WO2014021237A1 - Heat-insulating plate - Google Patents

Heat-insulating plate Download PDF

Info

Publication number
WO2014021237A1
WO2014021237A1 PCT/JP2013/070403 JP2013070403W WO2014021237A1 WO 2014021237 A1 WO2014021237 A1 WO 2014021237A1 JP 2013070403 W JP2013070403 W JP 2013070403W WO 2014021237 A1 WO2014021237 A1 WO 2014021237A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
heat shield
metal
plate material
Prior art date
Application number
PCT/JP2013/070403
Other languages
French (fr)
Japanese (ja)
Inventor
野口 修平
彩乃 野口
直樹 天野
Original Assignee
日本遮熱株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本遮熱株式会社 filed Critical 日本遮熱株式会社
Publication of WO2014021237A1 publication Critical patent/WO2014021237A1/en
Priority to PH12014502212A priority Critical patent/PH12014502212A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/24Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like
    • E04D3/30Roof covering by making use of flat or curved slabs or stiff sheets with special cross-section, e.g. with corrugations on both sides, with ribs, flanges, or the like of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/35Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation
    • E04D3/351Roofing slabs or stiff sheets comprising two or more layers, e.g. for insulation at least one of the layers being composed of insulating material, e.g. fibre or foam material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/12Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of metal or with an outer layer of metal or enameled metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7691Heat reflecting layers or coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings

Definitions

  • the present invention provides a heat shield plate material that can be used for a new building or an existing building and can be used as a metal outer wall material, a metal roof material, a metal shutter material, etc. that are inexpensive and highly energy-saving.
  • An object of the present invention is to propose a heat shield plate material that can be used for a new building or an existing building and can be used as an external wall material, roof material, shutter material, etc. that is inexpensive and has a high energy saving effect.
  • the present invention has been proposed in view of the above, and one surface of the front and back surfaces of a base material used as any one of an outer wall material, a roof material, and a shutter material of a building that is directly irradiated with sunlight.
  • a heat shield layer made of a material having a high reflectivity with respect to radiant heat is provided, and the surface provided with the heat shield layer is opposite to the surface directly irradiated with sunlight.
  • the present invention relates to a heat shield plate characterized by being exposed to the indoor side. “High reflectance” refers to a reflectance of about 80 to 90% or more.
  • the “layer made of a material having a high reflectivity with respect to radiant heat” may be simply described as “a high reflectivity layer” in the following description.
  • the present invention also proposes a heat shield plate material characterized in that, in the heat shield plate material, the high reflectivity layer is an aluminum layer.
  • the “aluminum layer” may be a plate-like (film-like) aluminum foil (also referred to as an aluminum foil) having a thickness of 0.005 to 0.035 mm, or may be thinner. An aluminum vapor deposition layer may be sufficient.
  • the present invention provides a chemical fiber sheet resin sheet, a resin film, a resin coating film between the metal substrate and the heat shield layer, which is a layer made of a material having a high reflectance with respect to the radiant heat, in the heat shield plate material. Also proposed is a heat shield plate material characterized by interposing an electrolytic corrosion prevention layer of any of the above.
  • the heat shield plate material of the present invention is provided with a heat shield layer, which is a layer made of a material having a high reflectivity with respect to radiant heat, that is, a low emissivity, on one surface (inner side surface) of the base material.
  • a heat shield layer which is a layer made of a material having a high reflectivity with respect to radiant heat, that is, a low emissivity, on one surface (inner side surface) of the base material.
  • the indoor side can be kept cool.
  • the indoor heat can be reflected by reflecting the radiant heat from the indoor side toward the indoor side. Therefore, the indoor heating and cooling efficiency can be remarkably improved, and the indoor temperature environment can be suitably improved, so that freezing due to cold and heat stroke due to heat are not caused.
  • the heat shield plate material of the present invention has a high reflectance layer such as an aluminum layer on the surface on the indoor side, there is no problem even if strong wind such as typhoon blows in. Therefore, it can be used without any problem in buildings without walls such as station buildings and distribution centers. Also, field installation work can be performed in the same manner as conventional work, and no new equipment or tools are required. Therefore, the construction price can be kept low. Furthermore, since the thickness after molding is only about 0.1 to 0.2 mm thicker than a normal metal plate, the conveyance cost can be greatly reduced.
  • the high reflectivity layer is an aluminum layer
  • the reflectivity is as high as 97 to 98% and the emissivity is as low as 3 to 2%.
  • the effect regarding can be exhibited highly.
  • highly reliable aluminum foil (aluminum foil) or aluminum vapor deposition is used as an industrial product, the bonding work with a metal substrate is easy, and the material cost can be suppressed.
  • an electrolytic corrosion prevention layer made of any one of a chemical fiber sheet, a resin sheet, a resin film, and a resin coating film is provided.
  • the electric corrosion prevention layer made of chemical fiber sheets or resin coatings may be a thin layer of about 0.1 to 0.2 mm, so how to form this heat shield plate material such as roofing materials and shutter materials In this case, it can be performed freely without hindering the molding process. Moreover, since the thickness after molding is thin, it is lightweight and does not become bulky, so that management costs and transport costs can be significantly reduced. Moreover, this electrolytic corrosion prevention layer is also effective in acid resistance and alkali resistance. Furthermore, when used as an outer wall material, roof material, or shutter material of a building, the heat shield plate material of this configuration is formed in the same manner as the outer wall material, roof material, and shutter material made of a conventional metal plate. The field installation work can also be performed just like the conventional work.
  • the heat shield plate material of the present invention is not limited to a material that is molded as an outer wall material, a roof material, or a shutter material.
  • a known roof tile such as a Japanese roof tile or a Western tile
  • a concrete block such as a Japanese roof tile or a Western tile
  • a steel material such as a steel, or the like.
  • the heat shield layer of the present invention can be obtained by adding the heat shield layer on the inside thereof, and the above-mentioned heat shield effect can be easily imparted to roof tiles, concrete blocks, steel materials, etc. can do.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment (a total three-layer embodiment) of the heat shield plate material of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing another embodiment of the heat shield plate material of the present invention (an embodiment having a total two-layer structure).
  • FIG. 3 is a cross-sectional view schematically showing another embodiment of the heat shield plate material of the present invention (an embodiment having a total two-layer structure).
  • the present invention is not intended to insulate the heat transfer from the outermost base material with a heat insulating material or the like, but to suppress an increase in indoor temperature by using a low radioactive material as a heat shielding layer.
  • the invention was invented by paying attention to the fact that a heat shielding layer including a layer made of a material having a high reflectance with respect to radiant heat has low radiation. The sum of the reflectance and emissivity of the metal is ⁇ (1).
  • a material with high reflectivity has low emissivity
  • an aluminum layer such as an aluminum foil (aluminum foil) or aluminum vapor deposition has a reflectivity of 97 to 98% with respect to radiant heat, so the emissivity is only 2 to 3%.
  • the material having a high reflectivity with respect to the radiant heat is not limited to aluminum, and a noble metal such as gold or silver may be used.
  • the higher the reflectance with respect to radiant heat the more effective, and at least 95% or more is desirable.
  • Radiant heat is the most important factor that raises the temperature of a substance, so that if the room has a low radiation environment, it is possible to live in the room without being affected by the outside temperature, for example, in extremely cold winters or extremely hot summers. Changes in the environmental temperature of humans or animals such as chickens and cows, and changes in the temperature of various substances stored indoors can be reduced. In other words, the heat flow that moves through the buildings is reversed in the warm season such as summer and the cold season such as winter, so that the low radiation performance can be effectively used in the warm season and highly reflective to radiant heat in the cold season. Performance can be used effectively.
  • the base material used as the base of the heat shield plate material of the present invention is mainly a metal substrate, but may be a ceramic plate material, a concrete plate material, or a plastic substrate.
  • the function (characteristics) according to the purpose is most important for the metal substrate, and sufficient rigidity is required.
  • steel plates such as various decorative steel plates and alloy plates can be used, and required strength characteristics and the like differ depending on the application (purpose) in which the heat shield plate material is used.
  • this heat shield plate material in a mode in which this heat shield plate material is directly formed and used, in the case of a roof material, a thickness of about 0.5 to 1.2 mm is used, and in the case of an outer wall material, it is the same as a general roof material In addition, a thickness of about 0.25 to 0.8 mm is used, and in the case of a shutter material, a thickness of about 0.5 mm is used.
  • the thickness of the base material is not so important because the plastic substrate is used by being attached inside the other outer wall material. As the plastic substrate, various hard resin plates can be used.
  • the ceramic plate material is a roof tile
  • the concrete plate material is a concrete block
  • these building materials used on a daily basis can be used as a base material in the present invention. Therefore, the thickness is not so important even in the case of these ceramic plates and concrete plates.
  • a heat shield layer having a high reflectivity and a low emissivity with respect to the radiant heat having the above-described configuration is provided on at least one surface (interior surface) of the base material having the above-described configuration without interposing an air layer. If an air layer exists between the base material and the heat shield layer, radiation heat is radiated from the back surface of the base material to the air layer, and the air layer itself absorbs the heat. It is transmitted to the layer.
  • the heat shield plate material of the present invention is obtained by directly attaching a high reflectivity layer (heat shield layer) such as an aluminum layer to the indoor side of the base material.
  • a high reflectivity layer such as an aluminum layer
  • the low reflectivity of the high reflectivity layer is used as described above.
  • the indoor side can be kept cool.
  • conduction heat, convection heat, or radiant heat from the outside moves toward the room and is absorbed by the base material located on the outermost surface side.
  • This heat is transferred to the high-reflectance layer (heat shield layer) on the back side as conduction heat, and a large amount of heat is transferred to the indoor air in the form of conduction heat or convection heat.
  • radiant heat is also radiated, but since a high reflectivity layer (heat shield layer) such as an aluminum layer is a low emissivity layer, the amount of heat radiated into the room is very small.
  • the high reflectivity layer (heat shield layer) such as an aluminum layer is a material having a high reflectivity with respect to radiant heat, so that the radiant heat is returned to the room, and the heat retention effect is maintained to maintain the heating effect continuously.
  • the heat shield plate material of the present invention has a structure in which a heat shield layer composed of a high reflectivity layer is provided on at least one surface of a base material as described above. It may be formed on both sides of the material.
  • a heat shield layer composed of a high reflectivity layer is provided on both surfaces of a base material (particularly a metal substrate)
  • a specification suitable for applications such as a shutter material for a partition in a building such as a factory or a warehouse It is.
  • the heat shield layer is composed of only a high reflectivity layer such as an aluminum layer, there is a possibility that electric corrosion may occur due to contact with the metal substrate (foreign metal) on the surface.
  • a metal substrate and a high reflectance layer such as an aluminum layer
  • a non-woven fabric such as PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate, polyester), a chemical fiber sheet such as a glass cloth, or a resin sheet
  • a galvanic corrosion prevention layer made of either a resin film or a resin film.
  • This electrolytic corrosion prevention layer is also effective in acid resistance and alkali resistance.
  • the electric corrosion prevention layer is preferably about 0.1 to 0.2 mm regardless of its use (roof material, outer wall material, shutter material, etc.), and therefore the thickness of the high reflectivity layer such as an aluminum layer is 7 to 35 ⁇ m.
  • the total heat shielding layer can be about 0.1 to 0.25 mm. Therefore, the thickness of the heat shield plate material of the present invention is such that the thickness of the heat shield layer is about 0.1 to 0.25 mm as described above, and the thickness of the (metal) substrate is about 0.5 to 1.2 mm. Therefore, the total thickness of the heat shield plate material is about 0.7 to 1.8 mm and can be rolled or bent. Furthermore, the electrolytic corrosion prevention layer prevents contact between a metal (metal substrate) as a base material and a metal (such as an aluminum layer) as a high reflectivity layer. An electrolytic corrosion prevention layer may be provided for the purpose of preventing contact between the reflectance layer and an external metal.
  • the electrolytic corrosion prevention layer used here may be exactly the same as described above, but it is preferable to adhere a highly permeable resin such as a polymer poly film in consideration of corrosion caused by alkaline substances generated from livestock manure.
  • the heat shield plate material of the present invention has a total two-layer structure in which a heat shield layer composed of a high reflectivity layer such as an aluminum layer is formed on the back surface side (indoor side) of the base material, and prevents electrolytic corrosion.
  • a total of three layers is formed in which two layers of a layer and a high reflectance layer (heat shielding layer) are formed.
  • the outer wall of the barn is provided with a corrosion prevention layer on the inner surface side of a high reflectivity layer (heat shield layer) such as an aluminum layer, for a total of four layers. It is preferable to use a heat shield plate material.
  • the corrosion prevention layer is not particularly limited as long as it has acid resistance and alkali resistance, and may be a layer common to the electrolytic corrosion prevention layer.
  • the metal substrate and the heat shield layer may be joined without interposing an air layer.
  • the welded or welded sheet is bonded again so that the electrolytic corrosion preventing layer is in direct contact with the metal substrate. Or what is necessary is just to weld.
  • the heat shield plate material having a total of two to four layers according to the present invention integrated in this manner has an extremely small overall thickness, and can be processed in any way by various molding machines.
  • Example 1 of the heat shield plate material shown in FIG. 1 has a total three-layer structure in which an electrolytic corrosion prevention layer 3 and a high reflectance layer (heat shield layer) 2 are formed on the back side of a base material (metal substrate) 1. It is a configuration.
  • Example 2 of the heat shield plate material shown in FIG. 2 has a total two-layer structure in which a high reflectivity layer (heat shield layer) 2 is formed on the back side of a base material (metal substrate) 1.
  • FIGS. 1 to 3 are schematically shown to show a cross-sectional configuration, and is not realistic about thickness and the like.
  • the base material (metal substrate) 1 in Examples 1 to 3 a decorative steel plate having a thickness of 0.5 mm is used, and as the high reflectivity layer 2, an aluminum layer (aluminum foil) having a thickness of 15 ⁇ m is used.
  • the prevention layer 3 a chemical fiber sheet (PE non-woven fabric) having a thickness of 0.3 mm was used. Further, when the heat shield plate material of FIG.
  • the electrolytic corrosion prevention layer 3 and the high reflectance layer 2 are welded and joined (specifically, an aluminum foil is thermally welded to the nonwoven fabric via PE).
  • the heat shield sheet was prepared, the heat shield sheet was bonded (or welded) and integrated so that the electrolytic corrosion prevention layer 3 was in direct contact with the metal substrate 1.
  • the heat shield plate material of FIG. 3 is produced, the electrolytic corrosion prevention layer 3, the high reflectivity layer 2, and the electrolytic corrosion prevention layer 3 are welded and joined in substantially the same manner, and then the joined sheet is attached to the metal substrate 1. It was bonded (bonded) to and integrated.
  • the same metal plate as that of the metal substrate 1 was used, and the molding process was similarly performed as a roofing material and an outer wall material.
  • molding process as a roofing material was made into the shape of the folded-plate roof in which a mountain part and a trough part continue alternately.
  • the processing as the outer wall material has a shape in which the left and right sides of the substantially flat central portion are raised in an inclined manner. ⁇ experimental method ⁇ Using the heat shield plate material of Example 2 as described above, the roof material and the outer wall material were molded as described above as an example, and using the same metal plate as that of the metal substrate 1, it was molded as described above. The roof material and the outer wall material are used as comparative examples.
  • the heat shield plate material of Example 2 of the present invention is very thin, any process (rolling process, bending process, etc.) for forming an uneven shape on the surface can be easily performed. Therefore, similarly to the comparative example configured by only the metal substrate 1, a long object can be easily manufactured in a short time.
  • the heat shielding plate materials of Examples 1 to 3 are all highly reflective layers such as an aluminum layer on the back side, the inner surface side is a highly reflective layer such as an aluminum layer even when strong wind such as typhoon blows in. No problem occurred.
  • the heat shielding plate material having a structure in which the heat shielding layer is added only from the high reflectivity layer 2 is used as an example, and the distance from the heat source (800 W heater) is changed from 100 mm to 500 mm to change the temperature inside the heat shielding plate material. Measured and compared.
  • Results 2 [Discussion] As is clear from Table 1, when the distance from the heat source is 100 to 300 mm, the heat shield plate material of the present invention has a clear heat shield effect compared to the comparative example in which no heat shield layer is present. On the other hand, when the distance from the heat source is 400 to 500 mm, it is considered that the influence of wind or the like is reflected in the data.

Abstract

Provided is a heat-insulating plate capable of being used for newly constructed buildings and existing buildings and of being used as an inexpensive and highly energy-saving metal external wall material, metal roofing material, metal shutter material, etc. This heat-insulating plate is characterized in that a heat-insulating layer (2), which comprises a layer of a material that has a high reflectance with respect to radiant heat, is provided on either the front or the back surface of a base material (metal substrate (1)) without interposing an air layer and the surface on which said heat-insulating layer has been provided is used as the surface on the opposite side from the surface that is directly or indirectly irradiated by sunlight.

Description

遮熱板材Heat shield plate material
 本発明は、新築建物にも既築建物にも使え、安価で省エネルギー効果の高い金属製外壁材、金属製屋根材、金属シャッター材などとして用いることができる遮熱板材を提供するものである。 The present invention provides a heat shield plate material that can be used for a new building or an existing building and can be used as a metal outer wall material, a metal roof material, a metal shutter material, etc. that are inexpensive and highly energy-saving.
 工場や倉庫等鉄骨の建物は、防火対策として、金属製屋根材や金属製外壁材、或いは金属シャッターなどの金属板を使用しているのが殆どである。しかし、これら金属板には、結露対策のシート等は施工されているものの断熱材等は殆ど使用されていない。
 例えば工場や倉庫等鉄骨の建物では、その内部に多くの設備が設置され、床面積も非常に大きく、天井にはクレーン等を設置するため、或いは対流熱を利用した暑さ対策をするため、屋根高も高くしている。また、その壁面積は一般の事務所棟に比較して格段に大きく設計されているが、製品の搬出入等出入口を開放する事が多く、室内の空調設備を設置しようとしても、多大な費用が発生する事やランニングコストが非常に大きくなるため、殆どの倉庫や工場は断熱工事もされていないのが現状である。
 また、店舗や工場等に使われているシャッターは、巻取りドラムに巻き取りして使用される物が多い。しかし、これらにはこれまで殆ど断熱施工がされていない。
 さらに、鶏舎や牛舎等農業用の建物では、家畜の糞尿から発生するアルカリ性物質により金属屋根では短期間に腐食してしまうため、これらの農業用建物にはスレート屋根の使用が殆どであった。しかし、スレート屋根材のアスベスト問題が発覚した以降は脱スレート化が進み、新築建物では金属製折板屋根材に切り替わりつつある。しかし、アルカリ性物質から金属屋根材の腐食を阻止できるものは数少ない。
Most steel buildings, such as factories and warehouses, use metal roofing materials, metal outer wall materials, or metal plates such as metal shutters as a fire prevention measure. However, although a sheet for preventing condensation is applied to these metal plates, almost no heat insulating material is used.
For example, in steel buildings such as factories and warehouses, many facilities are installed inside, the floor area is very large, cranes etc. are installed on the ceiling, or to take measures against heat using convection heat, The roof height is also high. In addition, the wall area is designed to be much larger than that of a general office building, but it often opens and closes entrances and exits for products, and it is very expensive to install indoor air conditioning equipment. The current situation is that most warehouses and factories are not heat-insulated.
Also, many shutters used in stores and factories are wound around a winding drum and used. However, they have hardly been insulated until now.
Furthermore, in agricultural buildings such as poultry houses and cattle houses, slate roofs are mostly used in these agricultural buildings because metal roofs corrode in a short time due to alkaline substances generated from livestock manure. However, after the asbestos problem of slate roofing material was discovered, de-slate processing has progressed, and in newly constructed buildings, it is switching to metal folded plate roofing material. However, few materials can prevent corrosion of metal roofing materials from alkaline substances.
 そのため、以下のような問題があった。
 まず、工場や倉庫等の鉄骨の建物では、折板等金属屋根が殆どであって、この金属屋根には、結露防止用の薄いシートを使っているものはあるが、断熱施工は殆どされておらず、また外壁としても、断熱材を備えていない金属板が用いられている。そのため、夏場の室内は非常に暑く、逆に冬場は寒い劣悪な作業環境におかれている。
 なお、これらの金属屋根や外壁の室内側に断熱工事や遮熱工事を施工すれば、冷暖房効率も向上し、作業環境も大きく変えることが出来るものの、前述のように施工費用がかさむというという問題があった。また、壁面に設置されているシャッターの多くは、断熱工事がされておらず、室内の熱効率を落とす要因でもあるが、これは、前述のようにシャッターが巻取りドラムに巻かれて使用されるためで、シャッター材に断熱材を取り付けると、巻取りドラムが大きくなりすぎ、現実的に使用は困難になるという問題があった。また、断熱材を薄くすると、断熱効果が少ないばかりか、仮に取り付けてもシャッターは常時可動するため、容易に剥がれ落ちてしまう恐れがあり、殆どのシャッターは何もなされていないのが現状である。
 また、鶏舎や牛舎等の農業用の建物では、前述のように以前はスレート屋根材が殆どであったが、近年では金属製折板屋根材が使用されており、前述の工場や倉庫等の建物と同様の問題があった。
 加えてこの鶏舎や牛舎等の農業用の建物では、肉用動物等の体重増加に及ぼす著しいストレスの原因として、ブラックグローブ現象という自然現象がある。これは気温25℃を越えると起こる現象で、鶏、豚、牛等の生産性が大幅に低下するという問題であるが、この現象を阻止するには、屋根や外壁から放射される輻射熱の量を如何に減らすかが重要な問題である。しかしながら、スレート屋根材や金属製屋根材又は外壁材等では、輻射熱を多く放射する素材が殆どで、生産性の向上はとてもおぼつかないだけでなく、鶏等に至っては死亡率も年々増加傾向にある。
 さらに、建物の中でも、壁の無い駅舎や配送センターの屋根或いは建物周囲の下屋等では、外部からの風の吹き込みが想定される環境であり、台風等の強風が室内に吹き込むと、天井にかかる風圧は非常に大きく、軽量な断熱材等では風圧で捲れたり飛ばされたりするので全く使えない状況にある。
 そこで、本発明は、新築建物にも既築建物にも使え、安価で省エネルギー効果の高い外壁材、屋根材、シャッター材などとして用いることができる遮熱板材を提案することを目的とする。
Therefore, there are the following problems.
First, in steel-frame buildings such as factories and warehouses, metal roofs such as folded plates are mostly used, and some of these metal roofs use thin sheets for preventing condensation, but they are mostly insulated. Moreover, the metal plate which is not provided with the heat insulating material is used also as an outer wall. For this reason, indoors are very hot in the summer, and cold in the winter.
In addition, if heat insulation work or heat insulation work is performed on the indoor side of these metal roofs and outer walls, the efficiency of air conditioning can be improved and the work environment can be greatly changed, but the construction cost is increased as described above. was there. In addition, many of the shutters installed on the wall are not heat-insulated, and this is a factor that reduces the thermal efficiency of the room. This is because the shutter is wound around a take-up drum as described above. For this reason, when a heat insulating material is attached to the shutter material, the take-up drum becomes too large, and there is a problem that it is practically difficult to use. Also, if the heat insulating material is made thin, not only the heat insulating effect is small, but even if it is attached, the shutter always moves, so there is a risk that it will easily peel off, and most shutters are not done at present .
In addition, as mentioned above, slate roofing materials were mostly used in agricultural buildings such as poultry houses and cowsheds in the past, but in recent years, metal folded-plate roofing materials have been used. There was a problem similar to the building.
In addition, in agricultural buildings such as poultry houses and cowsheds, there is a natural phenomenon called a black glove phenomenon as a cause of significant stress on weight gain of meat animals. This is a phenomenon that occurs when the temperature exceeds 25 ° C, and it is a problem that the productivity of chickens, pigs, cattle, etc. is greatly reduced. To prevent this phenomenon, the amount of radiant heat radiated from the roof and outer walls It is an important problem how to reduce the amount. However, in slate roofing materials, metal roofing materials, or exterior wall materials, most of them are materials that emit a lot of radiant heat, so not only the improvement in productivity is not very noticeable, but also the mortality rate is increasing year by year for chickens etc. .
Furthermore, in buildings, there is an environment where wind blows from outside, such as station buildings with no walls, roofs of distribution centers, and lower premises around buildings, and if strong winds such as typhoons blow into the room, Such a wind pressure is very large, and a lightweight heat insulating material or the like is drowned or blown by the wind pressure, so that it cannot be used at all.
SUMMARY OF THE INVENTION An object of the present invention is to propose a heat shield plate material that can be used for a new building or an existing building and can be used as an external wall material, roof material, shutter material, etc. that is inexpensive and has a high energy saving effect.
 本発明は、上記に鑑み提案されたものであり、太陽光が直接照射される建築物の外壁材、屋根材、シャッター材の何れか一つとして用いられる基材の表裏のうちの一方の面に、空気層を介在させることなく、輻射熱に対して高反射率の素材による層である遮熱層を設け、該遮熱層を設けた面を太陽光が直接照射される面とは反対の室内側に露出していることを特徴とする遮熱板材に関するものである。
 なお、「高反射率」とは、およそ80~90%以上の反射率を指すものである。また、「輻射熱に対して高反射率の素材による層」とは、以下の説明では「高反射率層」と簡略して説明することもある。
 また、本発明は、上記遮熱板材において、高反射率層が、アルミニウム層であることを特徴とする遮熱板材をも提案する。
 なお、上記の「アルミニウム層」とは、一般的に0.005~0.035mmの厚さの板状(フィルム状)であるアルミニウム箔(アルミホイルとも言われる)でも良いし、より極薄のアルミ蒸着層でもよい。
 また、本発明は、上記遮熱板材において、金属基板と前記輻射熱に対して高反射率の素材による層である遮熱層との間に、化学繊維シート樹脂製シート、樹脂皮膜、樹脂塗膜の何れかによる電食防止層を介在させたことを特徴とする遮熱板材をも提案する。
The present invention has been proposed in view of the above, and one surface of the front and back surfaces of a base material used as any one of an outer wall material, a roof material, and a shutter material of a building that is directly irradiated with sunlight. Without providing an air layer, a heat shield layer made of a material having a high reflectivity with respect to radiant heat is provided, and the surface provided with the heat shield layer is opposite to the surface directly irradiated with sunlight. The present invention relates to a heat shield plate characterized by being exposed to the indoor side.
“High reflectance” refers to a reflectance of about 80 to 90% or more. In addition, the “layer made of a material having a high reflectivity with respect to radiant heat” may be simply described as “a high reflectivity layer” in the following description.
The present invention also proposes a heat shield plate material characterized in that, in the heat shield plate material, the high reflectivity layer is an aluminum layer.
The “aluminum layer” may be a plate-like (film-like) aluminum foil (also referred to as an aluminum foil) having a thickness of 0.005 to 0.035 mm, or may be thinner. An aluminum vapor deposition layer may be sufficient.
Moreover, the present invention provides a chemical fiber sheet resin sheet, a resin film, a resin coating film between the metal substrate and the heat shield layer, which is a layer made of a material having a high reflectance with respect to the radiant heat, in the heat shield plate material. Also proposed is a heat shield plate material characterized by interposing an electrolytic corrosion prevention layer of any of the above.
 本発明の遮熱板材は、基材のうちの一方の面(室内側面)に、輻射熱に対して高反射率、即ち低放射率の素材による層である遮熱層を設けたので、例えば夏季等の温暖期には、室外側から受けた熱を室内側へは殆ど放射しないので、室内側を涼しく保つことができる。また、例えば冬季等の寒冷期には、室内側からの輻射熱を室内側へ反射させて室内を暖かく保つことができる。そのため、室内の冷暖房効率が著しく向上でき、また室内の温度環境も好適に改善でき、寒さで凍えたり、暑さで熱中症を引き起こすことがない。
 しかも、本発明の遮熱板材は、室内側の表面がアルミニウム層等の高反射率層であるため、台風等の強い風が吹き込んでも全く問題はない。従って、駅舎や配送センター等壁の無い建物にも全く問題なく使用可能である。また、現場取り付け工事も従来の作業と全く同様に行うことができ、新規の設備や工具も必要としない。従って、施工価格も安く押さえられる。更に、成型後の厚みも、通常の金属板に比べておよそ0.1~0.2mm程度しか厚くならないので、搬送コストを大幅に削減可能である。そして、全体の厚みが非常に薄いので、トタン屋根成型機や折板成型機などで曲げ加工し易く、長さも50~100mと長尺物も簡単に短時間に製作可能である。
 また、高反射率層が、アルミニウム層である場合には、その反射率が97~98%と高く、その放射率は3~2%と低いため、前述の低放射性に関する効果、及び高反射性に関する効果を高く発揮させることができる。しかも、工業製品として信頼性の高いアルミニウム箔(アルミホイル)やアルミ蒸着を用いるので、金属基板との貼合わせ作業も容易であり、材料コストも抑えることができる。
 また、金属基板と前記輻射熱に対して高反射率の素材による層である遮熱層との間に、化学繊維シート、樹脂製シート、樹脂皮膜、樹脂塗膜の何れかによる電食防止層を介在させた場合には、基材が金属基板であって、高反射率層がアルミニウム層等の金属素材であったとしても、この金属素材と金属基板とが接触することで起こる恐れがある電食を防止することができる。しかも、化学繊維シートや樹脂塗膜などからなる電食防止層は、0.1~0.2mm程度の薄肉の層でよいため、この遮熱板材を屋根材やシャッター材などどのように成形加工する場合にも、その成形加工を阻害することなく自在に行うことができる。また、成型後の厚みも薄いので、軽量であり、嵩張ることもないため、管理コスト及び搬送コストを大幅に削減可能である。また、この電食防止層は、耐酸、耐アルカリにも効果がある。
 さらに、建築物の外壁材、屋根材、シャッター材として用いられる場合には、この構成の遮熱板材を、従来の金属板からなる外壁材、屋根材、シャッター材と全く同様に成形加工を行うことができ、その現場取り付け工事もまた従来の作業と全く同様に行うことができる。そのため、別途、断熱工事や遮熱工事を行う場合に比べて、施工価格も安く押さえることができる。
 なお、本発明の遮熱板材は、それ自体を外壁材や屋根材、シャッター材として成形加工するものに限定されず、例えば公知の屋根瓦(和瓦や洋瓦など)やコンクリートブロック、鋼材等を基材として用い、その内側に前記遮熱層を添設することにより、本発明の遮熱板材とすることができ、屋根瓦やコンクリートブロック、鋼材等に容易に前述の遮熱効果を付与することができる。
The heat shield plate material of the present invention is provided with a heat shield layer, which is a layer made of a material having a high reflectivity with respect to radiant heat, that is, a low emissivity, on one surface (inner side surface) of the base material. In the warm season such as, the heat received from the outdoor side is hardly radiated to the indoor side, so that the indoor side can be kept cool. Further, for example, in a cold season such as winter season, the indoor heat can be reflected by reflecting the radiant heat from the indoor side toward the indoor side. Therefore, the indoor heating and cooling efficiency can be remarkably improved, and the indoor temperature environment can be suitably improved, so that freezing due to cold and heat stroke due to heat are not caused.
Moreover, since the heat shield plate material of the present invention has a high reflectance layer such as an aluminum layer on the surface on the indoor side, there is no problem even if strong wind such as typhoon blows in. Therefore, it can be used without any problem in buildings without walls such as station buildings and distribution centers. Also, field installation work can be performed in the same manner as conventional work, and no new equipment or tools are required. Therefore, the construction price can be kept low. Furthermore, since the thickness after molding is only about 0.1 to 0.2 mm thicker than a normal metal plate, the conveyance cost can be greatly reduced. And since the whole thickness is very thin, it is easy to bend with a tin roof molding machine or a folded plate molding machine, and a long product with a length of 50 to 100 m can be easily produced in a short time.
When the high reflectivity layer is an aluminum layer, the reflectivity is as high as 97 to 98% and the emissivity is as low as 3 to 2%. The effect regarding can be exhibited highly. Moreover, since highly reliable aluminum foil (aluminum foil) or aluminum vapor deposition is used as an industrial product, the bonding work with a metal substrate is easy, and the material cost can be suppressed.
In addition, between the metal substrate and the heat-shielding layer, which is a layer made of a material having high reflectivity with respect to the radiant heat, an electrolytic corrosion prevention layer made of any one of a chemical fiber sheet, a resin sheet, a resin film, and a resin coating film is provided. When intervening, even if the base material is a metal substrate and the high reflectivity layer is a metal material such as an aluminum layer, there is an electric potential that may occur when the metal material contacts the metal substrate. Eating can be prevented. In addition, the electric corrosion prevention layer made of chemical fiber sheets or resin coatings may be a thin layer of about 0.1 to 0.2 mm, so how to form this heat shield plate material such as roofing materials and shutter materials In this case, it can be performed freely without hindering the molding process. Moreover, since the thickness after molding is thin, it is lightweight and does not become bulky, so that management costs and transport costs can be significantly reduced. Moreover, this electrolytic corrosion prevention layer is also effective in acid resistance and alkali resistance.
Furthermore, when used as an outer wall material, roof material, or shutter material of a building, the heat shield plate material of this configuration is formed in the same manner as the outer wall material, roof material, and shutter material made of a conventional metal plate. The field installation work can also be performed just like the conventional work. Therefore, it is possible to reduce the construction cost at a lower cost than when performing heat insulation work or heat shield work separately.
In addition, the heat shield plate material of the present invention is not limited to a material that is molded as an outer wall material, a roof material, or a shutter material. For example, a known roof tile (such as a Japanese roof tile or a Western tile), a concrete block, a steel material, or the like. Can be used as a base material, and the heat shield layer of the present invention can be obtained by adding the heat shield layer on the inside thereof, and the above-mentioned heat shield effect can be easily imparted to roof tiles, concrete blocks, steel materials, etc. can do.
 図1は、本発明の遮熱板材の一実施例(合計3層構造の実施例)を模式的に示す断面図である。
 図2は、本発明の遮熱板材の他の一実施例(合計2層構造の実施例)を模式的に示す断面図である。
 図3は、本発明の遮熱板材の他の一実施例(合計2層構造の実施例)を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing one embodiment (a total three-layer embodiment) of the heat shield plate material of the present invention.
FIG. 2 is a cross-sectional view schematically showing another embodiment of the heat shield plate material of the present invention (an embodiment having a total two-layer structure).
FIG. 3 is a cross-sectional view schematically showing another embodiment of the heat shield plate material of the present invention (an embodiment having a total two-layer structure).
 以下、本発明を実施するための最良の形態について説明する。
 米国の多くの機関の報告によると、建物を移動する熱の平均75%は輻射熱であると言われている。しかも、屋根からの熱の出入りの70~93%が輻射熱であるとされ、壁方向の輻射熱の量は壁全体の65~80%とされている。従って、このような輻射熱をカットすることが最も効率的な省エネルギー工法といえる。
 この輻射熱をカットする方法として、前述のように屋根や外壁の室内側に断熱工事や遮熱工事を施工することが有効であることが知られているが、施工費用もかかるし、厚肉の断熱材を張設することで、管理コストや搬送コストもかかり、室内に断熱材が飛散しないようにするための構成も必要となる。一例として、例えば柱等にウール状の断熱材を巻き付け、更にその外表面にアルミニウム箔を巻き付ける方法がある。
 本発明は、最表面の基材からの伝熱を断熱材等にて断熱しようとするものではなく、低放射性の素材を遮熱層として用いることにより室内の温度上昇を抑制しようとするものであり、輻射熱に対して高反射率の素材による層を含む遮熱層が低い放射性を有している点に着目して発明されたものである。
 金属の反射率と放射率の和は壱(1)である。即ち反射率が高い物質は放射率が低く、高反射率の素材は低放射性の素材である(=熱反射率が高い素材は熱放射性が低い素材である)といえる。例えばアルミニウム箔(アルミホイル)やアルミ蒸着などのアルミニウム層では、輻射熱に対して97~98%の反射率を持っているので、放射率は僅か2~3%ということになる。また、この輻射熱に対して高反射率の素材としては、アルミニウムに限定されるものではなく、金や銀などの貴金属等を用いてもよい。
 また、輻射熱に対する反射率は高いほど効果的であり、少なくても95%以上のものが望ましい。
 物質の温度を上昇させる最も大きな要因は輻射熱であるので、本発明により、室内が低放射の環境になれば例えば極寒の冬季でも酷暑の夏季でも外気温に影響されることなく、その室内に生活する人間、又は鶏や牛等の動物の環境温度の変化が少なく、また室内に保管される種々の物質の温度変化も少なくできる。
 即ち建物を移動する熱流は、夏季等の温暖期と冬季等の寒冷期では逆転するので、温暖期には低放射性の性能を有効に利用でき、寒冷期には輻射熱に対して高反射性の性能を有効に利用できる。
 本発明の遮熱板材のベースとなる基材としては、金属基板を主とするが、陶器製の板材でも、コンクリート製の板材でも良く、或いはプラスチック基板でもよい。特に金属基板には、その目的に応じた機能(特性)が最も重要で、充分な剛性も必要である。この金属基板としては、各種の化粧鋼板等の鋼板類や合金板類を使用でき、遮熱板材を使用する用途(目的)に応じて必要とされる強度特性等が異なる。例えばこの遮熱板材を直接的に成形して使用する態様では、屋根材の場合は、厚さは0.5~1.2mm程度が使用され、外壁材の場合は、一般の屋根材と同様に厚さは0.25~0.8mm程度が使用され、シャッター材の場合は厚さは0.5mm程度が使用される。一方、プラスチック基板は、他の外壁材の内側に添設して使用する態様となるため、基材の厚みはあまり重要ではない。
 なお、プラスチック基板としては、硬質の各種の樹脂板が使用できる。
 また、陶器製の板材とは屋根瓦であり、コンクリート製の板材とはやコンクリートブロックであり、日常的に用いられているこれらの建築資材を、本発明では基材として使用することができる。そのため、これらの陶器製の板材やコンクリート製の板材の場合にも、厚みはあまり重要ではない。
 本発明の遮熱板材は、前記構成の基材の少なくとも片面(室内面)に、前記構成の輻射熱に対し高反射率、低放射率の遮熱層を、空気層を介在させることなく設けたものであり、仮に基材と遮熱層との間に空気層が存在すると、基材の裏面から空気層に輻射熱が放射され、この空気層自体が熱を吸収し、その熱はやがて遮熱層に伝わってしまう。このように本発明の遮熱板材は、基材の室内側にアルミニウム層等の高反射率層(遮熱層)を直接取り付けたものである。このように基材に直接高反射率層(遮熱層)を取り付けることにより、前述のように高反射率層(遮熱層)の低放射性を利用し、例えば夏季等の温暖期には、室外側から受けた熱を室内側へは殆ど放射しないので、室内側を涼しく保つことができる。
 詳しくは、例えば夏季等の温暖期には、屋外からの伝導熱や対流熱或いは輻射熱は、室内に向かって移動して最表面側に位置する基材に吸収される。この熱は、伝導熱として裏面側の高反射率層(遮熱層)に伝わり、多くの熱量は室内側の空気に伝導熱や対流熱の形態を取って移動する。勿論、この時、輻射熱も放射されるが、アルミニウム層等の高反射率層(遮熱層)は低放射率層であるため、室内への放射される熱量は非常に少ない。
 逆に冬季等の寒冷期には、室内の熱は屋外に向かって移動しようとする。しかし、アルミニウム層等の高反射率層(遮熱層)は、輻射熱に対して高反射率の素材であるため、輻射熱は室内に戻され、暖房効果を継続的に維持する保温効果をあげることができる。
 なお、本発明の遮熱板材は、前述のように基材の少なくとも片面に高反射率層からなる遮熱層を設けた構成であるが、この高反射率層からなる遮熱層は、基材の両面に形成してもよい。このように基材(特に金属基板)の両面に高反射率層からなる遮熱層を設ける態様としては、例えば工場や倉庫等の建物内の間仕切り用のシャッター材などの用途等に好適な仕様である。
 しかし、このように遮熱層が、アルミニウム層等の高反射率層のみから構成されるので、表面の金属基板(異種金属)と接触することにより電食を起こす恐れがある。そこで、金属基板とアルミニウム層等の高反射率層との間に、PE(ポリエチレン),PP(ポリプロピレン),PET(ポリエチレンテレフタレート,ポリエステル)等の不織布やガラスクロスなどの化学繊維シート、樹脂製シート、樹脂皮膜、樹脂塗膜の何れかによる電食防止層を設けることが好ましい。この電食防止層は、耐酸、耐アルカリにも効果がある。
 この電食防止層は、その用途(屋根材や外壁材、シャッター材など)に関わらず0.1~0.2mm程度が好ましく、そのためアルミニウム層等の高反射率層の厚み7~35μmを合算しても遮熱層は合計0.1~0.25mm程度とすることができる。
 したがって、本発明の遮熱板材の厚みは、前述のように遮熱層の厚みが0.1~0.25mm程度であり、(金属)基材の厚みが0.5~1.2mm程度であるから、遮熱板材全体の厚みは0.7~1.8mm程度であり、圧延や曲げ加工が可能である。
 さらに、前記電食防止層は、基材としての金属(金属基板)と高反射率層としての金属(アルミニウム層など)との接触を防止するものであるが、金属基板と外部の金属或いは高反射率層と外部の金属との接触を防止する目的でも電食防止層を設けるようにしてもよい。
 ここで用いる電食防止層は、前述のものと全く同一でも良いが、家畜の糞尿から発生するアルカリ性物質による腐食を考慮して高分子ポリ系フィルムなどの高透過樹脂を接着することが好ましい。
 このように本発明の遮熱板材は、基材の裏面側(室内側)に、アルミニウム層等の高反射率層からなる遮熱層が形成される合計2層構造の場合と、電食防止層と高反射率層(遮熱層)とからなる2層が形成される合計3層構造の場合とがある。前者の構成の用途としては、陶器瓦、壁、床等、FRPシャッターなどがあり、主として木造建物に用いられ、後者の構成の用途としては、コロニアル、金属瓦、窯業系サイディングなどがあり、主として木造建物に用いられる。また、畜舎の外壁などには、家畜の糞尿から発生するアルカリ性物質による腐食を考慮してアルミニウム層等の高反射率層(遮熱層)の内面側に腐食防止層を設けて合計4層構造の遮熱板材とすることが好ましい。なお、腐食防止層としては、耐酸性及び耐アルカリ性を有するものであれば特に限定するものではなく、前記電食防止層と共通の層でも良い。この構成の用途としては、金属屋根、外壁、シャッター、ドア、ALC屋根、壁、RC屋根、壁(外壁タイル、人工大理石)等があり、鉄骨建物、農業用、高層ビルPC工法、一般ビルに用いられる。
 そして、前記合計2層構造の場合には、金属基板と遮熱層とを、空気層を介在させないように接合すればよい。前記合計3層構造の場合には、電食防止層と遮熱層とを溶着又は接着した後、この溶着又は溶着されたシートを、電食防止層が金属基板に直接接触するように再度接着又は溶着すればよい。
 この様に一体化された本発明の合計2層~4層構造の遮熱板材は、全体厚みが極めて薄いので各種の成型機にかけてどのように加工することも可能である。
Hereinafter, the best mode for carrying out the present invention will be described.
According to reports from many US agencies, an average of 75% of the heat moving through buildings is radiant heat. Moreover, 70 to 93% of the heat entering and leaving the roof is radiant heat, and the amount of radiant heat in the wall direction is 65 to 80% of the entire wall. Therefore, it can be said that cutting such radiant heat is the most efficient energy saving method.
As a method of cutting this radiant heat, it is known that it is effective to install heat insulation work and heat shield work on the indoor side of the roof and outer wall as described above, but it also costs construction costs and is thick. By stretching the heat insulating material, management costs and transport costs are also required, and a configuration for preventing the heat insulating material from scattering in the room is also required. As an example, for example, there is a method of winding a wool-like heat insulating material around a pillar or the like and further winding an aluminum foil around the outer surface thereof.
The present invention is not intended to insulate the heat transfer from the outermost base material with a heat insulating material or the like, but to suppress an increase in indoor temperature by using a low radioactive material as a heat shielding layer. The invention was invented by paying attention to the fact that a heat shielding layer including a layer made of a material having a high reflectance with respect to radiant heat has low radiation.
The sum of the reflectance and emissivity of the metal is 壱 (1). That is, it can be said that a material with high reflectivity has low emissivity, and a material with high reflectivity is a material with low emissivity (= a material with high heat reflectivity is a material with low heat emissivity). For example, an aluminum layer such as an aluminum foil (aluminum foil) or aluminum vapor deposition has a reflectivity of 97 to 98% with respect to radiant heat, so the emissivity is only 2 to 3%. Further, the material having a high reflectivity with respect to the radiant heat is not limited to aluminum, and a noble metal such as gold or silver may be used.
Moreover, the higher the reflectance with respect to radiant heat, the more effective, and at least 95% or more is desirable.
Radiant heat is the most important factor that raises the temperature of a substance, so that if the room has a low radiation environment, it is possible to live in the room without being affected by the outside temperature, for example, in extremely cold winters or extremely hot summers. Changes in the environmental temperature of humans or animals such as chickens and cows, and changes in the temperature of various substances stored indoors can be reduced.
In other words, the heat flow that moves through the buildings is reversed in the warm season such as summer and the cold season such as winter, so that the low radiation performance can be effectively used in the warm season and highly reflective to radiant heat in the cold season. Performance can be used effectively.
The base material used as the base of the heat shield plate material of the present invention is mainly a metal substrate, but may be a ceramic plate material, a concrete plate material, or a plastic substrate. In particular, the function (characteristics) according to the purpose is most important for the metal substrate, and sufficient rigidity is required. As this metal substrate, steel plates such as various decorative steel plates and alloy plates can be used, and required strength characteristics and the like differ depending on the application (purpose) in which the heat shield plate material is used. For example, in a mode in which this heat shield plate material is directly formed and used, in the case of a roof material, a thickness of about 0.5 to 1.2 mm is used, and in the case of an outer wall material, it is the same as a general roof material In addition, a thickness of about 0.25 to 0.8 mm is used, and in the case of a shutter material, a thickness of about 0.5 mm is used. On the other hand, the thickness of the base material is not so important because the plastic substrate is used by being attached inside the other outer wall material.
As the plastic substrate, various hard resin plates can be used.
In addition, the ceramic plate material is a roof tile, the concrete plate material is a concrete block, and these building materials used on a daily basis can be used as a base material in the present invention. Therefore, the thickness is not so important even in the case of these ceramic plates and concrete plates.
In the heat shield plate material of the present invention, a heat shield layer having a high reflectivity and a low emissivity with respect to the radiant heat having the above-described configuration is provided on at least one surface (interior surface) of the base material having the above-described configuration without interposing an air layer. If an air layer exists between the base material and the heat shield layer, radiation heat is radiated from the back surface of the base material to the air layer, and the air layer itself absorbs the heat. It is transmitted to the layer. Thus, the heat shield plate material of the present invention is obtained by directly attaching a high reflectivity layer (heat shield layer) such as an aluminum layer to the indoor side of the base material. By attaching the high reflectivity layer (heat shield layer) directly to the base material in this way, the low reflectivity of the high reflectivity layer (heat shield layer) is used as described above. For example, in the warm season such as summer, Since the heat received from the outdoor side is hardly radiated to the indoor side, the indoor side can be kept cool.
Specifically, for example, in a warm season such as summer, conduction heat, convection heat, or radiant heat from the outside moves toward the room and is absorbed by the base material located on the outermost surface side. This heat is transferred to the high-reflectance layer (heat shield layer) on the back side as conduction heat, and a large amount of heat is transferred to the indoor air in the form of conduction heat or convection heat. Of course, at this time, radiant heat is also radiated, but since a high reflectivity layer (heat shield layer) such as an aluminum layer is a low emissivity layer, the amount of heat radiated into the room is very small.
Conversely, in cold seasons such as winter, indoor heat tends to move towards the outdoors. However, the high reflectivity layer (heat shield layer) such as an aluminum layer is a material having a high reflectivity with respect to radiant heat, so that the radiant heat is returned to the room, and the heat retention effect is maintained to maintain the heating effect continuously. Can do.
The heat shield plate material of the present invention has a structure in which a heat shield layer composed of a high reflectivity layer is provided on at least one surface of a base material as described above. It may be formed on both sides of the material. Thus, as a mode of providing a heat-shielding layer composed of a high reflectivity layer on both surfaces of a base material (particularly a metal substrate), for example, a specification suitable for applications such as a shutter material for a partition in a building such as a factory or a warehouse It is.
However, since the heat shield layer is composed of only a high reflectivity layer such as an aluminum layer, there is a possibility that electric corrosion may occur due to contact with the metal substrate (foreign metal) on the surface. Therefore, between a metal substrate and a high reflectance layer such as an aluminum layer, a non-woven fabric such as PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate, polyester), a chemical fiber sheet such as a glass cloth, or a resin sheet It is preferable to provide a galvanic corrosion prevention layer made of either a resin film or a resin film. This electrolytic corrosion prevention layer is also effective in acid resistance and alkali resistance.
The electric corrosion prevention layer is preferably about 0.1 to 0.2 mm regardless of its use (roof material, outer wall material, shutter material, etc.), and therefore the thickness of the high reflectivity layer such as an aluminum layer is 7 to 35 μm. Even in this case, the total heat shielding layer can be about 0.1 to 0.25 mm.
Therefore, the thickness of the heat shield plate material of the present invention is such that the thickness of the heat shield layer is about 0.1 to 0.25 mm as described above, and the thickness of the (metal) substrate is about 0.5 to 1.2 mm. Therefore, the total thickness of the heat shield plate material is about 0.7 to 1.8 mm and can be rolled or bent.
Furthermore, the electrolytic corrosion prevention layer prevents contact between a metal (metal substrate) as a base material and a metal (such as an aluminum layer) as a high reflectivity layer. An electrolytic corrosion prevention layer may be provided for the purpose of preventing contact between the reflectance layer and an external metal.
The electrolytic corrosion prevention layer used here may be exactly the same as described above, but it is preferable to adhere a highly permeable resin such as a polymer poly film in consideration of corrosion caused by alkaline substances generated from livestock manure.
As described above, the heat shield plate material of the present invention has a total two-layer structure in which a heat shield layer composed of a high reflectivity layer such as an aluminum layer is formed on the back surface side (indoor side) of the base material, and prevents electrolytic corrosion. There are cases in which a total of three layers is formed in which two layers of a layer and a high reflectance layer (heat shielding layer) are formed. Applications of the former configuration include ceramic tiles, walls, floors, FRP shutters, etc., mainly used for wooden buildings, and applications of the latter configuration include colonials, metal tiles, ceramic siding, etc. Used for wooden buildings. In addition, in consideration of corrosion caused by alkaline substances generated from livestock manure, the outer wall of the barn is provided with a corrosion prevention layer on the inner surface side of a high reflectivity layer (heat shield layer) such as an aluminum layer, for a total of four layers. It is preferable to use a heat shield plate material. The corrosion prevention layer is not particularly limited as long as it has acid resistance and alkali resistance, and may be a layer common to the electrolytic corrosion prevention layer. Applications of this configuration include metal roofs, outer walls, shutters, doors, ALC roofs, walls, RC roofs, walls (outer wall tiles, artificial marble), etc. for steel buildings, agriculture, high-rise building PC construction methods, general buildings Used.
In the case of the total two-layer structure, the metal substrate and the heat shield layer may be joined without interposing an air layer. In the case of the total three-layer structure, after the electrolytic corrosion preventing layer and the heat shielding layer are welded or bonded, the welded or welded sheet is bonded again so that the electrolytic corrosion preventing layer is in direct contact with the metal substrate. Or what is necessary is just to weld.
The heat shield plate material having a total of two to four layers according to the present invention integrated in this manner has an extremely small overall thickness, and can be processed in any way by various molding machines.
 以下に、本発明の実施例を示すが、本発明は、これらの実施例に限定されるものではなく、前記特許請求の範囲を逸脱しない限り、どのように構成してもよい。
 図1に示す遮熱板材の実施例1は、基材(金属基板)1の裏面側に、電食防止層3と高反射率層(遮熱層)2とを形成した合計3層構造の構成である。
 図2に示す遮熱板材の実施例2は、基材(金属基板)1の裏面側に、高反射率層(遮熱層)2を形成した合計2層構造の構成である。
 図3に示す遮熱板材の実施例3は、基材(金属基板)1の裏面側に、電食防止層3と高反射率層(遮熱層)2と電食防止層3とを形成した合計4層構造の構成である。
 なお、これらの図1~3は何れも断面構成を示すために模式的に示すものであって、厚み等に関して写実的に示すものではない。
 これらの実施例1~3における基材(金属基板)1としては、厚み0.5mmの化粧鋼板を用い、高反射率層2としては、厚み15μmのアルミニウム層(アルミホイル)を用い、電食防止層3としては、厚み0.3mmの化学繊維シート(PE不織布)を用いた。
 また、図2の遮熱板材を作製する際には、前記電食防止層3と高反射率層2とを溶着して接合した(詳しくは不織布にPEを介してアルミホイルを熱溶着して遮熱シートを作製した)後、この遮熱シートを、電食防止層3が金属基板1に直接接触するように接着(又は溶着)して一体化した。さらに、図3の遮熱板材を作製する際もほぼ同様に電食防止層3と高反射率層2と電食防止層3とを溶着して接合した後、この接合したシートを金属基板1に接着(接合)して一体化した。
〈遮熱性試験1〉
 前記実施例2の遮熱板材を用い、屋根材、外壁材としてそれぞれ成形加工を行った。なお、比較例として、前記金属基板1と同じ金属板を用い、同じように屋根材、外壁材としてそれぞれ成形加工を行った。
 なお、屋根材としての成形加工は、山部と谷部とが交互に連続する折板屋根の形状とした。また、外壁材としての加工は、略平坦状の中央部分の左右が傾斜状に立ち上げられた形状とした。
〔実験方法〕
 前記実施例2の遮熱板材を用いて、前述のように成形して屋根材、外壁材としたものを実施例とし、前記金属基板1と同じ金属板を用いて、前述のように成形して屋根材、外壁材としたものを比較例とし、これらを同一条件にて並べて屋外に放置し、その室内側(太陽光が照射される面とは反対側の面)の温度を測定して比較した。
〔結果1〕
 外気温が32℃のとき、実施例2の屋根材の室内側の温度は42.2℃であり、これに対し、比較例の屋根材(金属基板1のみ)の室内側の温度は46.2℃であり、その差は4℃であった。
 外気温が32℃のとき、実施例2の外壁材の室内側の温度は37.2℃であり、これに対し、比較例の外壁材(金属基板1のみ)の室内側の温度は46.4℃であり、その差は9.2℃であった。
〔考察〕
 本発明の実施例2の遮熱板材は、全体の厚みが非常に薄いので、表面に凹凸の形状を付けるどのような加工(圧延加工や曲げ加工など)も、容易に行うことができる。したがって、金属基板1のみで構成される比較例と同様に、長尺物も簡単に短時間に製作可能である。
 また、実施例1~3の遮熱板材は、何れも裏面側がアルミニウム層等の高反射率層であるため、台風等の強い風が吹き込んでも内面側がアルミニウム層等の高反射率層であるため、全く問題は発生しなかった。
〈遮熱性試験2〉
 コンクリートブロックの内側に前記高反射率層2のみから遮熱層を添設した構成の遮熱板材を実施例とし、熱源(800Wヒーター)からの距離を100mm~500mmまで変えてその内側の温度を測定して比較した。
〔結果2〕
Figure JPOXMLDOC01-appb-T000001
〔考察〕
 表1より明らかなように、熱源からの距離が100~300mmである場合に、本発明の遮熱板材は、遮熱層が存在しない比較例に比べて明らかな遮熱効果が認められた。それに対し、熱源からの距離が400~500mmでは、風等の影響がデータに反映されたものと考える。
Examples of the present invention will be described below, but the present invention is not limited to these examples, and may be configured in any manner without departing from the scope of the claims.
Example 1 of the heat shield plate material shown in FIG. 1 has a total three-layer structure in which an electrolytic corrosion prevention layer 3 and a high reflectance layer (heat shield layer) 2 are formed on the back side of a base material (metal substrate) 1. It is a configuration.
Example 2 of the heat shield plate material shown in FIG. 2 has a total two-layer structure in which a high reflectivity layer (heat shield layer) 2 is formed on the back side of a base material (metal substrate) 1.
In Example 3 of the heat shielding plate material shown in FIG. 3, an electrolytic corrosion prevention layer 3, a high reflectance layer (thermal insulation layer) 2, and an electrolytic corrosion prevention layer 3 are formed on the back side of the base material (metal substrate) 1. It is the structure of the total 4 layer structure.
Each of FIGS. 1 to 3 is schematically shown to show a cross-sectional configuration, and is not realistic about thickness and the like.
As the base material (metal substrate) 1 in Examples 1 to 3, a decorative steel plate having a thickness of 0.5 mm is used, and as the high reflectivity layer 2, an aluminum layer (aluminum foil) having a thickness of 15 μm is used. As the prevention layer 3, a chemical fiber sheet (PE non-woven fabric) having a thickness of 0.3 mm was used.
Further, when the heat shield plate material of FIG. 2 is produced, the electrolytic corrosion prevention layer 3 and the high reflectance layer 2 are welded and joined (specifically, an aluminum foil is thermally welded to the nonwoven fabric via PE). After the heat shield sheet was prepared, the heat shield sheet was bonded (or welded) and integrated so that the electrolytic corrosion prevention layer 3 was in direct contact with the metal substrate 1. Further, when the heat shield plate material of FIG. 3 is produced, the electrolytic corrosion prevention layer 3, the high reflectivity layer 2, and the electrolytic corrosion prevention layer 3 are welded and joined in substantially the same manner, and then the joined sheet is attached to the metal substrate 1. It was bonded (bonded) to and integrated.
<Thermal insulation test 1>
Using the heat shield plate material of Example 2, molding processing was performed as a roof material and an outer wall material, respectively. In addition, as a comparative example, the same metal plate as that of the metal substrate 1 was used, and the molding process was similarly performed as a roofing material and an outer wall material.
In addition, the shaping | molding process as a roofing material was made into the shape of the folded-plate roof in which a mountain part and a trough part continue alternately. In addition, the processing as the outer wall material has a shape in which the left and right sides of the substantially flat central portion are raised in an inclined manner.
〔experimental method〕
Using the heat shield plate material of Example 2 as described above, the roof material and the outer wall material were molded as described above as an example, and using the same metal plate as that of the metal substrate 1, it was molded as described above. The roof material and the outer wall material are used as comparative examples. These are arranged under the same conditions and left outdoors, and the temperature on the indoor side (the surface opposite to the surface irradiated with sunlight) is measured. Compared.
[Result 1]
When the outside air temperature is 32 ° C., the indoor side temperature of the roof material of Example 2 is 42.2 ° C., whereas the indoor side temperature of the roof material of the comparative example (only the metal substrate 1) is 46.degree. 2 ° C., and the difference was 4 ° C.
When the outside air temperature is 32 ° C., the temperature on the indoor side of the outer wall material of Example 2 is 37.2 ° C., whereas the temperature on the indoor side of the outer wall material of the comparative example (only the metal substrate 1) is 46.degree. 4 ° C., and the difference was 9.2 ° C.
[Discussion]
Since the overall thickness of the heat shield plate material of Example 2 of the present invention is very thin, any process (rolling process, bending process, etc.) for forming an uneven shape on the surface can be easily performed. Therefore, similarly to the comparative example configured by only the metal substrate 1, a long object can be easily manufactured in a short time.
In addition, since the heat shielding plate materials of Examples 1 to 3 are all highly reflective layers such as an aluminum layer on the back side, the inner surface side is a highly reflective layer such as an aluminum layer even when strong wind such as typhoon blows in. No problem occurred.
<Thermal insulation test 2>
In the concrete block, the heat shielding plate material having a structure in which the heat shielding layer is added only from the high reflectivity layer 2 is used as an example, and the distance from the heat source (800 W heater) is changed from 100 mm to 500 mm to change the temperature inside the heat shielding plate material. Measured and compared.
[Result 2]
Figure JPOXMLDOC01-appb-T000001
[Discussion]
As is clear from Table 1, when the distance from the heat source is 100 to 300 mm, the heat shield plate material of the present invention has a clear heat shield effect compared to the comparative example in which no heat shield layer is present. On the other hand, when the distance from the heat source is 400 to 500 mm, it is considered that the influence of wind or the like is reflected in the data.
 1   基材(金属基板)
 2   電食防止層
 3   アルミニウム層(高反射率層)
 4   鋼板からなる外壁材
1 Base material (metal substrate)
2 Electric corrosion prevention layer 3 Aluminum layer (high reflectivity layer)
4 Outer wall material made of steel

Claims (3)

  1.  太陽光が直接照射される建築物の外壁材、屋根材、シャッター材の何れか一つとして用いられる基材の表裏のうちの一方の面に、空気層を介在させることなく、輻射熱に対して高反射率の素材による層である遮熱層を設け、該遮熱層を設けた面を太陽光が直接照射される面とは反対の室内側に露出していることを特徴とする遮熱板材。 With respect to radiant heat without interposing an air layer on one side of the front and back of the base material used as any one of the outer wall material, roofing material, and shutter material of the building directly irradiated with sunlight A heat shield layer, which is a layer made of a material having a high reflectance, is provided, and the surface on which the heat shield layer is provided is exposed to the indoor side opposite to the surface directly irradiated with sunlight. Board material.
  2.  輻射熱に対して高反射率の素材による層である遮熱層が、アルミニウム層であることを特徴とする請求項1に記載の遮熱板材。 The heat-shielding plate material according to claim 1, wherein the heat-shielding layer, which is a layer made of a material having a high reflectance with respect to radiant heat, is an aluminum layer.
  3.  金属基板と前記輻射熱に対して高反射率の素材による層である遮熱層との間に、化学繊維シート、樹脂製シート、樹脂皮膜、樹脂塗膜の何れかによる電食防止層を介在させたことを特徴とする請求項1又は2に記載の遮熱板材。 Between the metal substrate and the heat shield layer, which is a layer made of a material having a high reflectivity with respect to the radiant heat, an electrolytic corrosion prevention layer made of any one of a chemical fiber sheet, a resin sheet, a resin film, and a resin coating film is interposed The heat-insulating plate material according to claim 1 or 2, wherein
PCT/JP2013/070403 2012-07-30 2013-07-23 Heat-insulating plate WO2014021237A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12014502212A PH12014502212A1 (en) 2012-07-30 2014-10-01 Heat insulating plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012180278 2012-07-30
JP2012-180278 2012-07-30
JP2012241510A JP5322070B1 (en) 2012-07-30 2012-11-01 Heat shield plate material
JP2012-241510 2012-11-01

Publications (1)

Publication Number Publication Date
WO2014021237A1 true WO2014021237A1 (en) 2014-02-06

Family

ID=49595857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070403 WO2014021237A1 (en) 2012-07-30 2013-07-23 Heat-insulating plate

Country Status (3)

Country Link
JP (1) JP5322070B1 (en)
PH (1) PH12014502212A1 (en)
WO (1) WO2014021237A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027456A1 (en) * 2014-08-20 2016-02-25 日本遮熱株式会社 Coating material for forming electrolytic corrosion prevention layer, and heat shielding material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804826B2 (en) * 2015-03-31 2020-12-23 大和ハウス工業株式会社 Roof structure
JP6902079B2 (en) * 2015-03-31 2021-07-14 大和ハウス工業株式会社 Roof structure design method
CN110128688A (en) * 2019-03-29 2019-08-16 宁波瑞凌新能源科技有限公司 A kind of radiation refrigeration film and preparation method thereof
RU198861U1 (en) * 2020-03-12 2020-07-30 Владислав Владимирович Колпаков Cladding panel
JP6862024B1 (en) * 2020-09-09 2021-04-21 日本遮熱株式会社 Heat shield steel plate structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231932A (en) * 1987-03-20 1988-09-28 株式会社神戸製鋼所 Metal laminated plate
JPH08246609A (en) * 1995-03-13 1996-09-24 Sanko Metal Ind Co Ltd Roof structure
JP3311901B2 (en) * 1995-06-21 2002-08-05 株式会社環境エンジニアリング Control device for solar and radiant heat in window openings
JP3099806U (en) * 2003-08-11 2004-04-22 株式会社サニックス Attic insulation structure
JP2009046970A (en) * 2007-07-23 2009-03-05 Aichi Prefecture Roof construction and wall construction
JP2009079448A (en) * 2007-09-27 2009-04-16 Panasonic Corp Building and building construction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132009U (en) * 1982-03-01 1983-09-06 有限会社太田建板工業所 Plate members for buildings
JPS6051232U (en) * 1983-09-16 1985-04-10 積水化学工業株式会社 Architectural base material
JP5473345B2 (en) * 2009-02-04 2014-04-16 大建工業株式会社 Field board and roof finish structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231932A (en) * 1987-03-20 1988-09-28 株式会社神戸製鋼所 Metal laminated plate
JPH08246609A (en) * 1995-03-13 1996-09-24 Sanko Metal Ind Co Ltd Roof structure
JP3311901B2 (en) * 1995-06-21 2002-08-05 株式会社環境エンジニアリング Control device for solar and radiant heat in window openings
JP3099806U (en) * 2003-08-11 2004-04-22 株式会社サニックス Attic insulation structure
JP2009046970A (en) * 2007-07-23 2009-03-05 Aichi Prefecture Roof construction and wall construction
JP2009079448A (en) * 2007-09-27 2009-04-16 Panasonic Corp Building and building construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027456A1 (en) * 2014-08-20 2016-02-25 日本遮熱株式会社 Coating material for forming electrolytic corrosion prevention layer, and heat shielding material
JP2016044191A (en) * 2014-08-20 2016-04-04 日本遮熱株式会社 Coating agent for forming electrocorrosion prevention layer, and thermal shielding material

Also Published As

Publication number Publication date
PH12014502212B1 (en) 2015-01-12
PH12014502212A1 (en) 2015-01-12
JP5322070B1 (en) 2013-10-23
JP2014043762A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP5322070B1 (en) Heat shield plate material
US8256690B2 (en) Radiant heating and cooling panel
EP3342277B1 (en) Greenhouse for plant cultivation
CN109162377A (en) A kind of construction wall with good heat preservation effect
CN201933685U (en) Glass fiber energy-saving anti-corrosive plate
CN205637401U (en) Reflection thermal barrier coating material decorative board
CN205134575U (en) Prevent wind prefabricated material board of outer facade of thermal -insulated wall body
CN210530153U (en) Radiation refrigeration building material
Harimi et al. Evaluation of the thermal performance of metal roofing under tropical climatic conditions
WO2016027456A1 (en) Coating material for forming electrolytic corrosion prevention layer, and heat shielding material
CN205036006U (en) Reflect thermal barrier coating material&#39;s layer structure of scribbling
JP7147126B1 (en) Air-conditioning structure that can insulate and control the temperature of the space inside the building with less condensation, heat-insulating buildings that do not use air conditioners, and composite heat-insulating materials used for them
JP7130282B1 (en) Total heat insulation exterior structure
JP2016010891A (en) Heat insulating sheet and heat insulating plate using the same
CN109720051A (en) A kind of fire-resistant waterproof ventilation thermal isolation film
CN204676782U (en) A kind of metallic insulation watt
JP2014124432A (en) Bath heat insulation structure
CN108731086A (en) A kind of Far infrared heat physical therapy internal partition wall
RU2746382C1 (en) Heat-insulating flooring for cold floors of building
CN213837106U (en) Heat-insulating coating material for external wall
CN212506867U (en) Double-layer heat-insulation ventilation skin structure of building outer wall
RU165296U1 (en) COVERING A COMFORTABLE BUILDING
JP2009079460A (en) Heat ray blocking panel made of metal or synthetic resin cut into thin, flat and narrow spiral plates, and layered and formed into cotton-like or wire-like state to block solar heat, and to radiate heat without accumulating heat
CN207660223U (en) A kind of coating metal panel insulation and decoration integrated plate
DK201500111U3 (en) Prefabricated insulation blank and use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824741

Country of ref document: EP

Kind code of ref document: A1