WO2014049962A1 - Actuator unit and imaging device - Google Patents

Actuator unit and imaging device Download PDF

Info

Publication number
WO2014049962A1
WO2014049962A1 PCT/JP2013/005093 JP2013005093W WO2014049962A1 WO 2014049962 A1 WO2014049962 A1 WO 2014049962A1 JP 2013005093 W JP2013005093 W JP 2013005093W WO 2014049962 A1 WO2014049962 A1 WO 2014049962A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
support column
friction member
moving body
actuator unit
Prior art date
Application number
PCT/JP2013/005093
Other languages
French (fr)
Japanese (ja)
Inventor
松尾 隆
豊年 川崎
拓真 森川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014509549A priority Critical patent/JP5565540B1/en
Publication of WO2014049962A1 publication Critical patent/WO2014049962A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to an actuator unit that is suitably used for an imaging device of a mobile phone, for example, and drives a driven body such as an imaging lens, and an imaging device using the actuator unit.
  • Patent Document 1 discloses an actuator unit that drives an imaging lens.
  • the actuator unit 200 includes an actuator 201 and a housing 202, and is driven by an imaging device 203 (on the right side in FIG. 12) of the unit.
  • the imaging lens 204 is moved along the optical axis O.
  • the actuator 201 includes an actuator main body 205 and a moving body 230, and the actuator main body 205 includes a drive friction member (drive shaft) 210 and an electromechanical conversion element (piezoelectric element) 211.
  • the drive friction member 210 is a columnar shaft member that extends in the optical axis direction (the left-right direction in FIG. 12).
  • the electromechanical transducer 211 repeatedly expands and contracts in the optical axis direction (that is, vibrates in the optical axis direction) when electric power having a predetermined waveform is supplied.
  • a driving friction member 210 is connected to one end (left end in FIG. 12) 213 of the electromechanical conversion element 211 in the optical axis direction so that the central axis coincides with the optical axis direction.
  • the housing 202 has an internal space for housing the actuator body 205.
  • This housing 202 is located inside the housing 202 at the other end 214 (an end opposite to one end connected to the drive friction member 210: the right end on the paper in FIG. 12) 214 when the electromechanical conversion element 211 expands and contracts.
  • the electromechanical conversion element 211 is held inside so as not to change the position at.
  • the housing 202 supports the distal end portion (the distal end portion of the driving friction member 210) 215 of the actuator main body 205 so as to be able to reciprocate in the optical axis direction. More specifically, the tip 215 of the drive friction member 210 is inserted into a hole 221 provided in the front wall 220 of the housing 202 so as to reciprocate in the optical axis direction.
  • the drive friction member 210 is supported by the inner peripheral surface defining the hole 221.
  • the moving body 230 includes a moving body main body 231 that holds a driven member (imaging lens) 204 and an engaging portion 232 that extends from the moving body main body 231 in a direction orthogonal to the optical axis direction.
  • the engaging portion 232 is inserted into an opening 222 provided in the housing 202, and moves relative to the housing 202 in the optical axis direction.
  • the engaging portion 232 sandwiches a part of the actuator main body 205 (the driving friction member 210) with a predetermined force.
  • the moving body 230 is engaged with the drive friction member 210 by a predetermined frictional force (that is, the moving body 230 and the actuator main body 205 are frictionally engaged).
  • the electromechanical conversion element 211 vibrates in the optical axis direction (repetitively expands and contracts) when electric power having a predetermined waveform is supplied, the driving friction connected to the electromechanical conversion element 211.
  • the member 210 vibrates (reciprocates) in the optical axis direction.
  • the movable body 230 moves in the optical axis direction by the engagement portion 232 of the movable body 230 being engaged with the drive friction member 210 with a predetermined frictional force.
  • the driven member (imaging lens) 204 held by the moving body 230 moves in the optical axis direction.
  • the structure for supporting the tip 215 of the driving friction member 210 in the housing 202 is eliminated, and the length dimension of the actuator 201 is equal to the length of the supported portion of the driving friction member 210. It is conceivable to reduce the height (shortening) of the actuator unit 200. However, in this case, when an impact in the direction from the moving body 230 toward the driving friction member 210 is applied to the actuator unit 200 from the outside, both the moving body 230 and the driven member 205 held by the moving body 230 Since a large impact acceleration (load) based on the weight of the actuator is applied to the drive friction member 210, the actuator 201 is easily damaged.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an actuator unit capable of reducing the height while maintaining impact resistance and an imaging apparatus using the same. It is.
  • An actuator unit and an imaging apparatus include an actuator having a moving body that engages a driving friction member to which mechanical energy of an electromechanical conversion element is transmitted with a predetermined friction force, and a unit main body to which the actuator is fixed. And the unit main body has a column portion that is disposed so as to come into contact with the driving friction member, or is disposed at a predetermined interval that regulates an inclination displacement of the driving friction member and the actuator. .
  • FIG. 1 is a perspective view of an actuator unit according to the present embodiment
  • FIG. 2 is an exploded perspective view of the actuator unit.
  • 3 is a perspective view of the unit main body of the actuator
  • FIG. 4 is a plan view of the unit main body in a state where the actuator main body is disposed
  • FIG. 5 is a plan view of the unit main body in a state where the actuator is disposed. is there.
  • FIG. 6 is an enlarged perspective view of a first corner of the unit body
  • FIG. 7 is an enlarged perspective view of the actuator body.
  • the X direction in FIGS. 1, 2, and 6 to 10 will be described as the upper side, and the Y direction will be described as the lower side.
  • the actuator unit according to the present embodiment is used in an imaging apparatus.
  • the upper side is the object side
  • the lower side is the image side.
  • the actuator unit according to the present embodiment is used in, for example, a camera module (imaging device) that can be mounted on a mobile phone or the like. For example, an imaging lens (driven) Member) is moved (driven).
  • the actuator unit 1 includes a unit main body 2, an actuator 3, and a cover 8.
  • a housing 10 is formed by the unit main body 2 and the cover 8. That is, the housing 10 is constructed by covering the unit main body 2 with the cover 8 and locking it.
  • the unit main body 2 is a base member that holds and supports the actuator 3, and includes, for example, a base 20 and a plurality of (four in the example of the present embodiment) struts (first to fourth struts 120a and 120b). 120c, 120d).
  • the unit body 2 is formed of a resin material such as LCP (liquid crystal polymer), for example.
  • LCP liquid crystal polymer
  • the base portion 20 has a rectangular outline in a plan view and a circular through hole 21 penetrating in the vertical direction in the center portion.
  • the through hole 21 serves as an optical path, and in the following description, an axis that vertically penetrates the center of the through hole 21 is a central axis (optical axis) C.
  • the base 20 has four corners (first to fourth corners 20a, 20b, 20c, 20d).
  • the specific corner (the lower left corner in FIG. 3) is the first corner (first corner) 20a
  • the second corner is counterclockwise in FIG. 20b, the third corner (second corner) 20c, and the fourth corner 20d.
  • the first to fourth corner portions 20a, 20b, 20c, 20d of the base 20 are provided with first to fourth support columns 120a, 120b, 120c, 120d.
  • the first column 120a extends upward from the first corner 20a
  • the second column 120b extends upward from the second corner 20b
  • the third A third column 120c extends upward from the corner 20c
  • a fourth column 120d extends upward from the fourth corner 20d.
  • a mounting table 120e that abuts against the inner side surface (back surface) of the top wall 81 of the cover 8 protrudes. .
  • the second support column 120 b is configured such that the entire upper end surface is in contact with the inner surface of the top wall 81 of the cover 8.
  • the respective struts 120a, 120b, 120c, and 120d are in contact with the corresponding inner side surfaces of the respective corners of the cover 8, so that the rigidity (strength) of the casing constituted by the unit main body 2 and the cover 8 is improved. .
  • the first support column 120a is in contact with the actuator 3.
  • the first support column 120a includes an outer surface 121a and an inner surface (opposing surface) 122a on the surface thereof.
  • the outer surface 121a is flush with the outer surface of the first corner 20a of the base 20, and the inner surface 122a is the same along the outer peripheral surface of the actuator body 30 (specifically, the drive shaft 33). It bends in the direction and comes into contact with the actuator body 30 (specifically, the drive shaft 33).
  • the outer surface 121a has a shallow groove 123a extending vertically as shown in FIG.
  • the shallow groove 123a is coated with an adhesive when a gap occurs between the outer side surface 121a of the first support column 120a and the peripheral wall 83 (side wall 83a) facing the outer side surface 121a due to a manufacturing error or the like. And used when filling the gap.
  • the inner side surface 122a is in contact with the actuator main body 30 (drive shaft 33) at a plurality of locations (two locations in the example of the present embodiment). That is, the inner side surface 122a of the present embodiment includes a first column side sliding surface 125a and a second column side sliding surface 126a. As described above, the inner surface 122a is in linear contact with the outer peripheral surface of the drive shaft 33 along the axial direction at a plurality of positions at intervals in the circumferential direction. A part of the force applied to the drive shaft 33 and the stress generated in the actuator 3 (actuator body 30) can be effectively received while suppressing the friction with the inner surface 122a.
  • the driving is performed in comparison with the case where the entire inner side surface 122a facing the driving shaft 33 is in contact with the driving shaft 33. Friction when the shaft 33 reciprocates (vibrates) is suppressed.
  • the inner surface 122a and the outer peripheral surface of the drive shaft 33 are in contact with each other at a plurality of intervals in the circumferential direction, thereby improving impact resistance against forces applied to the drive shaft 33 from various directions in the circumferential direction. To do.
  • the curvature of the inner side surface 122a and the curvature of the outer peripheral surface of the drive shaft 33 are made different so that the inner side surface 122a comes into contact with the outer peripheral surface of the drive shaft 33 at two locations spaced in the circumferential direction.
  • the actuator unit has, for example, a configuration in which a plurality of protrusions extending in the central axis C direction are provided on the inner side surface 122a with an interval in the circumferential direction, and the protrusion-direction front ends of the protrusions are in contact with the outer peripheral surface of the drive shaft 33. There may be.
  • the first column side sliding surface 125a is provided at a position substantially opposite to the first moving body side sliding surface 55 of the moving body 4 with the driving shaft 33 interposed therebetween (via the driving shaft 33).
  • the second column side sliding surface 126a is provided at a position substantially opposite to the second moving body side sliding surface 62a of the moving body 4 with the driving shaft 33 interposed therebetween (via the driving shaft 33).
  • the column-side sliding surfaces 125a and 126a are provided at positions substantially opposite to the contact portion between the moving body 4 and the drive shaft 33 with the drive shaft 33 interposed therebetween, so that the drive shaft 33 is connected to the contact portion.
  • the first column side sliding surface 125a of the present embodiment is, for example, the side surface of the base 20 on the side where the first column portion 120a and the fourth column portion 120d are provided (the left side surface in FIG. 4). It is a surface along.
  • the second column side sliding surface 126a is, for example, along the side surface (the lower side surface in FIG. 4) of the base 20 on the side where the first support column 120a and the second support column 120b are provided. It is the surface.
  • a load in the direction from the second support column 120b toward the first support column 120a or a load in the direction from the fourth support column 120d to the first support column 120a is applied. Even when applied to the drive shaft 33, this load can be effectively received by the first column side sliding surface 125a and the second column side sliding surface 126a of the first column 120a.
  • first support column 120a is notched at the upper part on the second corner 20b side in order to avoid interference with the guide spring 6 (specifically, the pressing piece 63) (see FIG. 6).
  • the first column side sliding surface 125a is in contact with the drive shaft 33 up to the vicinity of the upper end of the drive shaft 33 in the height direction, whereas the second column side sliding surface 126a is in contact with the drive shaft 33. Only in contact with the bottom of
  • the second support column 120b is provided on the inner side of the outer surface of the second corner portion 20b of the base 20. Specifically, the second support column 120 b is provided between the moving body main body 5 of the moving body 4 and the guide spring 6.
  • the third support column 120c is formed with a restriction portion groove 29 into which a part of the movable body 4 (specifically, the rotation restriction portion 61a) is fitted so as to be movable up and down.
  • the restriction portion groove 29 is provided on the inner side surface (side surface of the central axis C) 122c of the third support column portion 120c and extends in the vertical direction. Further, the outer surface 121c of the third support column 120c is flush with the outer surface of the third corner portion 20c of the base 20 in plan view.
  • the fourth support column 120d is configured such that the outer surface 121d is flush with the outer surface of the fourth corner 20d of the base 20 and the inner surface 122d is curved along the moving body 4 in plan view. ing.
  • the side surface of the base 20 has a locking projection 20f for locking the cover 8 to the base 20 (unit main body 2).
  • the locking projections 20f of the present embodiment are provided on a pair of opposing side surfaces of the base portion 20, respectively.
  • the base portion 20 includes an actuator holding portion 25 that holds the actuator 3 (actuator body 30) on the inner side (center axis C side) of the first support column portion 120a in the first corner portion 20a.
  • the actuator holding portion 25 is recessed in a cylindrical shape so as to have a predetermined depth from the upper surface 20 e of the base portion 20.
  • the base 20 has the first electrode terminal 22 and the second electrode terminal 23 described above at the first corner 20a.
  • the intermediate portions of the first electrode terminal 22 and the second electrode terminal 23 are embedded in the base 20 (unit body 2).
  • the distal ends 22a, 23a of the first electrode terminal 22 and the second electrode terminal 23 protrude (expose) with the side surfaces facing each other from both sides of the actuator holding portion 25 on the upper surface 20e, and the base end side is the base portion 20
  • the external connection terminals 22b and 23b are configured to protrude (expose) from the outer surface of the external connection terminal.
  • These external connection terminals 22b and 23b are connected to a circuit board, a connector, and the like of the cellular phone when the actuator unit 1 is mounted on, for example, a cellular phone (not shown).
  • the external connection terminals 22b and 23b of the present embodiment are bent through stepped portions so that the lower surfaces of the external connection terminals 22b and 22b are located on the same plane.
  • the actuator 3 includes an actuator body 30 and a moving body 4.
  • the actuator body 30 includes, in order from the bottom, a weight 31, a piezoelectric element (electromechanical conversion element) 32 that can be expanded and contracted (vibrated) in the central axis C direction, and expansion and contraction (vibration) of the piezoelectric element 32. ), And a drive shaft (drive friction member) 33 that reciprocates (vibrates) in the direction of the central axis C.
  • the actuator main body 30 is fixed to the unit main body 2 so that a part (drive shaft 33) of the actuator main body 30 is in contact with the moving body 4 and the first support column 120a (101 and 102 in FIG. 5 and 103 in FIG. 4). , 104).
  • the weight 31 By increasing the inertial mass on one end side (the lower end side in the present embodiment) of the piezoelectric element 32, the weight 31 preferentially displaces the piezoelectric element 32 due to expansion and contraction on the other end side (the upper end side in the present embodiment). Preferably, it is generated only on the other end side.
  • the weight 31 of the present embodiment is formed of a material having a high specific gravity, such as tungsten or a tungsten alloy.
  • the weight 31 has a disk shape or a columnar shape that protrudes radially outward from the outer periphery of the piezoelectric element 32. Note that the weight 31 is omitted when the other end (lower end) of the piezoelectric element 32 is attached to a device that exhibits a function similar to the function of the weight 31 (for example, the unit main body 2 (base 20)). Also good.
  • the piezoelectric element 32 is an example of an electromechanical conversion element, and repeats expansion and contraction (vibrates) in the direction of the central axis C when electric power having a predetermined waveform is supplied.
  • the piezoelectric element 32 of the present embodiment is configured by a quadrangular columnar stacked piezoelectric element in which rectangular layers obtained by thinly extending a piezoelectric material are stacked in the direction of the central axis C so that an internal electrode is sandwiched between the layers.
  • piezoelectric material examples include lead zirconate titanate (so-called PZT), crystal, lithium niobate (LiNbO 3 ), potassium tantalate niobate (K (Ta, Nb) O 3 ), barium titanate (BaTiO 3 ), Inorganic piezoelectric materials such as lithium tantalate (LiTaO 3 ) and strontium titanate (SrTiO 3 ).
  • PZT lead zirconate titanate
  • crystal lithium niobate
  • LiNbO 3 lithium niobate
  • BaTiO 3 barium titanate
  • Inorganic piezoelectric materials such as lithium tantalate (LiTaO 3 ) and strontium titanate (SrTiO 3 ).
  • the plurality of internal electrodes include a plurality of anode layers of the plurality of internal electrodes on one side of the outer peripheral side surface of the multilayer piezoelectric element, and a plurality of cathode layers on the other side of the outer peripheral side surface of the multilayer piezoelectric element.
  • Each of the layers is configured to extend to reach the outside with a pair of outer peripheral side surfaces facing each other.
  • a pair of external electrodes 32a and 32a supply the electric energy to the laminated body, and are formed on the pair of outer peripheral side surfaces of the laminated piezoelectric element by a sputtering method such as silver along the laminating direction.
  • the plurality of internal electrodes between the piezoelectric layers are sequentially and alternately connected to the plurality of internal electrodes so as to be connected in parallel.
  • the lower end surface of the piezoelectric element 32 is bonded to the upper end surface of the weight 31 with an adhesive such as an epoxy adhesive.
  • an adhesive such as an epoxy adhesive.
  • resinous beads having a diameter of about 5 ⁇ m are mixed in order to prevent a short circuit with the weight 31 and stabilize the thickness of the adhesive layer.
  • the drive shaft 33 is a columnar member extending in the direction of the central axis C.
  • the drive shaft 33 is disposed such that a part of the outer peripheral surface thereof is in contact with the moving body 4 and the first support column 120a (see 101 and 102 in FIG. 5 and 103 and 104 in FIG. 4). That is, the outer peripheral surface of the drive shaft 33 includes a contact surface (contact portion) with the moving body 4 and a contact surface (contact portion) with the first support column 120a.
  • the drive shaft 33 of the present embodiment is made of, for example, carbon fiber reinforced plastic (CFRP, carbon-fiber-reinforced plastic) formed in a columnar shape so that carbon fibers are arranged in the direction of the central axis C.
  • CFRP carbon fiber reinforced plastic
  • the drive shaft 33 is formed so as to protrude radially outward from the outer periphery of the piezoelectric element 32. That is, when viewed in the direction of the central axis C, the contour of the piezoelectric element 32 is included in the region surrounded by the contour of the drive shaft 33.
  • the lower end surface of the drive shaft 33 is bonded to the upper end surface of the piezoelectric element 32 with an adhesive.
  • This adhesive is the same as the adhesive that bonds the weight 31 and the piezoelectric element 32.
  • the fillet 35 (see FIG. 7) formed by the adhesive protruding from the joint surface between the drive shaft 33 and the piezoelectric element 32 has the drive shaft 33 connected to the piezoelectric element 32. Is formed on the piezoelectric element 32 side because it has a shape that protrudes radially outward from the outer periphery to the entire periphery. That is, the fillet 35 is not formed on the outer peripheral surface of the drive shaft 33.
  • the entire area of the outer peripheral surface of the drive shaft 33 in the direction of the central axis C can be used for sliding with the movable body 4, and a large stroke (movement range of the movable body 4 in the direction of the central axis C) is achieved by the short drive shaft 33. Can be realized.
  • the actuator body 30 configured as described above is inserted into the actuator holding portion 25 of the unit body 2 (base portion 20) from the weight 31 side. Then, the bottom surface of the actuator holding portion 25 and the weight 31 are bonded with an adhesive, whereby the actuator main body 30 is fixed to the unit main body 2. At this time, the central axis of the drive shaft 33 of the actuator main body 30 and the central axis C of the unit main body 2 are parallel to each other.
  • the actuator body 30 is connected to the first electrode terminal 22 and the second electrode terminal 23 by a first electrode coupling spring 26a and a second electrode coupling spring 26b so as to be energized. More specifically, one external electrode 32a of the piezoelectric element 32 and the tip 22a of the first electrode terminal 22 are connected via a first electrode coupling spring 26a so that energization is possible, and the other external electrode 32a of the piezoelectric element 32 is connected. And the tip 23a of the second electrode terminal 23 are connected to each other through a second electrode coupling spring 26b so as to be energized.
  • the first electrode connection spring 26a and the second electrode connection spring 26b are torsion coil springs plated with gold or platinum.
  • FIG. 8 is a perspective view of the moving body
  • FIG. 9 is an exploded perspective view of the moving body.
  • FIG. 10 is a schematic diagram for explaining the actuator unit in a state where the lens barrel is held.
  • the moving body 4 can hold a lens barrel (driven member) 7 (see FIG. 10) and can move relative to the unit body 2 in the direction of the central axis C. More specifically, the moving body 4 includes a metal cylindrical moving body main body (holding portion) 5 and a guide spring 6.
  • the movable body 5 includes a lens holding portion 54 on the inner peripheral side, and the lens barrel 7 is held by the lens holding portion 54.
  • the lens barrel 7 is a driven member of the actuator unit 1 and holds one or a plurality of lens (imaging lens) groups 71.
  • the movable body 5 includes a cylindrical portion 51, a first flange 52, and a second flange 53.
  • the mobile body 5 of the present embodiment is formed of a stainless material having a thickness of 0.05 mm to 0.3 mm, for example.
  • Stainless steel is a material that is inexpensive, has good formability, has good durability, and has good driving performance among metal materials.
  • the movable body 5 is formed by, for example, drawing.
  • the cylindrical moving body main body 5 is made of metal, it has high strength and durability against wear. As a result, the cylindrical moving body main body 5 is thinned and held by the moving body main body 5. It is possible to increase the diameter of the lens group 71 (which is held in detail via the lens barrel 7). Furthermore, since the drive shaft 33 directly drives the movable body 5 that holds the lens group 71, the lens group 71 has a portion that is frictionally engaged with the actuator 3 and is provided separately from the portion that holds the lens group 71. A large aperture can be achieved.
  • a part of the outer peripheral surface constitutes a first moving body side sliding surface 55 in sliding contact with the drive shaft 33. That is, the cylindrical part 51 (movable body main body 5) includes the first movable body side sliding surface 55 on the outer peripheral surface thereof.
  • the first moving body-side sliding surface 55 of the present embodiment has a part of the moving body main body 5 (more specifically, a predetermined width in the circumferential direction and the center axis C direction) when the moving body main body 5 is molded. It is a plane formed by making it flat.
  • the first flange 52 protrudes radially inward from the lower end of the cylindrical portion 51.
  • the upper surface of the first flange 52 constitutes a lens barrel mounting portion 52a.
  • the lens barrel 7 is mounted when the lens holding portion 54 holds the lens barrel 7 (see FIG. 10).
  • the central axis of the movable body 5 and the optical axis of the lens group 71 of the lens barrel 7 are aligned without tilting each other.
  • the second flange 53 protrudes radially outward from the upper end of the tubular portion 51. The strength of the movable body 5 is ensured by the first flange 52 and the second flange 53.
  • the guide spring 6 includes an arc portion 61, a guide portion 62 formed on one end side of the arc portion 61, and a pressing piece 63 formed on the other end side of the arc portion 61.
  • the guide spring 6 of the present embodiment is made of, for example, a stainless material having a thickness of 0.1 mm to 0.3 mm.
  • the arc portion 61 includes a rotation restricting portion 61a at a position separated from the guide portion 62 by approximately 180 ° in the circumferential direction.
  • the rotation restricting portion 61a is a portion for restricting the rotation of the moving body 4 with the drive shaft 33 as the center of rotation.
  • the rotation restricting portion 61a includes a restricting frame portion 61b and a hemispherical protrusion 61c formed on the restricting frame portion 61b.
  • the regulation frame portion 61b is formed by projecting a part of the arc portion 61 radially outward in a rectangular shape. Further, the protrusion 61c is formed so as to protrude outward from each of both outer side surfaces of the restriction frame portion 61b.
  • the outer width W1 (see FIG. 5) between these protrusions 61c is such that the inner width W2 of the restriction portion groove 29 is such that the restriction frame portion 61b fits within the restriction portion groove 29 provided in the third support column portion 120c. It is set slightly narrower than (see FIG. 5).
  • the guide part 62 extends radially outward from one end of the arc part 61.
  • One surface (second sliding surface) 62 a of the guide part 62 is approximately 90 ° with respect to the first moving body side sliding surface 55 of the moving body 5 with the guide spring 6 attached to the moving body 5. It has become.
  • the pressing piece 63 extends linearly from the other end of the arc portion 61.
  • the pressing piece 63 extends linearly from the second support column 120b toward the first support column 120a in a state of being incorporated in the actuator unit 1.
  • the pressing piece 63 includes a pressing portion 63 a that presses the drive shaft 33 at the tip.
  • the guide spring 6 and the movable body 5 configured as described above are connected by welding. More specifically, the guide spring 6 of the movable body main body 5 is arranged such that the first movable body side sliding surface 55 of the movable body main body 5 and the second movable body side sliding surface 62a of the guide spring 6 are adjacent to each other. It is arranged along the outer periphery. In this state, the guide spring 6 and the movable body 5 are connected by welding a plurality of locations (for example, resistance welding (spot welding), laser welding, etc.).
  • a plurality of locations for example, resistance welding (spot welding), laser welding, etc.
  • the movable body 5 and the guide spring 6 are made of metal and joined together by welding, so that they can be firmly fixed to each other and can be fixed instantaneously unlike adhesion, etc. Tact time can be greatly reduced.
  • the movable body 4 to which the movable body main body 5 and the guide spring 6 are coupled has the rotation restricting portion 61a fitted in the restriction portion groove 29 of the unit main body 2 (third support column portion 120c), and the first The movable body side sliding surface 55, the second movable body side sliding surface 62a, and the pressing portion 63a are disposed so as to surround the drive shaft 33.
  • the pressing piece 63 passes through the outside of the second support column 120b of the unit body 2 and extends to the first support column 120a of the first corner portion 20a.
  • the pressing portion 63a of the pressing piece 63 is in the initial position (the first moving body side sliding surface 55, the second moving body side sliding surface 62a, and the pressing portion 63a do not surround the drive shaft 33).
  • the drive shaft 33 is elastically deformed in a direction away from the outer peripheral surface of the movable body 5 with respect to the position), so that the drive shaft 33 is moved to the first movable body side sliding surface 55 and the second movement by the elastic return force (elastic force). It is in a state of being pressed against the body-side sliding surface 62a. That is, the driving shaft 33 is pressed against the first moving body side sliding surface 55 and the second moving body side sliding surface 62a by the elastic force of the pressing piece 63, and the moving body 4 and the driving shaft 33 are frictionally engaged. ing.
  • a lubricant such as oil, grease, or oil mixed with Teflon (registered trademark) flakes is applied to the contact portion.
  • the cover 8 is a member surrounding the moving body 4 in cooperation with the unit main body 2.
  • the cover 8 includes a top wall 81 and a peripheral wall 83 that hangs down from the periphery of the top wall 81.
  • the top wall 81 has a substantially rectangular outline corresponding to the base 20 in plan view, and has a through hole 82 penetrating in the central axis C direction at the center thereof.
  • the through hole 82 becomes an optical path.
  • the cover 8 of the present embodiment is formed by drawing, pressing, or the like, for example, a stainless steel thin plate of 0.1 mm to 0.2 mm.
  • the peripheral wall 83 is constituted by four side walls 83 a corresponding to each piece of the top wall 81.
  • the inner surface of the top wall 81 is in contact with the mounting table 120e of the first, third, and fourth support columns 120a, 120c, and 120d and the tip surface of the second support column 120b.
  • the unit main body 2 is enclosed along each side surface of the unit main body 2 having a substantially rectangular shape in plan view.
  • Each side wall 83a includes a locking hole 84 that is locked to a locking projection 20f provided on the side surface of the unit main body 2 (base portion 20). Note that the number of the locking projections 20f in the present embodiment is two, and the locking projections 20f are locked in the locking holes 84 of the opposing side wall 83a.
  • the first column 120a, the third column 120c, and the fourth column 120d of the unit main body 2 are mounted on the upper ends of the column 120e, the upper column of the second column 120b, and the cover 8
  • the cover 8 is locked to the unit main body 2 by the locking hole 84 being locked to the locking projection 20f in a state where the inner surface of the top wall 81 is in contact.
  • the upper end surfaces of the mounting tables 120e and the second support columns 120b and the inner surface of the top wall 81 of the cover 8 are bonded (bonded) with an adhesive.
  • the actuator unit 1 configured as described above may be used in a camera module (imaging device).
  • a camera module includes the above-described actuator unit 1, an imaging device (imaging sensor) that converts an optical image into an electrical signal, and one or a plurality of imaging lenses.
  • An imaging optical system that forms an image on the light receiving surface, and the imaging lens that moves along the optical axis direction of the one or more imaging lenses in the imaging optical system is attached to the moving body 4 of the actuator unit 1 It is done.
  • a sensor substrate that holds the lens barrel 7 by the lens holding portion 54 of the moving body 4 and has an IR cut filter 102 and an image sensor (image sensor) 103 on the lower surface side of the unit body 2.
  • 104 is arranged. More specifically, the lens barrel 7 is bonded and fixed to the lens holding portion 54 by the adhesive 73 filled in the bonding groove 72 provided in the lens barrel 7.
  • a camera module imaging device
  • the camera module is carried in such a manner that the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b (see FIG. 1 etc.) of the second electrode terminal 23 are placed on the circuit board of the mobile phone. Installed in the phone casing.
  • the piezoelectric element 32 of the actuator body 30 moves in the direction of the central axis C. Vibrate (repeat expansion and contraction).
  • the drive shaft 33 reciprocates due to the vibration of the piezoelectric element 32, and the movable body 4 moves in the axial direction (center axis C direction) of the drive shaft 33 due to the reciprocation. More details are as follows.
  • the infinite photographing position is a position (image side end position) closest to the base 20 (imaging sensor 103) in the movement range of the moving body 4 in the central axis C direction
  • the short distance photographing position is the movement described above. It is the position (object side end position) farthest from the base 20 (imaging sensor 103) in the range.
  • the drive shaft 33 is slowly moved upward by the extension of the piezoelectric element 32, thereby moving the moving body 4 frictionally engaged with the drive shaft 33 upward.
  • the drive shaft 33 is moved downward by the instantaneous contraction of the piezoelectric element 32 so as to exceed the frictionally engaged frictional force, so that the moving body 4 is left at that position (the position after the upward movement).
  • the moving body 4 moves upward.
  • the first support column 120a is provided at a position facing the moving body 4 across the drive shaft 33, so that only one end of the actuator 3 is attached to the unit body 2. Since it is difficult for the actuator 3 to be damaged when an impact is applied to the actuator unit 1 from the outside, it is possible to reduce the height (shortening) while maintaining the impact resistance.
  • one end of the actuator 3 (the end on the piezoelectric element 32 side: the weight 31 in this embodiment) is attached to the base 20 (unit main body 2), so that both ends of the actuator are connected to the unit main body or the like.
  • the actuator 3 can be shortened, the configuration supporting the other end of the actuator 3 and the like can be reduced, so that the actuator unit 1 can be reduced in height (shortened).
  • the first support column 120a at a position facing the moving body 4 with the drive shaft 33 interposed therebetween, when an impact is applied to the actuator unit 1 from the outside, the first support column 120a
  • the load applied to the drive shaft 33 from the moving body 4 impact acceleration based on the weight of both the moving body 4 and the lens barrel (driven member) 7 held by the moving body 4) is received and the load
  • the tilt displacement of the drive shaft 33 toward the first support column 120a due to the above, the occurrence of stress or the like due to the displacement is suppressed.
  • the drive shaft 33 and the first support column 120a are in contact with each other, but the present invention is not limited to this configuration.
  • the drive shaft 33 and the first support column 120a may be arranged at a predetermined interval.
  • the predetermined interval is an interval that restricts the tilt displacement of the actuator 3 and is applied until the drive shaft 33 comes into contact with (abuts on) the first support column 120a due to an impact. ) Is an interval at which the actuator 3 is not damaged due to the tilt displacement (for example, damage due to stress or the like).
  • the predetermined interval is appropriately set depending on the size, shape, etc. of the actuator 3, but in the present embodiment, for example, it is 50 ⁇ m or less.
  • the drive shaft 33 and the inner side surface 122a of the first support column 120a are in contact with each other at a plurality of locations (two locations in the example of the present embodiment) in the circumferential direction of the drive shaft 33. Yes.
  • the friction between the drive shaft 33 and the first support column 120a (inner side surface 122a) when the drive shaft 33 reciprocates while suppressing the contact area between the drive shaft 33 and the first support column 120a is reduced.
  • the force from each direction applied to the drive shaft 33 by the moving body 4 can be effectively received by the first support column 120a (inner side surface 122a) while being suppressed.
  • casing 10 is constructed
  • the actuator 3 of the present embodiment is configured such that the outline of the piezoelectric element 32 is included in the region surrounded by the outline of the drive shaft 33 in plan view (that is, the actuator tip side (upper side) ) Is projected closer to the first column than the piezoelectric element on the base end side (lower side)).
  • the inner side surface 122a of the first support column 120a in order to bring the inner side surface 122a of the first support column 120a into contact with the drive shaft 33, the inner side surface 122a on the distal end side protrudes from the inner side surface 122a on the proximal end side toward the drive shaft 33 (the distal end side is thicker).
  • the base end side does not have to be thin. For this reason, injection molding or the like of the unit body 2 is facilitated.
  • actuator unit of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the scope of the present invention.
  • the actuator unit 1 of the above embodiment drives the lens barrel 7 holding the lens group 71 as a drive target, but may drive other optical elements and the like. That is, the driven member that the actuator unit 1 drives is not limited.
  • the first support column 120a and the drive shaft 33 are not connected.
  • the first support column 120a and the drive shaft 33 are connected by an adhesive 70 or the like. (Adhesion) may be used. In this case, it connects so that the drive shaft 33 can reciprocate along the 1st support
  • the drive shaft 33 of the above-described embodiment performs vibration (reciprocating) whose amplitude is in units of microns, even if the drive shaft 33 is connected to the first support column 120a by an adhesive, the adhesive is a predetermined amount. If it has an elastic modulus, it can reciprocate. For example, in the example shown in FIG. 11, a silicon-based elastic adhesive or the like is used. Further, when an adhesive is poured into a narrow gap between the first support column 120a and the drive shaft 33, the bonding area is increased and the rigidity in the vibration direction is increased.
  • the upper end of the first support column 120a and the outer peripheral surface of the drive shaft 33 are bonded with an adhesive. Connect.
  • a gap due to a manufacturing error or the like is generated between the first support column 120a and the drive shaft 33 (specifically, between the inner surface 122a of the first support column 120a and the outer peripheral surface of the drive shaft 33).
  • the drive shaft 33 is allowed to reciprocate, and the first support column 120a is moved toward the first support column 120a due to an external impact. The tilt displacement of the drive shaft 33 can be suppressed.
  • the unit main body 2 is provided with four support columns (first to fourth support columns 120a to 120d), and the support columns corresponding to the inner surface of each corner of the cover 8 are provided.
  • the parts are in contact and / or bonded, but the present invention is not limited to this configuration.
  • a and / or B means at least one of A and B.
  • the unit main body 2 is provided with at least a first support column 120a, and the first support column 120a is in contact with the cover 8 or in the vicinity of the cover member (with a gap of a narrow predetermined interval from the cover member). It is only necessary to have a shape to be arranged. Even in this configuration, the load received by the first support column 120a from the drive shaft 33 can be received by the rigidity of the cover 8 and the entire casing 10.
  • a third column 120c is provided at a position (third corner 20c of the base 20) facing the first column and the moving body, and the third column 120c is connected to the cover 8. If it has the shape which touches or adjoins, the rigidity of the housing
  • the lens barrel 7 that holds the lens group 71 is held by the moving body 4 that is driven by the actuator main body 30, but the configuration is not limited thereto.
  • the actuator unit 1 may be configured such that the moving body itself holds one or a plurality of imaging lenses, and the actuator body 30 drives the moving body that directly holds the imaging lenses.
  • the drive shaft 33 is pressed against the first moving body side sliding surface 55 and the second moving body side sliding surface 62a by the elastic restoring force (elastic force) of the pressing piece 63 of the guide spring 6.
  • the movable body 4 and the drive shaft 33 are frictionally engaged, but the present invention is not limited to this configuration.
  • the drive shaft may be configured by a magnet
  • the moving body specifically, the first sliding surface 55 and the second sliding surface 62a
  • the moving body may be configured by metal.
  • the force that presses the outer peripheral surface of the drive shaft against the first sliding surface 55 and the second sliding surface 62a so as to generate a predetermined frictional force is not limited to an urging force such as an elastic force but is a magnetic force or the like. Also good.
  • An actuator unit includes an electromechanical conversion element that converts electrical energy into mechanical energy that expands and contracts, a drive friction member that is fixed to one end in the expansion and contraction direction of the electromechanical conversion element and that transmits the mechanical energy, and And an actuator having a moving body engaged with the driving friction member with a predetermined frictional force, and a unit main body to which the actuator is fixed.
  • the movable body moves relative to the unit main body, the unit main body sandwiches the movable body and the drive friction member between a base portion to which an end of the actuator on the electromechanical conversion element side is attached.
  • a first strut portion extending from the base portion toward the moving body so as to face each other (so as to face the moving body via the driving friction member), and the driving friction member and the first strut portion, are arranged so as to be in contact with each other, or are arranged at a predetermined interval that regulates the tilt displacement of the actuator.
  • the actuator an end on the electromechanical conversion element side
  • the base unit main body
  • the unit main body or the like supports both ends of the actuator
  • the load applied to the member (impact acceleration or the like based on the weight of both the moving body and the driven member held by the moving body) is received, and the displacement of the driving friction member toward the first support column due to the load is received.
  • the drive friction member has a cylindrical shape whose axis is a direction from the base toward the movable body, and the first support column is the drive It has an opposing surface that faces the outer peripheral surface of the friction member and curves along the outer peripheral surface, and the opposing surface contacts the driving friction member at a plurality of locations in the circumferential direction of the driving friction member.
  • the actuator unit when the driving friction member and the first support column are arranged at a predetermined interval, for example, when the predetermined interval is 50 ⁇ m or less, an impact is applied to the actuator unit from the outside.
  • the actuator it is possible to suitably prevent the actuator from being damaged due to the displacement of the driving friction member toward the first column due to the load applied to the driving friction member by the first column.
  • the above-described actuator units preferably include a cover member that constructs a housing that accommodates the actuator in cooperation with the unit main body, and the first strut portion includes the driving friction member. At least a part of the surface excluding the contact portion has a shape that is in contact with the cover member or a shape that is close to the cover member (a shape that is disposed with a gap of a predetermined distance from the cover member).
  • the load that the first support column receives from the drive friction member can be received by the rigidity of the entire cover member and the housing (the cover member and the unit main body), and thereby the impact resistance is improved.
  • the first support column and the cover member are bonded to each other with an adhesive, whereby the unit body (support column) and the cover member are more strongly coupled, and the rigidity of the housing is further increased. improves. Moreover, even if a gap is generated between the first support column and the cover member due to a manufacturing error or the like, the adhesive fills this gap, so that the rigidity of the housing is maintained.
  • the unit main body includes a second support column portion extending from the base portion in the same direction as or substantially in the same direction as the first support column portion,
  • the first strut portion has a substantially rectangular outline when viewed from the direction in which the one strut portion extends, the first strut portion is provided at a first corner portion that is a specific corner portion of the base portion, and the second strut portion is
  • the base portion is provided at a second corner portion facing the first support column and the moving body, and has a shape in contact with the cover member or a shape close to the cover member (at a predetermined interval from the cover member). The shape is arranged with a gap).
  • the unit main body includes a third support column extending from the base in the same direction as or substantially in the same direction as the first support column, and the third support column is The base is provided in at least one of the two corners excluding the first corner and the second corner, and is in contact with or close to the cover member (the cover And a shape arranged with a gap of a predetermined distance from the member.
  • the rigidity of the casing is further improved by providing support sections at three or four corners in a substantially rectangular casing as viewed from the extending direction of the first support section.
  • the deformation of the cover member due to the impact can be suitably suppressed.
  • the drive friction member may be bonded to the first support column with an adhesive so as to be able to reciprocate by transmission of the mechanical energy.
  • the drive friction member is obtained by connecting the first support column and the drive friction member with an adhesive.
  • the displacement of the drive friction member toward the first support column due to an external impact can be suppressed while allowing the reciprocating motion (reciprocating motion by transmission of mechanical energy).
  • the distal end portion of the first support column and the drive friction member are bonded.
  • the actuator is arranged in the electromechanical conversion inside a region surrounded by an outline of the drive friction member when viewed from a direction in which the first support column extends. It is comprised so that the outline of an element may be included.
  • the electromechanical conversion element protrudes outside the outer periphery (contour) of the driving friction member as seen from the direction in which the first support column extends. Therefore, it does not interfere with the movement of the moving body due to the reciprocating motion of the drive friction member.
  • the drive friction member on the distal end side of the first support column protrudes toward the first support column than the electromechanical conversion element on the base end side (base side) of the first support column, this drive friction member.
  • the distal end side of the first support column that contacts the member can be made thinner than the proximal end (end portion on the proximal side) side, thereby facilitating injection molding and the like.
  • an imaging apparatus includes any one of the above-described actuator units, an imaging element that converts an optical image into an electrical signal, and one or a plurality of imaging lenses.
  • An imaging optical system that forms an image on a light receiving surface of the imaging element, and the imaging lens that moves along an optical axis direction of the one or more imaging lenses in the imaging optical system is It is attached to the moving body.
  • Such an imaging apparatus includes any of the above-described actuator units, it is possible to achieve a reduction in height (shortening) while maintaining impact resistance.

Abstract

This actuator unit and imaging device are provided with: an actuator having a moving body that engages with a drive friction member, through which the mechanical energy of an electro-mechanical conversion element is transmitted, at a prescribed frictional force; and a unit body to which the actuator is fixed. The unit body has support columns that are positioned in such a manner as to be in contact with the drive friction member, or are positioned at prescribed intervals that regulate the slope displacement of the drive friction member and the actuator.

Description

アクチュエータユニットおよび撮像装置Actuator unit and imaging device
 本発明は、例えば携帯電話の撮像装置等に好適に用いられ、撮像レンズ等の被駆動体を駆動するアクチュエータユニットおよびこれを用いた撮像装置に関する。 The present invention relates to an actuator unit that is suitably used for an imaging device of a mobile phone, for example, and drives a driven body such as an imaging lens, and an imaging device using the actuator unit.
 従来、特許文献1に、撮像レンズを駆動するアクチュエータユニットが開示されている。 Conventionally, Patent Document 1 discloses an actuator unit that drives an imaging lens.
 このアクチュエータユニット200は、図12に示すように、アクチュエータ201と、筐体202とを備え、当該ユニットの背面側(図12における紙面右側)に配置される撮像素子203に対して被駆動体(撮像レンズ)204を光軸Oに沿って移動させる。 As shown in FIG. 12, the actuator unit 200 includes an actuator 201 and a housing 202, and is driven by an imaging device 203 (on the right side in FIG. 12) of the unit. The imaging lens 204 is moved along the optical axis O.
 アクチュエータ201は、アクチュエータ本体205と移動体230とを備え、このアクチュエータ本体205は、駆動摩擦部材(駆動軸)210と電気機械変換素子(圧電素子)211とを備える。駆動摩擦部材210は、光軸方向(図12における紙面左右方向)に延びる円柱状の軸部材である。電気機械変換素子211は、所定の波形の電力が供給されることにより、光軸方向に伸縮を繰り返す(すなわち、光軸方向に振動する)。この電気機械変換素子211の光軸方向の一端(図12における左端)213に、その中心軸と光軸方向とが一致するように駆動摩擦部材210が接続されている。 The actuator 201 includes an actuator main body 205 and a moving body 230, and the actuator main body 205 includes a drive friction member (drive shaft) 210 and an electromechanical conversion element (piezoelectric element) 211. The drive friction member 210 is a columnar shaft member that extends in the optical axis direction (the left-right direction in FIG. 12). The electromechanical transducer 211 repeatedly expands and contracts in the optical axis direction (that is, vibrates in the optical axis direction) when electric power having a predetermined waveform is supplied. A driving friction member 210 is connected to one end (left end in FIG. 12) 213 of the electromechanical conversion element 211 in the optical axis direction so that the central axis coincides with the optical axis direction.
 筐体202は、アクチュエータ本体205を収納する内部空間を有する。この筐体202は、電気機械変換素子211が伸縮した場合にその他端(駆動摩擦部材210と接続される一方端部と反対側の端部:図12における紙面右端部)214における筐体202内での位置が変わらないように電気機械変換素子211をその内部で保持する。また、筐体202は、アクチュエータ本体205の先端部(駆動摩擦部材210の先端部)215を光軸方向に往復動可能に支持している。より詳しくは、筐体202の前壁220に設けられた穴221に駆動摩擦部材210の先端215が光軸方向に往復動できるように挿入されている。これにより、駆動摩擦部材210の先端215側に対して径方向(光軸方向と直交する方向)に力が加わっても、穴221を規定する内周面によって駆動摩擦部材210が支持される。 The housing 202 has an internal space for housing the actuator body 205. This housing 202 is located inside the housing 202 at the other end 214 (an end opposite to one end connected to the drive friction member 210: the right end on the paper in FIG. 12) 214 when the electromechanical conversion element 211 expands and contracts. The electromechanical conversion element 211 is held inside so as not to change the position at. The housing 202 supports the distal end portion (the distal end portion of the driving friction member 210) 215 of the actuator main body 205 so as to be able to reciprocate in the optical axis direction. More specifically, the tip 215 of the drive friction member 210 is inserted into a hole 221 provided in the front wall 220 of the housing 202 so as to reciprocate in the optical axis direction. As a result, even if a force is applied in the radial direction (the direction orthogonal to the optical axis direction) to the tip 215 side of the drive friction member 210, the drive friction member 210 is supported by the inner peripheral surface defining the hole 221.
 移動体230は、被駆動部材(撮像レンズ)204を保持する移動体本体231と、移動体本体231から光軸方向と直交する方向に延びる係合部232と、を有する。この移動体230は、係合部232が筐体202に設けられた開口222からその内部に差し込まれ、筐体202に対して光軸方向に相対移動する。係合部232は、アクチュエータ本体205の一部(駆動摩擦部材210)を所定の力で挟み込む。これにより、移動体230は、駆動摩擦部材210と所定の摩擦力によって係合する(すなわち、移動体230とアクチュエータ本体205とが摩擦係合する)。 The moving body 230 includes a moving body main body 231 that holds a driven member (imaging lens) 204 and an engaging portion 232 that extends from the moving body main body 231 in a direction orthogonal to the optical axis direction. In the moving body 230, the engaging portion 232 is inserted into an opening 222 provided in the housing 202, and moves relative to the housing 202 in the optical axis direction. The engaging portion 232 sandwiches a part of the actuator main body 205 (the driving friction member 210) with a predetermined force. Thereby, the moving body 230 is engaged with the drive friction member 210 by a predetermined frictional force (that is, the moving body 230 and the actuator main body 205 are frictionally engaged).
 このようなアクチュエータユニット200では、所定の波形の電力が供給されることで電気機械変換素子211が光軸方向に振動する(伸縮を繰り返す)と、この電気機械変換素子211に接続された駆動摩擦部材210が光軸方向に振動(往復動)する。この場合において、移動体230の係合部232が駆動摩擦部材210と所定の摩擦力で係合していることによって移動体230が光軸方向に移動する。これにより、移動体230に保持された被駆動部材(撮像レンズ)204が光軸方向に移動する。 In such an actuator unit 200, when the electromechanical conversion element 211 vibrates in the optical axis direction (repetitively expands and contracts) when electric power having a predetermined waveform is supplied, the driving friction connected to the electromechanical conversion element 211. The member 210 vibrates (reciprocates) in the optical axis direction. In this case, the movable body 230 moves in the optical axis direction by the engagement portion 232 of the movable body 230 being engaged with the drive friction member 210 with a predetermined frictional force. As a result, the driven member (imaging lens) 204 held by the moving body 230 moves in the optical axis direction.
 近年、移動体の移動方向におけるアクチュエータユニットの長さ寸法の小型化、すなわち、アクチュエータユニット低背化(短小化)が求められている。 In recent years, there has been a demand for a reduction in the length of the actuator unit in the moving direction of the moving body, that is, a reduction in the height (shortening) of the actuator unit.
 そこで、上記アクチュエータユニット200において、筐体202における駆動摩擦部材210の先端部215を支持する構成をなくし、この駆動摩擦部材210の前記支持されていた部位の長さ分だけアクチュエータ201の長さ寸法を短くし、これにより、アクチュエータユニット200の低背化(短小化)を図ることが考えられる。しかしながら、この場合、アクチュエータユニット200に対し、移動体230から駆動摩擦部材210に向かう方向の衝撃が外部から加わると、移動体230と、この移動体230に保持された被駆動部材205との両方の重さに基づく大きな衝撃加速度(荷重)が駆動摩擦部材210に加わるため、アクチュエータ201が損傷し易くなる。 Therefore, in the actuator unit 200, the structure for supporting the tip 215 of the driving friction member 210 in the housing 202 is eliminated, and the length dimension of the actuator 201 is equal to the length of the supported portion of the driving friction member 210. It is conceivable to reduce the height (shortening) of the actuator unit 200. However, in this case, when an impact in the direction from the moving body 230 toward the driving friction member 210 is applied to the actuator unit 200 from the outside, both the moving body 230 and the driven member 205 held by the moving body 230 Since a large impact acceleration (load) based on the weight of the actuator is applied to the drive friction member 210, the actuator 201 is easily damaged.
特開2007―274777号公報JP 2007-274777 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、耐衝撃性を維持しつつ低背化を図ることが可能なアクチュエータユニットおよびこれを用いた撮像装置を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an actuator unit capable of reducing the height while maintaining impact resistance and an imaging apparatus using the same. It is.
 本発明にかかるアクチュエータユニットおよび撮像装置は、電気機械変換素子の機械エネルギーが伝達される駆動摩擦部材に所定の摩擦力で係合する移動体を有するアクチュエータと、前記アクチュエータが固定されるユニット本体とを備え、前記ユニット本体は、前記駆動摩擦部材と接触するように配置される、または、前記駆動摩擦部材と前記アクチュエータの傾き変位を規制する所定の間隔を隔てて配置される、支柱部を有する。 An actuator unit and an imaging apparatus according to the present invention include an actuator having a moving body that engages a driving friction member to which mechanical energy of an electromechanical conversion element is transmitted with a predetermined friction force, and a unit main body to which the actuator is fixed. And the unit main body has a column portion that is disposed so as to come into contact with the driving friction member, or is disposed at a predetermined interval that regulates an inclination displacement of the driving friction member and the actuator. .
 上記並びにその他の本発明の目的、特徴および利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本実施形態に係るアクチュエータユニットの斜視図である。It is a perspective view of an actuator unit concerning this embodiment. 前記アクチュエータユニットの分解斜視図である。It is a disassembled perspective view of the actuator unit. 前記アクチュエータユニットのユニット本体の斜視図である。It is a perspective view of the unit main body of the actuator unit. アクチュエータ本体を配置した状態の前記ユニット本体の平面図である。It is a top view of the said unit main body of the state which has arrange | positioned the actuator main body. アクチュエータを配置した状態の前記ユニット本体の平面図である。It is a top view of the said unit main body of the state which has arrange | positioned the actuator. 前記アクチュエータ本体と移動体本体とを配置した状態のユニット本体における第1の角隅部の拡大斜視図である。It is an expansion perspective view of the 1st corner of the unit main body in the state where the actuator main body and the movable body main body are arranged. 前記アクチュエータ本体の拡大斜視図である。It is an expansion perspective view of the actuator body. 移動体の斜視図である。It is a perspective view of a moving body. 前記移動体の分解斜視図である。It is a disassembled perspective view of the said mobile body. レンズバレルが保持された状態の前記アクチュエータユニットを説明するための模式図である。It is a schematic diagram for demonstrating the said actuator unit of the state in which the lens barrel was hold | maintained. 第1の支柱部と駆動軸との接着位置を説明するための図である。It is a figure for demonstrating the adhesion position of a 1st support | pillar part and a drive shaft. 従来のアクチュエータユニットの断面図である。It is sectional drawing of the conventional actuator unit.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。図1は、本実施形態にかかるアクチュエータユニットの斜視図であり、図2は、前記アクチュエータユニットの分解斜視図である。図3は、前記アクチュエータのユニット本体の斜視図であり、図4は、アクチュエータ本体を配置した状態のユニット本体の平面図であり、図5は、アクチュエータを配置した状態のユニット本体の平面図である。図6は、このユニット本体における第1の角隅部の拡大斜視図であり、そして、図7は、アクチュエータ本体の拡大斜視図である。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix. FIG. 1 is a perspective view of an actuator unit according to the present embodiment, and FIG. 2 is an exploded perspective view of the actuator unit. 3 is a perspective view of the unit main body of the actuator, FIG. 4 is a plan view of the unit main body in a state where the actuator main body is disposed, and FIG. 5 is a plan view of the unit main body in a state where the actuator is disposed. is there. FIG. 6 is an enlarged perspective view of a first corner of the unit body, and FIG. 7 is an enlarged perspective view of the actuator body.
 なお、以下の説明において、図1、図2、図6~図10におけるX方向を上側とし、Y方向を下側として説明する。本実施形態のアクチュエータユニットは、撮像装置に用いられており、この場合、上側は、物体側であり、下側は、像側になる。 In the following description, the X direction in FIGS. 1, 2, and 6 to 10 will be described as the upper side, and the Y direction will be described as the lower side. The actuator unit according to the present embodiment is used in an imaging apparatus. In this case, the upper side is the object side, and the lower side is the image side.
 本実施形態にかかるアクチュエータユニットは、例えば携帯電話などに搭載可能なカメラモジュール(撮像装置)に用いられ、撮像素子に対して、例えば合焦や変倍等のために用いられる撮像レンズ(被駆動部材)を移動させる(駆動する)ものである。図1および図2に示すように、このアクチュエータユニット1は、ユニット本体2と、アクチュエータ3と、カバー8とを備える。このアクチュエータユニット1では、ユニット本体2とカバー8とによって筐体10が形成されている。すなわち、ユニット本体2にカバー8を被せて係止することにより、筐体10が構築される。 The actuator unit according to the present embodiment is used in, for example, a camera module (imaging device) that can be mounted on a mobile phone or the like. For example, an imaging lens (driven) Member) is moved (driven). As shown in FIGS. 1 and 2, the actuator unit 1 includes a unit main body 2, an actuator 3, and a cover 8. In the actuator unit 1, a housing 10 is formed by the unit main body 2 and the cover 8. That is, the housing 10 is constructed by covering the unit main body 2 with the cover 8 and locking it.
 ユニット本体2は、アクチュエータ3を保持して支持するベース部材であり、例えば、基部20と、複数(本実施形態の例では4つ)の支柱部(第1~第4の支柱部120a、120b、120c、120d)とを有する。このユニット本体2は、例えば、LCP(液晶ポリマー)等の樹脂材料によって形成されている。本実施形態のユニット本体2は、電極端子(第1電極端子22および第2電極端子23)をインサートした形で射出成形によって形成されている。 The unit main body 2 is a base member that holds and supports the actuator 3, and includes, for example, a base 20 and a plurality of (four in the example of the present embodiment) struts (first to fourth struts 120a and 120b). 120c, 120d). The unit body 2 is formed of a resin material such as LCP (liquid crystal polymer), for example. The unit main body 2 of the present embodiment is formed by injection molding in a form in which electrode terminals (the first electrode terminal 22 and the second electrode terminal 23) are inserted.
 基部20は、図3~図5に示すように、平面視において矩形状の輪郭を有すると共に、中心部に上下方向に貫通する円形状の貫通孔21を有する。この貫通孔21は、光路となり、以下の説明では、貫通孔21の中心を上下に貫通する軸が中心軸(光軸)Cとされる。 As shown in FIGS. 3 to 5, the base portion 20 has a rectangular outline in a plan view and a circular through hole 21 penetrating in the vertical direction in the center portion. The through hole 21 serves as an optical path, and in the following description, an axis that vertically penetrates the center of the through hole 21 is a central axis (optical axis) C.
 この基部20は、4つの角隅部(第1~第4の角隅部20a、20b、20c、20d)を有する。本実施形態では、特定の角隅部(図3における左下の角隅部)を第1の角隅部(第1角隅部)20aとし、図3において反時計回りに第2の角隅部20b、第3の角隅部(第2角隅部)20c、第4の角隅部20dとする。 The base 20 has four corners (first to fourth corners 20a, 20b, 20c, 20d). In the present embodiment, the specific corner (the lower left corner in FIG. 3) is the first corner (first corner) 20a, and the second corner is counterclockwise in FIG. 20b, the third corner (second corner) 20c, and the fourth corner 20d.
 基部20の第1~第4の角隅部20a、20b、20c、20dには、第1~第4の支柱部120a、120b、120c、120dが設けられている。具体的には、第1の角隅部20aから上方に向かって第1の支柱部120aが延び、第2の角隅部20bから上方に向かって第2の支柱部120bが延び、第3の角隅部20cから上方に向かって第3の支柱部120cが延び、第4の角隅部20dから上方に向かって第4の支柱部120dが延びている。第1の支柱部120a、第3の支柱部120cおよび第4の支柱部120dの各上端には、カバー8の天壁81の内側面(裏面)と当接する載置台120eが突設されている。第2の支柱部120bは、上端面全体がカバー8の天壁81の内側面と当接するように構成されている。これら各支柱部120a、120b、120c、120dと、カバー8の対応する各角部内側面とがそれぞれ接することにより、ユニット本体2とカバー8とで構成される筐体における剛性(強度)が向上する。 The first to fourth corner portions 20a, 20b, 20c, 20d of the base 20 are provided with first to fourth support columns 120a, 120b, 120c, 120d. Specifically, the first column 120a extends upward from the first corner 20a, the second column 120b extends upward from the second corner 20b, and the third A third column 120c extends upward from the corner 20c, and a fourth column 120d extends upward from the fourth corner 20d. On each upper end of the first support column 120a, the third support column 120c, and the fourth support column 120d, a mounting table 120e that abuts against the inner side surface (back surface) of the top wall 81 of the cover 8 protrudes. . The second support column 120 b is configured such that the entire upper end surface is in contact with the inner surface of the top wall 81 of the cover 8. The respective struts 120a, 120b, 120c, and 120d are in contact with the corresponding inner side surfaces of the respective corners of the cover 8, so that the rigidity (strength) of the casing constituted by the unit main body 2 and the cover 8 is improved. .
 第1の支柱部120aは、アクチュエータ3と接している。この第1の支柱部120aは、その表面に外側面121aと内側面(対向面)122aとを含む。平面視において、外側面121aは、基部20の第1の角隅部20aの外側面と面一であり、内側面122aは、アクチュエータ本体30(詳しくは駆動軸33)の外周面に沿って同方向で湾曲し、当該アクチュエータ本体30(詳しくは駆動軸33)と接触する。 The first support column 120a is in contact with the actuator 3. The first support column 120a includes an outer surface 121a and an inner surface (opposing surface) 122a on the surface thereof. In plan view, the outer surface 121a is flush with the outer surface of the first corner 20a of the base 20, and the inner surface 122a is the same along the outer peripheral surface of the actuator body 30 (specifically, the drive shaft 33). It bends in the direction and comes into contact with the actuator body 30 (specifically, the drive shaft 33).
 外側面121aは、図6に示すように、上下に延びる浅溝123aを有する。この浅溝123aは、第1の支柱部120aの外側面121aと、この外側面121aに対向する周壁83(側壁83a)との間に製造誤差等によって隙間が生じた場合に、接着剤が塗布されて前記隙間を埋めるときに用いられる。 The outer surface 121a has a shallow groove 123a extending vertically as shown in FIG. The shallow groove 123a is coated with an adhesive when a gap occurs between the outer side surface 121a of the first support column 120a and the peripheral wall 83 (side wall 83a) facing the outer side surface 121a due to a manufacturing error or the like. And used when filling the gap.
 内側面122aは、アクチュエータ本体30(駆動軸33)と複数個所(本実施形態の例では2ヶ所)で接する。すなわち、本実施形態の内側面122aは、第1の柱側摺動面125aと、第2の柱側摺動面126aとを含む。このように、周方向に間隔を空けて複数箇所で内側面122aが駆動軸33の外周面と軸方向に沿って線状に接触することによって、往復動(振動)したときの駆動軸33と内側面122aとの間の摩擦を抑えつつ、駆動軸33に加わった力やアクチュエータ3(アクチュエータ本体30)に生じた応力の一部を効果的に受け止めることができる。すなわち、駆動軸33と対向する内側面122a全体が駆動軸33と接触する場合に比べ、周方向に間隔を空けて複数箇所で内側面122aと駆動軸33とが接触する場合の方が、駆動軸33が往復動(振動)したときの摩擦が抑えられる。また、周方向に間隔を空けて複数箇所で内側面122aと駆動軸33の外周面とが接触することで、前記周方向の色々な方向から駆動軸33に加わる力に対する耐衝撃性等が向上する。 The inner side surface 122a is in contact with the actuator main body 30 (drive shaft 33) at a plurality of locations (two locations in the example of the present embodiment). That is, the inner side surface 122a of the present embodiment includes a first column side sliding surface 125a and a second column side sliding surface 126a. As described above, the inner surface 122a is in linear contact with the outer peripheral surface of the drive shaft 33 along the axial direction at a plurality of positions at intervals in the circumferential direction. A part of the force applied to the drive shaft 33 and the stress generated in the actuator 3 (actuator body 30) can be effectively received while suppressing the friction with the inner surface 122a. That is, when the inner side surface 122a and the driving shaft 33 are in contact with each other at a plurality of positions at intervals in the circumferential direction, the driving is performed in comparison with the case where the entire inner side surface 122a facing the driving shaft 33 is in contact with the driving shaft 33. Friction when the shaft 33 reciprocates (vibrates) is suppressed. In addition, the inner surface 122a and the outer peripheral surface of the drive shaft 33 are in contact with each other at a plurality of intervals in the circumferential direction, thereby improving impact resistance against forces applied to the drive shaft 33 from various directions in the circumferential direction. To do.
 なお、本実施形態では、内側面122aの曲率と駆動軸33の外周面の曲率とを異ならせることによって、周方向に間隔を空けて2箇所で内側面122aが駆動軸33の外周面と接触しているが、この構成に限定されない。アクチュエータユニットは、例えば、内側面122aに中心軸C方向に延びる突条を前記周方向に間隔を空けて複数設け、各突条の突出方向先端部が駆動軸33の外周面に接する構成等であってもよい。 In this embodiment, the curvature of the inner side surface 122a and the curvature of the outer peripheral surface of the drive shaft 33 are made different so that the inner side surface 122a comes into contact with the outer peripheral surface of the drive shaft 33 at two locations spaced in the circumferential direction. However, it is not limited to this configuration. The actuator unit has, for example, a configuration in which a plurality of protrusions extending in the central axis C direction are provided on the inner side surface 122a with an interval in the circumferential direction, and the protrusion-direction front ends of the protrusions are in contact with the outer peripheral surface of the drive shaft 33. There may be.
 第1の柱側摺動面125aは、駆動軸33を挟んで(駆動軸33を介して)移動体4の第1の移動体側摺動面55と略対向する位置に設けられている。また、第2の柱側摺動面126aは、駆動軸33を挟んで(駆動軸33を介して)移動体4の第2の移動体側摺動面62aと略対向する位置に設けられている。このように、各柱側摺動面125a、126aが、移動体4と駆動軸33との接触部位と駆動軸33を挟んで略対向する位置に設けられることにより、駆動軸33が前記接触部位を通じて移動体4から力が加わったときに、駆動軸33の略反対側の柱側摺動面125a、126aが前記加わった力を効果的に受け止めることができるため耐衝撃性が向上する。 The first column side sliding surface 125a is provided at a position substantially opposite to the first moving body side sliding surface 55 of the moving body 4 with the driving shaft 33 interposed therebetween (via the driving shaft 33). The second column side sliding surface 126a is provided at a position substantially opposite to the second moving body side sliding surface 62a of the moving body 4 with the driving shaft 33 interposed therebetween (via the driving shaft 33). . As described above, the column- side sliding surfaces 125a and 126a are provided at positions substantially opposite to the contact portion between the moving body 4 and the drive shaft 33 with the drive shaft 33 interposed therebetween, so that the drive shaft 33 is connected to the contact portion. When a force is applied from the movable body 4 through the column- side sliding surfaces 125a, 126a on the substantially opposite side of the drive shaft 33, the applied force can be effectively received, so that the impact resistance is improved.
 本実施形態の第1の柱側摺動面125aは、例えば、基部20における第1の支柱部120aと第4の支柱部120dとが設けられた側の側面(図4における紙面左側の側面)に沿った面である。また、第2の柱側摺動面126aは、例えば、基部20における第1の支柱部120aと第2の支柱部120bとが設けられた側の側面(図4における下側の側面)に沿った面である。このため、本実施形態のアクチュエータユニット1では、第2の支柱部120bから第1の支柱部120aに向かう方向の荷重や第4の支柱部120dから第1の支柱部120aに向かう方向の荷重が駆動軸33に加わっても、この荷重を第1の支柱部120aの第1の柱側摺動面125aや第2の柱側摺動面126aによって効果的に受け止めることができる。 The first column side sliding surface 125a of the present embodiment is, for example, the side surface of the base 20 on the side where the first column portion 120a and the fourth column portion 120d are provided (the left side surface in FIG. 4). It is a surface along. In addition, the second column side sliding surface 126a is, for example, along the side surface (the lower side surface in FIG. 4) of the base 20 on the side where the first support column 120a and the second support column 120b are provided. It is the surface. For this reason, in the actuator unit 1 of the present embodiment, a load in the direction from the second support column 120b toward the first support column 120a or a load in the direction from the fourth support column 120d to the first support column 120a is applied. Even when applied to the drive shaft 33, this load can be effectively received by the first column side sliding surface 125a and the second column side sliding surface 126a of the first column 120a.
 また、第1の支柱部120aは、ガイドスプリング6(詳しくは、押圧片63)との干渉を避けるために、第2の角隅部20b側の上部が切欠かれている(図6参照)。このため、第1の柱側摺動面125aは、駆動軸33と高さ方向において駆動軸33の上端付近まで接触しているのに対し、第2の柱側摺動面126aは駆動軸33の下部のみと接触している。 In addition, the first support column 120a is notched at the upper part on the second corner 20b side in order to avoid interference with the guide spring 6 (specifically, the pressing piece 63) (see FIG. 6). For this reason, the first column side sliding surface 125a is in contact with the drive shaft 33 up to the vicinity of the upper end of the drive shaft 33 in the height direction, whereas the second column side sliding surface 126a is in contact with the drive shaft 33. Only in contact with the bottom of
 第2の支柱部120bは、基部20の第2の角隅部20bの外側面よりも内側に設けられている。具体的には、第2の支柱120bは、移動体4の移動体本体5とガイドスプリング6との間に設けられている。 The second support column 120b is provided on the inner side of the outer surface of the second corner portion 20b of the base 20. Specifically, the second support column 120 b is provided between the moving body main body 5 of the moving body 4 and the guide spring 6.
 第3の支柱部120cは、移動体4の一部(具体的には、回転規制部61a)が上下動可能に嵌め込まれる規制部用溝29が形成されている。この規制部用溝29は、第3の支柱部120cの内側面(中心軸C側面)122cに設けられ、上下方向に延びている。また、第3の支柱部120cの外側面121cは、平面視において、基部20の第3の角隅部20cの外側面と面一となっている。 The third support column 120c is formed with a restriction portion groove 29 into which a part of the movable body 4 (specifically, the rotation restriction portion 61a) is fitted so as to be movable up and down. The restriction portion groove 29 is provided on the inner side surface (side surface of the central axis C) 122c of the third support column portion 120c and extends in the vertical direction. Further, the outer surface 121c of the third support column 120c is flush with the outer surface of the third corner portion 20c of the base 20 in plan view.
 第4の支柱部120dは、平面視において、外側面121dが基部20の第4の角隅部20dの外側面と面一となり、内側面122dが移動体4に沿って湾曲するように構成されている。 The fourth support column 120d is configured such that the outer surface 121d is flush with the outer surface of the fourth corner 20d of the base 20 and the inner surface 122d is curved along the moving body 4 in plan view. ing.
 基部20の側面は、基部20(ユニット本体2)にカバー8を係止するための係止用突起20fを有する。本実施形態の係止用突起20fは、基部20における一対の対向する側面にそれぞれ設けられている。 The side surface of the base 20 has a locking projection 20f for locking the cover 8 to the base 20 (unit main body 2). The locking projections 20f of the present embodiment are provided on a pair of opposing side surfaces of the base portion 20, respectively.
 基部20は、第1の角隅部20aにおける第1の支柱部120aの内側(中心軸C側)に、アクチュエータ3(アクチュエータ本体30)を保持するアクチュエータ保持部25を備える。このアクチュエータ保持部25は、基部20の上面20eから所定の深さとなるように円柱状に窪んでいる。 The base portion 20 includes an actuator holding portion 25 that holds the actuator 3 (actuator body 30) on the inner side (center axis C side) of the first support column portion 120a in the first corner portion 20a. The actuator holding portion 25 is recessed in a cylindrical shape so as to have a predetermined depth from the upper surface 20 e of the base portion 20.
 また、基部20は、第1の角隅部20aに、上述の第1電極端子22と第2電極端子23とを有する。これら第1電極端子22および第2電極端子23は、それぞれ、その中間部が基部20(ユニット本体2)に埋設されている。そして、第1電極端子22および第2電極端子23の先端22a、23aが上面20eのアクチュエータ保持部25を挟んでその両側から各側面を互いに向かい合わせて突出(露出)し、基端側が基部20の外側面から突出(露出)して外部接続端子22b、23bを構成している。これら外部接続端子22b、23bは、当該アクチュエータユニット1が例えば携帯電話(図示省略)に搭載されたときに、この携帯電話の回路基板やコネクタ等と接続される。本実施形態の外部接続端子22b、23bは、各外部接続端子22b、22bの下面同士が同一平面上に位置するように、段部を介して折り曲げ成形されている。 Further, the base 20 has the first electrode terminal 22 and the second electrode terminal 23 described above at the first corner 20a. The intermediate portions of the first electrode terminal 22 and the second electrode terminal 23 are embedded in the base 20 (unit body 2). Then, the distal ends 22a, 23a of the first electrode terminal 22 and the second electrode terminal 23 protrude (expose) with the side surfaces facing each other from both sides of the actuator holding portion 25 on the upper surface 20e, and the base end side is the base portion 20 The external connection terminals 22b and 23b are configured to protrude (expose) from the outer surface of the external connection terminal. These external connection terminals 22b and 23b are connected to a circuit board, a connector, and the like of the cellular phone when the actuator unit 1 is mounted on, for example, a cellular phone (not shown). The external connection terminals 22b and 23b of the present embodiment are bent through stepped portions so that the lower surfaces of the external connection terminals 22b and 22b are located on the same plane.
 アクチュエータ3は、アクチュエータ本体30と、移動体4とを備える。このアクチュエータ本体30は、図7に示すように、下方から順に、錘31と、中心軸C方向に伸縮(振動)可能な圧電素子(電気機械変換素子)32と、圧電素子32の伸縮(振動)によって中心軸C方向に往復動(振動)する駆動軸(駆動摩擦部材)33と、を備える。このアクチュエータ本体30は、その一部(駆動軸33)が移動体4と第1の支柱部120aとに接触するようにユニット本体2に固定される(図5の101、102と図4の103、104とを参照)。 The actuator 3 includes an actuator body 30 and a moving body 4. As shown in FIG. 7, the actuator body 30 includes, in order from the bottom, a weight 31, a piezoelectric element (electromechanical conversion element) 32 that can be expanded and contracted (vibrated) in the central axis C direction, and expansion and contraction (vibration) of the piezoelectric element 32. ), And a drive shaft (drive friction member) 33 that reciprocates (vibrates) in the direction of the central axis C. The actuator main body 30 is fixed to the unit main body 2 so that a part (drive shaft 33) of the actuator main body 30 is in contact with the moving body 4 and the first support column 120a (101 and 102 in FIG. 5 and 103 in FIG. 4). , 104).
 錘31は、圧電素子32の一端側(本実施形態では下端側)の慣性質量を大きくすることによって、圧電素子32の伸縮による変位を他端側(本実施形態では上端側)に優位に、好ましくは他端側にのみに、発生させる。本実施形態の錘31は、例えば、タングステン、タングステン合金等の比重の高い材料によって形成されている。この錘31は、圧電素子32の外周から全周に亘って径方向外側に突出する円板形状または円柱形状を有している。なお、錘31は、圧電素子32の他端(下端)が錘31の機能と同様の機能を発揮するもの(例えば、ユニット本体2(基部20)等)に取り付けられる場合には、省略されてもよい。 By increasing the inertial mass on one end side (the lower end side in the present embodiment) of the piezoelectric element 32, the weight 31 preferentially displaces the piezoelectric element 32 due to expansion and contraction on the other end side (the upper end side in the present embodiment). Preferably, it is generated only on the other end side. The weight 31 of the present embodiment is formed of a material having a high specific gravity, such as tungsten or a tungsten alloy. The weight 31 has a disk shape or a columnar shape that protrudes radially outward from the outer periphery of the piezoelectric element 32. Note that the weight 31 is omitted when the other end (lower end) of the piezoelectric element 32 is attached to a device that exhibits a function similar to the function of the weight 31 (for example, the unit main body 2 (base 20)). Also good.
 圧電素子32は、電気機械変換素子の一例であり、所定の波形の電力が供給されることによって、中心軸C方向に伸縮を繰り返す(振動する)。本実施形態の圧電素子32は、圧電材料を薄く伸ばした矩形状の層が層間に内部電極を挟むようにして中心軸C方向に積層された四角柱状の積層型圧電素子によって構成されている。圧電材料は、例えば、チタン酸ジルコン酸鉛(いわゆるPZT)、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム(K(Ta,Nb)O)、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)およびチタン酸ストロンチウム(SrTiO)等の無機圧電材料である。 The piezoelectric element 32 is an example of an electromechanical conversion element, and repeats expansion and contraction (vibrates) in the direction of the central axis C when electric power having a predetermined waveform is supplied. The piezoelectric element 32 of the present embodiment is configured by a quadrangular columnar stacked piezoelectric element in which rectangular layers obtained by thinly extending a piezoelectric material are stacked in the direction of the central axis C so that an internal electrode is sandwiched between the layers. Examples of the piezoelectric material include lead zirconate titanate (so-called PZT), crystal, lithium niobate (LiNbO 3 ), potassium tantalate niobate (K (Ta, Nb) O 3 ), barium titanate (BaTiO 3 ), Inorganic piezoelectric materials such as lithium tantalate (LiTaO 3 ) and strontium titanate (SrTiO 3 ).
 複数の内部電極は、これら複数の内部電極のうちの複数の陽極層が積層型圧電素子における外周側面の一方側に、そして、これら複数の陰極層が積層型圧電素子における外周側面の他方側に、達するまでそれぞれ延設されることによって、それら各層の先端が互いに対向する一対の外周側面で外部に臨むように、それぞれ構成される。一対の外部電極32a、32aは、前記電気エネルギーを積層体に供給するものであり、積層型圧電素子における前記一対の外周側面上に積層方向に沿って例えば銀等のスパッタ法によって形成され、各圧電層間の前記複数の内部電極を並列に接続するように、前記複数の内部電極と順次交互に接続される。 The plurality of internal electrodes include a plurality of anode layers of the plurality of internal electrodes on one side of the outer peripheral side surface of the multilayer piezoelectric element, and a plurality of cathode layers on the other side of the outer peripheral side surface of the multilayer piezoelectric element. Each of the layers is configured to extend to reach the outside with a pair of outer peripheral side surfaces facing each other. A pair of external electrodes 32a and 32a supply the electric energy to the laminated body, and are formed on the pair of outer peripheral side surfaces of the laminated piezoelectric element by a sputtering method such as silver along the laminating direction. The plurality of internal electrodes between the piezoelectric layers are sequentially and alternately connected to the plurality of internal electrodes so as to be connected in parallel.
 この圧電素子32の下端面が錘31の上端面とエポキシ接着剤等の接着剤によって接着されている。本実施形態のエポキシ接着剤では、錘31との短絡防止および接着層厚の安定化のために、直径5um程度の樹脂性のビーズが混入されている。 The lower end surface of the piezoelectric element 32 is bonded to the upper end surface of the weight 31 with an adhesive such as an epoxy adhesive. In the epoxy adhesive of this embodiment, resinous beads having a diameter of about 5 μm are mixed in order to prevent a short circuit with the weight 31 and stabilize the thickness of the adhesive layer.
 駆動軸33は、中心軸C方向に延びる円柱状の部材である。この駆動軸33は、その外周面の一部が移動体4と第1の支柱部120aとに接触するよう配置される(図5の101、102と図4の103、104とを参照)。すなわち、駆動軸33の外周面は、移動体4との接触面(接触部位)と第1の支柱部120aとの接触面(接触部位)とを含む。本実施形態の駆動軸33は、例えば、中心軸C方向にカーボン繊維が配列するように円柱状に成形された炭素繊維強化プラスチック(CFRP、carbon-fiber-reinforced plastic)によって構成されている。このようにカーボン繊維が配列することにより、駆動軸33が移動体4や第1の支柱部120aと摺接状態で中心軸C方向に往復動(振動)したときに、滑らかに摺動すると共に駆動軸33表面(摺接部位)におけるカーボン繊維の毛羽立ち等を抑えることができる。 The drive shaft 33 is a columnar member extending in the direction of the central axis C. The drive shaft 33 is disposed such that a part of the outer peripheral surface thereof is in contact with the moving body 4 and the first support column 120a (see 101 and 102 in FIG. 5 and 103 and 104 in FIG. 4). That is, the outer peripheral surface of the drive shaft 33 includes a contact surface (contact portion) with the moving body 4 and a contact surface (contact portion) with the first support column 120a. The drive shaft 33 of the present embodiment is made of, for example, carbon fiber reinforced plastic (CFRP, carbon-fiber-reinforced plastic) formed in a columnar shape so that carbon fibers are arranged in the direction of the central axis C. By arranging the carbon fibers in this way, when the drive shaft 33 reciprocates (vibrates) in the direction of the central axis C in sliding contact with the moving body 4 and the first support column 120a, it slides smoothly. The fluffing of the carbon fiber on the surface of the drive shaft 33 (sliding contact portion) can be suppressed.
 この駆動軸33は、圧電素子32の外周から全周に亘って径方向外側に突出するように形成されている。すなわち、中心軸C方向視において、駆動軸33の輪郭で囲まれた領域の内部に圧電素子32の輪郭が含まれた状態となっている。 The drive shaft 33 is formed so as to protrude radially outward from the outer periphery of the piezoelectric element 32. That is, when viewed in the direction of the central axis C, the contour of the piezoelectric element 32 is included in the region surrounded by the contour of the drive shaft 33.
 駆動軸33の下端面が圧電素子32の上端面と接着剤によって接着されている。この接着剤は、錘31と圧電素子32とを接着した接着剤と同じである。 The lower end surface of the drive shaft 33 is bonded to the upper end surface of the piezoelectric element 32 with an adhesive. This adhesive is the same as the adhesive that bonds the weight 31 and the piezoelectric element 32.
 この駆動軸33と圧電素子32とを接着した場合にこれら駆動軸33と圧電素子32と接合面からはみ出た接着剤によって形成されるフィレット35(図7参照)は、駆動軸33が圧電素子32の外周から全周に亘って径方向外側に突出する形状を有しているため、圧電素子32側に形成される。すなわち、フィレット35は、駆動軸33の外周面には形成されない。これにより、駆動軸33の外周面の中心軸C方向全域を移動体4との摺動に使うことが可能となり、短い駆動軸33によって大きなストローク(移動体4の中心軸C方向の移動範囲)を実現できる。 When the drive shaft 33 and the piezoelectric element 32 are bonded to each other, the fillet 35 (see FIG. 7) formed by the adhesive protruding from the joint surface between the drive shaft 33 and the piezoelectric element 32 has the drive shaft 33 connected to the piezoelectric element 32. Is formed on the piezoelectric element 32 side because it has a shape that protrudes radially outward from the outer periphery to the entire periphery. That is, the fillet 35 is not formed on the outer peripheral surface of the drive shaft 33. As a result, the entire area of the outer peripheral surface of the drive shaft 33 in the direction of the central axis C can be used for sliding with the movable body 4, and a large stroke (movement range of the movable body 4 in the direction of the central axis C) is achieved by the short drive shaft 33. Can be realized.
 以上のように構成されるアクチュエータ本体30は、ユニット本体2(基部20)のアクチュエータ保持部25に錘31側から嵌挿される。そして、アクチュエータ保持部25の底面と錘31とが接着剤によって接着され、これにより、アクチュエータ本体30がユニット本体2に固定される。このとき、アクチュエータ本体30の駆動軸33の中心軸と、ユニット本体2の中心軸Cとが平行になっている。 The actuator body 30 configured as described above is inserted into the actuator holding portion 25 of the unit body 2 (base portion 20) from the weight 31 side. Then, the bottom surface of the actuator holding portion 25 and the weight 31 are bonded with an adhesive, whereby the actuator main body 30 is fixed to the unit main body 2. At this time, the central axis of the drive shaft 33 of the actuator main body 30 and the central axis C of the unit main body 2 are parallel to each other.
 アクチュエータ本体30は、第1電極連結バネ26aと第2電極連結バネ26bとによって、第1電極端子22および第2電極端子23に通電可能に接続されている。より具体的には、圧電素子32の一方の外部電極32aと第1電極端子22の先端22aとが第1電極連結バネ26aを介して通電可能に接続され、圧電素子32の他方の外部電極32aと第2電極端子23の先端23aとが第2電極連結バネ26bを介して通電可能に接続されている。これら第1電極連結バネ26aと第2電極連結バネ26bとは、金や白金などでメッキが施されたねじりコイルバネである。 The actuator body 30 is connected to the first electrode terminal 22 and the second electrode terminal 23 by a first electrode coupling spring 26a and a second electrode coupling spring 26b so as to be energized. More specifically, one external electrode 32a of the piezoelectric element 32 and the tip 22a of the first electrode terminal 22 are connected via a first electrode coupling spring 26a so that energization is possible, and the other external electrode 32a of the piezoelectric element 32 is connected. And the tip 23a of the second electrode terminal 23 are connected to each other through a second electrode coupling spring 26b so as to be energized. The first electrode connection spring 26a and the second electrode connection spring 26b are torsion coil springs plated with gold or platinum.
 次に、移動体4について、図8~図10も参照しつつ説明する。図8は、移動体の斜視図であり、図9は、移動体の分解斜視図である。図10は、レンズバレルが保持された状態のアクチュエータユニットを説明するための模式図である。 Next, the moving body 4 will be described with reference to FIGS. FIG. 8 is a perspective view of the moving body, and FIG. 9 is an exploded perspective view of the moving body. FIG. 10 is a schematic diagram for explaining the actuator unit in a state where the lens barrel is held.
 移動体4は、レンズバレル(被駆動部材)7(図10参照)を保持可能で且つユニット本体2に対して中心軸C方向に相対移動可能である。より具体的に、移動体4は、金属製の円筒状の移動体本体(保持部)5と、ガイドスプリング6とを備える。 The moving body 4 can hold a lens barrel (driven member) 7 (see FIG. 10) and can move relative to the unit body 2 in the direction of the central axis C. More specifically, the moving body 4 includes a metal cylindrical moving body main body (holding portion) 5 and a guide spring 6.
 移動体本体5は、内周側にレンズ保持部54を備え、このレンズ保持部54によってレンズバレル7を保持する。このレンズバレル7は、当該アクチュエータユニット1の被駆動部材であり、1または複数のレンズ(撮像レンズ)群71を保持する。 The movable body 5 includes a lens holding portion 54 on the inner peripheral side, and the lens barrel 7 is held by the lens holding portion 54. The lens barrel 7 is a driven member of the actuator unit 1 and holds one or a plurality of lens (imaging lens) groups 71.
 移動体本体5は、筒状部51と、第1フランジ52と、第2フランジ53と、を備える。本実施形態の移動体本体5は、例えば、0.05mm~0.3mmの厚さのステンレス材によって形成されている。ステンレス材は、金属材料の中でも、安価で成形性がよく、また耐久性もよく、駆動性能も良好な材料である。この移動体本体5は、例えば、絞り加工によって形成されている。 The movable body 5 includes a cylindrical portion 51, a first flange 52, and a second flange 53. The mobile body 5 of the present embodiment is formed of a stainless material having a thickness of 0.05 mm to 0.3 mm, for example. Stainless steel is a material that is inexpensive, has good formability, has good durability, and has good driving performance among metal materials. The movable body 5 is formed by, for example, drawing.
 このように、筒状の移動体本体5が金属製であるため強度や摩耗に対する耐久性が高く、これにより、筒状の移動体本体5の薄肉化を図って当該移動体本体5に保持される(詳しくは、レンズバレル7を介して保持される)レンズ群71の大口径化を図ることが可能となる。さらに、駆動軸33がレンズ群71を保持する移動体本体5を直接駆動するため、アクチュエータ3と摩擦係合する部位を、レンズ群71を保持する部位と別に設ける構成に比べ、レンズ群71の大口径化を図ることができる。 Thus, since the cylindrical moving body main body 5 is made of metal, it has high strength and durability against wear. As a result, the cylindrical moving body main body 5 is thinned and held by the moving body main body 5. It is possible to increase the diameter of the lens group 71 (which is held in detail via the lens barrel 7). Furthermore, since the drive shaft 33 directly drives the movable body 5 that holds the lens group 71, the lens group 71 has a portion that is frictionally engaged with the actuator 3 and is provided separately from the portion that holds the lens group 71. A large aperture can be achieved.
 筒状部51では、外周面の一部が駆動軸33と摺接する第1の移動体側摺動面55を構成する。すなわち、筒状部51(移動体本体5)は、その外周面に第1の移動体側摺動面55を含んでいる。本実施形態の第1の移動体側摺動面55は、移動体本体5の成形加工に際し、移動体本体5の一部を(より詳しくは、周方向に所定の幅で且つ中心軸C方向の全体に亘って)平板状にすることによって形成される平面である。 In the cylindrical part 51, a part of the outer peripheral surface constitutes a first moving body side sliding surface 55 in sliding contact with the drive shaft 33. That is, the cylindrical part 51 (movable body main body 5) includes the first movable body side sliding surface 55 on the outer peripheral surface thereof. The first moving body-side sliding surface 55 of the present embodiment has a part of the moving body main body 5 (more specifically, a predetermined width in the circumferential direction and the center axis C direction) when the moving body main body 5 is molded. It is a plane formed by making it flat.
 第1フランジ52は、筒状部51の下端から径方向内側に突出している。この第1フランジ52の上面は、レンズバレル載置部52aを構成する。このレンズバレル載置部52aは、レンズ保持部54にレンズバレル7を保持させる際にレンズバレル7が載置される(図10参照)。これにより、移動体本体5の中心軸とレンズバレル7のレンズ群71の光軸とが互いに傾くことなく揃うようになっている。また、第2フランジ53は、筒状部51の上端から径方向外側に突出している。これら第1フランジ52および第2フランジ53によって移動体本体5の強度が確保される。 The first flange 52 protrudes radially inward from the lower end of the cylindrical portion 51. The upper surface of the first flange 52 constitutes a lens barrel mounting portion 52a. In the lens barrel mounting portion 52a, the lens barrel 7 is mounted when the lens holding portion 54 holds the lens barrel 7 (see FIG. 10). As a result, the central axis of the movable body 5 and the optical axis of the lens group 71 of the lens barrel 7 are aligned without tilting each other. Further, the second flange 53 protrudes radially outward from the upper end of the tubular portion 51. The strength of the movable body 5 is ensured by the first flange 52 and the second flange 53.
 ガイドスプリング6は、円弧部61と、円弧部61の一端側に形成されたガイド部62と、円弧部61の他端側に形成された押圧片63とを備える。本実施形態のガイドスプリング6は、例えば、0.1mm~0.3mmの厚さのステンレス材によって形成されている。 The guide spring 6 includes an arc portion 61, a guide portion 62 formed on one end side of the arc portion 61, and a pressing piece 63 formed on the other end side of the arc portion 61. The guide spring 6 of the present embodiment is made of, for example, a stainless material having a thickness of 0.1 mm to 0.3 mm.
 円弧部61は、ガイド部62から周方向に略180°隔てた位置に、回転規制部61aを備える。この回転規制部61aは、駆動軸33を回転中心にした移動体4の回転を規制するための部位である。この回転規制部61aは、規制枠部61bと、規制枠部61bに形成された半球状の突起61cとを備える。 The arc portion 61 includes a rotation restricting portion 61a at a position separated from the guide portion 62 by approximately 180 ° in the circumferential direction. The rotation restricting portion 61a is a portion for restricting the rotation of the moving body 4 with the drive shaft 33 as the center of rotation. The rotation restricting portion 61a includes a restricting frame portion 61b and a hemispherical protrusion 61c formed on the restricting frame portion 61b.
 規制枠部61bは、円弧部61の一部を径方向外側に矩形状に突出させることにより形成されている。また、突起61cは、規制枠部61bの両外側面のそれぞれから外側に向かって突出するように形成されている。これら突起61c同士の外幅W1(図5参照)は、規制枠部61bが第3の支柱部120cに設けられた規制部用溝29内に嵌るように、規制部用溝29の内幅W2(図5参照)よりも若干狭く設定されている。 The regulation frame portion 61b is formed by projecting a part of the arc portion 61 radially outward in a rectangular shape. Further, the protrusion 61c is formed so as to protrude outward from each of both outer side surfaces of the restriction frame portion 61b. The outer width W1 (see FIG. 5) between these protrusions 61c is such that the inner width W2 of the restriction portion groove 29 is such that the restriction frame portion 61b fits within the restriction portion groove 29 provided in the third support column portion 120c. It is set slightly narrower than (see FIG. 5).
 ガイド部62は、円弧部61の一端から径方向外側に延びている。ガイド部62の一方面(第2摺動面)62aは、ガイドスプリング6が移動体本体5に取り付けられた状態で移動体本体5の第1の移動体側摺動面55に対して略90°となっている。 The guide part 62 extends radially outward from one end of the arc part 61. One surface (second sliding surface) 62 a of the guide part 62 is approximately 90 ° with respect to the first moving body side sliding surface 55 of the moving body 5 with the guide spring 6 attached to the moving body 5. It has become.
 押圧片63は、円弧部61の他端から直線状に延設されている。この押圧片63は、アクチュエータユニット1に組み込まれた状態で第2の支柱部120bから第1の支柱部120aに向かって直線状に延びている。押圧片63は、その先端部に、駆動軸33を押圧する押圧部63aを備える。 The pressing piece 63 extends linearly from the other end of the arc portion 61. The pressing piece 63 extends linearly from the second support column 120b toward the first support column 120a in a state of being incorporated in the actuator unit 1. The pressing piece 63 includes a pressing portion 63 a that presses the drive shaft 33 at the tip.
 以上のように構成されるガイドスプリング6と移動体本体5とは、溶接によって連結されている。より具体的には、移動体本体5の第1の移動体側摺動面55とガイドスプリング6の第2の移動体側摺動面62aとが隣接するように、ガイドスプリング6が移動体本体5の外周に沿って配設される。この状態で、複数個所が溶接(例えば、抵抗溶接(スポット溶接)、レーザ溶接等)されることにより、ガイドスプリング6と移動体本体5とが連結される。 The guide spring 6 and the movable body 5 configured as described above are connected by welding. More specifically, the guide spring 6 of the movable body main body 5 is arranged such that the first movable body side sliding surface 55 of the movable body main body 5 and the second movable body side sliding surface 62a of the guide spring 6 are adjacent to each other. It is arranged along the outer periphery. In this state, the guide spring 6 and the movable body 5 are connected by welding a plurality of locations (for example, resistance welding (spot welding), laser welding, etc.).
 このようにして移動体本体5とガイドスプリング6とを金属によって構成し、溶接によって結合することにより、互いを強固に固定することができると共に、接着などと異なって瞬時に固定できるために製造上のタクトタイムを大幅に短縮することができる。 In this way, the movable body 5 and the guide spring 6 are made of metal and joined together by welding, so that they can be firmly fixed to each other and can be fixed instantaneously unlike adhesion, etc. Tact time can be greatly reduced.
 そして、移動体本体5とガイドスプリング6とが連結された移動体4は、回転規制部61aをユニット本体2(第3の支柱部120c)の規制部用溝29内に嵌め込むと共に、第1の移動体側摺動面55と第2の移動体側摺動面62aと押圧部63aとによって駆動軸33を囲むように配置される。この状態で、押圧片63は、ユニット本体2の第2の支柱部120bの外側を通って第1の角隅部20aの第1の支柱部120aまで延びた状態になっている。このとき、押圧片63の押圧部63aは、初期位置(第1の移動体側摺動面55と第2の移動体側摺動面62aと押圧部63aとによって駆動軸33を囲んでいない状態での位置)に対して移動体本体5の外周面から離れる方向に弾性変形しているため、その弾性復帰力(弾性力)によって駆動軸33が第1の移動体側摺動面55および第2の移動体側摺動面62aに押し付けられた状態となっている。すなわち、押圧片63の弾性力によって駆動軸33が第1の移動体側摺動面55と第2の移動体側摺動面62aとに押し付けられて移動体4と駆動軸33とが摩擦係合している。 The movable body 4 to which the movable body main body 5 and the guide spring 6 are coupled has the rotation restricting portion 61a fitted in the restriction portion groove 29 of the unit main body 2 (third support column portion 120c), and the first The movable body side sliding surface 55, the second movable body side sliding surface 62a, and the pressing portion 63a are disposed so as to surround the drive shaft 33. In this state, the pressing piece 63 passes through the outside of the second support column 120b of the unit body 2 and extends to the first support column 120a of the first corner portion 20a. At this time, the pressing portion 63a of the pressing piece 63 is in the initial position (the first moving body side sliding surface 55, the second moving body side sliding surface 62a, and the pressing portion 63a do not surround the drive shaft 33). The drive shaft 33 is elastically deformed in a direction away from the outer peripheral surface of the movable body 5 with respect to the position), so that the drive shaft 33 is moved to the first movable body side sliding surface 55 and the second movement by the elastic return force (elastic force). It is in a state of being pressed against the body-side sliding surface 62a. That is, the driving shaft 33 is pressed against the first moving body side sliding surface 55 and the second moving body side sliding surface 62a by the elastic force of the pressing piece 63, and the moving body 4 and the driving shaft 33 are frictionally engaged. ing.
 また、駆動軸33と移動体4の第1の移動体側摺動面55および第2の移動体側摺動面62aとの接触部分、並びに、移動体4の回転規制部61aと規制部用溝29との接触部分には、オイルやグリース、テフロン(登録商標)フレークを混入させたオイル等の潤滑剤が塗布される。これにより、摺動部の耐久性向上や放置時の固着に対する信頼性を確保することができる。 Further, the contact portion between the drive shaft 33 and the first moving body side sliding surface 55 and the second moving body side sliding surface 62 a of the moving body 4, and the rotation restricting portion 61 a and the restricting portion groove 29 of the moving body 4. A lubricant such as oil, grease, or oil mixed with Teflon (registered trademark) flakes is applied to the contact portion. Thereby, the durability improvement of a sliding part and the reliability with respect to adhering at the time of leaving are securable.
 次に、図1および図2に戻ってカバー8について説明する。 Next, returning to FIGS. 1 and 2, the cover 8 will be described.
 カバー8は、ユニット本体2と共同して移動体4を囲む部材である。このカバー8は、天壁81と、天壁81の周縁から垂下する周壁83とを備える。 The cover 8 is a member surrounding the moving body 4 in cooperation with the unit main body 2. The cover 8 includes a top wall 81 and a peripheral wall 83 that hangs down from the periphery of the top wall 81.
 天壁81は、平面視において、基部20と対応する略矩形状の輪郭を有すると共に、その中央部に中心軸C方向に貫通する貫通孔82を有する。この貫通孔82は、光路となる。本実施形態のカバー8は、例えば、0.1mm~0.2mmのステンレス製の薄板を絞り加工、プレス加工等によって形成されている。 The top wall 81 has a substantially rectangular outline corresponding to the base 20 in plan view, and has a through hole 82 penetrating in the central axis C direction at the center thereof. The through hole 82 becomes an optical path. The cover 8 of the present embodiment is formed by drawing, pressing, or the like, for example, a stainless steel thin plate of 0.1 mm to 0.2 mm.
 周壁83は、天壁81の各片に対応する4つの側壁83aによって構成されている。この周壁83は、天壁81の内側面が第1、第3、および、第4の支柱部120a、120c、120dの各載置台120eと第2の支柱120bの先端面とに当接した状態で、平面視略矩形状のユニット本体2の各側面に沿って当該ユニット本体2を囲う。各側壁83aは、ユニット本体2(基部20)の側面に設けられた係止用突起20fに係止される係止用孔84を備えている。なお、本実施形態の係止用突起20fは、2個であり、対向する側壁83aの各係止用孔84に係止されるようになっている。 The peripheral wall 83 is constituted by four side walls 83 a corresponding to each piece of the top wall 81. In the peripheral wall 83, the inner surface of the top wall 81 is in contact with the mounting table 120e of the first, third, and fourth support columns 120a, 120c, and 120d and the tip surface of the second support column 120b. Thus, the unit main body 2 is enclosed along each side surface of the unit main body 2 having a substantially rectangular shape in plan view. Each side wall 83a includes a locking hole 84 that is locked to a locking projection 20f provided on the side surface of the unit main body 2 (base portion 20). Note that the number of the locking projections 20f in the present embodiment is two, and the locking projections 20f are locked in the locking holes 84 of the opposing side wall 83a.
 ユニット本体2の第1の支柱部120a、第3の支柱部120cおよび第4の支柱部120dの上端に設けられた載置台120e、並びに、第2の支柱部120bの上端面と、カバー8の天壁81の内側面とが当接した状態で、係止用孔84が係止用突起20fに係止されることにより、ユニット本体2にカバー8が係止される。このとき、各載置台120eおよび第2の支柱部120bの上端面と、カバー8の天壁81の内側面とが接着剤によって接着(結合)されている。 The first column 120a, the third column 120c, and the fourth column 120d of the unit main body 2 are mounted on the upper ends of the column 120e, the upper column of the second column 120b, and the cover 8 The cover 8 is locked to the unit main body 2 by the locking hole 84 being locked to the locking projection 20f in a state where the inner surface of the top wall 81 is in contact. At this time, the upper end surfaces of the mounting tables 120e and the second support columns 120b and the inner surface of the top wall 81 of the cover 8 are bonded (bonded) with an adhesive.
 以上のように構成されたアクチュエータユニット1は、カメラモジュール(撮像装置)に用いられてよい。このようなカメラモジュールは、上述のアクチュエータユニット1と、光学像を電気的な信号に変換する撮像素子(撮像センサ)と、1または複数の撮像レンズを備え、物体の光学像を前記撮像素子の受光面上に結像する撮像光学系とを備え、前記撮像光学系における前記1または複数の撮像レンズのうちの光軸方向に沿って移動する撮像レンズは、アクチュエータユニット1の移動体4に取り付けられる。例えば、図10に示すように、移動体4のレンズ保持部54によってレンズバレル7を保持すると共に、ユニット本体2の下面側に、IRカットフィルタ102および撮像センサ(撮像素子)103を有するセンサ基板104が配置される。より具体的には、レンズバレル7に設けられた接着溝72に充填された接着剤73によってレンズバレル7がレンズ保持部54に接着固定される。これにより、カメラモジュール(撮像装置)が構成される。 The actuator unit 1 configured as described above may be used in a camera module (imaging device). Such a camera module includes the above-described actuator unit 1, an imaging device (imaging sensor) that converts an optical image into an electrical signal, and one or a plurality of imaging lenses. An imaging optical system that forms an image on the light receiving surface, and the imaging lens that moves along the optical axis direction of the one or more imaging lenses in the imaging optical system is attached to the moving body 4 of the actuator unit 1 It is done. For example, as shown in FIG. 10, a sensor substrate that holds the lens barrel 7 by the lens holding portion 54 of the moving body 4 and has an IR cut filter 102 and an image sensor (image sensor) 103 on the lower surface side of the unit body 2. 104 is arranged. More specifically, the lens barrel 7 is bonded and fixed to the lens holding portion 54 by the adhesive 73 filled in the bonding groove 72 provided in the lens barrel 7. Thereby, a camera module (imaging device) is configured.
 そして、例えば、携帯電話機の回路基板に、第1電極端子22の外部接続端子22bおよび第2電極端子23の外部接続端子23b(図1等参照)が置かれるようにして、前記カメラモジュールが携帯電話機の筐体内に設置される。 Then, for example, the camera module is carried in such a manner that the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b (see FIG. 1 etc.) of the second electrode terminal 23 are placed on the circuit board of the mobile phone. Installed in the phone casing.
 そして、駆動回路から第1電極端子22の外部接続端子22bおよび第2電極端子23の外部接続端子23bに所定の波形の電力が供給されると、アクチュエータ本体30の圧電素子32が中心軸C方向に振動する(伸縮を繰り返す)。この圧電素子32の振動によって駆動軸33が往復動し、その往復動によって移動体4が駆動軸33の軸方向(中心軸C方向)に移動する。より詳しくは、以下の通りである。 When electric power having a predetermined waveform is supplied from the drive circuit to the external connection terminal 22b of the first electrode terminal 22 and the external connection terminal 23b of the second electrode terminal 23, the piezoelectric element 32 of the actuator body 30 moves in the direction of the central axis C. Vibrate (repeat expansion and contraction). The drive shaft 33 reciprocates due to the vibration of the piezoelectric element 32, and the movable body 4 moves in the axial direction (center axis C direction) of the drive shaft 33 due to the reciprocation. More details are as follows.
 圧電素子32に所定のデューティ比の矩形波が付与されることによって圧電素子32の変位が三角波状となり、その矩形波のデューティ比を変えることによって振幅の上昇時と下降時とで傾き(速さ)の異なる三角波が発生する。アクチュエータ3の駆動メカニズムは、これを利用するものである。 When a rectangular wave having a predetermined duty ratio is applied to the piezoelectric element 32, the displacement of the piezoelectric element 32 becomes a triangular wave. By changing the duty ratio of the rectangular wave, the slope (speed) is increased and decreased when the amplitude is increased. ) Different triangular waves are generated. The drive mechanism of the actuator 3 utilizes this.
 より具体的には、移動体4が、近距離撮影位置から無限撮影位置に向かう場合について説明する。ここで、無限撮影位置とは、移動体4の中心軸C方向の移動範囲において基部20(撮像センサ103)から最も近い位置(像側端位置)であり、近距離撮影位置とは、前記移動範囲において基部20(撮像センサ103)から最も遠い位置(物体側端位置)である。 More specifically, a case will be described in which the moving body 4 moves from the short-distance shooting position to the infinite shooting position. Here, the infinite photographing position is a position (image side end position) closest to the base 20 (imaging sensor 103) in the movement range of the moving body 4 in the central axis C direction, and the short distance photographing position is the movement described above. It is the position (object side end position) farthest from the base 20 (imaging sensor 103) in the range.
 まず、圧電素子32の収縮によって駆動軸33をゆっくりと下方に移動させると、この駆動軸33に摩擦係合している移動体4も駆動軸33の下方への移動に伴って同方向(下方)に移動する。そして、摩擦係合した摩擦力を超える程の瞬時の圧電素子32の伸長によって駆動軸33を上方に移動させると、移動体4がその位置(前記の下方への移動後の位置)に取り残される。このような駆動軸33の中心軸C方向の往復動を繰返すことにより、移動体4が下方に移動する。 First, when the drive shaft 33 is slowly moved downward by the contraction of the piezoelectric element 32, the moving body 4 frictionally engaged with the drive shaft 33 also moves in the same direction (downward as the drive shaft 33 moves downward). ) Then, when the drive shaft 33 is moved upward by the instantaneous extension of the piezoelectric element 32 so as to exceed the frictional friction force, the movable body 4 is left at that position (the position after the downward movement). . By repeating such reciprocation of the drive shaft 33 in the direction of the central axis C, the moving body 4 moves downward.
 このとき、駆動軸33の外周が、圧電素子32の外周から全周に亘って径方向外側に突出しているため、移動体4が近距離撮影位置から無限撮影位置に向けて移動したときに、移動体4の第1の移動体側摺動面55および第2の移動体側摺動面62aの下部(筒状の移動体4の下部)が駆動軸33よりユニット本体2側に突出しても圧電素子32と接触しない。すなわち、圧電素子32が移動体4の中心軸C方向の移動を邪魔しない。 At this time, since the outer periphery of the drive shaft 33 protrudes radially outward from the outer periphery of the piezoelectric element 32, when the moving body 4 moves from the short-distance shooting position toward the infinite shooting position, Even if the lower part of the first moving body side sliding surface 55 and the second moving body side sliding surface 62a of the moving body 4 (the lower part of the cylindrical moving body 4) protrudes from the drive shaft 33 toward the unit body 2 side, the piezoelectric element. No contact with 32. That is, the piezoelectric element 32 does not disturb the movement of the moving body 4 in the direction of the central axis C.
 次に、移動体4が、無限撮影位置から近距離撮影位置に向かう場合について説明する。この場合、上記の移動体4が下方に移動する動作と逆の動作が行なわれる。 Next, the case where the moving body 4 moves from the infinite shooting position to the short distance shooting position will be described. In this case, an operation opposite to the operation in which the moving body 4 moves downward is performed.
 より具体的には、圧電素子32の伸長によって駆動軸33をゆっくりと上方に移動させ、これにより駆動軸33に摩擦係合している移動体4を上方へ移動させる。そして、摩擦係合した摩擦力を超える程の瞬時の圧電素子32の収縮によって駆動軸33を下方に移動させ、移動体4がその位置(前記の上方への移動後の位置)に取り残されるようにする。このような駆動軸33の中心軸C方向の往復動を繰返すことで、移動体4が上方に移動する。 More specifically, the drive shaft 33 is slowly moved upward by the extension of the piezoelectric element 32, thereby moving the moving body 4 frictionally engaged with the drive shaft 33 upward. The drive shaft 33 is moved downward by the instantaneous contraction of the piezoelectric element 32 so as to exceed the frictionally engaged frictional force, so that the moving body 4 is left at that position (the position after the upward movement). To. By repeating such reciprocation of the drive shaft 33 in the direction of the central axis C, the moving body 4 moves upward.
 以上のアクチュエータユニット1によれば、駆動軸33を挟んで移動体4と対向する位置に第1の支柱部120aが設けられることで、ユニット本体2にアクチュエータ3の一端だけを取り付ける構成にしても外部からアクチュエータユニット1に衝撃が加わったときにアクチュエータ3が損傷し難くいため、耐衝撃性を維持しつつ低背化(短小化)を図ることが可能となる。 According to the actuator unit 1 described above, the first support column 120a is provided at a position facing the moving body 4 across the drive shaft 33, so that only one end of the actuator 3 is attached to the unit body 2. Since it is difficult for the actuator 3 to be damaged when an impact is applied to the actuator unit 1 from the outside, it is possible to reduce the height (shortening) while maintaining the impact resistance.
 具体的には、アクチュエータ3の一端(圧電素子32側の端部:本実施形態では錘31)が基部20(ユニット本体2)に取り付けられる構成とすることで、アクチュエータの両端をユニット本体等が支持する構成に比べ、アクチュエータ3の短尺化やアクチュエータ3の他端側を支持する構成等の削減が可能となるため、アクチュエータユニット1の低背化(短小化)を図ることができる。このとき、駆動軸33を挟んで移動体4と対向する位置に第1の支柱部120aを設けることで、外部から当該アクチュエータユニット1に衝撃が加わったときに、この第1の支柱部120aが移動体4から駆動軸33に加わる荷重(移動体4と、この移動体4に保持されたレンズバレル(被駆動部材)7との両方の重さに基づく衝撃加速度等)を受け止めると共に、前記荷重による駆動軸33の第1の支柱部120a側への傾き変位を規制して前記変位に起因する応力等の発生を抑える。その結果、アクチュエータ3の一端のみが支持される構成としたことによる耐衝撃性の低下を防ぐことができる。 Specifically, one end of the actuator 3 (the end on the piezoelectric element 32 side: the weight 31 in this embodiment) is attached to the base 20 (unit main body 2), so that both ends of the actuator are connected to the unit main body or the like. Compared to the supporting configuration, the actuator 3 can be shortened, the configuration supporting the other end of the actuator 3 and the like can be reduced, so that the actuator unit 1 can be reduced in height (shortened). At this time, by providing the first support column 120a at a position facing the moving body 4 with the drive shaft 33 interposed therebetween, when an impact is applied to the actuator unit 1 from the outside, the first support column 120a The load applied to the drive shaft 33 from the moving body 4 (impact acceleration based on the weight of both the moving body 4 and the lens barrel (driven member) 7 held by the moving body 4) is received and the load By restricting the tilt displacement of the drive shaft 33 toward the first support column 120a due to the above, the occurrence of stress or the like due to the displacement is suppressed. As a result, it is possible to prevent a decrease in impact resistance due to the configuration in which only one end of the actuator 3 is supported.
 なお、本実施形態では、駆動軸33と第1の支柱部120a(詳しくは内周面122a)とが接触しているが、この構成に限定されない。例えば、駆動軸33と第1の支柱部120aとが、所定の間隔を隔てて配置されていてもよい。この所定の間隔とは、アクチュエータ3の傾き変位を規制するような間隔であり、衝撃が加わることによって駆動軸33が第1の支柱部120aに接触(当接)するまでアクチュエータ3(アクチュエータ本体30)が傾き変位したときに当該アクチュエータ3において前記傾き変位に起因する損傷(例えば、応力等による損傷)が生じないような間隔である。また、この所定の間隔は、アクチュエータ3のサイズや形状等によって適宜設定されるが、本実施形態では、例えば、50μm以下である。 In this embodiment, the drive shaft 33 and the first support column 120a (specifically, the inner peripheral surface 122a) are in contact with each other, but the present invention is not limited to this configuration. For example, the drive shaft 33 and the first support column 120a may be arranged at a predetermined interval. The predetermined interval is an interval that restricts the tilt displacement of the actuator 3 and is applied until the drive shaft 33 comes into contact with (abuts on) the first support column 120a due to an impact. ) Is an interval at which the actuator 3 is not damaged due to the tilt displacement (for example, damage due to stress or the like). Further, the predetermined interval is appropriately set depending on the size, shape, etc. of the actuator 3, but in the present embodiment, for example, it is 50 μm or less.
 また、本実施形態のアクチュエータユニット1では、駆動軸33と第1の支柱部120aの内側面122aとが駆動軸33の周方向において複数箇所(本実施形態の例では2箇所)で接触している。これにより、駆動軸33と第1の支柱部120aとの接触面積を抑えて駆動軸33が往復動する際の駆動軸33と第1の支柱部120a(内側面122a)との間の摩擦を抑えつつ、移動体4によって駆動軸33に加えられる各方向からの力を第1の支柱部120a(内側面122a)によって効果的に受けることができる。 In the actuator unit 1 of the present embodiment, the drive shaft 33 and the inner side surface 122a of the first support column 120a are in contact with each other at a plurality of locations (two locations in the example of the present embodiment) in the circumferential direction of the drive shaft 33. Yes. As a result, the friction between the drive shaft 33 and the first support column 120a (inner side surface 122a) when the drive shaft 33 reciprocates while suppressing the contact area between the drive shaft 33 and the first support column 120a is reduced. The force from each direction applied to the drive shaft 33 by the moving body 4 can be effectively received by the first support column 120a (inner side surface 122a) while being suppressed.
 また、本実施形態のアクチュエータユニット1では、ユニット本体2と、このユニット本体2に対応する形状のカバー8とによって筐体10が構築されているため、第1の支柱部120aが受けた荷重(外部からの衝撃によって駆動軸33に加わった移動体4等からの荷重)をカバー8や筐体10全体の剛性で受けることができ、これにより、十分な耐衝撃性が得られる。 Moreover, in the actuator unit 1 of this embodiment, since the housing | casing 10 is constructed | assembled by the unit main body 2 and the cover 8 of the shape corresponding to this unit main body 2, the load which the 1st support | pillar part 120a received ( The load from the moving body 4 and the like applied to the drive shaft 33 due to an external impact) can be received by the rigidity of the cover 8 and the entire housing 10, thereby obtaining sufficient impact resistance.
 また、本実施形態のアクチュエータ3は、平面視において、駆動軸33の輪郭で囲まれた領域の内部に圧電素子32の輪郭が含まれるように構成されている(すなわち、アクチュエータ先端側(上方側)の駆動軸が、基端側(下方側)にある圧電素子よりも第1の支柱部側に突出している)。これにより、第1の支柱部120aの内側面122aを駆動軸33に接触させるために、先端側の内側面122aを基端側の内側面122aより駆動軸33側に突出させる形状(先端側が太く基端側が細い形状)にしなくてもよい。このため、ユニット本体2の射出成形等が容易になる。 In addition, the actuator 3 of the present embodiment is configured such that the outline of the piezoelectric element 32 is included in the region surrounded by the outline of the drive shaft 33 in plan view (that is, the actuator tip side (upper side) ) Is projected closer to the first column than the piezoelectric element on the base end side (lower side)). Thus, in order to bring the inner side surface 122a of the first support column 120a into contact with the drive shaft 33, the inner side surface 122a on the distal end side protrudes from the inner side surface 122a on the proximal end side toward the drive shaft 33 (the distal end side is thicker). The base end side does not have to be thin. For this reason, injection molding or the like of the unit body 2 is facilitated.
 なお、本発明のアクチュエータユニットは、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the actuator unit of the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the scope of the present invention.
 上記実施形態のアクチュエータユニット1は、駆動対象物としてレンズ群71を保持したレンズバレル7を駆動するが、他の光学素子等を駆動してもよい。すなわち、アクチュエータユニット1が駆動する被駆動部材は、限定されない。 The actuator unit 1 of the above embodiment drives the lens barrel 7 holding the lens group 71 as a drive target, but may drive other optical elements and the like. That is, the driven member that the actuator unit 1 drives is not limited.
 上記実施形態では、第1の支柱部120aと駆動軸33とは接続されていないが、例えば、図11に示すように、第1の支柱部120aと駆動軸33とが接着剤70等によって接続(接着)されてもよい。この場合、駆動軸33が第1の支柱部120aに沿って往復動できるように接続する。より具体的には、駆動軸33において所定の駆動性能を得られる条件で、接着剤の量や接着剤の弾性率等が設定される。なお、上記実施形態の駆動軸33は、振幅がミクロン単位の振動(往復動)を行なうため、駆動軸33が接着剤によって第1の支柱部120aに接続されても、前記接着剤が所定の弾性率を有していれば、往復動できる。例えば、図11に示す例では、シリコン系弾性接着剤等が用いられる。また、第1の支柱部120aと駆動軸33との狭い隙間に接着剤を流し込むと、接着面積が大きくなって振動方向の剛性が高くなる。このため、第1の支柱部120aの内側面122aと駆動軸33の外周面とを接着するのではなく、例えば、第1の支柱部120aの上端と駆動軸33の外周面とを接着剤によって繋ぐ。これにより、第1の支柱部120aと駆動軸33との間(詳しくは、第1の支柱部120aの内側面122aと駆動軸33の外周面との間)に製造誤差等による隙間が生じていても、第1の支柱部120aと駆動軸33とを前記のように接着剤で繋ぐことによって、駆動軸33の往復動を許容しつつ外部からの衝撃による第1の支柱部120a側への駆動軸33の傾き変位を抑えることができる。 In the above embodiment, the first support column 120a and the drive shaft 33 are not connected. For example, as shown in FIG. 11, the first support column 120a and the drive shaft 33 are connected by an adhesive 70 or the like. (Adhesion) may be used. In this case, it connects so that the drive shaft 33 can reciprocate along the 1st support | pillar part 120a. More specifically, the amount of the adhesive, the elastic modulus of the adhesive, and the like are set under conditions that allow the drive shaft 33 to obtain a predetermined drive performance. In addition, since the drive shaft 33 of the above-described embodiment performs vibration (reciprocating) whose amplitude is in units of microns, even if the drive shaft 33 is connected to the first support column 120a by an adhesive, the adhesive is a predetermined amount. If it has an elastic modulus, it can reciprocate. For example, in the example shown in FIG. 11, a silicon-based elastic adhesive or the like is used. Further, when an adhesive is poured into a narrow gap between the first support column 120a and the drive shaft 33, the bonding area is increased and the rigidity in the vibration direction is increased. For this reason, instead of bonding the inner surface 122a of the first support column 120a and the outer peripheral surface of the drive shaft 33, for example, the upper end of the first support column 120a and the outer peripheral surface of the drive shaft 33 are bonded with an adhesive. Connect. As a result, a gap due to a manufacturing error or the like is generated between the first support column 120a and the drive shaft 33 (specifically, between the inner surface 122a of the first support column 120a and the outer peripheral surface of the drive shaft 33). However, by connecting the first support column 120a and the drive shaft 33 with the adhesive as described above, the drive shaft 33 is allowed to reciprocate, and the first support column 120a is moved toward the first support column 120a due to an external impact. The tilt displacement of the drive shaft 33 can be suppressed.
 また、上記実施形態のアクチュエータユニット1では、ユニット本体2に4つの支柱部(第1~第4の支柱部120a~120d)が設けられ、カバー8の各角隅部の内側面に対応する支柱部が当接および/または接着されているが、この構成に限定されない。なお、Aおよび/またはBは、AおよびBのうちの少なくとも一方を意味する。 In the actuator unit 1 of the above-described embodiment, the unit main body 2 is provided with four support columns (first to fourth support columns 120a to 120d), and the support columns corresponding to the inner surface of each corner of the cover 8 are provided. The parts are in contact and / or bonded, but the present invention is not limited to this configuration. A and / or B means at least one of A and B.
 ユニット本体2に、少なくとも第1の支柱部120aが設けられ、この第1の支柱部120aがカバー8と接する形状若しくは前記カバー部材に近接する形状(前記カバー部材と狭い所定間隔の隙間を空けて配置される形状)を有していればよい。この構成でも、第1の支柱部120aが駆動軸33から受けた荷重をカバー8や筐体10全体の剛性で受けることができる。 The unit main body 2 is provided with at least a first support column 120a, and the first support column 120a is in contact with the cover 8 or in the vicinity of the cover member (with a gap of a narrow predetermined interval from the cover member). It is only necessary to have a shape to be arranged. Even in this configuration, the load received by the first support column 120a from the drive shaft 33 can be received by the rigidity of the cover 8 and the entire casing 10.
 ただし、第1の支柱部と移動体を挟んで対向する位置(基部20の第3の角隅部20c)に第3の支柱部120cが設けられ、この第3の支柱部120cがカバー8と接する若しくは近接する形状を有していれば、筐体10の剛性がより向上する。さらに、第1および第3の支柱部120a、120cに加え、基部20の第2の角隅部20bと第4の角隅部20dとの少なくとも一方に支柱部(第2の支柱部120bおよび/または第4の支柱部120d)が設けられ、この支柱部がカバー8と接する若しくは近接する形状を有していれば、筐体10の剛性がさらに向上する。 However, a third column 120c is provided at a position (third corner 20c of the base 20) facing the first column and the moving body, and the third column 120c is connected to the cover 8. If it has the shape which touches or adjoins, the rigidity of the housing | casing 10 will improve more. Further, in addition to the first and third column portions 120a and 120c, at least one of the second corner portion 20b and the fourth corner portion 20d of the base 20 has a column portion (second column portion 120b and / or Alternatively, if the fourth support column 120d) is provided and the support column has a shape in contact with or close to the cover 8, the rigidity of the housing 10 is further improved.
 また、カバー8と接する若しくは近接するユニット本体2の支柱部120a、120b、・・・の数が増えるほど、外部からの衝撃によるカバー8の変形もより抑えられる。 Further, the deformation of the cover 8 due to an external impact is further suppressed as the number of the column portions 120a, 120b,...
 上記実施形態のアクチュエータユニット1では、レンズ群71を保持するレンズバレル7を、アクチュエータ本体30によって駆動される移動体4が保持する構成であるが、この構成に限定されない。例えば、アクチュエータユニット1は、移動体自体が1または複数の撮像レンズを保持し、この撮像レンズを直接保持する移動体をアクチュエータ本体30が駆動する構成でもよい。 In the actuator unit 1 of the above embodiment, the lens barrel 7 that holds the lens group 71 is held by the moving body 4 that is driven by the actuator main body 30, but the configuration is not limited thereto. For example, the actuator unit 1 may be configured such that the moving body itself holds one or a plurality of imaging lenses, and the actuator body 30 drives the moving body that directly holds the imaging lenses.
 上記実施形態のアクチュエータユニット1では、ガイドスプリング6の押圧片63の弾性復帰力(弾性力)によって駆動軸33を第1の移動体側摺動面55および第2の移動体側摺動面62aに押し付けることにより、移動体4と駆動軸33とを摩擦係合させているが、この構成に限定されない。例えば、駆動軸が磁石によって構成され、移動体(具体的には第1摺動面55および第2摺動面62a)が金属によって構成されていてもよい。すなわち、所定の摩擦力が生じるように駆動軸の外周面を第1摺動面55および第2摺動面62aに押し付ける力は、弾性力等の付勢力に限定されず、磁力等であってもよい。 In the actuator unit 1 of the above embodiment, the drive shaft 33 is pressed against the first moving body side sliding surface 55 and the second moving body side sliding surface 62a by the elastic restoring force (elastic force) of the pressing piece 63 of the guide spring 6. Thus, the movable body 4 and the drive shaft 33 are frictionally engaged, but the present invention is not limited to this configuration. For example, the drive shaft may be configured by a magnet, and the moving body (specifically, the first sliding surface 55 and the second sliding surface 62a) may be configured by metal. That is, the force that presses the outer peripheral surface of the drive shaft against the first sliding surface 55 and the second sliding surface 62a so as to generate a predetermined frictional force is not limited to an urging force such as an elastic force but is a magnetic force or the like. Also good.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかるアクチュエータユニットは、伸縮する機械エネルギーに電気エネルギーを変換する電気機械変換素子、前記電気機械変換素子における伸縮方向の一方端に固定されて前記機械エネルギーが伝達される駆動摩擦部材、および、前記駆動摩擦部材に所定の摩擦力で係合される移動体を有するアクチュエータと、前記アクチュエータが固定されるユニット本体と、を備える。そして、前記移動体は、前記ユニット本体に対して相対移動し、前記ユニット本体は、前記アクチュエータの電気機械変換素子側の端部が取り付けられる基部と、前記移動体と前記駆動摩擦部材を挟んで対向するように(前記駆動摩擦部材を介して前記移動体に対向するように)前記基部から前記移動体側に延びる第1支柱部と、を有し、前記駆動摩擦部材と前記第1支柱部とは、接触するように配置され、または、前記アクチュエータの傾き変位を規制する所定の間隔を隔てて配置される。 An actuator unit according to one aspect includes an electromechanical conversion element that converts electrical energy into mechanical energy that expands and contracts, a drive friction member that is fixed to one end in the expansion and contraction direction of the electromechanical conversion element and that transmits the mechanical energy, and And an actuator having a moving body engaged with the driving friction member with a predetermined frictional force, and a unit main body to which the actuator is fixed. The movable body moves relative to the unit main body, the unit main body sandwiches the movable body and the drive friction member between a base portion to which an end of the actuator on the electromechanical conversion element side is attached. A first strut portion extending from the base portion toward the moving body so as to face each other (so as to face the moving body via the driving friction member), and the driving friction member and the first strut portion, Are arranged so as to be in contact with each other, or are arranged at a predetermined interval that regulates the tilt displacement of the actuator.
 このようなアクチュエータユニットでは、駆動摩擦部材を挟んで移動体と対向する位置に第1支柱部が設けられることで、ユニット本体にアクチュエータの一端だけを取り付ける構成にしても外部からアクチュエータユニットに衝撃が加わった場合に、アクチュエータが損傷し難いため、耐衝撃性を維持しつつ低背化(短小化)を図ることが可能となる。 In such an actuator unit, since the first support column is provided at a position facing the moving body with the drive friction member interposed therebetween, even if only one end of the actuator is attached to the unit main body, an impact is applied to the actuator unit from the outside. When added, the actuator is not easily damaged, so that it is possible to reduce the height (shortening) while maintaining the impact resistance.
 より具体的には、例えば、アクチュエータの一端(電気機械変換素子側の端部)が基部(ユニット本体)に取り付けられる構成とすることで、アクチュエータの両端をユニット本体等が支持する構成に比べ、アクチュエータの短尺化やアクチュエータの他端側を支持する構成等の削減が、可能となるため、アクチュエータユニットの低背化を図ることができる。この際に、駆動摩擦部材を挟んで移動体と対向する位置に第1支柱部を設けることで、外部から当該アクチュエータユニットに衝撃が加わった場合に、この第1支柱部が移動体から駆動摩擦部材に加わる荷重(移動体と、この移動体に保持された被駆動部材との両方の重さに基づく衝撃加速度等)を受け止めると共に、前記荷重による駆動摩擦部材の第1支柱側への傾き変位を規制して前記傾き変位に起因する応力等の発生を抑える。その結果、アクチュエータの一端のみが支持される構成としたことによる耐衝撃性の低下を防ぐことができる。 More specifically, for example, by adopting a configuration in which one end of the actuator (an end on the electromechanical conversion element side) is attached to the base (unit main body), compared to a configuration in which the unit main body or the like supports both ends of the actuator, Since it is possible to reduce the length of the actuator and the configuration for supporting the other end of the actuator, it is possible to reduce the height of the actuator unit. At this time, by providing the first support column at a position facing the moving body with the drive friction member interposed therebetween, when an impact is applied to the actuator unit from the outside, the first support column is driven from the moving object by the drive friction. The load applied to the member (impact acceleration or the like based on the weight of both the moving body and the driven member held by the moving body) is received, and the displacement of the driving friction member toward the first support column due to the load is received. To suppress the occurrence of stress or the like due to the tilt displacement. As a result, it is possible to prevent a decrease in impact resistance due to the configuration in which only one end of the actuator is supported.
 他の一態様では、上述のアクチュエータユニットにおいて、好ましくは、前記駆動摩擦部材は、前記基部から前記移動体側に向かう方向を軸心とする円柱形状を有し、前記第1支柱部は、前記駆動摩擦部材の外周面と対向し、且つ前記外周面に沿って湾曲する対向面を有し、前記対向面は、前記駆動摩擦部材の周方向において複数箇所で前記駆動摩擦部材と接触する。 In another aspect, in the above-described actuator unit, preferably, the drive friction member has a cylindrical shape whose axis is a direction from the base toward the movable body, and the first support column is the drive It has an opposing surface that faces the outer peripheral surface of the friction member and curves along the outer peripheral surface, and the opposing surface contacts the driving friction member at a plurality of locations in the circumferential direction of the driving friction member.
 このようなアクチュエータユニットでは、駆動摩擦部材と第1支柱部との接触面積を抑えて駆動摩擦部材が往復動する際の駆動摩擦部材と第1支柱部との間の摩擦を抑えつつ、移動体によって駆動摩擦部材に加えられる各方向からの力を第1支柱部(対向面)によって効果的に受けることができる。 In such an actuator unit, while the contact area between the drive friction member and the first support column is suppressed, the friction between the drive friction member and the first support column when the drive friction member reciprocates is suppressed, and the moving body Thus, the force from each direction applied to the driving friction member can be effectively received by the first support column (opposing surface).
 また、当該アクチュエータユニットにおいて駆動摩擦部材と第1支柱部とが所定の間隔を隔てて配置される場合、例えば、前記所定の間隔が50μm以下であれば、外部からアクチュエータユニットに衝撃が加わったときに、第1支柱部が移動体から駆動摩擦部材に加わる荷重による駆動摩擦部材の第1支柱側への変位に起因するアクチュエータの損傷を好適に防ぐことができる。 In the actuator unit, when the driving friction member and the first support column are arranged at a predetermined interval, for example, when the predetermined interval is 50 μm or less, an impact is applied to the actuator unit from the outside. In addition, it is possible to suitably prevent the actuator from being damaged due to the displacement of the driving friction member toward the first column due to the load applied to the driving friction member by the first column.
 他の一態様では、これら上述のアクチュエータユニットにおいて、好ましくは、前記ユニット本体と共同して前記アクチュエータを収容する筐体を構築するカバー部材を備え、前記第1支柱部は、前記駆動摩擦部材との接触部位を除いた表面の少なくとも一部が前記カバー部材と接する形状若しくは前記カバー部材に近接する形状(前記カバー部材と所定間隔の隙間を空けて配置される形状)を有する。 In another aspect, the above-described actuator units preferably include a cover member that constructs a housing that accommodates the actuator in cooperation with the unit main body, and the first strut portion includes the driving friction member. At least a part of the surface excluding the contact portion has a shape that is in contact with the cover member or a shape that is close to the cover member (a shape that is disposed with a gap of a predetermined distance from the cover member).
 このようなアクチュエータユニットでは、第1支柱部が駆動摩擦部材から受けた荷重をカバー部材や筐体(カバー部材およびユニット本体)全体の剛性で受けることができ、これにより、耐衝撃性が向上する。 In such an actuator unit, the load that the first support column receives from the drive friction member can be received by the rigidity of the entire cover member and the housing (the cover member and the unit main body), and thereby the impact resistance is improved. .
 この場合、一態様では、前記第1支柱部と前記カバー部材とが接着剤により接着されることで、ユニット本体(支柱部)とカバー部材との結合がより強くなって筐体の剛性がより向上する。しかも、製造誤差等によって第1支柱部とカバー部材との間に隙間が生じても、接着剤がこの隙間を埋めるため筐体の剛性が維持される。 In this case, in one aspect, the first support column and the cover member are bonded to each other with an adhesive, whereby the unit body (support column) and the cover member are more strongly coupled, and the rigidity of the housing is further increased. improves. Moreover, even if a gap is generated between the first support column and the cover member due to a manufacturing error or the like, the adhesive fills this gap, so that the rigidity of the housing is maintained.
 他の一態様では、これら上述のアクチュエータユニットにおいて、好ましくは、前記ユニット本体は、前記基部から前記第1支柱部と同方向若しくは略同方向に延びる第2支柱部を備え、前記基部は、第1支柱部が延びる方向から見て略矩形状の輪郭を有し、前記第1支柱部は、前記基部の特定の角隅部である第1角隅部に設けられ、前記第2支柱部は、前記基部において前記第1支柱部と前記移動体を挟んで対向する第2角隅部に設けられ、且つ前記カバー部材と接する形状若しくは前記カバー部材に近接する形状(前記カバー部材と所定間隔の隙間を空けて配置される形状)を有する。 In another aspect, in the above-described actuator units, preferably, the unit main body includes a second support column portion extending from the base portion in the same direction as or substantially in the same direction as the first support column portion, The first strut portion has a substantially rectangular outline when viewed from the direction in which the one strut portion extends, the first strut portion is provided at a first corner portion that is a specific corner portion of the base portion, and the second strut portion is The base portion is provided at a second corner portion facing the first support column and the moving body, and has a shape in contact with the cover member or a shape close to the cover member (at a predetermined interval from the cover member). The shape is arranged with a gap).
 このようなアクチュエータユニットでは、第1支柱部の延びる方向から見て略矩形状の筐体において、対角線上の角隅部(第1角隅部および第2角隅部)に支柱部が設けられることで、筐体の剛性がより向上する。 In such an actuator unit, in a substantially rectangular housing as viewed from the direction in which the first support column extends, support columns are provided at diagonal corners (first and second corners). As a result, the rigidity of the housing is further improved.
 他の一態様では、上述のアクチュエータユニットにおいて、好ましくは、前記ユニット本体は、前記基部から前記第1支柱部と同方向若しくは略同方向に延びる第3支柱部を備え、前記第3支柱部は、前記基部において前記第1角隅部および前記第2角隅部を除いた2つの角隅部の少なくとも一方に設けられ、且つ前記カバー部材と接する形状若しくは前記カバー部材に近接する形状(前記カバー部材と所定間隔の隙間を空けて配置される形状)を有する。 In another aspect, in the above-described actuator unit, preferably, the unit main body includes a third support column extending from the base in the same direction as or substantially in the same direction as the first support column, and the third support column is The base is provided in at least one of the two corners excluding the first corner and the second corner, and is in contact with or close to the cover member (the cover And a shape arranged with a gap of a predetermined distance from the member.
 このようなアクチュエータユニットでは、第1支柱部の延びる方向から見て略矩形状の筐体において、3隅または4隅に支柱部が設けられることで、筐体の剛性がより向上し、外部からの衝撃によるカバー部材の変形も好適に抑えることができる。 In such an actuator unit, the rigidity of the casing is further improved by providing support sections at three or four corners in a substantially rectangular casing as viewed from the extending direction of the first support section. The deformation of the cover member due to the impact can be suitably suppressed.
 他の一態様では、上述のアクチュエータユニットにおいて、前記駆動摩擦部材は、前記機械エネルギーの伝達による往復動を可能に前記第1支柱部に接着剤により接着されてもよい。 In another aspect, in the above-described actuator unit, the drive friction member may be bonded to the first support column with an adhesive so as to be able to reciprocate by transmission of the mechanical energy.
 このようなアクチュエータユニットでは、第1支柱部と駆動摩擦部材との間に製造誤差等による隙間が生じていても、第1支柱部と駆動摩擦部材とを接着剤で繋ぐことによって、駆動摩擦部材の往復動(機械エネルギーの伝達による往復動)を許容しつつ外部からの衝撃による第1支柱側への駆動摩擦部材の変位を抑えることができる。この場合、例えば、前記第1支柱部の先端部と前記駆動摩擦部材とが接着される。 In such an actuator unit, even if a gap due to a manufacturing error or the like is generated between the first support column and the drive friction member, the drive friction member is obtained by connecting the first support column and the drive friction member with an adhesive. The displacement of the drive friction member toward the first support column due to an external impact can be suppressed while allowing the reciprocating motion (reciprocating motion by transmission of mechanical energy). In this case, for example, the distal end portion of the first support column and the drive friction member are bonded.
 他の一態様では、これら上述のアクチュエータユニットにおいて、好ましくは、前記アクチュエータは、前記第1支柱部が延びる方向から見て、前記駆動摩擦部材の輪郭で囲まれた領域の内部に前記電気機械変換素子の輪郭が含まれるように構成される。 In another aspect, in the above-described actuator unit, preferably, the actuator is arranged in the electromechanical conversion inside a region surrounded by an outline of the drive friction member when viewed from a direction in which the first support column extends. It is comprised so that the outline of an element may be included.
 このようなアクチュエータユニットでは、駆動摩擦部材の往復動によって移動体が移動する際に、第1支柱部が延びる方向から見て電気機械変換素子が駆動摩擦部材の外周(輪郭)より外側に突出していないため、駆動摩擦部材の往復動による移動体の移動の邪魔にならない。 In such an actuator unit, when the moving body moves due to the reciprocating movement of the driving friction member, the electromechanical conversion element protrudes outside the outer periphery (contour) of the driving friction member as seen from the direction in which the first support column extends. Therefore, it does not interfere with the movement of the moving body due to the reciprocating motion of the drive friction member.
 また、第1支柱部の先端側にある駆動摩擦部材が、第1支柱部の基端側(基部側)にある電気機械変換素子よりも第1支柱部側に突出しているため、この駆動摩擦部材に接触する第1支柱部の先端側を基端(基部側の端部)側よりも細くでき、これにより、射出成形等が容易になる。 Further, since the drive friction member on the distal end side of the first support column protrudes toward the first support column than the electromechanical conversion element on the base end side (base side) of the first support column, this drive friction member. The distal end side of the first support column that contacts the member can be made thinner than the proximal end (end portion on the proximal side) side, thereby facilitating injection molding and the like.
 また、他の一態様にかかる撮像装置は、これら上述のいずれかのアクチュエータユニットと、光学像を電気的な信号に変換する撮像素子と、1または複数の撮像レンズを備え、物体の光学像を前記撮像素子の受光面上に結像する撮像光学系とを備え、前記撮像光学系における前記1または複数の撮像レンズのうちの光軸方向に沿って移動する撮像レンズは、前記アクチュエータユニットの前記移動体に取り付けられている。 In addition, an imaging apparatus according to another aspect includes any one of the above-described actuator units, an imaging element that converts an optical image into an electrical signal, and one or a plurality of imaging lenses. An imaging optical system that forms an image on a light receiving surface of the imaging element, and the imaging lens that moves along an optical axis direction of the one or more imaging lenses in the imaging optical system is It is attached to the moving body.
 このような撮像装置では、これら上述のいずれかのアクチュエータユニットを備えるので、耐衝撃性を維持しつつ低背化(短小化)を図ることが可能となる。 Since such an imaging apparatus includes any of the above-described actuator units, it is possible to achieve a reduction in height (shortening) while maintaining impact resistance.
 この出願は、2012年9月28日に出願された日本国特許出願特願2012-215680を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2012-215680 filed on September 28, 2012, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、アクチュエータユニットおよびこれを用いた撮像装置を提供することができる。 According to the present invention, it is possible to provide an actuator unit and an imaging device using the actuator unit.

Claims (11)

  1.  電気エネルギーを、伸縮する機械エネルギーに変換する電気機械変換素子、前記電気機械変換素子における伸縮方向の一方端に固定されて前記機械エネルギーが伝達される駆動摩擦部材、および前記駆動摩擦部材に所定の摩擦力で係合される移動体を有するアクチュエータと、
     前記アクチュエータが固定されるユニット本体と、を備え、
     前記移動体は、前記ユニット本体に対して相対移動し、
     前記ユニット本体は、前記アクチュエータの電気機械変換素子側の端部が取り付けられる基部と、前記移動体と前記駆動摩擦部材を挟んで対向するように前記基部から前記移動体側に延びる第1支柱部と、を有し、
     前記駆動摩擦部材と前記第1支柱部とは、接触するように配置され、または、前記アクチュエータの傾き変位を規制する所定の間隔を隔てて配置される、
     アクチュエータユニット。
    An electromechanical conversion element that converts electrical energy into expanding and contracting mechanical energy, a driving friction member that is fixed to one end in the expansion and contraction direction of the electromechanical conversion element and that transmits the mechanical energy, and a predetermined amount applied to the driving friction member An actuator having a moving body engaged by a frictional force;
    A unit main body to which the actuator is fixed,
    The moving body moves relative to the unit body,
    The unit main body includes a base portion to which an end portion of the actuator on the electromechanical conversion element side is attached, and a first support column portion extending from the base portion toward the movable body so as to face the movable body with the drive friction member interposed therebetween. Have
    The drive friction member and the first support column are arranged so as to contact each other, or are arranged at a predetermined interval that regulates the tilt displacement of the actuator.
    Actuator unit.
  2.  前記駆動摩擦部材は、前記基部から前記移動体側に向かう方向を軸心とする円柱形状を有し、
     前記第1支柱部は、前記駆動摩擦部材の外周面と対向し、且つ前記外周面に沿って湾曲する対向面を有し、
     前記対向面は、前記駆動摩擦部材の周方向において複数箇所で前記駆動摩擦部材と接触する、
     請求項1に記載のアクチュエータユニット。
    The drive friction member has a cylindrical shape with the direction from the base toward the moving body as an axis.
    The first support column has an opposing surface that faces the outer peripheral surface of the drive friction member and curves along the outer peripheral surface;
    The opposed surface is in contact with the drive friction member at a plurality of locations in the circumferential direction of the drive friction member.
    The actuator unit according to claim 1.
  3.  前記所定の間隔は、50μm以下である、
     請求項1に記載のアクチュエータユニット。
    The predetermined interval is 50 μm or less.
    The actuator unit according to claim 1.
  4.  前記ユニット本体と共同して前記アクチュエータを収容する筐体を構築するカバー部材を備え、
     前記第1支柱部は、前記駆動摩擦部材との接触部位を除いた表面の少なくとも一部が前記カバー部材と接する若しくは近接する形状を有する、
     請求項1ないし請求項3のいずれか1項に記載のアクチュエータユニット。
    A cover member for constructing a housing for accommodating the actuator in cooperation with the unit main body;
    The first support column has a shape in which at least a part of the surface excluding the contact portion with the drive friction member is in contact with or close to the cover member.
    The actuator unit according to any one of claims 1 to 3.
  5.  前記第1支柱部と前記カバー部材とが接着剤により接着されている、
     請求項4に記載のアクチュエータユニット。
    The first support column and the cover member are bonded with an adhesive.
    The actuator unit according to claim 4.
  6.  前記ユニット本体は、前記基部から前記第1支柱部と同方向若しくは略同方向に延びる第2支柱部を備え、
     前記基部は、第1支柱部が延びる方向から見て略矩形状の輪郭を有し、
     前記第1支柱部は、前記基部の特定の角隅部である第1角隅部に設けられ、
     前記第2支柱部は、前記基部において前記第1支柱部と前記移動体を挟んで対向する第2角隅部に設けられ、且つ前記カバー部材と接する若しくは近接する形状を有する、
     請求項4または請求項5に記載のアクチュエータユニット。
    The unit main body includes a second strut portion extending from the base portion in the same direction or substantially the same direction as the first strut portion,
    The base has a substantially rectangular outline when viewed from the direction in which the first support column extends.
    The first support column is provided at a first corner that is a specific corner of the base,
    The second support column portion is provided at a second corner portion facing the first support column portion and the moving body at the base portion, and has a shape in contact with or close to the cover member.
    The actuator unit according to claim 4 or 5.
  7.  前記ユニット本体は、前記基部から前記第1支柱部と同方向若しくは略同方向に延びる第3支柱部を備え、
     前記第3支柱部は、前記基部において前記第1角隅部および前記第2角隅部を除いた2つの角隅部の少なくとも一方に設けられ、且つ前記カバー部材と接する若しくは近接する形状を有する、
     請求項6に記載のアクチュエータユニット。
    The unit body includes a third support column extending from the base in the same direction as the first support column or substantially in the same direction,
    The third support column is provided in at least one of the two corners excluding the first corner and the second corner in the base, and has a shape in contact with or close to the cover member. ,
    The actuator unit according to claim 6.
  8.  前記駆動摩擦部材は、前記機械エネルギーの伝達による往復動を可能に前記第1支柱部に接着剤により接着されている、
     請求項1ないし請求項6のいずれか1項に記載のアクチュエータユニット。
    The drive friction member is bonded to the first support column by an adhesive so as to be able to reciprocate by transmission of the mechanical energy.
    The actuator unit according to any one of claims 1 to 6.
  9.  前記第1支柱部の先端部と前記駆動摩擦部材とが接着されている、
     請求項8に記載のアクチュエータユニット。
    The distal end portion of the first support column and the drive friction member are bonded,
    The actuator unit according to claim 8.
  10.  前記アクチュエータは、前記第1支柱部が延びる方向から見て、前記駆動摩擦部材の輪郭で囲まれた領域の内部に前記電気機械変換素子の輪郭が含まれるように構成される、
     請求項1ないし請求項9のいずれか1項に記載のアクチュエータユニット。
    The actuator is configured such that the outline of the electromechanical conversion element is included in a region surrounded by the outline of the drive friction member when viewed from the direction in which the first support column extends.
    The actuator unit according to any one of claims 1 to 9.
  11.  請求項1ないし請求項10のいずれか1項に記載のアクチュエータユニットと、
     光学像を電気的な信号に変換する撮像素子と、
     1または複数の撮像レンズを備え、物体の光学像を前記撮像素子の受光面上に結像する撮像光学系とを備え、
     前記撮像光学系における前記1または複数の撮像レンズのうちの光軸方向に沿って移動する撮像レンズは、前記アクチュエータユニットの前記移動体に取り付けられている、
     撮像装置。
     
    The actuator unit according to any one of claims 1 to 10,
    An image sensor that converts an optical image into an electrical signal;
    An imaging optical system that includes one or a plurality of imaging lenses, and that forms an optical image of an object on a light receiving surface of the imaging element;
    An imaging lens that moves along an optical axis direction among the one or more imaging lenses in the imaging optical system is attached to the moving body of the actuator unit.
    Imaging device.
PCT/JP2013/005093 2012-09-28 2013-08-28 Actuator unit and imaging device WO2014049962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014509549A JP5565540B1 (en) 2012-09-28 2013-08-28 Actuator unit and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-215680 2012-09-28
JP2012215680 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014049962A1 true WO2014049962A1 (en) 2014-04-03

Family

ID=50387411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005093 WO2014049962A1 (en) 2012-09-28 2013-08-28 Actuator unit and imaging device

Country Status (2)

Country Link
JP (1) JP5565540B1 (en)
WO (1) WO2014049962A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005057A (en) * 2016-07-05 2018-01-11 Tdk株式会社 Lens drive device
CN111435821A (en) * 2019-01-11 2020-07-21 精浚科技股份有限公司 Friction drive actuator and buffer bracket thereof
JP7294174B2 (en) 2020-02-07 2023-06-20 Tdk株式会社 Optical drive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052974A1 (en) * 2008-11-06 2010-05-14 ミツミ電機株式会社 Drive device
JP2012125047A (en) * 2010-12-08 2012-06-28 Konica Minolta Advanced Layers Inc Actuator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274777A (en) * 2006-03-30 2007-10-18 Fujinon Corp Piezoelectric element and drive unit
JP2012147510A (en) * 2011-01-06 2012-08-02 Olympus Corp Inertial drive actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052974A1 (en) * 2008-11-06 2010-05-14 ミツミ電機株式会社 Drive device
JP2012125047A (en) * 2010-12-08 2012-06-28 Konica Minolta Advanced Layers Inc Actuator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018005057A (en) * 2016-07-05 2018-01-11 Tdk株式会社 Lens drive device
CN107577025A (en) * 2016-07-05 2018-01-12 Tdk株式会社 Lens driver
CN107577025B (en) * 2016-07-05 2020-06-09 Tdk株式会社 Lens driving device
CN111435821A (en) * 2019-01-11 2020-07-21 精浚科技股份有限公司 Friction drive actuator and buffer bracket thereof
JP7294174B2 (en) 2020-02-07 2023-06-20 Tdk株式会社 Optical drive

Also Published As

Publication number Publication date
JP5565540B1 (en) 2014-08-06
JPWO2014049962A1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
US7129621B2 (en) Vibration wave linear motor and lens implement using vibration wave linear motor
US9530953B2 (en) Vibration-type actuator, image pickup apparatus, and stage
US20050236931A1 (en) Vibration wave linear motor and lens implement using vibration wave linear motor
JP6155460B2 (en) Drive member, linear drive device, camera device, and electronic device
KR100949918B1 (en) Linear motor and actuator having the same
JP6981376B2 (en) Lens drive device
JP5565540B1 (en) Actuator unit and imaging device
JP5565543B1 (en) Driving device and imaging device
US9455394B2 (en) Displacement member, driving member, actuator, and driving device
JP7073957B2 (en) Lens drive device
JP5556976B1 (en) Imaging lens driving actuator unit and imaging apparatus
WO2014174750A1 (en) Drive apparatus and image pickup apparatus using same
JP5618028B2 (en) Driving device and imaging device
JP6852715B2 (en) Lens drive device
JP5569665B1 (en) DRIVE DEVICE AND IMAGING DEVICE USING THE SAME
WO2014185297A1 (en) Drive device and imaging device
JP2020013064A (en) Lens drive device
JP5903964B2 (en) Lens drive device
CN112334810B (en) Lens driving device
JP5892251B2 (en) Actuator
JP6525640B2 (en) Vibration type actuator, ultrasonic motor and lens barrel
WO2014188866A1 (en) Method for manufacturing actuator unit, moving body for actuator unit, and actuator unit having same
JP2013156296A (en) Lens driving device and piezoelectric actuator unit
JP2009168919A (en) Lens module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014509549

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842744

Country of ref document: EP

Kind code of ref document: A1