WO2014021212A1 - Manufacturing method for actuator device, and actuator device - Google Patents

Manufacturing method for actuator device, and actuator device Download PDF

Info

Publication number
WO2014021212A1
WO2014021212A1 PCT/JP2013/070304 JP2013070304W WO2014021212A1 WO 2014021212 A1 WO2014021212 A1 WO 2014021212A1 JP 2013070304 W JP2013070304 W JP 2013070304W WO 2014021212 A1 WO2014021212 A1 WO 2014021212A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
actuator
actuator device
manufacturing
driving
Prior art date
Application number
PCT/JP2013/070304
Other languages
French (fr)
Japanese (ja)
Inventor
守伯 尾崎
井上 二郎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014528115A priority Critical patent/JPWO2014021212A1/en
Publication of WO2014021212A1 publication Critical patent/WO2014021212A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • H02N2/0085Leads; Wiring arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • H02N2/043Mechanical transmission means, e.g. for stroke amplification

Definitions

  • the present invention relates to a method for manufacturing an actuator device having a metal terminal connected to an external circuit, and the actuator device.
  • an actuator using a piezoelectric element is known as a small actuator.
  • An example of an actuator using a piezoelectric element is described in Patent Document 1 below.
  • the actuator described in Patent Document 1 when the electromechanical conversion element expands and contracts in the length direction, the drive friction member connected to the end portion in the length direction of the electromechanical conversion element vibrates in the length direction.
  • the engagement member engaged with the drive friction member moves relative to the drive friction member in the length direction along with the vibration in the length direction of the drive friction member. Therefore, in the actuator described in Patent Document 1, the expansion / contraction direction of the electromechanical conversion element is parallel to the moving direction of the engagement member, that is, the driving force generation direction.
  • Patent Document 2 discloses an example of a VCM type driving device.
  • the principal part of the drive device 101 described in Patent Document 2 is shown in an exploded perspective view in FIG.
  • a VCM driving element 103 is mounted on the case substrate 102.
  • the drive element 103 is electrically connected to terminals 106 and 107 by lead wires 104 and 105.
  • the terminal 106 and the terminal 107 are portions that are electrically connected to the electrode pattern of the external circuit board.
  • the terminals 106 and 107 are disposed so as to extend below the case substrate 102 and in parallel with each other.
  • the terminals 106 and 107 described above are provided for electrical connection with the outside.
  • the terminals 106 and 107 are connected to an electrode pattern of an external circuit board. Therefore, it is necessary to match the pitch between the terminals 106 and 107 with the pitch between the electrode patterns on the circuit board.
  • a terminal made of a metal material having further excellent flexibility is used instead of the terminal made of a metal plate.
  • the lead wire can be easily deformed. Therefore, it is easy to change the pitch between the lead wires.
  • An object of the present invention is to provide a method of manufacturing an actuator device that can easily cope with the pitch between electrode patterns of various external circuit boards and can greatly reduce the cost, and the actuator device.
  • the actuator device manufacturing method includes a drive element that expands and contracts along a first direction, and is connected to the drive element.
  • the expansion and contraction force along the first direction of the drive element is applied to the first direction.
  • An actuator having a conversion member that converts a drive force along a second direction perpendicular to the actuator, a drive shaft fixed to the conversion member and extending in the second direction, and electrically connected to the drive element of the actuator And a metal terminal having a plurality of terminal portions connected to an external circuit for driving the drive element.
  • the step of electrically connecting the connection portion of the metal terminal to the driving element, and at least one terminal portion connected to an external circuit among the plurality of terminal portions of the metal terminal is left, and the remaining terminals
  • the metal terminal has a strip-shaped metal plate portion connected to the connection portion, and a plurality of the metal terminals extend in parallel with each other from the edge of the strip-shaped metal plate portion. Terminal portions are provided.
  • the remaining terminal portions excluding at least one terminal portion among the plurality of terminal portions are easily cut. be able to. Further, the remaining terminal portions can be easily bent in a direction different from the direction in which at least one terminal portion extends.
  • connection portion is connected to the strip-shaped metal plate portion so as to be a spring terminal portion having spring properties with respect to the strip-shaped metal plate portion.
  • the connection portion can be reliably electrically connected to the drive element.
  • the vibration transmitted by the connection part which consists of a spring terminal part can be suppressed by a strip
  • a step of fixing the actuator to the first substrate, a step of fixing the metal terminal to the second substrate, and a part of the metal terminal are A step of placing a second substrate having a metal terminal fixed thereon on a first substrate to which an actuator is fixed so as to be sandwiched between the first substrate and the second substrate.
  • the metal terminal can be easily fixed so as to be sandwiched between the first substrate and the second substrate.
  • the actuator device includes an actuator and a metal terminal.
  • the actuator has a drive element, a conversion member, and a drive shaft.
  • the drive element expands and contracts along the first direction.
  • the conversion member is connected to the drive element so as to convert the expansion / contraction force along the first direction of the drive element into a drive force along a second direction perpendicular to the first direction.
  • the drive shaft is fixed to the conversion member and extends in the second direction.
  • the metal terminal has a connection portion and a plurality of terminal portions.
  • the connecting portion is electrically connected to the actuator drive element.
  • the plurality of terminal portions are connected to the connection portion, and are connected to an external circuit for driving the drive element. Of the plurality of terminal portions, the length in the extending direction of at least one terminal portion connected to an external circuit is longer than the length of the remaining terminal portions.
  • the remaining terminal portion is bent so as to extend in a direction outside the direction in which at least one terminal portion extends.
  • the remaining terminal portion is cut so as to be shorter than at least one terminal portion.
  • At least one terminal portion connected to an external circuit is left among a plurality of terminal portions of the metal terminal, and the remaining terminal portion is cut or at least one terminal portion
  • the length of the remaining terminal portions is made shorter than the length of the at least one terminal portion in the third direction by bending it in a direction different from the extending direction. Therefore, it is possible to easily electrically connect to an electrode pattern on an external circuit board using the at least one terminal portion. In this case, since the remaining terminal portions are short in length, it is difficult to be electrically connected to the electrode pattern on the external circuit board.
  • the metal terminals of the actuator device can be easily and reliably electrically connected to the electrode patterns of the external circuit board arranged in various pitches and forms. Can be connected.
  • the manufacturing cost can be greatly reduced.
  • the length in the extending direction of at least one terminal portion connected to an external circuit among the plurality of terminal portions is longer than the length of the remaining terminal portions. Therefore, at least one terminal portion can be easily electrically connected to the electrode pattern of the external circuit board.
  • FIG. 1 is a perspective view showing a first substrate used in the method for manufacturing an actuator device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state in which the actuator is fixed on the first substrate shown in FIG.
  • FIG. 3 is a perspective view showing an external appearance of a part of the actuator device manufactured by the method for manufacturing the actuator device according to the first embodiment of the present invention.
  • FIG. 4 is a side view of a part of the actuator device shown in FIG.
  • FIG. 5 is a side view for explaining a piezoelectric element and a conversion member used in the actuator device shown in FIG.
  • FIG. 6 is a perspective view showing a second substrate used in the method for manufacturing the actuator device according to the first embodiment of the present invention.
  • FIG. 1 is a perspective view showing a first substrate used in the method for manufacturing an actuator device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state in which the actuator is fixed on the first substrate shown in FIG.
  • FIG. 7 is a perspective view showing a metal terminal used in the method for manufacturing the actuator device according to the first embodiment of the present invention.
  • FIG. 8 is a perspective view showing a state where the metal terminal shown in FIG. 7 is combined with the second substrate shown in FIG.
  • FIG. 9 is a perspective view showing a state in which the second substrate combined with the metal terminals is arranged on the first substrate on which the actuator is mounted.
  • FIG. 10 is a partially cutaway perspective view showing the main part of the actuator device according to the first embodiment of the present invention.
  • FIG. 11 is a perspective view showing a modification in a state where one terminal portion of the metal terminal is left and the remaining terminal portion is cut in the manufacturing method of the actuator device according to the first embodiment of the present invention.
  • FIG. 12 is a perspective view schematically showing a cut portion of the first and second terminal plates in a modification of the method for manufacturing the actuator device of the present invention.
  • FIG. 13 is an exploded perspective view showing an example of a conventional drive device.
  • FIG. 1 is a perspective view showing a first substrate 51 used in the method for manufacturing an actuator device according to the first embodiment of the present invention.
  • the first substrate 51 is made of metal or synthetic resin.
  • the first substrate 51 has an opening 51a in the center.
  • the opening 51a is a portion into which a driven member driven by a driving shaft 6 described later is inserted.
  • an actuator mounting portion 51b on which an actuator is mounted is provided on the first substrate 51.
  • substrate 51 has the notches 51c and 51c opened to the edge.
  • the actuator 3 is fixed and mounted on the actuator mounting portion 51 b of the first substrate 51.
  • the actuator 3 includes a piezoelectric element 10 as a drive element, a conversion member 4, and a drive shaft 6. Details of the actuator 3 will be described later.
  • the actuator 3 is driven by applying a driving voltage from the outside to the piezoelectric element 10 as the driving element.
  • the actuator 3 can be fixed to the actuator mounting portion 51b by welding or using an appropriate adhesive.
  • FIG. 6 is a perspective view showing the second substrate 61 used in the manufacturing method of the actuator device according to the present embodiment.
  • the second substrate 61 has an opening 61a.
  • the opening 61a has the same diameter as the opening 51a of the first substrate 51 described above.
  • the second substrate 61 has a rectangular outer shape in plan view, and columnar portions 61b are provided at four corners, respectively.
  • recesses 61c and 61c are provided on one edge of the lower surface of the second substrate 61.
  • the recesses 61c and 61c are provided at positions overlapping the notches 51c and 51c of the first substrate 51 described above.
  • the second substrate 61 can be formed by integral molding of synthetic resin.
  • the material of the second substrate 61 is not particularly limited.
  • FIG. 7 is a perspective view showing a metal terminal 71 used in the method of manufacturing an actuator device according to this embodiment.
  • the metal terminal 71 is formed by bending a metal plate.
  • the metal terminal 71 includes a first connecting portion 71a, a connecting portion 71b, a strip-shaped metal plate portion 71c, a second connecting portion 71d, a connecting portion 71e, a strip-shaped metal plate portion 71f, and a first terminal plate.
  • the first connecting portion 71a is connected to the band-shaped metal plate portion 71c through the connecting portion 71b.
  • the connecting portion 71b is formed by bending from one edge of the strip-shaped metal plate portion 71c in a direction crossing the strip-shaped metal plate portion 71c.
  • a first connecting portion 71a extends from the tip of the connecting portion 71b in a direction away from the band-shaped metal plate portion 71c.
  • the first connection portion 71a has a spring property with respect to the band-shaped metal plate portion 71c. That is, the first connection portion 71a functions as a spring terminal portion.
  • the second connecting portion 71d is also connected to the band-shaped metal plate portion 71f through the connecting portion 71e.
  • the second connection portion 71d has a spring property with respect to the band-shaped metal plate portion 71f, and the second connection portion 71d also functions as a spring terminal.
  • the first and second terminal plates 71g and 71h are respectively extended through connecting portions 71i and 71j extending downward from the end edges along the length direction of the first and second strip-shaped metal plate portions 71c and 71f. ing.
  • the first terminal board 71g has a structure in which a plurality of first terminal portions 71g1 extending in parallel with each other are connected at both ends.
  • the second terminal plate 71h also has a shape in which a plurality of second terminal portions 71h1 extending in parallel with each other are connected at both ends.
  • the plurality of first terminal portions 71g1 extend in parallel with each other and are arranged at equal intervals.
  • the plurality of second terminal portions 71h1 are also extended in parallel to each other and arranged at equal intervals.
  • the pitch of the plurality of first terminal portions 71g1 in the first terminal plate 71g and the pitch of the plurality of second terminal portions 71h1 in the second terminal plate 71h may be the same or different. .
  • the metal terminal 71 shown in FIG. 7 is fixed to the second substrate 61 shown in FIG.
  • the fixing is performed by fitting the connecting portions 71i and 71j of the metal terminal 71 into the recesses 61c and 61c described above.
  • the second substrate 61 on which the metal terminals 71 are fixed is disposed on the first substrate 51 on which the actuator 3 is fixed.
  • the metal terminal 71 is sandwiched between the first substrate 51 and the second substrate 61 and the position thereof is securely fixed.
  • FIG. 10 is a partially cutaway perspective view showing an enlarged main part of the actuator device obtained as described above.
  • only one first terminal portion 71g1 is left among the plurality of first terminal portions 71g1, and the remaining plurality of first terminal portions 71g1 are cut.
  • the plurality of second terminal portions 71h1 only one second terminal portion 71h1 is left, and the remaining second terminal portions 71h1 are cut off. This point will be described later.
  • the first and second connecting portions 71a and 71d of the metal terminal 71 are in elastic contact with the side surfaces of the piezoelectric element 10, respectively. Therefore, the electrical connection between the piezoelectric element 10 and the first and second connection portions 71a and 71d can be reliably achieved.
  • the first and second terminal portions 71g1 and 71h1 to be left without being cut are matched so as to match the pitch between electrode patterns of the external circuit board to be prepared.
  • the second terminal portions 71g1 and 71h1 may be selected.
  • the manufacturing method of the actuator device according to the present embodiment even when the pitch between the electrode patterns of the external circuit board to which the actuator device is connected is different, it can be easily handled. That is, the pitch between the terminal portions remaining without being cut may be selected so as to match the pitch between the connection patterns.
  • the tips of the first and second terminal portions 71g1 and 71h1 may be further bent outward from the extending direction of the first and second terminal portions 71g1 and 71h1.
  • the remaining terminal portions other than the remaining first and second terminal portions 71g1 and 71h1 are cut off.
  • the remaining second terminal portion 71h1 may be bent. Even in this case, the length along the extending direction of one second terminal portion 71h1 used for connection in the bent second terminal portion 71h1 is one second terminal used for connection. The dimension is shorter than the dimension along the direction in which the portion 71h1 extends. Accordingly, the second terminal portion 71h1 indicated by the dashed dotted line is unlikely to hinder electrical connection.
  • the length of one first terminal portion 71g1 is longer than the length along the extending direction of the remaining first terminal portions 71g1.
  • the remaining terminal portions may be cut or bent so that two or more terminal portions remain.
  • FIG. 12 is a perspective view schematically showing a portion S where the first and second terminal plates 71g and 71h are removed by cutting in a modification of the method for manufacturing an actuator device of the present invention.
  • the manufacturing method of the actuator device according to the present embodiment even when the pitch between the electrode patterns of the external circuit board is variously different, the plurality of first and second terminal portions 71g1. , 71h1 can be easily handled by cutting or bending. Therefore, the number of parts and the production cost can be greatly reduced.
  • FIG. 3 is a perspective view showing an external appearance of a part of the actuator device 1 manufactured by the method for manufacturing the actuator device according to the first embodiment of the present invention.
  • 4 is a side view of a part of the actuator device 1 shown in FIG.
  • FIG. 5 is a side view for explaining the piezoelectric element 10 and the conversion member 4 used in the actuator device 1 shown in FIG.
  • the actuator device 1 includes a control unit 2 and an actuator 3.
  • the control unit 2 is a part that controls the actuator 3. Specifically, the control unit 2 controls the voltage applied to the piezoelectric element 10 as a driving element of the actuator 3 described later.
  • the piezoelectric element 10 is preferably a laminated piezoelectric ceramic element having electrodes laminated inside through piezoelectric ceramics. This is because the voltage applied to the piezoelectric element 10 can be lowered and a large amount of displacement can be obtained. In addition, since the piezoelectric ceramic has a relatively high rigidity and can reduce attenuation in high-frequency vibrations, the resonance frequency of the displacement member can be increased by using a driving element using the piezoelectric ceramic.
  • the drive element is not limited to a piezoelectric element.
  • the driving element may be an electrostrictive element, a magnetostrictive element, a thermal deformation element, or a linear motor using electromagnetic force or electrostatic force.
  • the actuator 3 has a drive shaft 6.
  • a driven member 5 is connected to the drive shaft 6.
  • the drive shaft 6 moves the driven member 5 in the z direction.
  • the z direction is a displacement direction of the drive shaft 6, that is, a position conversion direction.
  • the driven member 5 is drawn in a rectangular plate shape, but the driven member is not limited to this.
  • the driven member that is a driving object may be any member, for example, a single lens or a combination lens group, an image sensor, an aperture mechanism, an optical mirror, a laser light emitting element, a magnetic head, and various sensors. An element etc. may be sufficient.
  • the actuator 3 includes a drive shaft 6 extending along the z direction, a conversion member 4, and a piezoelectric element 10 as a drive element.
  • the drive shaft 6 is inserted into a through hole 5 a formed in the driven member 5.
  • the drive shaft 6 is preferably formed of a material having a small specific gravity such as carbon.
  • the driven member 5 and the drive shaft 6 have a small mutual friction.
  • a pressurizing mechanism such as a spring.
  • the one end portion 6 a in the z direction of the drive shaft 6 is fixed to the conversion member 4.
  • the conversion member 4 is a member for displacing the drive shaft 6 along the z direction.
  • the one end 6a of the drive shaft 6 is easily and accurately fixed to the conversion member 4 without impairing the displacement of the drive shaft 6. This will be clarified by detailing the fixing structure later.
  • the direction in which the piezoelectric element 10 expands and contracts is the x direction perpendicular to the z direction.
  • the piezoelectric element 10 is formed in a prismatic shape.
  • the “rectangular column shape” includes a shape in which at least a part of a corner portion or a ridge line portion is chamfered or R chamfered.
  • the rectangular column shape includes a rectangular parallelepiped shape.
  • the piezoelectric element 10 has first and second end faces 10a and 10b, and first to fourth side faces 10c to 10f.
  • Each of the first and second end faces 10a and 10b extends along the y direction and the z direction perpendicular to the z direction and the x direction, respectively.
  • the first and second end faces 10a and 10b are opposed to each other in the x direction.
  • Each of the first and second side faces 10c, 10d extends along the x direction and the y direction.
  • the first and second side surfaces 10c and 10d are opposed to each other in the z direction.
  • Each of the third and fourth side surfaces 10e and 10f extends along the x direction and the z direction.
  • the third and fourth side surfaces 10e and 10f are opposed to each other in the y direction.
  • the piezoelectric element 10 includes a plurality of pairs of first and second electrodes 12 and 13 that face each other in the x direction via the piezoelectric layer 11. By applying a voltage between the first and second electrodes 12 and 13, the piezoelectric element 10 can be expanded and contracted in the x direction.
  • first and second electrodes it is not always necessary to provide a plurality of pairs of the first and second electrodes. Only a pair of the first and second electrodes may be provided. Further, the opposing direction of the first and second electrodes is not limited to the x direction which is the expansion / contraction direction. Depending on the polarization direction of the piezoelectric body, the first and second electrodes may be provided so as to face each other in the z direction or the y direction.
  • the material of the piezoelectric layer 11 and the first and second electrodes 12 and 13 is not particularly limited.
  • the piezoelectric layer 11 is made of, for example, lead-free piezoelectric ceramics such as lead zirconate titanate ceramics (PZT), alkaline niobate ceramics such as potassium sodium niobate, or piezoelectric single crystals such as lithium tantalate. It can be formed of a piezoelectric body.
  • the first and second electrodes 12 and 13 can be formed of, for example, a metal such as Ag, Cu, or Pt, or an alloy such as an Ag—Pd alloy.
  • the conversion member 4 includes a metal such as iron, copper and nickel, and an elastic body represented by an alloy such as stainless steel, 42 nickel iron, beryllium copper, phosphor bronze and brass.
  • the conversion member 4 converts the direction of the driving force so that the driving force due to the expansion and contraction along the x direction of the piezoelectric element 10 becomes the driving force along the z direction, and the driving shaft is converted by the converted driving force in the direction. 6 is an element that displaces along the z direction. Note that the driving direction of the piezoelectric element 10 and the direction in which the driving force of the piezoelectric element 10 is converted by the conversion member 4 are not necessarily perpendicular. In this embodiment, the x direction and the z direction are perpendicular to each other, but the x direction and the z direction are not necessarily perpendicular to each other.
  • the conversion member 4 has an annular shape having first to seventh portions 21 to 27.
  • the piezoelectric element 10 is fitted with the annular conversion member 4.
  • the first to seventh portions 21 to 27 are integrally formed. That is, the conversion member 4 is annular.
  • the piezoelectric element 10 can be vibrated in the vicinity of the resonance frequency of the portion composed of the conversion member 4 and the piezoelectric element 10, so that it can be driven with less input energy.
  • the conversion member 4 may be comprised by the single member, and may be comprised by joining a some member.
  • the first portion 21 is located on the first side surface 10c. That is, the first portion 21 is located on the z1 side in the z direction of the first side surface 10c.
  • the first portion 21 has a convex portion 21a. In the present embodiment, the entire first portion 21 is constituted by the convex portion 21a.
  • the convex portion 21a is separated from the first side surface 10c.
  • the convex portion 21a protrudes from the first side surface 10c to the z1 side in the z direction.
  • the drive shaft 6 is attached to the top of the convex portion 21a. A method for attaching the drive shaft 6 to the convex portion 21a is not particularly limited.
  • the drive shaft 6 may be attached to the convex portion 21 a using a resin adhesive, or may be integrally formed of the same material as the conversion member 4.
  • the cross-sectional shape of the drive shaft 6 can be an appropriate shape such as a circle, various polygons, or various combinations.
  • the cross-sectional shape and dimensions of the drive shaft 6 are preferably substantially the same along the z direction.
  • the second portion 22 has a flat plate shape.
  • the second portion 22 is located on the first end face 10a. That is, the second portion 22 is located on the x1 side in the x direction of the first end face 10a.
  • the end of the second portion 22 on the z-direction z2 side reaches the z2 side from the second side surface 10d.
  • the second portion 22 is in contact with the first end face 10a.
  • substantially the entire first end surface 10 a is in contact with the second portion 22.
  • the second portion 22 and the first end surface 10 a are bonded by the resin adhesive layer 31 and are in contact with each other via the resin adhesive layer 31.
  • drawing of the resin adhesive layer 31 and resin adhesive layers 32 and 33 described later is omitted.
  • the third portion 23 has a flat plate shape.
  • the third portion 23 is located on the second end face 10b. That is, the third portion 23 is located on the x2 side in the x direction of the second end face 10b.
  • the end of the third portion 23 on the z-direction z2 side is closer to the z2 side than the second side surface 10d.
  • the third portion 23 is in contact with the second end face 10b.
  • substantially the entire second end surface 10 b is in contact with the third portion 23.
  • the third portion 23 and the second end surface 10 b are bonded by the resin adhesive layer 32 and are in contact with each other via the resin adhesive layer 32.
  • the fourth portion 24 is indirectly connected to the second portion 22.
  • the fourth portion 24 is located on the second side surface 10d. That is, the fourth portion 24 is located on the z2 side in the z direction of the second side surface 10d.
  • the fifth portion 25 is indirectly connected to the third portion 23.
  • the fifth portion 25 is located on the second side surface 10d. That is, the fifth portion 25 is located on the z2 side in the z direction of the second side surface 10d.
  • the fourth and fifth portions 24 and 25 are integrally formed.
  • the fourth and fifth portions 24 and 25 are fixed by being bonded to the second side surface 10d by the resin adhesive layer 33.
  • substantially the entire second side surface 10 d is fixed to the fourth and fifth portions 24 and 25 by the resin adhesive layer 33.
  • the second part 22 and the fourth part 24 are connected by a sixth part 26.
  • the sixth portion 26 is located on the end edge of the second side surface 10d on the first end surface 10a side. That is, the sixth portion 26 is located on the z-direction z2 side of the ridge line portion formed by the second side surface 10d and the first end surface 10a.
  • the sixth portion 26 is provided apart from the second side surface 10d.
  • the third part 23 and the fifth part 25 are connected by a seventh part 27.
  • the seventh portion 27 is located on the end edge of the second side surface 10d on the second end surface 10b side. That is, the seventh portion 27 is located on the z direction z2 side of the ridge line portion constituted by the second side surface 10d and the second end surface 10b.
  • the seventh portion 27 is provided apart from the second side surface 10d.
  • the present invention is not limited to this configuration.
  • the conversion member may be provided such that the ridge line portion between the first or second end surface and the first side surface does not contact the conversion member. That is, the second and third portions 22 and 23 may be provided so as not to contact the ridge line portion between the first or second end face 10a or 10b and the first side face 10c.
  • the thickness t of the plate-shaped conversion member 4 when the yz section of the piezoelectric element 10 is about 1 mm is It is preferably about 0.1 mm to 0.25 mm.
  • the Young's modulus of the conversion member 4 is preferably 100 GPa or more because the resonance frequency of the displacement member can be increased and the vibration attenuation can be reduced.
  • the preferable upper limit of the Young's modulus of the conversion member 4 is not particularly limited. For example, when the Young's modulus is about 300 GPa or less, the conversion member 4 can be easily formed by bending a plate-like material.
  • the angle ⁇ formed by the planar first portion 21 and the planar first side surface 10c is about 15 ° to 45 °, because the driving force of the piezoelectric element 10 can be efficiently converted.
  • the ratio (L2 / L1) of the length L2 along the x direction of the piezoelectric element 10 to the length L1 along the z direction of the piezoelectric element 10 is preferably about 0.8 to 2.
  • the ratio (L3 / L2) of the length L3 along the x direction of the top of the first portion 21 to the length L2 along the x direction of the piezoelectric element 10 is about 0.3 to 0.7. preferable.
  • the ratio (L4 / L2) of the length L4 along the x direction of each of the sixth and seventh portions 26 and 27 to the length L2 along the x direction of the piezoelectric element 10 is 0.05 to 0.2. It is preferable that it is a grade. By doing so, the expansion and contraction deformation along the x direction of the piezoelectric element 10 is converted into the displacement along the z direction of the first portion 21, and the drive shaft 6 is displaced in the z direction, thereby driving the driven member 5. Can be moved along the z-direction.
  • piezoelectric element 10 is used as a driving element
  • various electromechanical conversion elements and electrostrictive elements that are connected to a metal terminal and expand and contract by applying an alternating electric field can be used as the driving element.
  • Second substrate 61a Opening 61b ... Columnar part 61c ... Recessed portion 71 ... Metal terminals 71a, 71d ... First and second connecting portions 71b, 71e ... Connecting portions 71c, 71f ... Strip-shaped metal plate portions 71g, 71h ... Terminal plates 71g1, 71h1 ... Terminal portions 71i, 71j ... Connecting portions

Abstract

Provided is a manufacturing method for an actuator device whereby different pitches of electrode patterns on external circuit boards of various kinds can be easily accommodated and the cost can be drastically reduced. This method is for manufacturing an actuator device (1) wherein a metal terminal (71) is electrically connected to a driving component (10) of an actuator (3). In the manufacturing method for the actuator device (1), connection sections (71a, 71d) of the metal terminal (71) are electrically connected to the driving component (10), and among multiple terminal sections (71g1, 71h1) of the metal terminal (71), at least one terminal section (71g1, 71h1) to be connected to an external circuit is left untouched, and the remaining terminal sections (71g1, 71h1) are cut off or bent in a direction different from the direction the at least one terminal section extends in order to make the remaining terminal sections shorter than the extending length of the at least one terminal section (71g1, 71h1).

Description

アクチュエータ装置の製造方法及びアクチュエータ装置Actuator device manufacturing method and actuator device
 本発明は、外部回路と接続される金属端子を有するアクチュエータ装置の製造方法及び該アクチュエータ装置に関する。 The present invention relates to a method for manufacturing an actuator device having a metal terminal connected to an external circuit, and the actuator device.
 従来、小型のアクチュエータとして、圧電素子を用いたアクチュエータが知られている。圧電素子を用いたアクチュエータの一例が下記の特許文献1に記載されている。特許文献1に記載のアクチュエータでは、電気機械変換素子が長さ方向に伸縮することにより、電気機械変換素子の長さ方向の端部に接続された駆動摩擦部材が長さ方向に振動する。駆動摩擦部材に係合されている係合部材が駆動摩擦部材の長さ方向の振動にともなって、駆動摩擦部材に対して長さ方向に相対的に移動する。従って、特許文献1に記載のアクチュエータでは、電気機械変換素子の伸縮方向と、係合部材の移動方向すなわち駆動力発生方向とは平行とされている。 Conventionally, an actuator using a piezoelectric element is known as a small actuator. An example of an actuator using a piezoelectric element is described in Patent Document 1 below. In the actuator described in Patent Document 1, when the electromechanical conversion element expands and contracts in the length direction, the drive friction member connected to the end portion in the length direction of the electromechanical conversion element vibrates in the length direction. The engagement member engaged with the drive friction member moves relative to the drive friction member in the length direction along with the vibration in the length direction of the drive friction member. Therefore, in the actuator described in Patent Document 1, the expansion / contraction direction of the electromechanical conversion element is parallel to the moving direction of the engagement member, that is, the driving force generation direction.
 また、下記の特許文献2には、VCM方式の駆動装置の一例が開示されている。特許文献2に記載の駆動装置101の要部を図13に分解斜視図で示す。駆動装置101では、ケース基板102上にVCM方式の駆動素子103が搭載されている。駆動素子103は、リード線104,105により端子106,107に電気的に接続されている。端子106と端子107とは、外部の回路基板の電極パターンに電気的に接続される部分である。端子106,107は、ケース基板102の下方に延びるように、かつ互いに平行に配置されている。 Further, Patent Document 2 below discloses an example of a VCM type driving device. The principal part of the drive device 101 described in Patent Document 2 is shown in an exploded perspective view in FIG. In the driving device 101, a VCM driving element 103 is mounted on the case substrate 102. The drive element 103 is electrically connected to terminals 106 and 107 by lead wires 104 and 105. The terminal 106 and the terminal 107 are portions that are electrically connected to the electrode pattern of the external circuit board. The terminals 106 and 107 are disposed so as to extend below the case substrate 102 and in parallel with each other.
特許第4154851号Japanese Patent No. 4154551 特開2011-059274号公報JP 2011-059274 A
 特許文献1に記載のアクチュエータでは、変位量を大きくするには、電気機械変換素子の振動方向の長さを長くしなければならない。従って、振動方向の寸法を小さくすることができなかった。 In the actuator described in Patent Document 1, in order to increase the amount of displacement, the length in the vibration direction of the electromechanical transducer must be increased. Therefore, the dimension in the vibration direction cannot be reduced.
 また、特許文献1に記載のアクチュエータでは、電気機械変換素子を外部と電気的に接続するために、複数の端子がアクチュエータ外に延ばされている。 In the actuator described in Patent Document 1, a plurality of terminals are extended outside the actuator in order to electrically connect the electromechanical conversion element to the outside.
 同様に、特許文献2に記載の駆動装置101においても、前述した端子106,107が外部との電気的接続のために設けられている。 Similarly, in the driving device 101 described in Patent Document 2, the terminals 106 and 107 described above are provided for electrical connection with the outside.
 ところで、端子106,107は、外部の回路基板の電極パターンに接続される。従って、回路基板の電極パターン間のピッチに、端子106,107間のピッチを合わせる必要があった。 Incidentally, the terminals 106 and 107 are connected to an electrode pattern of an external circuit board. Therefore, it is necessary to match the pitch between the terminals 106 and 107 with the pitch between the electrode patterns on the circuit board.
 もっとも、駆動装置101などのアクチュエータ装置が接続される外部の回路基板は様々である。従って、従来のアクチュエータ装置では、接続される外部の回路基板の電極パターンのピッチに合わせ、アクチュエータ装置の複数の端子のピッチを変更しなければならなかった。よって、様々な外部の回路基板に対応するために、様々なピッチで複数の端子が配置されているアクチュエータ装置を種々用意しなければならなかった。そのため、従来のアクチュエータ装置を製造するためには、複数の端子のピッチに応じて多様な金型を用意しなければならなかった。また生産工程も増大しがちであった。よって、コストが高くなるという問題があった。 However, there are various external circuit boards to which actuator devices such as the drive device 101 are connected. Therefore, in the conventional actuator device, the pitch of the plurality of terminals of the actuator device has to be changed in accordance with the pitch of the electrode pattern of the external circuit board to be connected. Therefore, in order to cope with various external circuit boards, various actuator devices in which a plurality of terminals are arranged at various pitches must be prepared. Therefore, in order to manufacture a conventional actuator device, various dies must be prepared according to the pitch of a plurality of terminals. Also, the production process tends to increase. Therefore, there is a problem that the cost becomes high.
 なお、金属板からなる端子に代えて、より一層可撓性に優れた金属材料からなる端子を用いることも考えられる。例えばリード線を用いた場合、リード線は容易に変形させることができる。従って、リード線間のピッチを変更することは容易である。しかしながら、リード線の端部を駆動素子に接合したり、リード線自体の位置をそれぞれ調整する必要があった。従って、位置決めや接合工程が増大しがちであった。また、余長部分のリード線が他の部材に接触し、電気的に短絡するおそれもあった。 In addition, it can be considered that a terminal made of a metal material having further excellent flexibility is used instead of the terminal made of a metal plate. For example, when a lead wire is used, the lead wire can be easily deformed. Therefore, it is easy to change the pitch between the lead wires. However, it is necessary to join the end portion of the lead wire to the drive element and adjust the position of the lead wire itself. Therefore, the positioning and joining processes tend to increase. Further, there is a possibility that the lead wire of the extra length portion contacts another member and is electrically short-circuited.
 本発明の目的は、様々な外部の回路基板の電極パターン間のピッチに容易に対応することができ、コストを大幅に低減し得るアクチュエータ装置の製造方法及び該アクチュエータ装置を提供することにある。 An object of the present invention is to provide a method of manufacturing an actuator device that can easily cope with the pitch between electrode patterns of various external circuit boards and can greatly reduce the cost, and the actuator device.
 本発明に係るアクチュエータ装置の製造方法は、第1の方向に沿って伸縮する駆動素子と、駆動素子に連結されており、駆動素子の第1の方向に沿った伸縮力を第1の方向に対して垂直な第2の方向に沿う駆動力に変換する変換部材と、変換部材に固定されており、第2の方向に延びる駆動軸とを有するアクチュエータと、アクチュエータの駆動素子に電気的に接続される接続部と、接続部に連ねられており、かつ駆動素子を駆動するための外部の回路に接続する複数の端子部と、を有する金属端子とを備えるアクチュエータ装置の製造方法である。本発明では、金属端子の接続部を駆動素子に電気的に接続する工程と、金属端子の複数の端子部のうち、外部の回路に接続される少なくとも1本の端子部を残し、残りの端子部を切断あるいは少なくとも1本の端子部の延びる方向とは異なる方向に折り曲げ、少なくとも1本の端子部の延びる方向の長さよりも、残りの端子部の長さを短くする工程とが備えられている。 The actuator device manufacturing method according to the present invention includes a drive element that expands and contracts along a first direction, and is connected to the drive element. The expansion and contraction force along the first direction of the drive element is applied to the first direction. An actuator having a conversion member that converts a drive force along a second direction perpendicular to the actuator, a drive shaft fixed to the conversion member and extending in the second direction, and electrically connected to the drive element of the actuator And a metal terminal having a plurality of terminal portions connected to an external circuit for driving the drive element. In the present invention, the step of electrically connecting the connection portion of the metal terminal to the driving element, and at least one terminal portion connected to an external circuit among the plurality of terminal portions of the metal terminal is left, and the remaining terminals A step of cutting or bending the portion in a direction different from the direction in which at least one terminal portion extends to shorten the length of the remaining terminal portion beyond the length in the direction in which at least one terminal portion extends. Yes.
 本発明に係るアクチュエータ装置の製造方法のある特定の局面では、金属端子が、接続部に連ねられた帯状金属板部を有し、該帯状金属板部の端縁から互いに平行に延びるように複数の端子部が設けられている。この場合には、帯状金属板部の端縁から複数の端子部が互いに平行に延びているため、複数の端子部のうち少なくとも1本の端子部を除いた残りの端子部を容易に切断することができる。また、残りの端子部を容易に少なくとも1本の端子部の延びる方向と異なる方向に折り曲げることができる。 In a specific aspect of the method for manufacturing an actuator device according to the present invention, the metal terminal has a strip-shaped metal plate portion connected to the connection portion, and a plurality of the metal terminals extend in parallel with each other from the edge of the strip-shaped metal plate portion. Terminal portions are provided. In this case, since the plurality of terminal portions extend in parallel with each other from the edge of the strip-shaped metal plate portion, the remaining terminal portions excluding at least one terminal portion among the plurality of terminal portions are easily cut. be able to. Further, the remaining terminal portions can be easily bent in a direction different from the direction in which at least one terminal portion extends.
 本発明に係るアクチュエータ装置の製造方法の他の特定の局面では、接続部が、帯状金属板部に対し、バネ性を有するバネ端子部となるように帯状金属板部に連ねられている。この場合には、接続部が駆動素子に確実に電気的に接続され得る。また、帯状金属板部により、バネ端子部からなる接続部により伝わる振動を抑制することができる。従って、他の部分への振動の伝達を抑制することができる。 In another specific aspect of the method for manufacturing an actuator device according to the present invention, the connection portion is connected to the strip-shaped metal plate portion so as to be a spring terminal portion having spring properties with respect to the strip-shaped metal plate portion. In this case, the connection portion can be reliably electrically connected to the drive element. Moreover, the vibration transmitted by the connection part which consists of a spring terminal part can be suppressed by a strip | belt-shaped metal plate part. Therefore, transmission of vibration to other parts can be suppressed.
 本発明に係るアクチュエータ装置の製造方法のさらに別の特定の局面では、アクチュエータを第1の基板に固定する工程と、第2の基板に金属端子を固定する工程と、金属端子の一部を第1の基板と第2の基板とで挟み込むようにして、アクチュエータが固定された第1の基板の上に、金属端子が固定された第2の基板を配置する工程とが備えられている。この場合には、上記金属端子を第1の基板及び第2の基板に挟み込むようにして容易に固定することができる。 In yet another specific aspect of the method for manufacturing an actuator device according to the present invention, a step of fixing the actuator to the first substrate, a step of fixing the metal terminal to the second substrate, and a part of the metal terminal are A step of placing a second substrate having a metal terminal fixed thereon on a first substrate to which an actuator is fixed so as to be sandwiched between the first substrate and the second substrate. In this case, the metal terminal can be easily fixed so as to be sandwiched between the first substrate and the second substrate.
 本発明に係るアクチュエータ装置は、アクチュエータと、金属端子と、を備える。アクチュエータは、駆動素子と、変換部材と、駆動軸とを有する。駆動素子は、第1の方向に沿って伸縮する。変換部材は、駆動素子の第1の方向に沿った伸縮力を第1の方向に対して垂直な第2の方向に沿う駆動力に変換するように駆動素子に連結されている。駆動軸は、変換部材に固定されており、第2の方向に延びる。金属端子は、接続部と、複数の端子部とを有する。接続部は、アクチュエータの駆動素子に電気的に接続されている。複数の端子部は、接続部に連ねられており、かつ駆動素子を駆動するための外部の回路に接続する。複数の端子部のうち、外部の回路に接続される少なくとも1本の端子部の延びる方向の長さが、残りの端子部の長さよりも長くされている。 The actuator device according to the present invention includes an actuator and a metal terminal. The actuator has a drive element, a conversion member, and a drive shaft. The drive element expands and contracts along the first direction. The conversion member is connected to the drive element so as to convert the expansion / contraction force along the first direction of the drive element into a drive force along a second direction perpendicular to the first direction. The drive shaft is fixed to the conversion member and extends in the second direction. The metal terminal has a connection portion and a plurality of terminal portions. The connecting portion is electrically connected to the actuator drive element. The plurality of terminal portions are connected to the connection portion, and are connected to an external circuit for driving the drive element. Of the plurality of terminal portions, the length in the extending direction of at least one terminal portion connected to an external circuit is longer than the length of the remaining terminal portions.
 本発明に係るアクチュエータ装置のある特定の局面では、残りの端子部が、少なくとも1本の端子部の延びる方向外の方向に延びるように折り曲げられている。 In a specific aspect of the actuator device according to the present invention, the remaining terminal portion is bent so as to extend in a direction outside the direction in which at least one terminal portion extends.
 本発明に係るアクチュエータ装置の他の特定の局面では、残りの端子部が、少なくとも1本の端子部よりも短くなるように切断されている。 In another specific aspect of the actuator device according to the present invention, the remaining terminal portion is cut so as to be shorter than at least one terminal portion.
 本発明に係るアクチュエータ装置の製造方法では、金属端子の複数の端子部のうち、外部の回路に接続される少なくとも1本の端子部を残し、残りの端子部を切断あるいは少なくとも1本の端子部の延びる方向とは異なる方向に折り曲げることにより、少なくとも1本の端子部の第3の方向の長さよりも、残りの端子部の長さが短くされる。従って、上記少なくとも1本の端子部を用いて外部の回路基板の電極パターン等に容易に電気的に接続を行うことができる。この場合、残りの端子部は、長さが短いため、外部の回路基板の電極パターンに電気的に接続され難い。よって、複数本の端子部から少なくとも1本の端子部を選択することにより、様々なピッチや形態で配置されている外部の回路基板の電極パターンにアクチュエータ装置の金属端子を容易にかつ確実に電気的に接続することができる。加えて、様々な電極パターンに応じて様々な金属端子を用意する必要がないため、製造コストを大幅に低減することが可能となる。 In the method of manufacturing an actuator device according to the present invention, at least one terminal portion connected to an external circuit is left among a plurality of terminal portions of the metal terminal, and the remaining terminal portion is cut or at least one terminal portion The length of the remaining terminal portions is made shorter than the length of the at least one terminal portion in the third direction by bending it in a direction different from the extending direction. Therefore, it is possible to easily electrically connect to an electrode pattern on an external circuit board using the at least one terminal portion. In this case, since the remaining terminal portions are short in length, it is difficult to be electrically connected to the electrode pattern on the external circuit board. Therefore, by selecting at least one terminal portion from a plurality of terminal portions, the metal terminals of the actuator device can be easily and reliably electrically connected to the electrode patterns of the external circuit board arranged in various pitches and forms. Can be connected. In addition, since it is not necessary to prepare various metal terminals according to various electrode patterns, the manufacturing cost can be greatly reduced.
 本発明に係るアクチュエータ装置によれば、複数の端子部のうち、外部の回路に接続される少なくとも1本の端子部の延びる方向の長さが、残りの端子部の長さよりも長くされているので、少なくとも1本の端子部を外部の回路基板の電極パターンに容易に電気的に接続することができる。 According to the actuator device of the present invention, the length in the extending direction of at least one terminal portion connected to an external circuit among the plurality of terminal portions is longer than the length of the remaining terminal portions. Therefore, at least one terminal portion can be easily electrically connected to the electrode pattern of the external circuit board.
図1は、本発明の第1の実施形態に係るアクチュエータ装置の製造方法で用いられる第1の基板を示す斜視図である。FIG. 1 is a perspective view showing a first substrate used in the method for manufacturing an actuator device according to the first embodiment of the present invention. 図2は、図1に示した第1の基板上にアクチュエータを固定した状態を示す斜視図である。FIG. 2 is a perspective view showing a state in which the actuator is fixed on the first substrate shown in FIG. 図3は、本発明の第1の実施形態に係るアクチュエータ装置の製造方法で製造されるアクチュエータ装置の一部の外観を示す斜視図である。FIG. 3 is a perspective view showing an external appearance of a part of the actuator device manufactured by the method for manufacturing the actuator device according to the first embodiment of the present invention. 図4は、図3に示したアクチュエータ装置の一部の側面図である。FIG. 4 is a side view of a part of the actuator device shown in FIG. 図5は、図3に示したアクチュエータ装置に用いられている圧電素子及び変換部材を説明するための側面図である。FIG. 5 is a side view for explaining a piezoelectric element and a conversion member used in the actuator device shown in FIG. 図6は、本発明の第1の実施形態に係るアクチュエータ装置の製造方法で用いられる第2の基板を示す斜視図である。FIG. 6 is a perspective view showing a second substrate used in the method for manufacturing the actuator device according to the first embodiment of the present invention. 図7は、本発明の第1の実施形態に係るアクチュエータ装置の製造方法で用いられる金属端子を示す斜視図である。FIG. 7 is a perspective view showing a metal terminal used in the method for manufacturing the actuator device according to the first embodiment of the present invention. 図8は、図6に示した第2の基板に図7に示した金属端子を組み合わせた状態を示す斜視図である。FIG. 8 is a perspective view showing a state where the metal terminal shown in FIG. 7 is combined with the second substrate shown in FIG. 図9は、アクチュエータが搭載されている第1の基板の上に、金属端子が組み合わされた第2の基板を配置した状態を示す斜視図である。FIG. 9 is a perspective view showing a state in which the second substrate combined with the metal terminals is arranged on the first substrate on which the actuator is mounted. 図10は、本発明の第1の実施形態に係るアクチュエータ装置における要部を示す部分切欠斜視図である。FIG. 10 is a partially cutaway perspective view showing the main part of the actuator device according to the first embodiment of the present invention. 図11は、本発明の第1の実施形態に係るアクチュエータ装置の製造方法において、金属端子の1本の端子部を残し、残りの端子部を切断した状態の変形例を示す斜視図である。FIG. 11 is a perspective view showing a modification in a state where one terminal portion of the metal terminal is left and the remaining terminal portion is cut in the manufacturing method of the actuator device according to the first embodiment of the present invention. 図12は、本発明のアクチュエータ装置の製造方法の変形例において、第1,第2の端子板の切断部分を模式的に示す斜視図である。FIG. 12 is a perspective view schematically showing a cut portion of the first and second terminal plates in a modification of the method for manufacturing the actuator device of the present invention. 図13は、従来の駆動装置の一例を示す分解斜視図である。FIG. 13 is an exploded perspective view showing an example of a conventional drive device.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1は、本発明の第1の実施形態に係るアクチュエータ装置の製造方法で用いられる第1の基板51を示す斜視図である。第1の基板51は、金属もしくは合成樹脂などからなる。第1の基板51には、中央に開口51aが設けられている。開口51aは、後述する駆動軸6により駆動される被駆動部材が挿入される部分である。 FIG. 1 is a perspective view showing a first substrate 51 used in the method for manufacturing an actuator device according to the first embodiment of the present invention. The first substrate 51 is made of metal or synthetic resin. The first substrate 51 has an opening 51a in the center. The opening 51a is a portion into which a driven member driven by a driving shaft 6 described later is inserted.
 第1の基板51上には、アクチュエータが搭載されるアクチュエータ搭載部51bが設けられている。第1の基板51は、端縁に開いた切欠き51c,51cを有する。 On the first substrate 51, an actuator mounting portion 51b on which an actuator is mounted is provided. The 1st board | substrate 51 has the notches 51c and 51c opened to the edge.
 図2に示すように、上記第1の基板51のアクチュエータ搭載部51b上に、アクチュエータ3が固定されて、搭載される。アクチュエータ3は、駆動素子としての圧電素子10と、変換部材4、駆動軸6とを備える。このアクチュエータ3の詳細は後ほど詳述する。本実施形態では、上記駆動素子としての圧電素子10に外部から駆動電圧を印加することにより、アクチュエータ3を駆動する。 As shown in FIG. 2, the actuator 3 is fixed and mounted on the actuator mounting portion 51 b of the first substrate 51. The actuator 3 includes a piezoelectric element 10 as a drive element, a conversion member 4, and a drive shaft 6. Details of the actuator 3 will be described later. In the present embodiment, the actuator 3 is driven by applying a driving voltage from the outside to the piezoelectric element 10 as the driving element.
 アクチュエータ3のアクチュエータ搭載部51bへの固定は、溶接または適宜の接着剤などを用いて行い得る。 The actuator 3 can be fixed to the actuator mounting portion 51b by welding or using an appropriate adhesive.
 図6は、本実施形態に係るアクチュエータ装置の製造方法で用いられる第2の基板61を示す斜視図である。第2の基板61は、開口61aを有する。開口61aは、前述した第1の基板51の開口51aと同じ径を有する。第2の基板61は、平面視して外形が矩形であり、4つの角部にそれぞれ柱状部61bが設けられている。 FIG. 6 is a perspective view showing the second substrate 61 used in the manufacturing method of the actuator device according to the present embodiment. The second substrate 61 has an opening 61a. The opening 61a has the same diameter as the opening 51a of the first substrate 51 described above. The second substrate 61 has a rectangular outer shape in plan view, and columnar portions 61b are provided at four corners, respectively.
 第2の基板61の下面の一方端縁には、凹部61c,61cが設けられている。凹部61c,61cは、前述した第1の基板51の切欠き51c,51cに重なり合う位置に設けられている。 On one edge of the lower surface of the second substrate 61, recesses 61c and 61c are provided. The recesses 61c and 61c are provided at positions overlapping the notches 51c and 51c of the first substrate 51 described above.
 第2の基板61は、合成樹脂の一体成形により形成することができる。もっとも、第2の基板61の材質は特に限定されない。 The second substrate 61 can be formed by integral molding of synthetic resin. However, the material of the second substrate 61 is not particularly limited.
 図7は、本実施形態に係るアクチュエータ装置の製造方法で用いられる金属端子71を示す斜視図である。金属端子71は、金属板を折り曲げ加工することにより形成されている。金属端子71は、第1の接続部71aと、連結部71bと、帯状金属板部71cと、第2の接続部71dと、連結部71eと、帯状金属板部71fと、第1の端子板71gと、第2の端子板71hと、連結部71iと、連結部71jとを有する。 FIG. 7 is a perspective view showing a metal terminal 71 used in the method of manufacturing an actuator device according to this embodiment. The metal terminal 71 is formed by bending a metal plate. The metal terminal 71 includes a first connecting portion 71a, a connecting portion 71b, a strip-shaped metal plate portion 71c, a second connecting portion 71d, a connecting portion 71e, a strip-shaped metal plate portion 71f, and a first terminal plate. 71g, the 2nd terminal board 71h, the connection part 71i, and the connection part 71j.
 第1の接続部71aは、連結部71bを介して帯状金属板部71cに連ねられている。言い換えれば、帯状金属板部71cの1つの端縁から該帯状金属板部71cに対して交叉する方向に折り曲げられて、連結部71bが形成されている。連結部71bの先端から、上記帯状金属板部71cと遠ざかる方向に、第1の接続部71aが延ばされている。第1の接続部71aは、帯状金属板部71cに対してバネ性を有する。すなわち、第1の接続部71aは、バネ端子部として機能する。 The first connecting portion 71a is connected to the band-shaped metal plate portion 71c through the connecting portion 71b. In other words, the connecting portion 71b is formed by bending from one edge of the strip-shaped metal plate portion 71c in a direction crossing the strip-shaped metal plate portion 71c. A first connecting portion 71a extends from the tip of the connecting portion 71b in a direction away from the band-shaped metal plate portion 71c. The first connection portion 71a has a spring property with respect to the band-shaped metal plate portion 71c. That is, the first connection portion 71a functions as a spring terminal portion.
 同様に、第2の接続部71dもまた、連結部71eを介して帯状金属板部71fに連ねられている。第2の接続部71dは、帯状金属板部71fに対してバネ性を有し、第2の接続部71dもバネ端子として機能する。 Similarly, the second connecting portion 71d is also connected to the band-shaped metal plate portion 71f through the connecting portion 71e. The second connection portion 71d has a spring property with respect to the band-shaped metal plate portion 71f, and the second connection portion 71d also functions as a spring terminal.
 第1,第2の帯状金属板部71c,71fの長さ方向に沿う端縁から下方に延びる連結部71i,71jを介して、第1,第2の端子板71g,71hがそれぞれ延ばされている。第1の端子板71gは、互いに平行に延びる複数本の第1の端子部71g1を両端で連ねた構造を有する。同様に、第2の端子板71hも、互いに平行に延びる複数本の第2の端子部71h1を両端で連ねた形状を有する。複数本の第1の端子部71g1は、互いに平行に延ばされており、かつ等間隔に配置されている。同様に、複数本の第2の端子部71h1もまた、互いに平行に延ばされており、かつ等間隔に配置されている。第1の端子板71gにおける複数本の第1の端子部71g1のピッチと、第2の端子板71hにおける複数本の第2の端子部71h1のピッチとは、等しくともよく、異なっていてもよい。 The first and second terminal plates 71g and 71h are respectively extended through connecting portions 71i and 71j extending downward from the end edges along the length direction of the first and second strip-shaped metal plate portions 71c and 71f. ing. The first terminal board 71g has a structure in which a plurality of first terminal portions 71g1 extending in parallel with each other are connected at both ends. Similarly, the second terminal plate 71h also has a shape in which a plurality of second terminal portions 71h1 extending in parallel with each other are connected at both ends. The plurality of first terminal portions 71g1 extend in parallel with each other and are arranged at equal intervals. Similarly, the plurality of second terminal portions 71h1 are also extended in parallel to each other and arranged at equal intervals. The pitch of the plurality of first terminal portions 71g1 in the first terminal plate 71g and the pitch of the plurality of second terminal portions 71h1 in the second terminal plate 71h may be the same or different. .
 本実施形態に係るアクチュエータ装置の製造方法では、図8に示すように、図7に示した金属端子71を、図6に示した第2の基板61に固定する。固定に際しては、金属端子71の連結部71i,71jを前述した凹部61c,61cに嵌め込むことにより行う。 In the method of manufacturing the actuator device according to the present embodiment, as shown in FIG. 8, the metal terminal 71 shown in FIG. 7 is fixed to the second substrate 61 shown in FIG. The fixing is performed by fitting the connecting portions 71i and 71j of the metal terminal 71 into the recesses 61c and 61c described above.
 しかる後、図9に示すように、アクチュエータ3が固定されている第1の基板51の上に、金属端子71が固定されている第2の基板61を配置する。これによって、金属端子71は、第1の基板51と第2の基板61との間に挟まれてその位置が確実に固定される。 Thereafter, as shown in FIG. 9, the second substrate 61 on which the metal terminals 71 are fixed is disposed on the first substrate 51 on which the actuator 3 is fixed. As a result, the metal terminal 71 is sandwiched between the first substrate 51 and the second substrate 61 and the position thereof is securely fixed.
 図10は、このようにして得られるアクチュエータ装置の要部を拡大して示す部分切欠斜視図である。なお、図10では、複数本の第1の端子部71g1のうち1本の第1の端子部71g1のみが残されており、残りの複数本の第1の端子部71g1は切断されている。同様に、複数本の第2の端子部71h1においても、1本の第2の端子部71h1のみが残されており、残りの第2の端子部71h1は切断されている。この点については後述する。 FIG. 10 is a partially cutaway perspective view showing an enlarged main part of the actuator device obtained as described above. In FIG. 10, only one first terminal portion 71g1 is left among the plurality of first terminal portions 71g1, and the remaining plurality of first terminal portions 71g1 are cut. Similarly, in the plurality of second terminal portions 71h1, only one second terminal portion 71h1 is left, and the remaining second terminal portions 71h1 are cut off. This point will be described later.
 図10に示すように、上記金属端子71の第1,第2の接続部71a,71dが、圧電素子10の側面にそれぞれ弾性接触されている。従って、圧電素子10と、第1,第2の接続部71a,71dの電気的接続を確実に図り得る。 As shown in FIG. 10, the first and second connecting portions 71a and 71d of the metal terminal 71 are in elastic contact with the side surfaces of the piezoelectric element 10, respectively. Therefore, the electrical connection between the piezoelectric element 10 and the first and second connection portions 71a and 71d can be reliably achieved.
 本実施形態の製造方法では、上記のようにして、金属端子71を第1の基板51と第2の基板61との間に挟み込んで固定した後に、図10に示すように、第1の端子板71g,第2の端子板71hのそれぞれにおいて、それぞれ1本の第1,第2の端子部71g1及び71h1のみを残すようにする。すなわち、他の残りの第1,第2の端子部71g1,71h1を切断する。その結果、図10に示されている1本の第1の端子部71g1の延びる方向における第1の端子部71g1の長さは、切断された残りの端子部の延びる方向における長さよりも長くされている。第2の端子部71h1側においても同様である。 In the manufacturing method of the present embodiment, after the metal terminal 71 is sandwiched and fixed between the first substrate 51 and the second substrate 61 as described above, as shown in FIG. In each of the plate 71g and the second terminal plate 71h, only one first and second terminal portions 71g1 and 71h1 are left. That is, the other remaining first and second terminal portions 71g1 and 71h1 are cut. As a result, the length of the first terminal portion 71g1 in the extending direction of the one first terminal portion 71g1 shown in FIG. 10 is made longer than the length in the extending direction of the remaining cut terminal portions. ing. The same applies to the second terminal portion 71h1 side.
 従って、外部の回路基板の電極パターンに1本の第1の端子部71g1を電気的に接続する場合、切断された残りの第1の端子部71g1の長さが短いため、邪魔とならない。第2の端子部71h1においても同様である。 Therefore, when one first terminal portion 71g1 is electrically connected to the electrode pattern of the external circuit board, the length of the remaining cut first terminal portion 71g1 is short, so that it does not get in the way. The same applies to the second terminal portion 71h1.
 よって、切断しないで残す各1本の第1の端子部71g1及び第2の端子部71h1のピッチを、用意する外部の回路基板の電極パターン間のピッチに合致させるように、残すべき第1,第2の端子部71g1,71h1を選択すればよい。 Therefore, the first and second terminal portions 71g1 and 71h1 to be left without being cut are matched so as to match the pitch between electrode patterns of the external circuit board to be prepared. The second terminal portions 71g1 and 71h1 may be selected.
 従って、本実施形態に係るアクチュエータ装置の製造方法によれば、アクチュエータ装置が接続される外部の回路基板の電極パターン間のピッチが異なる場合であっても、容易に対応することかできる。すなわち、接続パターン間のピッチに合致するように、切断しないで残存する端子部間のピッチを選択すればよい。 Therefore, according to the manufacturing method of the actuator device according to the present embodiment, even when the pitch between the electrode patterns of the external circuit board to which the actuator device is connected is different, it can be easily handled. That is, the pitch between the terminal portions remaining without being cut may be selected so as to match the pitch between the connection patterns.
 また、図11に示すように、上記第1,第2の端子部71g1,71h1の先端は、第1,第2の端子部71g1,71h1の延びる方向から外側にさらに折り曲げられていてもよい。図11に示す変形例では、残存している1本の第1,第2の端子部71g1,71h1以外の残りの端子部は切断されている。もっとも、図11に一点鎖線で示すように、残りの第2の端子部71h1を折り曲げてもよい。その場合であっても、折り曲げられた第2の端子部71h1における接続に用いられる1本の第2の端子部71h1の延びる方向に沿う長さは、接続に用いられる1本の第2の端子部71h1の延びる方向に沿う寸法よりも短くなる。従って、折り曲げられた一点鎖線で示す第2の端子部71h1は、電気的接続の妨げとはなり難い。 Further, as shown in FIG. 11, the tips of the first and second terminal portions 71g1 and 71h1 may be further bent outward from the extending direction of the first and second terminal portions 71g1 and 71h1. In the modification shown in FIG. 11, the remaining terminal portions other than the remaining first and second terminal portions 71g1 and 71h1 are cut off. However, as shown by the alternate long and short dash line in FIG. 11, the remaining second terminal portion 71h1 may be bent. Even in this case, the length along the extending direction of one second terminal portion 71h1 used for connection in the bent second terminal portion 71h1 is one second terminal used for connection. The dimension is shorter than the dimension along the direction in which the portion 71h1 extends. Accordingly, the second terminal portion 71h1 indicated by the dashed dotted line is unlikely to hinder electrical connection.
 なお、上記実施形態では、複数本の第1の端子部71g1において、1本の第1の端子部71g1の長さを、残りの第1の端子部71g1の延びる方向に沿う長さよりも長くなるように残りの端子部を切断したが、2本以上の端子部を残存させるようにして、残りの端子部を切断あるいは折り曲げてもよい。 In the embodiment, in the plurality of first terminal portions 71g1, the length of one first terminal portion 71g1 is longer than the length along the extending direction of the remaining first terminal portions 71g1. Although the remaining terminal portions are cut as described above, the remaining terminal portions may be cut or bent so that two or more terminal portions remain.
 図12は、本発明のアクチュエータ装置の製造方法の変形例において、切断により第1,第2の端子板71g,71hの除去される部分Sを模式的に示す斜視図である。 FIG. 12 is a perspective view schematically showing a portion S where the first and second terminal plates 71g and 71h are removed by cutting in a modification of the method for manufacturing an actuator device of the present invention.
 上記のように、本実施形態に係るアクチュエータ装置の製造方法によれば、外部の回路基板の電極パターン間のピッチが種々異なる場合であっても、複数本の第1,第2の端子部71g1,71h1の切断もしくは折り曲げにより、容易に対応することができる。従って、部品点数の低減及び生産コストの大幅な低減を図ることができる。 As described above, according to the manufacturing method of the actuator device according to the present embodiment, even when the pitch between the electrode patterns of the external circuit board is variously different, the plurality of first and second terminal portions 71g1. , 71h1 can be easily handled by cutting or bending. Therefore, the number of parts and the production cost can be greatly reduced.
 なお、上記アクチュエータ装置の詳細を、図3~図5を参照して説明する。図3は、本発明の第1の実施形態に係るアクチュエータ装置の製造方法で製造されるアクチュエータ装置1の一部の外観を示す斜視図である。図4は、図3に示したアクチュエータ装置1の一部の側面図である。図5は、図3に示したアクチュエータ装置1に用いられている圧電素子10及び変換部材4を説明するための側面図である。 The details of the actuator device will be described with reference to FIGS. FIG. 3 is a perspective view showing an external appearance of a part of the actuator device 1 manufactured by the method for manufacturing the actuator device according to the first embodiment of the present invention. 4 is a side view of a part of the actuator device 1 shown in FIG. FIG. 5 is a side view for explaining the piezoelectric element 10 and the conversion member 4 used in the actuator device 1 shown in FIG.
 図3に示すように、アクチュエータ装置1は、制御部2と、アクチュエータ3とを備えている。制御部2は、アクチュエータ3を制御する部分である。具体的には、制御部2は、後述するアクチュエータ3の駆動素子としての圧電素子10に印加する電圧を制御する。 As shown in FIG. 3, the actuator device 1 includes a control unit 2 and an actuator 3. The control unit 2 is a part that controls the actuator 3. Specifically, the control unit 2 controls the voltage applied to the piezoelectric element 10 as a driving element of the actuator 3 described later.
 圧電素子10は、内部に圧電セラミックスを介して積層された電極を有する積層圧電セラミック素子であることが好ましい。圧電素子10に印加する電圧が低くでき、かつ大きな変位量を得られるためである。また、圧電セラミックスは比較的剛性が高く、高周波の振動において減衰を少なくできるため、圧電セラミックスを用いた駆動素子を用いることによって、変位部材の共振周波数が高くできる。 The piezoelectric element 10 is preferably a laminated piezoelectric ceramic element having electrodes laminated inside through piezoelectric ceramics. This is because the voltage applied to the piezoelectric element 10 can be lowered and a large amount of displacement can be obtained. In addition, since the piezoelectric ceramic has a relatively high rigidity and can reduce attenuation in high-frequency vibrations, the resonance frequency of the displacement member can be increased by using a driving element using the piezoelectric ceramic.
 なお、本発明において、駆動素子は、圧電素子に限定されない。本発明において、駆動素子は、電歪素子、磁歪素子、熱変形素子あるいは電磁力や静電気力を用いたリニアモーターであってもよい。 In the present invention, the drive element is not limited to a piezoelectric element. In the present invention, the driving element may be an electrostrictive element, a magnetostrictive element, a thermal deformation element, or a linear motor using electromagnetic force or electrostatic force.
 アクチュエータ3は、駆動軸6を備えている。駆動軸6には、被駆動部材5が連結されている。具体的には、駆動軸6は、被駆動部材5をz方向に移動させるものである。ここで、z方向とは、駆動軸6の変位方向すなわち位置変換方向である。 The actuator 3 has a drive shaft 6. A driven member 5 is connected to the drive shaft 6. Specifically, the drive shaft 6 moves the driven member 5 in the z direction. Here, the z direction is a displacement direction of the drive shaft 6, that is, a position conversion direction.
 なお、図3及び図4においては、被駆動部材5を矩形板状に描画しているが、被駆動部材はこれに限定されるものではない。本発明において、駆動対象物である被駆動部材は、どのようなものでもあってもよく、例えば単体レンズあるいは組合せレンズ群、撮像素子、絞り機構、光学ミラー、レーザー発光素子、磁気ヘッド、各種センサ素子等であってもよい。 3 and 4, the driven member 5 is drawn in a rectangular plate shape, but the driven member is not limited to this. In the present invention, the driven member that is a driving object may be any member, for example, a single lens or a combination lens group, an image sensor, an aperture mechanism, an optical mirror, a laser light emitting element, a magnetic head, and various sensors. An element etc. may be sufficient.
 アクチュエータ3は、z方向に沿って延びる駆動軸6と、変換部材4と、駆動素子としての圧電素子10とを備えている。駆動軸6は、被駆動部材5に形成された貫通孔5aに挿入されている。駆動軸6は、例えば、カーボン等の比重の小さな材料により形成されていることが好ましい。また、被駆動部材5と駆動軸6とは、相互の摩擦が小さいものであることが好ましい。貫通孔5aと駆動軸6との係合力を適当にするために、バネ等による加圧機構を設けることが好ましい。 The actuator 3 includes a drive shaft 6 extending along the z direction, a conversion member 4, and a piezoelectric element 10 as a drive element. The drive shaft 6 is inserted into a through hole 5 a formed in the driven member 5. The drive shaft 6 is preferably formed of a material having a small specific gravity such as carbon. Moreover, it is preferable that the driven member 5 and the drive shaft 6 have a small mutual friction. In order to make the engagement force between the through hole 5a and the drive shaft 6 appropriate, it is preferable to provide a pressurizing mechanism such as a spring.
 駆動軸6のz方向における一方側端部6aは、変換部材4に固定されている。変換部材4は、駆動軸6をz方向に沿って変位させるための部材である。 The one end portion 6 a in the z direction of the drive shaft 6 is fixed to the conversion member 4. The conversion member 4 is a member for displacing the drive shaft 6 along the z direction.
 本実施形態では、後述するように、駆動軸6の変位を損なうことなく、駆動軸6の一方側端部6aが変換部材4に容易にかつ高精度に固定される。この点については、固定構造を後ほど詳述することにより明らかにする。 In the present embodiment, as will be described later, the one end 6a of the drive shaft 6 is easily and accurately fixed to the conversion member 4 without impairing the displacement of the drive shaft 6. This will be clarified by detailing the fixing structure later.
 本実施形態では、圧電素子10が伸縮する方向は、z方向に対して垂直なx方向である。また、圧電素子10は、角柱状に形成されている。ここで、「角柱状」には、角部や稜線部の少なくとも一部が面取り状またはR面取り状であるものも含まれるものとする。また、角柱状には、直方体状が含まれるものとする。 In this embodiment, the direction in which the piezoelectric element 10 expands and contracts is the x direction perpendicular to the z direction. The piezoelectric element 10 is formed in a prismatic shape. Here, the “rectangular column shape” includes a shape in which at least a part of a corner portion or a ridge line portion is chamfered or R chamfered. In addition, the rectangular column shape includes a rectangular parallelepiped shape.
 圧電素子10は、第1及び第2の端面10a,10bと、第1~第4の側面10c~10fとを有する。第1及び第2の端面10a,10bのそれぞれは、z方向及びx方向のそれぞれに対して垂直なy方向とz方向とに沿って延びている。第1及び第2の端面10a,10bは、x方向において対向している。第1及び第2の側面10c,10dのそれぞれは、x方向及びy方向に沿って延びている。第1及び第2の側面10c,10dは、z方向において対向している。第3及び第4の側面10e,10fのそれぞれは、x方向及びz方向に沿って延びている。第3及び第4の側面10e,10fは、y方向において対向している。 The piezoelectric element 10 has first and second end faces 10a and 10b, and first to fourth side faces 10c to 10f. Each of the first and second end faces 10a and 10b extends along the y direction and the z direction perpendicular to the z direction and the x direction, respectively. The first and second end faces 10a and 10b are opposed to each other in the x direction. Each of the first and second side faces 10c, 10d extends along the x direction and the y direction. The first and second side surfaces 10c and 10d are opposed to each other in the z direction. Each of the third and fourth side surfaces 10e and 10f extends along the x direction and the z direction. The third and fourth side surfaces 10e and 10f are opposed to each other in the y direction.
 図5に示すように、圧電素子10は、圧電層11を介してx方向に互いに対向している第1及び第2の電極12,13を複数対備えている。これら第1及び第2の電極12,13間に電圧を印加することにより、圧電素子10をx方向に伸縮させることができる。 As shown in FIG. 5, the piezoelectric element 10 includes a plurality of pairs of first and second electrodes 12 and 13 that face each other in the x direction via the piezoelectric layer 11. By applying a voltage between the first and second electrodes 12 and 13, the piezoelectric element 10 can be expanded and contracted in the x direction.
 なお、第1及び第2の電極が複数対設けられている必要は必ずしもない。第1及び第2の電極を一対のみ設けてもよい。また、第1及び第2の電極の対向方向は、伸縮方向であるx方向に限定されない。圧電体の分極方向によっては、第1及び第2の電極がz方向またはy方向に対向するように設けられることもある。 Note that it is not always necessary to provide a plurality of pairs of the first and second electrodes. Only a pair of the first and second electrodes may be provided. Further, the opposing direction of the first and second electrodes is not limited to the x direction which is the expansion / contraction direction. Depending on the polarization direction of the piezoelectric body, the first and second electrodes may be provided so as to face each other in the z direction or the y direction.
 圧電層11並びに第1及び第2の電極12,13の材質は、特に限定されない。圧電層11は、例えば、チタン酸ジルコン酸鉛系セラミックス(PZT)、ニオブ酸カリウムナトリウム等のアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスやタンタル酸リチウム等の圧電単結晶等の適宜の圧電体により形成することができる。第1及び第2の電極12,13は、例えば、Ag,Cu,Pt等の金属や、Ag-Pd合金などの合金により形成することができる。 The material of the piezoelectric layer 11 and the first and second electrodes 12 and 13 is not particularly limited. The piezoelectric layer 11 is made of, for example, lead-free piezoelectric ceramics such as lead zirconate titanate ceramics (PZT), alkaline niobate ceramics such as potassium sodium niobate, or piezoelectric single crystals such as lithium tantalate. It can be formed of a piezoelectric body. The first and second electrodes 12 and 13 can be formed of, for example, a metal such as Ag, Cu, or Pt, or an alloy such as an Ag—Pd alloy.
 変換部材4は、鉄、銅、ニッケルなどの金属やステンレス、42ニッケル鉄、ベリリウム銅、リン青銅、真鍮などの合金に代表されるような弾性体を含む。変換部材4は、圧電素子10のx方向に沿った伸縮による駆動力がz方向に沿った駆動力となるように駆動力の方向を変換し、その方向の変換された駆動力により、駆動軸6をz方向に沿って変位させる素子である。なお、圧電素子10の駆動方向と、変換部材4によって圧電素子10の駆動力が変換される方向とは、必ずしも垂直でなくともよい。また、本実施形態では、x方向とz方向とは垂直であるが、x方向とz方向が垂直である必要は必ずしもない。 The conversion member 4 includes a metal such as iron, copper and nickel, and an elastic body represented by an alloy such as stainless steel, 42 nickel iron, beryllium copper, phosphor bronze and brass. The conversion member 4 converts the direction of the driving force so that the driving force due to the expansion and contraction along the x direction of the piezoelectric element 10 becomes the driving force along the z direction, and the driving shaft is converted by the converted driving force in the direction. 6 is an element that displaces along the z direction. Note that the driving direction of the piezoelectric element 10 and the direction in which the driving force of the piezoelectric element 10 is converted by the conversion member 4 are not necessarily perpendicular. In this embodiment, the x direction and the z direction are perpendicular to each other, but the x direction and the z direction are not necessarily perpendicular to each other.
 変換部材4は、第1~第7の部分21~27を有する環状である。上記圧電素子10は、この環状の変換部材4と嵌合している。本実施形態においては、第1~第7の部分21~27は、一体に形成されている。すなわち、変換部材4は、環状である。変換部材4を環状にすることで、変換部材4と圧電素子10とからなる部分の共振周波数を高くすることが容易になる。このため、より周波数の高い、つまり駆動速度の速い振動を得ることが容易になる。さらに、変換部材4と圧電素子10とからなる部分の共振周波数付近で圧電素子10を振動させることで、少ない投入エネルギーで駆動することができる。なお、変換部材4は、単一の部材により構成されていてもよいし、複数の部材が接合されることにより構成されていてもよい。 The conversion member 4 has an annular shape having first to seventh portions 21 to 27. The piezoelectric element 10 is fitted with the annular conversion member 4. In the present embodiment, the first to seventh portions 21 to 27 are integrally formed. That is, the conversion member 4 is annular. By making the conversion member 4 annular, it is easy to increase the resonance frequency of the portion composed of the conversion member 4 and the piezoelectric element 10. For this reason, it becomes easy to obtain vibration having a higher frequency, that is, a higher driving speed. Further, the piezoelectric element 10 can be vibrated in the vicinity of the resonance frequency of the portion composed of the conversion member 4 and the piezoelectric element 10, so that it can be driven with less input energy. In addition, the conversion member 4 may be comprised by the single member, and may be comprised by joining a some member.
 第1の部分21は、第1の側面10cの上に位置している。すなわち、第1の部分21は、第1の側面10cのz方向におけるz1側に位置している。第1の部分21は、凸部21aを有する。本実施形態では、第1の部分21の全体が凸部21aにより構成されている。凸部21aは、第1の側面10cから離間している。凸部21aは、第1の側面10cからz方向のz1側に突出している。上記駆動軸6は、この凸部21aの頂部に取り付けられている。駆動軸6の凸部21aへの取り付け方法は特に限定されない。例えば、樹脂接着剤を用いて駆動軸6を凸部21aに取り付けてもよいし、変換部材4と同材質で一体に形成されていてもよい。また、駆動軸6の断面形状は円形、各種多角形あるいは各種組合せ形状等適宜の形状とすることができる。駆動軸6の断面の形状と寸法はz方向に沿ってほぼ同一であることが好ましい。 The first portion 21 is located on the first side surface 10c. That is, the first portion 21 is located on the z1 side in the z direction of the first side surface 10c. The first portion 21 has a convex portion 21a. In the present embodiment, the entire first portion 21 is constituted by the convex portion 21a. The convex portion 21a is separated from the first side surface 10c. The convex portion 21a protrudes from the first side surface 10c to the z1 side in the z direction. The drive shaft 6 is attached to the top of the convex portion 21a. A method for attaching the drive shaft 6 to the convex portion 21a is not particularly limited. For example, the drive shaft 6 may be attached to the convex portion 21 a using a resin adhesive, or may be integrally formed of the same material as the conversion member 4. The cross-sectional shape of the drive shaft 6 can be an appropriate shape such as a circle, various polygons, or various combinations. The cross-sectional shape and dimensions of the drive shaft 6 are preferably substantially the same along the z direction.
 第2の部分22は、平板状である。第2の部分22は、第1の端面10aの上に位置している。すなわち、第2の部分22は、第1の端面10aのx方向のx1側に位置している。第2の部分22のz方向z2側の端部は、第2の側面10dよりもz2側にまで至っている。第2の部分22は、第1の端面10aに当接している。具体的には、本実施形態では、第1の端面10aの実質的に全体が第2の部分22に当接している。詳細には、図3に示すように、第2の部分22と第1の端面10aとは、樹脂接着剤層31により接着されており、樹脂接着剤層31を介して当接している。なお、図3及び図4では、樹脂接着剤層31及び後述の樹脂接着剤層32,33の描画を省略している。 The second portion 22 has a flat plate shape. The second portion 22 is located on the first end face 10a. That is, the second portion 22 is located on the x1 side in the x direction of the first end face 10a. The end of the second portion 22 on the z-direction z2 side reaches the z2 side from the second side surface 10d. The second portion 22 is in contact with the first end face 10a. Specifically, in the present embodiment, substantially the entire first end surface 10 a is in contact with the second portion 22. Specifically, as shown in FIG. 3, the second portion 22 and the first end surface 10 a are bonded by the resin adhesive layer 31 and are in contact with each other via the resin adhesive layer 31. In FIGS. 3 and 4, drawing of the resin adhesive layer 31 and resin adhesive layers 32 and 33 described later is omitted.
 第3の部分23は、平板状である。第3の部分23は、第2の端面10bの上に位置している。すなわち、第3の部分23は、第2の端面10bのx方向のx2側に位置している。第3の部分23のz方向z2側の端部は、第2の側面10dよりもz2側にまで至っている。第3の部分23は、第2の端面10bに当接している。具体的には、本実施形態では、第2の端面10bの実質的に全体が第3の部分23に当接している。詳細には、図5に示すように、第3の部分23と第2の端面10bとは、樹脂接着剤層32により接着されており、樹脂接着剤層32を介して当接している。 The third portion 23 has a flat plate shape. The third portion 23 is located on the second end face 10b. That is, the third portion 23 is located on the x2 side in the x direction of the second end face 10b. The end of the third portion 23 on the z-direction z2 side is closer to the z2 side than the second side surface 10d. The third portion 23 is in contact with the second end face 10b. Specifically, in the present embodiment, substantially the entire second end surface 10 b is in contact with the third portion 23. Specifically, as shown in FIG. 5, the third portion 23 and the second end surface 10 b are bonded by the resin adhesive layer 32 and are in contact with each other via the resin adhesive layer 32.
 第4の部分24は、第2の部分22に間接的に接続されている。第4の部分24は、第2の側面10dの上に位置している。すなわち、第4の部分24は、第2の側面10dのz方向のz2側に位置している。 The fourth portion 24 is indirectly connected to the second portion 22. The fourth portion 24 is located on the second side surface 10d. That is, the fourth portion 24 is located on the z2 side in the z direction of the second side surface 10d.
 一方、第5の部分25は、第3の部分23に間接的に接続されている。第5の部分25は、第2の側面10dの上に位置している。すなわち、第5の部分25は、第2の側面10dのz方向のz2側に位置している。 On the other hand, the fifth portion 25 is indirectly connected to the third portion 23. The fifth portion 25 is located on the second side surface 10d. That is, the fifth portion 25 is located on the z2 side in the z direction of the second side surface 10d.
 本実施形態では、第4及び第5の部分24,25は、一体に形成されている。そして、第4及び第5の部分24,25は、樹脂接着剤層33により第2の側面10dに接着されることにより、固定されている。本実施形態では、第2の側面10dの実質的に全体が樹脂接着剤層33により第4及び第5の部分24,25に固定されている。 In the present embodiment, the fourth and fifth portions 24 and 25 are integrally formed. The fourth and fifth portions 24 and 25 are fixed by being bonded to the second side surface 10d by the resin adhesive layer 33. In the present embodiment, substantially the entire second side surface 10 d is fixed to the fourth and fifth portions 24 and 25 by the resin adhesive layer 33.
 第2の部分22と第4の部分24とは、第6の部分26により接続されている。第6の部分26は、第2の側面10dの第1の端面10a側の端縁部の上に位置している。すなわち、第6の部分26は、第2の側面10dと第1の端面10aとにより構成された稜線部のz方向z2側に位置している。第6の部分26は、第2の側面10dから離間して設けられている。 The second part 22 and the fourth part 24 are connected by a sixth part 26. The sixth portion 26 is located on the end edge of the second side surface 10d on the first end surface 10a side. That is, the sixth portion 26 is located on the z-direction z2 side of the ridge line portion formed by the second side surface 10d and the first end surface 10a. The sixth portion 26 is provided apart from the second side surface 10d.
 第3の部分23と第5の部分25とは、第7の部分27により接続されている。第7の部分27は、第2の側面10dの第2の端面10b側の端縁部の上に位置している。すなわち、第7の部分27は、第2の側面10dと第2の端面10bとにより構成された稜線部のz方向z2側に位置している。第7の部分27は、第2の側面10dから離間して設けられている。 The third part 23 and the fifth part 25 are connected by a seventh part 27. The seventh portion 27 is located on the end edge of the second side surface 10d on the second end surface 10b side. That is, the seventh portion 27 is located on the z direction z2 side of the ridge line portion constituted by the second side surface 10d and the second end surface 10b. The seventh portion 27 is provided apart from the second side surface 10d.
 なお、本実施形態では、第1または第2の端面10a,10bと第1の側面10cとの間の稜線部が変換部材4と接触している例について説明した。但し、本発明は、この構成に限定されない。変換部材は、第1または第2の端面と第1の側面との間の稜線部と変換部材とが接触しないように設けられていてもよい。すなわち、第2及び第3の部分22,23が第1または第2の端面10a,10bと第1の側面10cとの間の稜線部と接触しないように設けられていてもよい。 In the present embodiment, the example in which the ridge line portion between the first or second end face 10a, 10b and the first side face 10c is in contact with the conversion member 4 has been described. However, the present invention is not limited to this configuration. The conversion member may be provided such that the ridge line portion between the first or second end surface and the first side surface does not contact the conversion member. That is, the second and third portions 22 and 23 may be provided so as not to contact the ridge line portion between the first or second end face 10a or 10b and the first side face 10c.
 なお、変換部材4が均一な幅の板状の部材によって閉じた環状構造に形成されるときにおいて、圧電素子10のyz断面が1mm程度である場合の板状の変換部材4の厚みtは、0.1mm~0.25mm程度であることが好ましい。変換部材4のヤング率は、100GPa以上であることが、変位部材の共振周波数を高くでき、振動の減衰を小さくできるため好ましい。変換部材4のヤング率の好ましい上限は、特に限定されないが、例えば、300GPa程度以下とすれば、板状の材料を曲げ加工することなどにより、変換部材4が容易に成形できる。平面状の第1の部分21と平面状の第1の側面10cとのなす角の大きさθは、15°~45°程度であることが、圧電素子10の駆動力を効率よく変換できるため好ましい。圧電素子10のz方向に沿った長さL1に対する、圧電素子10のx方向に沿った長さL2の比(L2/L1)は、0.8~2程度であることが好ましい。圧電素子10のx方向に沿った長さL2に対する第1の部分21の頂部のx方向に沿った長さL3の比(L3/L2)は、0.3~0.7程度であることが好ましい。圧電素子10のx方向に沿った長さL2に対する第6及び第7の部分26,27のそれぞれのx方向に沿った長さL4の比(L4/L2)は、0.05~0.2程度であることが好ましい。このようにすることによって、圧電素子10のx方向に沿った伸縮変形が第1の部分21のz方向に沿った変位に変換され、駆動軸6をz方向に変位させて、被駆動部材5をz方向に沿って移動させることができる。 When the conversion member 4 is formed in an annular structure closed by a plate-shaped member having a uniform width, the thickness t of the plate-shaped conversion member 4 when the yz section of the piezoelectric element 10 is about 1 mm is It is preferably about 0.1 mm to 0.25 mm. The Young's modulus of the conversion member 4 is preferably 100 GPa or more because the resonance frequency of the displacement member can be increased and the vibration attenuation can be reduced. The preferable upper limit of the Young's modulus of the conversion member 4 is not particularly limited. For example, when the Young's modulus is about 300 GPa or less, the conversion member 4 can be easily formed by bending a plate-like material. The angle θ formed by the planar first portion 21 and the planar first side surface 10c is about 15 ° to 45 °, because the driving force of the piezoelectric element 10 can be efficiently converted. preferable. The ratio (L2 / L1) of the length L2 along the x direction of the piezoelectric element 10 to the length L1 along the z direction of the piezoelectric element 10 is preferably about 0.8 to 2. The ratio (L3 / L2) of the length L3 along the x direction of the top of the first portion 21 to the length L2 along the x direction of the piezoelectric element 10 is about 0.3 to 0.7. preferable. The ratio (L4 / L2) of the length L4 along the x direction of each of the sixth and seventh portions 26 and 27 to the length L2 along the x direction of the piezoelectric element 10 is 0.05 to 0.2. It is preferable that it is a grade. By doing so, the expansion and contraction deformation along the x direction of the piezoelectric element 10 is converted into the displacement along the z direction of the first portion 21, and the drive shaft 6 is displaced in the z direction, thereby driving the driven member 5. Can be moved along the z-direction.
 なお、本発明のアクチュエータ装置の製造方法では、図4及び図5に示したアクチュエータ3に限らず、様々なアクチュエータを用いることができる。 In addition, in the manufacturing method of the actuator apparatus of this invention, not only the actuator 3 shown in FIG.4 and FIG.5 but various actuators can be used.
 また、上記圧電素子10を駆動素子として用いたが、金属端子に接続され、交番電界を印加することにより伸縮する様々な電気機械変換素子や電歪素子を駆動素子として用いることができる。 Further, although the piezoelectric element 10 is used as a driving element, various electromechanical conversion elements and electrostrictive elements that are connected to a metal terminal and expand and contract by applying an alternating electric field can be used as the driving element.
 1…アクチュエータ装置
 2…制御部
 3…アクチュエータ
 4…変換部材
 5…被駆動部材
 5a…貫通孔
 6…駆動軸
 6a…一方側端部
 10…圧電素子(駆動素子)
 10a,10b…第1,第2の端面
 10c~10f…第1~第4の側面
 11…圧電層
 12,13…第1,第2の電極
 21~27…第1~第7の部分
 21a…凸部
 21b…平板部
 21c…穴
 31~33…樹脂接着剤層
 51…第1の基板
 51a…開口
 51b…アクチュエータ搭載部
 51c…切欠き
 61…第2の基板
 61a…開口
 61b…柱状部
 61c…凹部
 71…金属端子
 71a,71d…第1,第2の接続部
 71b,71e…連結部
 71c,71f…帯状金属板部
 71g,71h…端子板
 71g1,71h1…端子部
 71i,71j…連結部
DESCRIPTION OF SYMBOLS 1 ... Actuator apparatus 2 ... Control part 3 ... Actuator 4 ... Conversion member 5 ... Driven member 5a ... Through-hole 6 ... Drive shaft 6a ... One side edge part 10 ... Piezoelectric element (drive element)
10a, 10b ... 1st and 2nd end face 10c-10f ... 1st-4th side surface 11 ... Piezoelectric layer 12, 13 ... 1st, 2nd electrode 21-27 ... 1st-7th part 21a ... Projection 21b ... Flat plate part 21c ... Hole 31-33 ... Resin adhesive layer 51 ... First substrate 51a ... Opening 51b ... Actuator mounting part 51c ... Notch 61 ... Second substrate 61a ... Opening 61b ... Columnar part 61c ... Recessed portion 71 ... Metal terminals 71a, 71d ... First and second connecting portions 71b, 71e ... Connecting portions 71c, 71f ... Strip-shaped metal plate portions 71g, 71h ... Terminal plates 71g1, 71h1 ... Terminal portions 71i, 71j ... Connecting portions

Claims (7)

  1.  第1の方向に沿って伸縮する駆動素子と、前記駆動素子に連結されており、前記駆動素子の前記第1の方向に沿った伸縮力を前記第1の方向に対して垂直な第2の方向に沿う駆動力に変換する変換部材と、前記変換部材に固定されており、前記第2の方向に延びる駆動軸とを有するアクチュエータと、
     前記アクチュエータの前記駆動素子に電気的に接続される接続部と、前記接続部に連ねられており、かつ駆動素子を駆動するための外部の回路に接続する複数の端子部と、を有する金属端子と、を備えるアクチュエータ装置の製造方法であって、
     前記金属端子の前記接続部を前記駆動素子に電気的に接続する工程と、
     前記金属端子の前記複数の端子部のうち、外部の回路に接続される少なくとも1本の端子部を残し、残りの端子部を切断あるいは少なくとも1本の端子部の延びる方向とは異なる方向に折り曲げ、前記少なくとも1本の端子部の延びる方向の長さよりも、前記残りの端子部の長さを短くする工程とを備える、アクチュエータ装置の製造方法。
    A driving element that expands and contracts along a first direction and a second driving element that is connected to the driving element and has a stretching force along the first direction of the driving element that is perpendicular to the first direction. An actuator having a conversion member that converts the driving force along a direction, and a drive shaft that is fixed to the conversion member and extends in the second direction;
    A metal terminal having a connection part electrically connected to the drive element of the actuator, and a plurality of terminal parts connected to the connection part and connected to an external circuit for driving the drive element A method of manufacturing an actuator device comprising:
    Electrically connecting the connecting portion of the metal terminal to the driving element;
    Among the plurality of terminal portions of the metal terminal, at least one terminal portion connected to an external circuit is left, and the remaining terminal portion is cut or bent in a direction different from a direction in which at least one terminal portion extends. And a step of shortening the length of the remaining terminal portion beyond the length in the extending direction of the at least one terminal portion.
  2.  前記金属端子が、前記接続部に連ねられた帯状金属板部を有し、該帯状金属板部の端縁から互いに平行に延びるように前記複数の端子部が設けられている、請求項1に記載のアクチュエータ装置の製造方法。 The metal terminal has a strip-shaped metal plate portion connected to the connection portion, and the plurality of terminal portions are provided so as to extend parallel to each other from an edge of the strip-shaped metal plate portion. A manufacturing method of the actuator device described.
  3.  前記接続部が、前記帯状金属板部に対し、バネ性を有するバネ端子部となるように前記帯状金属板部に連ねられている、請求項1に記載のアクチュエータ装置の製造方法。 The method for manufacturing an actuator device according to claim 1, wherein the connecting portion is connected to the band-shaped metal plate portion so as to be a spring terminal portion having a spring property with respect to the band-shaped metal plate portion.
  4.  前記アクチュエータを第1の基板に固定する工程と、
     第2の基板に前記金属端子を固定する工程と、
     前記金属端子の一部を前記第1の基板と前記第2の基板とで挟み込むようにして、前記アクチュエータが固定された前記第1の基板の上に、前記金属端子が固定された前記第2の基板を配置する工程とを備える、請求項1~3のいずれか1項に記載のアクチュエータ装置の製造方法。
    Fixing the actuator to the first substrate;
    Fixing the metal terminal to the second substrate;
    A part of the metal terminal is sandwiched between the first board and the second board, and the second metal terminal is fixed on the first board to which the actuator is fixed. The method for manufacturing an actuator device according to any one of claims 1 to 3, further comprising a step of arranging the substrate.
  5.  第1の方向に沿って伸縮する駆動素子と、前記駆動素子の前記第1の方向に沿った伸縮力を前記第1の方向に対して垂直な第2の方向に沿う駆動力に変換するように前記駆動素子に連結された変換部材と、前記変換部材に固定されており、前記第2の方向に延びる駆動軸とを有するアクチュエータと、
     前記アクチュエータの前記駆動素子に電気的に接続される接続部と、前記接続部に連ねられており、かつ駆動素子を駆動するための外部の回路に接続する複数の端子部と、を有する金属端子とを備え、
     前記複数の端子部のうち、外部の回路に接続される少なくとも1本の端子部の延びる方向の長さが、残りの端子部の長さよりも長くされている、アクチュエータ装置。
    A driving element that expands and contracts along a first direction, and an expansion and contraction force along the first direction of the driving element is converted into a driving force along a second direction perpendicular to the first direction. An actuator having a conversion member coupled to the drive element, and a drive shaft fixed to the conversion member and extending in the second direction;
    A metal terminal having a connection part electrically connected to the drive element of the actuator, and a plurality of terminal parts connected to the connection part and connected to an external circuit for driving the drive element And
    The actuator device in which at least one terminal portion connected to an external circuit among the plurality of terminal portions has a length in an extending direction longer than a length of the remaining terminal portions.
  6.  前記残りの端子部が、前記少なくとも1本の端子部の延びる方向外の方向に延びるように折り曲げられている、請求項5に記載のアクチュエータ装置。 The actuator device according to claim 5, wherein the remaining terminal portion is bent so as to extend in a direction outside the extending direction of the at least one terminal portion.
  7.  前記残りの端子部が、前記少なくとも1本の端子部よりも短くなるように切断されている、請求項5に記載のアクチュエータ装置。 The actuator device according to claim 5, wherein the remaining terminal portion is cut so as to be shorter than the at least one terminal portion.
PCT/JP2013/070304 2012-07-31 2013-07-26 Manufacturing method for actuator device, and actuator device WO2014021212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528115A JPWO2014021212A1 (en) 2012-07-31 2013-07-26 Actuator device manufacturing method and actuator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012169413 2012-07-31
JP2012-169413 2012-07-31

Publications (1)

Publication Number Publication Date
WO2014021212A1 true WO2014021212A1 (en) 2014-02-06

Family

ID=50027889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070304 WO2014021212A1 (en) 2012-07-31 2013-07-26 Manufacturing method for actuator device, and actuator device

Country Status (2)

Country Link
JP (1) JPWO2014021212A1 (en)
WO (1) WO2014021212A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122951A (en) * 1991-10-24 1993-05-18 Ricoh Co Ltd Driving mechanism
JPH05191988A (en) * 1992-01-10 1993-07-30 Olympus Optical Co Ltd Ultrasonic oscillator
JP2002281768A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Rotational actuator
JP2009038901A (en) * 2007-08-01 2009-02-19 Toshiba Corp Piezoelectric motor, and camera device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518034A (en) * 1978-07-25 1980-02-07 Sony Corp Method of fabricating hybrid integrated circuit
JP2000294330A (en) * 1999-04-07 2000-10-20 Tdk Corp Lead terminal for surface mounting, lead terminal connector and electronic component using them
JP2011059274A (en) * 2009-09-08 2011-03-24 Micro Uintekku Kk Lens drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122951A (en) * 1991-10-24 1993-05-18 Ricoh Co Ltd Driving mechanism
JPH05191988A (en) * 1992-01-10 1993-07-30 Olympus Optical Co Ltd Ultrasonic oscillator
JP2002281768A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Rotational actuator
JP2009038901A (en) * 2007-08-01 2009-02-19 Toshiba Corp Piezoelectric motor, and camera device

Also Published As

Publication number Publication date
JPWO2014021212A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
US11063205B2 (en) Vibration actuator and method for manufacturing the same
JP6214232B2 (en) Vibration actuator, replacement lens, imaging device, and automatic stage
WO2011077660A1 (en) Electrical machine conversion element and drive device
US20060261706A1 (en) Piezoelectric linear motor with displacement amplifying means
JP2014018027A (en) Vibration type actuator, imaging apparatus, and stage
JP5500872B2 (en) Piezoelectric element with electrode and head suspension
JP6155460B2 (en) Drive member, linear drive device, camera device, and electronic device
US9455394B2 (en) Displacement member, driving member, actuator, and driving device
WO2009131000A1 (en) Stacked piezoelectric element and ultrasonic motor
KR100891851B1 (en) A Stator and Piezo Ultrasonic Motor Having it
WO2014061194A1 (en) Drive device and imaging device
WO2014021212A1 (en) Manufacturing method for actuator device, and actuator device
KR101045996B1 (en) Piezoelectric linear motor
JP2009296794A (en) Inertia-driven actuator
WO2014049962A1 (en) Actuator unit and imaging device
KR101134280B1 (en) Piezoelectric linear motor
JP2008172885A (en) Ultrasonic actuator
JP2008178209A (en) Ultrasonic actuator
JP2002319717A (en) Piezoelectric actuator
CN102668147B (en) Electromechanical conversion element and actuator
JP5892251B2 (en) Actuator
JP2017221042A (en) Piezoelectric element
WO2012060048A1 (en) Drive device and equipment
JP2017103912A (en) Piezoelectric driving element
JP2011259684A (en) Actuator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825444

Country of ref document: EP

Kind code of ref document: A1