WO2014021089A1 - Monitor camera device in high-temperature furnace and monitor system - Google Patents

Monitor camera device in high-temperature furnace and monitor system Download PDF

Info

Publication number
WO2014021089A1
WO2014021089A1 PCT/JP2013/069195 JP2013069195W WO2014021089A1 WO 2014021089 A1 WO2014021089 A1 WO 2014021089A1 JP 2013069195 W JP2013069195 W JP 2013069195W WO 2014021089 A1 WO2014021089 A1 WO 2014021089A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
furnace
temperature furnace
wide
camera device
Prior art date
Application number
PCT/JP2013/069195
Other languages
French (fr)
Japanese (ja)
Inventor
秀人 谷
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014021089A1 publication Critical patent/WO2014021089A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/55Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft

Definitions

  • the present invention relates to a high-temperature furnace monitoring camera device and a monitoring system.
  • a glass ribbon melted at a high temperature is slowly cooled in the process of passing through a float bath in a high-temperature furnace, and the edge portion of the glass ribbon is pulled in the width direction by a top roll (assist roll).
  • a top roll assistant roll
  • the position of a top roll and the inflow amount of glass melting are adjusted, observing the edge part of a glass ribbon.
  • the surface of the molten glass substrate in the high-temperature furnace that is, the vicinity of the edge of the glass ribbon (molten glass) in the float bath
  • the inside of the furnace is observed from a viewing window, or a cooling means.
  • the inside of the furnace is imaged by a monitoring camera housed in a camera housing case having
  • the present invention aims to provide a high-temperature furnace monitoring camera device and a monitoring system that solves the above problems as a configuration that hardly affects the temperature distribution in the furnace.
  • the present invention has the following means.
  • the present invention is a high-temperature furnace monitoring camera device for imaging the inside of a high-temperature furnace, A camera storage case inserted through a furnace wall surrounding the inside of the high temperature furnace; An imaging camera body stored in the camera storage case; Cooling means for cooling the inside of the camera storage case; A window having a cover glass that is formed at the insertion side end of the camera storage case and can withstand the temperature in the furnace; A prism system having a plurality of prisms through which light from each region in the furnace is incident through the cover glass; A wide-angle lens system for imaging light from each region emitted from the prism system on the image sensor of the imaging camera body; Is provided.
  • the present invention it becomes possible to capture any area separated from the surveillance camera in the close range and the left-right direction with one surveillance camera, and the number of surveillance cameras can be reduced accordingly. It is possible to suppress the temperature drop in the furnace due to the installation, and the cover glass attached to the window of the camera storage case is made as small as possible to suppress the condensation of the cover glass and to prevent the cover glass from becoming dirty. And maintenance work can be reduced.
  • FIG. 1 It is a figure which shows the monitoring system using one Example of the high temperature furnace monitoring camera apparatus by this invention. It is a longitudinal cross-sectional view which shows one Example of the high temperature furnace monitoring camera apparatus by this invention. It is a top view which shows the imaging range of the high temperature furnace monitoring camera apparatus by this invention. It is a longitudinal cross-sectional view which shows the modification of a high temperature furnace monitoring camera apparatus. It is a cross-sectional view showing a modification of the high-temperature furnace monitoring camera device. It is a top view which shows the imaging range of the modification of a high temperature furnace monitoring camera apparatus.
  • FIG. 1 is a block diagram showing a monitoring system using an embodiment of a high-temperature furnace monitoring camera device according to the present invention.
  • the monitoring system 10 includes a plurality of high-temperature furnace monitoring camera devices 30 and 30 ⁇ / b> A arranged on the left and right sides of the inner wall of the high-temperature furnace 20, an image processing unit 40, and a monitor 50.
  • the arrangement of the two high-temperature furnace monitoring camera devices 30 and 30A is shown on the left and right sides for convenience of explanation, but in practice, a plurality of locations in the molten glass flow direction are shown.
  • the high-temperature furnace monitoring camera devices 30 and 30A are appropriately arranged.
  • the high temperature furnace 20 is provided with a heater 21 on the ceiling side and a float bath 60 having molten tin (Sn) 62 on the bottom side.
  • the high-temperature furnace monitoring camera device 30, 30 ⁇ / b> A is inserted into a mounting hole 24 formed in the furnace wall 22 on the side surface of the high-temperature furnace 20, and an edge of a glass ribbon G (molten glass) that moves on the upper surface of the molten tin 62.
  • the part is attached so as to take an image from obliquely above.
  • the protruding position and the insertion angle (inclination angle with respect to the horizontal direction) of each high-temperature furnace monitoring camera device 30, 30A are set as close as possible to the edge portion of the glass ribbon G to be imaged.
  • the image processing unit 40 is a control unit that performs image processing on the image of the inside 26 of the high-temperature furnace 20 captured by each high-temperature furnace monitoring camera device 30, and displays the image-processed image on the monitor 50.
  • the high-temperature furnace monitoring camera devices 30 and 30A are for observing, for example, a situation in which the edge portion of the glass ribbon G melted at a high temperature is pulled in the widening direction by the top roll 23. It is desirable to be arranged at a plurality of locations corresponding to.
  • the high-temperature furnace monitoring camera devices 30 and 30A of the present invention have a compound eye structure capable of simultaneously imaging a plurality of areas as will be described later, the number of installations can be reduced as compared with a conventional monocular structure. Therefore, in the high-temperature furnace 20, the number of mounting holes 24 in the furnace wall 22 and the number of high-temperature furnace monitoring camera devices 30 and 30A are reduced, and accordingly, a decrease in temperature in the furnace 26 is suppressed. Temperature control is stabilized.
  • Each high-temperature furnace monitoring camera device 30, 30 ⁇ / b> A has a coolant supply device (first cooling device) 70 as a cooling device and a cooling gas supply device (second cooling device) 80.
  • the coolant supply device 70 supplies the coolant (water) to the inside of the high-temperature furnace monitoring camera device 30 and collects the coolant that has passed through the inside of the high-temperature furnace monitoring camera device 30. By circulating, the temperature inside the case is cooled to a predetermined temperature.
  • the cooling gas supply device 80 supplies nitrogen gas (N 2 ) as a cooling gas to the inside of the high-temperature furnace monitoring camera device 30. Further, in the high-temperature furnace monitoring camera device 30, the nitrogen gas supplied to the inside has a discharge hole at the end on the furnace insertion side. Therefore, the nitrogen gas supplied to the inside of the high-temperature furnace monitoring camera device 30 is discharged into the furnace 26 after the inside of the high-temperature furnace monitoring camera device 30 is cooled.
  • the furnace interior 26 is maintained in a mixed gas atmosphere of nitrogen gas and hydrogen in order to prevent oxidation of the molten tin 62. Therefore, even if the nitrogen gas that has cooled the inside of the high-temperature furnace monitoring camera device 30 is discharged into the furnace 26, the atmosphere in the furnace 26 hardly changes.
  • FIG. 2 is a longitudinal sectional view showing an embodiment of the high-temperature furnace monitoring camera device according to the present invention.
  • the high-temperature furnace monitoring camera device 30 includes a camera storage case 90, an imaging camera body 100, a wide-angle lens system 110, and a prism system 120.
  • the camera storage case 90 is made of a heat-resistant material and a heat-insulating material, and an imaging window 130 is provided at the insertion side end. Further, a cooling flow path 72 through which a cooling liquid (cooling water) is circulated is provided on the inner wall of the camera storage case 90.
  • the cooling liquid supplied from the cooling liquid supply device 70 flows through the cooling flow path 72, and cools the inner wall and the internal space 92 of the camera storage case 90. Further, since the nitrogen gas supplied from the cooling gas supply device 80 flows out from the rear end side to the front end side and is discharged from the inner space 92, the imaging camera body 100 and the wide-angle lens system housed in the inner space 92 are discharged. 110 and prism system 120 are directly cooled (air cooled) by the flow of nitrogen gas.
  • the camera storage case 90 is provided with a window 130 at the insertion-side front end.
  • the window 130 is formed as small as possible so that the heat in the furnace 26 is not easily conducted into the camera housing case 90.
  • the window 130 corresponds to the vertical dimension and the horizontal dimension of the prism system 120. It is formed in size (area).
  • the opening dimensions of the window 130 are 30 to 70 mm in vertical and horizontal dimensions, for example, 50 mm wide ⁇ 50 mm long.
  • a transparent cover glass 132 that can withstand the temperature in the furnace 26 is fitted into the opening portion of the window 130.
  • the cover glass 132 is made of heat-resistant quartz glass or sapphire glass, and is 45 degrees downward with respect to the vertical surface at the front end of the insertion side of the camera storage case 90 so that a subject at a close distance can be imaged. It is attached at an inclination angle.
  • the imaging camera body 100 incorporates an imaging element (not shown) that converts the light incident from the wide-angle lens system 110 into an electrical signal, and outputs the imaging signal in the furnace 26 to the image processing unit 40.
  • an imaging element not shown
  • the image sensor has a size of 2/3 inch (8.8 mm ⁇ 6.6 mm), for example, and has 5 million pixels.
  • the prism system 120 is disposed between the wide-angle lens system 110 and the window 130, and is configured by combining two 45-degree declination prisms having a 45-degree declination field of view.
  • the first prism 122 and the second prism 124 are attached so that the incident surfaces 122 a and 124 a face the cover glass 132 of the window 130. Since the imaging range can be set to an arbitrary region (for example, a close range region) depending on the inclination angles of the incident surfaces 122a and 124a, the edge portion of the glass ribbon G is close to the insertion-side front end portion of the high-temperature furnace monitoring camera device 30. Images can be taken even when close to the distance.
  • the emission surfaces 122 b and 124 b of the first prism 122 and the second prism 124 are opposed to the wide-angle lens system 110.
  • the first prism 122 and the second prism 124 refract incident light from the vicinity of the edge portion 140 of the glass ribbon 62 incident on the incident surfaces 122a and 124a, and are below the wide-angle lens system 110 from the output surfaces 122b and 124b. Divided into half and upper half.
  • the cover glass 132 of the window 130 has a size (area) facing the incident surface 122a of the first prism 122 and the incident surface 124a of the second prism 124. That is, the window 130 does not need to open a range corresponding to the angle of view of the wide-angle lens system 110, and has a total area of the incident surface 122 a of the first prism 122 and the incident surface 124 a of the second prism 124. Since it is good, the opening area is significantly smaller than when a so-called fisheye lens is used. Accordingly, the cover glass 132 is less likely to condense, and the number of maintenance can be reduced.
  • FIG. 3 is a plan view showing an imaging range of the high-temperature furnace monitoring camera device according to the present invention.
  • the light in the first front imaging area HA and the second front imaging area HB is refracted by the first prism 122 and the second prism 124 and is a wide-angle lens of the high-temperature furnace monitoring camera device 30. It is incident on the system 110. Therefore, the wide-angle lens system 110 focuses the light of the first front imaging area HA on the short distance side on the lower half of the image sensor, and the second on the far side of the first front imaging area HA on the upper half of the image sensor.
  • the light of the front imaging area HB is imaged.
  • the first front surface can be adjusted by appropriately adjusting the angle of the incident surface 122a of the first prism 122 and the incident surface 124a of the second prism 124 with respect to the horizontal plane, or the mounting angle of the high-temperature furnace monitoring camera device 30 with respect to the horizontal plane. It is also possible to set the imaging area HA and the second front imaging area HB in a region near or far from the high-temperature furnace monitoring camera device 30.
  • the first front imaging area HA and the second front imaging area HB each have a trapezoidal shape when viewed from above, but an observation area HC (shown by a broken line in FIG. 3) necessary for observing the edge portion 140 of the glass ribbon. Area). Therefore, the observer uses the two front images of the first front imaging area HA and the second front imaging area HB displayed on the monitor 50 (see FIG. 1) to determine the position and edge portion of the edge portion 140 of the glass ribbon G. The operation of adjusting the position of the top roller, the amount of inflow of molten glass, and the like can be performed while checking the degree of swelling of 140.
  • the high-temperature furnace monitoring camera device 30 is suitable for preventing troubles such as the glass ribbon G being caught due to abnormal fluctuation of the edge portion 140 of the glass ribbon G or excessive pressing of the top roll. Yes, it is possible to assist so that the operation in the float bath 60 can be performed accurately and quickly.
  • the high-temperature furnace monitoring camera device 30 is rotated 90 degrees about the optical axis O, so that the two vertical first imaging areas HA and HB are shifted in the horizontal direction. It becomes possible to image as two areas.
  • FIG. 4 is a longitudinal sectional view showing a modification of the high-temperature furnace monitoring camera device.
  • FIG. 5 is a cross-sectional view showing a modification of the high-temperature furnace monitoring camera device.
  • the high-temperature furnace monitoring camera device 30A includes a camera storage case 90A, an imaging camera body 100, a wide-angle lens system 110, and a prism system 120A. Note that the imaging camera body 100 and the wide-angle lens system 110 are the same as those in the above-described embodiment, and thus description thereof is omitted.
  • the interior of the camera storage case 90A is cooled by the above-described cooling liquid supply device (first cooling means) 70 and cooling gas supply device (second cooling means) 80.
  • the camera storage case 90 ⁇ / b> A has a front imaging window 130, a left side imaging window 134, and a right side imaging window 136 at the insertion side end.
  • the opening size of the front window 130 may be the upper half of the case of FIG. 2 described above, so that the horizontal dimension is 30 to 70 mm and the vertical dimension is 15 to 35 mm. For example, it is 50 mm wide ⁇ 25 mm long.
  • the opening dimensions of the left and right windows 134 and 136 are 15 to 35 mm in length and width, respectively, for example, 25 mm wide ⁇ 25 mm long.
  • each of the windows 130, 134, and 136 cover glasses 132, 135, and 137 formed of quartz glass or sapphire glass having heat resistance are fitted.
  • the windows 130, 134, and 136 may be smaller than when the range corresponding to the angle of view of the wide-angle lens system 110 is opened, and have areas corresponding to the incident surfaces 124 a, 126 a, and 128 a of the prisms 124, 126, and 128. It ’s fine. Therefore, the opening area of the window is smaller than when a so-called fish-eye lens is used, and the cover glasses 132, 135, and 137 are less likely to condense, and the number of maintenance can be reduced.
  • the prism system 120A includes a second prism 124, a third prism 126, and a fourth prism 128.
  • Surface 124b is the first prism 124, a third prism 126, and a fourth prism 128.
  • the third prism 126 and the fourth prism 128 have a declination field of 45 degrees, and light from two side surface imaging areas separated in the left-right direction of the optical axis O is incident thereon.
  • the incident surface 126a of the third prism 126 is formed so that light from the left imaging region HD at a position separated to the left from the optical axis O of the imaging camera body 100 is incident.
  • the incident surface 128a of the fourth prism 128 is formed such that light from the right imaging region HE at a position spaced to the right from the optical axis O of the imaging camera body 100 is incident.
  • FIG. 6 is a plan view showing an imaging range of a modified example of the high-temperature furnace monitoring camera device.
  • the second front imaging area HB, the left imaging area HD, and the right imaging area HE into which light is incident by the prisms 124, 126, and 128, flow through the edge portion 140 of the glass ribbon G. It is included in the observation area HF (area shown by a broken line in FIG. 6). Therefore, in the high-temperature furnace monitoring camera device 30A, the light from the second front imaging area HB, the left imaging area HD, and the right imaging area HE is incident on the wide-angle lens system 110 from the prisms 124, 126, and 128. The light of each region in the range of 135 degrees in the direction is imaged on the image pickup device built in the camera body 100.
  • the monitor 50 displays three images obtained by imaging the second front imaging area HB, the left imaging area HD, and the right imaging area HE on one screen.
  • the observer confirms each position in the flow direction of the edge portion 140 of the glass ribbon G from each of the three images of the second front imaging area HB, the left imaging area HD, and the right imaging area HE displayed on the monitor 50. It is possible to adjust the position of the roller 23 and the inflow amount of the molten glass. In this way, since three areas along the flow direction of the glass ribbon G can be simultaneously imaged by one imaging camera, the number of imaging cameras can be reduced correspondingly, and the high temperature furnace 20 can be reduced accordingly. It is possible to suppress temperature changes (decrease) in the furnace 26 and the float bath 60.
  • the high temperature furnace monitoring camera device 30A can simultaneously monitor the three regions HB, HD, and HE in the front and left and right directions, for example, the edge portion of the glass ribbon G on the inlet side of the float bath 60 Is suitable for monitoring a wide range of the region moved in the widening direction, and contributes to optimal control of the width and thickness of the glass ribbon in the float bath 60.
  • the present invention is suitable for monitoring in a high-temperature furnace in the manufacturing process of glass or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Studio Devices (AREA)

Abstract

A monitor camera device (30) in a high-temperature furnace includes a camera housing case (90), an imaging camera body (100), a wide-angle lens system (110), and a prism system (120). A cooling flow passage (72) through which a cooling liquid circulates is provided on the inner wall of the camera housing case (90). The imaging camera body (100), the wide-angle lens system (110), and the prism system (120) housed in the internal space (92) are directly cooled by the flow of nitride gas. The camera housing case (90) has a window (130) provided at the front end on the insertion side. A transparent cover glass (132) capable of resisting the temperature of inner furnace (26) is fitted in the opening of the window (130). The prism system (120) is disposed between the wide-angle lens system (110) and the window (130), and includes a first prism (122) used for close ranges and a second prism (124) used for short ranges.

Description

高温炉内監視カメラ装置及び監視システムHigh-temperature furnace monitoring camera device and monitoring system
 本考案は、高温炉内監視カメラ装置及び監視システムに関する。 The present invention relates to a high-temperature furnace monitoring camera device and a monitoring system.
 例えば、ガラスの製造工程においては、高温に溶融したガラスリボンを高温炉内のフロートバスを通過する過程で徐冷しながらトップロール(アシストロール)によりガラスリボンのエッジ部分を横幅方向に引張って所望の厚さにしている(例えば、特許文献1参照)。このようにガラスリボンの厚さを調整する場合、ガラスリボンのエッジ部分を観察しながらトップロールの位置及びガラス溶融の流入量を調整している。 For example, in the glass manufacturing process, a glass ribbon melted at a high temperature is slowly cooled in the process of passing through a float bath in a high-temperature furnace, and the edge portion of the glass ribbon is pulled in the width direction by a top roll (assist roll). (For example, refer to Patent Document 1). Thus, when adjusting the thickness of a glass ribbon, the position of a top roll and the inflow amount of glass melting are adjusted, observing the edge part of a glass ribbon.
 また、高温炉内の溶融ガラス素地表面、すなわち、フロートバス内のガラスリボン(溶融ガラス)のエッジ付近を監視する場合、至近距離からできる限り広範囲に見えることが要望されている。一般的な環境下では、広角レンズを用いて撮像するだけ良いが、500°C以上の温度環境下となる高温炉内を観察する場合は、覗き窓から炉内を観察するか、あるいは冷却手段を有するカメラ収納ケース内に収納された監視カメラにより炉内を撮像することになる。 Also, when monitoring the surface of the molten glass substrate in the high-temperature furnace, that is, the vicinity of the edge of the glass ribbon (molten glass) in the float bath, it is desired to be as wide as possible from the closest distance. In a general environment, it is only necessary to take an image using a wide-angle lens. However, when observing the inside of a high-temperature furnace in a temperature environment of 500 ° C. or higher, the inside of the furnace is observed from a viewing window, or a cooling means. The inside of the furnace is imaged by a monitoring camera housed in a camera housing case having
特開2011-1217号公報JP 2011-1217 A
 上記ガラスの製造工程においては、複数の監視カメラを設置してガラスリボンのエッジ部分の流れを全て監視する場合、監視カメラの設置数が増加することになり、監視カメラの設置により炉内の温度が低下し、炉内の温度分布に影響を与えるという問題があった。 In the glass manufacturing process, when a plurality of monitoring cameras are installed to monitor all the flow of the edge portion of the glass ribbon, the number of monitoring cameras will increase, and the temperature in the furnace will increase due to the installation of the monitoring cameras. There is a problem that the temperature of the furnace is lowered and the temperature distribution in the furnace is affected.
 また、監視カメラに画角の大きい魚眼レンズを装着することにより、炉内を広範囲に撮像することが可能になり、監視カメラの設置数を削減することが考えられる。しかしながら、一般的な広角レンズよりも画角の広い所謂魚眼レンズ(例えば、画角が180度)を用いて撮像する方法では、画像に歪曲収差(ディストーション)が発生するという問題が生じる。 Also, by attaching a fisheye lens with a large angle of view to the surveillance camera, it is possible to take a wide range of images inside the furnace, and the number of surveillance cameras can be reduced. However, in a method of imaging using a so-called fish-eye lens (for example, an angle of view of 180 degrees) having a wider angle of view than a general wide angle lens, there is a problem that distortion is generated in the image.
 さらに、カメラ収納ケースの窓を魚眼レンズの画角に合わせて大きくした場合、窓のカバーガラスの内側が冷却手段により冷却されるため、カバーガラスの外側に結露が発生しやすくなってカバーガラスが汚れやすくなる。そのため、魚眼レンズを用いてガラスリボンのエッジ部分を広範囲に撮像する場合、汚れたカバーガラスを新しいものと頻繁に交換するなどのメンテナンスに手間がかかるという問題が生じる。 In addition, when the window of the camera storage case is enlarged to match the angle of view of the fisheye lens, the inside of the window cover glass is cooled by the cooling means, so condensation tends to occur on the outside of the cover glass and the cover glass becomes dirty. It becomes easy. Therefore, when a fisheye lens is used to image a wide range of the edge portion of the glass ribbon, there is a problem that maintenance such as frequent replacement of a dirty cover glass with a new one is troublesome.
 そこで、本考案は上記事情に鑑み、炉内の温度分布に影響を与えにくい構成として上記課題を解決した高温炉内監視カメラ装置及び監視システムの提供を目的とする。 Therefore, in view of the above circumstances, the present invention aims to provide a high-temperature furnace monitoring camera device and a monitoring system that solves the above problems as a configuration that hardly affects the temperature distribution in the furnace.
 上記課題を解決するため、本考案は以下のような手段を有する。 In order to solve the above problems, the present invention has the following means.
 本考案は、高温炉内を撮像する高温炉内監視カメラ装置であって、
 前記高温炉内を囲む炉壁に挿通されるカメラ収納ケースと、
 前記カメラ収納ケースの内部に収納される撮像カメラ本体と、
 前記カメラ収納ケースの内部を冷却する冷却手段と、
 前記カメラ収納ケースの挿入側端部に形成され、前記炉内の温度に耐えうるカバーガラスを有する窓と、
 前記カバーガラスを通して前記炉内の各領域からの光が入射される複数のプリズムを有するプリズム系と、
 前記プリズム系から出射された各領域からの光を前記撮像カメラ本体の撮像素子に結像させる広角レンズ系と、
 を備える。
The present invention is a high-temperature furnace monitoring camera device for imaging the inside of a high-temperature furnace,
A camera storage case inserted through a furnace wall surrounding the inside of the high temperature furnace;
An imaging camera body stored in the camera storage case;
Cooling means for cooling the inside of the camera storage case;
A window having a cover glass that is formed at the insertion side end of the camera storage case and can withstand the temperature in the furnace;
A prism system having a plurality of prisms through which light from each region in the furnace is incident through the cover glass;
A wide-angle lens system for imaging light from each region emitted from the prism system on the image sensor of the imaging camera body;
Is provided.
 本考案によれば、監視カメラから至近距離及び左右方向に離間した任意の各領域を1台の監視カメラで撮像することが可能になり、その分監視カメラの設置数を削減して監視カメラの設置に伴う炉内の温度低下を抑制することが可能になると共に、カメラ収納ケースの窓に装着されるカバーガラスの面積をできるだけ小さくしてカバーガラスの結露を抑制してカバーガラスの汚れを抑制してメンテナンスの手間を軽減できる。 According to the present invention, it becomes possible to capture any area separated from the surveillance camera in the close range and the left-right direction with one surveillance camera, and the number of surveillance cameras can be reduced accordingly. It is possible to suppress the temperature drop in the furnace due to the installation, and the cover glass attached to the window of the camera storage case is made as small as possible to suppress the condensation of the cover glass and to prevent the cover glass from becoming dirty. And maintenance work can be reduced.
本考案による高温炉内監視カメラ装置の一実施例を用いた監視システムを示す図である。It is a figure which shows the monitoring system using one Example of the high temperature furnace monitoring camera apparatus by this invention. 本考案による高温炉内監視カメラ装置の一実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Example of the high temperature furnace monitoring camera apparatus by this invention. 本考案による高温炉内監視カメラ装置の撮像範囲を示す平面図である。It is a top view which shows the imaging range of the high temperature furnace monitoring camera apparatus by this invention. 高温炉内監視カメラ装置の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of a high temperature furnace monitoring camera apparatus. 高温炉内監視カメラ装置の変形例を示す横断面図である。It is a cross-sectional view showing a modification of the high-temperature furnace monitoring camera device. 高温炉内監視カメラ装置の変形例の撮像範囲を示す平面図である。It is a top view which shows the imaging range of the modification of a high temperature furnace monitoring camera apparatus.
 以下、図面を参照して本考案を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 〔監視システムの構成〕
 図1は本考案による高温炉内監視カメラ装置の一実施例を用いた監視システムを示す構成図である。図1に示されるように、監視システム10は、高温炉20の内壁左右両側に配された複数の高温炉内監視カメラ装置30、30Aと、画像処理部40と、モニタ50とを有する。尚、図1において、2台の高温炉内監視カメラ装置30、30Aの配置は、説明の便宜上左右両側に配置された場合について示されているが、実際には溶融ガラスの流れ方向の複数箇所に各高温炉内監視カメラ装置30、30Aが適宜配置される。
[Configuration of the monitoring system]
FIG. 1 is a block diagram showing a monitoring system using an embodiment of a high-temperature furnace monitoring camera device according to the present invention. As shown in FIG. 1, the monitoring system 10 includes a plurality of high-temperature furnace monitoring camera devices 30 and 30 </ b> A arranged on the left and right sides of the inner wall of the high-temperature furnace 20, an image processing unit 40, and a monitor 50. In FIG. 1, the arrangement of the two high-temperature furnace monitoring camera devices 30 and 30A is shown on the left and right sides for convenience of explanation, but in practice, a plurality of locations in the molten glass flow direction are shown. The high-temperature furnace monitoring camera devices 30 and 30A are appropriately arranged.
 高温炉20は、天井側にヒータ21が設けられ、底部側に溶融スズ(Sn)62を有するフロートバス60が設けられている。高温炉内監視カメラ装置30、30Aは、高温炉20の側面の炉壁22に形成された取付孔24に挿入されており、溶融スズ62の上面を移動するガラスリボンG(溶融ガラス)のエッジ部分を斜め上方から撮像するように取り付けられている。また、各高温炉内監視カメラ装置30、30Aの突出位置及び挿入角度(水平方向に対する傾斜角度)は、撮像するガラスリボンGのエッジ部分にできるだけ接近するように設定される。 The high temperature furnace 20 is provided with a heater 21 on the ceiling side and a float bath 60 having molten tin (Sn) 62 on the bottom side. The high-temperature furnace monitoring camera device 30, 30 </ b> A is inserted into a mounting hole 24 formed in the furnace wall 22 on the side surface of the high-temperature furnace 20, and an edge of a glass ribbon G (molten glass) that moves on the upper surface of the molten tin 62. The part is attached so as to take an image from obliquely above. Further, the protruding position and the insertion angle (inclination angle with respect to the horizontal direction) of each high-temperature furnace monitoring camera device 30, 30A are set as close as possible to the edge portion of the glass ribbon G to be imaged.
 画像処理部40は、各高温炉内監視カメラ装置30により撮像された高温炉20の炉内26の画像を画像処理する制御手段であり、画像処理した画像をモニタ50に表示させる。 The image processing unit 40 is a control unit that performs image processing on the image of the inside 26 of the high-temperature furnace 20 captured by each high-temperature furnace monitoring camera device 30, and displays the image-processed image on the monitor 50.
 高温炉内監視カメラ装置30、30Aは、例えば高温に溶融したガラスリボンGのエッジ部分をトップロール23により拡幅方向に引張っている状況を観察するためのものであるので、トップロール23の配置箇所に対応する複数箇所に配置されることが望ましい。しかしながら、本考案の高温炉内監視カメラ装置30、30Aは、後述するように複数領域を同時に撮像可能な複眼構造であるので、従来の単眼構造のものよりも設置数を削減可能である。そのため、高温炉20においては、炉壁22の取付孔24の数及び高温炉内監視カメラ装置30、30Aの数が削減されることになり、その分炉内26の温度の低下が抑制され、温度管理が安定化する。 The high-temperature furnace monitoring camera devices 30 and 30A are for observing, for example, a situation in which the edge portion of the glass ribbon G melted at a high temperature is pulled in the widening direction by the top roll 23. It is desirable to be arranged at a plurality of locations corresponding to. However, since the high-temperature furnace monitoring camera devices 30 and 30A of the present invention have a compound eye structure capable of simultaneously imaging a plurality of areas as will be described later, the number of installations can be reduced as compared with a conventional monocular structure. Therefore, in the high-temperature furnace 20, the number of mounting holes 24 in the furnace wall 22 and the number of high-temperature furnace monitoring camera devices 30 and 30A are reduced, and accordingly, a decrease in temperature in the furnace 26 is suppressed. Temperature control is stabilized.
 各高温炉内監視カメラ装置30、30Aは、冷却手段としての冷却液供給装置(第1の冷却手段)70と、冷却気体供給装置(第2の冷却手段)80とを有する。冷却液供給装置70は、高温炉内監視カメラ装置30の内部に冷却液(水)を供給すると共に、高温炉内監視カメラ装置30の内部を通過した冷却液を回収しており、冷却液を循環させることでケース内温度を所定温度に冷却する。 Each high-temperature furnace monitoring camera device 30, 30 </ b> A has a coolant supply device (first cooling device) 70 as a cooling device and a cooling gas supply device (second cooling device) 80. The coolant supply device 70 supplies the coolant (water) to the inside of the high-temperature furnace monitoring camera device 30 and collects the coolant that has passed through the inside of the high-temperature furnace monitoring camera device 30. By circulating, the temperature inside the case is cooled to a predetermined temperature.
 冷却気体供給装置80は、冷却気体としての窒素ガス(N)を高温炉内監視カメラ装置30の内部に供給する。また、高温炉内監視カメラ装置30は、内部に供給された窒素ガスが、炉内挿入側の端部に排出孔を有する。そのため、高温炉内監視カメラ装置30の内部に供給された窒素ガスは、高温炉内監視カメラ装置30の内部を冷却した後、炉内26に排出される。尚、炉内26は、溶融スズ62の酸化を防ぐため、窒素ガスと水素との混合ガスの雰囲気に保たれている。そのため、高温炉内監視カメラ装置30の内部を冷却した窒素ガスが炉内26に排出されても、炉内26の雰囲気は殆ど変化しない。 The cooling gas supply device 80 supplies nitrogen gas (N 2 ) as a cooling gas to the inside of the high-temperature furnace monitoring camera device 30. Further, in the high-temperature furnace monitoring camera device 30, the nitrogen gas supplied to the inside has a discharge hole at the end on the furnace insertion side. Therefore, the nitrogen gas supplied to the inside of the high-temperature furnace monitoring camera device 30 is discharged into the furnace 26 after the inside of the high-temperature furnace monitoring camera device 30 is cooled. The furnace interior 26 is maintained in a mixed gas atmosphere of nitrogen gas and hydrogen in order to prevent oxidation of the molten tin 62. Therefore, even if the nitrogen gas that has cooled the inside of the high-temperature furnace monitoring camera device 30 is discharged into the furnace 26, the atmosphere in the furnace 26 hardly changes.
 〔高温炉内監視カメラ装置30の構成〕
 図2は本考案による高温炉内監視カメラ装置の一実施例を示す縦断面図である。図2に示されるように、高温炉内監視カメラ装置30は、カメラ収納ケース90と、撮像カメラ本体100と、広角レンズ系110と、プリズム系120とを有する。カメラ収納ケース90は、耐熱材及び断熱材により構成されており、挿入側端部には撮像用の窓130が設けられている。また、カメラ収納ケース90の内壁には、冷却液(冷却水)が循環される冷却流路72が設けられている。この冷却流路72は、冷却液供給装置70から供給された冷却液が流れており、カメラ収納ケース90の内壁及び内部空間92を冷却する。さらに、内部空間92は、冷却気体供給装置80から供給された窒素ガスが後端部側から前端部側へ流れて排出されるため、内部空間92に収納された撮像カメラ本体100、広角レンズ系110、プリズム系120が窒素ガスの流れによって直接冷却(空冷)される。
[Configuration of the high-temperature furnace monitoring camera device 30]
FIG. 2 is a longitudinal sectional view showing an embodiment of the high-temperature furnace monitoring camera device according to the present invention. As shown in FIG. 2, the high-temperature furnace monitoring camera device 30 includes a camera storage case 90, an imaging camera body 100, a wide-angle lens system 110, and a prism system 120. The camera storage case 90 is made of a heat-resistant material and a heat-insulating material, and an imaging window 130 is provided at the insertion side end. Further, a cooling flow path 72 through which a cooling liquid (cooling water) is circulated is provided on the inner wall of the camera storage case 90. The cooling liquid supplied from the cooling liquid supply device 70 flows through the cooling flow path 72, and cools the inner wall and the internal space 92 of the camera storage case 90. Further, since the nitrogen gas supplied from the cooling gas supply device 80 flows out from the rear end side to the front end side and is discharged from the inner space 92, the imaging camera body 100 and the wide-angle lens system housed in the inner space 92 are discharged. 110 and prism system 120 are directly cooled (air cooled) by the flow of nitrogen gas.
 また、カメラ収納ケース90は、挿入側前端部に窓130が設けられている。また、窓130は、炉内26の熱がカメラ収納ケース90の内部に伝導しにくいように、できるだけ小さく形成されており、本実施の形態では、プリズム系120の縦寸法及び横寸法に対応した大きさ(面積)に形成されている。尚、本実施の形態においては、窓130の開口寸法は、縦横寸法がそれぞれ30~70mmであり、例えば横50mm×縦50mmである。 In addition, the camera storage case 90 is provided with a window 130 at the insertion-side front end. Further, the window 130 is formed as small as possible so that the heat in the furnace 26 is not easily conducted into the camera housing case 90. In the present embodiment, the window 130 corresponds to the vertical dimension and the horizontal dimension of the prism system 120. It is formed in size (area). In the present embodiment, the opening dimensions of the window 130 are 30 to 70 mm in vertical and horizontal dimensions, for example, 50 mm wide × 50 mm long.
 窓130には、開口部分に炉内26の温度に耐えうる透明なカバーガラス132が嵌め込まれている。カバーガラス132は、耐熱性を有する石英ガラス又はサファイアガラスにより形成されており、至近距離の被写体も撮像可能となるようにカメラ収納ケース90の挿入側前端部の垂直面に対して下向き45度の傾斜角度で取り付けられている。 A transparent cover glass 132 that can withstand the temperature in the furnace 26 is fitted into the opening portion of the window 130. The cover glass 132 is made of heat-resistant quartz glass or sapphire glass, and is 45 degrees downward with respect to the vertical surface at the front end of the insertion side of the camera storage case 90 so that a subject at a close distance can be imaged. It is attached at an inclination angle.
 撮像カメラ本体100は、広角レンズ系110から入射された光を電気信号に変換する撮像素子(図示せず)を内蔵しており、炉内26の撮像信号を画像処理部40に出力する。広角レンズ系110としては、撮像カメラ本体100の撮像素子に炉内26からの光を結像させる広角レンズ、例えば焦点距離f=8.5mm、画角が40度~60度の広角レンズを用いるため、魚眼レンズに比べて画像の歪曲収差(ディストーション)を抑制することが可能になる。 The imaging camera body 100 incorporates an imaging element (not shown) that converts the light incident from the wide-angle lens system 110 into an electrical signal, and outputs the imaging signal in the furnace 26 to the image processing unit 40. As the wide-angle lens system 110, a wide-angle lens that forms an image of light from the furnace 26 on the image sensor of the imaging camera body 100, for example, a wide-angle lens having a focal length f = 8.5 mm and an angle of view of 40 to 60 degrees is used. Therefore, it is possible to suppress image distortion (distortion) as compared with a fish-eye lens.
 また、撮像素子は、例えば2/3インチ(8.8mm×6.6mm)の大きさを有し、画素数は500万画素である。 The image sensor has a size of 2/3 inch (8.8 mm × 6.6 mm), for example, and has 5 million pixels.
 プリズム系120は、広角レンズ系110と窓130との間に配置されており、2つの45度偏角視野を有する45度偏角プリズムを組み合わせた構成であり、本実施の形態では、至近距離用の第1のプリズム122と、近距離用の第2のプリズム124とを有する。第1のプリズム122及び第2のプリズム124は、入射面122a、124aが窓130のカバーガラス132に対向するように取り付けられている。入射面122a、124aの傾斜角度によって、撮像範囲を任意の領域(例えば、至近距離の領域)に設定できるので、ガラスリボンGのエッジ部分が高温炉内監視カメラ装置30の挿入側前端部に至近距離まで接近していても撮像可能である。 The prism system 120 is disposed between the wide-angle lens system 110 and the window 130, and is configured by combining two 45-degree declination prisms having a 45-degree declination field of view. A first prism 122 for short distance and a second prism 124 for short distance. The first prism 122 and the second prism 124 are attached so that the incident surfaces 122 a and 124 a face the cover glass 132 of the window 130. Since the imaging range can be set to an arbitrary region (for example, a close range region) depending on the inclination angles of the incident surfaces 122a and 124a, the edge portion of the glass ribbon G is close to the insertion-side front end portion of the high-temperature furnace monitoring camera device 30. Images can be taken even when close to the distance.
 また、第1のプリズム122及び第2のプリズム124の出射面122b、124bは、広角レンズ系110に対向している。第1のプリズム122及び第2のプリズム124は、入射面122a、124aへ入射されるガラスリボン62のエッジ部分140付近からの入射光を屈折し、出射面122b、124bより広角レンズ系110の下半分、上半分に2分割して出射する。 Further, the emission surfaces 122 b and 124 b of the first prism 122 and the second prism 124 are opposed to the wide-angle lens system 110. The first prism 122 and the second prism 124 refract incident light from the vicinity of the edge portion 140 of the glass ribbon 62 incident on the incident surfaces 122a and 124a, and are below the wide-angle lens system 110 from the output surfaces 122b and 124b. Divided into half and upper half.
 第1のプリズム122の入射面122aは、撮像カメラ本体100の挿入側前端より至近距離に位置する炉内26の第1正面撮像領域HAからの光が入射されるように形成され、且つ出射面122bは、第1正面撮像領域HAからの光を広角レンズ系110の光軸より下半分(俯角θ1=22.5度)に出射するように形成される。 The incident surface 122a of the first prism 122 is formed so that light from the first front imaging area HA of the furnace interior 26 located at a close distance from the insertion-side front end of the imaging camera body 100 is incident thereon, and the emission surface. 122b is formed so that the light from the first front imaging area HA is emitted to the lower half of the optical axis of the wide-angle lens system 110 (the depression angle θ1 = 22.5 degrees).
 第2のプリズム124の入射面124aは、上記第1正面撮像領域HAより遠い位置の第2正面撮像領域HBからの光が入射されるように形成され、且つ出射面124bは、第2正面撮像領域HBからの光を広角レンズ系110の光軸Oより上半分(俯角θ2=22.5度)に出射するように形成される。 The incident surface 124a of the second prism 124 is formed so that light from the second front imaging region HB at a position farther from the first front imaging region HA is incident, and the emission surface 124b is the second front imaging. It is formed so that the light from the region HB is emitted to the upper half (the depression angle θ2 = 22.5 degrees) from the optical axis O of the wide-angle lens system 110.
 また、窓130のカバーガラス132は、第1のプリズム122の入射面122a、及び第2のプリズム124の入射面124aに対向する大きさ(面積)を有する。すなわち、窓130は、広角レンズ系110の画角に応じた範囲を開口させる必要がなく、第1のプリズム122の入射面122a、及び第2のプリズム124の入射面124aの合計面積分あれば良いので、所謂魚眼レンズを用いる場合よりも開口面積が大幅に小さくなる。その分、カバーガラス132は結露しにくくなって、メンテナンス回数を削減できる。 Further, the cover glass 132 of the window 130 has a size (area) facing the incident surface 122a of the first prism 122 and the incident surface 124a of the second prism 124. That is, the window 130 does not need to open a range corresponding to the angle of view of the wide-angle lens system 110, and has a total area of the incident surface 122 a of the first prism 122 and the incident surface 124 a of the second prism 124. Since it is good, the opening area is significantly smaller than when a so-called fisheye lens is used. Accordingly, the cover glass 132 is less likely to condense, and the number of maintenance can be reduced.
 図3は本考案による高温炉内監視カメラ装置の撮像範囲を示す平面図である。図3に示されるように、第1正面撮像領域HA及び第2正面撮像領域HBの光は、第1のプリズム122及び第2のプリズム124により屈折されて高温炉内監視カメラ装置30の広角レンズ系110に入射される。そのため、広角レンズ系110は、撮像素子の下半分に近距離側の第1正面撮像領域HAの光を結像させ、撮像素子の上半分に第1正面撮像領域HAより遠距離側の第2正面撮像領域HBの光を結像させる。また、第1のプリズム122の入射面122a、及び第2のプリズム124の入射面124aの水平面に対する角度、あるいは高温炉内監視カメラ装置30の水平面に対する取付角度を適宜調整することにより、第1正面撮像領域HA及び第2正面撮像領域HBを高温炉内監視カメラ装置30から近い領域又は遠い領域に設定することも可能である。 FIG. 3 is a plan view showing an imaging range of the high-temperature furnace monitoring camera device according to the present invention. As shown in FIG. 3, the light in the first front imaging area HA and the second front imaging area HB is refracted by the first prism 122 and the second prism 124 and is a wide-angle lens of the high-temperature furnace monitoring camera device 30. It is incident on the system 110. Therefore, the wide-angle lens system 110 focuses the light of the first front imaging area HA on the short distance side on the lower half of the image sensor, and the second on the far side of the first front imaging area HA on the upper half of the image sensor. The light of the front imaging area HB is imaged. In addition, the first front surface can be adjusted by appropriately adjusting the angle of the incident surface 122a of the first prism 122 and the incident surface 124a of the second prism 124 with respect to the horizontal plane, or the mounting angle of the high-temperature furnace monitoring camera device 30 with respect to the horizontal plane. It is also possible to set the imaging area HA and the second front imaging area HB in a region near or far from the high-temperature furnace monitoring camera device 30.
 第1正面撮像領域HA及び第2正面撮像領域HBは、上方からみると夫々台形状であるが、ガラスリボンのエッジ部分140を観察するのに必要な観察領域HC(図3中、破線で示す領域)をカバーしている。そのため、観察者は、モニタ50(図1参照)に表示された第1正面撮像領域HA及び第2正面撮像領域HBの2つの正面方向の画像によりガラスリボンGのエッジ部分140の位置及びエッジ部分140の膨らみ具合を確認しながらトップローラの位置や溶融ガラスの流入量等の調整操作を行える。このように、高温炉内監視カメラ装置30は、ガラスリボンGのエッジ部分140の異常変動や、トップロールの押込み過ぎなどで、ガラスリボンGを巻き込む等のトラブルを未然に防止するのに好適であり、フロートバス60における操作を正確且つ迅速に行えるようにアシストすることが可能である。 The first front imaging area HA and the second front imaging area HB each have a trapezoidal shape when viewed from above, but an observation area HC (shown by a broken line in FIG. 3) necessary for observing the edge portion 140 of the glass ribbon. Area). Therefore, the observer uses the two front images of the first front imaging area HA and the second front imaging area HB displayed on the monitor 50 (see FIG. 1) to determine the position and edge portion of the edge portion 140 of the glass ribbon G. The operation of adjusting the position of the top roller, the amount of inflow of molten glass, and the like can be performed while checking the degree of swelling of 140. As described above, the high-temperature furnace monitoring camera device 30 is suitable for preventing troubles such as the glass ribbon G being caught due to abnormal fluctuation of the edge portion 140 of the glass ribbon G or excessive pressing of the top roll. Yes, it is possible to assist so that the operation in the float bath 60 can be performed accurately and quickly.
 また、高温炉内監視カメラ装置30は、光軸Oを中心軸として90度回動させることで、縦方向の二つの第1正面撮像領域HA及び第2正面撮像領域HBが水平方向にずらした二つの領域として撮像することが可能になる。 In addition, the high-temperature furnace monitoring camera device 30 is rotated 90 degrees about the optical axis O, so that the two vertical first imaging areas HA and HB are shifted in the horizontal direction. It becomes possible to image as two areas.
 〔高温炉内監視カメラ装置の変形例〕
 図4は高温炉内監視カメラ装置の変形例を示す縦断面図である。図5は高温炉内監視カメラ装置の変形例を示す横断面図である。図4及び図5に示されるように、高温炉内監視カメラ装置30Aは、カメラ収納ケース90Aと、撮像カメラ本体100と、広角レンズ系110と、プリズム系120Aとを有する。尚、撮像カメラ本体100、広角レンズ系110は、前述した実施の形態と同様なため、説明を省略する。
[Modification of high-temperature furnace monitoring camera device]
FIG. 4 is a longitudinal sectional view showing a modification of the high-temperature furnace monitoring camera device. FIG. 5 is a cross-sectional view showing a modification of the high-temperature furnace monitoring camera device. As shown in FIGS. 4 and 5, the high-temperature furnace monitoring camera device 30A includes a camera storage case 90A, an imaging camera body 100, a wide-angle lens system 110, and a prism system 120A. Note that the imaging camera body 100 and the wide-angle lens system 110 are the same as those in the above-described embodiment, and thus description thereof is omitted.
 カメラ収納ケース90Aは、前述した冷却液供給装置(第1の冷却手段)70及び、冷却気体供給装置(第2の冷却手段)80により内部が冷却される。また、カメラ収納ケース90Aは、挿入側端部に正面撮像用の窓130と、左側面撮像用の窓134と、右側面撮像用の窓136とを有する。尚、本実施の形態においては、正面の窓130の開口寸法は、前述した図2の場合の上半分の大きさで良いので、横寸法が30~70mm、縦寸法が15~35mmであり、例えば横50mm×縦25mmである。また、左右の窓134、136の開口寸法は、縦横寸法がそれぞれ15~35mmであり、例えば横25mm×縦25mmである。 The interior of the camera storage case 90A is cooled by the above-described cooling liquid supply device (first cooling means) 70 and cooling gas supply device (second cooling means) 80. The camera storage case 90 </ b> A has a front imaging window 130, a left side imaging window 134, and a right side imaging window 136 at the insertion side end. In the present embodiment, the opening size of the front window 130 may be the upper half of the case of FIG. 2 described above, so that the horizontal dimension is 30 to 70 mm and the vertical dimension is 15 to 35 mm. For example, it is 50 mm wide × 25 mm long. The opening dimensions of the left and right windows 134 and 136 are 15 to 35 mm in length and width, respectively, for example, 25 mm wide × 25 mm long.
 各窓130、134、136には、耐熱性を有する石英ガラス又はサファイアガラスにより形成されたカバーガラス132、135、137が嵌め込まれている。窓130、134、136は、広角レンズ系110の画角に応じた範囲を開口させる場合よりも小さくて済み、各プリズム124、126、128の入射面124a、126a、128aに対応する面積があれば良い。そのため、所謂魚眼レンズを用いる場合よりも窓の開口面積が小さくなり、その分、カバーガラス132、135、137は結露しにくくなって、メンテナンス回数を削減できる。 In each of the windows 130, 134, and 136, cover glasses 132, 135, and 137 formed of quartz glass or sapphire glass having heat resistance are fitted. The windows 130, 134, and 136 may be smaller than when the range corresponding to the angle of view of the wide-angle lens system 110 is opened, and have areas corresponding to the incident surfaces 124 a, 126 a, and 128 a of the prisms 124, 126, and 128. It ’s fine. Therefore, the opening area of the window is smaller than when a so-called fish-eye lens is used, and the cover glasses 132, 135, and 137 are less likely to condense, and the number of maintenance can be reduced.
 プリズム系120Aは、第2のプリズム124と、第3のプリズム126と、第4のプリズム128とを有する。第2のプリズム124は、前述した通り、第2正面撮像領域HBの光が入射される入射面124aと、広角レンズ系110の上半分(俯角θ2=22.5度)に光を出射する出射面124bとを有する。 The prism system 120A includes a second prism 124, a third prism 126, and a fourth prism 128. As described above, the second prism 124 emits light to the incident surface 124a on which the light in the second front imaging region HB is incident and the upper half of the wide-angle lens system 110 (the depression angle θ2 = 22.5 degrees). Surface 124b.
 第3のプリズム126、第4のプリズム128は、45度の偏角視野を有し、光軸Oの左右方向に離れた2つの側面撮像領域の光が入射される。第3のプリズム126の入射面126aは、撮像カメラ本体100の光軸Oより左側に離間した位置の左側撮像領域HDからの光が入射されるように形成される。また、第3のプリズム126の出射面126bは、左側撮像領域HDからの光を広角レンズ系110の光軸より下半分(俯角θ1=22.5度)の左側に出射するように形成される。 The third prism 126 and the fourth prism 128 have a declination field of 45 degrees, and light from two side surface imaging areas separated in the left-right direction of the optical axis O is incident thereon. The incident surface 126a of the third prism 126 is formed so that light from the left imaging region HD at a position separated to the left from the optical axis O of the imaging camera body 100 is incident. The exit surface 126b of the third prism 126 is formed so that light from the left imaging region HD is emitted to the left half of the optical axis of the wide-angle lens system 110 (a depression angle θ1 = 22.5 degrees). .
 第4のプリズム128の入射面128aは、撮像カメラ本体100の光軸Oより右側に離間した位置の右側撮像領域HEからの光が入射されるように形成される。また、第4のプリズム128の出射面128bは、右側撮像領域HEからの光を広角レンズ系110の光軸Oより下半分(俯角θ1=22.5度)の右側に出射するように形成される。 The incident surface 128a of the fourth prism 128 is formed such that light from the right imaging region HE at a position spaced to the right from the optical axis O of the imaging camera body 100 is incident. In addition, the emission surface 128b of the fourth prism 128 is formed so as to emit light from the right imaging region HE to the right side of the lower half (the depression angle θ1 = 22.5 degrees) from the optical axis O of the wide-angle lens system 110. The
 図6は高温炉内監視カメラ装置の変形例の撮像範囲を示す平面図である。図6に示されるように、各プリズム124、126、128により光が入射される第2正面撮像領域HB、左側撮像領域HD、右側撮像領域HEは、ガラスリボンGのエッジ部分140が流れる第2観察領域HF(図6中、破線で示す領域)に含まれる。従って、高温炉内監視カメラ装置30Aでは、第2正面撮像領域HB、左側撮像領域HD、右側撮像領域HEからの光が各プリズム124、126、128より広角レンズ系110に入射されるため、水平方向に135度の範囲の各領域の光がカメラ本体100に内蔵された撮像素子に結象される。 FIG. 6 is a plan view showing an imaging range of a modified example of the high-temperature furnace monitoring camera device. As shown in FIG. 6, the second front imaging area HB, the left imaging area HD, and the right imaging area HE into which light is incident by the prisms 124, 126, and 128, flow through the edge portion 140 of the glass ribbon G. It is included in the observation area HF (area shown by a broken line in FIG. 6). Therefore, in the high-temperature furnace monitoring camera device 30A, the light from the second front imaging area HB, the left imaging area HD, and the right imaging area HE is incident on the wide-angle lens system 110 from the prisms 124, 126, and 128. The light of each region in the range of 135 degrees in the direction is imaged on the image pickup device built in the camera body 100.
 すなわち、撮像素子の上半分には、第2正面撮像領域HBの光が結象され、撮像素子の下半分の左半分(左側の1/4)には左側撮像領域HDの光が結象され、撮像素子の下半分の右半分(右側の1/4)には右側撮像領域HEの光が結象される。そのため、モニタ50(図1参照)は、第2正面撮像領域HB、左側撮像領域HD、右側撮像領域HEを撮像した3つの各画像を一画面に表示する。 That is, the light of the second front imaging area HB is imaged on the upper half of the image sensor, and the light of the left imaging area HD is imaged on the left half (1/4 of the left side) of the lower half of the image sensor. The light of the right imaging region HE is imaged on the right half (1/4 of the right side) of the lower half of the imaging device. Therefore, the monitor 50 (see FIG. 1) displays three images obtained by imaging the second front imaging area HB, the left imaging area HD, and the right imaging area HE on one screen.
 観察者は、モニタ50に表示された第2正面撮像領域HB、左側撮像領域HD、右側撮像領域HEの3つの各画像によりガラスリボンGのエッジ部分140の流れ方向の各位置を確認しながらトップローラ23の位置や溶融ガラスの流入量の調整操作を行える。このように、ガラスリボンGの流れ方向に沿う3つの領域を一台の撮像カメラで同時に撮像することができるので、その分、撮像カメラの設置数を削減することが可能になり、高温炉20の炉内26及びフロートバス60内の温度変化(低下)を抑制することが可能になる。 The observer confirms each position in the flow direction of the edge portion 140 of the glass ribbon G from each of the three images of the second front imaging area HB, the left imaging area HD, and the right imaging area HE displayed on the monitor 50. It is possible to adjust the position of the roller 23 and the inflow amount of the molten glass. In this way, since three areas along the flow direction of the glass ribbon G can be simultaneously imaged by one imaging camera, the number of imaging cameras can be reduced correspondingly, and the high temperature furnace 20 can be reduced accordingly. It is possible to suppress temperature changes (decrease) in the furnace 26 and the float bath 60.
 また、高温炉内監視カメラ装置30Aは、正面及び左右方向の3つ各領域HB、HD、HEを同時に監視することが可能になるため、例えばフロートバス60の入口側におけるガラスリボンGのエッジ部分が拡幅方向に移動される領域を広範囲に監視するのに好適であり、フロートバス60におけるガラスリボンの幅、厚みを最適制御することに寄与する。 In addition, since the high temperature furnace monitoring camera device 30A can simultaneously monitor the three regions HB, HD, and HE in the front and left and right directions, for example, the edge portion of the glass ribbon G on the inlet side of the float bath 60 Is suitable for monitoring a wide range of the region moved in the widening direction, and contributes to optimal control of the width and thickness of the glass ribbon in the float bath 60.
 本考案は、ガラスなどの製造工程における高温炉内の監視に好適である。 The present invention is suitable for monitoring in a high-temperature furnace in the manufacturing process of glass or the like.
 本出願は、2012年8月2日に日本国特許庁に出願された実願2012-004749に基づくものであり、その出願を優先権主張するものであり、その出願の全ての内容を参照することにより包含するものである。 This application is based on the actual application 2012-004749 filed with the Japan Patent Office on August 2, 2012, claims the priority thereof, and refers to the entire contents of the application. It is included.
10 監視システム
20 高温炉
22 炉壁
24 取付孔
26 炉内
30、30A 高温炉内監視カメラ装置
40 画像処理部
50 モニタ
60 フロートバス
62 溶融スズ
70 冷却液供給装置(第1の冷却手段)
72 冷却流路
80 冷却気体供給装置(第2の冷却手段)
90、90A カメラ収納ケース
92 内部空間
100 撮像カメラ本体
110 広角レンズ系
120、120A プリズム系
122 第1のプリズム
122a、124a、126a、128a 入射面
122b、124b、126b、128b 出射面
124 第2のプリズム
126 第3のプリズム
128 第4のプリズム
130、134、136 窓
132、135、137 カバーガラス
140 エッジ部分
G ガラスリボン
HA 第1正面撮像領域
HB 第2正面撮像領域
HC 第1観察領域
HD 左側撮像領域
HE 右側撮像領域
HF 第2観察領域
O 光軸
DESCRIPTION OF SYMBOLS 10 Monitoring system 20 High temperature furnace 22 Furnace wall 24 Mounting hole 26 Furnace 30, 30A High temperature furnace monitoring camera apparatus 40 Image processing part 50 Monitor 60 Float bath 62 Molten tin 70 Coolant supply apparatus (1st cooling means)
72 Cooling flow path 80 Cooling gas supply device (second cooling means)
90, 90A Camera storage case 92 Internal space 100 Imaging camera body 110 Wide angle lens system 120, 120A Prism system 122 First prisms 122a, 124a, 126a, 128a Incident surfaces 122b, 124b, 126b, 128b Outgoing surface 124 Second prism 126 Third prism 128 Fourth prism 130, 134, 136 Window 132, 135, 137 Cover glass 140 Edge portion G Glass ribbon HA First front imaging area HB Second front imaging area HC First observation area HD Left imaging area HE Right imaging area HF Second observation area O Optical axis

Claims (8)

  1.  高温炉内を撮像する高温炉内監視カメラ装置であって、
     前記高温炉内を囲む炉壁に挿通されるカメラ収納ケースと、
     前記カメラ収納ケースの内部に収納される撮像カメラ本体と、
     前記カメラ収納ケースの内部を冷却する冷却手段と、
     前記カメラ収納ケースの挿入側端部に形成され、前記炉内の温度に耐えうるカバーガラスを有する窓と、
     前記カバーガラスを通して前記炉内の各領域からの光が入射される複数のプリズムを有するプリズム系と、
     前記プリズム系から出射された各領域からの光を前記撮像カメラ本体の撮像素子に結像させる広角レンズ系と、
     を備えた高温炉内監視カメラ装置。
    A high-temperature furnace monitoring camera device that images the inside of the high-temperature furnace,
    A camera storage case inserted through a furnace wall surrounding the inside of the high temperature furnace;
    An imaging camera body stored in the camera storage case;
    Cooling means for cooling the inside of the camera storage case;
    A window having a cover glass that is formed at the insertion side end of the camera storage case and can withstand the temperature in the furnace;
    A prism system having a plurality of prisms through which light from each region in the furnace is incident through the cover glass;
    A wide-angle lens system for imaging light from each region emitted from the prism system on the image sensor of the imaging camera body;
    High-temperature furnace monitoring camera device equipped with
  2.  前記プリズム系は、
     前記炉内の至近距離に位置する第1正面撮像領域からの光を前記広角レンズ系に入射させる第1のプリズムと、
     前記第1正面撮像領域より遠距離側に位置する前記炉内の第2正面撮像領域からの光を前記広角レンズ系に入射させる第2のプリズムと、
     を有する請求項1に記載の高温炉内監視カメラ装置。
    The prism system is
    A first prism that causes light from a first front imaging region located at a close distance in the furnace to enter the wide-angle lens system;
    A second prism that makes light from the second front imaging region in the furnace located on the far side from the first front imaging region incident on the wide-angle lens system;
    The high-temperature furnace monitoring camera device according to claim 1, comprising:
  3.  前記プリズム系は、
     正面に位置する前記炉内の正面撮像領域からの光を前記広角レンズ系に入射させる第2のプリズムと、
     前記正面撮像領域より左方向に位置する前記炉内の左側撮像領域からの光を前記広角レンズ系に入射させる第3のプリズムと、
     前記正面撮像領域より右方向に位置する前記炉内の右側撮像領域からの光を前記広角レンズ系に入射させる第4のプリズムと、
     を有する請求項1に記載の高温炉内監視カメラ装置。
    The prism system is
    A second prism that causes light from a front imaging region in the furnace located in front to enter the wide-angle lens system;
    A third prism that causes light from the left imaging area in the furnace located in the left direction from the front imaging area to enter the wide-angle lens system;
    A fourth prism that causes light from the right imaging area in the furnace located in the right direction from the front imaging area to enter the wide-angle lens system;
    The high-temperature furnace monitoring camera device according to claim 1, comprising:
  4.  前記冷却手段は、
     前記カメラ収納ケースの内壁に形成された冷却流路に冷却液を供給し、前記カメラ収納ケースを冷却する第1の冷却手段と、
     前記カメラ収納ケースの内部に気体を供給し、前記撮像カメラ本体、前記広角レンズ系、前記プリズム系を冷却する第2の冷却手段と、
     を有する請求項1~3の何れかに記載の高温炉内監視カメラ装置。
    The cooling means is
    A first cooling means for supplying a cooling liquid to a cooling channel formed on an inner wall of the camera storage case and cooling the camera storage case;
    A second cooling means for supplying gas into the camera housing case and cooling the imaging camera body, the wide-angle lens system, and the prism system;
    The high-temperature furnace monitoring camera device according to any one of claims 1 to 3, further comprising:
  5.  前記第2の冷却手段は、窒素ガスを前記カメラ収納ケースの内部に供給しており、
     前記窒素ガスは、前記カメラ収納ケースの内部を通過して前記炉内に排出される請求項4に記載の高温炉内監視カメラ装置。
    The second cooling means supplies nitrogen gas into the camera storage case,
    The high-temperature furnace monitoring camera device according to claim 4, wherein the nitrogen gas passes through the camera housing case and is discharged into the furnace.
  6.  前記カバーガラスは、前記炉内の温度に耐えうる耐熱性を有する石英ガラス又はサファイアガラスである請求項1に記載の高温炉内監視カメラ装置。 The high-temperature furnace monitoring camera device according to claim 1, wherein the cover glass is quartz glass or sapphire glass having heat resistance capable of withstanding the temperature in the furnace.
  7.  前記炉内は、ガラスリボンを生成するフロートバスを有し、
     前記プリズム系は、前記ガラスリボンのエッジ部分が通過する領域が前記各撮像領域に入るように前記各プリズムが配置された請求項1~6の何れかに記載の高温炉内監視カメラ装置。
    The furnace has a float bath for producing a glass ribbon,
    The high-temperature furnace monitoring camera device according to any one of claims 1 to 6, wherein in the prism system, each prism is arranged so that a region through which an edge portion of the glass ribbon passes enters each imaging region.
  8.  請求項1~6の何れかに記載の高温炉内監視カメラ装置と、
     前記高温炉内監視カメラ装置により撮像された炉内の画像信号を画像処理する画像処理部と、
     前記画像処理部により画像処理された画像を表示するモニタとを備えた監視システム。
    A high-temperature furnace monitoring camera device according to any one of claims 1 to 6,
    An image processing unit that performs image processing on an image signal in the furnace imaged by the high-temperature furnace monitoring camera device;
    A monitoring system comprising: a monitor that displays an image processed by the image processing unit.
PCT/JP2013/069195 2012-08-02 2013-07-12 Monitor camera device in high-temperature furnace and monitor system WO2014021089A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-004749U 2012-08-02
JP2012004749U JP3179077U (en) 2012-08-02 2012-08-02 High-temperature furnace monitoring camera device and monitoring system

Publications (1)

Publication Number Publication Date
WO2014021089A1 true WO2014021089A1 (en) 2014-02-06

Family

ID=48005771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069195 WO2014021089A1 (en) 2012-08-02 2013-07-12 Monitor camera device in high-temperature furnace and monitor system

Country Status (3)

Country Link
JP (1) JP3179077U (en)
TW (1) TWM480699U (en)
WO (1) WO2014021089A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107509013A (en) * 2017-09-07 2017-12-22 钦州学院 Make steel the high temperature resistant camera machine of monitoring
AT519715A3 (en) * 2017-03-14 2019-04-15 Primetals Technologies Austria GmbH Probe for a sublance with radial acquisition of images
JP2019074584A (en) * 2017-10-13 2019-05-16 パナソニック デバイスSunx株式会社 Optical fiber sensor head and optical fiber sensor head manufacturing method
CN112738376A (en) * 2020-12-30 2021-04-30 徐州巨旋重型机械有限公司 Monitoring device and monitoring method for monitoring sintering machine kiln surface
CN113014771A (en) * 2021-02-25 2021-06-22 中国矿业大学 Arrange portable 360 degrees panorama detection devices in conflagration high temperature environment in
US11245817B2 (en) 2020-01-23 2022-02-08 Honda Motor Co., Ltd. High temperature video camera system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6274516B2 (en) * 2014-03-06 2018-02-07 日本電気硝子株式会社 In-furnace monitoring device
TWI582363B (en) * 2015-08-05 2017-05-11 國立成功大學 Movable and instantaneous temperature-monitoring device
AU2021240322B2 (en) 2021-01-07 2023-08-17 Joji AONUMA Versatile camera device mountable to pole
JP7110450B1 (en) 2021-06-15 2022-08-01 丈二 青沼 Versatile camera device mounted on a rod

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234134A (en) * 1994-12-07 1996-09-13 Ishikawajima Harima Heavy Ind Co Ltd Optical observation device
JPH1141495A (en) * 1997-07-24 1999-02-12 Yazaki Corp Image pickup area expanding member and vehicle periphery monitoring device using the same
JP2005303693A (en) * 2004-04-13 2005-10-27 Auto Network Gijutsu Kenkyusho:Kk Camera apparatus
JP2007158106A (en) * 2005-12-06 2007-06-21 Epicrew Inc Observation apparatus
JP2011001217A (en) * 2009-06-18 2011-01-06 Asahi Glass Co Ltd Apparatus and method for managing edge position of glass ribbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234134A (en) * 1994-12-07 1996-09-13 Ishikawajima Harima Heavy Ind Co Ltd Optical observation device
JPH1141495A (en) * 1997-07-24 1999-02-12 Yazaki Corp Image pickup area expanding member and vehicle periphery monitoring device using the same
JP2005303693A (en) * 2004-04-13 2005-10-27 Auto Network Gijutsu Kenkyusho:Kk Camera apparatus
JP2007158106A (en) * 2005-12-06 2007-06-21 Epicrew Inc Observation apparatus
JP2011001217A (en) * 2009-06-18 2011-01-06 Asahi Glass Co Ltd Apparatus and method for managing edge position of glass ribbon

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT519715A3 (en) * 2017-03-14 2019-04-15 Primetals Technologies Austria GmbH Probe for a sublance with radial acquisition of images
AT519715B1 (en) * 2017-03-14 2020-02-15 Primetals Technologies Austria GmbH Probe for a sublance with radial acquisition of images
CN107509013A (en) * 2017-09-07 2017-12-22 钦州学院 Make steel the high temperature resistant camera machine of monitoring
JP2019074584A (en) * 2017-10-13 2019-05-16 パナソニック デバイスSunx株式会社 Optical fiber sensor head and optical fiber sensor head manufacturing method
US11245817B2 (en) 2020-01-23 2022-02-08 Honda Motor Co., Ltd. High temperature video camera system
CN112738376A (en) * 2020-12-30 2021-04-30 徐州巨旋重型机械有限公司 Monitoring device and monitoring method for monitoring sintering machine kiln surface
CN113014771A (en) * 2021-02-25 2021-06-22 中国矿业大学 Arrange portable 360 degrees panorama detection devices in conflagration high temperature environment in

Also Published As

Publication number Publication date
JP3179077U (en) 2012-10-11
TWM480699U (en) 2014-06-21

Similar Documents

Publication Publication Date Title
JP3179077U (en) High-temperature furnace monitoring camera device and monitoring system
KR101170154B1 (en) Welded state monitoring device and method
US8300203B2 (en) Display apparatus
JP4873962B2 (en) In-furnace observation device and extrusion ram provided with the same
ES2704464T3 (en) Procedure and apparatus for real-time video images of the interior of a nozzle in a hot dip coating line
CN1869806B (en) Projection type display unit
CN103513501A (en) Video display device and cooling system
WO2011149090A1 (en) Inverted microscope
JP2010160312A (en) Lens adapter for visible light/infrared light photography
JP6490750B2 (en) Observation device and cooling mechanism
JP5262659B2 (en) How to avoid obstacles or optical phenomena that impair image quality
JP5147246B2 (en) camera
JP6419598B2 (en) Camera device and method for preventing condensation of camera device
JP4845931B2 (en) Dome-type camera and dome cover manufacturing method
JP6274516B2 (en) In-furnace monitoring device
JPH11234545A (en) Molten object observation camera
KR101404715B1 (en) Temperature monitoring apparatus for glass melter
JP2006235316A (en) Stereoscopic camera
KR101767765B1 (en) Image photographing system for annealing furnace
KR101127907B1 (en) An asymmetric wide angle infrared optical system in which anamorphic lenses are applied and a thermal observation device having the optical system
CN103581518A (en) Pick-up device
JP5904886B2 (en) Imaging apparatus, defect processing method, defect processing program, and electronic information device
KR101377746B1 (en) Veiwer device of veiw port in silicon ingot growth chamber
WO2012026250A1 (en) Ophthalmological imaging device
KR102567175B1 (en) Vacuum camera for large rooms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825174

Country of ref document: EP

Kind code of ref document: A1