WO2014021156A1 - Protective element and battery pack - Google Patents

Protective element and battery pack Download PDF

Info

Publication number
WO2014021156A1
WO2014021156A1 PCT/JP2013/069995 JP2013069995W WO2014021156A1 WO 2014021156 A1 WO2014021156 A1 WO 2014021156A1 JP 2013069995 W JP2013069995 W JP 2013069995W WO 2014021156 A1 WO2014021156 A1 WO 2014021156A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
extraction electrode
laminated
protective
electrode
Prior art date
Application number
PCT/JP2013/069995
Other languages
French (fr)
Japanese (ja)
Inventor
武雄 木村
後藤 一夫
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201380040647.0A priority Critical patent/CN104508783A/en
Priority to KR1020157004831A priority patent/KR20150040954A/en
Publication of WO2014021156A1 publication Critical patent/WO2014021156A1/en
Priority to HK15109371.3A priority patent/HK1208760A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protective element that protects a circuit connected on a current path by fusing the current path.
  • an overcharge protection or an overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, a lightning surge or the like is applied, and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell.
  • the battery pack and the electronic device must be protected from accidents such as ignition even when the is output. Accordingly, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used.
  • a heating element is provided inside the protection element.
  • a structure that melts a molten conductor is generally used.
  • the fusible conductor has a current capacity of about 15 A at the maximum because it is used for applications having a relatively low current capacity such as a mobile phone or a notebook computer. is doing.
  • Applications of lithium ion secondary batteries have been expanding in recent years, and their use in higher current applications such as electric tools such as electric drivers, transportation equipment such as hybrid cars, electric vehicles, and electric power assisted bicycles has been studied. Part recruitment has begun. In these applications, a large current exceeding several tens of A to 100 A may flow particularly at startup. Realization of a protection element corresponding to such a current capacity is desired.
  • the cross-sectional area of the soluble conductor may be increased.
  • Sn / Ag / Cu solder molded into a 1.6 mm ⁇ line When Sn / Ag / Cu solder molded into a 1.6 mm ⁇ line is used, a current capacity of about 50 A can be obtained.
  • the protection element needs to detect the overvoltage state of the battery cell, flow current through the resistance heating element of the protection element, and cut the soluble conductor by the heat generation, in addition to the case where the protection element is melted by an overcurrent state. is there. For this reason, the “thick” soluble conductor has a problem that heat conduction from the heating element is lowered and it is difficult to cut the soluble conductor. Further, when the “thick” fusible conductor is blown, there is a problem that the circuit cannot be cut off unless the melted solder is surely cut.
  • an object is to obtain a protective element that can be easily blown by heat generated by a heating element while ensuring a current capacity at the time of overcurrent protection, and can reliably cut off a circuit by dividing molten solder.
  • a protection element includes an insulating substrate, a heating element that is stacked on the insulating substrate, and has two terminals for receiving a current supply from an external power source, and at least An insulating member laminated on the insulating substrate so as to cover the heating element, the first and second electrodes, and laminated on the insulating member so as to overlap the heating element, and between the first and second electrodes
  • a heating element extraction electrode that is electrically connected to the current path of the heating element and one heating element terminal of the heating element, and is electrically connected to an external circuit, and laminated on a part of the heating element extraction electrode,
  • a soluble conductor that is connected across the first and second electrodes from the heating element extraction electrode and that melts the current path between the first electrode and the second electrode by heating.
  • the fusible conductor is connected at a portion where the heating element extraction electrode and the protection layer of the heating element extraction electrode are not stacked, and the protection layer is stacked at a position where
  • the battery pack according to the present invention includes one or more battery cells, a protection element connected to cut off a current flowing through the battery cell, and a current for detecting the voltage value of each battery cell and heating the protection element.
  • the protective element is laminated on the insulating substrate so as to cover the insulating substrate, the heating element that is laminated on the insulating substrate, and has two terminals for receiving a current supply from an external power source, and at least the heating element.
  • the insulating member, the first and second electrodes, and the heat generating element are stacked on the insulating member so as to overlap with each other, and a current path between the first and second electrodes and one heat generating terminal of the heat generating element,
  • a heating element extraction electrode electrically connected to the external circuit
  • a protective layer made of an insulating material, laminated on a part of the heating element extraction electrode, and a first and A fusible conductor connected over the second electrode and fusing a current path between the first electrode and the second electrode by heating, wherein the fusible conductor comprises a heating element extraction electrode and a heating element extraction;
  • the electrode is connected at a portion where the protective layer is not laminated.
  • the heating element terminals are stacked in a position to secure the connection with the external circuit.
  • the present invention forms a protective layer on a part of the heating element extraction electrode, connects the thin part of the soluble conductor at a place where the protective layer does not exist, and causes solder corrosion phenomenon at the place where the thin part is connected. It can be generated, and the molten solder can be stably divided and the circuit can be interrupted.
  • FIG. 1A is a plan view of a protection element to which the present invention is applied.
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 1C is a plan view of the fusible conductor in a melted state.
  • 2A to 2C are plan views for explaining a process for manufacturing a protective element to which the present invention is applied.
  • 3A to 3B are plan views showing variations in the shape of the protective layer of the protective element to which the present invention is applied.
  • FIG. 4 is a block diagram showing an application example of a protection element to which the present invention is applied.
  • FIG. 5 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied.
  • the protection element 10 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11.
  • the electrodes 12 (A 1), 12 (A 2) formed on the insulating member 15, the heating element extraction electrode 16 stacked on the insulating member 15 so as to overlap the heating element 14, and the peripheral edge of the heating element extraction electrode 16 are surrounded.
  • a soluble conductor 13 whose both ends are connected to the electrodes 12 (A1) and 12 (A2), and whose central portion is connected to the heating element extraction electrode 16 at the opening 6a of the protective layer 6. Is provided.
  • heating element electrodes 18 (P1) and 18 (P2) are connected to which a power source is connected in order to cause the heating element to generate current and generate heat.
  • the soluble conductor 13 is preferably thick so that the thickness thereof is substantially uniform at the position where the portion facing the heating element 14 and the thick portion 13a having a round line shape of 1.6 mm ⁇ overlap the heating element 14. It consists of a thin part 13b which is thinner and flatter than the meat part 13a.
  • the thickness of the thin portion 13b is, for example, 1/2 of the thickness (thickness) of the thick portion 13a.
  • the cross-sectional area of the thick part 13a and the thin part 13b is substantially the same.
  • the thin portion 13 b of the soluble conductor 13 is electrically connected to the heating element extraction electrode 16.
  • the fusible conductor 13 By making the fusible conductor 13 a thin portion 13b where the position overlapping the heating element 14 is reduced, the heat conduction in the thickness direction of the thin portion 13b is improved and the contact area with the heat source is also increased. Due to the heat generated by the heating element 14, the fusible conductor 13 can be easily melted. In addition, when the cross-sectional area of the thick part 13a and the thin part 13b is made the same, the current capacity does not change, depending on the cross-sectional area in the energizing direction of the soluble conductor 13 and the material (specific resistance) of the soluble conductor 13 Current can flow.
  • the heating element extraction electrode 16 is usually patterned by Cu or Ag (Ag paste or the like), but these metals (or alloys containing these metals as main components) are melted when the solder constituting the soluble conductor 13 is melted.
  • a solder corrosion phenomenon that dissolves in molten solder is known.
  • the amount of soluble conductor (solder) is smaller than the amount of metal used for the heating element extraction electrode, so there is no need to consider the solder corrosion phenomenon.
  • solder corrosion occurs during the operation of the protection element 10, and heat is generated during the operation of the protection element.
  • the body extraction electrode 16 disappears, the power supply to the heating element 14 is stopped, and the fusing operation is stopped.
  • the metal constituting the heating element extraction electrode 16 disappears, and the base of the heating element extraction electrode 16 is lost. A certain insulating member 15 is exposed, and the molten solder is less likely to stay and can flow out to another path.
  • the protective layer 6 is formed on the heating element extraction electrode 16 so as to leave a current-carrying path to the heating element 14, and the heating element extraction electrode 16 is lost while maintaining the power supply to the heating element 14. Promotes the melting of molten solder.
  • the protective layer 6 opened so that a part of the heating element extraction electrode 16 is exposed is formed on the heating element extraction electrode 16.
  • the heating element extraction electrode 16 is extended in a direction different from the longitudinal direction of the fusible conductor 13, for example, in a direction perpendicular to the longitudinal direction of the fusible conductor 13, and one of the extended sides is a thin portion 13 b of the fusible conductor 13.
  • the other connected and extended side is connected to an electrode 18a (P1) for the heating element 14 formed on the insulating member 15.
  • the protective layer 6 is opened at a portion where the thin portion 13 b of the soluble conductor 13 and the heating element extraction electrode 16 are connected, and is formed so as to surround the periphery of the heating element extraction electrode 16.
  • the thin portion 13b of the soluble conductor 13 starts to melt.
  • the solder constituting the thin portion 13b melts at a high temperature, and the metal constituting the heating element extraction electrode 16 connected to the thin portion 13b through the opening 6a of the protective layer 6 causes solder corrosion and melts. Dissolve in the solder.
  • the heating element extraction electrode 16 disappears at the place where the soluble conductor 13 on the insulating member 15 is disposed, and the insulating member 15 is exposed.
  • the molten solder of the soluble conductor 13 cannot stay on the insulating member 15 and the protective layer 6 having low wettability, and the melting of the molten solder is promoted.
  • the protective layer 6 can be formed as shown in FIGS. As shown in FIG. 2A, the heating element extraction electrode 16 is patterned on the insulating member 15 by using a known printing technique or the like. At this time, electrodes 18a (P1) and 18a (P2) for the heating element 14 may be formed at the same time. As shown in FIG. 2B, the protective layer 6 is formed so as to be annularly laminated around the heating element extraction electrode 16. As shown in FIG. 2C, an insulating member 15 (a laminated substrate on which the heating element 14 is laminated) on which the protective layer 6 is formed is soldered on the insulating substrate 11. Thereafter, the soluble conductor is placed so that the thin portion 13b of the soluble conductor 13 is connected to the opening 6a of the protective layer 6. For the protective layer 6, for example, a well-known insulating material having heat resistance such as glass or polyimide can be used.
  • the two electrodes 12 (A1) and 12 (A2) connect the fusible conductor 13 inside the protective element 10, and are connected to an external circuit through the two electrodes 12 (A1) and 12 (A2). To do.
  • the two electrodes 12 (A 1) and 12 (A 2) may be formed on the insulating substrate 11, or may be formed on an insulating material made of an epoxy resin or the like integrated with the insulating substrate 11.
  • One end of the heating element extraction electrode 16 is connected to one end of the heating element electrode 18 (P1) and the heating element 14.
  • the other end of the heating element 14 is connected to the other heating element electrode 18 (P2).
  • the insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
  • an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
  • the material used for printed wiring boards such as a glass epoxy board
  • the heating element 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
  • An insulating member 15 is disposed so as to cover the heating element 14, and a heating element extraction electrode 16 is disposed so as to face the heating element 14 through the insulating member 15.
  • the insulating member 15 may be a laminated substrate in which the heating elements 14 are integrally laminated.
  • the fusible conductor 13 may be any conductive material that melts and melts due to the overcurrent state and the heat generated by the heating element 14.
  • conductive material that melts and melts due to the overcurrent state and the heat generated by the heating element 14.
  • SnAgCu-based Pb-free solder BiPbSn alloy, BiPb alloy, BiSn An alloy, SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy, or the like can be used.
  • the soluble conductor 13 may be a laminate of a high melting point metal made of a metal mainly composed of Ag or Cu or Ag or Cu and a low melting point metal such as Pb-free solder mainly composed of Sn. Good.
  • the support member 3 is formed on the electrode 2 formed on the insulating substrate 11.
  • the fusible conductor 13 may be connected to the support member 3.
  • the protective layer 6 can be formed so as to ensure the connection with the external circuit through the path to the electrode 18a (P1) on the side where the heating element extraction electrode 16 extends.
  • the protective layer 6 is formed so as to surround the periphery of the heating element extraction electrode 16, but the heating element is located at the intersection of the heating element extraction electrode 16 and the thin portion 13 b of the soluble conductor 13.
  • the protective layer 6 may be formed so as to cover the metal portion of the extraction electrode 16.
  • the protective layer 6 may be formed so as to cover the edges on both sides of the heating element extraction electrode 16. Further, as shown in FIG. 3B, the protective layer 6 may be formed so as to cover the edge on one side of the heating element extraction electrode 16. In any case, the protective layer 6 is formed at the position where the soluble conductor 13 and the heating element extraction electrode 16 intersect for the purpose of preventing solder corrosion. [How to use protection elements]
  • the protection element 10 described above is used in a circuit in a battery pack of a lithium ion secondary battery.
  • the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
  • the battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charge / discharge of the battery stack 25, a protection element 10 to which the present invention that protects the battery stack 25 and the charge / discharge control circuit 30 is applied, A detection circuit 26 that detects the voltages of the battery cells 21 to 24 and a current control element 27 that controls the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
  • the battery stack 25 includes battery cells 21 to 24 that need to be controlled to protect overcharge and overdischarge states.
  • the battery stack 25 is detachable via the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto.
  • the electronic device can be operated by connecting the battery pack 20 charged by the charging device 35 to the positive terminal 20a and the negative terminal 20b to the electronic device that is operated by the battery.
  • the charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided.
  • the current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. .
  • FETs field effect transistors
  • the control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
  • Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
  • the detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30.
  • the detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
  • the current control element 27 operates the protection element 10 when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by the detection signal output from the detection circuit 26, Control is performed so that the charging / discharging current path of the battery stack 25 is cut off regardless of the switching operation of the current control elements 31 and 32.
  • the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat.
  • This is a circuit configuration comprising the body 14.
  • the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating element 14 is connected to the current control element 27.
  • the two electrodes 12 and 12 of the protective element 10 one is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
  • the protective element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generation of the heating element 14 while realizing a low profile.

Abstract

In order to obtain a protective element that can be easily made to fuse and that reliably divides molten solder, a protective element (10) is provided with: an insulating substrate (11), a heating element (14) that is layered on the insulating substrate (11) and that is covered by an insulating member (15); electrodes (12)(A1) and (12)(A2); a heating element-drawing electrode (16) that is layered on the insulating member (15) so as to overlap with the heating element (14); a protective layer (6) that is formed so as to surround the peripheral edge section of the heating element-drawing electrode (16); and a fusible conductor (13), both ends of which are connected to the electrodes (12)(A1) and (12)(A2) and the central section of which is connected to the heating element-drawing electrode (16) at an opening (6a) in the protective layer (6). The fusible conductor (13) comprises a thick section (13a) and a thin section (13b) that is molded so as to be thin and flat. The protective layer (6) opens at a section of said protective layer that connects with the thin section (13b) of the fusible conductor (13) and the heating element-drawing electrode (16), and is formed so as to surround the peripheral edge of the heating element-drawing electrode (16).

Description

保護素子及びバッテリパックProtective element and battery pack
 本発明は、電流経路を溶断することにより、電流経路上に接続された回路を保護する保護素子に関する。本出願は、日本国において2012年8月1日に出願された日本特許出願番号特願2012-171333を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。 The present invention relates to a protective element that protects a circuit connected on a current path by fusing the current path. This application claims priority on the basis of Japanese Patent Application No. 2012-171333 filed on Aug. 1, 2012 in Japan, and is incorporated herein by reference. Is done.
 充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギ密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。 Most of the rechargeable batteries that can be charged and used repeatedly are processed into battery packs and provided to users. In particular, in lithium ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, several protection circuits such as overcharge protection and overdischarge protection are built in the battery pack, It has a function of shutting off the output of the battery pack in a predetermined case.
 多くのリチウムイオン二次電池を用いた電子装置においては、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加され、瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力した場合であってもバッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態において、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられる。 In many electronic devices using lithium ion secondary batteries, an overcharge protection or an overdischarge protection operation of the battery pack is performed by turning on / off the output using an FET switch built in the battery pack. However, when the FET switch is short-circuited for some reason, a lightning surge or the like is applied, and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell. The battery pack and the electronic device must be protected from accidents such as ignition even when the is output. Accordingly, in order to safely shut off the output of the battery cell in any possible abnormal state, a protection element made of a fuse element having a function of cutting off the current path by an external signal is used.
 このようなリチウムイオン二次電池等向けの保護回路の保護素子として、特許文献1に記載されているように、保護素子内部に発熱体を有し、この発熱体の発熱によって電流経路上の可溶導体を溶断する構造が一般的に用いられている。 As a protection element of such a protection circuit for a lithium ion secondary battery or the like, as described in Patent Document 1, a heating element is provided inside the protection element. A structure that melts a molten conductor is generally used.
特開2010-3665号公報JP 2010-3665 A
 特許文献1に記載されている保護素子においては、携帯電話やノートパソコンのような電流容量が比較的低い用途に用いるために、可溶導体(ヒューズ)は、最大でも15A程度の電流容量を有している。リチウムイオン二次電池の用途は、近年拡大しており、より大電流の用途、たとえば電動ドライバ等の電動工具や、ハイブリッドカー、電気自動車、電動アシスト自転車等の輸送機器に採用が検討され、一部採用が開始されている。これらの用途においては、特に起動時に、数10A~100Aを超えるような大電流が流れる場合がある。このような電流容量に対応した保護素子の実現が望まれている。 In the protective element described in Patent Document 1, the fusible conductor (fuse) has a current capacity of about 15 A at the maximum because it is used for applications having a relatively low current capacity such as a mobile phone or a notebook computer. is doing. Applications of lithium ion secondary batteries have been expanding in recent years, and their use in higher current applications such as electric tools such as electric drivers, transportation equipment such as hybrid cars, electric vehicles, and electric power assisted bicycles has been studied. Part recruitment has begun. In these applications, a large current exceeding several tens of A to 100 A may flow particularly at startup. Realization of a protection element corresponding to such a current capacity is desired.
 大電流に対応する保護素子を実現するにためには、可溶導体の断面積を増大させればよい。1.6mmφの線状に成型したSn/Ag/Cu系ハンダを用いると、50A程度の電流容量を得ることができる。しかしながら、保護素子は、過電流状態により溶断させる場合以外にも、電池セルの過電圧状態を検出して、保護素子の抵抗発熱体に電流を流して、その発熱によって可溶導体を切断する必要がある。このため、「太い」可溶導体では、発熱体からの熱伝導が低下し、可溶導体の切断をすることが困難になるとの問題がある。さらに、「太い」可溶導体を溶断させる場合に、溶融したハンダを確実に分断しないと、回路の遮断をすることができないという問題がある。 In order to realize a protective element corresponding to a large current, the cross-sectional area of the soluble conductor may be increased. When Sn / Ag / Cu solder molded into a 1.6 mmφ line is used, a current capacity of about 50 A can be obtained. However, the protection element needs to detect the overvoltage state of the battery cell, flow current through the resistance heating element of the protection element, and cut the soluble conductor by the heat generation, in addition to the case where the protection element is melted by an overcurrent state. is there. For this reason, the “thick” soluble conductor has a problem that heat conduction from the heating element is lowered and it is difficult to cut the soluble conductor. Further, when the “thick” fusible conductor is blown, there is a problem that the circuit cannot be cut off unless the melted solder is surely cut.
 そこで、過電流保護時の電流容量を確保しつつ、発熱体による発熱によって容易に溶断させることができ、確実に溶融ハンダを分断して回路遮断することを可能にする保護素子を得ることを目的とする。 Therefore, an object is to obtain a protective element that can be easily blown by heat generated by a heating element while ensuring a current capacity at the time of overcurrent protection, and can reliably cut off a circuit by dividing molten solder. And
 上述した課題を解決するための手段として、本発明に係る保護素子は、絶縁基板と、絶縁基板に積層され、外部の電源から電流の供給を受けるための2つの端子を有する発熱体と、少なくとも発熱体を覆うように、絶縁基板に積層された絶縁部材と、第1及び第2の電極と、発熱体と重畳するように絶縁部材の上に積層され、第1及び第2の電極の間の電流経路と発熱体の一方の発熱体端子とに電気的に接続されて、外部回路と電気的接続をする発熱体引出電極と、発熱体引出電極上の一部に積層され、絶縁素材からなる保護層と、発熱体引出電極から第1及び第2の電極にわたって接続され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを備える。そして、可溶導体は、発熱体引出電極と発熱体引出電極の保護層が積層されない部分において接続され、保護層は、一方の発熱体端子によって外部回路との接続を確保する位置に積層される。 As a means for solving the above-described problem, a protection element according to the present invention includes an insulating substrate, a heating element that is stacked on the insulating substrate, and has two terminals for receiving a current supply from an external power source, and at least An insulating member laminated on the insulating substrate so as to cover the heating element, the first and second electrodes, and laminated on the insulating member so as to overlap the heating element, and between the first and second electrodes A heating element extraction electrode that is electrically connected to the current path of the heating element and one heating element terminal of the heating element, and is electrically connected to an external circuit, and laminated on a part of the heating element extraction electrode, And a soluble conductor that is connected across the first and second electrodes from the heating element extraction electrode and that melts the current path between the first electrode and the second electrode by heating. The fusible conductor is connected at a portion where the heating element extraction electrode and the protection layer of the heating element extraction electrode are not stacked, and the protection layer is stacked at a position where a connection with an external circuit is secured by one heating element terminal. .
 本発明に係るバッテリパックは、1つ以上のバッテリセルと、バッテリセルに流れる電流を遮断するように接続された保護素子と、バッテリセルそれぞれの電圧値を検出して保護素子を加熱する電流を制御する電流制御素子とを備える。そして、保護素子は、絶縁基板と、絶縁基板に積層され、外部の電源から電流の供給を受けるための2つの端子を有する発熱体と、少なくとも発熱体を覆うように、絶縁基板に積層された絶縁部材と、第1及び第2の電極と、発熱体と重畳するように絶縁部材の上に積層され、第1及び第2の電極の間の電流経路と発熱体の一方の発熱体端子とに電気的に接続されて、外部回路と電気的接続をする発熱体引出電極と、発熱体引出電極上の一部に積層され、絶縁素材からなる保護層と、発熱体引出電極から第1及び第2の電極にわたって接続され、加熱により、第1の電極と第2の電極との間の電流経路を溶断する可溶導体とを有し、可溶導体は、発熱体引出電極と発熱体引出電極の保護層が積層されない部分において接続され、保護層は、一方の発熱体端子によって外部回路との接続を確保する位置に積層される。 The battery pack according to the present invention includes one or more battery cells, a protection element connected to cut off a current flowing through the battery cell, and a current for detecting the voltage value of each battery cell and heating the protection element. A current control element to be controlled. Then, the protective element is laminated on the insulating substrate so as to cover the insulating substrate, the heating element that is laminated on the insulating substrate, and has two terminals for receiving a current supply from an external power source, and at least the heating element. The insulating member, the first and second electrodes, and the heat generating element are stacked on the insulating member so as to overlap with each other, and a current path between the first and second electrodes and one heat generating terminal of the heat generating element, A heating element extraction electrode electrically connected to the external circuit, a protective layer made of an insulating material, laminated on a part of the heating element extraction electrode, and a first and A fusible conductor connected over the second electrode and fusing a current path between the first electrode and the second electrode by heating, wherein the fusible conductor comprises a heating element extraction electrode and a heating element extraction; The electrode is connected at a portion where the protective layer is not laminated. The heating element terminals are stacked in a position to secure the connection with the external circuit.
 本発明は、発熱体引出電極上の一部に保護層を形成し、保護層が存在しない箇所で可溶導体の薄肉部を接続して、薄肉部が接続された箇所においてハンダ溶食現象を発生させることができ、溶融ハンダを安定して分断し、回路を遮断することを可能にする。 The present invention forms a protective layer on a part of the heating element extraction electrode, connects the thin part of the soluble conductor at a place where the protective layer does not exist, and causes solder corrosion phenomenon at the place where the thin part is connected. It can be generated, and the molten solder can be stably divided and the circuit can be interrupted.
図1(A)は、本発明が適用された保護素子の平面図である。図1(B)は、図1(A)のAA’線における断面図である。図1(C)は、可溶導体が溶断した状態における平面図である。FIG. 1A is a plan view of a protection element to which the present invention is applied. FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. FIG. 1C is a plan view of the fusible conductor in a melted state. 図2は、(A)~(C)は、本発明が適用された保護素子を製造するプロセスを説明するための平面図である。2A to 2C are plan views for explaining a process for manufacturing a protective element to which the present invention is applied. 図3(A)~(B)は、本発明が適用された保護素子の保護層の形状のバリエーションを示す平面図である。3A to 3B are plan views showing variations in the shape of the protective layer of the protective element to which the present invention is applied. 図4は、本発明が適用された保護素子の応用例を示すブロック図である。FIG. 4 is a block diagram showing an application example of a protection element to which the present invention is applied. 図5は、本発明が適用された保護素子の回路構成例を示す図である。FIG. 5 is a diagram showing a circuit configuration example of a protection element to which the present invention is applied.
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることはもちろんである。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited only to the following embodiment, Of course, a various change is possible in the range which does not deviate from the summary of this invention.
 [保護素子の構成]
 図1(A)及び図1(B)に示すように、保護素子10は、絶縁基板11と、絶縁基板11に積層され、絶縁部材15に覆われた発熱体14と、絶縁基板11の両端に形成された電極12(A1),12(A2)と、絶縁部材15上に発熱体14と重畳するように積層された発熱体引出電極16と、発熱体引出電極16の周縁部を取り囲むように形成された保護層6と、両端が電極12(A1),12(A2)に接続され、中央部が、保護層6の開口6aにおいて発熱体引出電極16に接続された可溶導体13とを備える。発熱体14の両端には、発熱体に電流を流して発熱させるために電源を接続する発熱体電極18(P1),18(P2)が接続される。
[Configuration of protection element]
As shown in FIGS. 1A and 1B, the protection element 10 includes an insulating substrate 11, a heating element 14 laminated on the insulating substrate 11 and covered with an insulating member 15, and both ends of the insulating substrate 11. The electrodes 12 (A 1), 12 (A 2) formed on the insulating member 15, the heating element extraction electrode 16 stacked on the insulating member 15 so as to overlap the heating element 14, and the peripheral edge of the heating element extraction electrode 16 are surrounded. And a soluble conductor 13 whose both ends are connected to the electrodes 12 (A1) and 12 (A2), and whose central portion is connected to the heating element extraction electrode 16 at the opening 6a of the protective layer 6. Is provided. At both ends of the heating element 14, heating element electrodes 18 (P1) and 18 (P2) are connected to which a power source is connected in order to cause the heating element to generate current and generate heat.
 可溶導体13は、好ましくは1.6mmφの丸線状の厚肉部13aと、発熱体14に対向する部分が、発熱体14に重畳する位置において、厚さがほぼ均一になるように厚肉部13aよりも薄く扁平に成型された薄肉部13bとからなる。薄肉部13bの厚さは、厚肉部13aの厚さ(太さ)のたとえば1/2である。なお、厚肉部13a及び薄肉部13bの断面積はほぼ同一であることが好ましい。可溶導体13の薄肉部13bは、発熱体引出電極16と電気的に接続される。 The soluble conductor 13 is preferably thick so that the thickness thereof is substantially uniform at the position where the portion facing the heating element 14 and the thick portion 13a having a round line shape of 1.6 mmφ overlap the heating element 14. It consists of a thin part 13b which is thinner and flatter than the meat part 13a. The thickness of the thin portion 13b is, for example, 1/2 of the thickness (thickness) of the thick portion 13a. In addition, it is preferable that the cross-sectional area of the thick part 13a and the thin part 13b is substantially the same. The thin portion 13 b of the soluble conductor 13 is electrically connected to the heating element extraction electrode 16.
 可溶導体13を、発熱体14に重畳する位置を薄肉化した薄肉部13bとすることによって、薄肉部13bにおける厚さ方向の熱伝導が向上し、発熱源との接触面積も増大するので、発熱体14の発熱によって、可溶導体13の溶断が容易になる。なお、厚肉部13a及び薄肉部13bの断面積を同一とした場合には、電流容量は変わらず、可溶導体13の通電方向の断面積及び可溶導体13の材質(比抵抗)に応じた電流を流すことができる。 By making the fusible conductor 13 a thin portion 13b where the position overlapping the heating element 14 is reduced, the heat conduction in the thickness direction of the thin portion 13b is improved and the contact area with the heat source is also increased. Due to the heat generated by the heating element 14, the fusible conductor 13 can be easily melted. In addition, when the cross-sectional area of the thick part 13a and the thin part 13b is made the same, the current capacity does not change, depending on the cross-sectional area in the energizing direction of the soluble conductor 13 and the material (specific resistance) of the soluble conductor 13 Current can flow.
 発熱体引出電極16は、通常、CuやAg(Agペースト等)によってパターン形成されるが、これらの金属(又はこれらを主成分とする合金)は、可溶導体13を構成するハンダが溶融すると溶融ハンダ中に溶解するハンダ溶食現象が知られている。15A程度までの電流容量を有する従来の保護素子においては、発熱体引出電極に用いる金属の量に比べて可溶導体(ハンダ)の量が少ないため、ハンダ溶食現象について考慮する必要がなかった。ここで、保護素子の大電流容量化に伴い、「太い」ハンダを可溶導体13として用いる場合には、保護素子10の動作時においてハンダ溶食を生じてしまい、保護素子の動作中に発熱体引出電極16が消失して、発熱体14への電力供給が停止して溶断動作が停止してしまうという問題がある。 The heating element extraction electrode 16 is usually patterned by Cu or Ag (Ag paste or the like), but these metals (or alloys containing these metals as main components) are melted when the solder constituting the soluble conductor 13 is melted. A solder corrosion phenomenon that dissolves in molten solder is known. In the conventional protective element having a current capacity of up to about 15 A, the amount of soluble conductor (solder) is smaller than the amount of metal used for the heating element extraction electrode, so there is no need to consider the solder corrosion phenomenon. . Here, when the “thick” solder is used as the soluble conductor 13 in accordance with the increase in the current capacity of the protection element, solder corrosion occurs during the operation of the protection element 10, and heat is generated during the operation of the protection element. There is a problem that the body extraction electrode 16 disappears, the power supply to the heating element 14 is stopped, and the fusing operation is stopped.
 また、可溶導体13の溶断動作において、発熱体引出電極16上に溶融したハンダが滞留すると、大電流に対応してハンダの量が多いために、溶融ハンダの確実な分断が問題となる。そこで、ハンダ溶食現象を積極的に利用して、溶融ハンダの分断をより確実にすることを考える。 Also, in the fusing operation of the fusible conductor 13, if molten solder stays on the heating element extraction electrode 16, the amount of solder corresponding to a large current is large, so that reliable division of the molten solder becomes a problem. Therefore, it is considered to positively utilize the solder erosion phenomenon to further ensure melting of the molten solder.
 発熱体引出電極16と可溶導体13の薄肉部13bとの接続部において、ハンダ溶食現象が生じると、発熱体引出電極16を構成する金属が消失して、発熱体引出電極16の下地である絶縁部材15が露出するようになり、溶融したハンダがとどまりにくくなって、他の経路へと流出させることができる。ここで、薄肉部13bに接続している発熱体引出電極16がすべてハンダ溶食現象によって消失してしまうと、発熱体14への電力供給ができなくなってしまい、薄肉部13bの溶融状態を維持できなくなる。そこで、発熱体14への通電経路を残すように、発熱体引出電極16上に保護層6を形成して、発熱体14への電力供給を維持しながら、発熱体引出電極16を消失させて溶融ハンダの分断を促進させる。 When a solder corrosion phenomenon occurs in the connecting portion between the heating element extraction electrode 16 and the thin portion 13b of the soluble conductor 13, the metal constituting the heating element extraction electrode 16 disappears, and the base of the heating element extraction electrode 16 is lost. A certain insulating member 15 is exposed, and the molten solder is less likely to stay and can flow out to another path. Here, if all of the heating element extraction electrode 16 connected to the thin wall portion 13b disappears due to the solder corrosion phenomenon, power supply to the heating body 14 becomes impossible, and the molten state of the thin wall portion 13b is maintained. become unable. Thus, the protective layer 6 is formed on the heating element extraction electrode 16 so as to leave a current-carrying path to the heating element 14, and the heating element extraction electrode 16 is lost while maintaining the power supply to the heating element 14. Promotes the melting of molten solder.
 具体的には、図1(A)に示すように、発熱体引出電極16の一部が露出するように開口された保護層6を、発熱体引出電極16上に形成する。発熱体引出電極16は、可溶導体13の長手方向とは異なる方向、たとえば可溶導体13の長手方向と直角の方向に延伸され、延伸された一方の側が可溶導体13の薄肉部13bに接続され、延伸された他方の側が絶縁部材15に形成された発熱体14のための電極18a(P1)に接続される。保護層6は、可溶導体13の薄肉部13bと発熱体引出電極16との接続する部分において、開口されており、発熱体引出電極16の周囲を取り囲むように形成される。 Specifically, as shown in FIG. 1A, the protective layer 6 opened so that a part of the heating element extraction electrode 16 is exposed is formed on the heating element extraction electrode 16. The heating element extraction electrode 16 is extended in a direction different from the longitudinal direction of the fusible conductor 13, for example, in a direction perpendicular to the longitudinal direction of the fusible conductor 13, and one of the extended sides is a thin portion 13 b of the fusible conductor 13. The other connected and extended side is connected to an electrode 18a (P1) for the heating element 14 formed on the insulating member 15. The protective layer 6 is opened at a portion where the thin portion 13 b of the soluble conductor 13 and the heating element extraction electrode 16 are connected, and is formed so as to surround the periphery of the heating element extraction electrode 16.
 発熱体14に電力が供給されて発熱すると、可溶導体13の薄肉部13bは溶融を開始する。薄肉部13bを構成するハンダが高温で溶融するとともに、保護層6の開口6aを介して薄肉部13bに接続されている発熱体引出電極16を構成する金属は、ハンダ溶食を起こして、溶融したハンダ中に溶け出す。その結果、絶縁部材15上の可溶導体13が配置されていた箇所には、発熱体引出電極16が消失し、絶縁部材15が露出するようになる。そうすると、図1(C)に示すように、可溶導体13の溶融したハンダは、ぬれ性の低い絶縁部材15及び保護層6上にとどまることができず、溶融ハンダの分断が促進される。 When the electric power is supplied to the heating element 14 to generate heat, the thin portion 13b of the soluble conductor 13 starts to melt. The solder constituting the thin portion 13b melts at a high temperature, and the metal constituting the heating element extraction electrode 16 connected to the thin portion 13b through the opening 6a of the protective layer 6 causes solder corrosion and melts. Dissolve in the solder. As a result, the heating element extraction electrode 16 disappears at the place where the soluble conductor 13 on the insulating member 15 is disposed, and the insulating member 15 is exposed. As a result, as shown in FIG. 1C, the molten solder of the soluble conductor 13 cannot stay on the insulating member 15 and the protective layer 6 having low wettability, and the melting of the molten solder is promoted.
 保護層6は、図2(A)~(C)に示すようにして形成することができる。図2(A)に示すように、周知の印刷技術等を用いて、絶縁部材15上に発熱体引出電極16をパターニングする。この際、同時に発熱体14のための電極18a(P1),18a(P2)を形成してもよい。図2(B)に示すように、発熱体引出電極16の周辺部に環状に積層されるように保護層6を形成する。図2(C)に示すように、保護層6が形成された絶縁部材15(発熱体14が内部に積層された積層基板)が絶縁基板11上にハンダ接合される。その後、保護層6の開口6aで、可溶導体13の薄肉部13bが接続されるように可溶導体が載置される。保護層6は、たとえばガラス、ポリイミド等の耐熱性のある周知の絶縁材料を用いることができる。 The protective layer 6 can be formed as shown in FIGS. As shown in FIG. 2A, the heating element extraction electrode 16 is patterned on the insulating member 15 by using a known printing technique or the like. At this time, electrodes 18a (P1) and 18a (P2) for the heating element 14 may be formed at the same time. As shown in FIG. 2B, the protective layer 6 is formed so as to be annularly laminated around the heating element extraction electrode 16. As shown in FIG. 2C, an insulating member 15 (a laminated substrate on which the heating element 14 is laminated) on which the protective layer 6 is formed is soldered on the insulating substrate 11. Thereafter, the soluble conductor is placed so that the thin portion 13b of the soluble conductor 13 is connected to the opening 6a of the protective layer 6. For the protective layer 6, for example, a well-known insulating material having heat resistance such as glass or polyimide can be used.
 2つの電極12(A1),12(A2)は、可溶導体13を、保護素子10の内部で接続し、この2つの電極12(A1),12(A2)を介して、外部回路に接続する。2つの電極12(A1),12(A2)は、絶縁基板11上に形成してもよく、あるいは絶縁基板11と一体となったエポキシ樹脂等からなる絶縁素材に形成するようにしてもよい。 The two electrodes 12 (A1) and 12 (A2) connect the fusible conductor 13 inside the protective element 10, and are connected to an external circuit through the two electrodes 12 (A1) and 12 (A2). To do. The two electrodes 12 (A 1) and 12 (A 2) may be formed on the insulating substrate 11, or may be formed on an insulating material made of an epoxy resin or the like integrated with the insulating substrate 11.
 発熱体引出電極16の一端は、発熱体電極18(P1)及び発熱体14の一端に接続される。また、発熱体14の他端は、他方の発熱体電極18(P2)に接続される。 One end of the heating element extraction electrode 16 is connected to one end of the heating element electrode 18 (P1) and the heating element 14. The other end of the heating element 14 is connected to the other heating element electrode 18 (P2).
 絶縁基板11は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。 The insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like. In addition, although the material used for printed wiring boards, such as a glass epoxy board | substrate and a phenol board | substrate, may be used, it is necessary to pay attention to the temperature at the time of fuse blowing.
 発熱体14は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。 The heating element 14 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
 発熱体14を覆うように絶縁部材15が配置され、この絶縁部材15を介して発熱体14に対向するように発熱体引出電極16が配置される。この絶縁部材15は、発熱体14が内部に一体的に積層された積層基板であってもよいのはもちろんである。 An insulating member 15 is disposed so as to cover the heating element 14, and a heating element extraction electrode 16 is disposed so as to face the heating element 14 through the insulating member 15. Of course, the insulating member 15 may be a laminated substrate in which the heating elements 14 are integrally laminated.
 可溶導体13は、過電流状態によって、及び発熱体14の発熱によって溶融し、溶断する導電性の材料であればよく、たとえば、SnAgCu系のPbフリーハンダのほか、BiPbSn合金、BiPb合金、BiSn合金、SnPb合金、PbIn合金、ZnAl合金、InSn合金、PbAgSn合金等を用いることができる。 The fusible conductor 13 may be any conductive material that melts and melts due to the overcurrent state and the heat generated by the heating element 14. For example, in addition to SnAgCu-based Pb-free solder, BiPbSn alloy, BiPb alloy, BiSn An alloy, SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy, or the like can be used.
 また、可溶導体13は、Ag若しくはCu又はAg若しくはCuを主成分とする金属からなる高融点金属と、Snを主成分とするPbフリーハンダ等の低融点金属との積層体であってもよい。 Further, the soluble conductor 13 may be a laminate of a high melting point metal made of a metal mainly composed of Ag or Cu or Ag or Cu and a low melting point metal such as Pb-free solder mainly composed of Sn. Good.
 なお、可溶導体13を絶縁基板11に対して支持して、可溶導体13の機械的強度を向上させるために、絶縁基板11上に形成された電極2上に支持部材3を形成して、支持部材3に可溶導体13を接続するようにしてもよい。
 [変形例]
In order to support the fusible conductor 13 with respect to the insulating substrate 11 and improve the mechanical strength of the fusible conductor 13, the support member 3 is formed on the electrode 2 formed on the insulating substrate 11. The fusible conductor 13 may be connected to the support member 3.
[Modification]
 発熱体引出電極16が延伸した側の電極18a(P1)までの経路によって外部回路との接続を確保するように、保護層6を形成することができる。上述の実施の形態においては、発熱体引出電極16の周囲を取り囲むように保護層6を形成したが、発熱体引出電極16と可溶導体13の薄肉部13bとの交差をする箇所において発熱体引出電極16の金属部分を覆うように保護層6を形成してもよい。 The protective layer 6 can be formed so as to ensure the connection with the external circuit through the path to the electrode 18a (P1) on the side where the heating element extraction electrode 16 extends. In the above-described embodiment, the protective layer 6 is formed so as to surround the periphery of the heating element extraction electrode 16, but the heating element is located at the intersection of the heating element extraction electrode 16 and the thin portion 13 b of the soluble conductor 13. The protective layer 6 may be formed so as to cover the metal portion of the extraction electrode 16.
 そこで、図3(A)に示すように、発熱体引出電極16の両側の縁部を覆うように保護層6を形成してもよい。また、図3(B)に示すように、発熱体引出電極16の片側の縁部を覆うように保護層6を形成してもよい。いずれの場合も、可溶導体13と発熱体引出電極16との交差する位置において、ハンダ溶食を防止する目的で保護層6を形成する。
 [保護素子の使用方法]
Therefore, as shown in FIG. 3A, the protective layer 6 may be formed so as to cover the edges on both sides of the heating element extraction electrode 16. Further, as shown in FIG. 3B, the protective layer 6 may be formed so as to cover the edge on one side of the heating element extraction electrode 16. In any case, the protective layer 6 is formed at the position where the soluble conductor 13 and the heating element extraction electrode 16 intersect for the purpose of preventing solder corrosion.
[How to use protection elements]
 図4に示すように、上述した保護素子10は、リチウムイオン二次電池のバッテリパック内の回路に用いられる。 As shown in FIG. 4, the protection element 10 described above is used in a circuit in a battery pack of a lithium ion secondary battery.
 たとえば、保護素子10は、合計4個のリチウムイオン二次電池のバッテリセル21~24からなるバッテリスタック25を有するバッテリパック20に組み込まれて使用される。 For example, the protective element 10 is used by being incorporated in a battery pack 20 having a battery stack 25 composed of battery cells 21 to 24 of a total of four lithium ion secondary batteries.
 バッテリパック20は、バッテリスタック25と、バッテリスタック25の充放電を制御する充放電制御回路30と、バッテリスタック25と充放電制御回路30とを保護する本発明が適用された保護素子10と、各バッテリセル21~24の電圧を検出する検出回路26と、検出回路26の検出結果に応じて保護素子10の動作を制御する電流制御素子27とを備える。 The battery pack 20 includes a battery stack 25, a charge / discharge control circuit 30 that controls charge / discharge of the battery stack 25, a protection element 10 to which the present invention that protects the battery stack 25 and the charge / discharge control circuit 30 is applied, A detection circuit 26 that detects the voltages of the battery cells 21 to 24 and a current control element 27 that controls the operation of the protection element 10 according to the detection result of the detection circuit 26 are provided.
 バッテリスタック25は、過充電及び過放電状態を保護するための制御を要するバッテリセル21~24が直列接続されたものであり、バッテリパック20の正極端子20a、負極端子20bを介して、着脱可能に充電装置35に接続され、充電装置35からの充電電圧が印加される。充電装置35により充電されたバッテリパック20を正極端子20a、負極端子20bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。 The battery stack 25 includes battery cells 21 to 24 that need to be controlled to protect overcharge and overdischarge states. The battery stack 25 is detachable via the positive electrode terminal 20a and the negative electrode terminal 20b of the battery pack 20. Are connected to the charging device 35, and a charging voltage from the charging device 35 is applied thereto. The electronic device can be operated by connecting the battery pack 20 charged by the charging device 35 to the positive terminal 20a and the negative terminal 20b to the electronic device that is operated by the battery.
 充放電制御回路30は、バッテリスタック25から充電装置35に流れる電流経路に直列接続された2つの電流制御素子31、32と、これらの電流制御素子31、32の動作を制御する制御部33とを備える。電流制御素子31、32は、たとえば電界効果トランジスタ(以下、FETと呼ぶ。)により構成され、制御部33によりゲート電圧を制御することによって、バッテリスタック25の電流経路の導通と遮断とを制御する。制御部33は、充電装置35から電力供給を受けて動作し、検出回路26による検出結果に応じて、バッテリスタック25が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子31、32の動作を制御する。 The charge / discharge control circuit 30 includes two current control elements 31 and 32 connected in series to a current path flowing from the battery stack 25 to the charging device 35, and a control unit 33 that controls operations of the current control elements 31 and 32. Is provided. The current control elements 31 and 32 are configured by, for example, field effect transistors (hereinafter referred to as FETs), and control the gate voltage by the control unit 33 to control conduction and interruption of the current path of the battery stack 25. . The control unit 33 operates by receiving power supply from the charging device 35, and according to the detection result by the detection circuit 26, when the battery stack 25 is overdischarged or overcharged, current control is performed so as to cut off the current path. The operation of the elements 31 and 32 is controlled.
 保護素子10は、たとえば、バッテリスタック25と充放電制御回路30との間の充放電電流経路上に接続され、その動作が電流制御素子27によって制御される。 Protective element 10 is connected, for example, on a charge / discharge current path between battery stack 25 and charge / discharge control circuit 30, and its operation is controlled by current control element 27.
 検出回路26は、各バッテリセル21~24と接続され、各バッテリセル21~24の電圧値を検出して、各電圧値を充放電制御回路30の制御部33に供給する。また、検出回路26は、いずれか1つのバッテリセル21~24が過充電電圧又は過放電電圧になったときに電流制御素子27を制御する制御信号を出力する。 The detection circuit 26 is connected to each of the battery cells 21 to 24, detects the voltage value of each of the battery cells 21 to 24, and supplies the voltage value to the control unit 33 of the charge / discharge control circuit 30. The detection circuit 26 outputs a control signal for controlling the current control element 27 when any one of the battery cells 21 to 24 becomes an overcharge voltage or an overdischarge voltage.
 電流制御素子27は、検出回路26から出力される検出信号によって、バッテリセル21~24の電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子10を動作させて、バッテリスタック25の充放電電流経路を電流制御素子31、32のスイッチ動作によらず遮断するように制御する。 The current control element 27 operates the protection element 10 when the voltage value of the battery cells 21 to 24 exceeds a predetermined overdischarge or overcharge state by the detection signal output from the detection circuit 26, Control is performed so that the charging / discharging current path of the battery stack 25 is cut off regardless of the switching operation of the current control elements 31 and 32.
 以上のような構成からなるバッテリパック20において、保護素子10の構成について具体的に説明する。 In the battery pack 20 having the above configuration, the configuration of the protection element 10 will be specifically described.
 まず、本発明が適用された保護素子10は、たとえば図5に示すような回路構成を有する。すなわち、保護素子10は、発熱体引出電極16を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱体14とからなる回路構成である。また、保護素子10では、たとえば、可溶導体13が充放電電流経路上に直列接続され、発熱体14が電流制御素子27と接続される。保護素子10の2個の電極12,12のうち、一方は、A1に接続され、他方は、A2に接続される。また、発熱体引出電極16とこれに接続された発熱体電極18は、P1に接続され、他方の発熱体電極18は、P2に接続される。 First, the protection element 10 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 10 generates heat by melting the soluble conductor 13 by causing the soluble conductor 13 connected in series via the heating element lead electrode 16 and the connection point of the soluble conductor 13 to generate heat. This is a circuit configuration comprising the body 14. In the protection element 10, for example, the fusible conductor 13 is connected in series on the charge / discharge current path, and the heating element 14 is connected to the current control element 27. Of the two electrodes 12 and 12 of the protective element 10, one is connected to A1, and the other is connected to A2. Further, the heating element extraction electrode 16 and the heating element electrode 18 connected thereto are connected to P1, and the other heating element electrode 18 is connected to P2.
 このような回路構成からなる保護素子10は、低背化を実現しつつ、発熱体14の発熱により、電流経路上の可溶導体13を確実に溶断することができる。 The protective element 10 having such a circuit configuration can surely melt the soluble conductor 13 on the current path by the heat generation of the heating element 14 while realizing a low profile.
 2 電極、3 支持部材、6 保護層、6a 開口、10 保護素子、11 絶縁基板、12(A1),12(A2) 電極、13 可溶導体、13a 厚肉部、13b 薄肉部、14 発熱体、15 絶縁部材、16 発熱体引出電極、18(P1),18(P2) 発熱体電極、18a(P1),18a(P2) 電極、20 バッテリパック、20a 正極端子、20b 負極端子、21~24 バッテリセル、25 バッテリスタック、26 検出回路、27、31,32 電流制御素子、30 充放電制御回路、33 制御部、35 充電装置 2 electrode, 3 support member, 6 protective layer, 6a opening, 10 protective element, 11 insulating substrate, 12 (A1), 12 (A2) electrode, 13 soluble conductor, 13a thick part, 13b thin part, 14 heating element , 15 insulation member, 16 heating element extraction electrode, 18 (P1), 18 (P2) heating element electrode, 18a (P1), 18a (P2) electrode, 20 battery pack, 20a positive terminal, 20b negative terminal, 21-24 Battery cell, 25 battery stack, 26 detection circuit, 27, 31, 32 current control element, 30 charge / discharge control circuit, 33 control unit, 35 charging device

Claims (7)

  1.  絶縁基板と、
     上記絶縁基板に積層され、外部の電源から電流の供給を受けるための2つの端子を有する発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     第1及び第2の電極と、
     上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路と該発熱体の一方の発熱体端子とに電気的に接続されて、外部回路と電気的接続をする発熱体引出電極と、
     上記発熱体引出電極上の一部に積層され、絶縁素材からなる保護層と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって接続され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを備え、
     上記可溶導体は、上記発熱体引出電極と該発熱体引出電極の上記保護層が積層されない部分において接続され、該保護層は、上記一方の発熱体端子によって外部回路との接続を確保する位置に積層されることを特徴とする保護素子。
    An insulating substrate;
    A heating element laminated on the insulating substrate and having two terminals for receiving a current from an external power source;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes;
    It is laminated on the insulating member so as to overlap with the heating element, and is electrically connected to the current path between the first and second electrodes and one heating element terminal of the heating element, and externally A heating element extraction electrode in electrical connection with the circuit;
    A protective layer made of an insulating material, laminated on a part of the heating element extraction electrode;
    A soluble conductor that is connected from the heating element extraction electrode to the first and second electrodes and that melts a current path between the first electrode and the second electrode by heating;
    The fusible conductor is connected at a portion where the heating element extraction electrode and the protection layer of the heating element extraction electrode are not laminated, and the protection layer is secured at a position where the one heating element terminal is connected to an external circuit. A protective element which is laminated on the substrate.
  2.  上記発熱体引出電極は、上記可溶導体の長手方向とは異なる方向で、上記一方の発熱体端子の方向に延伸し、上記保護層は、該発熱体引出電極が延伸する方向に沿って形成されることを特徴とする請求項1記載の保護素子。 The heating element extraction electrode extends in the direction of the one heating element terminal in a direction different from the longitudinal direction of the soluble conductor, and the protective layer is formed along the direction in which the heating element extraction electrode extends. The protective element according to claim 1, wherein:
  3.  上記保護層は、上記発熱体引出電極が延伸する方向に沿って形成され、該発熱体引出電極の上記可溶導体との電気的接続部分の周縁を取り囲むように配置されることを特徴とする請求項1記載の保護素子。 The protective layer is formed along a direction in which the heating element extraction electrode extends, and is disposed so as to surround a periphery of an electrical connection portion of the heating element extraction electrode with the soluble conductor. The protective element according to claim 1.
  4.  上記発熱体引出電極は、Ag又はAgを主成分とする金属或いはCu又はCuを主成分とする金属であることを特徴とする請求項1記載の保護素子。 2. The protective element according to claim 1, wherein the heating element extraction electrode is made of Ag or Ag as a main component or Cu or Cu as a main component.
  5.  上記可溶導体は、厚肉部と、上記発熱体に重畳して位置する部分が凹状に厚さを薄く扁平に成形された薄肉部とからなることを特徴とする請求項1記載の保護素子。 2. The protection element according to claim 1, wherein the soluble conductor includes a thick portion and a thin portion formed in a concave shape with a portion located so as to overlap the heating element being thin and flat. .
  6.  上記可溶導体は、上記厚肉部及び上記薄肉部における断面積がほぼ同一であることを特徴とする請求項5記載の保護素子。 6. The protective element according to claim 5, wherein the soluble conductor has substantially the same cross-sectional area in the thick part and the thin part.
  7.  1つ以上のバッテリセルと、
     上記バッテリセルに流れる電流を遮断するように接続された保護素子と、
     上記バッテリセルそれぞれの電圧値を検出して上記保護素子を加熱する電流を制御する電流制御素子とを備え、
     上記保護素子は、
     絶縁基板と、
     上記絶縁基板に積層され、外部の電源から電流の供給を受けるための2つの端子を有する発熱体と、
     少なくとも上記発熱体を覆うように、上記絶縁基板に積層された絶縁部材と、
     第1及び第2の電極と、
     上記発熱体と重畳するように上記絶縁部材の上に積層され、上記第1及び第2の電極の間の電流経路と該発熱体の一方の発熱体端子とに電気的に接続されて、外部回路と電気的接続をする発熱体引出電極と、
     上記発熱体引出電極上の一部に積層され、絶縁素材からなる保護層と、
     上記発熱体引出電極から上記第1及び第2の電極にわたって接続され、加熱により、該第1の電極と該第2の電極との間の電流経路を溶断する可溶導体とを有し、
     上記可溶導体は、上記発熱体引出電極と該発熱体引出電極の上記保護層が積層されない部分において接続され、該保護層は、上記一方の発熱体端子によって外部回路との接続を確保する位置に積層されることを特徴とするバッテリパック。
    One or more battery cells;
    A protective element connected to cut off the current flowing through the battery cell;
    A current control element that detects a voltage value of each of the battery cells and controls a current for heating the protection element;
    The protective element is
    An insulating substrate;
    A heating element laminated on the insulating substrate and having two terminals for receiving a current from an external power source;
    An insulating member laminated on the insulating substrate so as to cover at least the heating element;
    First and second electrodes;
    It is laminated on the insulating member so as to overlap with the heating element, and is electrically connected to the current path between the first and second electrodes and one heating element terminal of the heating element, and externally A heating element extraction electrode in electrical connection with the circuit;
    A protective layer made of an insulating material, laminated on a part of the heating element extraction electrode;
    A soluble conductor which is connected from the heating element extraction electrode to the first and second electrodes and melts a current path between the first electrode and the second electrode by heating;
    The fusible conductor is connected at a portion where the heating element extraction electrode and the protection layer of the heating element extraction electrode are not laminated, and the protection layer is secured at a position where the one heating element terminal is connected to an external circuit. A battery pack that is stacked on the battery pack.
PCT/JP2013/069995 2012-08-01 2013-07-24 Protective element and battery pack WO2014021156A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380040647.0A CN104508783A (en) 2012-08-01 2013-07-24 Protective element and battery pack
KR1020157004831A KR20150040954A (en) 2012-08-01 2013-07-24 Protective element and battery pack
HK15109371.3A HK1208760A1 (en) 2012-08-01 2015-09-24 Protective element and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012171333A JP5952674B2 (en) 2012-08-01 2012-08-01 Protective element and battery pack
JP2012-171333 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014021156A1 true WO2014021156A1 (en) 2014-02-06

Family

ID=50027835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069995 WO2014021156A1 (en) 2012-08-01 2013-07-24 Protective element and battery pack

Country Status (6)

Country Link
JP (1) JP5952674B2 (en)
KR (1) KR20150040954A (en)
CN (1) CN104508783A (en)
HK (1) HK1208760A1 (en)
TW (1) TW201419350A (en)
WO (1) WO2014021156A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190543A1 (en) * 2014-06-11 2015-12-17 デクセリアルズ株式会社 Switching element and switching circuit
WO2018108736A1 (en) * 2016-12-14 2018-06-21 Lithium Energy and Power GmbH & Co. KG Cell connecting element
TWI670740B (en) * 2014-06-27 2019-09-01 日商迪睿合股份有限公司 Switching element, switching circuit, alarm circuit, redundant circuit and switching method
WO2023204119A1 (en) * 2022-04-20 2023-10-26 デクセリアルズ株式会社 Protective element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576618B2 (en) 2014-05-28 2019-09-18 デクセリアルズ株式会社 Protective element
US20170003349A1 (en) * 2015-07-02 2017-01-05 GM Global Technology Operations LLC Arc suppression and protection of integrated flex circuit fuses for high voltage applications under chemically harsh environments
JP6708388B2 (en) * 2015-10-07 2020-06-10 デクセリアルズ株式会社 Wetting sensor, switch element, battery system
DE102015222939A1 (en) * 2015-11-20 2017-05-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Electrical bridging device for bridging electrical components, in particular an energy source or an energy consumer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126903A (en) * 1995-02-28 2001-05-11 Sony Chem Corp Protective element
WO2010084817A1 (en) * 2009-01-21 2010-07-29 ソニーケミカル&インフォメーションデバイス株式会社 Protection element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001067998A (en) * 1999-08-24 2001-03-16 Nec Kansai Ltd Protecting element and its manufacture
JP2002075151A (en) * 2000-08-30 2002-03-15 Kyocera Corp Protective element
JP5072796B2 (en) * 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 Protection element and secondary battery device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126903A (en) * 1995-02-28 2001-05-11 Sony Chem Corp Protective element
WO2010084817A1 (en) * 2009-01-21 2010-07-29 ソニーケミカル&インフォメーションデバイス株式会社 Protection element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190543A1 (en) * 2014-06-11 2015-12-17 デクセリアルズ株式会社 Switching element and switching circuit
JP2016001549A (en) * 2014-06-11 2016-01-07 デクセリアルズ株式会社 Switch element and switch circuit
CN106663568A (en) * 2014-06-11 2017-05-10 迪睿合株式会社 Switching element and switching circuit
TWI670739B (en) * 2014-06-11 2019-09-01 日商迪睿合股份有限公司 Switching element and switching circuit
TWI670740B (en) * 2014-06-27 2019-09-01 日商迪睿合股份有限公司 Switching element, switching circuit, alarm circuit, redundant circuit and switching method
WO2018108736A1 (en) * 2016-12-14 2018-06-21 Lithium Energy and Power GmbH & Co. KG Cell connecting element
WO2023204119A1 (en) * 2022-04-20 2023-10-26 デクセリアルズ株式会社 Protective element

Also Published As

Publication number Publication date
CN104508783A (en) 2015-04-08
JP2014032769A (en) 2014-02-20
JP5952674B2 (en) 2016-07-13
HK1208760A1 (en) 2016-03-11
TW201419350A (en) 2014-05-16
KR20150040954A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP5952674B2 (en) Protective element and battery pack
JP6081096B2 (en) Protective element and battery pack
JP5952673B2 (en) Protective element and battery pack
WO2015182355A1 (en) Protective element and battery pack
JP6957246B2 (en) Protective element
WO2014175379A1 (en) Protect element
WO2015107631A1 (en) Protective element
TWI652712B (en) Protective component
WO2015033560A1 (en) Battery circuit and protection circuit
JP6078332B2 (en) Protection element, battery module
JP6058476B2 (en) Protective element and mounting body on which protective element is mounted
WO2015025885A1 (en) Protection element
WO2021210634A1 (en) Protective element, and battery pack
JP7390825B2 (en) Protection element, battery pack
TW201816824A (en) Protective element capable of increasing rated capacity of fusible conductor and rapidly fusing fusible conductor
WO2022181652A1 (en) Protection element and battery pack
WO2018100984A1 (en) Protection element
WO2015107632A1 (en) Protective element
WO2015107633A1 (en) Protective element and battery module
JP2014127270A (en) Protection element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157004831

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13825360

Country of ref document: EP

Kind code of ref document: A1