common electrode formation process CT, and the process proceeds in this order.
 次に、図12(a)~図12(g)を参照しながら具体的な製造プロセスを説明する。 Next, a specific manufacturing process will be described with reference to FIGS. 12 (a) to 12 (g).
 まず、図12(a)示すバッファ層形成工程BUでは、基板2上に例えばCVD法などで下地絶縁層5cを形成する。 First, in the buffer layer forming step BU shown in FIG. 12A, the base insulating layer 5c is formed on the substrate 2 by, for example, the CVD method.
 その後、図12(b)~図12(g)に示す画素電極形成工程PX、ゲート電極形成工程GT、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを経て、画素電極3、ゲート電極4、ゲート絶縁層5、半導体層6、ソース電極7s、ドレイン電極7d、保護層8および共通電極9が上述した方法で形成され、TFT基板100Dは製造される。なお、ゲート絶縁層/半導体層形成工程GI/PSにおいて、上述したハーフトーン露光法により、1つのフォトマスク(ハーフトーンマスク)から絶縁層5と半導体層6とを形成してもよい。フォトマスクの数が削減され、製造コストを削減し得る。 Thereafter, the pixel electrode forming step PX, the gate electrode forming step GT, the gate insulating layer / semiconductor layer forming step GI / PS, the source / drain electrode forming step SD, and the protective layer forming shown in FIGS. 12 (b) to 12 (g) Through the process PAS and the common electrode formation process CT, the pixel electrode 3, the gate electrode 4, the gate insulating layer 5, the semiconductor layer 6, the source electrode 7s, the drain electrode 7d, the protective layer 8 and the common electrode 9 are formed by the method described above. The TFT substrate 100D is manufactured. In the gate insulating layer / semiconductor layer forming step GI / PS, the insulating layer 5 and the semiconductor layer 6 may be formed from one photomask (halftone mask) by the above-described halftone exposure method. The number of photomasks can be reduced and manufacturing costs can be reduced.
 次に、図13を参照しながら本発明のさらに他の実施形態によるTFT基板100Eを説明する。TFT基板100Eの平面図は図1(a)を参照する。図13(a)は図1(a)のA-A’線に沿った模式的な断面図である。図13(b)は図1(a)のB-B’線に沿った模式的な断面図である。TFT基板100Aと共通する構成要素には同じ参照符号を付し、説明の重複を避ける。 Next, a TFT substrate 100E according to still another embodiment of the present invention will be described with reference to FIG. For a plan view of the TFT substrate 100E, refer to FIG. FIG. 13A is a schematic cross-sectional view along the line A-A ′ of FIG. FIG. 13B is a schematic cross-sectional view along the line B-B ′ of FIG. Constituent elements common to the TFT substrate 100A are denoted by the same reference numerals to avoid duplication of description.
 TFT基板100EとTFT基板100Aの主な相違点は、基板2上に形成された下地絶縁層(バッファ層)5cを有し、下地絶縁層5cの下に画素電極3(m)が形成されている点である。 The main difference between the TFT substrate 100E and the TFT substrate 100A is that it has a base insulating layer (buffer layer) 5c formed on the substrate 2, and the pixel electrode 3 (m) is formed under the base insulating layer 5c. It is a point.
 次に、図14および図15を参照しながらTFT基板100Eの製造方法の一例を説明する。図14はTFT基板100Eの製造方法の一例を説明するブロック図である。図15(a)~図15(g)は、TFT基板100Eの製造方法の一例を説明するための模式的な断面図である。なお、図15(a)~図15(g)は図13(a)に対応する。 Next, an example of a manufacturing method of the TFT substrate 100E will be described with reference to FIGS. FIG. 14 is a block diagram illustrating an example of a manufacturing method of the TFT substrate 100E. FIGS. 15A to 15G are schematic cross-sectional views for explaining an example of a manufacturing method of the TFT substrate 100E. 15A to 15G correspond to FIG. 13A.
 TFT基板100Eの製造方法は、図14に示すように、画素電極形成工程PX、バッファ層形成工程BU、ゲート電極形成工程GT、ゲート絶縁層/半導体層形成工程GI/PS、ソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを有し、この順にプロセスが進む。 As shown in FIG. 14, the manufacturing method of the TFT substrate 100E includes a pixel electrode formation step PX, a buffer layer formation step BU, a gate electrode formation step GT, a gate insulating layer / semiconductor layer formation step GI / PS, and source / drain electrode formation. A process SD, a protective layer forming process PAS, and a common electrode forming process CT are provided, and the process proceeds in this order.
 まず、図15(a)に示す画素電極形成工程PXでは、基板2上に上述した方法で、画素電極3が形成される。 First, in the pixel electrode formation step PX shown in FIG. 15A, the pixel electrode 3 is formed on the substrate 2 by the method described above.
 次に、図15(b)に示すバッファ層形成工程BUでは、画素電極3の上に下地絶縁層5cが上述した方法で形成される。 Next, in the buffer layer forming step BU shown in FIG. 15B, the base insulating layer 5c is formed on the pixel electrode 3 by the method described above.
 次に、図15(c)に示すゲート電極形成工程GTでは、下地絶縁層5cの上にゲート電極4が上述した方法で形成される。ゲート電極4は下地絶縁層5cを介して画素電極3と重ならないように形成される。 Next, in the gate electrode formation step GT shown in FIG. 15C, the gate electrode 4 is formed on the base insulating layer 5c by the method described above. The gate electrode 4 is formed so as not to overlap the pixel electrode 3 through the base insulating layer 5c.
 次に、図15(d)に示すゲート絶縁層/半導体層形成工程GI/PSでは、ゲート電極4の上に絶縁層5を上述した方法で形成する。このとき、絶縁層5および下地絶縁層5cには画素電極3の一部を露出する開口部5uが形成される。 Next, in the gate insulating layer / semiconductor layer forming step GI / PS shown in FIG. 15D, the insulating layer 5 is formed on the gate electrode 4 by the method described above. At this time, an opening 5u exposing a part of the pixel electrode 3 is formed in the insulating layer 5 and the base insulating layer 5c.
 さらに、絶縁層5の上には、絶縁層5を介してゲート電極4と重なる半導体層6が上述した方法で形成される。なお、上述したハーフトーン露光法により、1つのフォトマスク(ハーフトーンマスク)から絶縁層5と半導体層6とを形成してもよい。 Furthermore, the semiconductor layer 6 that overlaps the gate electrode 4 through the insulating layer 5 is formed on the insulating layer 5 by the method described above. Note that the insulating layer 5 and the semiconductor layer 6 may be formed from one photomask (halftone mask) by the above-described halftone exposure method.
 その後、図15(e)~図15(g)に示すソース・ドレイン電極形成工程SD、保護層形成工程PASおよび共通電極形成工程CTを経て、ソース電極7s、ドレイン電極7d、保護層8および共通電極9が上述した方法で形成され、TFT基板100Eは製造される。 Thereafter, the source / drain electrode forming step SD, the protective layer forming step PAS and the common electrode forming step CT shown in FIGS. 15 (e) to 15 (g) are performed, and then the source electrode 7s, the drain electrode 7d, the protective layer 8 and the common The electrode 9 is formed by the method described above, and the TFT substrate 100E is manufactured.
 上述したTFT基板100A~100Eにおいて、共通電極9は透明導電膜(例えば、ITO膜)から形成された透明電極であるが、この透明電極を共通電極として機能させる代わりに、単に透明補助容量を形成する電極として機能させてもよい。 In the TFT substrates 100A to 100E described above, the common electrode 9 is a transparent electrode formed of a transparent conductive film (for example, an ITO film). Instead of functioning as a common electrode, a transparent auxiliary capacitor is simply formed. The electrode may function as an electrode.
 さらに、上述したTFT基板100A~100Eでは、画素電極3(m)と共通電極9とを有する2層の電極構造を有しているが、例えばVA(Vertical Alignment)モードの液晶表示装置用のTFT基板を製造する場合は、共通電極9を形成しなくてもよい。 Further, the above-described TFT substrates 100A to 100E have a two-layer electrode structure having the pixel electrode 3 (m) and the common electrode 9, but for example, a TFT for a liquid crystal display device in a VA (Vertical Alignment) mode. When manufacturing a substrate, the common electrode 9 may not be formed.
 以上、本発明の実施形態により、表示不良が生じにくい半導体装置およびその製造方法が提供される。 As described above, according to the embodiments of the present invention, a semiconductor device in which display defects are unlikely to occur and a method for manufacturing the same are provided.
 本発明の実施形態は、アクティブマトリクス基板等の回路基板、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置および無機エレクトロルミネセンス表示装置等の表示装置、イメージセンサー装置等の撮像装置、画像入力装置や指紋読み取り装置等の電子装置などの薄膜トランジスタを備えた装置に広く適用できる。 Embodiments of the present invention include a circuit board such as an active matrix substrate, a liquid crystal display device, a display device such as an organic electroluminescence (EL) display device and an inorganic electroluminescence display device, an imaging device such as an image sensor device, and an image input The present invention can be widely applied to devices including thin film transistors, such as electronic devices such as devices and fingerprint readers.
 2   基板
 3、3(m)、3(m+1)   画素電極
 4   ゲート電極
 5   絶縁層
 5u   開口部
 6   酸化物半導体層
 7s   ソース電極
 7d   ドレイン電極
 7(m)、7(m+1)   ソース配線
 8   保護層
 9   共通電極
 14   ゲート配線
 19   スリット
 100A~100E   半導体装置(TFT基板)
 v   有効開口領域
2 Substrate 3, 3 (m), 3 (m + 1) Pixel electrode 4 Gate electrode 5 Insulating layer 5u Opening 6 Oxide semiconductor layer 7s Source electrode 7d Drain electrode 7 (m), 7 (m + 1) Source wiring 8 Protective layer 9 Common electrode 14 Gate wiring 19 Slit 100A to 100E Semiconductor device (TFT substrate)
v Effective opening area

Claims (17)

  1.  基板と、
     前記基板上に形成されたゲート電極および画素電極と、
     前記ゲート電極および画素電極上に形成された第1の絶縁層と、
     前記第1の絶縁層を介して前記ゲート電極と重なる半導体層と、
     前記半導体層に電気的に接続されたソース電極およびドレイン電極とを有し、
     前記ドレイン電極は、前記第1の絶縁層を含む絶縁層を介して前記画素電極上に配置され、前記絶縁層に形成された開口部内で前記画素電極に接続されている、半導体装置。
    A substrate,
    A gate electrode and a pixel electrode formed on the substrate;
    A first insulating layer formed on the gate electrode and the pixel electrode;
    A semiconductor layer overlapping the gate electrode through the first insulating layer;
    A source electrode and a drain electrode electrically connected to the semiconductor layer;
    The semiconductor device, wherein the drain electrode is disposed on the pixel electrode through an insulating layer including the first insulating layer, and is connected to the pixel electrode in an opening formed in the insulating layer.
  2.  前記画素電極と同一の導電膜から形成された導電層を有し、
     前記ゲート電極は、前記導電層の上に形成されている、請求項1に記載の半導体装置。
    A conductive layer formed of the same conductive film as the pixel electrode;
    The semiconductor device according to claim 1, wherein the gate electrode is formed on the conductive layer.
  3.  前記ゲート電極と前記第1の絶縁層との間に形成された第2の絶縁層をさらに有し、
     前記画素電極は、前記第2の絶縁層の上に形成されている、請求項1に記載の半導体装置。
    A second insulating layer formed between the gate electrode and the first insulating layer;
    The semiconductor device according to claim 1, wherein the pixel electrode is formed on the second insulating layer.
  4.  前記基板上に形成された下地絶縁層をさらに有し、
     前記ゲート電極は、前記下地絶縁層の上に形成されている、請求項1から3のいずれかに記載の半導体装置。
    A base insulating layer formed on the substrate;
    The semiconductor device according to claim 1, wherein the gate electrode is formed on the base insulating layer.
  5.  前記画素電極は、前記下地絶縁層の上に形成されている、請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the pixel electrode is formed on the base insulating layer.
  6.  前記ソース電極および前記ドレイン電極の上に形成された保護層と、
     前記保護層を介して前記画素電極の少なくとも一部と重なる共通電極とをさらに有する、請求項1から5のいずれかに記載の半導体装置。
    A protective layer formed on the source electrode and the drain electrode;
    The semiconductor device according to claim 1, further comprising a common electrode that overlaps at least a part of the pixel electrode with the protective layer interposed therebetween.
  7.  前記ソース電極および前記ドレイン電極は、それぞれ下層と前記下層の上に形成された上層とを有し、
     前記下層は高融点金属の窒化物から形成されている、請求項1から6のいずれかに記載の半導体装置。
    The source electrode and the drain electrode each have a lower layer and an upper layer formed on the lower layer,
    The semiconductor device according to claim 1, wherein the lower layer is made of a refractory metal nitride.
  8.  前記半導体層は、酸化物半導体層である、請求項1から7のいずれかに記載の半導体装置。 The semiconductor device according to claim 1, wherein the semiconductor layer is an oxide semiconductor layer.
  9.  前記酸化物半導体層は、In、GaおよびZnを含む、請求項8に記載の半導体装置。 The semiconductor device according to claim 8, wherein the oxide semiconductor layer includes In, Ga, and Zn.
  10.  基板を用意する工程(a)と、
     前記基板上に第1導電膜を形成し、前記第1導電膜の上に第2導電膜を形成する工程(b)と、
     ハーフトーン露光法により、1つのフォトマスクから前記第1導電膜および前記第2導電膜をパターニングすることによって、前記第1導電膜から導電層と画素電極とを形成し、前記導電層の上に前記第2導電膜からゲート電極を形成する工程(c)と、
     前記ゲート電極および前記画素電極の上に、前記画素電極の一部を露出する開口部を有する第1の絶縁層を形成する工程(d)と、
     前記第1の絶縁層を介して前記ゲート電極と重なる半導体層を形成する工程(e)と、
     前記半導体層に電気的に接続されるソース電極およびドレイン電極を形成する工程であって、前記第1の絶縁層の上に形成され、前記開口部内で前記画素電極に接続される前記ドレイン電極を形成する工程を含む工程(f)とを包含する、半導体装置の製造方法。
    Preparing a substrate (a);
    Forming a first conductive film on the substrate and forming a second conductive film on the first conductive film (b);
    By patterning the first conductive film and the second conductive film from one photomask by a halftone exposure method, a conductive layer and a pixel electrode are formed from the first conductive film, and the conductive film and the pixel electrode are formed on the conductive layer. Forming a gate electrode from the second conductive film (c);
    Forming a first insulating layer having an opening exposing a part of the pixel electrode on the gate electrode and the pixel electrode;
    Forming a semiconductor layer overlapping with the gate electrode through the first insulating layer (e);
    Forming a source electrode and a drain electrode electrically connected to the semiconductor layer, the drain electrode formed on the first insulating layer and connected to the pixel electrode in the opening; The manufacturing method of a semiconductor device including the process (f) including the process of forming.
  11.  基板を用意する工程(a)と、
     前記基板上にゲート電極および画素電極を形成する工程(b)と、
     前記ゲート電極および前記画素電極の上に絶縁膜を形成し、前記絶縁膜の上に半導体膜を形成する工程(c)と、
     ハーフトーン露光法により、1つのフォトマスクから前記絶縁膜および前記半導体膜をパターニングすることによって、前記絶縁膜から第1の絶縁層を形成するとともに、前記第1の絶縁層を含む絶縁層に前記画素電極の一部を露出する開口部を形成し、前記半導体膜から前記第1の絶縁層を介して前記ゲート電極と重なる半導体層を形成する工程(d)と、
     前記半導体層に電気的に接続されるソース電極およびドレイン電極を形成する工程であって、前記絶縁層の上に形成され、前記開口部内で前記画素電極に接続される前記ドレイン電極を形成する工程を含む工程(e)とを包含する、半導体装置の製造方法。
    Preparing a substrate (a);
    Forming a gate electrode and a pixel electrode on the substrate;
    Forming an insulating film on the gate electrode and the pixel electrode, and forming a semiconductor film on the insulating film (c);
    By patterning the insulating film and the semiconductor film from one photomask by a halftone exposure method, a first insulating layer is formed from the insulating film, and the insulating layer including the first insulating layer is formed on the insulating layer. Forming an opening exposing a part of the pixel electrode, and forming a semiconductor layer overlapping the gate electrode from the semiconductor film via the first insulating layer;
    Forming a source electrode and a drain electrode electrically connected to the semiconductor layer, wherein the drain electrode is formed on the insulating layer and connected to the pixel electrode in the opening. A method for manufacturing a semiconductor device, comprising a step (e) including:
  12.  前記工程(b)は、
     前記ゲート電極上に第2の絶縁層を形成する工程(b1)と、
     前記第2の絶縁層の上に前記画素電極を形成する工程(b2)とをさらに包含する、請求項11に記載の半導体装置の製造方法。
    The step (b)
    Forming a second insulating layer on the gate electrode (b1);
    The method for manufacturing a semiconductor device according to claim 11, further comprising a step (b2) of forming the pixel electrode on the second insulating layer.
  13.  前記工程(b)は、
     前記基板上に下地絶縁層を形成する工程(b3)と、
     前記下地絶縁層の上に前記ゲート電極を形成する工程(b4)とをさらに包含する、請求項11または12に記載の半導体装置の製造方法。
    The step (b)
    Forming a base insulating layer on the substrate (b3);
    The method for manufacturing a semiconductor device according to claim 11, further comprising a step (b4) of forming the gate electrode on the base insulating layer.
  14.  前記工程(b4)は、前記下地絶縁層の上に前記画素電極を形成する工程(b5)をさらに包含する、請求項13に記載の半導体装置の製造方法。 14. The method of manufacturing a semiconductor device according to claim 13, wherein the step (b4) further includes a step (b5) of forming the pixel electrode on the base insulating layer.
  15.  前記ソース電極および前記ドレイン電極の上に保護層を形成する工程(g)と、
     前記保護層を介して前記画素電極の少なくとも一部と重なる共通電極を形成する工程(h)とをさらに包含する、請求項10から14のいずれかに記載の半導体装置の製造方法。
    Forming a protective layer on the source electrode and the drain electrode (g);
    The method of manufacturing a semiconductor device according to claim 10, further comprising a step (h) of forming a common electrode that overlaps at least a part of the pixel electrode through the protective layer.
  16.  前記半導体層は酸化物半導体層である、請求項10から15のいずれかに記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 10, wherein the semiconductor layer is an oxide semiconductor layer.
  17.  前記酸化物半導体層は、In、GaおよびZnを含む、請求項16に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 16, wherein the oxide semiconductor layer contains In, Ga, and Zn.
PCT/JP2013/070442 2012-08-02 2013-07-29 Semiconductor device and production method therefor WO2014021249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-172216 2012-08-02
JP2012172216 2012-08-02

Publications (1)

Publication Number Publication Date
WO2014021249A1 true WO2014021249A1 (en) 2014-02-06

Family

ID=50027924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070442 WO2014021249A1 (en) 2012-08-02 2013-07-29 Semiconductor device and production method therefor

Country Status (1)

Country Link
WO (1) WO2014021249A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052190A (en) * 1991-06-24 1993-01-08 Hitachi Ltd Active matrix substrate
JPH07120790A (en) * 1993-08-31 1995-05-12 Kyocera Corp Active matrix substrate and its production
JP2009031750A (en) * 2007-06-28 2009-02-12 Fujifilm Corp Organic el display device and manufacturing method thereof
JP2010256556A (en) * 2009-04-23 2010-11-11 Hitachi Displays Ltd Image display apparatus and method of manufacturing the same
JP2011023728A (en) * 2009-07-17 2011-02-03 Beijing Boe Optoelectronics Technology Co Ltd Tft-lcd array substrate and manufacturing method thereof
JP2011171727A (en) * 2010-01-24 2011-09-01 Semiconductor Energy Lab Co Ltd Display device and method for manufacturing the same
WO2012066755A1 (en) * 2010-11-17 2012-05-24 シャープ株式会社 Thin-film transistor substrate, display device provided with same, and method for manufacturing thin-film transistor substrate
JP2012134475A (en) * 2010-12-03 2012-07-12 Semiconductor Energy Lab Co Ltd Oxide semiconductor film and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052190A (en) * 1991-06-24 1993-01-08 Hitachi Ltd Active matrix substrate
JPH07120790A (en) * 1993-08-31 1995-05-12 Kyocera Corp Active matrix substrate and its production
JP2009031750A (en) * 2007-06-28 2009-02-12 Fujifilm Corp Organic el display device and manufacturing method thereof
JP2010256556A (en) * 2009-04-23 2010-11-11 Hitachi Displays Ltd Image display apparatus and method of manufacturing the same
JP2011023728A (en) * 2009-07-17 2011-02-03 Beijing Boe Optoelectronics Technology Co Ltd Tft-lcd array substrate and manufacturing method thereof
JP2011171727A (en) * 2010-01-24 2011-09-01 Semiconductor Energy Lab Co Ltd Display device and method for manufacturing the same
WO2012066755A1 (en) * 2010-11-17 2012-05-24 シャープ株式会社 Thin-film transistor substrate, display device provided with same, and method for manufacturing thin-film transistor substrate
JP2012134475A (en) * 2010-12-03 2012-07-12 Semiconductor Energy Lab Co Ltd Oxide semiconductor film and semiconductor device

Similar Documents

Publication Publication Date Title
JP5253674B2 (en) Semiconductor device and manufacturing method thereof
JP5863272B2 (en) Display device and manufacturing method thereof
US9613990B2 (en) Semiconductor device and method for manufacturing same
US20170250202A1 (en) Array substrate for display device and manufacturing method thereof
JP5824536B2 (en) Semiconductor device and manufacturing method thereof
JP5824534B2 (en) Semiconductor device and manufacturing method thereof
WO2013150981A1 (en) Semiconductor device and method for manufacturing same
US9299763B2 (en) Thin film transistor array substrate and method of manufacturing the same
WO2013172185A1 (en) Semiconductor device and method for manufacturing same
WO2015125685A1 (en) Active matrix substrate and method for producing same
WO2014038482A1 (en) Semiconductor device and method for producing same
US8877570B2 (en) Array substrate with improved pad region and method for manufacturing the same
JP6196387B2 (en) Active matrix substrate
US20210183899A1 (en) Active matrix substrate and method for manufacturing same
KR20090011704A (en) Thin film transistor substrate and method of manufacturig the same
WO2013161738A1 (en) Semiconductor device and method of manufacture thereof
WO2013183495A1 (en) Semiconductor device and method for manufacturing same
JP2021022374A (en) Display apparatus having touch electrodes
WO2013151002A1 (en) Semiconductor device and method for manufacturing same
WO2013191044A1 (en) Semiconductor device and method for producing same
JP5964967B2 (en) Semiconductor device and manufacturing method thereof
WO2014077201A1 (en) Method for manufacturing semiconductor device and display device
WO2014021249A1 (en) Semiconductor device and production method therefor
US20220285405A1 (en) Active matrix substrate and manufacturing method thereof
WO2014091959A1 (en) Semiconductor device and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP