WO2014021109A1 - Polymer compound, and organic semiconductor element and organic transistor which use said polymer compound - Google Patents

Polymer compound, and organic semiconductor element and organic transistor which use said polymer compound Download PDF

Info

Publication number
WO2014021109A1
WO2014021109A1 PCT/JP2013/069439 JP2013069439W WO2014021109A1 WO 2014021109 A1 WO2014021109 A1 WO 2014021109A1 JP 2013069439 W JP2013069439 W JP 2013069439W WO 2014021109 A1 WO2014021109 A1 WO 2014021109A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer compound
ring
represented
formula
Prior art date
Application number
PCT/JP2013/069439
Other languages
French (fr)
Japanese (ja)
Inventor
友也 樫木
和男 瀧宮
格 尾坂
Original Assignee
住友化学株式会社
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人広島大学 filed Critical 住友化学株式会社
Publication of WO2014021109A1 publication Critical patent/WO2014021109A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Definitions

  • the present invention relates to a polymer compound, and an organic semiconductor element and an organic transistor using the polymer compound.
  • organic transistors using organic semiconductor materials can be expected to reduce the weight of the device and reduce manufacturing costs. Because it is expected that it can be manufactured without any problems, research and development is actively conducted.
  • the field effect mobility which is one of the indexes related to the performance of the organic transistor, greatly depends on the field effect mobility of the organic semiconductor material contained in the active layer. Therefore, various organic semiconductor materials have been studied in order to realize an organic transistor having excellent field effect mobility.
  • Non-Patent Document 1 a compound having the following structure has been proposed.
  • the organic transistor including the compound according to Non-Patent Document 1 in the active layer does not have sufficient field effect mobility.
  • This invention is made
  • Another object of the present invention is to provide an organic semiconductor element and an organic transistor using the polymer compound.
  • the present invention provides the following polymer compounds [1] to [8], organic semiconductor elements and organic transistors.
  • a polymer compound comprising a structural unit represented by the following formula (1).
  • a ring and B ring each independently represent an aromatic hydrocarbon ring or a heterocyclic ring.
  • R 1 is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom
  • acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent.
  • Two R 1 may be different from each other.
  • R 2 is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent.
  • acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent.
  • the present invention is extremely useful.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example (1) of an organic transistor of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example (2) of the organic transistor of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example (3) of the organic transistor of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration example (4) of the organic transistor of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a structural example (5) of the organic transistor of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a configuration example (6) of the organic transistor of the present invention.
  • FIG. 7: is typical sectional drawing which shows the structural example (7) of the organic transistor of this invention.
  • FIG. 8 is typical sectional drawing which shows the structural example (8) of the organic transistor of this invention.
  • FIG. 9 is a schematic cross-sectional view showing a structural example (9) of the organic transistor of the present
  • the “structural unit” means a unit structure existing in one or more polymer compounds.
  • the “structural unit” is preferably contained in the polymer compound as a “repeating unit” (that is, a unit structure present in two or more in the polymer compound).
  • “optionally substituted” means that all hydrogen atoms constituting the compound or group are unsubstituted, and that one or more hydrogen atoms are partially or completely substituted. Includes both embodiments when substituted by a group.
  • substituents include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, monovalent heterocyclic groups, aryloxy groups, arylthio groups, alkenyl groups, alkynyl groups, amino groups, silyl groups, halogen atoms, and acyl groups. , Acyloxy group, amide group, carboxy group, nitro group and cyano group.
  • an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, a halogen atom or a cyano group are preferable, and an alkyl group, an alkoxy group, an aryl group, A monovalent heterocyclic group, aryloxy group or halogen atom is more preferred, and an alkyl group, alkoxy group or halogen atom is still more preferred.
  • the alkyl group, alkoxy group, and alkylthio group may each be linear, branched, or cyclic.
  • the polymer compound of the present invention includes a structural unit represented by the following formula (1), that is, a first structural unit.
  • the first structural unit represented by the above formula (1) may be contained in the polymer compound alone or in a combination of two or more.
  • a ring and B ring each independently represent an aromatic hydrocarbon ring or a heterocyclic ring.
  • the number of carbon atoms in the aromatic hydrocarbon ring is preferably 5 to 30, more preferably 6 to 14, and further preferably 6 to 10.
  • the number of carbon atoms does not include the number of carbon atoms of the substituent.
  • Specific examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, and a fluorene ring.
  • the number of carbon atoms in the heterocyclic ring is preferably 2 to 60, more preferably 2 to 22, and further preferably 3 to 14.
  • the number of carbon atoms does not include the number of carbon atoms of the substituent.
  • Specific examples of the heterocyclic ring include thiazole ring, thiophene ring, pyrrole ring, furan ring, pyridine ring, pyrazine ring, pyrimidine ring, benzothiophene ring, benzopyrrole ring, benzofuran ring, quinoline ring, isoquinoline ring, thienothiophene ring, Examples thereof include a benzothiadiazole ring.
  • the A ring and the B ring are preferably the same aromatic hydrocarbon ring or heterocyclic ring from the viewpoint of easy synthesis of the polymer compound of the present invention, and are the same as each other. It is more preferably an aromatic hydrocarbon ring which is a 5-membered ring or a 6-membered ring or a heterocyclic ring which is the same 5-membered ring or 6-membered ring.
  • each R 1 independently represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, amino Represents a group, a silyl group, a halogen atom, an acyl group, an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, which may have a substituent, and two R 1 s are different from each other. May be.
  • the alkyl group represented by R 1 may be linear, branched or cyclic, and may have a substituent.
  • the number of carbon atoms of the linear alkyl group is usually 1 to 60, preferably 1 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group and the cyclic alkyl group is usually 3 to 20, preferably 4 to 20, not including the carbon atom number of the substituent.
  • a linear alkyl group and a branched alkyl group are preferable, and a linear alkyl group is more preferable.
  • Examples of the alkyl group represented by R 1 include a linear alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a dodecyl group, a hexadecyl group; an isopropyl group, an isobutyl group, Examples thereof include branched alkyl groups such as sec-butyl group, tert-butyl group, 2-ethylhexyl group and 3,7-dimethyloctyl group; and cyclic alkyl groups such as cyclopentyl group and cyclohexyl group.
  • a linear alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a dodecyl group, a hex
  • alkyl group may have include an alkoxy group, an aryl group, and a halogen atom.
  • substituents that the alkyl group may have include a methoxyethyl group, a benzyl group, a trifluoromethyl group, and a perfluorohexyl group.
  • the alkoxy group represented by R 1 may be linear, branched or cyclic, and may have a substituent.
  • the number of carbon atoms of the linear alkoxy group is usually 1 to 20 without including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group and the cyclic alkoxy group is usually 3 to 20, excluding the number of carbon atoms of the substituent.
  • a linear alkoxy group is preferable.
  • alkoxy group represented by R 1 examples include a butyloxy group, a hexyloxy group, a 2-ethylhexyloxy group, a 3,7-dimethyloctyloxy group, a dodecyloxy group, a hexadecyloxy group, and the like.
  • a straight-chain alkoxy group such as hexyloxy group, dodecyloxy group, hexadecyloxy and the like is preferable.
  • substituent that the alkoxy group may have include an aryl group and a halogen atom.
  • the alkylthio group represented by R 1 may be linear, branched or cyclic, and may have a substituent.
  • the number of carbon atoms of the linear alkylthio group is usually 1 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkylthio group and the cyclic alkylthio group is usually 3 to 20, excluding the number of carbon atoms of the substituent.
  • a linear alkylthio group is preferable.
  • alkylthio group represented by R 1 examples include a butylthio group, a hexylthio group, a 2-ethylhexylthio group, a 3,7-dimethyloctylthio group, a dodecylthio group, a hexadecylthio group, a butylthio group, a hexylthio group, A linear alkylthio group such as dodecylthio group or hexadecylthio group is preferred.
  • substituent that the alkylthio group may have include an aryl group and a halogen atom.
  • the aryl group represented by R 1 is a remaining atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom directly bonded to a ring from an aromatic hydrocarbon which may have a substituent, and benzene
  • a group having two or more rings selected from a group having a ring, a group having a condensed ring, an independent aromatic hydrocarbon ring and a condensed ring is also included.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, excluding the number of carbon atoms of the substituent.
  • aryl group represented by R 1 examples include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-pyrenyl group, 2-pyrenyl group.
  • Examples of the substituent that the aryl group represented by R 1 may have include an alkyl group, an alkoxy group, an alkylthio group, a monovalent heterocyclic group, and a halogen atom. Among these, an alkyl group is preferable. . Specific examples of the aryl group having a substituent include a 4-hexylphenyl group, a 3,5-dimethoxyphenyl group, and a pentafluorophenyl group.
  • the monovalent heterocyclic group represented by R 1 is the remaining atomic group obtained by removing one hydrogen atom directly bonded to the carbon atom constituting the ring from the heterocyclic compound which may have a substituent. And a group in which two or more rings selected from a group having a condensed ring, an independent heterocyclic ring and a condensed ring are directly bonded.
  • an aromatic heterocyclic group is preferable.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 3 to 20, excluding the number of carbon atoms of the substituent.
  • the heterocyclic compound is an organic compound having a ring structure, and the elements constituting the ring are not only carbon atoms, but also oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, arsenic atoms, etc.
  • a compound containing a heteroatom is not only carbon atoms, but also oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, arsenic atoms, etc.
  • R 1 Specific examples of the monovalent heterocyclic group represented by R 1 include 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, 2-pyrrolyl group, 3-pyrrolyl group, 2- Examples include oxazolyl group, 2-thiazolyl group, 2-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-benzofuryl group, 2-benzothienyl group, 2-thienothienyl group and the like.
  • Examples of the substituent that the monovalent heterocyclic group represented by R 1 may have include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, and a halogen atom. Among these, an alkyl group Is preferred. Specific examples of the monovalent heterocyclic group having a substituent include 5-octyl-2-thienyl group and 5-phenyl-2-furyl group.
  • the aryloxy group represented by R 1 may have a substituent.
  • the number of carbon atoms of the aryloxy group is usually 6 to 20 without including the number of carbon atoms of the substituent.
  • Specific examples of the aryloxy group include a phenoxy group, a 1-naphthyloxy group, and a 2-naphthyloxy group.
  • Examples of the substituent that the aryloxy group represented by R 1 may have include an alkyl group, an alkoxy group, and a halogen atom, and among these, an alkyl group is preferable.
  • the arylthio group represented by R 1 may have a substituent.
  • the number of carbon atoms of the arylthio group is usually 6 to 20, excluding the number of carbon atoms of the substituent.
  • Specific examples of the arylthio group represented by R 1 include a phenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and the like.
  • Examples of the substituent that the arylthio group represented by R 1 may have include an alkyl group, an alkoxy group, and a halogen atom, and among these, an alkyl group is preferable.
  • the alkenyl group represented by R 1 may have a substituent.
  • the number of carbon atoms of the alkenyl group is usually 2 to 20, not including the number of carbon atoms of the substituent.
  • Specific examples of the alkenyl group represented by R 1 include a vinyl group and a 1-octenyl group.
  • Examples of the substituent that the alkenyl group represented by R 1 may have include an alkyl group, an alkoxy group, and a halogen atom.
  • the alkynyl group represented by R 1 may have a substituent.
  • the number of carbon atoms of the alkynyl group represented by R 1 is usually 2 to 20 without including the number of carbon atoms of the substituent.
  • Specific examples of the alkynyl group represented by R 1 include ethynyl group and 1-octynyl group.
  • Examples of the substituent that the alkynyl group represented by R 1 may have include an alkyl group, an aryl group, and a silyl group.
  • Specific examples of the alkynyl group having a substituent include 2-phenylethynyl group and trimethylsilylethynyl group.
  • the amino group represented by R 1 may have a substituent.
  • substituents that the amino group represented by R 1 may have include an alkyl group, an aryl group, and a monovalent heterocyclic group.
  • Specific examples of the amino group having a substituent include a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a dicyclohexylamino group, a pyrrolidyl group, a piperidyl group, a phenylamino group, a diphenylamino group, and a 1-naphthylamino group. 2-naphthylamino group, pyridylamino group, and the like.
  • the silyl group represented by R 1 may have a substituent.
  • substituents that the silyl group represented by R 1 may have include an alkyl group, an aryl group, and an alkoxy group.
  • Specific examples of the silyl group having a substituent include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tribenzylsilyl group, diphenylmethylsilyl group. And dimethylphenylsilyl group.
  • Examples of the halogen atom represented by R 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
  • the acyl group represented by R 1 may have a substituent.
  • the number of carbon atoms of the acyl group represented by R 1 is usually 1 to 20 without including the number of carbon atoms of the substituent.
  • Specific examples of the acyl group represented by R 1 include an acetyl group, a propionyl group, and a benzoyl group.
  • Examples of the substituent that the acyl group represented by R 1 may have include an alkyl group, an aryl group, and a halogen atom.
  • Specific examples of the acyl group having a substituent include a trifluoroacetyl group and a pentafluorobenzoyl group.
  • the acyloxy group represented by R 1 may have a substituent.
  • the number of carbon atoms of the acyloxy group represented by R 1 is usually 2 to 20, excluding the number of carbon atoms of the substituent.
  • Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, and a benzoyloxy group.
  • Examples of the acyloxy group that the acyloxy group represented by R 1 may have include an alkyl group, an aryl group, and a halogen atom.
  • Specific examples of the acyloxy group having a substituent include a trifluoroacetyloxy group and a pentafluorobenzoyloxy group.
  • the amide group represented by R 1 may have a substituent.
  • Specific examples of the amide group which may have a substituent include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, And dibenzamide group.
  • R 1 is a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, an alkenyl group, an alkynyl group, an acyl group, an acyloxy group, a cyano group, or a silyl group from the viewpoint of ease of synthesis of the compound of the present invention.
  • a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a cyano group, and a silyl group are more preferable, and an aryl group, a monovalent heterocyclic group, and a silyl group are more preferable.
  • the first structural unit represented by the above formula (1) is preferably a structural unit represented by the following formula (2) from the viewpoint of ease of synthesis of the compound of the present invention.
  • R 1 represents the same meaning as described above.
  • X represents a group represented by ⁇ CR 2 — and a group represented by ⁇ N—. A plurality of Xs may be different from each other.
  • R 2 is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent.
  • an alkyl group represented by R 2 an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group
  • Definition of halogen atom, acyl group, acyloxy group, amide group, carboxy group specific examples are alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group represented by R 1.
  • X represents a group represented by ⁇ CR 2 — and a group represented by ⁇ N—.
  • a plurality of Xs may be different from each other.
  • a plurality of Xs are preferably groups in which 4 to 6 of them are a group represented by ⁇ CR 2 — from the viewpoint of ease of synthesis of a monomer that is a raw material of the polymer compound of the present invention. More preferably, all six are groups represented by ⁇ CR 2 —.
  • R 2 is a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, from the viewpoint of obtaining higher field effect mobility and the ease of synthesis of the monomer that is a raw material for the polymer compound of the present invention.
  • An atom and a cyano group are preferable, and a hydrogen atom, an alkyl group, and a halogen atom are more preferable.
  • Examples of the first structural unit include structural units represented by the following formula (1-1) to the following formula (1-19).
  • R 1 and R 2 are as defined above.
  • R N are each independently a hydrogen atom, an alkyl group, an aryl group, monovalent heterocyclic group or an acyl group.
  • Alkyl group, an aryl group represented by R N, 1-valent heterocyclic group or an acyl group may have a substituent.
  • Alkyl group represented by R N, an aryl group, a monovalent heterocyclic group, the definition of the acyl group, specific examples include alkyl groups represented by the aforementioned R 1, aryl group, monovalent heterocyclic group, acyl The definition of the group and the specific example are the same.
  • the formula (1-1) Formula (1-2), Formula (1-8), Formula (1-10), Formula (1-15), Formula (1-16), and Formula (1-18) are preferable, and Formula (1-1) ), Structural units represented by formula (1-8), formula (1-10), and formula (1-18) are more preferred.
  • the second structural unit is at least one structural unit selected from the group consisting of structural units represented by the following formula (3). Only one type of the second structural unit may be contained in the polymer compound, or two or more types of the second structural unit may be contained.
  • Y represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • the arylene group represented by Y is an atomic group obtained by removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon which may have a substituent, A group in which two or more selected from a group having, a group having a condensed ring, an independent benzene ring and a condensed ring are directly bonded.
  • the number of carbon atoms contained in the arylene group represented by Y (not including the carbon atoms of the substituents described later) is usually 6 to 60, and preferably 6 to 20.
  • Examples of the substituent of the arylene group represented by Y include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, and an amino group. Silyl group, halogen atom, acyl group, acyloxy group, amide group, carboxy group, nitro group or cyano group.
  • arylene group represented by Y examples include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthenediyl group, a tetracenediyl group, a pyrenediyl group, a pentacenediyl group, a perylenediyl group, and a fluorenediyl group.
  • the arylene group represented by Y is preferably a group represented by the following formula (9-1) to the following formula (9-6), represented by the formula (9-1) or the formula (9-6). Groups are more preferred.
  • R represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group.
  • the divalent heterocyclic group represented by Y is a remaining atomic group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from the heterocyclic compound which may have a substituent.
  • the number of carbon atoms possessed by the divalent heterocyclic group does not include the number of carbon atoms of the substituent, and is usually from 2 to 60, and preferably from 3 to 20.
  • Examples of the substituent that the divalent heterocyclic group represented by Y has include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, and an alkynyl.
  • Definitions and specific examples include an alkyl group represented by R 1 , an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group,
  • the definition and specific examples of the halogen atom, acyl group, acyloxy group and amide group are the same.
  • divalent heterocyclic group represented by Y examples include oxadiazole diyl group, thiadiazole diyl group, oxazole diyl group, thiazole diyl group, thiophene diyl group, bithiophene diyl group, terthiophene diyl group, quater Terthiophene diyl group, pyrrole diyl group, frangiyl group, selenophene diyl group, pyridine diyl group, pyrazine diyl group, pyrimidine diyl group, triazine diyl group, benzothiophene diyl group, benzopyrrole diyl group, benzofuran diyl group, quinoline diyl group, isoquinoline Examples thereof include a diyl group, a thienothiophene diyl group, a benzodithiophene diyl group, a benzothiadiazole diyl group, and a quinoxaline diyl group.
  • Examples of the divalent heterocyclic group represented by Y include groups represented by formula (10-1) to formula (10-26). Among these, since higher field effect mobility can be obtained, the structural units represented by the formulas (10-1) to (10-20) are preferable, and the formulas (10-1) and (10-3) are preferable. And structural units represented by formulas (10-6), (10-7), formula (10-11), formula (10-15), formula (10-17), and formula (10-20) are more preferable. Further preferred are structural units represented by formula (10-1), formula (10-15), formula (10-17) and formula (10-20).
  • R is as defined above.
  • Y is a bond between carbon atoms or a bond between a carbon atom and a hetero atom in a skeleton that is a main chain of the polymer compound when forming a polymer compound together with the structural unit represented by the formula (1).
  • the group is preferably selected so that a ⁇ -conjugated system in which multiple bonds and single bonds are alternately repeated is formed. Examples of such a ⁇ -conjugated structure include a structure surrounded by a broken line in the following formula (E1).
  • the polymer compound of the present invention preferably has a structural unit in which two or more second structural units which may be different from each other are continuously bonded.
  • the polymer compound including a structural unit in which two or more second structural units are continuously bonded include a polymer including a structural unit represented by the following formula (4-1) to the following formula (4-9) Compounds.
  • a polymer including a structural unit represented by the following formula (4-1) to the following formula (4-9) Compounds Compounds.
  • a polymer compound containing a structural unit is preferred.
  • R represents the same meaning as described above.
  • the polymer compound of the present invention may contain a structural unit other than the first structural unit and the second structural unit (hereinafter sometimes referred to as “other structural unit”). Other structural units may be included in the polymer compound alone or in combination of two or more.
  • Examples of the other structural unit include an arylene group, a divalent heterocyclic group, a group represented by —CR c ⁇ CR d —, a group represented by —C ⁇ C—, and a group represented by —CR g 2 —.
  • arylene group and divalent heterocyclic ring are the same as the definitions and specific examples of the arylene group and divalent heterocyclic group represented by Y above.
  • R c , R d and R g are each independently a hydrogen atom, an alkyl group, an aryl group, It represents a monovalent heterocyclic group, a halogen atom or a cyano group, and these groups optionally have a substituent.
  • substituents that R c , R d and R g may have include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, a halogen atom, and the like. Of these, an alkyl group is preferred.
  • the polymer compound of the present invention is preferably a conjugated polymer compound because more excellent field effect mobility can be obtained.
  • the total molar ratio of the first structural unit and the second structural unit is 50 with respect to all the structural units constituting the polymer compound. It is preferably at least mol%, more preferably at least 70 mol%.
  • the molecular chain terminal is preferably a stable group such as an aryl group or a monovalent heterocyclic group.
  • the polymer compound of the present invention may be any type of copolymer, such as a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer.
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as “GPC”) of the polymer compound of the present invention is usually from 1 ⁇ 10 3 to 1 ⁇ 10 8.
  • the converted weight average molecular weight (Mw) is usually 1 ⁇ 10 3 to 2 ⁇ 10 8 .
  • the number average molecular weight of the polymer compound is preferably 1 ⁇ 10 3 or more, and the weight average molecular weight of the polymer compound is preferably 1 ⁇ 10 3 or more.
  • the polymer compound preferably has a number average molecular weight of 1 ⁇ 10 6 or less, and the polymer compound preferably has a weight average molecular weight of 1 ⁇ 10 6 or less.
  • the polymer compound of the present invention may be produced by any method.
  • a compound represented by the formula: X 11 -A 11 -X 12 and a compound represented by the formula: X 13 -A 12 -X 14 are dissolved in an organic solvent as necessary.
  • it can be produced by a known polymerization method such as aryl coupling using a suitable catalyst by adding a base as necessary.
  • a 11 is a structural unit represented by the formula (1)
  • a 12 is a structural unit represented by the formula (3).
  • X 11 , X 12 , X 13 and X 14 each independently represent a polymerization reactive group.
  • polymerization reactive group examples include a halogen atom, a boric acid ester residue, a boric acid residue (such as a group represented by —B (OH) 2 ), a trialkylstannyl group, and the like.
  • halogen atom that is the polymerization reactive group
  • examples of the halogen atom that is the polymerization reactive group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • boric acid ester residue that is the polymerization reactive group examples include a group represented by the following formula.
  • trialkylstannyl group that is the polymerization reactive group
  • examples of the trialkylstannyl group that is the polymerization reactive group include a trimethylstannyl group and a tributylstannyl group.
  • Examples of the polymerization method such as aryl coupling include polymerization by Suzuki coupling reaction (Chemical Review, 1995, 95, 2457-2483), polymerization by Stille coupling reaction (European Polymer Journal). 2005, 41, 2923-2933).
  • the polymerization reactive group is a halogen atom, a boric acid ester residue, a boric acid residue or the like when a nickel catalyst or a palladium catalyst such as a Suzuki coupling reaction is used. From the viewpoint of simplicity of the polymerization reaction, a bromine atom, an iodine atom, and a boric acid ester residue are preferable.
  • the ratio of the total mole number of bromine atom and iodine atom and the total mole number of boric acid ester residue, which are the above-mentioned polymerization reactive groups is 0.00. It is preferably 7 to 1.3, and more preferably 0.8 to 1.2.
  • the polymerization reactive group is a halogen atom, a trialkylstannyl group or the like when a palladium catalyst such as Stille coupling reaction is used.
  • the polymerization reactive group is preferably a bromine atom, an iodine atom, or a trialkylstannyl group.
  • the ratio of the total mole number of bromine atom and iodine atom and the total mole number of trialkylstannyl group, which are the above-mentioned polymerization reactive groups is 0.00. It is preferably 7 to 1.3, and more preferably 0.8 to 1.2.
  • organic solvent used in the polymerization method examples include benzene, toluene, xylene, chlorobenzene, dichlorobenzene, tetrahydrofuran, dioxane and the like. These organic solvents may be used alone or in combination of two or more.
  • Examples of the base used in the polymerization method include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, odor And organic bases such as tetrabutylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide.
  • inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, odor And organic bases such as tetrabutylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide.
  • the catalyst used in the polymerization method is a transition metal complex such as tetrakis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium, palladium acetate, dichlorobistriphenylphosphine palladium and the like, if necessary, It is a catalyst comprising a ligand such as triphenylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine. These catalysts may be synthesized and used in advance, or the catalyst prepared in the reaction system may be used as it is. Moreover, these catalysts may be used individually by 1 type, or may use 2 or more types together.
  • the reaction temperature in the polymerization method is preferably 0 ° C. to 200 ° C., more preferably 0 ° C. to 150 ° C., and further preferably 0 ° C. to 120 ° C.
  • the reaction time in the polymerization method is usually 1 hour or more, preferably 2 to 500 hours.
  • the post-treatment of the polymerization reaction can be performed by a known method, for example, by a method of adding a reaction liquid obtained by the polymerization to a lower alcohol such as methanol and filtering and drying the deposited precipitate. it can.
  • the purity of the polymer compound of the present invention is low, it may be purified by a method such as recrystallization, continuous extraction with a Soxhlet extractor, column chromatography or the like.
  • the organic semiconductor material means a material (composition) having the polymer compound of the present invention and a compound different from the polymer compound of the present invention.
  • the compound different from the polymer compound of the present invention is preferably a compound having carrier transport properties, and may be a low molecular compound or a polymer compound.
  • the polymer compound of the present invention contained in the organic semiconductor material may be one kind alone or two or more kinds.
  • the organic semiconductor material preferably contains 30% by weight or more of the polymer compound of the present invention, and more preferably contains 50% by weight or more.
  • Examples of compounds having carrier transport properties include arylamine derivatives, stilbene derivatives, oligothiophene and derivatives thereof, low molecular compounds such as oxadiazole derivatives, fullerenes and derivatives thereof; polyvinylcarbazole and derivatives thereof, polyaniline and derivatives thereof , Polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and polyfluorene and derivatives thereof.
  • the organic semiconductor material may contain a polymer compound different from the polymer compound of the present invention as a polymer binder in order to improve its characteristics.
  • polymer binder examples include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof.
  • Derivatives polycarbonates, polyacrylates, polymethyl acrylates, polymethyl methacrylates, polystyrenes, polyvinyl chlorides, polysiloxanes.
  • the polymer compound of the present invention exhibits excellent field effect mobility, it can be suitably used for an organic layer of an organic semiconductor element.
  • the organic semiconductor element include an organic transistor, an organic solar battery, and an organic electroluminescence element.
  • the polymer compound of the present invention can be particularly suitably used for an organic layer (active layer) of an organic transistor.
  • Examples of the organic transistor of the present invention include a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path
  • a transistor having a configuration including: Examples of the organic transistor having such a configuration include a field effect organic transistor and a static induction organic transistor.
  • a field effect organic transistor generally includes a source electrode and a drain electrode, an active layer containing a polymer compound serving as a current path between these electrodes, a gate electrode for controlling the amount of current passing through the current path, and an active layer And an insulating layer disposed between the gate electrode and the gate electrode.
  • a field effect organic transistor in which a source electrode and a drain electrode are provided in contact with an active layer and a gate electrode is provided with an insulating layer in contact with the active layer interposed therebetween is preferable.
  • An electrostatic induction organic transistor usually has a source electrode and a drain electrode, an active layer containing a polymer compound serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path.
  • the gate electrode is provided in the active layer.
  • an electrostatic induction organic transistor in which a source electrode, a drain electrode, and the gate electrode are provided in contact with the active layer is preferable.
  • the gate electrode only needs to have a structure in which a current path flowing from the source electrode to the drain electrode can be formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode.
  • Type electrode
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a first embodiment (field effect organic transistor) of an organic transistor of the present invention.
  • An organic transistor 100 shown in FIG. 1 includes a substrate 1, a source electrode 5 and a drain electrode 6 formed on the main surface of the substrate 1 so as to be separated from the substrate 1 at a predetermined interval, The active layer 2 formed on the substrate 1 so as to cover the drain electrode 6, the insulating layer 3 formed on the active layer 2, and the insulating layer 3 on the region between the source electrode 5 and the drain electrode 6 And a gate electrode 4 formed on the insulating layer 3 so as to straddle the source electrode 5 and the drain electrode 6 when viewed from the thickness direction of the substrate 1.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a second embodiment (field-effect organic transistor) of the organic transistor of the present invention.
  • the organic transistor 110 shown in FIG. 2 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the substrate 1 and the source electrode 5 so as to cover the source electrode 5, and a source electrode 5 between the source electrode 5 and the drain electrode 6, the drain electrode 6 formed on the active layer 2 so as to be separated from the source electrode 5 by a predetermined interval, the insulating layer 3 formed on the active layer 2 and the drain electrode 6, And the gate electrode 4 formed on the insulating layer 3 so as to straddle the source electrode 5 and the drain electrode 6 when viewed from the thickness direction of the substrate 1.
  • FIG. 3 is a schematic cross-sectional view showing a configuration example of a third embodiment (field-effect organic transistor) of the organic transistor of the present invention.
  • the organic transistor 120 shown in FIG. 3 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and a gate electrode 4
  • the regions of the insulating layer 3 formed in the lower part are formed on the insulating layer 3 at predetermined intervals so as to partially cover the gate electrode 4 when viewed from the thickness direction of the substrate 1.
  • the source electrode 5 and the drain electrode 6 and a part of the source electrode 5 and the drain electrode 6 are covered and formed on the insulating layer 3 so as to straddle the source electrode 5 and the drain electrode 6 when viewed from the thickness direction of the substrate 1. Active layer 2 formed.
  • FIG. 4 is a schematic cross-sectional view showing a configuration example of a fourth embodiment (field effect type organic transistor) of the organic transistor of the present invention.
  • the organic transistor 130 shown in FIG. 4 includes a substrate 1, a gate electrode 4 formed on the substrate 1, a substrate 1 and an insulating layer 3 formed on the gate electrode 4 so as to cover the gate electrode 4, a substrate
  • the source electrode 5 formed on the insulating layer 3 so as to cover a part of the region of the insulating layer 3 so as to straddle the gate electrode 4 when viewed from the thickness direction 1 and a part of the source electrode 5 are covered.
  • the active layer 2 formed on the insulating layer 3 so as to expose a part of the insulating film 3 and the active layer 2 so as to straddle the gate electrode 4 when viewed from the thickness direction of the substrate 1. And a part of the insulating layer 3 and a source electrode 5 and a drain electrode 6 formed so as to be spaced apart at a predetermined interval.
  • FIG. 5 is a schematic cross-sectional view showing a configuration example of a fifth embodiment (electrostatic induction type organic transistor) of the organic transistor of the present invention.
  • An organic transistor 140 shown in FIG. 5 is separated from the substrate 1, the source electrode 5 formed on the substrate 1, the active layer 2 formed on the source electrode 5, and the active layer 2 at a predetermined interval.
  • the plurality of comb-like gate electrodes 4 formed as described above, and the active layer 2 and the active layer 2a (active layer 2a) covering the gate electrode 4 so as to integrally cover all of the plurality of comb-like gate electrodes 4 May be the same as or different from the material of the active layer 2) and the active layer 2 a so as to overlap the comb-shaped gate electrode 4 when viewed from the thickness direction of the substrate 1.
  • FIG. 6 is a schematic cross-sectional view showing a configuration example of a sixth embodiment (field-effect organic transistor) of the organic transistor of the present invention.
  • the organic transistor 150 shown in FIG. 6 is on the substrate 1, the active layer 2 formed on the substrate 1, and the active layer 2, and the height of the upper surface of the active layer 2 is substantially the same as the height of the upper surface.
  • the source electrode 5 and the drain electrode 6 formed so as to be separated from each other at a predetermined interval, and the source electrode 5 and the drain electrode 6 so as to cover a part of the source electrode 5 and the drain electrode 6. It has an insulating layer 3 formed on the active layer 2 and a gate electrode 4 formed so as to straddle the source electrode 5 and the drain electrode 6 when viewed from the thickness direction of the substrate 1.
  • FIG. 7 is typical sectional drawing which shows the structural example of 7th Embodiment (field effect type organic transistor) of the organic transistor of this invention.
  • the organic transistor 160 shown in FIG. 7 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and a thickness of the substrate 1.
  • the active layer 2 formed so as to cover the region on the gate electrode 4 when viewed from the direction and the gate electrode 4 so as to cover a part of the active layer 2 and viewed from the thickness direction of the substrate 1.
  • FIG. 8 is typical sectional drawing which shows the structural example of 8th Embodiment (field effect type organic transistor) of the organic transistor of this invention.
  • An organic transistor 170 shown in FIG. 8 includes a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, an active layer 2 formed on the insulating layer 3, and a predetermined interval on the active layer 2. It has the source electrode 5 and the drain electrode 6 which were formed so that it might space apart.
  • the gate electrode 4 also serves as the substrate 1.
  • FIG. 9 is a schematic cross-sectional view showing a configuration example of a ninth embodiment (field-effect organic transistor) of the organic transistor of the present invention.
  • the organic transistor 180 shown in FIG. 9 includes a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, and a source electrode 5 and a drain electrode formed on the insulating layer 3 so as to be spaced apart at a predetermined interval. 6 and an active layer 2 formed on the insulating layer 3 so as to straddle part of the source electrode 5 and part of the drain electrode 6.
  • the active layer 2 and / or the active layer 2a is composed of an organic layer containing the polymer compound of the present invention, and a current path (channel) between the source electrode 5 and the drain electrode 6 is formed. )
  • the gate electrode 4 controls the amount of current passing through the current path by applying a voltage.
  • the field effect organic transistor having the above-described configuration can be produced by a known method, for example, a method described in JP-A-5-110069.
  • the electrostatic induction organic transistor having the above-described configuration can be manufactured by a known method such as the method described in JP-A-2004-006476.
  • the material of the substrate 1 is not particularly limited as long as it does not disturb the characteristics of the organic transistor.
  • a glass substrate, a flexible film substrate, or a plastic substrate can be used as the substrate 1, a glass substrate, a flexible film substrate, or a plastic substrate.
  • the material of the insulating layer 3 may be any material having high electrical insulation, and SiO x , SiN x , Ta 2 O 5 , polyimide, polyvinyl alcohol, polyvinyl phenol, organic glass, photoresist, or the like can be used. However, from the viewpoint of lowering the voltage, it is preferable to use a material having a high dielectric constant.
  • the surface of the insulating layer 3 is treated with a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the active layer 2.
  • a surface treatment agent such as a silane coupling agent
  • silane coupling agents examples include alkylchlorosilanes (octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODTS), phenylethyltrichlorosilane, etc.), alkylalkoxysilanes, fluorinated alkylchlorosilanes, and fluorinated compounds.
  • alkylchlorosilanes octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODTS), phenylethyltrichlorosilane, etc.
  • alkylalkoxysilanes fluorinated alkylchlorosilanes
  • fluorinated alkylchlorosilanes examples include silylamine compounds such as alkylalkoxysilanes and hexamethyldisilazane (HMDS).
  • HMDS
  • the surface energy of the silicon oxide film used as the insulating layer can be controlled. Further, the surface treatment improves the orientation of the film constituting the active layer on the insulating layer, and high charge transportability (field effect mobility) can be obtained.
  • Examples of the material of the gate electrode 4 include gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum, low resistance polysilicon, low resistance amorphous silicon, and other metals, tin oxide, indium oxide, and indium. Examples thereof include tin oxide (ITO). These materials may be used alone or in combination of two or more.
  • the source electrode 5 and the drain electrode 6 are preferably made of a low resistance material, and particularly preferably made of gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum or the like. These materials may be used alone or in combination of two or more.
  • a layer composed of another compound may be interposed between the source electrode 5 and the drain electrode 6 and the active layer 2.
  • layers include low molecular compounds having electron transport properties, low molecular compounds having hole transport properties, alkali metals, alkaline earth metals, rare earth metals, complexes of these metals with organic compounds, iodine, bromine, Halogens such as chlorine and iodine chloride, sulfur oxide compounds such as sulfuric acid, sulfuric anhydride, sulfur dioxide and sulfate, nitric oxide compounds such as nitric acid, nitrogen dioxide and nitrate, halogenated compounds such as perchloric acid and hypochlorous acid, Examples thereof include layers made of aromatic thiol compounds such as alkyl thiol compounds, aromatic thiols, and fluorinated alkyl aromatic thiols.
  • the organic transistor after manufacturing the organic transistor as described above, it is preferable to form a protective film on the organic transistor in order to protect the organic transistor.
  • a protective film on the organic transistor in order to protect the organic transistor.
  • an organic transistor is interrupted
  • the protective film can also reduce the influence on the organic transistor in the forming process.
  • Examples of the method for forming the protective film include a method of covering the organic transistor with a film of an inorganic material such as a UV curable resin, a thermosetting resin, or a SiON X film.
  • a protective film after the organic transistor is manufactured without exposing the organic transistor to the atmosphere (for example, in a dry nitrogen gas atmosphere or in a vacuum).
  • a field effect organic transistor which is a kind of organic transistor configured as described above, can be applied as a pixel drive switching element of an active matrix drive type liquid crystal display or an organic electroluminescence display.
  • the field effect type organic transistor of embodiment mentioned above contains the high molecular compound of this invention as an active layer, Therefore, it has an active layer with improved charge transport property. Therefore, since the field effect mobility of the field effect organic transistor can be increased, the field effect organic transistor of the present invention is useful for manufacturing a display having a sufficient response speed.
  • NMR analysis The NMR measurement was performed by dissolving the compound in deuterated chloroform and using an NMR apparatus (manufactured by Varian).
  • the number average molecular weight and weight average molecular weight of the polymer compound were determined using gel permeation chromatography (GPC, manufactured by Tosoh Corporation).
  • the polymer compound to be measured was dissolved in orthodichlorobenzene and injected into GPC. Orthodichlorobenzene was used for the mobile phase of GPC.
  • the column used was TSKgel GMHHR-H (S) HT (two linked, manufactured by Tosoh Corporation).
  • a UV detector was used as the detector.
  • the deposited precipitate was collected by filtration, washed with methanol, hexane and chloroform in this order, and then extracted with chlorobenzene.
  • the obtained chlorobenzene solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain polymer compound A (39.2 mg).
  • the obtained polymer compound A had a polystyrene-equivalent number average molecular weight of 2.0 ⁇ 10 4 and a weight average molecular weight of 4.3 ⁇ 10 4 .
  • the deposited precipitate was collected by filtration, washed with methanol and hexane in order, and then extracted with chloroform.
  • the obtained chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain polymer compound B (98.2 mg).
  • the obtained polymer compound B had a polystyrene-equivalent number average molecular weight of 1.8 ⁇ 10 4 and a weight average molecular weight of 4.1 ⁇ 10 4 .
  • Example 3 Production and evaluation of organic transistor (1)
  • An organic transistor having the structure already described with reference to FIG. 8 was prepared using the polymer compound A, and the transistor characteristics were measured. That is, first, the surface of the n-type silicon substrate 4 doped with impurities at a high concentration serving as a gate electrode was thermally oxidized to form a silicon oxide film 3 having a thickness of 200 nm. After thoroughly cleaning this substrate, the surface of the substrate was treated with silane using 1H, 1H, 2H, 2H-perfluorodecyltriethoxychlorosilane (FDTS).
  • FDTS 1H, 1H, 2H, 2H-perfluorodecyltriethoxychlorosilane
  • the polymer compound A was dissolved in orthodichlorobenzene to prepare a 3 g / L solution, which was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 2) containing the polymer compound A having a thickness of about 30 nm was formed on the surface-treated substrate by spin coating. This thin film was heated at 150 ° C. for 30 minutes in a nitrogen gas atmosphere. Then, a source electrode 5 and a drain electrode 6 having a channel length of 50 ⁇ m and a channel width of 1.5 mm were produced on the obtained thin film by vacuum deposition to obtain an organic transistor (1).
  • the transistor characteristics were measured by changing the gate voltage Vg from 40 V to ⁇ 60 V and the source-drain voltage Vsd from 0 V to ⁇ 60 V. From this result, the field effect mobility was calculated to be 0.19 cm 2 / Vs.
  • Example 4 Production and evaluation of organic transistor (2)
  • An organic transistor having the structure already described with reference to FIG. 8 was prepared using the polymer compound B, and the transistor characteristics were measured. That is, first, the surface of the n-type silicon substrate 4 doped with an impurity serving as a gate electrode at a high concentration was thermally oxidized to form a silicon oxide film 3 having a thickness of 200 nm. After thoroughly washing the substrate, the substrate surface was silane treated with hexamethylene disilazane (HMDS).
  • HMDS hexamethylene disilazane
  • the polymer compound B was dissolved in orthodichlorobenzene to prepare a 3 g / L solution, which was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 2) containing the polymer compound B having a thickness of about 30 nm was formed on the surface-treated substrate by spin coating. This thin film was heated at 150 ° C. for 30 minutes in a nitrogen gas atmosphere. Then, a source electrode 5 and a drain electrode 6 having a channel length of 50 ⁇ m and a channel width of 1.5 mm were produced on the obtained thin film by vacuum vapor deposition to obtain an organic transistor (2).
  • the transistor characteristics were measured by changing the gate voltage Vg from 40 V to ⁇ 60 V and the source-drain voltage Vsd from 0 V to ⁇ 60 V. From this result, the field effect mobility was calculated to be 9.3 ⁇ 10 ⁇ 2 cm 2 / Vs.
  • Example 5 Production and evaluation of organic transistor (3)
  • An organic transistor having the structure already described with reference to FIG. 8 was prepared using the polymer compound B, and the transistor characteristics were measured. That is, first, the surface of the n-type silicon substrate 4 doped with an impurity serving as a gate electrode at a high concentration was thermally oxidized to form a silicon oxide film 3 having a thickness of 200 nm. After sufficiently washing the substrate, the surface of the substrate was treated with silane using FDTS.
  • the polymer compound B was dissolved in orthodichlorobenzene to prepare a 3 g / L solution, which was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 2) containing the polymer compound B having a thickness of about 30 nm was formed on the surface-treated substrate by spin coating.
  • a source electrode 5 and a drain electrode 6 having a channel length of 50 ⁇ m and a channel width of 1.5 mm were produced on the obtained thin film by vacuum deposition to obtain an organic transistor (3).
  • the transistor characteristics were measured by changing the gate voltage Vg from 40 V to ⁇ 60 V and the source-drain voltage Vsd from 0 V to ⁇ 60 V. From this result, the field effect mobility was calculated to be 0.15 cm 2 / Vs.
  • compound 8 (97.2 mg, 0.300 mmol), compound 9 (159.4 mg, 0.270 mmol), toluene (10 mL) and methyltrialkylammonium chloride (trade name Aliquat 336®) Aldrich) (60.6 mg, 0.15 mmol) was added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes.
  • methyltrialkylammonium chloride (trade name Aliquat 336®) Aldrich)
  • the obtained polymer compound was filtered and dried, and then the polymer compound was redissolved in toluene (15 mL) and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer compound, filtered, and dried to obtain 69 mg of polymer compound C.
  • An organic transistor having the structure already described with reference to FIG. 8 was prepared using the polymer compound C, and the transistor characteristics were measured. That is, first, the surface of the n-type silicon substrate 4 doped with an impurity serving as a gate electrode at a high concentration was thermally oxidized to form a silicon oxide film 3 having a thickness of 200 nm. The substrate was ultrasonically cleaned with acetone for 10 minutes and then irradiated with ozone UV for 20 minutes. Thereafter, silane treatment was performed on the substrate surface by spin coating using ⁇ -phenethyltrichlorosilane ( ⁇ -PTS).
  • ⁇ -PTS ⁇ -phenethyltrichlorosilane
  • the polymer compound C was dissolved in chloroform as a solvent to prepare a solution having a total concentration of 0.5% by weight, and this was filtered through a membrane filter.
  • a thin film (organic semiconductor layer 2) of polymer compound C having a thickness of about 60 nm was formed on the surface-treated substrate by spin coating.
  • a source electrode 5 and a drain electrode 6 having a channel length of 20 ⁇ m and a channel width of 2 mm MoO 3 , gold in order from the thin film side
  • Electrode having a laminated structure of 2) was produced to obtain an organic transistor.

Abstract

Provided is a polymer compound capable of exhibiting excellent electron field effect mobility when used as a constituent material of an active layer of an organic transistor. The polymer compound includes structural units represented by formula (1) (in formula (1): ring A and ring B each independently represent an aromatic hydrocarbon ring or a heterocyclic ring; and R1 represents hydrogen, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, a halogen, an acyl group, an acyloxy group, an amide group, a carboxyl group, a nitro group, or a cyano group, and these groups may have substituent groups).

Description

高分子化合物、並びにこの高分子化合物を用いた有機半導体素子及び有機トランジスタPolymer compound, and organic semiconductor device and organic transistor using the polymer compound
 本発明は、高分子化合物、並びにこの高分子化合物を用いた有機半導体素子及び有機トランジスタに関する。 The present invention relates to a polymer compound, and an organic semiconductor element and an organic transistor using the polymer compound.
 有機半導体材料を利用した有機トランジスタは、従来の無機半導体材料を利用したトランジスタと比較して、デバイスの軽量化、製造コストの低下が期待でき、さらには高温処理が必要な製造工程を実施することなく製造できることが期待されるため、盛んに研究開発が行われている。 Compared with conventional transistors using inorganic semiconductor materials, organic transistors using organic semiconductor materials can be expected to reduce the weight of the device and reduce manufacturing costs. Because it is expected that it can be manufactured without any problems, research and development is actively conducted.
 有機トランジスタの性能にかかる指標の1つである電界効果移動度は、活性層に含まれる有機半導体材料の電界効果移動度に大きく依存する。従って、電界効果移動度に優れる有機トランジスタを実現するべく、様々な有機半導体材料が検討されている。 The field effect mobility, which is one of the indexes related to the performance of the organic transistor, greatly depends on the field effect mobility of the organic semiconductor material contained in the active layer. Therefore, various organic semiconductor materials have been studied in order to realize an organic transistor having excellent field effect mobility.
 例えば、非特許文献1によれば、下記の構造を有する化合物が提案されている。 For example, according to Non-Patent Document 1, a compound having the following structure has been proposed.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 しかしながら、上記非特許文献1にかかる化合物を活性層に含む有機トランジスタは、電界効果移動度が十分ではない。 However, the organic transistor including the compound according to Non-Patent Document 1 in the active layer does not have sufficient field effect mobility.
 本発明はこのような事情に鑑みてなされたものであり、有機トランジスタの活性層の構成材料として用いた場合に、優れた電界効果移動度を発揮することができる高分子化合物を提供することを目的とする。 This invention is made | formed in view of such a situation, and when using as a constituent material of the active layer of an organic transistor, providing the high molecular compound which can exhibit the outstanding field effect mobility. Objective.
 本発明はまた、この高分子化合物を用いた有機半導体素子及び有機トランジスタを提供することを目的とする。 Another object of the present invention is to provide an organic semiconductor element and an organic transistor using the polymer compound.
 本発明は、下記[1]~[8]の高分子化合物、有機半導体素子及び有機トランジスタを提供する。 The present invention provides the following polymer compounds [1] to [8], organic semiconductor elements and organic transistors.
[1] 下記式(1)で表される構造単位を含む、高分子化合物。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、
 A環及びB環は、それぞれ独立に、芳香族炭化水素環又は複素環を表す。
 Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。2個存在するRは互いに異なっていてもよい。)
[2] 前記A環及び前記B環が、いずれも同一の芳香族炭化水素環又は複素環である、[1]に記載の高分子化合物。
[3] 前記式(1)で表される構造単位が、下記式(2)で表される構造単位である、[1]に記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000006
(式(2)中、
 Rは前記と同じ意味を表す。
 Xは、=CR-で表される基、=N-で表される基を表す。複数個存在するXは互いに異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。)
[4] 複数個存在する前記Xが、いずれも=CR-で表される基である、[3]に記載の高分子化合物。
[5] 下記式(3)で表される構造単位をさらに有する、[1]~[4]のいずれか1つに記載の高分子化合物。
Figure JPOXMLDOC01-appb-C000007
(式(3)中、
 Yは、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。)
[6] [1]~[5]のいずれか1つに記載の高分子化合物を含む、有機半導体材料。
[7] [6]に記載の有機半導体材料を含む有機層を有する、有機半導体素子。
[8] ソース電極、ドレイン電極、ゲート電極及び活性層を有し、該活性層に[6]に記載の有機半導体材料を含む、有機トランジスタ。
[1] A polymer compound comprising a structural unit represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
(In the formula (1),
A ring and B ring each independently represent an aromatic hydrocarbon ring or a heterocyclic ring.
R 1 is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent. Two R 1 may be different from each other. )
[2] The polymer compound according to [1], wherein the A ring and the B ring are both the same aromatic hydrocarbon ring or heterocyclic ring.
[3] The polymer compound according to [1], wherein the structural unit represented by the formula (1) is a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
(In the formula (2),
R 1 represents the same meaning as described above.
X represents a group represented by ═CR 2 — and a group represented by ═N—. A plurality of Xs may be different from each other. R 2 is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent. )
[4] The polymer compound according to [3], wherein a plurality of the Xs are all groups represented by ═CR 2 —.
[5] The polymer compound according to any one of [1] to [4], further having a structural unit represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
(In formula (3),
Y represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. )
[6] An organic semiconductor material comprising the polymer compound according to any one of [1] to [5].
[7] An organic semiconductor element having an organic layer containing the organic semiconductor material according to [6].
[8] An organic transistor having a source electrode, a drain electrode, a gate electrode, and an active layer, wherein the active layer includes the organic semiconductor material according to [6].
 本発明の高分子化合物を活性層に含む有機トランジスタは、高い電界効果移動度を有するため、本発明は極めて有用である。 Since the organic transistor containing the polymer compound of the present invention in the active layer has high field effect mobility, the present invention is extremely useful.
図1は、本発明の有機トランジスタの構成例(1)を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration example (1) of an organic transistor of the present invention. 図2は、本発明の有機トランジスタの構成例(2)を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing a configuration example (2) of the organic transistor of the present invention. 図3は、本発明の有機トランジスタの構成例(3)を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing a configuration example (3) of the organic transistor of the present invention. 図4は、本発明の有機トランジスタの構成例(4)を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing a configuration example (4) of the organic transistor of the present invention. 図5は、本発明の有機トランジスタの構成例(5)を示す模式的な断面図である。FIG. 5 is a schematic cross-sectional view showing a structural example (5) of the organic transistor of the present invention. 図6は、本発明の有機トランジスタの構成例(6)を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing a configuration example (6) of the organic transistor of the present invention. 図7は、本発明の有機トランジスタの構成例(7)を示す模式的な断面図である。FIG. 7: is typical sectional drawing which shows the structural example (7) of the organic transistor of this invention. 図8は、本発明の有機トランジスタの構成例(8)を示す模式的な断面図である。FIG. 8: is typical sectional drawing which shows the structural example (8) of the organic transistor of this invention. 図9は、本発明の有機トランジスタの構成例(9)を示す模式的な断面図である。FIG. 9 is a schematic cross-sectional view showing a structural example (9) of the organic transistor of the present invention.
 以下、必要に応じて図面を参照することにより、本発明の実施形態について詳細に説明する。なお、図面の説明においては、同一の構成要素には同一の符号を付し、重複する説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the description of the drawings, the same components are denoted by the same reference numerals, and redundant descriptions may be omitted.
 本明細書において、「構造単位」とは、高分子化合物中に1個以上存在する単位構造を意味する。「構造単位」は、「繰返し単位」(即ち、高分子化合物中に2個以上存在する単位構造)として高分子化合物中に含まれることが好ましい。 In the present specification, the “structural unit” means a unit structure existing in one or more polymer compounds. The “structural unit” is preferably contained in the polymer compound as a “repeating unit” (that is, a unit structure present in two or more in the polymer compound).
 本明細書において、「置換基を有していてもよい」とは、その化合物又は基を構成するすべての水素原子が無置換の場合、及び1個以上の水素原子の一部又は全部が置換基によって置換されている場合の両方の態様を含む。
 置換基の例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基及びシアノ基が挙げられる。これらの置換基の中でも、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、ハロゲン原子又はシアノ基が好ましく、アルキル基、アルコキシ基、アリール基、1価の複素環基、アリールオキシ基又はハロゲン原子がより好ましく、アルキル基、アルコキシ基又はハロゲン原子が更に好ましい。アルキル基、アルコキシ基、アルキルチオ基はそれぞれ、直鎖状、分岐鎖状又は環状のいずれであってもよい。
In the present specification, “optionally substituted” means that all hydrogen atoms constituting the compound or group are unsubstituted, and that one or more hydrogen atoms are partially or completely substituted. Includes both embodiments when substituted by a group.
Examples of substituents include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, monovalent heterocyclic groups, aryloxy groups, arylthio groups, alkenyl groups, alkynyl groups, amino groups, silyl groups, halogen atoms, and acyl groups. , Acyloxy group, amide group, carboxy group, nitro group and cyano group. Among these substituents, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, a halogen atom or a cyano group are preferable, and an alkyl group, an alkoxy group, an aryl group, A monovalent heterocyclic group, aryloxy group or halogen atom is more preferred, and an alkyl group, alkoxy group or halogen atom is still more preferred. The alkyl group, alkoxy group, and alkylthio group may each be linear, branched, or cyclic.
 <高分子化合物>
(第1構造単位)
 本発明の高分子化合物は、下記式(1)で表される構造単位、即ち第1構造単位を含む。
<Polymer compound>
(First structural unit)
The polymer compound of the present invention includes a structural unit represented by the following formula (1), that is, a first structural unit.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(1)で表される第1構造単位は、高分子化合物中に1種のみ含まれていても2種以上含まれていてもよい。 The first structural unit represented by the above formula (1) may be contained in the polymer compound alone or in a combination of two or more.
 式(1)中、A環及びB環は、それぞれ独立に、芳香族炭化水素環又は複素環を表す。 In formula (1), A ring and B ring each independently represent an aromatic hydrocarbon ring or a heterocyclic ring.
 芳香族炭化水素環の炭素原子数は、好ましくは5~30であり、より好ましくは6~14であり、さらに好ましくは6~10である。なお、上記の炭素原子数には、置換基の炭素原子数は含まれない。芳香族炭化水素環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、ピレン環、フルオレン環等が挙げられる。 The number of carbon atoms in the aromatic hydrocarbon ring is preferably 5 to 30, more preferably 6 to 14, and further preferably 6 to 10. The number of carbon atoms does not include the number of carbon atoms of the substituent. Specific examples of the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a pyrene ring, and a fluorene ring.
 複素環の炭素原子数は、好ましくは2~60であり、より好ましくは2~22であり、さらに好ましくは3~14である。なお、上記の炭素原子数には、置換基の炭素原子数は含まれない。複素環の具体例としては、チアゾール環、チオフェン環、ピロール環、フラン環、ピリジン環、ピラジン環、ピリミジン環、ベンゾチオフェン環、ベンゾピロール環、ベンゾフラン環、キノリン環、イソキノリン環、チエノチオフェン環、ベンゾチアジアゾール環等が挙げられる。 The number of carbon atoms in the heterocyclic ring is preferably 2 to 60, more preferably 2 to 22, and further preferably 3 to 14. The number of carbon atoms does not include the number of carbon atoms of the substituent. Specific examples of the heterocyclic ring include thiazole ring, thiophene ring, pyrrole ring, furan ring, pyridine ring, pyrazine ring, pyrimidine ring, benzothiophene ring, benzopyrrole ring, benzofuran ring, quinoline ring, isoquinoline ring, thienothiophene ring, Examples thereof include a benzothiadiazole ring.
 式(1)中、A環及びB環は、本発明の高分子化合物の合成の容易さの観点から、いずれも同一の芳香族炭化水素環又は複素環であることが好ましく、互いに同一である5員環若しくは6員環である芳香族炭化水素環又は互いに同一である5員環若しくは6員環である複素環であることがより好ましい。 In the formula (1), the A ring and the B ring are preferably the same aromatic hydrocarbon ring or heterocyclic ring from the viewpoint of easy synthesis of the polymer compound of the present invention, and are the same as each other. It is more preferably an aromatic hydrocarbon ring which is a 5-membered ring or a 6-membered ring or a heterocyclic ring which is the same 5-membered ring or 6-membered ring.
 式(1)中、Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基を表し、これらは置換基を有していてもよく、2個存在するRは互いに異なっていてもよい。 In formula (1), each R 1 independently represents a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, amino Represents a group, a silyl group, a halogen atom, an acyl group, an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, which may have a substituent, and two R 1 s are different from each other. May be.
 Rで表されるアルキル基は、直鎖状、分岐状又は環状のいずれであってもよく、置換基を有していてもよい。直鎖状アルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、1~20であることが好ましい。分岐状アルキル基及び環状アルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~20であり、4~20であることが好ましい。これらのアルキル基の中でも、直鎖状アルキル基及び分岐状アルキル基が好ましく、直鎖状アルキル基がより好ましい。 The alkyl group represented by R 1 may be linear, branched or cyclic, and may have a substituent. The number of carbon atoms of the linear alkyl group is usually 1 to 60, preferably 1 to 20, excluding the number of carbon atoms of the substituent. The number of carbon atoms of the branched alkyl group and the cyclic alkyl group is usually 3 to 20, preferably 4 to 20, not including the carbon atom number of the substituent. Among these alkyl groups, a linear alkyl group and a branched alkyl group are preferable, and a linear alkyl group is more preferable.
 Rで表されるアルキル基の例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基、ヘキサデシル基等の直鎖状アルキル基;イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-エチルヘキシル基、3,7-ジメチルオクチル基等の分岐状アルキル基;シクロペンチル基、シクロヘキシル基等の環状アルキル基が挙げられる。 Examples of the alkyl group represented by R 1 include a linear alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, an octyl group, a dodecyl group, a hexadecyl group; an isopropyl group, an isobutyl group, Examples thereof include branched alkyl groups such as sec-butyl group, tert-butyl group, 2-ethylhexyl group and 3,7-dimethyloctyl group; and cyclic alkyl groups such as cyclopentyl group and cyclohexyl group.
 上記のアルキル基が有していてもよい置換基としては、アルコキシ基、アリール基、ハロゲン原子等が挙げられる。置換基を有するアルキル基の具体例としては、メトキシエチル基、ベンジル基、トリフルオロメチル基、パーフルオロヘキシル基等が挙げられる。 Examples of the substituent that the alkyl group may have include an alkoxy group, an aryl group, and a halogen atom. Specific examples of the alkyl group having a substituent include a methoxyethyl group, a benzyl group, a trifluoromethyl group, and a perfluorohexyl group.
 Rで表されるアルコキシ基は、直鎖状、分岐状又は環状のいずれであってもよく、置換基を有していてもよい。直鎖状アルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~20である。分岐状アルコキシ基及び環状アルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~20である。これらのアルコキシ基の中でも、直鎖状アルコキシ基が好ましい。 The alkoxy group represented by R 1 may be linear, branched or cyclic, and may have a substituent. The number of carbon atoms of the linear alkoxy group is usually 1 to 20 without including the number of carbon atoms of the substituent. The number of carbon atoms of the branched alkoxy group and the cyclic alkoxy group is usually 3 to 20, excluding the number of carbon atoms of the substituent. Among these alkoxy groups, a linear alkoxy group is preferable.
 Rで表されるアルコキシ基の具体例としては、ブチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、3,7-ジメチルオクチルオキシ基、ドデシルオキシ基、ヘキサデシルオキシ等が挙げられ、ブチルオキシ基、ヘキシルオキシ基、ドデシルオキシ基、ヘキサデシルオキシ等の直鎖状アルコキシ基が好ましい。
 上記のアルコキシ基が有していてもよい置換基の例としては、アリール基、ハロゲン原子等が挙げられる。
Specific examples of the alkoxy group represented by R 1 include a butyloxy group, a hexyloxy group, a 2-ethylhexyloxy group, a 3,7-dimethyloctyloxy group, a dodecyloxy group, a hexadecyloxy group, and the like. A straight-chain alkoxy group such as hexyloxy group, dodecyloxy group, hexadecyloxy and the like is preferable.
Examples of the substituent that the alkoxy group may have include an aryl group and a halogen atom.
 Rで表されるアルキルチオ基は、直鎖状、分岐状又は環状のいずれであってもよく、置換基を有していてもよい。直鎖状アルキルチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~20である。分岐状アルキルチオ基及び環状アルキルチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~20である。これらのアルキルチオ基の中でも、直鎖状アルキルチオ基が好ましい。 The alkylthio group represented by R 1 may be linear, branched or cyclic, and may have a substituent. The number of carbon atoms of the linear alkylthio group is usually 1 to 20, not including the number of carbon atoms of the substituent. The number of carbon atoms of the branched alkylthio group and the cyclic alkylthio group is usually 3 to 20, excluding the number of carbon atoms of the substituent. Among these alkylthio groups, a linear alkylthio group is preferable.
 Rで表されるアルキルチオ基の具体例としては、ブチルチオ基、ヘキシルチオ基、2-エチルヘキシルチオ基、3,7-ジメチルオクチルチオ基、ドデシルチオ基、ヘキサデシルチオ等が挙げられ、ブチルチオ基、ヘキシルチオ基、ドデシルチオ基、ヘキサデシルチオ等の直鎖状アルキルチオ基が好ましい。
 上記のアルキルチオ基が有していてもよい置換基としては、アリール基、ハロゲン原子等が挙げられる。
Specific examples of the alkylthio group represented by R 1 include a butylthio group, a hexylthio group, a 2-ethylhexylthio group, a 3,7-dimethyloctylthio group, a dodecylthio group, a hexadecylthio group, a butylthio group, a hexylthio group, A linear alkylthio group such as dodecylthio group or hexadecylthio group is preferred.
Examples of the substituent that the alkylthio group may have include an aryl group and a halogen atom.
 Rで表されるアリール基は、置換基を有していてもよい芳香族炭化水素から環に直接結合する炭素原子に直接結合する水素原子1個を除いた残りの原子団であり、ベンゼン環を有する基、縮合環を有する基、独立した芳香族炭化水素環及び縮合環から選ばれる2個以上の環が直接結合した基も含む。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、6~20であることが好ましい。 The aryl group represented by R 1 is a remaining atomic group obtained by removing one hydrogen atom directly bonded to a carbon atom directly bonded to a ring from an aromatic hydrocarbon which may have a substituent, and benzene A group having two or more rings selected from a group having a ring, a group having a condensed ring, an independent aromatic hydrocarbon ring and a condensed ring is also included. The number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, excluding the number of carbon atoms of the substituent.
 Rで表されるアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、4-フェニルフェニル基等が挙げられる。 Specific examples of the aryl group represented by R 1 include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-pyrenyl group, 2-pyrenyl group. Group, 4-pyrenyl group, 2-fluorenyl group, 3-fluorenyl group, 4-fluorenyl group, 4-phenylphenyl group and the like.
 Rで表されるアリール基が有していてもよい置換基としては、アルキル基、アルコキシ基、アルキルチオ基、1価の複素環基、ハロゲン原子等が挙げられ、これらの中でもアルキル基が好ましい。置換基を有するアリール基の具体例としては、4-ヘキシルフェニル基、3,5-ジメトキシフェニル基、ペンタフルオロフェニル基等が挙げられる。 Examples of the substituent that the aryl group represented by R 1 may have include an alkyl group, an alkoxy group, an alkylthio group, a monovalent heterocyclic group, and a halogen atom. Among these, an alkyl group is preferable. . Specific examples of the aryl group having a substituent include a 4-hexylphenyl group, a 3,5-dimethoxyphenyl group, and a pentafluorophenyl group.
 Rで表される1価の複素環基は、置換基を有していてもよい複素環式化合物から、環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団であり、縮合環を有する基、独立した複素環及び縮合環から選ばれる2個以上の環が直接結合した基も含む。1価の複素環基としては、芳香族複素環基が好ましい。1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、3~20であることが好ましい。ここで、複素環式化合物とは、環構造を有する有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ヒ素原子などのヘテロ原子を含む化合物をいう。 The monovalent heterocyclic group represented by R 1 is the remaining atomic group obtained by removing one hydrogen atom directly bonded to the carbon atom constituting the ring from the heterocyclic compound which may have a substituent. And a group in which two or more rings selected from a group having a condensed ring, an independent heterocyclic ring and a condensed ring are directly bonded. As the monovalent heterocyclic group, an aromatic heterocyclic group is preferable. The number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 3 to 20, excluding the number of carbon atoms of the substituent. Here, the heterocyclic compound is an organic compound having a ring structure, and the elements constituting the ring are not only carbon atoms, but also oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms, arsenic atoms, etc. A compound containing a heteroatom.
 Rで表される1価の複素環基の具体例としては、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、2-ピロリル基、3-ピロリル基、2-オキサゾリル基、2-チアゾリル基、2-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ベンゾフリル基、2-ベンゾチエニル基、2-チエノチエニル基等が挙げられる。 Specific examples of the monovalent heterocyclic group represented by R 1 include 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, 2-pyrrolyl group, 3-pyrrolyl group, 2- Examples include oxazolyl group, 2-thiazolyl group, 2-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-benzofuryl group, 2-benzothienyl group, 2-thienothienyl group and the like.
 Rで表される1価の複素環基が有していてもよい置換基の例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、ハロゲン原子等が挙げられ、これらの中でもアルキル基が好ましい。置換基を有する1価の複素環基の具体例としては、5-オクチル-2-チエニル基、5-フェニル-2-フリル基等が挙げられる。 Examples of the substituent that the monovalent heterocyclic group represented by R 1 may have include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, and a halogen atom. Among these, an alkyl group Is preferred. Specific examples of the monovalent heterocyclic group having a substituent include 5-octyl-2-thienyl group and 5-phenyl-2-furyl group.
 Rで表されるアリールオキシ基は、置換基を有していてもよい。アリールオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~20である。
 アリールオキシ基の具体例としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基等が挙げられる。
 Rで表されるアリールオキシ基が有していてもよい置換基の例としては、アルキル基、アルコキシ基、ハロゲン原子等が挙げられ、これらの中でもアルキル基が好ましい。
The aryloxy group represented by R 1 may have a substituent. The number of carbon atoms of the aryloxy group is usually 6 to 20 without including the number of carbon atoms of the substituent.
Specific examples of the aryloxy group include a phenoxy group, a 1-naphthyloxy group, and a 2-naphthyloxy group.
Examples of the substituent that the aryloxy group represented by R 1 may have include an alkyl group, an alkoxy group, and a halogen atom, and among these, an alkyl group is preferable.
 Rで表されるアリールチオ基は、置換基を有していてもよい。アリールチオ基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~20である。
 Rで表されるアリールチオ基の具体例としては、フェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基等が挙げられる。
 Rで表されるアリールチオ基が有していてもよい置換基の例としては、アルキル基、アルコキシ基、ハロゲン原子等が挙げられ、これらの中でもアルキル基が好ましい。
The arylthio group represented by R 1 may have a substituent. The number of carbon atoms of the arylthio group is usually 6 to 20, excluding the number of carbon atoms of the substituent.
Specific examples of the arylthio group represented by R 1 include a phenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and the like.
Examples of the substituent that the arylthio group represented by R 1 may have include an alkyl group, an alkoxy group, and a halogen atom, and among these, an alkyl group is preferable.
 Rで表されるアルケニル基は、置換基を有していてもよい。アルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~20である。
 Rで表されるアルケニル基の具体例としては、ビニル基、1-オクテニル基等が挙げられる。
 Rで表されるアルケニル基が有していてもよい置換基の例としては、アルキル基、アルコキシ基、ハロゲン原子等が挙げられる。
The alkenyl group represented by R 1 may have a substituent. The number of carbon atoms of the alkenyl group is usually 2 to 20, not including the number of carbon atoms of the substituent.
Specific examples of the alkenyl group represented by R 1 include a vinyl group and a 1-octenyl group.
Examples of the substituent that the alkenyl group represented by R 1 may have include an alkyl group, an alkoxy group, and a halogen atom.
 Rで表されるアルキニル基は、置換基を有していてもよい。Rで表されるアルキニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~20である。
 Rで表されるアルキニル基の具体例としては、エチニル基、1-オクチニル基等が挙げられる。
 Rで表されるアルキニル基が有していてもよい置換基の例としては、アルキル基、アリール基、シリル基等が挙げられる。置換基を有するアルキニル基の具体例としては、2-フェニルエチニル基、トリメチルシリルエチニル基等が挙げられる。
The alkynyl group represented by R 1 may have a substituent. The number of carbon atoms of the alkynyl group represented by R 1 is usually 2 to 20 without including the number of carbon atoms of the substituent.
Specific examples of the alkynyl group represented by R 1 include ethynyl group and 1-octynyl group.
Examples of the substituent that the alkynyl group represented by R 1 may have include an alkyl group, an aryl group, and a silyl group. Specific examples of the alkynyl group having a substituent include 2-phenylethynyl group and trimethylsilylethynyl group.
 Rで表されるアミノ基は、置換基を有していてもよい。Rで表されるアミノ基が有していてもよい置換基の例としては、アルキル基、アリール基、1価の複素環基等が挙げられる。置換基を有するアミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、フェニルアミノ基、ジフェニルアミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ピリジルアミノ基等が挙げられる。 The amino group represented by R 1 may have a substituent. Examples of the substituent that the amino group represented by R 1 may have include an alkyl group, an aryl group, and a monovalent heterocyclic group. Specific examples of the amino group having a substituent include a methylamino group, a dimethylamino group, a diethylamino group, a diisopropylamino group, a dicyclohexylamino group, a pyrrolidyl group, a piperidyl group, a phenylamino group, a diphenylamino group, and a 1-naphthylamino group. 2-naphthylamino group, pyridylamino group, and the like.
 Rで表されるシリル基は、置換基を有していてもよい。Rで表されるシリル基が有していてもよい置換基の例としては、アルキル基、アリール基、アルコキシ基等が挙げられる。置換基を有するシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、トリフェニルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、ジメチルフェニルシリル基等が挙げられる。 The silyl group represented by R 1 may have a substituent. Examples of the substituent that the silyl group represented by R 1 may have include an alkyl group, an aryl group, and an alkoxy group. Specific examples of the silyl group having a substituent include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, triphenylsilyl group, tribenzylsilyl group, diphenylmethylsilyl group. And dimethylphenylsilyl group.
 Rで表されるハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子であることが好ましい。 Examples of the halogen atom represented by R 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
 Rで表されるアシル基は、置換基を有していてもよい。Rで表されるアシル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~20である。Rで表されるアシル基の具体例としては、アセチル基、プロピオニル基、ベンゾイル基等が挙げられる。
 Rで表されるアシル基が有していてもよい置換基としては、アルキル基、アリール基、ハロゲン原子等が挙げられる。置換基を有するアシル基の具体例としては、トリフルオロアセチル基、ペンタフルオロベンゾイル基等が挙げられる。
The acyl group represented by R 1 may have a substituent. The number of carbon atoms of the acyl group represented by R 1 is usually 1 to 20 without including the number of carbon atoms of the substituent. Specific examples of the acyl group represented by R 1 include an acetyl group, a propionyl group, and a benzoyl group.
Examples of the substituent that the acyl group represented by R 1 may have include an alkyl group, an aryl group, and a halogen atom. Specific examples of the acyl group having a substituent include a trifluoroacetyl group and a pentafluorobenzoyl group.
 Rで表されるアシルオキシ基は、置換基を有していてもよい。Rで表されるアシルオキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~20である。アシルオキシ基の具体例としては、アセトキシ基、プロピオニルオキシ基、ベンゾイルオキシ基等が挙げられる。
 Rで表されるアシルオキシ基が有していてもよいアシルオキシ基としては、アルキル基、アリール基、ハロゲン原子等が挙げられる。置換基を有するアシルオキシ基の具体例としては、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。
The acyloxy group represented by R 1 may have a substituent. The number of carbon atoms of the acyloxy group represented by R 1 is usually 2 to 20, excluding the number of carbon atoms of the substituent. Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, and a benzoyloxy group.
Examples of the acyloxy group that the acyloxy group represented by R 1 may have include an alkyl group, an aryl group, and a halogen atom. Specific examples of the acyloxy group having a substituent include a trifluoroacetyloxy group and a pentafluorobenzoyloxy group.
 Rで表されるアミド基は、置換基を有していてもよい。置換基を有していてもよいアミド基の具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジベンズアミド基等が挙げられる。 The amide group represented by R 1 may have a substituent. Specific examples of the amide group which may have a substituent include a formamide group, an acetamide group, a propioamide group, a butyroamide group, a benzamide group, a trifluoroacetamide group, a pentafluorobenzamide group, a diformamide group, a diacetamide group, And dibenzamide group.
 Rは、本発明の化合物の合成の容易さの観点から、水素原子、アルキル基、アリール基、1価の複素環基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、シアノ基、シリル基が好ましく、水素原子、アルキル基、アリール基、1価の複素環基、シアノ基、シリル基がより好ましく、アリール基、1価の複素環基、シリル基がさらに好ましい。 R 1 is a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, an alkenyl group, an alkynyl group, an acyl group, an acyloxy group, a cyano group, or a silyl group from the viewpoint of ease of synthesis of the compound of the present invention. Are preferable, a hydrogen atom, an alkyl group, an aryl group, a monovalent heterocyclic group, a cyano group, and a silyl group are more preferable, and an aryl group, a monovalent heterocyclic group, and a silyl group are more preferable.
 上記式(1)で表わされる第1構造単位は、本発明の化合物の合成の容易さの観点から、下記式(2)で表される構造単位であることが好ましい。 The first structural unit represented by the above formula (1) is preferably a structural unit represented by the following formula (2) from the viewpoint of ease of synthesis of the compound of the present invention.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(2)中、
 Rは前記と同じ意味を表す。
 Xは、=CR-で表される基、=N-で表される基を表す。複数個存在するXは、互いに異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。
In formula (2),
R 1 represents the same meaning as described above.
X represents a group represented by ═CR 2 — and a group represented by ═N—. A plurality of Xs may be different from each other. R 2 is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent.
 式(2)中、Rで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基の定義、具体例は、前記Rで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基の定義、具体例と同じである。 In formula (2), an alkyl group represented by R 2 , an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, Definition of halogen atom, acyl group, acyloxy group, amide group, carboxy group, specific examples are alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group represented by R 1. , Arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, amide group, carboxy group, the same as the specific examples.
 式(2)中、Xは、=CR-で表される基、=N-で表される基を表す。複数個存在するXは互いに異なっていてもよい。 In formula (2), X represents a group represented by ═CR 2 — and a group represented by ═N—. A plurality of Xs may be different from each other.
 複数個存在するXは、本発明の高分子化合物の原料となるモノマーの合成の容易さの観点からは、そのうちの4個から6個が=CR-で表される基であることが好ましく、6個すべてが=CR-で表される基であることがより好ましい。 A plurality of Xs are preferably groups in which 4 to 6 of them are a group represented by ═CR 2 — from the viewpoint of ease of synthesis of a monomer that is a raw material of the polymer compound of the present invention. More preferably, all six are groups represented by ═CR 2 —.
 Rは、より高い電界効果移動度が得られること、及び本発明の高分子化合物の原料となるモノマーの合成の容易さの観点からは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、ハロゲン原子、シアノ基であることが好ましく、水素原子、アルキル基、ハロゲン原子であることがより好ましい。 R 2 is a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, from the viewpoint of obtaining higher field effect mobility and the ease of synthesis of the monomer that is a raw material for the polymer compound of the present invention. An atom and a cyano group are preferable, and a hydrogen atom, an alkyl group, and a halogen atom are more preferable.
 第1構造単位としては、例えば、下記式(1-1)~下記式(1-19)で表される構造単位が挙げられる。 Examples of the first structural unit include structural units represented by the following formula (1-1) to the following formula (1-19).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(1-1)~式(1-19)中、R及びRは前記定義の通りである。Rは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基又はアシル基を表す。Rで表されるアルキル基、アリール基、1価の複素環基又はアシル基は置換基を有していてもよい。Rで表されるアルキル基、アリール基、1価の複素環基、アシル基の定義、具体例は、前述のRで表されるアルキル基、アリール基、1価の複素環基、アシル基の定義、具体例と同じである。 In the formulas (1-1) to (1-19), R 1 and R 2 are as defined above. R N are each independently a hydrogen atom, an alkyl group, an aryl group, monovalent heterocyclic group or an acyl group. Alkyl group, an aryl group represented by R N, 1-valent heterocyclic group or an acyl group may have a substituent. Alkyl group represented by R N, an aryl group, a monovalent heterocyclic group, the definition of the acyl group, specific examples include alkyl groups represented by the aforementioned R 1, aryl group, monovalent heterocyclic group, acyl The definition of the group and the specific example are the same.
 式(1-1)~式(1-19)で表される構造単位の中では、本発明の高分子化合物の原料となるモノマーの合成の容易さの観点からは、式(1-1)、式(1-2)、式(1-8)、式(1-10)、式(1-15)、式(1-16)、式(1-18)が好ましく、式(1-1)、式(1-8)、式(1-10)、式(1-18)で表される構造単位がより好ましい。 Among the structural units represented by the formulas (1-1) to (1-19), from the viewpoint of ease of synthesis of the monomer that is a raw material of the polymer compound of the present invention, the formula (1-1) Formula (1-2), Formula (1-8), Formula (1-10), Formula (1-15), Formula (1-16), and Formula (1-18) are preferable, and Formula (1-1) ), Structural units represented by formula (1-8), formula (1-10), and formula (1-18) are more preferred.
(第2構造単位)
 第2構造単位は、下記式(3)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位である。第2構造単位は、高分子化合物中に1種のみ含まれていてもよく、2種以上含まれていてもよい。
(Second structural unit)
The second structural unit is at least one structural unit selected from the group consisting of structural units represented by the following formula (3). Only one type of the second structural unit may be contained in the polymer compound, or two or more types of the second structural unit may be contained.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(3)中、Yは、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。 In formula (3), Y represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
 Yで表されるアリーレン基は、置換基を有していてもよい芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団であり、ベンゼン環を有する基、縮合環を有する基、独立したベンゼン環及び縮合環から選ばれる2個以上が直接結合した基を含む。Yで表されるアリーレン基が有する炭素原子数(後述の置換基の炭素原子数は含まない。)は、通常6~60であり、6~20であることが好ましい。 The arylene group represented by Y is an atomic group obtained by removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon which may have a substituent, A group in which two or more selected from a group having, a group having a condensed ring, an independent benzene ring and a condensed ring are directly bonded. The number of carbon atoms contained in the arylene group represented by Y (not including the carbon atoms of the substituents described later) is usually 6 to 60, and preferably 6 to 20.
 Yで表されるアリーレン基が有する置換基の例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基が挙げられる。アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基の定義、具体例は、Rで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基の定義、具体例と同じである。 Examples of the substituent of the arylene group represented by Y include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, and an amino group. Silyl group, halogen atom, acyl group, acyloxy group, amide group, carboxy group, nitro group or cyano group. Alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, amide group, definition of a carboxy group, specific examples, the alkyl group represented by R 1, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, Definitions and specific examples of silyl group, halogen atom, acyl group, acyloxy group, amide group and carboxy group are the same.
 Yで表されるアリーレン基の具体例としては、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、テトラセンジイル基、ピレンジイル基、ペンタセンジイル基、ペリレンジイル基、フルオレンジイル基が挙げられる。 Specific examples of the arylene group represented by Y include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthenediyl group, a tetracenediyl group, a pyrenediyl group, a pentacenediyl group, a perylenediyl group, and a fluorenediyl group.
 Yで表されるアリーレン基としては、下記式(9-1)~下記式(9-6)で表される基が好ましく、式(9-1)、式(9-6)で表される基がより好ましい。 The arylene group represented by Y is preferably a group represented by the following formula (9-1) to the following formula (9-6), represented by the formula (9-1) or the formula (9-6). Groups are more preferred.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 前記式(9-1)~式(9-6)中、Rは、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。 In the formulas (9-1) to (9-6), R represents an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group. Represents an amino group, a silyl group, a halogen atom, an acyl group, an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups may have a substituent.
 Rで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基が挙げられる。アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基の定義、具体例は、Rで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基の定義、具体例と同じである。 Alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy represented by R Group, amide group, carboxy group, nitro group or cyano group. Alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, amide group, definition of a carboxy group, specific examples, the alkyl group represented by R 1, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, Definitions and specific examples of silyl group, halogen atom, acyl group, acyloxy group, amide group and carboxy group are the same.
 Yで表される2価の複素環基は、置換基を有していてもよい複素環式化合物から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団であり、縮合環を有する基、独立した複素環及び縮合環から選ばれる2個以上が直接結合した基を含む。2価の複素環基が有する炭素原子数は、置換基の炭素原子数は含まないで、通常2~60であり、3~20であることが好ましい。 The divalent heterocyclic group represented by Y is a remaining atomic group obtained by removing two hydrogen atoms directly bonded to the carbon atoms constituting the ring from the heterocyclic compound which may have a substituent. , A group having a condensed ring, a group in which two or more selected from an independent heterocyclic ring and a condensed ring are directly bonded. The number of carbon atoms possessed by the divalent heterocyclic group does not include the number of carbon atoms of the substituent, and is usually from 2 to 60, and preferably from 3 to 20.
 Yで表される2価の複素環基が有する置換基の例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基が挙げられる。アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基の定義、具体例は、Rで表されるアルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基の定義、具体例と同じである。 Examples of the substituent that the divalent heterocyclic group represented by Y has include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, and an alkynyl. Group, amino group, silyl group, halogen atom, acyl group, acyloxy group, amide group, carboxy group, nitro group or cyano group. Alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group, acyloxy group, amide group Definitions and specific examples include an alkyl group represented by R 1 , an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, an aryloxy group, an arylthio group, an alkenyl group, an alkynyl group, an amino group, a silyl group, The definition and specific examples of the halogen atom, acyl group, acyloxy group and amide group are the same.
 Yで表される2価の複素環基の具体例としては、オキサジアゾールジイル基、チアジアゾールジイル基、オキサゾールジイル基、チアゾールジイル基、チオフェンジイル基、ビチオフェンジイル基、テルチオフェンジイル基、クアテルチオフェンジイル基、ピロールジイル基、フランジイル基、セレノフェンジイル基、ピリジンジイル基、ピラジンジイル基、ピリミジンジイル基、トリアジンジイル基、ベンゾチオフェンジイル基、ベンゾピロールジイル基、ベンゾフランジイル基、キノリンジイル基、イソキノリンジイル基、チエノチオフェンジイル基、ベンゾジチオフェンジイル基、ベンゾチアジアゾールジイル基、キノキサリンジイル基が挙げられる。 Specific examples of the divalent heterocyclic group represented by Y include oxadiazole diyl group, thiadiazole diyl group, oxazole diyl group, thiazole diyl group, thiophene diyl group, bithiophene diyl group, terthiophene diyl group, quater Terthiophene diyl group, pyrrole diyl group, frangiyl group, selenophene diyl group, pyridine diyl group, pyrazine diyl group, pyrimidine diyl group, triazine diyl group, benzothiophene diyl group, benzopyrrole diyl group, benzofuran diyl group, quinoline diyl group, isoquinoline Examples thereof include a diyl group, a thienothiophene diyl group, a benzodithiophene diyl group, a benzothiadiazole diyl group, and a quinoxaline diyl group.
 Yで表される2価の複素環基としては、例えば、式(10-1)~式(10-26)で表される基が挙げられる。これらの中でも、より高い電界効果移動度が得られるため、式(10-1)~式(10-20)で表される構造単位が好ましく、式(10-1)、式(10-3)、式(10-6)、(10-7)、式(10-11)、式(10-15)、式(10-17)、式(10-20)で表される構造単位がより好ましく、式(10-1)、式(10-15)、式(10-17)、式(10-20)で表される構造単位がさらに好ましい。 Examples of the divalent heterocyclic group represented by Y include groups represented by formula (10-1) to formula (10-26). Among these, since higher field effect mobility can be obtained, the structural units represented by the formulas (10-1) to (10-20) are preferable, and the formulas (10-1) and (10-3) are preferable. And structural units represented by formulas (10-6), (10-7), formula (10-11), formula (10-15), formula (10-17), and formula (10-20) are more preferable. Further preferred are structural units represented by formula (10-1), formula (10-15), formula (10-17) and formula (10-20).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(10-1)~式(10-26)中、Rは前記定義の通りである。 In the formulas (10-1) to (10-26), R is as defined above.
 また、Yは、式(1)で表される構造単位とともに高分子化合物を形成する際に、高分子化合物の主鎖となる骨格において、炭素原子同士の結合や炭素原子とヘテロ原子との結合により、多重結合と単結合とが交互に繰り返して連なったπ共役系が形成されるように選択される基であることが好ましい。このようなπ共役系の構造としては、例えば、下記式(E1)において破線で囲まれた構造等が挙げられる。 Y is a bond between carbon atoms or a bond between a carbon atom and a hetero atom in a skeleton that is a main chain of the polymer compound when forming a polymer compound together with the structural unit represented by the formula (1). Thus, the group is preferably selected so that a π-conjugated system in which multiple bonds and single bonds are alternately repeated is formed. Examples of such a π-conjugated structure include a structure surrounded by a broken line in the following formula (E1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 本発明の高分子化合物は、互いに異なっていてもよい2個以上の第2構造単位が連続的に結合した構造単位を有することが好ましい。第2構造単位が2個以上連続的に結合した構造単位を含む高分子化合物の例としては、下記式(4-1)~下記式(4-9)で表される構造単位を含む高分子化合物が挙げられる。これらの中でも、高分子化合物の電界効果移動度を向上させる観点からは、式(4-1)、式(4-5)、式(4-7)及び式(4-9)で表される構造単位を含む高分子化合物が好ましい。 The polymer compound of the present invention preferably has a structural unit in which two or more second structural units which may be different from each other are continuously bonded. Examples of the polymer compound including a structural unit in which two or more second structural units are continuously bonded include a polymer including a structural unit represented by the following formula (4-1) to the following formula (4-9) Compounds. Among these, from the viewpoint of improving the field effect mobility of the polymer compound, it is represented by Formula (4-1), Formula (4-5), Formula (4-7), and Formula (4-9). A polymer compound containing a structural unit is preferred.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(4-1)~式(4-9)中、Rは、前記と同じ意味を表す。 In formulas (4-1) to (4-9), R represents the same meaning as described above.
(他の構造単位)
 本発明の高分子化合物は、第1構造単位及び第2構造単位以外の構造単位(以下、「他の構造単位」という場合がある。)を含んでいてもよい。他の構造単位は、高分子化合物中に1種のみ含まれていても2種以上含まれていてもよい。
(Other structural units)
The polymer compound of the present invention may contain a structural unit other than the first structural unit and the second structural unit (hereinafter sometimes referred to as “other structural unit”). Other structural units may be included in the polymer compound alone or in combination of two or more.
 他の構造単位としては、例えば、アリーレン基、2価の複素環基、-CR=CR-で表される基、-C≡C-で表される基、-CR -で表される基、-C(=O)-で表される基、-C(=O)O-で表される基が挙げられる。 Examples of the other structural unit include an arylene group, a divalent heterocyclic group, a group represented by —CR c ═CR d —, a group represented by —C≡C—, and a group represented by —CR g 2 —. A group represented by —C (═O) — and a group represented by —C (═O) O—.
 アリーレン基及び、2価の複素環の定義、具体例は、上記のYで表されるアリーレン基及び2価の複素環基の定義、具体例と同じである。 The definitions and specific examples of the arylene group and divalent heterocyclic ring are the same as the definitions and specific examples of the arylene group and divalent heterocyclic group represented by Y above.
 上記の-CR=CR-で表される基、-CR -で表される基において、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アリール基、1価の複素環基、ハロゲン原子又はシアノ基を表し、これらの基は置換基を有していてもよい。
 R、R及びRが有していてもよい置換基の例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、ハロゲン原子等が挙げられ、これらの中でもアルキル基が好ましい。
In the group represented by —CR c ═CR d — and the group represented by —CR g 2 —, R c , R d and R g are each independently a hydrogen atom, an alkyl group, an aryl group, It represents a monovalent heterocyclic group, a halogen atom or a cyano group, and these groups optionally have a substituent.
Examples of the substituent that R c , R d and R g may have include an alkyl group, an alkoxy group, an alkylthio group, an aryl group, a monovalent heterocyclic group, a halogen atom, and the like. Of these, an alkyl group is preferred.
(高分子化合物)
 本発明の高分子化合物は、より優れた電界効果移動度が得られるため、共役高分子化合物であることが好ましい。
(Polymer compound)
The polymer compound of the present invention is preferably a conjugated polymer compound because more excellent field effect mobility can be obtained.
 本発明の高分子化合物は、より優れた電界効果移動度が得られるため、高分子化合物を構成する全構造単位に対して、第1構造単位及び第2構造単位の合計のモル比率が、50モル%以上であることが好ましく、70モル%以上であることがより好ましい。 Since the polymer compound of the present invention has a better field effect mobility, the total molar ratio of the first structural unit and the second structural unit is 50 with respect to all the structural units constituting the polymer compound. It is preferably at least mol%, more preferably at least 70 mol%.
 本発明の高分子化合物は、分子鎖末端に重合反応性基が残っていると、電界効果移動度が低下する可能性がある。そのため、分子鎖末端は、アリール基、1価の複素環基等の安定な基であることが好ましい。 In the polymer compound of the present invention, if a polymerization reactive group remains at the molecular chain terminal, the field effect mobility may be lowered. Therefore, the molecular chain terminal is preferably a stable group such as an aryl group or a monovalent heterocyclic group.
 本発明の高分子化合物は、いかなる種類の共重合体であってもよく、例えば、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体等のいずれであってもよい。 The polymer compound of the present invention may be any type of copolymer, such as a block copolymer, a random copolymer, an alternating copolymer, or a graft copolymer.
 本発明の高分子化合物のゲルパーミエーションクロマトグラフィー(以下、「GPC」という。)で測定したポリスチレン換算の数平均分子量(Mn)は、通常、1×10~1×10であり、ポリスチレン換算の重量平均分子量(Mw)は、通常、1×10~2×10である。膜質が良好な薄膜を形成する観点から、高分子化合物の数平均分子量は1×10以上であることが好ましく、高分子化合物の重量平均分子量は1×10以上であることが好ましい。溶解性及び成膜性の観点から、高分子化合物の数平均分子量は1×10以下であることが好ましく、高分子化合物の重量平均分子量は1×10以下であることが好ましい。 The number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as “GPC”) of the polymer compound of the present invention is usually from 1 × 10 3 to 1 × 10 8. The converted weight average molecular weight (Mw) is usually 1 × 10 3 to 2 × 10 8 . From the viewpoint of forming a thin film with good film quality, the number average molecular weight of the polymer compound is preferably 1 × 10 3 or more, and the weight average molecular weight of the polymer compound is preferably 1 × 10 3 or more. From the viewpoint of solubility and film formability, the polymer compound preferably has a number average molecular weight of 1 × 10 6 or less, and the polymer compound preferably has a weight average molecular weight of 1 × 10 6 or less.
<高分子化合物の製造方法>
 次に、本発明の高分子化合物の製造方法を説明する。
 本発明の高分子化合物は、いかなる方法で製造してもよい。高分子化合物は、例えば、式:X11-A11-X12で表される化合物と、式:X13-A12-X14で表される化合物とを、必要に応じて有機溶媒に溶解し、必要に応じて塩基を加え、適切な触媒を用いた公知のアリールカップリング等の重合方法により製造することができる。
<Method for producing polymer compound>
Next, a method for producing the polymer compound of the present invention will be described.
The polymer compound of the present invention may be produced by any method. As the polymer compound, for example, a compound represented by the formula: X 11 -A 11 -X 12 and a compound represented by the formula: X 13 -A 12 -X 14 are dissolved in an organic solvent as necessary. In addition, it can be produced by a known polymerization method such as aryl coupling using a suitable catalyst by adding a base as necessary.
 上記式中、A11は、前記式(1)で表される構造単位であり、A12は、前記式(3)で表される構造単位である。 In the above formula, A 11 is a structural unit represented by the formula (1), and A 12 is a structural unit represented by the formula (3).
 上記式中、X11、X12、X13およびX14は、それぞれ独立に、重合反応性基を表す。 In the above formula, X 11 , X 12 , X 13 and X 14 each independently represent a polymerization reactive group.
 前記重合反応性基の例としては、ハロゲン原子、ホウ酸エステル残基、ホウ酸残基(-B(OH)で表される基など)、トリアルキルスタンニル基等が挙げられる。 Examples of the polymerization reactive group include a halogen atom, a boric acid ester residue, a boric acid residue (such as a group represented by —B (OH) 2 ), a trialkylstannyl group, and the like.
 前記重合反応性基であるハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。 Examples of the halogen atom that is the polymerization reactive group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記重合反応性基であるホウ酸エステル残基の例としては、下記式で表される基が挙げられる。 Examples of the boric acid ester residue that is the polymerization reactive group include a group represented by the following formula.
 前記重合反応性基であるトリアルキルスタンニル基の例としては、トリメチルスタンニル基、トリブチルスタンニル基が挙げられる。 Examples of the trialkylstannyl group that is the polymerization reactive group include a trimethylstannyl group and a tributylstannyl group.
 前記アリールカップリング等の重合方法の例としては、Suzukiカップリング反応により重合する方法(Chemical Review、1995年、第95巻、2457-2483頁)、Stilleカップリング反応により重合する方法(European Polymer Journal、2005年、第41巻、2923-2933頁)等が挙げられる。 Examples of the polymerization method such as aryl coupling include polymerization by Suzuki coupling reaction (Chemical Review, 1995, 95, 2457-2483), polymerization by Stille coupling reaction (European Polymer Journal). 2005, 41, 2923-2933).
 前記重合反応性基は、Suzukiカップリング反応等のニッケル触媒またはパラジウム触媒を用いる場合には、ハロゲン原子、ホウ酸エステル残基、ホウ酸残基等である。重合反応の簡便さの観点からは、臭素原子、ヨウ素原子、ホウ酸エステル残基が好ましい。
 本発明の高分子化合物がSuzukiカップリング反応により重合される場合、前記重合反応性基である、臭素原子、ヨウ素原子の合計モル数とホウ酸エステル残基の合計モル数との比率を0.7~1.3とすることが好ましく、0.8~1.2とすることがより好ましい。
The polymerization reactive group is a halogen atom, a boric acid ester residue, a boric acid residue or the like when a nickel catalyst or a palladium catalyst such as a Suzuki coupling reaction is used. From the viewpoint of simplicity of the polymerization reaction, a bromine atom, an iodine atom, and a boric acid ester residue are preferable.
When the polymer compound of the present invention is polymerized by Suzuki coupling reaction, the ratio of the total mole number of bromine atom and iodine atom and the total mole number of boric acid ester residue, which are the above-mentioned polymerization reactive groups, is 0.00. It is preferably 7 to 1.3, and more preferably 0.8 to 1.2.
 前記重合反応性基は、Stilleカップリング反応等のパラジウム触媒を用いる場合には、ハロゲン原子、トリアルキルスタンニル基等である。重合反応の簡便さの観点からは、前記重合反応性基としては、臭素原子、ヨウ素原子、トリアルキルスタンニル基が好ましい。
 本発明の高分子化合物がStilleカップリング反応により重合される場合、前記重合反応性基である、臭素原子、ヨウ素原子の合計モル数とトリアルキルスタンニル基の合計モル数との比率を0.7~1.3とすることが好ましく、0.8~1.2とすることがより好ましい。
The polymerization reactive group is a halogen atom, a trialkylstannyl group or the like when a palladium catalyst such as Stille coupling reaction is used. From the viewpoint of simplicity of the polymerization reaction, the polymerization reactive group is preferably a bromine atom, an iodine atom, or a trialkylstannyl group.
When the polymer compound of the present invention is polymerized by a Stille coupling reaction, the ratio of the total mole number of bromine atom and iodine atom and the total mole number of trialkylstannyl group, which are the above-mentioned polymerization reactive groups, is 0.00. It is preferably 7 to 1.3, and more preferably 0.8 to 1.2.
 前記重合方法に用いられる有機溶媒の例としては、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、テトラヒドロフラン、ジオキサン等が挙げられる。これらの有機溶媒は、1種単独で用いても2種以上を併用してもよい。 Examples of the organic solvent used in the polymerization method include benzene, toluene, xylene, chlorobenzene, dichlorobenzene, tetrahydrofuran, dioxane and the like. These organic solvents may be used alone or in combination of two or more.
 前記重合方法に用いられる塩基の例としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基、フッ化テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基が挙げられる。 Examples of the base used in the polymerization method include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, tripotassium phosphate, tetrabutylammonium fluoride, tetrabutylammonium chloride, odor And organic bases such as tetrabutylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide.
 前記重合方法に用いられる触媒は、テトラキス(トリフェニルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、パラジウムアセテート、ジクロロビストリフェニルホスフィンパラジウム等のパラジウム錯体等の遷移金属錯体と、必要に応じて、トリフェニルホスフィン、トリ-tert-ブチルホスフィン、トリシクロヘキシルホスフィン等の配位子とからなる触媒である。これらの触媒は、予め合成して用いてもよいし、反応系中で調製した触媒をそのまま用いてもよい。また、これらの触媒は、1種単独で用いても2種以上を併用してもよい。 The catalyst used in the polymerization method is a transition metal complex such as tetrakis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium, palladium acetate, dichlorobistriphenylphosphine palladium and the like, if necessary, It is a catalyst comprising a ligand such as triphenylphosphine, tri-tert-butylphosphine, tricyclohexylphosphine. These catalysts may be synthesized and used in advance, or the catalyst prepared in the reaction system may be used as it is. Moreover, these catalysts may be used individually by 1 type, or may use 2 or more types together.
 前記重合方法での反応温度は、好ましくは0℃~200℃であり、より好ましくは0℃~150℃であり、更に好ましくは0℃~120℃である。 The reaction temperature in the polymerization method is preferably 0 ° C. to 200 ° C., more preferably 0 ° C. to 150 ° C., and further preferably 0 ° C. to 120 ° C.
 前記重合方法での反応時間は、通常、1時間以上であり、好ましくは2時間~500時間である。 The reaction time in the polymerization method is usually 1 hour or more, preferably 2 to 500 hours.
 前記重合反応の後処理は、公知の方法で行うことができ、例えば、メタノール等の低級アルコールに前記重合で得られた反応液を加えて析出させた沈殿を濾過、乾燥させる方法により行うことができる。 The post-treatment of the polymerization reaction can be performed by a known method, for example, by a method of adding a reaction liquid obtained by the polymerization to a lower alcohol such as methanol and filtering and drying the deposited precipitate. it can.
 本発明の高分子化合物の純度が低い場合には、再結晶、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の方法で精製すればよい。 When the purity of the polymer compound of the present invention is low, it may be purified by a method such as recrystallization, continuous extraction with a Soxhlet extractor, column chromatography or the like.
<有機半導体材料>
 本明細書中、有機半導体材料とは、本発明の高分子化合物と、本発明の高分子化合物とは異なる化合物とを有する材料(組成物)を意味する。本発明の高分子化合物とは異なる化合物は、キャリア輸送性を有する化合物であることが好ましく、低分子化合物であっても高分子化合物であってもよい。また、有機半導体材料に含まれる本発明の高分子化合物は、1種類単独であってもよく、2種類以上であってもよい。有機半導体材料は、本発明の高分子化合物を30重量%以上含むことが好ましく、50重量%以上含むことがより好ましい。
<Organic semiconductor materials>
In the present specification, the organic semiconductor material means a material (composition) having the polymer compound of the present invention and a compound different from the polymer compound of the present invention. The compound different from the polymer compound of the present invention is preferably a compound having carrier transport properties, and may be a low molecular compound or a polymer compound. Further, the polymer compound of the present invention contained in the organic semiconductor material may be one kind alone or two or more kinds. The organic semiconductor material preferably contains 30% by weight or more of the polymer compound of the present invention, and more preferably contains 50% by weight or more.
 キャリア輸送性を有する化合物の例としては、アリールアミン誘導体、スチルベン誘導体、オリゴチオフェン及びその誘導体、オキサジアゾール誘導体、フラーレン類及びその誘導体等の低分子化合物;ポリビニルカルバゾール及びその誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体が挙げられる。 Examples of compounds having carrier transport properties include arylamine derivatives, stilbene derivatives, oligothiophene and derivatives thereof, low molecular compounds such as oxadiazole derivatives, fullerenes and derivatives thereof; polyvinylcarbazole and derivatives thereof, polyaniline and derivatives thereof , Polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, polythienylene vinylene and derivatives thereof, and polyfluorene and derivatives thereof.
 有機半導体材料は、その特性を向上させるために、本発明の高分子化合物とは異なる高分子化合物を高分子バインダーとして含んでいてもよい。 The organic semiconductor material may contain a polymer compound different from the polymer compound of the present invention as a polymer binder in order to improve its characteristics.
 高分子バインダーの具体例としては、ポリ(N-ビニルカルバゾール)、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリ(p-フェニレンビニレン)及びその誘導体、ポリ(2,5-チエニレンビニレン)及びその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンが挙げられる。 Specific examples of the polymer binder include poly (N-vinylcarbazole), polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, poly (2,5-thienylene vinylene) and derivatives thereof. Derivatives, polycarbonates, polyacrylates, polymethyl acrylates, polymethyl methacrylates, polystyrenes, polyvinyl chlorides, polysiloxanes.
<有機半導体素子>
 本発明の高分子化合物は、優れた電界効果移動度を示すことから、有機半導体素子の有機層に好適に用いることができる。有機半導体素子としては、有機トランジスタ、有機太陽電池、有機エレクトロルミネッセンス素子等が挙げられる。本発明の高分子化合物は、これらの有機半導体素子の中でも、有機トランジスタの有機層(活性層)に特に好適に用いることができる。
<Organic semiconductor element>
Since the polymer compound of the present invention exhibits excellent field effect mobility, it can be suitably used for an organic layer of an organic semiconductor element. Examples of the organic semiconductor element include an organic transistor, an organic solar battery, and an organic electroluminescence element. Among these organic semiconductor elements, the polymer compound of the present invention can be particularly suitably used for an organic layer (active layer) of an organic transistor.
<有機トランジスタ>
 本発明の有機トランジスタの例としては、ソース電極及びドレイン電極と、これらの電極間の電流経路となり、本発明の高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極とを備えた構成を有するトランジスタが挙げられる。このような構成を有する有機トランジスタの例としては、電界効果型有機トランジスタ、静電誘導型有機トランジスタ等が挙げられる。
<Organic transistor>
Examples of the organic transistor of the present invention include a source electrode and a drain electrode, a current path between these electrodes, an active layer containing the polymer compound of the present invention, and a gate electrode that controls the amount of current passing through the current path And a transistor having a configuration including: Examples of the organic transistor having such a configuration include a field effect organic transistor and a static induction organic transistor.
 電界効果型有機トランジスタは、通常、ソース電極及びドレイン電極と、これらの電極間の電流経路となる高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極と、活性層とゲート電極との間に配置される絶縁層とを有する。特に、ソース電極及びドレイン電極が、活性層に接して設けられており、さらに活性層に接した絶縁層を挟んでゲート電極が設けられている電界効果型有機トランジスタが好ましい。 A field effect organic transistor generally includes a source electrode and a drain electrode, an active layer containing a polymer compound serving as a current path between these electrodes, a gate electrode for controlling the amount of current passing through the current path, and an active layer And an insulating layer disposed between the gate electrode and the gate electrode. In particular, a field effect organic transistor in which a source electrode and a drain electrode are provided in contact with an active layer and a gate electrode is provided with an insulating layer in contact with the active layer interposed therebetween is preferable.
 静電誘導型有機トランジスタは、通常、ソース電極及びドレイン電極と、これらの電極間の電流経路となる高分子化合物を含む活性層と、該電流経路を通る電流量を制御するゲート電極とを有し、該ゲート電極が活性層中に設けられている。特に、ソース電極、ドレイン電極及び前記ゲート電極が、前記活性層に接して設けられている静電誘導型有機トランジスタが好ましい。 An electrostatic induction organic transistor usually has a source electrode and a drain electrode, an active layer containing a polymer compound serving as a current path between these electrodes, and a gate electrode for controlling the amount of current passing through the current path. The gate electrode is provided in the active layer. In particular, an electrostatic induction organic transistor in which a source electrode, a drain electrode, and the gate electrode are provided in contact with the active layer is preferable.
 ゲート電極は、ソース電極からドレイン電極へ流れる電流経路が形成でき、かつ、ゲート電極に印加した電圧で該電流経路を流れる電流量が制御できる構造であればよく、その態様としては、例えば、くし型電極が挙げられる。 The gate electrode only needs to have a structure in which a current path flowing from the source electrode to the drain electrode can be formed and the amount of current flowing through the current path can be controlled by a voltage applied to the gate electrode. Type electrode.
 図1は、本発明の有機トランジスタの第1実施形態(電界効果型有機トランジスタ)の構成例を示す模式的な断面図である。
 図1に示される有機トランジスタ100は、基板1と、基板1上に所定の間隔で離間するように、基板1の主面上に形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6を覆うようにして基板1上に形成された活性層2と、活性層2上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の領域上の絶縁層3を覆って、基板1の厚み方向から見たときにソース電極5及びドレイン電極6にまたがるように、絶縁層3上に形成されたゲート電極4とを有する。
FIG. 1 is a schematic cross-sectional view showing a configuration example of a first embodiment (field effect organic transistor) of an organic transistor of the present invention.
An organic transistor 100 shown in FIG. 1 includes a substrate 1, a source electrode 5 and a drain electrode 6 formed on the main surface of the substrate 1 so as to be separated from the substrate 1 at a predetermined interval, The active layer 2 formed on the substrate 1 so as to cover the drain electrode 6, the insulating layer 3 formed on the active layer 2, and the insulating layer 3 on the region between the source electrode 5 and the drain electrode 6 And a gate electrode 4 formed on the insulating layer 3 so as to straddle the source electrode 5 and the drain electrode 6 when viewed from the thickness direction of the substrate 1.
 図2は、本発明の有機トランジスタの第2実施形態(電界効果型有機トランジスタ)の構成例を示す模式的な断面図である。
 図2に示される有機トランジスタ110は、基板1と基板1上に形成されたソース電極5と、ソース電極5を覆うように基板1及びソース電極5上に形成された活性層2と、ソース電極5と所定の間隔で離間するように活性層2上に形成されたドレイン電極6と、活性層2及びドレイン電極6上に形成された絶縁層3と、ソース電極5とドレイン電極6との間の領域上の絶縁層3を覆うように、基板1の厚み方向から見たときにソース電極5及びドレイン電極6にまたがるように絶縁層3上に形成されたゲート電極4とを有する。
FIG. 2 is a schematic cross-sectional view showing a configuration example of a second embodiment (field-effect organic transistor) of the organic transistor of the present invention.
The organic transistor 110 shown in FIG. 2 includes a substrate 1, a source electrode 5 formed on the substrate 1, an active layer 2 formed on the substrate 1 and the source electrode 5 so as to cover the source electrode 5, and a source electrode 5 between the source electrode 5 and the drain electrode 6, the drain electrode 6 formed on the active layer 2 so as to be separated from the source electrode 5 by a predetermined interval, the insulating layer 3 formed on the active layer 2 and the drain electrode 6, And the gate electrode 4 formed on the insulating layer 3 so as to straddle the source electrode 5 and the drain electrode 6 when viewed from the thickness direction of the substrate 1.
 図3は、本発明の有機トランジスタの第3実施形態(電界効果型有機トランジスタ)の構成例を示す模式的な断面図である。
 図3に示される有機トランジスタ120は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うようにして基板1上に形成された絶縁層3と、ゲート電極4が下部に形成されている絶縁層3の領域をそれぞれ一部を覆うように、かつ基板1の厚み方向から見たときにゲート電極4にまたがるように絶縁層3上に所定の間隔で形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6の一部を覆って、基板1の厚み方向から見たときにソース電極5及びドレイン電極6にまたがるように絶縁層3上に形成された活性層2とを有する。
FIG. 3 is a schematic cross-sectional view showing a configuration example of a third embodiment (field-effect organic transistor) of the organic transistor of the present invention.
The organic transistor 120 shown in FIG. 3 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and a gate electrode 4 The regions of the insulating layer 3 formed in the lower part are formed on the insulating layer 3 at predetermined intervals so as to partially cover the gate electrode 4 when viewed from the thickness direction of the substrate 1. The source electrode 5 and the drain electrode 6 and a part of the source electrode 5 and the drain electrode 6 are covered and formed on the insulating layer 3 so as to straddle the source electrode 5 and the drain electrode 6 when viewed from the thickness direction of the substrate 1. Active layer 2 formed.
 図4は、本発明の有機トランジスタの第4実施形態(電界効果型有機トランジスタ)の構成例を示す模式的な断面図である。
 図4に示される有機トランジスタ130は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うように基板1及びゲート電極4上に形成された絶縁層3と、基板1の厚さ方向から見たときにゲート電極4にまたがるように絶縁層3の領域の一部を覆って絶縁層3上に形成されたソース電極5と、ソース電極5の一部を覆うように、かつ絶縁膜3の一部を露出させるように絶縁層3上に形成された活性層2と、基板1の厚さ方向から見たときにゲート電極4にまたがるように活性層2の一部及び絶縁層3の一部を覆って、ソース電極5と所定の間隔で離間するように形成されたドレイン電極6とを有する。
FIG. 4 is a schematic cross-sectional view showing a configuration example of a fourth embodiment (field effect type organic transistor) of the organic transistor of the present invention.
The organic transistor 130 shown in FIG. 4 includes a substrate 1, a gate electrode 4 formed on the substrate 1, a substrate 1 and an insulating layer 3 formed on the gate electrode 4 so as to cover the gate electrode 4, a substrate The source electrode 5 formed on the insulating layer 3 so as to cover a part of the region of the insulating layer 3 so as to straddle the gate electrode 4 when viewed from the thickness direction 1 and a part of the source electrode 5 are covered. In addition, the active layer 2 formed on the insulating layer 3 so as to expose a part of the insulating film 3 and the active layer 2 so as to straddle the gate electrode 4 when viewed from the thickness direction of the substrate 1. And a part of the insulating layer 3 and a source electrode 5 and a drain electrode 6 formed so as to be spaced apart at a predetermined interval.
 図5は、本発明の有機トランジスタの第5実施形態(静電誘導型有機トランジスタ)の構成例を示す模式的な断面図である。
 図5に示される有機トランジスタ140は、基板1と、基板1上に形成されたソース電極5と、ソース電極5上に形成された活性層2と、活性層2上に所定の間隔で離間するように形成された複数の櫛歯状のゲート電極4と、複数の櫛歯状のゲート電極4の全てを一体的に覆うように活性層2及びゲート電極4を覆う活性層2a(活性層2aを構成する材料は、活性層2と同一であっても異なっていてもよい)と、活性層2a上に基板1の厚み方向から見たときに櫛歯状のゲート電極4に重なるように一体的に形成されたドレイン電極6とを有する。
FIG. 5 is a schematic cross-sectional view showing a configuration example of a fifth embodiment (electrostatic induction type organic transistor) of the organic transistor of the present invention.
An organic transistor 140 shown in FIG. 5 is separated from the substrate 1, the source electrode 5 formed on the substrate 1, the active layer 2 formed on the source electrode 5, and the active layer 2 at a predetermined interval. The plurality of comb-like gate electrodes 4 formed as described above, and the active layer 2 and the active layer 2a (active layer 2a) covering the gate electrode 4 so as to integrally cover all of the plurality of comb-like gate electrodes 4 May be the same as or different from the material of the active layer 2) and the active layer 2 a so as to overlap the comb-shaped gate electrode 4 when viewed from the thickness direction of the substrate 1. And a drain electrode 6 formed in a conventional manner.
 図6は、本発明の有機トランジスタの第6実施形態(電界効果型有機トランジスタ)の構成例を示す模式的な断面図である。
 図6に示される有機トランジスタ150は、基板1と、基板1上に形成された活性層2と、活性層2上であって、活性層2の上面の高さとその上面の高さが略一致するように、かつ互いに所定の間隔で離間するように形成されたソース電極5及びドレイン電極6と、ソース電極5及びドレイン電極6の一部を覆うようにソース電極5及びドレイン電極6にまたがって活性層2上に形成された絶縁層3と、基板1の厚さ方向から見たときにソース電極5及びドレイン電極6にまたがるように形成されたゲート電極4とを有する。
FIG. 6 is a schematic cross-sectional view showing a configuration example of a sixth embodiment (field-effect organic transistor) of the organic transistor of the present invention.
The organic transistor 150 shown in FIG. 6 is on the substrate 1, the active layer 2 formed on the substrate 1, and the active layer 2, and the height of the upper surface of the active layer 2 is substantially the same as the height of the upper surface. And the source electrode 5 and the drain electrode 6 formed so as to be separated from each other at a predetermined interval, and the source electrode 5 and the drain electrode 6 so as to cover a part of the source electrode 5 and the drain electrode 6. It has an insulating layer 3 formed on the active layer 2 and a gate electrode 4 formed so as to straddle the source electrode 5 and the drain electrode 6 when viewed from the thickness direction of the substrate 1.
 図7は、本発明の有機トランジスタの第7実施形態(電界効果型有機トランジスタ)の構成例を示す模式的な断面図である。
 図7に示される有機トランジスタ160は、基板1と、基板1上に形成されたゲート電極4と、ゲート電極4を覆うように基板1上に形成された絶縁層3と、基板1の厚さ方向から見たときにゲート電極4上の領域を覆うように形成された活性層2と、活性層2の一部を覆うように、かつ基板1の厚み方向から見たときにゲート電極4の一部にまたがるように活性層2上に形成されたソース電極5と、活性層2の一部を覆うように、かつ基板1の厚み方向から見たときにゲート電極4の一部にまたがってソース電極5と所定の間隔で離間するように活性層2上に形成されたドレイン電極6とを有する。
FIG. 7: is typical sectional drawing which shows the structural example of 7th Embodiment (field effect type organic transistor) of the organic transistor of this invention.
The organic transistor 160 shown in FIG. 7 includes a substrate 1, a gate electrode 4 formed on the substrate 1, an insulating layer 3 formed on the substrate 1 so as to cover the gate electrode 4, and a thickness of the substrate 1. The active layer 2 formed so as to cover the region on the gate electrode 4 when viewed from the direction and the gate electrode 4 so as to cover a part of the active layer 2 and viewed from the thickness direction of the substrate 1. A source electrode 5 formed on the active layer 2 so as to span a part, and a part of the gate electrode 4 so as to cover a part of the active layer 2 and when viewed from the thickness direction of the substrate 1 It has a drain electrode 6 formed on the active layer 2 so as to be separated from the source electrode 5 at a predetermined interval.
 図8は、本発明の有機トランジスタの第8実施形態(電界効果型有機トランジスタ)の構成例を示す模式的な断面図である。
 図8に示される有機トランジスタ170は、ゲート電極4と、ゲート電極4上に形成された絶縁層3と、絶縁層3上に形成された活性層2と、活性層2上に所定の間隔で離間するように形成されたソース電極5及びドレイン電極6とを有する。この構成例では、ゲート電極4は基板1を兼ねている。
FIG. 8: is typical sectional drawing which shows the structural example of 8th Embodiment (field effect type organic transistor) of the organic transistor of this invention.
An organic transistor 170 shown in FIG. 8 includes a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, an active layer 2 formed on the insulating layer 3, and a predetermined interval on the active layer 2. It has the source electrode 5 and the drain electrode 6 which were formed so that it might space apart. In this configuration example, the gate electrode 4 also serves as the substrate 1.
 図9は、本発明の有機トランジスタの第9実施形態(電界効果型有機トランジスタ)の構成例を示す模式的な断面図である。
 図9に示される有機トランジスタ180は、ゲート電極4と、ゲート電極4上に形成された絶縁層3と、絶縁層3上に所定の間隔で離間するように形成されたソース電極5及びドレイン電極6と、ソース電極5の一部及びドレイン電極6の一部にまたがるように絶縁層3上に形成された活性層2とを有する。
FIG. 9 is a schematic cross-sectional view showing a configuration example of a ninth embodiment (field-effect organic transistor) of the organic transistor of the present invention.
The organic transistor 180 shown in FIG. 9 includes a gate electrode 4, an insulating layer 3 formed on the gate electrode 4, and a source electrode 5 and a drain electrode formed on the insulating layer 3 so as to be spaced apart at a predetermined interval. 6 and an active layer 2 formed on the insulating layer 3 so as to straddle part of the source electrode 5 and part of the drain electrode 6.
 上述した本発明の有機トランジスタにおいては、活性層2及び/又は活性層2aは、本発明の高分子化合物を含む有機層によって構成され、ソース電極5とドレイン電極6との間の電流通路(チャネル)となる。また、ゲート電極4は、電圧を印加することにより電流通路を通る電流量を制御する。 In the above-described organic transistor of the present invention, the active layer 2 and / or the active layer 2a is composed of an organic layer containing the polymer compound of the present invention, and a current path (channel) between the source electrode 5 and the drain electrode 6 is formed. ) The gate electrode 4 controls the amount of current passing through the current path by applying a voltage.
 上記構成を有する電界効果型有機トランジスタは、公知の方法、例えば特開平5-110069号公報に記載の方法により製造することができる。また、上記構成を有する静電誘導型有機トランジスタは、特開2004-006476号公報に記載の方法等の公知の方法により製造することができる。 The field effect organic transistor having the above-described configuration can be produced by a known method, for example, a method described in JP-A-5-110069. In addition, the electrostatic induction organic transistor having the above-described configuration can be manufactured by a known method such as the method described in JP-A-2004-006476.
 基板1の材料は、有機トランジスタの特性を阻害しない材料であれば特に限定されない。基板1としては、ガラス基板、フレキシブルなフィルム基板、プラスチック基板を用いることができる。 The material of the substrate 1 is not particularly limited as long as it does not disturb the characteristics of the organic transistor. As the substrate 1, a glass substrate, a flexible film substrate, or a plastic substrate can be used.
 絶縁層3の材料は、電気的な絶縁性が高い材料であればよく、SiO、SiN、Ta、ポリイミド、ポリビニルアルコール、ポリビニルフェノール、有機ガラス、フォトレジスト等を用いることができるが、低電圧化の観点からは、誘電率の高い材料を用いることが好ましい。 The material of the insulating layer 3 may be any material having high electrical insulation, and SiO x , SiN x , Ta 2 O 5 , polyimide, polyvinyl alcohol, polyvinyl phenol, organic glass, photoresist, or the like can be used. However, from the viewpoint of lowering the voltage, it is preferable to use a material having a high dielectric constant.
 絶縁層3の上に活性層2を形成する場合は、絶縁層3と活性層2との界面特性を改善するため、シランカップリング剤等の表面処理剤で絶縁層3の表面を処理して表面改質した後に活性層2を形成してもよい。 When the active layer 2 is formed on the insulating layer 3, the surface of the insulating layer 3 is treated with a surface treatment agent such as a silane coupling agent in order to improve the interface characteristics between the insulating layer 3 and the active layer 2. The active layer 2 may be formed after the surface modification.
 電界効果型有機トランジスタの場合、電子やホール等の電荷は、一般に絶縁層と活性層との界面付近を通過する。従って、この界面の状態がトランジスタの電界効果移動度に大きな影響を与える。そこで、界面状態を改良して特性を向上させる方法として、シランカップリング剤による界面の状態の制御が提案されている(例えば、表面化学、2007年、第28巻、第5号、p.242-248)。 In the case of a field effect organic transistor, charges such as electrons and holes generally pass near the interface between the insulating layer and the active layer. Accordingly, the state of this interface greatly affects the field effect mobility of the transistor. Therefore, as a method of improving the interface state by improving the interface state, control of the interface state by a silane coupling agent has been proposed (for example, surface chemistry, 2007, Vol. 28, No. 5, p.242). -248).
 このようなシランカップリング剤の例としては、アルキルクロロシラン類(オクチルトリクロロシラン(OTS)、オクタデシルトリクロロシラン(ODTS)、フェニルエチルトリクロロシラン等)、アルキルアルコキシシラン類、フッ素化アルキルクロロシラン類、フッ素化アルキルアルコキシシラン類、ヘキサメチルジシラザン(HMDS)等のシリルアミン化合物が挙げられる。
 また、表面処理剤で処理する前に、絶縁層表面をオゾンUV処理、Oプラズマ処理してもよい。
Examples of such silane coupling agents include alkylchlorosilanes (octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODTS), phenylethyltrichlorosilane, etc.), alkylalkoxysilanes, fluorinated alkylchlorosilanes, and fluorinated compounds. Examples thereof include silylamine compounds such as alkylalkoxysilanes and hexamethyldisilazane (HMDS).
In addition, the surface of the insulating layer may be subjected to ozone UV treatment or O 2 plasma treatment before treatment with the surface treatment agent.
 このような処理によって、絶縁層として用いられるシリコン酸化膜等の表面エネルギーを制御することができる。また、表面処理により、活性層を構成している膜の絶縁層上での配向性が向上し、高い電荷輸送性(電界効果移動度)が得られる。 By such treatment, the surface energy of the silicon oxide film used as the insulating layer can be controlled. Further, the surface treatment improves the orientation of the film constituting the active layer on the insulating layer, and high charge transportability (field effect mobility) can be obtained.
 ゲート電極4の材料の例としては、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム、モリブデン、低抵抗ポリシリコン、低抵抗アモルファスシリコン等の金属や、錫酸化物、酸化インジウム、インジウム錫酸化物(ITO)等が挙げられる。これらの材料は、1種を単独で用いても2種以上を併用してもよい。なお、ゲート電極4としては、高濃度に不純物がドープされたシリコン基板を用いることも可能である。高濃度に不純物がドープされたシリコン基板は、ゲート電極としての性能とともに、基板としての性能も併有する。このような基板としての性能も有するゲート電極4を用いる場合には、基板1とゲート電極4とが接している有機トランジスタにおいて、基板1を省略してもよい。 Examples of the material of the gate electrode 4 include gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum, low resistance polysilicon, low resistance amorphous silicon, and other metals, tin oxide, indium oxide, and indium. Examples thereof include tin oxide (ITO). These materials may be used alone or in combination of two or more. As the gate electrode 4, it is also possible to use a silicon substrate doped with impurities at a high concentration. A silicon substrate doped with impurities at a high concentration has not only performance as a gate electrode but also performance as a substrate. When the gate electrode 4 having such a performance as a substrate is used, the substrate 1 may be omitted in the organic transistor in which the substrate 1 and the gate electrode 4 are in contact with each other.
 ソース電極5及びドレイン電極6は、低抵抗の材料から構成されることが好ましく、金、白金、銀、銅、クロム、パラジウム、アルミニウム、インジウム、モリブデン等から構成されることが特に好ましい。これらの材料は1種単独で用いても2種以上を併用してもよい。 The source electrode 5 and the drain electrode 6 are preferably made of a low resistance material, and particularly preferably made of gold, platinum, silver, copper, chromium, palladium, aluminum, indium, molybdenum or the like. These materials may be used alone or in combination of two or more.
 前記有機トランジスタにおいて、ソース電極5及びドレイン電極6と、活性層2との間には、更に他の化合物から構成された層が介在していてもよい。このような層としては、電子輸送性を有する低分子化合物、ホール輸送性を有する低分子化合物、アルカリ金属、アルカリ土類金属、希土類金属、これらの金属と有機化合物との錯体、ヨウ素、臭素、塩素、塩化ヨウ素等のハロゲン、硫酸、無水硫酸、二酸化硫黄、硫酸塩等の酸化硫黄化合物、硝酸、二酸化窒素、硝酸塩等の酸化窒素化合物、過塩素酸、次亜塩素酸等のハロゲン化化合物、アルキルチオール化合物、芳香族チオール類、フッ素化アルキル芳香族チオール類等の芳香族チオール化合物等からなる層が挙げられる。 In the organic transistor, a layer composed of another compound may be interposed between the source electrode 5 and the drain electrode 6 and the active layer 2. Examples of such layers include low molecular compounds having electron transport properties, low molecular compounds having hole transport properties, alkali metals, alkaline earth metals, rare earth metals, complexes of these metals with organic compounds, iodine, bromine, Halogens such as chlorine and iodine chloride, sulfur oxide compounds such as sulfuric acid, sulfuric anhydride, sulfur dioxide and sulfate, nitric oxide compounds such as nitric acid, nitrogen dioxide and nitrate, halogenated compounds such as perchloric acid and hypochlorous acid, Examples thereof include layers made of aromatic thiol compounds such as alkyl thiol compounds, aromatic thiols, and fluorinated alkyl aromatic thiols.
 また、上述したような有機トランジスタを作製した後には、有機トランジスタを保護するため、有機トランジスタ上に保護膜を形成することが好ましい。これにより、有機トランジスタが大気から遮断され、有機トランジスタの電気的特性の低下を抑制することができる。また、有機トランジスタ上に、この有機トランジスタにより駆動される表示デバイスをさらに形成する場合、その形成工程における有機トランジスタへの影響も該保護膜により低減することができる。 In addition, after manufacturing the organic transistor as described above, it is preferable to form a protective film on the organic transistor in order to protect the organic transistor. Thereby, an organic transistor is interrupted | blocked from air | atmosphere and the fall of the electrical property of an organic transistor can be suppressed. Further, when a display device driven by the organic transistor is further formed on the organic transistor, the protective film can also reduce the influence on the organic transistor in the forming process.
 保護膜を形成する方法としては、有機トランジスタを、UV硬化樹脂、熱硬化樹脂、SiON膜等の無機材料の膜で覆う方法等が挙げられる。大気との遮断を効果的に行うため、有機トランジスタを作製後、有機トランジスタを大気にさらすことなく(例えば、乾燥した窒素ガス雰囲気中、真空中等で)保護膜を形成することが好ましい。 Examples of the method for forming the protective film include a method of covering the organic transistor with a film of an inorganic material such as a UV curable resin, a thermosetting resin, or a SiON X film. In order to effectively block the atmosphere, it is preferable to form a protective film after the organic transistor is manufactured without exposing the organic transistor to the atmosphere (for example, in a dry nitrogen gas atmosphere or in a vacuum).
 このように構成された有機トランジスタの一種である電界効果型有機トランジスタは、アクティブマトリックス駆動方式の液晶ディスプレイや有機エレクトロルミネッセンスディスプレイの画素駆動スイッチング素子等として適用できる。そして、上述した実施形態の電界効果型有機トランジスタは、活性層として、本発明の高分子化合物を含有しており、そのため電荷輸送性が向上した活性層を備える。よって、電界効果型有機トランジスタの電界効果移動度を高くすることができるので、本発明の電界効果型有機トランジスタは十分な応答速度を有するディスプレイの製造等に有用である。 A field effect organic transistor, which is a kind of organic transistor configured as described above, can be applied as a pixel drive switching element of an active matrix drive type liquid crystal display or an organic electroluminescence display. And the field effect type organic transistor of embodiment mentioned above contains the high molecular compound of this invention as an active layer, Therefore, it has an active layer with improved charge transport property. Therefore, since the field effect mobility of the field effect organic transistor can be increased, the field effect organic transistor of the present invention is useful for manufacturing a display having a sufficient response speed.
 以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples will be shown to describe the present invention in more detail, but the present invention is not limited to these examples.
(NMR分析)
 NMR測定は、化合物を重クロロホルムに溶解させ、NMR装置(Varian社製)を用いて行った。
(NMR analysis)
The NMR measurement was performed by dissolving the compound in deuterated chloroform and using an NMR apparatus (manufactured by Varian).
(分子量分析)
 高分子化合物の数平均分子量及び重量平均分子量は、ゲル透過クロマトグラフィ(GPC、東ソー製)を用いて求めた。測定する高分子化合物は、オルトジクロロベンゼンに溶解させ、GPCに注入した。GPCの移動相にはオルトジクロロベンゼンを用いた。カラムは、TSKgel GMHHR-H(S)HT(2本連結、東ソー製)を用いた。検出器にはUV検出器を用いた。
(Molecular weight analysis)
The number average molecular weight and weight average molecular weight of the polymer compound were determined using gel permeation chromatography (GPC, manufactured by Tosoh Corporation). The polymer compound to be measured was dissolved in orthodichlorobenzene and injected into GPC. Orthodichlorobenzene was used for the mobile phase of GPC. The column used was TSKgel GMHHR-H (S) HT (two linked, manufactured by Tosoh Corporation). A UV detector was used as the detector.
(合成例1:化合物3の合成)
 下記のスキームに従って化合物3を合成した。
(Synthesis Example 1: Synthesis of Compound 3)
Compound 3 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 反応容器に、シアン化ナトリウム(53.5g、1.09mol)と蒸留水(85mL)を加え、シアン化ナトリウムが溶解するまで15分間加熱した。続いて、反応溶液にメタノールを加え、還流させた。さらに、反応溶液に化合物2(70.9g、0.36mol)を加えた後、化合物1(80.0g、0.432mol)と化合物2(44.0g、0.224mmol)の混合物を反応溶液に滴下し、30分間還流させた。反応終了後、反応溶液を室温まで冷却し、析出した固体を濾取し、75%メタノール水溶液、水、ジエチルエーテルで順に洗浄した後、ジクロロメタン-メタノール混合溶媒を用いて再結晶することで化合物3を無色固体として得た。化合物3の得量は72.8gであり、収率は43%であった。測定されたH-NMRの結果を以下に示す。 To the reaction vessel, sodium cyanide (53.5 g, 1.09 mol) and distilled water (85 mL) were added and heated for 15 minutes until the sodium cyanide was dissolved. Subsequently, methanol was added to the reaction solution and refluxed. Further, Compound 2 (70.9 g, 0.36 mol) was added to the reaction solution, and then a mixture of Compound 1 (80.0 g, 0.432 mol) and Compound 2 (44.0 g, 0.224 mmol) was added to the reaction solution. Dropped and refluxed for 30 minutes. After completion of the reaction, the reaction solution was cooled to room temperature, and the precipitated solid was collected by filtration, washed in turn with a 75% aqueous methanol solution, water and diethyl ether, and then recrystallized using a dichloromethane-methanol mixed solvent to give compound 3 Was obtained as a colorless solid. The yield of compound 3 was 72.8 g, and the yield was 43%. The measured 1 H-NMR results are shown below.
 H-NMR(400MHz、CDCl):δ(ppm)=4.22(s、2H)、7.25(d、4H)、7.55(d、4H). 1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) = 4.22 (s, 2H), 7.25 (d, 4H), 7.55 (d, 4H).
(合成例2:化合物4の合成)
 下記のスキームに従って化合物4を合成した。
(Synthesis Example 2: Synthesis of Compound 4)
Compound 4 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 反応容器に、化合物3(39g、0.100mol)、濃硫酸(175mL)、蒸留水(200mL)及び酢酸(250mL)を加え、24時間還流させた。反応終了後、反応溶液に水を加えて希釈し、析出した固体を濾取することで化合物4を得た。化合物4の得量は25.6gであり、収率は60%であった。 To the reaction vessel, compound 3 (39 g, 0.100 mol), concentrated sulfuric acid (175 mL), distilled water (200 mL) and acetic acid (250 mL) were added and refluxed for 24 hours. After completion of the reaction, the reaction solution was diluted with water, and the precipitated solid was collected by filtration to obtain Compound 4. The yield of compound 4 was 25.6 g, and the yield was 60%.
(合成例3:化合物5の合成)
 下記のスキームに従って化合物5を合成した。
(Synthesis Example 3: Synthesis of Compound 5)
Compound 5 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 反応容器に、濃硫酸(685g)を加え、室温で攪拌した。化合物4(25g、58.4mmol)を反応溶液に少しずつ、室温で加えた後、100℃で2時間攪拌した。反応終了後、反応溶液を氷に注ぎ、析出した固体を濾取した。得られた固体を水で洗浄し、真空下で乾燥することで、粗精製物を得た。得られた粗精製物をカラムクロマトグラフィで精製することで化合物5を得た。化合物5の得量は5.95gであり、収率は26%であった。測定されたH-NMRの結果を以下に示す。 Concentrated sulfuric acid (685 g) was added to the reaction vessel and stirred at room temperature. Compound 4 (25 g, 58.4 mmol) was added to the reaction solution little by little at room temperature, followed by stirring at 100 ° C. for 2 hours. After completion of the reaction, the reaction solution was poured onto ice and the precipitated solid was collected by filtration. The obtained solid was washed with water and dried under vacuum to obtain a crude product. The obtained crude product was purified by column chromatography to obtain compound 5. The yield of compound 5 was 5.95 g, and the yield was 26%. The measured 1 H-NMR results are shown below.
 H-NMR(400MHz、CDCl):δ(ppm)=4.37(s、2H)、7.79(d、4H)、7.84(s、2H). 1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) = 4.37 (s, 2H), 7.79 (d, 4H), 7.84 (s, 2H).
(合成例4:化合物6の合成)
 下記のスキームに従って化合物6を合成した。
(Synthesis Example 4: Synthesis of Compound 6)
Compound 6 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 反応容器内の気体をアルゴンガスで置換した後、マグネシウム(0.615g、25mmol)とTHF(20mL)とを加え、還流させながら攪拌した。得られたTHF溶液に2-ブロモ-5-ヘキサデシルチオフェン(2.35g、7.6mmol)のTHF(10mL)溶液を滴下し、1時間還流させながら攪拌することでグリニャール試薬を合成した。別のフラスコ内の気体をアルゴンガスで置換した後、化合物5(0.823g、2.1mmol)とTHF(20mL)とを加えた後、得られたグリニャール試薬を0℃で滴下し、室温で3時間攪拌した。反応終了後、氷と塩酸との混合溶液に反応溶液を注ぎ、酢酸エチルで抽出し、減圧下で溶媒を留去した。得られた残渣をメタノール(100mL)に溶解させた後、2規定の塩酸(2.5mL)を加え、還流させながら3時間攪拌した。反応終了後、水を加え、析出した固体を濾取した。得られた固体をクロロホルム-メタノールの混合溶媒で再結晶することで化合物6を得た。化合物6の得量は1.21gであり、収率は60%であった。測定されたH-NMRの結果を以下に示す。 After replacing the gas in the reaction vessel with argon gas, magnesium (0.615 g, 25 mmol) and THF (20 mL) were added and stirred while refluxing. A Grignard reagent was synthesized by adding dropwise a solution of 2-bromo-5-hexadecylthiophene (2.35 g, 7.6 mmol) in THF (10 mL) to the obtained THF solution and stirring for 1 hour at reflux. After replacing the gas in another flask with argon gas, Compound 5 (0.823 g, 2.1 mmol) and THF (20 mL) were added, and then the obtained Grignard reagent was added dropwise at 0 ° C. at room temperature. Stir for 3 hours. After completion of the reaction, the reaction solution was poured into a mixed solution of ice and hydrochloric acid, extracted with ethyl acetate, and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in methanol (100 mL), 2N hydrochloric acid (2.5 mL) was added, and the mixture was stirred for 3 hr while refluxing. After completion of the reaction, water was added and the precipitated solid was collected by filtration. The obtained solid was recrystallized with a mixed solvent of chloroform-methanol to obtain Compound 6. The yield of compound 6 was 1.21 g, and the yield was 60%. The measured 1 H-NMR results are shown below.
 H-NMR(400MHz、CDCl):δ(ppm)=0.88(t、6H)、1.26(m、26H)、1.75(quint、4H)、2.90(t、4H)、6.90(d、2H)、7.08(dd、2H)、7.31(d、2H)、7.44(s、2H)、7.51(d、2H). 1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) = 0.88 (t, 6H), 1.26 (m, 26H), 1.75 (quint, 4H), 2.90 (t, 4H) ), 6.90 (d, 2H), 7.08 (dd, 2H), 7.31 (d, 2H), 7.44 (s, 2H), 7.51 (d, 2H).
(実施例1:高分子化合物Aの合成)
 下記のスキームに従って高分子化合物Aを合成した。
(Example 1: Synthesis of polymer compound A)
Polymer compound A was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 マイクロ波反応機用耐圧容器内に、トルエン(5mL)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(2.9mg,0.025mmol)、化合物6(97.3mg,0.1mmol)、及び化合物7(49.1mg,0.1mmol)を加え、耐圧容器内にアルゴンガスを充填し、密閉した。耐圧容器をマイクロ波で180℃で40分間加熱した。反応終了後、室温まで冷却した後、得られた反応溶液をメタノール(100mL)と塩酸(2mL)との混合溶液に注ぎ、5時間攪拌した。析出した沈殿物を濾取し、メタノール、ヘキサン、クロロホルムで順に加熱洗浄した後、クロロベンゼンで抽出した。得られたクロロベンゼン溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、高分子化合物A(39.2mg)を得た。得られた高分子化合物Aのポリスチレン換算の数平均分子量は2.0×10であり、重量平均分子量は4.3×10であった。 In a pressure vessel for a microwave reactor, toluene (5 mL), dichlorobis (triphenylphosphine) palladium (II) (2.9 mg, 0.025 mmol), compound 6 (97.3 mg, 0.1 mmol), and compound 7 (49.1 mg, 0.1 mmol) was added, and the pressure vessel was filled with argon gas and sealed. The pressure vessel was heated by microwave at 180 ° C. for 40 minutes. After completion of the reaction, the reaction solution was cooled to room temperature and then poured into a mixed solution of methanol (100 mL) and hydrochloric acid (2 mL) and stirred for 5 hours. The deposited precipitate was collected by filtration, washed with methanol, hexane and chloroform in this order, and then extracted with chlorobenzene. The obtained chlorobenzene solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain polymer compound A (39.2 mg). The obtained polymer compound A had a polystyrene-equivalent number average molecular weight of 2.0 × 10 4 and a weight average molecular weight of 4.3 × 10 4 .
(合成例5:化合物8の合成)
 下記のスキームに従って化合物8を合成した。
(Synthesis Example 5: Synthesis of Compound 8)
Compound 8 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 反応容器内の気体をアルゴンガスで置換した後、マグネシウム(0.615g、25mmol)とTHF(20mL)とを加え、還流させながら攪拌した。得られたTHF溶液に2-ブロモ-5-オクチルドデシルチオフェン(2.8g、7.6mmol)のTHF(10mL)溶液を滴下し、1時間還流させながら攪拌することでグリニャール試薬を合成した。別のフラスコ内の気体をアルゴンガスで置換した後、化合物5(0.823g、2.1mmol)とTHF(20mL)とを加えた後、得られたグリニャール試薬を0℃で滴下し、室温で3時間攪拌した。反応終了後、氷と塩酸との混合溶液に反応溶液を注ぎ、酢酸エチルで抽出し、減圧下で溶媒を留去した。得られた残渣をメタノール(100mL)に溶解させた後、2規定の塩酸(2.5mL)を加え、還流させながら3時間攪拌した。反応終了後、水を加え、析出した固体を濾取した。得られた固体をクロロホルム-メタノールの混合溶媒で再結晶することで化合物8を得た。化合物8の得量は1.13gであり、収率は51%であった。測定されたH-NMRの結果を以下に示す。 After replacing the gas in the reaction vessel with argon gas, magnesium (0.615 g, 25 mmol) and THF (20 mL) were added and stirred while refluxing. A Grignard reagent was synthesized by adding dropwise a solution of 2-bromo-5-octyldodecylthiophene (2.8 g, 7.6 mmol) in THF (10 mL) to the obtained THF solution and stirring for 1 hour at reflux. After replacing the gas in another flask with argon gas, Compound 5 (0.823 g, 2.1 mmol) and THF (20 mL) were added, and then the obtained Grignard reagent was added dropwise at 0 ° C. at room temperature. Stir for 3 hours. After completion of the reaction, the reaction solution was poured into a mixed solution of ice and hydrochloric acid, extracted with ethyl acetate, and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in methanol (100 mL), 2N hydrochloric acid (2.5 mL) was added, and the mixture was stirred for 3 hr while refluxing. After completion of the reaction, water was added and the precipitated solid was collected by filtration. The obtained solid was recrystallized with a mixed solvent of chloroform-methanol to obtain Compound 8. The yield of compound 8 was 1.13 g, and the yield was 51%. The measured 1 H-NMR results are shown below.
 H-NMR(400MHz、CDCl):δ(ppm)=0.87(t、12H)、1.26-1.33(m、62H)、1.70(m、2H)、2.83(d、4H)、6.85(d、2H)、7.07(dd、2H)、7.30(d、2H)、7.43(s、2H)、7.51(d、2H). 1 H-NMR (400 MHz, CDCl 3 ): δ (ppm) = 0.87 (t, 12H), 1.26-1.33 (m, 62H), 1.70 (m, 2H), 2.83 (D, 4H), 6.85 (d, 2H), 7.07 (dd, 2H), 7.30 (d, 2H), 7.43 (s, 2H), 7.51 (d, 2H) .
(実施例2:高分子化合物Bの合成)
 下記のスキームに従って高分子化合物Bを合成した。
(Example 2: Synthesis of polymer compound B)
Polymer compound B was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 マイクロ波反応機用耐圧容器内に、トルエン(5mL)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(2.9mg,0.025mmol)、化合物8(0.109mg,0.1mmol)、及び化合物7(49.1mg,0.1mmol)を加え、耐圧容器中にアルゴンガスを充填し、密閉した。耐圧容器をマイクロ波で180℃で40分間加熱した。反応終了後、室温まで冷却した後、得られた反応溶液をメタノール(100mL)と塩酸(2mL)との混合溶液に注ぎ、5時間攪拌した。析出した沈殿物を濾取し、メタノール、ヘキサンで順に加熱洗浄した後、クロロホルムで抽出した。得られたクロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して、高分子化合物B(98.2mg)を得た。得られた高分子化合物Bのポリスチレン換算の数平均分子量は1.8×10であり、重量平均分子量は4.1×10であった。 In a pressure vessel for a microwave reactor, toluene (5 mL), dichlorobis (triphenylphosphine) palladium (II) (2.9 mg, 0.025 mmol), compound 8 (0.109 mg, 0.1 mmol), and compound 7 (49.1 mg, 0.1 mmol) was added, and the pressure vessel was filled with argon gas and sealed. The pressure vessel was heated by microwave at 180 ° C. for 40 minutes. After completion of the reaction, the reaction solution was cooled to room temperature and then poured into a mixed solution of methanol (100 mL) and hydrochloric acid (2 mL) and stirred for 5 hours. The deposited precipitate was collected by filtration, washed with methanol and hexane in order, and then extracted with chloroform. The obtained chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain polymer compound B (98.2 mg). The obtained polymer compound B had a polystyrene-equivalent number average molecular weight of 1.8 × 10 4 and a weight average molecular weight of 4.1 × 10 4 .
(実施例3:有機トランジスタ(1)の作製及び評価)
 高分子化合物Aを用いて図8を参照して既に説明した構造を有する有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる高濃度に不純物がドーピングされたn型シリコン基板4の表面を熱酸化し、厚さが200nmのシリコン酸化膜3を形成した。この基板を十分に洗浄した後、1H,1H,2H,2H-パーフルオロデシルトリエトキシクロロシラン(FDTS)を用いて、基板表面をシラン処理した。
(Example 3: Production and evaluation of organic transistor (1))
An organic transistor having the structure already described with reference to FIG. 8 was prepared using the polymer compound A, and the transistor characteristics were measured. That is, first, the surface of the n-type silicon substrate 4 doped with impurities at a high concentration serving as a gate electrode was thermally oxidized to form a silicon oxide film 3 having a thickness of 200 nm. After thoroughly cleaning this substrate, the surface of the substrate was treated with silane using 1H, 1H, 2H, 2H-perfluorodecyltriethoxychlorosilane (FDTS).
 次に、高分子化合物Aをオルトジクロロベンゼンに溶解させて3g/Lの溶液を調製し、メンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、スピンコート法により約30nmの厚さの高分子化合物Aを含む薄膜(有機半導体層2)を形成した。この薄膜を窒素ガス雰囲気下、150℃で30分間加熱した。そして、得られた薄膜上に、真空蒸着によりチャネル長が50μmであり、チャネル幅が1.5mmであるソース電極5及びドレイン電極6を作製して、有機トランジスタ(1)を得た。 Next, the polymer compound A was dissolved in orthodichlorobenzene to prepare a 3 g / L solution, which was filtered through a membrane filter. Using the obtained solution, a thin film (organic semiconductor layer 2) containing the polymer compound A having a thickness of about 30 nm was formed on the surface-treated substrate by spin coating. This thin film was heated at 150 ° C. for 30 minutes in a nitrogen gas atmosphere. Then, a source electrode 5 and a drain electrode 6 having a channel length of 50 μm and a channel width of 1.5 mm were produced on the obtained thin film by vacuum deposition to obtain an organic transistor (1).
 この有機トランジスタに対し、ゲート電圧Vgを40V~-60Vに、ソースドレイン間電圧Vsdを0V~-60Vに変化させて、トランジスタ特性を測定した。この結果から電界効果移動度は0.19cm/Vsと算出された。 With respect to this organic transistor, the transistor characteristics were measured by changing the gate voltage Vg from 40 V to −60 V and the source-drain voltage Vsd from 0 V to −60 V. From this result, the field effect mobility was calculated to be 0.19 cm 2 / Vs.
(実施例4:有機トランジスタ(2)の作製及び評価)
 高分子化合物Bを用いて図8を参照して既に説明した構造を有する有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる不純物が高濃度にドーピングされたn型シリコン基板4の表面を熱酸化し、厚さ200nmのシリコン酸化膜3を形成した。この基板を十分に洗浄した後、ヘキサメチレンジシラザン(HMDS)を用いて、基板表面をシラン処理した。
(Example 4: Production and evaluation of organic transistor (2))
An organic transistor having the structure already described with reference to FIG. 8 was prepared using the polymer compound B, and the transistor characteristics were measured. That is, first, the surface of the n-type silicon substrate 4 doped with an impurity serving as a gate electrode at a high concentration was thermally oxidized to form a silicon oxide film 3 having a thickness of 200 nm. After thoroughly washing the substrate, the substrate surface was silane treated with hexamethylene disilazane (HMDS).
 次に、高分子化合物Bをオルトジクロロベンゼンに溶解させて3g/Lの溶液を調製し、メンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、スピンコート法により約30nmの厚さの高分子化合物Bを含む薄膜(有機半導体層2)を形成した。この薄膜を窒素ガス雰囲気下、150℃で30分間加熱した。そして、得られた薄膜上に、真空蒸着によりチャネル長が50μmであり、チャネル幅が1.5mmであるソース電極5及びドレイン電極6を作製して、有機トランジスタ(2)を得た。 Next, the polymer compound B was dissolved in orthodichlorobenzene to prepare a 3 g / L solution, which was filtered through a membrane filter. Using the obtained solution, a thin film (organic semiconductor layer 2) containing the polymer compound B having a thickness of about 30 nm was formed on the surface-treated substrate by spin coating. This thin film was heated at 150 ° C. for 30 minutes in a nitrogen gas atmosphere. Then, a source electrode 5 and a drain electrode 6 having a channel length of 50 μm and a channel width of 1.5 mm were produced on the obtained thin film by vacuum vapor deposition to obtain an organic transistor (2).
 この有機トランジスタに対し、ゲート電圧Vgを40V~-60Vに、ソースドレイン間電圧Vsdを0V~-60Vに変化させて、トランジスタ特性を測定した。この結果から電界効果移動度は9.3×10-2cm/Vsと算出された。 With respect to this organic transistor, the transistor characteristics were measured by changing the gate voltage Vg from 40 V to −60 V and the source-drain voltage Vsd from 0 V to −60 V. From this result, the field effect mobility was calculated to be 9.3 × 10 −2 cm 2 / Vs.
(実施例5:有機トランジスタ(3)の作製及び評価)
 高分子化合物Bを用いて図8を参照して既に説明した構造を有する有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる不純物が高濃度にドーピングされたn型シリコン基板4の表面を熱酸化し、厚さ200nmのシリコン酸化膜3を形成した。この基板を十分に洗浄した後、FDTSを用いて、基板表面をシラン処理した。
(Example 5: Production and evaluation of organic transistor (3))
An organic transistor having the structure already described with reference to FIG. 8 was prepared using the polymer compound B, and the transistor characteristics were measured. That is, first, the surface of the n-type silicon substrate 4 doped with an impurity serving as a gate electrode at a high concentration was thermally oxidized to form a silicon oxide film 3 having a thickness of 200 nm. After sufficiently washing the substrate, the surface of the substrate was treated with silane using FDTS.
 次に、高分子化合物Bをオルトジクロロベンゼンに溶解させて3g/Lの溶液を調製し、メンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、スピンコート法により厚さ約30nmの高分子化合物Bを含む薄膜(有機半導体層2)を形成した。そして、得られた薄膜上に、真空蒸着によりチャネル長が50μmであり、チャネル幅が1.5mmであるソース電極5及びドレイン電極6を作製して、有機トランジスタ(3)を得た。 Next, the polymer compound B was dissolved in orthodichlorobenzene to prepare a 3 g / L solution, which was filtered through a membrane filter. Using the obtained solution, a thin film (organic semiconductor layer 2) containing the polymer compound B having a thickness of about 30 nm was formed on the surface-treated substrate by spin coating. Then, a source electrode 5 and a drain electrode 6 having a channel length of 50 μm and a channel width of 1.5 mm were produced on the obtained thin film by vacuum deposition to obtain an organic transistor (3).
 この有機トランジスタに対し、ゲート電圧Vgを40V~-60Vに、ソースドレイン間電圧Vsdを0V~-60Vに変化させて、トランジスタ特性を測定した。この結果から電界効果移動度は0.15cm/Vsと算出された。 With respect to this organic transistor, the transistor characteristics were measured by changing the gate voltage Vg from 40 V to −60 V and the source-drain voltage Vsd from 0 V to −60 V. From this result, the field effect mobility was calculated to be 0.15 cm 2 / Vs.
(合成例6:高分子化合物Cの合成)
 下記のスキームに従って、従来、有機トランジスタの活性層の材料として常用されている、高分子化合物Cを合成した。
(Synthesis Example 6: Synthesis of polymer compound C)
According to the following scheme, polymer compound C, which has been conventionally used as a material for the active layer of an organic transistor, was synthesized.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 四つ口フラスコを用いて、化合物8(97.2mg、0.300mmol)、化合物9(159.4mg、0.270mmol)、トルエン(10mL)及びメチルトリアルキルアンモニウムクロリド(商品名Aliquat336(登録商標)、アルドリッチ社製)(60.6mg、0.15mmol)を加え、室温(25℃)で30分間、アルゴンバブリングを行った。 Using a four-necked flask, compound 8 (97.2 mg, 0.300 mmol), compound 9 (159.4 mg, 0.270 mmol), toluene (10 mL) and methyltrialkylammonium chloride (trade name Aliquat 336®) Aldrich) (60.6 mg, 0.15 mmol) was added, and argon bubbling was performed at room temperature (25 ° C.) for 30 minutes.
 この溶液を90℃に昇温した後、酢酸パラジウム(0.67mg、1mol%)及びトリス(2-メトキシフェニル)ホスフィン(3.70mg、3.5mol%)を加えた。その後、100℃で攪拌しながら、炭酸ナトリウム水溶液(16.7重量%、1.90g、3.00mmol)を30分間かけて滴下した。4時間後、フェニルボロン酸(3.66mg、0.03mmol)、酢酸パラジウム(0.67mg、1mol%)及びトリス(2-メトキシフェニル)ホスフィン(3.70mg、3.5mol%)を加え、さらに1時間攪拌した後、反応を停止した。なお、反応はアルゴンガス雰囲気下で行った。 After the temperature of this solution was raised to 90 ° C., palladium acetate (0.67 mg, 1 mol%) and tris (2-methoxyphenyl) phosphine (3.70 mg, 3.5 mol%) were added. Thereafter, an aqueous sodium carbonate solution (16.7 wt%, 1.90 g, 3.00 mmol) was added dropwise over 30 minutes while stirring at 100 ° C. After 4 hours, phenylboronic acid (3.66 mg, 0.03 mmol), palladium acetate (0.67 mg, 1 mol%) and tris (2-methoxyphenyl) phosphine (3.70 mg, 3.5 mol%) were added, and After stirring for 1 hour, the reaction was stopped. The reaction was performed in an argon gas atmosphere.
 その後、反応後の溶液に、ジエチルジチオカルバミン酸ナトリウム(1g)及び純水(10mL)を加え、1時間還流しながら攪拌を行った。得られた反応液中の水層を除去後、有機層を水10mLで2回、酢酸水溶液(3重量%)10mLで2回、さらに水10mLで2回洗浄し、メタノールに注いで高分子化合物を析出させた。 Thereafter, sodium diethyldithiocarbamate (1 g) and pure water (10 mL) were added to the solution after the reaction, followed by stirring while refluxing for 1 hour. After removing the aqueous layer in the obtained reaction solution, the organic layer was washed twice with 10 mL of water, twice with 10 mL of acetic acid aqueous solution (3% by weight), and further twice with 10 mL of water, poured into methanol, and polymer compound. Was precipitated.
 得られた高分子化合物をろ過し、乾燥した後、この高分子化合物をトルエン(15mL)に再溶解させ、アルミナ/シリカゲルカラムを通した。そして、得られた溶液をメタノールに注いで高分子化合物を析出させ、ろ過した後、乾燥して、高分子化合物Cを69mg得た。 The obtained polymer compound was filtered and dried, and then the polymer compound was redissolved in toluene (15 mL) and passed through an alumina / silica gel column. The obtained solution was poured into methanol to precipitate a polymer compound, filtered, and dried to obtain 69 mg of polymer compound C.
(比較例1:有機トランジスタ4の作製及び評価)
 高分子化合物Cを用いて図8を参照して既に説明した構造を有する有機トランジスタを作製し、そのトランジスタ特性を測定した。すなわち、まず、ゲート電極となる不純物が高濃度にドーピングされたn型シリコン基板4の表面を熱酸化し、厚さ200nmのシリコン酸化膜3を形成した。この基板をアセトンで10分間超音波洗浄した後、オゾンUVを20分間照射した。その後、β-フェニチルトリクロロシラン(β-PTS)を用いて、スピンコート法により基板表面をシラン処理した。
(Comparative Example 1: Production and evaluation of organic transistor 4)
An organic transistor having the structure already described with reference to FIG. 8 was prepared using the polymer compound C, and the transistor characteristics were measured. That is, first, the surface of the n-type silicon substrate 4 doped with an impurity serving as a gate electrode at a high concentration was thermally oxidized to form a silicon oxide film 3 having a thickness of 200 nm. The substrate was ultrasonically cleaned with acetone for 10 minutes and then irradiated with ozone UV for 20 minutes. Thereafter, silane treatment was performed on the substrate surface by spin coating using β-phenethyltrichlorosilane (β-PTS).
 次に、高分子化合物Cを溶媒であるクロロホルムに溶解させて、合計の濃度が0.5重量%である溶液を調製し、これをメンブランフィルターでろ過した。得られた溶液を用い、上記の表面処理した基板上に、スピンコート法により塗布して厚さが約60nmの高分子化合物Cの薄膜(有機半導体層2)を形成した。そして、得られた薄膜上に、メタルマスクを用いた真空蒸着法により、チャネル長が20μmであり、チャネル幅が2mmであるソース電極5及びドレイン電極6(薄膜側から、順番にMoO、金の積層構造を有する電極)を作製して、有機トランジスタを得た。 Next, the polymer compound C was dissolved in chloroform as a solvent to prepare a solution having a total concentration of 0.5% by weight, and this was filtered through a membrane filter. Using the obtained solution, a thin film (organic semiconductor layer 2) of polymer compound C having a thickness of about 60 nm was formed on the surface-treated substrate by spin coating. Then, a source electrode 5 and a drain electrode 6 having a channel length of 20 μm and a channel width of 2 mm (MoO 3 , gold in order from the thin film side) are formed on the obtained thin film by a vacuum deposition method using a metal mask. Electrode having a laminated structure of 2) was produced to obtain an organic transistor.
 この有機トランジスタに対し、ゲート電圧Vgを10V~-50Vに、ソースドレイン間電圧Vsdを0V~-50Vに変化させて、トランジスタ特性を測定した。その結果、伝達特性としてVg=-50V、Vsd=-50Vにおいてドレイン電流0.54μAが得られた。また、この結果から電界効果移動度は0.0015cm/Vsと算出され、高分子化合物A~Bを用いて作成した有機トランジスタと比較して低いことが確認された。 For this organic transistor, the transistor characteristics were measured by changing the gate voltage Vg from 10 V to -50 V and the source-drain voltage Vsd from 0 V to -50 V. As a result, a drain current of 0.54 μA was obtained when the transfer characteristics were Vg = −50 V and Vsd = −50 V. From this result, the field effect mobility was calculated to be 0.0015 cm 2 / Vs, and it was confirmed that the field effect mobility was lower than that of the organic transistor prepared using the polymer compounds A to B.
 1 基板
 2、2a 活性層
 3 絶縁層
 4 ゲート電極
 5 ソース電極
 6 ドレイン電極
 100、110、120、130、140、150、160、170、180 有機トランジスタ
DESCRIPTION OF SYMBOLS 1 Substrate 2, 2a Active layer 3 Insulating layer 4 Gate electrode 5 Source electrode 6 Drain electrode 100, 110, 120, 130, 140, 150, 160, 170, 180 Organic transistor

Claims (8)

  1.  下記式(1)で表される構造単位を含む、高分子化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     A環及びB環は、それぞれ独立に、芳香族炭化水素環又は複素環を表す。
     Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。2個存在するRは互いに異なっていてもよい。)
    The high molecular compound containing the structural unit represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1),
    A ring and B ring each independently represent an aromatic hydrocarbon ring or a heterocyclic ring.
    R 1 is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent. Two R 1 may be different from each other. )
  2.  前記A環及び前記B環が、いずれも同一の芳香族炭化水素環又は複素環である請求項1に記載の高分子化合物。 The polymer compound according to claim 1, wherein both the A ring and the B ring are the same aromatic hydrocarbon ring or heterocyclic ring.
  3.  前記式(1)で表される構造単位が、下記式(2)で表される構造単位である、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、
     Rは前記と同じ意味を表す。
     Xは、=CR-で表される基、=N-で表される基を表す。複数個存在するXは互いに異なっていてもよい。Rは、水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、1価の複素環基、アリールオキシ基、アリールチオ基、アルケニル基、アルキニル基、アミノ基、シリル基、ハロゲン原子、アシル基、アシルオキシ基、アミド基、カルボキシ基、ニトロ基又はシアノ基を表し、これらの基は置換基を有していてもよい。)
    The polymer compound according to claim 1, wherein the structural unit represented by the formula (1) is a structural unit represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2),
    R 1 represents the same meaning as described above.
    X represents a group represented by ═CR 2 — and a group represented by ═N—. A plurality of Xs may be different from each other. R 2 is a hydrogen atom, alkyl group, alkoxy group, alkylthio group, aryl group, monovalent heterocyclic group, aryloxy group, arylthio group, alkenyl group, alkynyl group, amino group, silyl group, halogen atom, acyl group Represents an acyloxy group, an amide group, a carboxy group, a nitro group or a cyano group, and these groups optionally have a substituent. )
  4.  複数個存在する前記Xが、いずれも=CR-で表される基である、請求項3に記載の高分子化合物。 4. The polymer compound according to claim 3, wherein a plurality of Xs are all groups represented by ═CR 2 —.
  5.  下記式(3)で表される構造単位をさらに有する、請求項1に記載の高分子化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、
     Yは、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。)
    The polymer compound according to claim 1, further comprising a structural unit represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3),
    Y represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent. )
  6.  請求項1に記載の高分子化合物を含む、有機半導体材料。 An organic semiconductor material comprising the polymer compound according to claim 1.
  7.  請求項6に記載の有機半導体材料を含む有機層を有する、有機半導体素子。 An organic semiconductor element having an organic layer containing the organic semiconductor material according to claim 6.
  8.  ソース電極、ドレイン電極、ゲート電極及び活性層を有し、該活性層に請求項6に記載の有機半導体材料を含む、有機トランジスタ。 An organic transistor having a source electrode, a drain electrode, a gate electrode, and an active layer, wherein the active layer includes the organic semiconductor material according to claim 6.
PCT/JP2013/069439 2012-08-03 2013-07-17 Polymer compound, and organic semiconductor element and organic transistor which use said polymer compound WO2014021109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-173149 2012-08-03
JP2012173149A JP5914238B2 (en) 2012-08-03 2012-08-03 Polymer compound, and organic semiconductor device and organic transistor using the polymer compound

Publications (1)

Publication Number Publication Date
WO2014021109A1 true WO2014021109A1 (en) 2014-02-06

Family

ID=50027791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069439 WO2014021109A1 (en) 2012-08-03 2013-07-17 Polymer compound, and organic semiconductor element and organic transistor which use said polymer compound

Country Status (2)

Country Link
JP (1) JP5914238B2 (en)
WO (1) WO2014021109A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160090371A1 (en) * 2013-07-31 2016-03-31 Eni S.P.A. Compounds containing a pentalene unit and process for their preparation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111461A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Fluorine-containing polycyclic aromatic compound, fluorine-containing polymer, organic thin film and organic thin film device
WO2011078248A1 (en) * 2009-12-25 2011-06-30 住友化学株式会社 Polymer compound, and thin film and ink composition each containing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111461A1 (en) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited Fluorine-containing polycyclic aromatic compound, fluorine-containing polymer, organic thin film and organic thin film device
WO2011078248A1 (en) * 2009-12-25 2011-06-30 住友化学株式会社 Polymer compound, and thin film and ink composition each containing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JONGTAE YANG ET AL.: "Synthesis and Characterization of 5,10-Bis(2-thienyl)indeno [2,1-a]indene Derivatives: The First Exam", J.ORG.CHEM, vol. 65, 2000, pages 6739 - 6742 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160090371A1 (en) * 2013-07-31 2016-03-31 Eni S.P.A. Compounds containing a pentalene unit and process for their preparation
US9776984B2 (en) * 2013-07-31 2017-10-03 Eni S.P.A. Compounds containing a pentalene unit and process for their preparation

Also Published As

Publication number Publication date
JP2014031446A (en) 2014-02-20
JP5914238B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
KR101397662B1 (en) Electronic devices
KR20100135741A (en) Fused ring compound, method for producing the same, polymer, organic thin film containing the compound and/or the polymer, and organic thin film device and organic thin film transistor each comprising the organic thin film
JP5954814B2 (en) Nitrogen-containing condensed ring compound, nitrogen-containing condensed ring polymer, organic thin film and organic thin film element
JP2009215546A (en) Polycyclic fused ring compound, polycyclic fused ring polymer and organic thin film containing them
WO2015163206A1 (en) Composition and polymer compound, and organic semiconductor element containing said composition and said polymer compound
WO2012105517A1 (en) Polycyclic condensed ring compound, polycyclic condensed ring polymer, and organic thin film comprising same
WO2012070582A1 (en) Conjugated compound, and organic thin film and organic thin film element using same
JP5426199B2 (en) Branched compound, organic thin film and organic thin film element using the same
JP6006573B2 (en) Polymer compound and organic transistor using the same
WO2013035564A1 (en) Polymer compound and organic transistor
JP2013057007A (en) Polymer compound, and thin film and composition containing the same
JP5987237B2 (en) Polymer compound, organic semiconductor material, organic transistor and organic solar cell using the same
JP2013181071A (en) Polymer compound, composition including the same, ink composition, thin film and element
WO2012050102A1 (en) Polymeric compound, organic semiconductor material, and organic transistor
JP5914238B2 (en) Polymer compound, and organic semiconductor device and organic transistor using the polymer compound
JP6252264B2 (en) Polymer compound and organic semiconductor device using the same
JP2013028750A (en) Polymeric compound, and organic transistor using the same
WO2012050103A1 (en) Condensed aromatic compound, organic semiconductor material, and organic transistor element
JP5995594B2 (en) Polymer compound and organic transistor using the same
WO2012118128A1 (en) Polymer and organic thin film and organic thin film element using same
JP2013237767A (en) Polymer compound and organic transistor produced by using the same
JP2015157910A (en) Polymer compound and organic semiconductor element prepared using the same
JP2013151622A (en) High polymer compound, organic semiconductor element using the same, and organic transistor
JP2013184932A (en) Compound, and organic semiconductor material, organic transistor and organic solar cell using the compound
JP2009215543A (en) Polymer, organic thin film using the same and organic thin film device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825171

Country of ref document: EP

Kind code of ref document: A1